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A quasiparticle system is a 1 + d-tuple of commuting

self-adjoint operators (H,P ) = (Hfr, Pfr,1, . . . , Pfr,d):

Hfr =
∑

i∈Qs∪Qa

∫
Ii

ωi(k)b∗i (k)bi(k)dk,

Pfr,j =
∑

i∈Qs∪Qa

∫
Ii

kjb
∗
i (k)bi(k)dk,

for some dispersion relations Ii 3 k 7→ ωi(k), and cre-

ation/annihilation operators b∗i (k), bi(k). Qs/Qa labels

bosons/fermions



Define the fermionic number operator:

Na =
∑
i∈Qa

b∗i (k)bi(k).

The fermionic parity (−1)Na provides a natural superse-

lection rule H = H+⊕H− so that the Hamiltonian and

momentum decompose as

(Hfr, Pfr) = (H+
fr , P

+
fr )⊕ (H−fr , P

−
fr ). (1)

(1) will be called a two-sector quasiparticle system.



Consider for example the non-interacting Fermi gas

Hfr =

∫
Rd

(k2 − µ)a∗(k)a(k)dk,

Pfr =

∫
Rd

ka∗(k)a(k)dk.

We introduce new creation/annihilation operators

b∗k : = a∗k, bk := ak, k2 > µ,

b∗k : = a−k, bk := a∗−k, k2 ≤ µ.



Dropping a constant from the Hamiltonian and setting

ω(k) = |k2 − µ|, we obtain

Hfr =

∫
Rd
ω(k)b∗(k)b(k)dk,

Pfr =

∫
Rd

kb∗(k)b(k)dk.



In dimension 1 its energy-momentum spectrum looks

quite interesting:

P

H

sp(H,P ) in the non-interacting case, d = 1.



P+

H+

sp(H+, P+) in the non-interacting case, d = 1.



P-

H-

sp(H−, P−) in the non-interacting case, d = 1.



Clearly, for d ≥ 2 the energy-momentum spectrum is

rather boring:

ÈPÈ

H

sp(H,P ), sp(H+, P+), sp(H−, P−) in the

non-interacting case, d ≥ 2.



For interacting Fermi gas, the Hartree-Fock-Bogoliubov

method with the Bardeen-Cooper-Schrieffer ansatz sug-

gests that the dispesion relation may be similar to

ω(k) =
√

(k2 − µ)2 + γ2. (2)

In all dimensions the energy-momentum spectrum the en-

ergy gap and the critical velocity are strictly positive.



P

H

sp(H,P ) in the interacting case, d = 1.



P+

H+

sp(H+, P+) in the interacting case, d = 1.



P-

H-

sp(H−, P−) in the interacting case, d = 1.



ÈPÈ

H

sp(H,P ) in the interacting case, d ≥ 2.



ÈP+

È

H+

sp(H+, P+) in the interacting case, d ≥ 2.



ÈP-

È

H-

sp(H−, P−) in the interacting case, d ≥ 2.



Suppose we have a translation invariant quantum sys-

tem in infinite volume described by the Hamiltonian H

and the momentum P = (P1, . . . , Pd). Instead of the

energy-momentum spectrum of (H,P ).

sp(H,P )

we will often use the excitation spectrum of (H,P )

sp(H − E,P )

where E := inf spH is the ground state energy.



Let (H,P ) be a quasiparticle system. The energy-

momentum spectrum of such systems has special prop-

erties. First

(0, 0) ∈ sp(H,P ),

because of the Fock vacuum state. Moreover,

sp(H,P ) = sp(H,P ) + sp(H,P ).



Assume now that all the dispersion relations are non-

negative. Then the ground state energy is zero and the

excitation spectrum coincides with the energy-momentum

spectrum. Thus

(0, 0) ∈ sp(H − E,P ),

sp(H − E,P ) = sp(H − E,P ) + sp(H − E,P ).



Let (H,P ) be a translation invariant system on a Hilbert

space H. We will say that it is a quasiparticle-like system

if it is unitarily equivalent to a quasiparticle system.

In practice we expect that the unitary equivalence men-

tioned in this definition is in some sense natural and con-

structed in the framework of scattering theory. For at

least two important classes of many body systems the

basic idea of scattering theory can be described as fol-

lows.



Using the evolution eitH for t → ±∞, we define two

isometric wave operators

S± : ⊗
i∈Qs

Γs

(
L2(Ii)

)
⊗ ⊗
j∈Qa

Γa

(
L2(Ij)

)
→ H,

For an appropriate quasiparticle system (Hfr, Pfr):

HS± = S±Hfr, PS± = S±Pfr,

Asymptotic completeness means that S± are unitary.

Asymptotically complete systems are quasiparticle-like.



The first class where this kind of scattering theory holds

is the 2nd quantization of Schrödinger many body opera-

tors with 2-body short range interactions. One can show

that they are asymptotically complete.

Note that they are invariant wrt. the Galileian group

and the dispersion relations have the form Rd 3 k 7→
E + k2

2m. Quasiparticles obtained in this context can be

“elementary” – typically electrons and nuclei – as well as

“composite” – atoms, ions, molecules, etc.



Another important class of systems where the concept

of asymptotic quasiparticles has a rigorous foundation be-

longs to (relativistic) quantum field teory, as axiomatized

by the Haag-Kastler or Wightman axioms. If we assume

the existence of discrete mass shells, the so-called Haag-

Ruelle theory allows us to construct the wave operators.

The system is covariant wrt. the Poincaré group and the

dispersion relation has the form Rd 3 k 7→
√
m2 + k2.

Here, quasiparticles are the usual stable particles.



Let us stress that both classes of systems can be in-

teracting in spite of the fact that they are equivalent to

free quasiparticle systems. In particular, their scattering

operator can be nontrivial.

The concept of a quasiparticle is useful also in other

contexts, without the Galilei or Poincaré covariance. This

allows us to consider more general dispersion relations.



An interesting system which admits a quasiparticle in-

terpretation is the free Fermi gas with a positive chemi-

cal potential. In this case the scattering theory is trivial,

however the spectrum can be quite interesting, as we saw

above.

It seems that condensed matter physicists apply success-

fully the concept of a quasiparticle also to various inter-

acting Bose and Fermi translation invariant gas without

the Galilei or Poincaré invariance.



Bose gas with repulsive interactions at zero temperature

and positive density, apparently, is well described by a free

Bose gas of quasiparticles of (at least) two kinds: at low

momenta we have phonons with an approximately lin-

ear dispersion relation, and at higher momenta we have

rotons. This follows from the famous Bogoliubov ap-

proximation. Superfluidity can be to a large extent ex-

plained within this picture. The model of free asymptotic

phonons seems to work well in real experiments.



By using the HFB approach and the BCS ansatz, Fermi

gas with attractive interactions at zero temperature and

positive chemical potential can be approximated by a sim-

ple model explaining its superconductivity at very low

temperatures. The corresponding quasiparticles are some-

times called partiholes.



The concept of a quasiparticle-like system is probably

too strong for many applications. Let us propose a weaker

property. We will say that the excitation spectrum of

(H,P ) is quasiparticle-like if it coincides with the excita-

tion spectrum of a quasiparticle system.



There exists a heuristic, but, we believe, a relatively

convincing general argument why realistic translation in-

variant quantum systems in thermodynamic limit at zero

temperature should satisfy

(0, 0) ∈ sp(H − E,P ),

sp(H − E,P ) = sp(H − E,P ) + sp(H − E,P ).



Consider a quantum gas in a box of a very large side

length L, described by (HL, PL). For shortness, let us

drop the superscript L. Assume that the system pos-

sesses a translation invariant ground state, which we will

denote by Φ, so that HΦ = EΦ, PΦ = 0.

Let (E + ei, ki) ∈ sp(H,P ), i = 1, 2. We can find

eigenvectors with these eigenvalues, that is, vectors Φi

satisfying HΦi = (E + ei)Φi, PΦi = kiΦi.



Assume that it is possible to find operators Ai well local-

ized in configuration space such that PAi ≈ Ai(P +ki),

and which approximately create the vectors Φi from the

ground state, that is Φi ≈ AiΦ. By replacing Φ2 with

eiyPΦ2 for some y and A2 with eiyPA2e−iyP , we can

make sure that the regions of localization of A1 and A2

are separated by a large distance. (Note that a large size

of L plays a role in the argument).



Now consider the vector Φ12 := A1A2Φ. Clearly,

PΦ12 ≈ (k1 + k2)Φ12.

Φ12 looks like the vector Φi in the region of localization

of Ai, elsewhere it looks like Φ. We expect that

HΦ12 ≈ (E + e1 + e2)Φ12.

If this is the case, it implies that (E+ e1 + e2, k1 + k2) ∈
sp(H,P ).



Consider now an arbitrary translation invariant system

with two superselection sectors (H,P ) = (H+, P+) ⊕
(H−, P−) with a translation invariant ground state in

the sector H+.

We will say that its excitation spectrum is two-sector

quasiparticle-like if it coincides with the excitation spec-

trum of a two-sector quasiparticle system.



Such systems satisfy

(0, 0) ∈ sp(H+ − E,P+),

sp(H+ − E,P+) = sp(H+ − E,P+) + sp(H+ − E,P+)

⊃ sp(H− − E,P−) + sp(H− − E,P−),

sp(H− − E,P−) = sp(H− − E,P−) + sp(H+ − E,P+).

A heuristic general argument, similar to the one de-

scribed above, shows that realistic quantum systems in

thermodynamic limit should satisfy these conditions.



Consider a fermionic many body system with spin on

Rd. Its one-particle space of the system is L2(Rd,C2).

Its kinetic energy has the form

(TΦ)i(x1) =

∫
t(x1, x2)Φi(x2)dx2.

We assume that t is Hermitian and translation invariant:

t(x1, x2) = t(x2, x1) = t(x1 + y, x2 + y)

= (2π)−d
∫
τ (k)eik(x1−x2)dk.



Its interaction will be given by a 2-body operator

(V Φ)i1,i2(x1, x2) =
1

2

∫ ∫ (
v(x1, x2, x3, x4)Φi2,i1(x4, x1)

−v(x1, x2, x4, x3)Φi1,i2(x3, x4)
)
dx3dx4,

where Φ ∈ Γ2
a

(
L2(Rd,C2)

)
. We will assume that it is

Hermitian and translation invariant:



v(x1, x2, x3, x4) = v(x2, x1, x4, x3)

= v(x4, x3, x2, x1) = v(x1 + y, x2 + y, x3 + y, x4 + y)

= (2π)−4d
∫

eik1x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4)

×δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4,

where q is a function defined on the subspace k1 + k2 =

k3 + k4.



An example of a 1-particle energy is

T = − 1

2m
∆− µ,

τ (k) = k2 − µ.

An example of interaction is a 2-body potential V (x)

such that V (x) = V (−x), which corresponds to

v(x1, x2, x3, x4) = V (x1 − x2)δ(x1 − x4)δ(x2 − x3),

q(k1, k2, k3, k4) =

∫
dqV̂ (q)δ(k1 − k4 − q)δ(k2 − k3 + q).



Let T(i) denote the operator T acting on the ith vari-

able and V(ij) denote the operator V acting on the (ij)th

pair of variables. The n-body Hamiltonian and momen-

tum of homogeneous Fermi gas acts on the Hilbert space

Γna

(
L2(Rd,C2)

)
:

Hn =
∑

1≤i≤n
T(i) +

∑
1≤i<j≤n

V(ij),

Pn :=

n∑
i=1

−i∇xi.



To investigate homogeneous Fermi gas at positive den-

sity in thermodynamic limit it is convenient to put the

system on a box Λ = [−L/2, L/2]d with periodic bound-

ary conditions. This means in particular that the kinetic

energy and interaction are replaced by

tL(x1, x2) =
1

Ld

∑
k∈2π

L Zd
eik·(x1−x2)τ (k),



vL(x1, x2, x3, x4) =

=
1

L3d

∑
k1,...,k4∈2π

L Zd, k1+k2=k3+k4

×eik1·x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4).

The Hamiltonian

HL,n =
∑

1≤i≤n
TL(i) +

∑
1≤i<j≤n

V L(ij)

acts on Γna
(
L2(Λ,C2)

)
.



It is convenient to put all the n-particle spaces into a

single Fock space

Γa(L2(Λ,C2)) :=
∞
⊕
n=0

Γna

(
L2(Λ,C2)

)
and rewrite the Hamiltonian and momentum in the lan-

guage of 2nd quantization:



HL :=
∞
⊕
n=0

HL,n

=
∑
i

∫
a∗x,it

L(xi1 − xi2)ax,i2dx1dx2

+
1

2

∑
i1,i2

∫ ∫
a∗x1,i1

a∗x2,i2
vL(x1, x2, x3, x4)ax3,i2ax4,i1

dx1dx2dx3dx4,

PL :=
∞
⊕
n=0

Pn,L = −i

∫
a∗x,i∇

L
x ax,idx.



In the momentum representation,

HL =
∑
i

∑
k

τ (k)a∗k,iak,i

+
1

2Ld

∑
i1,i2

∑
k1+k2=k3+k4

q(k1, k2, k3, k4)a∗k1,i1
a∗k2,,i2

ak3,i2ak4,i1,

PL =
∑
i

∑
k

ka∗k,iak,i.

HL,±(k) will denote the operator HL restricted to the

subspace PL = k, (−1)N
L

= ±1.



For a large class of potentials the finite volume Hamil-

tonians HL are bounded from below and have a discrete

spectrum.

The ground state energy is defined as

EL = inf spHL.



For k ∈ 2π
L Zd we define the infimum of the excitation

spectrum in the even/odd sector in finite volume:

εL,+(k) := inf spHL,+(k)−EL, k 6= 0,

εL,+(0) := inf
(
sp(HL,+(0)−EL)\{0}

)
,

εL,−(k) := inf spHL,−(k)−EL.



For k ∈ Rd, we would like to define the infimum of

the excitation spectrum in thermodynamic limit. To this

end, first we define its finite volume version in a “window”

given by δ > 0:

εL,δ,±(k) := inf
{
εL,±(k′L) : k′L ∈

2π

L
Zd, |k− k′L| < δ

}
.

Then we set

ε±(k) = sup
δ>0

(
lim inf
L→∞

(
εL,δ,±(k)

))
.



Conjecture 1We expect that for a large class of poten-

tials with attractive interactions the following statements

hold true:

1. The functions Rd 3 k 7→ ε±(k) ∈ R are continuous.

2. Let k ∈ Rd. Let (ks, Ls) ∈ 2π
Ls
Zd × [0,∞) obey

ks→ k, Ls→∞. Then εLs,±(ks)→ ε±(k).

3. If d ≥ 2, then infk min
(
ε−(k), ε+(k)

)
=: ε > 0.

4. If d ≥ 2, then infk6=0
min
(
ε−(k),ε+(k)

)
|k| =: ccr > 0.



5. We have the following subadditivity properties:

ε−(k1 + k2) ≤ ε−(k1) + ε+(k2),

ε+(k1 + k2) ≤ ε−(k1) + ε−(k2),

ε+(k1 + k2) ≤ ε+(k1) + ε+(k2).



For k ∈ 2π
L Zd and j, n ∈ N, we define the jth shell in

finite volume in the n-body case

ν
L,n,+
j (k) := the jth lowest eigenvalue of HL,n,+(k)−EL, k 6= 0,

ν
L,n,+
j (0) := the j + 1st lowest eigenvalue of HL,n,+(0)−EL,

ν
L,n,−
j (k) := the jth lowest eigenvalue of HL,n,−(k)−EL.

(Of course, when counting eigenvalues we take into ac-

count their multiplicity).

Let N+ := {0, 2, 4, . . . } and N− := {1, 3, 5, . . . }.



For k ∈ Rd, we would like to define the the jth shell in

thermodynamic limit. Given by δ > 0, we set

ν
L,δ,+
j (k)

:= inf
k′L∈

2π
L Zd, |k−k′L|<δ, n∈N±

{
ν
L,n
j (k′L) : inf spHL,n − EL < δ

}
.

Then

ν±j (k) = sup
δ>0

(
lim inf
L→∞

(
ν
L,δ,±
j (k)

))
.



Clearly,

ν±1 (k) = ε±(k),

ν±j (k) ≤ ν±j+1(k).

Set

ε±ess(k) := sup{ν±j (k) : j = 1, 2, . . . }.



Conjecture 2We expect that for a large class of attrac-

tive potentials the following statements hold true:

1. The functions Rd 3 k 7→ ε±ess(k) ∈ R+ are continu-

ous.

2. Let (ks, Ls, ns) ∈ 2π
Ls
Zd × [0,∞[×N± obey ks → k,

inf spHLs,ns − ELs → 0, Ls→∞. Then

ε
Ls,ns,±
ess (ks)→ ε±ess(k).



3. ε±ess are related to ε± as follows:

ε−ess(k) = inf{ε−(k1) + ε+(k2) : k = k1 + k2},
ε+ess(k) = inf{ε+(k1) + ε+(k2),

ε−(k1) + ε−(k2) : k = k1 + k2}.



One can try to compute the excitation spectrum of

the Fermi gas by approximate methods. We will use

the Hartree-Fock-Bogoliubov method. One can start the

HFB method with a Bogoliubov rotation. For any k this

corresponds to a substitution

a∗k = ckb
∗
k + skb−k, ak = ckbk + skb

∗
−k,



where ck and sk are matrices on C2 satisfying

ckc
∗
k + sks

∗
k = 1,

cks
#

−k + skc
#

−k = 0.

(·∗ denotes the hermitian conjugation, ·# denotes the

transposition and · denotes the complex conjugation).



For a sequence 2π
L Zd 3 k 7→ θk with values in matrices

on C2 such that θk = θ−k, set

Uθ :=
∏

k

e−
1
2θka

∗
ka
∗
−k+1

2θ
∗
kaka−k.

Such Uθ implement Bogoliubov rotations:

U∗θ akUθ = bk, U∗θ a
∗
kUθ = b∗k.

Every even Bogoliubov transformation commuting with

PL is of the form Uθ.



Our Hamiltonian after the Bogoliubov rotation and the

Wick ordering becomes

H = B

+
1

2

∑
k

O(k)b∗kb
∗
−k +

1

2

∑
k

O(k)b−kbk +
∑

k

D(k)b∗kbk

+ terms higher order in b’s.



Let Ω denote the vacuum vector. Ωθ := U∗θΩ is the

general form of an even fermionic Gaussian vector of zero

momentum. We look for Ωθ minimizing the expectation

of H, which coincides with B. Minimizing is equivalent

to O(k) = 0.

(This is a special case of a general fact from the folklore

of many body quantum physics. Under the name of the

Beliaev Theorem, it was recently formulated and proven

in a paper by M.Napiórkowski, J.P.Solovej and J.D.)



Thus, if we choose the Bogoliubov transformation ac-

cording to the minimization procedure, the Hamiltonian

equals

H = B +
∑

k

D(k)b∗kbk + terms higher order in b’s.

(3)



We assume that the interaction is real, that is, t(x1, x2)

and v(x1, x2, x3, x4) are real. We make the BCS ansatz:

ck = cos θk

[
1 0

0 1

]
,

sk = sin θk

[
0 1

−1 0

]
.



Then

B =
∑

k

τ (k)(1− cos 2θk)

+
1

4Ld

∑
k,k′

α(k, k′) sin 2θk sin 2θk′

+
1

4Ld

∑
k,k′

β(k, k′)(1− cos 2θk)(1− cos 2θk′).



Here,

α(k, k′) :=
1

2

(
q(k,−k,−k′, k′) + q(−k, k,−k′, k′)

)
,

β(k, k′) = 2q(k, k′, k′, k)− q(k′, k, k′, k).

In particular, in the case of local potentials we have

α(k, k′) :=
1

2

(
V̂ (k− k′) + V̂ (k + k′)

)
,

β(k, k′) = 2V̂ (0)− V̂ (k− k′).



We are looking for a minimum of B. To this end, we

first analyze critical points of B. The condition ∂2θk
B =

0, or equivalently O(k) = 0, has many solutions. We can

have

sin 2θk = 0, cos 2θk = ±1, (4)

They correspond to Slater determinants and have a fixed

number of particles. The solution of this kind minimizing

B, is called the normal or Hartree-Fock solution.



Set

δ(k) =
1

2Ld

∑
k′
α(k, k′) sin 2θk′,

ξ(k) = τ (k) +
1

2Ld

∑
k′
β(k, k′)(1− cos 2θk′).

One expects that under some conditions the normal so-

lution is not the global minimum of B.



More precisely, one expects that a global minimum is

reached by a configuration satisfying

sin 2θk = − δ(k)√
δ2(k) + ξ2(k)

, cos 2θk =
ξ(k)√

δ2(k) + ξ2(k)
,

where at least some of sin 2θk are different from 0. It is

sometimes called a superconducting solution.



For a superconducting solution we get

D(k) =
√
ξ2(k) + δ2(k)

[
1 0

0 1

]
.

Thus we obtain a positive dispersion relation. One can

expect that it is strictly positive, since otherwise the two

functions δ and ξ would have a coinciding zero, which

seems unlikely. Thus we expect that the dispersion rela-

tion D(k) has a positive energy gap.



If the interaction is small, then ξ(k) is close to τ (k) and

δ(k) is small. This implies that D(k) is close to |τ (k)|.
If τ (k) has a critical velocity for large k and D(k) has a

positive energy gap, then this implies that D(k) also has

a positive critical velocity.



Conditions guaranteeing that a superconducting solu-

tion minimizes the energy should involve some kind of

negative definiteness of the quadratic form α – this is

what we vaguely indicated by saying that the interaction

is attractive. Indeed, multiply the definition of δ(k) with

sin 2θk and sum it up over k. We then obtain



∑
k

sin2 2θk

√
δ2(k) + ξ2(k)

= − 1

2Ld

∑
k,k′

sin 2θkα(k, k′) sin 2θk′.

The left hand side is positive. This means that the

quadratic form given by the kernel α(k, k′) has to be

negative at least at the vector given by sin 2θk.



To sum up, for a large class of real, spin-independent

and attractive interactions the HFB method yields a dis-

persion relations that has a positive energy gap and a

positive critical velocity uniformly as L→∞, that is,

inf
k
D(k) > 0, inf

k 6=0

D(k)

|k|
> 0.


