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Abstract. According to the Bogoliubov theory the low energy behaviour of the Bose
gas at zero temperature can be described by non-interacting bosonic quasiparticles called
phonons. In this work the damping rate of phonons at low momenta, the so-called Beliaev
damping, is explained and computed with simple arguments involving the Fermi Golden
Rule and Bogoliubov’s quasiparticles.

1. Introduction

The Bose gas near the zero temperature has curious properties that can be partly
explained from the first principles by a beautiful argument that goes back to Bogoliubov
[5]. In Bogoliubov’s approach the Bose gas at zero temperature can be approximately
described by a gas of weakly interacting quasiparticles. The dispersion relation of these
quasiparticles, that is, their energy in function of the momentum is described by a function
k 7→ ek with an interesting shape. At low momenta these quasiparticles are called phonons
and ek ≈ ck, where c > 0 and k := |k|. Thus the low-energy dispersion relation is very
different from the non-interacting, quadratic one. It is responsible for superfluidity of the
Bose gas.

It is easy to see that phonons could be metastable, because the energy-momentum
conservation may not prohibit them to decay into two or more phonons. This decay rate
was first computed in perturbation theory by Beliaev [2], hence the name Beliaev damping.
According to his computation, the imaginary part of the dispersion relation behaves for
small momenta as −cBelk

5. This implies the exponential decay of phonons with the decay
rate 2cBelk

5. The Beliaev damping has been observed in experiments, and appears to be
consistent with its theoretical predictions [25, 22].

In our paper we present a systematic derivation of Beliaev damping. Our presentation
differs in several points from similar accounts found in the physics literature. We try to
make all the arguments as transparent as possible, without hiding some of less rigorous
steps. We avoid using diagrammatic techniques, in favor of a mathematically much clearer
picture involving a Bogoliubov transformation and the 2nd order perturbation computa-
tion (the so-called Fermi Golden Rule) applied to what we call the effective Friedrichs
Hamiltonian. We use the grand-canonical picture instead of the canonical one found in a
part of the literature. This is a minor difference; on this level both pictures should lead
to the same final result. We believe that the derivation of Beliaev damping is a beautiful
illustration of methods many-body quantum physics, which is quite convincing even if not
fully rigorous.

In the remaining part of the introduction we provide a brief sketch of the main steps of
Beliaev’s argument. In the main body of our article we discuss these steps in more detail,
indicating which parts can be easily made rigorous.

Let v be a real function satisfying v(x) = v(−x) that decays fast at infinity. (Later we
will need more assumptions on v.) The homogeneous Bose gas of N particles interacting
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with the pair potential v is described by the Hamiltonian and the total momentum

HN = −
N∑
i=1

1

2mi
∆i +

∑
1≤i<j≤N

v(xi − xj), (1)

PN =
N∑
i=1

1

i
∂xi . (2)

These operators act on L2
s

(
(R3)N

)
, the space of functions symmetric in the positions of

N 3-dimensional particles. Note that HN commutes with PN , which expresses the spatial
homogeneity of the system.

We would like to describe Bose gas of positive density in infinite volume. This is difficult
to do in terms of the Hamiltonian acting on the whole space R3. Therefore we replace (1)
and (2) with a system enclosed in a box of size L, and then we take thermodynamic limit.
In order to preserve translation symmetry we consider periodic boundary conditions. They
are not very physical, but it is believed that they should not affect the overall picture in
thermodynamic limit.

Thus v is replaced by its periodized version adapted to the box of size L. The new
Hilbert space is L2

s

(
([−L/2, L/2]3)N

)
. We will use the same symbols HN , PN to denote

the Hamiltonian and total momentum in the box. Note that they still commute with one
another.

It is very convenient to consider at the same time all numbers of particles. In order
to control the density, that is N

L3 , we introduce the chemical potential given by a positive
number µ > 0, and we use the grand-canonical formalism. It is also convenient to pass
from the position to the momentum representation. Thus we replace HN , PN with

H :=
∞
⊕
N=0

(HN − µN) =

∫
a∗x(−∆x − µ)ax dx+

1

2

∫ ∫
dx dyv(x− y)a∗xa

∗
yayax

=
∑
p

(p2 − µ)a∗pap dp +
1

2L3

∑
p

∑
q

∑
k

v̂(k)a∗p+ka
∗
q−kaqap, (3)

P :=
∞
⊕
N=0

PN =

∫
a∗x

1

i
∂xax dx =

∑
p

pa∗pap. (4)

a∗x and ax are the usual creation/annihilation operators for x ∈ [−L/2, L/2]3 in the position
representation, commuting to the Dirac delta. a∗p, ap are the usual creration/annihilation

operators for p ∈ 2πZ3/L in the momentum representation commuting to the Kronecker
delta. H,P act on the bosonic Fock space with the one-particle space L2

(
[−L/2, L/2]3

)
in the position representation, and l2

(
2πZ3/L

)
in the momentum representation. H and

P still commute with one another.
Now there comes the main idea of the Bogoliubov approach. At zero temperature, one

expects complete Bose–Einstein condensation. This is expressed by assuming that the
zero mode is populated macroscopically and nonzero modes are only very few. The zero
mode is treated classically, and essentially removed from the picture. One obtains an ap-
proximate Hamiltonian, which does not preserve the number of particles. One argues that
its most important component is the quadratic part which involves operators of the form
aka−k, a∗ka

∗
−k and a∗kak, k 6= 0. It can be diagonalized by a linear transformation which

mixes creation and annihilation operators, called since [5] a Bogoliubov transformation,
and becomes

HBog :=
∑
k 6=0

ekb
∗
kbk, (5)



BELIAEV DAMPING IN BOSE GAS 3

ek :=

√
1

4
|k|4 +

v̂(k)

v̂(0)
µ|k|2. (6)

Thus, the Bogoliubov approximation states that

H ≈ EBog +HBog (7)

where EBog is a constant, which will not be relevant for our analysis. The operator b∗k is
the creation operator of the quasiparticle with momentum k. It is a linear combination
of a∗k, a−k. (5) is sometimes called a Bogoliubov Hamiltonian. It describes independent
quasiparticles with the dispersion relation ek. The Bogoliubov vacuum, annihilated by bk
and denoted ΩBog, is its ground state, and can be treated as an approximate ground state
of the many-body system. The Bogoliubov Hamiltonian is still translation invariant: in
fact, it commutes with the total momentum, described (without any approximation) by

P =
∑
k 6=0

kb∗kbk. (8)

It is easy to describe the thermodynamic limit of (5) and (8): we simply replace the
summation by integration, without changing the dispersion relation:

HBog =

∫
ekb
∗
kbk dk, (9)

P =

∫
kb∗kbk dk. (10)

It is interesting to visualize possible energy-momentum values of the system or, in a
more precise mathematical language, the joint spectrum of the total momentum P and the
Bogoliubov Hamiltonian HBog. On the 1-quasiparticle space this joint spectrum is given
by the graph of the function k 7→ ek. On fig. 1 we show a typical form of the dispersion
relation in the low momentum region, marked with the black line. The green line denotes
the bottom of the 2-quasiparticle spectrum, that is the joint spectrum of (HBog, P ) in the
2-quasiparticle sector. The bottom of the full joint spectrum of (HBog, P ) is marked with
a red dashed line.

Figure 1. Joint spectrum of (HBog, P ) for generic potentials

One can perform an additional step in the Bogoliubov approach. If the potential v has

a very small support, one can argue that v̂(k)
v̂(0) can be approximated by 1. One then usually

says that the interaction is given by contact potentials, which are presented in the position
representation as v(x) = aδ(x), where a is a constant, called the scattering length. This,
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however, strictly speaking is not correct. The delta function needs a renormalization to
become a well-defined interaction in the two-body case; in the N -body case the situation
is even more problematic. Anyway, in this approximation, which is valid in the dilute case,
we obtain a simpler dispersion relation

ek =

√
1

4
|k|4 + µ|k|2. (11)

On fig. 2 we show the energy-momentum spectrum corresponding to (11).

Figure 2. Joint spectrum of (HBog, P ) for contact potentials

The Hamiltonian HBog, both with the dispersion relation (6) and (11) has remarkable
physical consequences. Note first that the dispersion relation k 7→ ek has a linear cusp at
the bottom. It also has a positive critical velocity, that is,

ccrit := sup{c | ek ≥ ck, k ∈ R3} > 0. (12)

In other words, the graph k 7→ ek is above k 7→ ccritk. The full joint spectrum σ(P,HBog)
is still above k 7→ ccritk. This is interpreted as one of the most important properties
of superfluidity: a droplet of the Bose gas travelling with velocity less than ccritk has
negligible friction (see e.g. [11]).

Of course, HBog yields only an approximate description of the Bose gas. In reality,
one cannot treat the quasiparticles given by b∗k, bk as fully independent. In the derivation
of the Bogoliubov Hamiltonian various terms were neglected. In particular, terms of the
third and fourth degree in b∗k, bk were dropped. Replacing v by κv we obtain an (artificial)
coupling constant, to be set to 1 at the end. The third order terms are multiplied by

√
κ

and the quartic terms by κ. We argue that the quartic terms are of lower order and can
be dropped. The third order terms have the form

1√
L3

∑
k,p,k+p6=0

uk,pb
∗
kb
∗
pbk+p + uk,pbk+pb

∗
kb
∗
p (13)

+
1√
L3

∑
k,p,k+p6=0

wk,pb
∗
kb
∗
pb
∗
−k−p + wk,pb−k−pbkbp. (14)

We will argue (see Section 6) that triple creation and triple annihilation terms do not
contribute to the decay of phonons. Thus we drop also (14).

Let us investigate what happens with the quasiparticle state b∗kΩBog under the per-
turbation (13). The state b∗kΩBog couples only to the 2-quasiparticle sector. By taking
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thermodynamic limit we can assume that the variable k is continuous. Thus the perturbed
quasiparticle can be described by the space C⊕ L2(R3) with the Hamiltonian

HFried(k) :=

[
ek (hk|
|hk) ep + ek−p

]
, (15)

and hk can be derived from (13). Hamiltonians similar to this one are well understood.
They are often used as toy models in quantum physics and are sometimes called Friedrichs
Hamiltonians.

It is important to notice that, if we set v̂ = 0, so that the off-diagonal terms in (15)
disappear, the unperturbed quasiparticle energy ek lies inside the continuous spectrum of
2-quasiparticle excitations {ep + ek−p | p ∈ R3}, at least for small momenta. (To be able
to say this we need thermodynamic limit which makes the momentum continuous.) To see
this, note that if k 7→ ek is convex we have a particularly simple expression (cf. Lemma
1) for the infimum of the 2-quasiparticle spectrum:

inf
p
{ep + ek−p} = 2ek/2. (16)

Now (11) is strictly convex, hence ek lies inside the continuous spectrum of 2-quasiparticle
excitations. The generic dispersion relation (6) is convex for small momenta, hence this
property is true at least for small momenta.

Because of that, one can expect that the position of the singularity of the resolvent of
(15) becomes complex—it describes a resonance and not a bound state. This is interpreted
as the unstability of the quasiparticle: its decay rate is twice the imaginary part of the
resonance.

The second order perturbation theory, often called the Fermi Golden Rule, says that in
order to compute the (complex) energy shift of an eigenvalue we need to find the so-called
self-energy Σk(z), which for z 6∈ R in our case is given by the integral

Σk(z) =
1

(2π)3

∫
h2
k(p) dp

(z − ep − ek−p)
. (17)

Then Σk(ek + i0) should give the energy shift of the eigenvalue ek.
The imaginary part of this shift is much easier to compute. In fact, applying the

Sochocki-Plemelj formula 1
x+i0 = P 1

x − iπδ(x) we obtain

ImΣk(ek + i0) =
1

8π2

∫
h2(p)δ(ek − ep − ek−p) dp. (18)

In Theorem 2 we prove that if ek is given by (11), then

ImΣk(ek + i0) = −cBelk
5 +O(k6) as k → 0, cBel =

3v̂(0)

640π2µ
k5. (19)

In fact, our result could be also extended to the case of (6), but for the sake of clarity of the
presentation we present the proof only for (11). Physically (19) means that quasiparticles
are almost stable for small k with the lifetime proportional to k−5. (19) is the main result
of our paper.

We remark that our analysis is based on the grand-canonical approach where µ is the
chemical potential. One can go back to the canonical picture. To this end one determines
the chemical potential as a function of the density. In the Bogoliubov approximation one
obtains to leading order that ρ ≈ µ/v̂(0). Furthermore, also ρ ≈ ρ0, where ρ0 is the
condensate density, holds to leading order and thus the proportionality constant can be
written as

cBel =
3

640π2ρ0
, (20)

which is the form of this result which is usually stated in the physics literature ([36, 19,
28, 13]).
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One could naively expect that the same method gives the correction to the real part of
the dispersion relation. Unfortunately, ReΣk(z) obtained from (17) is ill defined because
of the divergence of the integral at large momenta. One can impose a cut-off and try to
renormalize. For instance, one can replace hk(p) by

hΛ
k(p) := hk(p)θ(Λ− p− |k− p|), (21)

where θ is the Heaviside function. (Note that the details of the cutoff are not physically
relevant; (21) is especially convenient for computations, because it respects the natural
symmetry of the problem). The cut-off self-energy

ΣΛ
k(z) =

1

(2π)3

∫
(hΛ

k(p))2 dp

(z − ep − ek−p)
(22)

is well defined.
Let us now try to remove the dependence of the self-energy on the cutoff. The most

satisfactory renormalization scenario would be to find a counterterm cΛ independent of k
so that

lim
Λ→∞

(
ΣΛ
k(z)− cΛ

)
exists. (23)

An initial positive result suggests that one can hope for a removal of the ultraviolet cutoff
in the self-energy: there exists the limit

lim
Λ→∞

(
ΣΛ
k(z)− ΣΛ

k(0)
)
. (24)

Unfortunately, lim
k→0

ΣΛ
k(0) = ∞, which implies that finding a cΛ such that (23) is true is

impossible. This is the content of Theorem 3. Thus the physical meaning of the quantity
(24) is dubious, because the counterterm ΣΛ

k(0) depends on the momentum k. We leave
the interpretation of this result open.

One can conclude that perturbation theory around the Bogoliubov Hamiltonian pro-
vides a reasonable method to find the second order imaginary correction to the dispersion
relation. However, by this method we seem not able to compute its real part. This is
not very surprising. It is a general property of Friedrichs Hamiltonians with singular off-
diagonal terms: the imaginary part of the perturbed eigenvalue can be computed much
more reliably than its real part. We describe this briefly in Sections 2 and 3.

The above problem is an indication of the crudeness of the Bogoliubov approximation.
Throwing out the zero mode from the picture (or, which is essentially the same, treating
it as a classical quantity), as well as throwing out higher order terms, is a very violent act
and we should not be surprised by a punishment. By the way, one expects that the true
dispersion relation of phonons goes to zero as k→ 0. This is the content of the so called
“Hugenholtz-Pines Theorem” [24], which is a (non-rigorous) argument based on the gauge
invariance. Perturbation theory around the Bogoliubov Hamiltonian is compatible with
this theorem where it comes to the imaginary part. For the real part it fails.

Let us now make a few remarks about the literature. The orginal paper of Bogoliubov
[5] was heuristic, however in recent years there have been many rigorous papers justify-
ing Bogoliubov’s approximation in several cases. The first result justifying (7) has been
obtained in the mean-field scaling by Seiringer in [35] (see also [26, 17, 20, 32] for re-
lated results). Recently, corresponding results have been obtained in the Gross-Pitaevskii
regime [3, 10, 33] and even beyond [9]. A time-dependent version of Bogoliubov theory has
been successful in describing the dynamics of Bose-Einstein condensates and excitations
thereof (see [30, 34] for reviews).

As explained above, to describe damping one has to go beyond Bogoliubov theory. In
the mean-field regime this has been done for the ground state energy expansion in [31, 8]
and for the dynamics in [7]. Very recently, the extension of [8] to singular interactions has
been obtained in [6].
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None of the above rigorous papers, with exception of [17], addressed the energy-momentum
spectrum. In fact, it is very difficult to study rigorously the dispersion relation in ther-
modynamic limit—which is essentially necessary to analyze phonon damping.

The quasiparticle picture of the Bose gas at low temperatures has been confirmed in
experiments. The dispersion relation of 4He can be observed in neutron scattering ex-
periments, and is remarkably sharp. It has been measured within a large range of wave
numbers covering not only phonons, but also the so-called maxons and rotons, see e.g.
[21]. In particular, one can see that the dispersion relation is slightly higher than the
2-quasiparticle spectrum for low wave numbers. The quasiparticle picture has also been
confirmed by experiments on Bose Einstein condensates involving alkali atoms. The Beli-
aev damping has been observed in experiments on Bose Einstein condensates. The results
are consistent with theoretical predictions [25, 22]. Note, however, that the precise pre-
diction (18) is difficult to verify experimentally. Bose-Einstein condensates created in labs
are not very large, so it is difficult to probe the large wavelength region.

Let us mention that there exists another phenomenon found in Bose-Einstein conden-
sates, the so-called Landau damping, which involves instability of quasiparticles due to
thermal excitations. The Landau damping is absent at zero temperature and becomes
dominant at higher temperatures. The Beliaev damping occurs at zero temperature, and
for very small temperatures it is still stronger than the Landau damping.

In the physics literature, the damping of phonons was first computed by Beliaev [2].
Lanadu damping has been for the first time computed by Hohenberg and Martin in [23]
(see also [29]). Both these results have been reproduced in [36], also using the formalism
of Feynman diagrams and many-body Green’s functions. In [28] the damping rate was
derived starting from an effective action in the spirit of Popov’s hydrodynamical approach.
[19] repeated the same computation in the time-dependent mean-field approach. In [13]
the mean-field and hydrodynamic approaches were applied to the 2D case. Our derivation
is consistent with the above works, however, in our opinion, avoids some unnecessary
elements obscuring the simple mechanism of the Beliaev damping.

The plan of the paper is as follows. Sections 2 and 3 concern general well-known facts
about about 2nd order perturbation theory of embedded eigenvalues. In Section 4 we define
the Bose gas Hamiltonian and describe the Bogoliubov approach in the grand-canonical
setting. In Section 5 we derive heuristically the effective model that we consider. Then,
in Section 6 we discuss the shape of the energy-momentum spectrum and explain why the
contribution from term (14) is irrelevant for the damping rate computation, which is the
main result of the paper is proven in Section 8 as Theorem 2. The analysis why computing
the real part of the self-energy fails by the method of this paper is described in Section 9.

Acknowledgements. The work of all authors was supported by the Polish-German
NCN-DFG grant Beethoven Classic 3 (project no. 2018/31/G/ST1/01166).

2. Friedrichs Hamiltonian

Suppose that H is a Hilbert space with a self-adjoint operator H. Let Ψ ∈ H be a
normalized vector. We can write H ' C ⊕ K, where C ' CΨ and K := {Ψ}⊥. First
assume that Ψ belongs to the domain of H and set

h := HΨ, E0 := (Ψ|HΨ). (25)

Let K denote H compressed to K. That means, if I : K → H is the embedding, then
K := I∗HI. Then in terms of C⊕K we can write

H =

[
E0 (h|
|h) K

]
. (26)
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Operators of this form were studied by Friedrichs in [18]. Therefore, sometimes they
are referred to as Friedrichs Hamiltonians.

Let z ∈ C. The following identity is a special case of the so-called Feshbach-Schur
formula:

(Ψ|(H − z)−1Ψ) =
1

E0 + Σ(z)− z
, (27)

Σ(z) = −(h|(K − z)−1h). (28)

Following a part of the physics literature, we will call Σ(z) the self-energy. For further
reference let us rewrite (27) as

Σ(z) =
1

(Ψ|(H − z)−1Ψ)
+ z − E0, (29)

and let us describe the full resolvent:

(H − z)−1 =

[
0 0
0 (K − z)−1

]
(30)

+

[
1

(K − z)−1|h)

]
1

E0 + Σ(z)− z
[
1 (h|(K − z)−1

]
.

We can apply the above formulas also if Ψ does not belong to the domain of H, but
belongs to its form domain, so that (Ψ|HΨ) is well defined. Note that E0 and Σ(z) are
then uniquely defined by (25) and (29)).

If Ψ does not belong to the form domain of H, then strictly speaking the self-energy is
ill defined. In practice in such situations one often introduces a cutoff Hamiltonian HΛ,
which in some sense approximates H. Then, setting hΛ := HΛΨ, EΛ

0 := (Ψ|HΛΨ), and
denoting by KΛ the operator HΛ compressed to K, one can use the cutoff version of the
Feshbach-Schur formula:

(Ψ|(HΛ − z)−1Ψ) =
1

EΛ
0 + ΣΛ(z)− z

, (31)

ΣΛ(z) = −(hΛ|(KΛ − z)−1hΛ). (32)

The resolvent of the original Hamiltonian H can be retrieved [16] in the limit Λ→∞:

(H − z)−1 = lim
Λ→∞

(HΛ − z)−1. (33)

Note that EΛ
0 is a sequence of real numbers, typically converging to ∞. They can be

treated as counterterms renormalizing the self-energy ΣΛ(z).

3. Fermi Golden Rule

The meaning of the self-energy is especially clear in perturbation theory. Again, let Ψ
be a normalized vector in H. Consider a family of self-adjoint operators Hλ = H0 + λV
such that H0Ψ = E0Ψ and (Ψ|VΨ) = 0. Let h := VΨ and Kλ be Hλ compressed to K.
Thus we can rewrite (26) as

Hλ =

[
E0 λ(h|
λ|h) Kλ

]
. (34)

We extract λ2 from the definition of the self-energy, so that (27) and (28) are rewritten as

(Ψ|(Hλ − z)−1Ψ) =
(
E0 + λ2Σλ(z)− z

)−1
, (35)

Σλ(z) := −(h|(Kλ − z)−1h) = Σ0(z) +O(λ). (36)

Now (35) has a pole at

E0 + λ2Σ0(E0 + i0) +O(λ3). (37)
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This is often formulated as the Fermi Golden Rule: the pole of the resolvent, originally at
an eigenvalue E0, is shifted in the second order by λ2Σ0(E0 + i0). This shift can have a
negative imaginary part, and then the eigenvalue disappears. A singularity of the resolvent
with a negative imaginary part is usually called a resonance.

Resonances describe metastable states. A rigorous meaning of a resonance is provided
by the following version of the weak coupling limit ([12], see also [14, 15])

lim
λ→0

(
Ψ
∣∣ exp

(
− i t

λ2
(Hλ − E0)

)∣∣Ψ) = e−itΣ0(E0+i0). (38)

If the perturbation is singular, so that Ψ does not belong to the domain of V , then
Σ0(z) is in general ill defined and (37) may lose its meaning. Strictly speaking, one then
needs to introduce a cutoff on the perturbation and a counterterm, and only then to apply
the appropriately modified Fermi Golden Rule.

Note that it is enough to consider real counterterms. Therefore, if we know that the
renormalized energy is close to E0, then we can still expect that (37) gives a correct
prediction for the imaginary part of the resonance. In other words, the imaginary part of
the singularity of the resolvent (Hλ − z)−1 is

λ2ImΣ0(E0 + i0) +O(λ3), (39)

where we do not need to cut off the perturbation.
In practice, we start from a singular expression of the form 34. To make it well-defined

we need to choose a cutoff and counterterms. These choices will not affect the imaginary
part of the resonance, however in principle, one can add an arbitrary real constant to
a counterterm, which will affect the real part of the resonance. Therefore, for singular
perturbations it may be more difficult to predict the real part of the resonance.

4. Bose gas and Bogoliubov ansatz

We consider a homogeneous Bose gas of N particles with a two-body potential described
by a function v : R3 → R whose Fourier transform v̂(k) =

∫
R3 v(x)e−ik·x dx is non-negative

and rotation invariant. In the grand canonical setting and the momentum representation
such a system is governed by the (second quantized) Hamiltonian

H =

∫ (
k2

2
− µ

)
a∗kak dk +

κ

2(2π)3

∫
dp

∫
dq

∫
dkv̂(k)a∗p−ka

∗
q+kapaq, (40)

where µ ≥ 0 is the chemical potential and a∗k/ak the creation/annihilation operators for
particles of mode k. It acts on the bosonic Fock space F = Γs

(
L2(R3)

)
, and for each N it

leaves invariant its N -particle sector L2
s

(
(R3)N

)
. Recall that the creation and annihilation

operators satisfy the canonical commutation relation (CCR):

[ap, aq] = 0 = [a∗p, a
∗
q], [ap, a

∗
q] = δ(p− q), (41)

where [ , ] is the usual commutator. We introduce the coupling constant κ > 0 mostly for
bookkeeping purposes; note that in the introduction we set κ = 1.

For the reasons explained in the introduction, we replace the infinite space R3 by the
torus [−L/2, L/2]3 with periodic boundary conditions. In the momentum representation
the Hamiltonian becomes

H =
∑

k∈2πZ3/L

(
k2

2
− µ

)
a∗kak +

κ

2L3

∑
p,q,k∈2πZ3/L

v̂(k)a∗p−ka
∗
q+kapaq. (42)

Note that v̂ is the same function as in (40), however it is now sampled only on the lattice
2πZ3/L. The commutation relation involve now the Kronecker delta:

[ap, aq] = 0 = [a∗p, a
∗
q], [ap, a

∗
q] = δp,q. (43)
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Let us now pass to the quasiparticle representation. To this end we follow the well-
known grand-canonical version of the Bogoliubov approach (see e.g. [11]). It involves two
unitary transformations.

The first one is a Weyl transformation that introduces a macroscopic occupation of the
zero-momentum mode, the Bose-Einstein condensate. (In the canonical version Bogoli-
ubov approach this corresponds to the c-number substitution [27].) To this end, for α ∈ C,
we introduce the Weyl operator of the mode k = 0

Wα = exp(−αa∗0 + ᾱa0). (44)

Then
W ∗αa

∗
kWα = a∗k − ᾱδk,0 =: ã∗k.

The new annihilation operators with tildes kill the “new vacuum” Ωα = W ∗αΩ. We express
our Hamiltonian in terms of ã∗k, ãk. To simplify the notation, in what follows we drop the
tildes and we obtain

H = −µ|α|2 +
κv̂(0)

2L3
|α|4 +

(
κv̂(0)

L3
|α|2 − µ

)
(αa∗0 + ᾱa0)

+
∑
k

(
k2

2
− µ+

κ(v̂(k) + v̂(0))

L3
|α|2

)
a∗kak +

∑
k

κv̂(k)

2L3

(
α2a∗ka

∗
−k + ᾱ2aka−k

)
+

κ

L3

∑
k1,k2

v̂(k1)
(
ᾱa∗k1+k2

ak1ak2 + αa∗k1
a∗k2

ak1+k2

)
+

κ

2L3

∑
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗k1
a∗k2

ak3ak4 .

Note that we have

(Ωα|HΩα) = −µ|α|2 +
κv̂(0)

2L3
|α|4,

and we choose α =
√

µL3

κv̂(0) , so that Ωα minimizes this expectation value. This leads to

H = κ−1H0 +H2 +
√
κH3 + κH4, (45)

H0 := − µ
2L3

2v̂(0)
,

H2 :=
∑
k

(
k2

2
+
µv̂(k)

v̂(0)

)
a∗kak +

∑
k

µv̂(k)

2v̂(0)

(
a∗ka

∗
−k + aka−k

)
,

H3 :=
1

L3/2

∑
k1,k2

v̂(k1)
√
µ√

v̂(0)

(
a∗k1+k2

ak1ak2 + a∗k1
a∗k2

ak1+k2

)
,

H4 :=
1

2L3

∑
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗k1
a∗k2

ak3ak4 .

We extract from the above Hamiltonian all terms containing only non-zero modes:

H2 =
µ

2
(a∗20 + a2

0 + 2a∗0a0) +Hexc
2 ,

Hexc
2 :=

∑
k 6=0

(
k2

2
+
µv̂(k)

v̂(0)

)
a∗kak +

∑
k 6=0

µv̂(k)

2v̂(0)

(
a∗ka

∗
−k + aka−k

)
; (46)

H3 =
1

L3/2

∑
k

√
µv̂(0)(a∗0 + a0)a∗kak

+
1

L3/2

∑
k 6=0

√
µv̂(k)√
v̂(0)

(
(a∗0 + a0)a∗kak + a0a

∗
ka
∗
−k + a∗0aka−k

)
+Hexc

3 ,
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Hexc
3 :=

1

L3/2

∑
k1,k2,k1+k2 6=0

v̂(k1)
√
µ√

v̂(0)

(
a∗k1+k2

ak1ak2 + a∗k1
a∗k2

ak1+k2

)
; (47)

H4 =
1

2L3
v̂(0)

(
a∗0a
∗
0a0a0 + 2

∑
k 6=0

a∗0a0a
∗
kak

)
+

1

2L3

∑
k 6=0

v̂(k)(a∗0a
∗
0aka−k + a0a0a

∗
ka
∗
−k + 2a∗0a0a

∗
kak)

+
1

L3

∑
k1,k2,k1+k2 6=0

v̂(k1)
(
a∗0a
∗
k1+k2

ak1ak2 + a0a
∗
k1
a∗k2

ak1+k2

)
+Hexc

4 ,

Hexc
4 :=

1

2L3

∑
k1,k2,k3,k4 6=0

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗k1
a∗k2

ak3ak4 . (48)

We are going to apply a Bogoliubov transformation

UBog := exp

(∑
k 6=0

βk(a∗ka
∗
−k − aka−k)

)
, (49)

which transforms non-zero mode operators a∗k, ak into quasi-particle operators b∗k, bk:

bk := UBogakU
∗
Bog = σkak + γka

∗
−k,

b∗k := UBoga
∗
kU
∗
Bog = σka

∗
k + γka−k, (50)

where

σk =

√√
e2
k +B2

k + ek
√

2ek
, γk =

√√
e2
k +B2

k − ek
√

2ek
,

ek :=

√
1

4
|k|4 +Bk|k|2, Bk :=

v̂(k)

v̂(0)
µ.

The inverse relation is

ak = σkbk − γkb∗−k,
a∗k = σkb

∗
k − γkb−k.

It is well known that (50) diagonalizes Hexc
2 in terms of the quasi-particle operators:

Hexc
2 = EBog +HBog, (51)

where

EBog := −1

2

∑
k 6=0

(
1

2
|k|2 +

v̂(k)

v̂(0)
µ− ek

)
, (52)

HBog :=
∑
k 6=0

ekb
∗
kbk. (53)

We also express Hexc
3 in terms of quasiparticles:

Hexc
3 =

1

L3/2

∑
k1,k2,k1+k2 6=0

√
µv̂(k1)√
v̂(0)

(A(k1,k2) +A∗(k1,k2),

A(k1,k2) = σk1σk2σk1+k2b
∗
k1
b∗k2

bk1+k2 − γk1σk2σk1+k2b
∗
k2
b−k1bk1+k2

− γk1γk2σk1+k2b
∗
k1
b−k2bk1+k2 + γk1γk2σk1+k2b−k1b−k2bk1+k2

− σk1σk2γk1+k2b
∗
k1
b∗k2

b∗−k1−k2
− γk1σk2γk1+k2b

∗
k2
b∗−k1−k2

b−k1

+ σk1γk2γk1+k2b
∗
k1
b∗−k1−k2

b−k2 − γk1γk2γk1+k2b
∗
−k1−k2

b−k1b−k2 .
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Thus

Hexc
3 = Hexc

3,1 +Hexc
3,2 , (54)

Hexc
3,1 =

∑
k1,k2,k1+k2 6=0

√
µv̂(k1)

L3/2
√
v̂(0)

(
σk1σk2σk1+k2b

∗
k1
b∗k2

bk1+k2 − γk1σk2σk1+k2b
∗
k2
b−k1bk1+k2

−γk1γk2σk1+k2b
∗
k1
b−k2bk1+k2 − γk1σk2γk1+k2b

∗
k2
b∗−k1−k2

b−k1

+σk1γk2γk1+k2b
∗
k1
b∗−k1−k2

b−k2 − γk1γk2γk1+k2b
∗
−k1−k2

b−k1b−k2

+σk1σk2σk1+k2b
∗
k1+k2

bk1bk2 − γk1σk2σk1+k2b
∗
−k1

b∗k1+k2
bk2

−γk1γk2σk1+k2b
∗
−k2

b∗k1+k2
bk1 − γk1σk2γk1+k2b

∗
−k1

bk2b−k1−k2

+σk1γk2γk1+k2b
∗
−k2

bk1b−k1−k2 − γk1γk2γk1+k2b
∗
−k1

b∗−k2
b−k1−k2

)
,

Hexc
3,2 =

∑
k1,k2,k1+k2 6=0

√
µv̂(k1)

L3/2
√
v̂(0)

(
γk1γk2σk1+k2b−k1b−k2bk1+k2 − σk1σk2γk1+k2b

∗
k1
b∗k2

b∗−k1−k2

+γk1γk2σk1+k2b
∗
−k1

b∗−k2
b∗k1+k2

− σk1σk2γk1+k2bk1bk2b−k1−k2

)
.

We could also compute H4, but we will not need it.

5. Effective Friedrichs Hamiltonian

Let ΩBog := U∗BogΩα be the quasiparticle vacuum. Introduce the space Fexc consisting
of the Bogoliubov vacuum and quasiparticle excitations, and its n-quasiparticle sector:

Fexc := Spancl{b∗k1
· · · b∗kn

ΩBog | k1, . . . ,kn 6= 0, n = 0, 1, . . . },

Fexc
n := Spancl{b∗k1

· · · b∗kn
ΩBog | k1, . . . ,kn 6= 0}.

The most “violent” approximation that we are going to make is compressing the Hamil-
tonian H into the space Fexc. We also drop the uninteresting constant κ−1H0 and the
(somewhat more interesting) constant EBog. Thus we introduce the excitation Hamilton-
ian

Hexc := Iexc∗(H − κ−1H0 − EBog

)
Iexc,

where Iexc denotes the embedding of Fexc in F . Thus Hexc is an operator on Fexc and

Hexc = HBog +
√
κHexc

3 + κHexc
4 , (55)

where Hexc
3 and Hexc

4 are defined in (47) and 48.
We make two more approximations. We drop κH4, which is of higher order in κ than√
κH3. We also drop H3,2, which involves 3-quasiparticle creation/annihilation operators,

and does not contribute to the damping rate (see Section 6 for a justification). Thus Hexc

is replaced with
Heff := HBog +

√
κHexc

3,1 . (56)

To make our following discussion consistent with Sect. 3 about the Fermi Golden Rule,
we introduce a new coupling constant

λ :=
√
κ. (57)

Let k 6= 0. Clearly, b∗kΩBog is an eigenstate of Heff for λ = 0. We would like to compute

the self-energy for the vector b∗kΩBog and the Hamiltonian Heff :

λ2Σeff
k (z) :=

−1

(b∗kΩBog|(z −Heff)−1b∗kΩBog)
+ z − ek. (58)

Introduce the subspaces of Fexc and Fexc
n with the total momentum k:

Fexc(k) := Spancl{b∗k1
· · · b∗kn

ΩBog, k1 + · · ·kn = k, k1, . . . ,kn 6= 0, n = 0, 1, . . . },

Fexc
n (k) := Spancl{b∗k1

· · · b∗kn
ΩBog, k1 + · · ·kn = k, k1, . . . ,kn 6= 0}.
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b∗kΩBog is contained in the space Fexc(k), which is preserved by Heff . Let Heff(k) denote

the operator Heff restricted to Fexc(k). Thus we can restrict ourselves to the fiber space
Fexc(k) and the fiber Hamiltonian Heff(k). In particular, in (58) we can replace Heff with
Heff(k).

For our analysis it is enough to know only Heff (or Heff(k)) compressed to Fexc
1 (k) ⊕

Fexc
2 (k). Note that the one-quasiparticle state b∗k|ΩBog〉 spans Fexc

1 (k), and Fexc
2 (k) is

spanned by b∗pb
∗
k−pΩBog with p,k− p 6= 0. We compute

(b∗kΩBog|Heffb∗kΩBog) = ek,

(b∗pb
∗
k−pΩBog|Heffb∗pb

∗
k−pΩBog) = ep + ek−p,

(b∗pb
∗
k−pΩBog|Heffb∗kΩBog) =

λ

L3/2
hk(p), (59)

(b∗kΩBog|Heffb∗pb
∗
k−pΩBog) =

λ

L3/2
hk(p) (60)

with

hk(p) = 2

√
µv̂2(k)

v̂(0)

(
σpγ−kγp−k + σk−pγ−kγp + σpσk−pσk (61)

− γpσ−kσp−k − γk−pσ−kσp − γpγk−pγk
)
.

The HamiltonianHeff compressed to Fexc
1 (k)⊕Fexc

2 (k) will be called the effective Friedrichs
Hamiltonian (for volume L3 and momentum k). It is denoted HL

Fried(k) and given by

HL
Fried(k) :=

[
ek

λ
L3/2 (hk|

λ
L3/2 |hk) ep + ek−p

]
, (62)

on Fexc
1 (k)⊕Fexc

2 (k) ' C⊕ l2
(2π

L
Z3 \ {0,k}

)
, (63)

where we explicitly introduced a reference to the volume L3 in the notation. Thus we end
up in a situation described in Section 3. According to the Fermi Golden Rule (37) we
want to compute

ΣL
k(z) =

1

L3

∑
p,k−p6=0

h2
k(p)

(z − ep − ek−p)
, (64)

Unfortunately, the sum (64) is divergent. To cure the divergence we can introduce a
cut-off. The cut-off is to a large extent arbitrary. It is convenient to use |p|+ |k−p| < Λ.
Thus we replace (62), (61) and (64) with

HL,Λ
Fried(k) :=

[
ek

λ
L3/2 (hΛ

k |
λ

L3/2 |hΛ
k) ep + ek−p

]
, (65)

hΛ
k(p) := h(p)1{|p|+|k−p|<Λ}(p), (66)

ΣL,Λ
k (z) :=

1

L3

∑
p,k−p6=0

hΛ
k(p)2

(z − ep − ek−p)
. (67)

The functions p 7→ ep, hk(p), hΛ
k(p) are well defined for all p ∈ R3 \ {0}, and not only

for 2π
L Z3 \ {0,k}. The expression (67) can be interpreted as the Riemann sum converging

as L→∞ to the integral

ΣΛ
k(z) =

1

(2π)3

∫
hΛ
k(p)2 dp

(z − ep − ek−p)
. (68)
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We can also introduce the infinite volume effective Friedrichs Hamiltonian

HΛ
Fried(k) :=

[
ek λ(hΛ

k |
λ|hΛ

k) ep + ek−p

]
,

on C⊕ L2(R3),

(69)

The Fermi Golden Rule predicts that ΣΛ
k(ek + i0) describes the energy shift of the eigen-

value of the infinite volume cut-off Hamiltonian HΛ
Fried(k). Unfortunately, in our case

lim
Λ→∞

ReΣΛ
k(ek + i0) is infinite. However, we will see that ImΣΛ

k(ek + i0) is finite and for

large Λ is independent of Λ. Physically it describes the decay of the quasiparticle at
momentum k.

6. The shape of the quasiparticle spectrum

If k 7→ ek is a dispersion relation of quasiparticles, then the infimum of the n-quasiparticle
spectrum is

inf{ep1 + · · · epn | p1 + · · ·+ pn = k}. (70)

Sometimes, it is possible to compute (70) exactly, as shown in the following lemma.

Lemma 1. Let k 7→ ek be a convex function. Then

inf
p
{ep + ek−p} = 2ek/2. (71)

In particular,

inf
p
{ep + ek−p} ≤ ek. (72)

If in addition k 7→ ek is a strictly convex function, then

inf
p
{ep + ek−p} < ek, k 6= 0. (73)

Proof. The left hand side of (71) is called infimal involution and is often denoted as

e�e(k) := inf
p
{ep + ek−p}. (74)

Since ek is a convex function so is e�e(k) [1, Chapter 12] and it satisfies

(e�e)∗ = e∗ + e∗ = 2e∗ (75)

where e∗ denotes the Legendre–Fenchel transform of e. Hence

inf
p
{ep + ek−p} = e�e(k) = (e�e)∗∗(k) = (2e∗)∗(k) = 2ek/2

which proves (71). Now (72) follows from convexity. Indeed,

2ep/2 = 2ep/2+0/2 ≤ ep.
�

Now ek in (11) is strictly convex. Therefore, (73) is true, and so the dispersion relation
is embedded inside the 2-quasiparticle spectrum.

If ek is given by (53), then it is strictly convex for small k. Therefore, the dispersion
relation is embedded inside the 2-quasiparticle spectrum at least for small momenta. The
same is true for the cutoff effective Friedrichs Hamiltonian HΛ

Fried for large enough Λ.
The Hamiltonian Hexc couples b∗kΩBog with 4-quasiparticle states through Hexc

3,2 . The

bottom of 4-quasiparticle spectrum lies below the dispersion relation (in fact, if it is
given by (11), it is equal to 4ek/4 < ek). However, Hexc

3,2 does not couple b∗kΩBog to all
possible 4-quasiparticle states with the total momentum k, but only to states of the form
bp1bp1bp1bkΩBog with p1 + p2 + p3 = 0. Their energy is

ek + ep1 + ep2 + ep3 ≥ ek. (76)
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Thus the state b∗kΩBog is situated at the boundary of the energy-momentum spectrum
and the only coupling is through p1 = p2 = p3 = 0. Before going to the thermodynamic
limit this is excluded, because on the excited space all momenta are different from zero.
Assuming that this effect survives the thermodynamic limit, we expect that the term Hexc

3,2

does not lead to damping and we therefore drop it from HΛ
Fried, even though in terms of

the coupling parameter κ this term is of the same order as Hexc
3,1 , which we keep in our

analysis.

7. Computing the self-energy

In the remaining part of our paper, the main goal will be to compute approximately the
3-dimensional integral (68). To do this efficiently it is important to choose a convenient
coordinate system.

Let us introduce the notation k = |k|, p = |p|, l = |l|, where l = k−p. One could try to
compute (68) using the spherical coordinates for p with respect to the axis determined by

k. This means using p = |p|, w = cos θ, φ, so that p = (p
√

1− w2 cosφ, p
√

1− w2 sinφ, pw).
The self-energy in these coordinates is

ΣΛ
k(z) =

1

(2π)3

∫ ∞
0

∫ 1

−1

∫ 2π

0

hΛ
k(p, w)2p2 dp dw dφ

(z − ep − el(p,w))
(77)

where, with abuse of notation, hΛ
k(p, w) is the function hΛ

k(p) in the variables p, w, φ. The

variable φ can be easily integrated out. hΛ
k(p) depends only on k, p, l and (77) can be

rewritten as

ΣΛ
k(z) =

1

(2π)2

∫ ∞
0

∫ 1

−1

(hΛ
k (p, l(p, w)))2p2 dpdw

(z − ep − el(p,w))
,

The coordinates p, w are not convenient because they break the natural symmetry
p→ k− p of the system. Instead of p, w it is much better to use the variables p, l. Note
the constraints

|p− l| ≤ k, (78)

k ≤ p+ l, (79)

that follow from the triangle inequality. We have w = k2+p2−l2
2kp . The Jacobian is easily

computed:

p2 dpdw =
pl

k
dp dl =

1

4k
dp2 dl2. (80)

Let us make another change of variables:

t = p+ l, s = p− l; p =
t+ s

2
, l =

t− s
2

; (81)

dp2 dl2 =
t2 − s2

2
dt ds. (82)

The limits of integration following from the constraints (78) and (79) are very easy to
impose:

ΣΛ
k(z) =

1

(2π)2

∫ Λ

k
dt

∫ k

−k
ds

(hΛ
k (t, s))2(t2 − s2)

8k(z − e t+s
2
− e t−s

2
)
, (83)

Another choice of variables can also be useful. If k 7→ ek is an increasing function,

which is always the case for small k, but also for the important case of constant v̂(k)
v̂(0) , we

can use the variables u := ep and w := el. Set

f(ek) :=
dk2

de2
k

. (84)



16 J. DEREZIŃSKI, B. LI, AND M. NAPIÓRKOWSKI

Thus we change the variables

1

4k
dp2 dl2 =

1

2k
f(u)f(w) du2 dw2. (85)

ΣΛ
k(z) =

1

(2π)2

∫
(hΛ
k (u,w))2f(u)f(w) du2 dw2

4k(z − u− w)
,

We then perform a further change of variable

x = u+ w, y = u− w; u =
x+ y

2
, w =

x− y
2

; (86)

du2 dw2 =
x2 − y2

2
dx dy. (87)

Now we can write

ΣΛ
k(z) =

1

8π2k

∫∫
(hΛ
k (x, y))2f(x+y

2 )f(x−y2 )(x2 − y2) dy dx

4(z − x)
,

where the limits of integration are somewhat more difficult to describe.

When v̂(k)
v̂(0) is a constant, so that

ek = k

√
µ+

k2

4
, k2 = 2

(√
e2
k + µ2 − µ

)
, (88)

we can compute the function f :

f(u) =
1√

u2 + µ2
. (89)

We also have

σk =

√√√√√ k2

2 + µ+
√

k4

4 + µk2

2
√

k4

4 + µk2
, γk =

√√√√√ k2

2 + µ−
√

k4

4 + µk2

2
√

k4

4 + µk2
. (90)

8. Damping rate

The following theorem is the main result of this paper.

Theorem 2. Suppose that the dispersion relation is given by (11). Then ImΣΛ
k does not

depend on Λ for large Λ and we have

lim
Λ→∞

ImΣΛ
k(ek + i0) = −cBelk

5 +O(k6) as k → 0, cBel =
3v̂(0)

640π2µ
k5. (91)

Proof of Theorem 2. To prove Theorem 2 we will use the variables x, y:

ΣΛ
k(ek + i0) =

1

8π2k

∫∫
(hΛ

k(x, y))2(x2 − y2) dy dx

(ek − x+ i0)
√

(x+ y)2 + 4µ2
√

(x− y)2 + 4µ2
. (92)

It follows from (92) and the Sochocki-Plemelj formula that

ΣΛ
k(ek + i0) = ReΣΛ

k(ek + i0) + iImΣΛ
k(ek + i0),

ReΣkk
Λ(ek + i0) =

1

8π2k

∫∫
(hΛ

k(x, y))2(x2 − y2) dy dx

(ek − x)
√

(x+ y)2 + 4µ2
√

(x− y)2 + 4µ2
(93)

ImΣΛ
k(ek + i0) = − π

8π2k

∫∫
(hΛ

k(x, y))2(x2 − y2)δ(ek − x) dy dx√
(x+ y)2 + 4µ2

√
(x− y)2 + 4µ2

(94)

= − π

8π2k

∫
(hΛ

k(ek, y))2(e2
k − y2) dy√

(ek + y)2 + 4µ2
√

(ek − y)2 + 4µ2
. (95)
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Our starting point is the expression (95). Obviously, we first need to establish the
integration limits in y. Recall that y = ep − el but under the additional constraint that
ek = ep + el which comes from the constraint δ(x − ek) in (94). It follows immediately
that −ek ≤ y ≤ ek. Thus, for Λ large enough, ImΣΛ

k(ek + i0) will not depend on Λ.
Let us first compute (hk(x, y))2. For further reference we will keep x as a variable.

Recall we assume v̂(k) = v̂(0). From the definition of hk(p) we get

hk(p)

2
√
µv̂(0)

= σk(σpσl − σlγp − σpγl) + γk(σpγl + σlγp − γpγl).

=
σk

2
√
uw

(√√
u2 + µ2 + u

√√
w2 + µ2 + w −

√√
w2 + µ2 + w

√√
u2 + µ2 − u

−
√√

u2 + µ2 + u

√√
w2 + µ2 − w

)
+

γk
2
√
uw

(√√
u2 + µ2 + u

√√
w2 + µ2 − w +

√√
w2 + µ2 + w

√√
u2 + µ2 − u

−
√√

u2 + µ2 − u
√√

w2 + µ2 − w
)

(96)

=
1

2
√
x2 − y2

(
σk
√

(A1 + x+ y)(A2 + x− y))− γk
√

(A1 − x− y)(A2 − x+ y)

+ (γk − σk)
√

(A1 − x− y)(A2 + x− y)) + (γk − σk)
√

(A1 + x+ y)(A2 − x+ y))

)
,

(97)

where

A1 := A1(x, y) =
√

(x+ y)2 + 4µ2, A2 := A2(x, y) =
√

(x− y)2 + 4µ2. (98)

Therefore the integrand in (92) becomes

(hk(x, y))2(x2 − y2)√
(x+ y)2 + 4µ2

√
(x− y)2 + 4µ2

(99)

=
µv̂(0)

A1A2

(
σk
√

(A1 + x+ y)(A2 + x− y))− γk
√

(A1 − x− y)(A2 − x+ y)

+ (γk − σk)
√

(A1 − x− y)(A2 + x− y)) + (γk − σk)
√

(A1 + x+ y)(A2 − x+ y))

)2

.

=
µv̂(0)

A1A2

(
σ2
k

(
3A1A2 + (x+ y)A2 + (x− y)A1 − (x2 − y2)− 4µ(A1 +A2 + 2x) + 8µ2

)
+ γ2

k

(
3A1A2 − (x+ y)A2 − (x− y)A1 − (x2 − y2)− 4µ(A1 +A2 − 2x) + 8µ2

)
+ 2σkγk

(
4µA1 + 4µA2 − 2A1A2 + 2(x2 − y2)− 12µ2

))
. (100)

Thus∫ ek

−ek
dy

h2
k(x, y)(x2 − y2)√

(x+ y)2 + 4µ2
√

(x− y)2 + 4µ2
(101)

= µv̂(0)

∫ ek

−ek
dy

((
3σ2

k + 3γ2
k − 4σkγk

)
+ (σ2

k − γ2
k)

(
x− y
A2

+
x+ y

A1
− 8µx

A1A2

)
+ (−σ2

k − γ2
k + 4σkγk)

x2 − y2

A1A2
− 4µ(σk − γk)2A1 +A2

A1A2
+ 8µ2(σ2

k + γ2
k − 3σkγk)

1

A1A2

)
.

(102)
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The integrals involving x±y
A±

and 1
A±

(where A+ = A1 and A− = A2) can be computed

explicitly. Setting x = ek this implies∫ ek

−ek
dy

ek ± y
A±(ek, y)

=

∫ ek

−ek
dy

(
ek ± y√

(ek ± y)2 + 4µ2

)
= 2
√
µ2 + e2

k − 2µ, (103)

∫ ek

−ek
dy

1

A±(ek, y)
=

∫ ek

−ek
dy

(
1√

(ek ± y)2 + 4µ2

)
= log

ek
µ

+

√
1 +

e2
k

µ2

 . (104)

This yields∫ ek

−ek
dy

(
(hΛ

k(x, y))2(x2 − y2)√
(x+ y)2 + 4µ2

√
(x− y)2 + 4µ2

)
(105)

= µv̂(0)

2
(
3σ2

k + 3γ2
k − 4σkγk

)
ek + 4

√
µ2 + e2

k − 4µ− 8µ(σk − γk)2 log

ek
µ

+

√
1 +

e2
k

µ2


+ µv̂(0)

∫ ek

−ek
dy

(
−(σ2

k − 4σkγk + γ2
k)(e2

k − y2)− 8µek + 8µ2(σ2
k + γ2

k − 3σkγk)

A1A2

)
. (106)

where two types of integrals, namely∫ (
−y2

A1A2

)
dy and

∫ (
1

A1A2

)
dy, (107)

still appear as they cannot be computed explicitly.
Since we are interested in the expansion in ek (which is small, as k is small) we write

σk =

√√√√√e2
k + µ2 + ek

2ek
, γk =

√√√√√e2
k + µ2 − ek

2ek
, (108)

which gives

σ2
k + γ2

k =

√
e2
k + µ2

ek
, σkγk =

µ

2ek
. (109)

Then (106) equals to

µv̂(0)

2
(
3σ2

k + 3γ2
k − 4σkγk

)
ek + 4

√
µ2 + e2

k − 4µ− 8µ(σk − γk)2 log

ek
µ

+

√
1 +

e2
k

µ2


+ µv̂(0)

∫ ek

−ek
dy

(
−(σ2

k − 4σkγk + γ2
k)(e2

k − y2)− 8µek + 8µ2(σ2
k + γ2

k − 3σkγk)

A1A2

)

= µv̂(0)

2(3
√
e2
k + µ2 − 2µ) + 2(2

√
µ2 + e2

k − 2µ)− 8µ

√
e2
k + µ2 − µ
ek

log

ek
µ

+

√
1 +

e2
k

µ2


− µv̂(0)

√
e2
k + µ2 − 2µ

ek

∫ ek

−ek
dy

(
e2
k − y2

A1A2

)

−

8µ2v̂(0)ek − 8µ3v̂(0)
2
√
e2
k + µ2 − 3µ

2ek

∫ ek

−ek
dy

(
1

A1A2

)

= µv̂(0)

10µ
√

(ek/µ)2 + 1− 8µ− 8µ

√
(ek/µ)2 + 1− 1

ek/µ
log

ek
µ

+

√
1 +

e2
k

µ2

 (110)
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− µv̂(0)

√
(ek/µ)2 + 1− 2

ek/µ

∫ ek

−ek
dy

(
e2
k − y2

A1A2

)
(111)

− µv̂(0)

(
8µe2

k − 4µ3(2
√

(ek/µ)2 + 1− 3)

ek

)∫ ek

−ek
dy

(
1

A1A2

)
. (112)

We expand (110) up to order O(e8
k). A tedious computation yields

(110) = µv̂(0)

(
2µ+

e2
k

µ
+

5e4
k

12µ3
−

41e6
k

120µ5
+O(e8

k)

)
. (113)

We shall now deal with the terms (111) and (112). To this end we write

A1A2 =
√

4µ2 + (ek + y)2
√

4µ2 + (ek − y)2 (114)

= 4µ2

√
1 +

(
ek + y

2µ

)2
√

1 +

(
ek − y

2µ

)2

(115)

= 4µ2

√
1 +

e2
k + y2

2µ2
+

(
e2
k − y2

4µ2

)2

(116)

= 4µ2
√

1 +Q1 (117)

= 4µ2

(
1 +

1

2
Q1 −

1

8
Q2

1 +
1

16
Q3

1

)
+O(Q4

1). (118)

where

Q1 :=
e2
k + y2

2µ2
+

(
e2
k − y2

4µ2

)2

(119)

Then
1

A1A2
=

1

4µ2(1 +Q2)
=

1

4µ2
(1−Q2 +Q2

2 −Q3
2) +O(Q4

2) (120)

where

Q2 :=
1

2
Q1 −

1

8
Q2

1 +
1

16
Q3

1. (121)

This leads to

1

A1A2
=

1

4µ2
−

e2
k

16µ4
+

e4
k

64µ6
−

e6
k

256µ8
− y2

16µ4
+
e2
ky

2

16µ6
−

9e4
ky

2

256µ8
+

y4

64µ6
−

9e2
ky

4

256µ8
− y6

256µ8
+O(eι1k y

ι2)

(122)
where ι1 + ι2 = 7. In turn∫ ek

−ek

1

A1A2
dy =

ek
2µ2
−

e3
k

6µ4
+

19e5
k

240µ6
−

13e7
k

280µ8
+O(e8

k) (123)

and ∫ ek

−ek

e2
k − y2

A1A2
dy =

e3
k

3µ2
−

e5
k

10µ4
+

11e7
k

280µ6
+O(e8

k). (124)

This implies

(111) = −µv̂(0)

(
−
e2
k

3µ
+

4e4
k

15µ3
−

11e6
k

84µ5

)
+O(e8

k), (125)

and

(112) = −µv̂(0)

(
2µ+

4e2
k

3µ
+

3e4
k

20µ3
−

2e6
k

7µ5

)
+O(e8

k). (126)

Combining (125), (126) and (113) we obtain

− 1

8πk

∫ ek

−ek

(hΛ
k(ek, y))2(e2

k − y2)√
(ek + y)2 + 4µ2

√
(ek − y)2 + 4µ2

dy
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= −µv̂(0)

16πk

(
5

12
− 41

120

)
e6
k

µ5
= − 3v̂(0)

640π2µ4

e6
k

k
. (127)

This yields (91). �

9. Renormalization of the full self-energy

In this section we will try to make sense of the real part of the energy shift. We will
see that it is much more problematic. Actually, our result will be negative: The Fermi
Golden Rule starting from the Bogoliubov approximation does not allow us to compute
the energy shift of the dispersion relation.

We start with a seemingly positive result, which may suggest that one can hope for a
removal of the ultraviolet cutoff in the self-energy:

Theorem 3. For k 6= 0, the cutoff self-energy at z = 0, that is ΣΛ
k(0), is finite. Moreover,

for Imz > 0 there exists the limit

Σ̃k(z) := lim
Λ→∞

(
ΣΛ
k(z)− ΣΛ

k(0)
)
. (128)

One can also take the limit of (128) on the real line:

Σ̃k(ek + i0) := lim
Λ→∞

(
ΣΛ
k(ek + i0)− ΣΛ

k(0)
)

= lim
ε↘0

Σ̃k(ek + iε). (129)

What is the physical meaning of Σ̃k(z) and Σ̃k(ek + i0)? Probably none. The coun-
terterm ΣΛ

k(0) depends on k. We conclude that the quantity ReΣren
k (ek + i0) probably

has little to with the real energy shift as we do not see how one can justify that we are
using the “right” counterterm. Indeed, in principle, one could add to this counterterm an
arbitrary function of k.

If one could find a k-independent counterterm cΛ such that

Σren
k (z) := lim

Λ→∞

(
ΣΛ
k(z)− cΛ

)
(130)

exists, then imposing Σren
0 (0 + i0) = 0 one could hope that Σren

k (ek + i0) yields the real
part of the energy shift. Unfortunately, the next theorem excludes this possibility.

Theorem 4. We have

lim
k→0

ΣΛ
k(0) = −∞. (131)

Proof of Theorem 3. In this section we will use the variables t := p+ l and s := p− l for
integration. Recall from (83) that in these variables

ΣΛ
k(z) =

1

(2π)2

∫ Λ

k
dt

∫ k

−k
ds

(hΛ
k (p, l))2pl

8k(z − ep − el)
, (132)

Hence,

ΣΛ
k (0) = − 1

(2π)2

∫ Λ

k
dt

∫ k

−k
ds

h2
k(p, l)pl

8k(ep + el)
. (133)

Note that for some c > 0, we have

ep + el ≥ c(p+ l) = ct. (134)

Let k 6= 0. Using (134) we see that (133) is an integral of a continuous function over a
compact region, hence finite.

Subtracting (133) from (132) we obtain

ΣΛ
k (z)− ΣΛ

k (0) =
1

(2π)2

∫ Λ

k
dt

∫ k

−k
ds

zh2
k(p, l)pl

8k(z − ep − el)(ep + el)
, (135)
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For small t the integrand is bounded, using again (134). For large t we have ep ' t2

2 ,

el ' t2

2 . Moreover, hk(p, l) is bounded. Therefore, the integrand of (135) behaves as t−2.
Hence it is integrable for large t and we can take the limit Λ→∞ obtaining

Σren
k (z) : = lim

Λ→∞

(
ΣΛ
k (z)− ΣΛ

k (0)
)

(136)

=
1

(2π)2

∫ ∞
k

dt

∫ k

−k
ds

zh2
k(p, l)pl

8k(z − ep − el)(ep + el)
. (137)

This ends the proof of the theorem. �
Before we show Theorem 4 we prove some lemmas.

Lemma 5. For small p, l, we have

e t
2

ep + el
− 1

2
= O(s2), (138)

pl

epel
− t2

4e2
t
2

= O(s2), (139)

σpσl
√
epel − σ2

t
2
e t

2
= O(s2), (140)

γpγl
√
epel − γ2

t
2
e t

2
= O(s2). (141)

Proof. We can assume that s ≥ 0.

e′p =
(p2

2 + µ
)(p2

4 + µ
)− 1

2 , e′′p = p
(p2

8 + 3µ
4

)(p2
4 + µ

)− 3
2 = O(p). (142)

Therefore,

2e t
2
− ep − el = −

∫ s
2

− s
2

(
s
2 − |v|

)
e′′t

2
+v

dv = O(ts2),

and hence
e t

2

ep + el
− 1

2
=

2e t
2
− ep − el

2(ep + el)

is O(s2), which proves (138).
Next, set f(p) := p

ep
. We have

d

dp
f(p) =

−2p

(p2 + 4µ)
3
2

= O(p),
d2

dp2
f(p) =

4(p2 − 2µ)

(p2 + 4µ)
5
2

= O(1). (143)

Hence

pl

epel
− t2

4e2
t
2

= f(p)f(l)− f
(
t
2

)2
(144)

=

∫ s
2

0

(
s
2 − v

)(
f ′′
(
t
2 + v

)
f
(
t
2 − v

)
− 2f ′

(
t
2 + v

)
f ′
(
t
2 − v

)
+ f

(
t
2 + v

)
f ′′
(
t
2 − v

))
dv,

which is O(s2), which proves (139).
We check that the 0th, 1st and 2nd derivatives of

σp
√
ep =

1√
2

√
p2

2 + µ+

√
p4

4 + µp2, (145)

γp
√
ep =

1√
2

√
p2

2 + µ−
√

p4

4 + µp2 (146)

are bounded. Then we argue as in (144), proving (140) and (141). �
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Lemma 6.

lim
k→0

∫ Λ

k
dt

∫ k

−k
ds

(σpσl − γpγl)2pl

8k(ep + el)
=

∫ Λ

0
dt

t2

64e t
2

, (147)

where the right hand side is a finite positive number.

Proof. We have

(σpσl − γpγl)2pl

8k(ep + el)
− t2

8 · 8ke t
2

(148)

=

(
(σpσl − γpγl)

√
epel + e t

2

)
pl

8k(ep + el)epel

(
(σpσl − γpγl)

√
epel − e t

2

))
(149)

+
e2

t
2

8k(ep + el)

( pl

epel
− t2

4e2
t
2

)
(150)

+
t2

32ke t
2

( e t
2

ep + el
− 1

2

)
. (151)

By Lemma 5 the terms in the big brackets on the right of (149), (150) and (151) are O(s2).
The terms in (150), (151) on the left are all 1

kO(t). The most singular in t term is the one

on the left of (149) and it is of order 1
kO(t−1). Therefore,∫ Λ

k
dt

∫ k

−k
ds

(
(σpσl − γpγl)2pl

8k(ep + el)
− t2

64e t
2

)
(152)

=

∫ Λ

k
dt

∫ k

−k
dsO(t−1)

O(s2)

k
=

∫ Λ

k
dtO(t−1k2) = O(k2 ln k)→ 0. (153)

�
Proof of Theorem 4. Recall (61). We have

hk(p)

2
√
µv̂(0)

=
1

2
(σk + γk)(σpσl − γpγl) +

1

2
(σk − γk)(σpσl + γpγl − 2σpγl − 2γpσl). (154)

Thus, using (83), we obtain

− (2π)2

µv̂(0)
ΣΛ
k (0) (155)

=(σk + γk)
2

∫ Λ

k
dt

∫ k

−k
ds

(σpσl − γpγl)2pl

2k(ep + el)
(156)

+2

∫ Λ

k
dt

∫ k

−k
ds

(σpσl − γpγl)(σpσl + γpγl − 2σpγl − 2γpσl)pl

2k(ep + el)
(157)

+(σk − γk)2

∫ Λ

k
dt

∫ k

−k
ds

(σpσl + γpγl − 2σpγl − 2γpσl)
2pl

2k(ep + el)
(158)

where we used that σ2
k − γ2

k = 1. Since Λ is fixed we are only interested in the small t
region. Since k is small too, this implies also p and l are small. For such we have

(σk + γk)
2 ≥ Ck−1, C > 0 (159)

(σk − γk)2 = O(k), (160)

(σpσl − γpγl)
√
pl = O(p) +O(l) = O(t), (161)

(σpσl + γpγl − 2σpγl − 2γpσl)
√
pl = O(1), (162)
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1

ep + el
= O(t−1). (163)

By Lemma 6 and (159),

|(156)| ≥ C1k
−1 → +∞. (164)

By (161), (162) and (163),

|(157)| ≤ C
∫ Λ

k
dt

∫ k

−k
ds

1

k
→ CΛ as k → 0. (165)

Here CΛ is a constant depending on Λ (which is fixed). By (160), (162) and (163),

|(158)| ≤ Ck
∫ Λ

k
dt

∫ k

−k
ds

1

kt
≤ Ck| ln(k)| → 0, (166)

Hence (155) converges to +∞. �
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