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1. Introduction

One of the most important families of exactly solvable 1-dimensional Schrödinger 
operators is the family of Bessel operators

−∂2
x + c

x2 . (1.1)

As is well-known, it is convenient to set c = m2 − 1/4, so that (1.1) is rewritten as
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L0
m2 := −∂2

x +
(
m2 − 1

4

) 1
x2 . (1.2)

There exists large literature devoted to Bessel operators, mostly restricted to the case 
m2 ∈ R (see e.g. [11,20,21,26,35] and references therein). They are also interesting for 
complex m2. Their closed realizations on L2]0, ∞[ were studied in [7,16].

Many operators in mathematics and physics can be reduced to Bessel operators. Here 
are a few examples:

(1) the usual Laplacian in dimension d ≥ 3, m = d
2 − 1 + �, � = 0, 1, 2, . . . , see e.g. [16, 

Section 3];
(2) the 2d Aharonov-Bohm Hamiltonian with magnetic flux θ, m = θ

2π + n, n ∈ Z, see 
e.g. [3,9,34] and [7, Appendix B];

(3) the Laplacian on a conical surface of angle α, m = 2πn
α , n ∈ Z;

(4) the Laplacian on a wedge of angle α with Dirichlet or Neumann boundary conditions, 
m = πn

α , n ∈ Z;
(5) perturbed Bessel operators with m complex are used to define Regge poles, see e.g. 

[5,11];
(6) three-body systems with contact interactions.

In this paper we would like to investigate Bessel operators with complex m perturbed 
by complex-valued locally integrable potentials Q(x). Our goal is to show that under some 
assumptions on Q boundary conditions for perturbed Bessel operators can be described 
in a similar way as for unperturbed ones.

Before describing our results, let us review general Schrödinger operators on the half-
line, and then unperturbed Bessel operators.

1.1. Basic facts about Schrödinger operators on the half-line

We follow mostly [13]. Suppose that ]0, ∞[� x �→ V (x) is a function in L1
loc]0, ∞[, 

possibly, complex valued. Consider the expression

L := −∂2
x + V (x). (1.3)

The basic meaning of L used in our paper will be that of a linear map from AC1]0, ∞[
to L1

loc]0, ∞[. Recall that AC]0, ∞[ denotes the set of absolutely continuous functions 
from ]0, ∞[ to C, that is, functions whose distributional derivative belongs to L1

loc]0, ∞[, 
and AC1]0, ∞[ is the set of functions from ]0, ∞[ to C whose distributional derivative 
belongs to AC]0, ∞[.

Let N (L) denote all functions in AC1]0, ∞[ annihilated by L. The space N (L) is 
always 2-dimensional.

Let h1, h2 be two linearly independent elements of N (L). The canonical bisolution of 
L, denoted G↔, is defined by the integral kernel
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G↔(x, y) = 1
W (h1, h2)

(
h1(x)h2(y) − h2(x)h1(y)

)
, (1.4)

where W (h1, h2) denotes the Wronskian of h1 and h2. Note that (1.4) does not depend on 
the choice of h1, h2 (see e.g. [13, Section 2.6]). The operator (1.4) is usually unbounded 
on L2]0, ∞[, however it is very useful in the study of L.

We will use the term Green’s operator as a synonym for a right inverse of L. In other 
words, the integral kernel G•(x, y) of Green’s operator G• satisfies

(
− ∂2

x + V (x)
)
G•(x, y) = δ(x− y). (1.5)

Again, we do not insist on the boundedness of G• on L2]0, ∞[.
We have various types of Green’s operators:

(1) the forward Green’s operator G→:

G→(x, y) := θ(x− y)G↔(x, y), (1.6)

(2) the backward Green’s operator G←:

G←(x, y) := −θ(y − x)G↔(x, y). (1.7)

Here θ is the Heaviside function. These two Green’s operators are forward, resp. backward 
Volterra operators: when they act on a function, they do not extend its support to the 
left, resp. to the right. They are uniquely defined given L: they do not depend on the 
choice of h1, h2.

We also have

(3) the two-sided Green’s operator corresponding to the boundary condition given by h1
near 0 and h2 near ∞:

G•(x, y) := 1
W (h1, h2)

{
h1(x)h2(y), x < y,

h2(x)h1(y), y < x.
(1.8)

The expression (1.8) depends only on the choice of the 1-dimensional subspaces Ch1, 
Ch2.

Let us now discuss realizations of L as closed densely defined operators on L2]0, ∞[. 
There are two obvious choices: the minimal realization Lmin and the maximal realization 
Lmax. Their domains are given by

D(Lmax) :=
{
f ∈ L2]0,∞[∩AC1]0,∞[ | Lf ∈ L2]0,∞[

}
,

D(Lmin) := the closure of {f ∈ D(Lmax) | f = 0 near 0 and ∞},
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the closure being taken with respect to the graph norm of Lmax. In general, there may 
exist other operators L• such that Lmin ⊂ L• ⊂ Lmax defined by boundary conditions 
at 0 and ∞.

Potentials V considered in this paper usually vanish at ∞. In this case we do not need 
to specify boundary conditions for L near ∞. This implies that either

Lmin = Lmax, (1.9)

or dimD(Lmax)/D(Lmin) = 2. (1.10)

If (1.10) is true, there exists a one-parameter family of operators L• that satisfy

Lmin � L• � Lmax. (1.11)

Suppose that L• satisfies (1.11) or coincides with (1.9). Let λ belong to the resolvent 
set of L•. Then the integral kernel of (L• − λ)−1 has the form of a two-sided Green’s 
operator (1.8) with appropriate h1 and h2.

1.2. Basic facts about unperturbed Bessel operators

We mostly follow [7,16]. Let m ∈ C and k ∈ C. Consider the space N (L0
m2 +k2), that 

is, solutions to the eigenvalue equation

L0
m2f = −k2f. (1.12)

Solving (1.12) for k = 0 is easy: N (L0
m2) is spanned by

x
1
2+m, x

1
2−m, m 
= 0; (1.13)

x
1
2 , x

1
2 ln(x), m = 0. (1.14)

For k 
= 0, (1.12) can be reduced to the Bessel equation. This justifies the name Bessel 
operator for (1.2). Here is a pair of solutions of (1.12) for k 
= 0:

u0
m(x, k) :=

(2
k

)m√
xIm(kx), (1.15)

v0
m(x, k) :=

(k
2

)m√
xKm(kx), (1.16)

where Im is the modified Bessel function and Km the Macdonald function (see Subsection 

2.1 below). Note that u0
m(·, k) behaves as x

1
2 +m

Γ(m+1) near zero and v0
m(·, k) for Re(k) > 0

decays exponentially at infinity. Their normalization is chosen in such a way that their 
Wronskians are 1 and they have a limit at k = 0:
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u0
m(x, 0) = x

1
2+m

Γ(m + 1) , (1.17)

v0
m(x, 0) = Γ(m)x 1

2−m

2 , Re(m) ≥ 0, m 
= 0. (1.18)

It is convenient to introduce another solution of the unperturbed eigenequation (1.12), 
which differs from v0

m(x, k) only by a different normalization:

w0
m(x, k) =

√
2k
π

(2
k

)m

v0
m(x, k) =

√
2xk
π

Km(kx). (1.19)

Note that w0
m(x, k) = w0

−m(x, k) ∼ e−kx for x → ∞.
The Bessel operator for m = 0 often needs a separate treatment. Note, for instance, 

that v0
0(·, k) does not have a limit at k = 0. To treat the case m = 0 in a satisfactory 

way it is useful to introduce a family of eigenfunctions of L0
0:

p0
0(x, k) := −v0

0(x, k) −
(
ln
(k

2

)
+ γ

)
u0

0(x, k), (1.20)

where γ denotes Euler’s constant. At k = 0 it coincides with the logarithmic solution:

p0
0(x, 0) = x

1
2 ln(x).

We will often assume that Re(m) ≥ 0, because L0
m2 depends only on m2. Based on 

the behavior near zero of its eigenfunctions, one can distinguish 3 regimes:

(1) Re(m) > 0. Eigensolutions of L0
m2 can be divided into principal, that means propor-

tional to u0
m, and non-principal, all the others. Principal solutions behave as x 1

2+m

and are more regular than non-principal ones, which behave as x 1
2−m.

(2) Re(m) = 0, m 
= 0. Eigensolutions of L0
m2 are spanned by u0

m and u0
−m, with a 

comparable behavior x 1
2+m and x

1
2−m near zero.

(3) m = 0. Eigensolutions of L0
m2 are spanned by u0

0 and p0
0. Those proportional to 

u0
0 are again called principal, the remaining ones are called non-principal. Principal 

solutions behave as x 1
2 and are more regular than non-principal ones behaving as 

x
1
2 ln(x).

As explained in the previous subsection, with L0
m2 + k2 one can associate various 

Green’s operators and the canonical bisolution. The most important are

(1) The canonical bisolution G0
m2↔(−k2);

(2) the forward Green’s operator G0
m2,→(−k2);

(3) the backward Green’s operator G0
m2,←(−k2);

(4) the two-sided Green’s operator with homogeneous boundary conditions G0
m2,��(−k2).
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Additionally, for m = 0 we will use

(5) the two-sided Green’s operator logarithmic near zero G0
0,�(−k2).

Green’s operators G0
m2↔(−k2), G0

m2,→(−k2), G0
m2,←(−k2) and G0

m2,��(−k2) are de-
fined as in (1.4), (1.6), (1.7), resp. (1.8) where we put h1(x) = u0

m(x, k), h2(x) = v0
m(x, k), 

and use the fact that their Wronskian is 1.
G0

0,�(−k2) is defined as in (1.8) where we put h1(x) = p0
0(x), h2(x) = u0

0(x) and again 
replace the Wronskian by 1.

For the sake of brevity, we will often abuse terminology, calling G0
m2,��(−k2) “two-

sided” and G0
0,�(−k2) “logarithmic”. However, both are two kinds of two-sided Green’s 

operators according to the terminology of Subsection 1.1.
Let us now sketch the theory of closed realizations of L0

m2 on L2]0, ∞[. First of all, we 
can define the minimal and maximal realization of L0

m2 denoted by L0,min
m2 and L0,max

m2 , 
respectively. They satisfy

|Re(m)| ≥ 1 implies L0,min
m2 = L0,max

m2 , (1.21)

|Re(m)| < 1 implies dimD(L0,max
m2 )/D(L0,min

m2 ) = 2. (1.22)

Thus for |Re(m)| < 1 there exists a 1-parameter family of closed realizations of L0
m2

between L0,min
m2 and L0,max

m2 defined by boundary conditions at zero. To describe these 
realizations one can introduce the following three families of Bessel operators

{−1 < Re(m)} � m �→ H0
m, (1.23)

{−1 < Re(m) < 1} ×
(
C ∪ {∞}

)
� (m,κ) �→ H0

m,κ, (1.24)(
C ∪ {∞}

)
� ν �→ H0,ν

0 . (1.25)

The family H0
m is the most basic one. It is holomorphic on {−1 < Re(m)} (see 

Appendix B for the definition of holomorphic families of closed operators). For 1 ≤ Re(m)
it is the unique closed realization of L0

m2 . Then it is extended to the strip −1 < Re(m) < 1
by analytic continuation. Its domain is defined by the boundary condition ∼ x

1
2+m at 

zero, called homogeneous or pure. In other words, functions in the domain of H0
m belong 

to the domain of the maximal operator L0,max
m2 and behave as x 1

2+m near 0.
The operator H0

m,κ is defined by the boundary condition ∼ x
1
2+m + κx

1
2−m at zero. 

For m = 0 and all κ we simply have H0
0,κ = H0

0 . The map (1.24) is holomorphic except 
for a singularity at (m, κ) = (0, −1) (see Proposition 3.11(ii) in [12]).

Finally, for the special case m = 0, H0,ν
0 is defined by the boundary condition ∼

x
1
2 ln(x) + νx

1
2 at zero. The map (1.25) is holomorphic.

For Re(m) > −1 and Re(k) > 0 the two-sided Green’s operator (with pure boundary 
conditions) is bounded on L2]0, ∞[ and coincides with the resolvent of H0

m:

G0
m2,��(−k2) =

(
H0

m + k2)−1
.
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It should, however, be remarked that the integral kernel G0
m2,��(−k2; x, y) is well defined 

and useful also for other values of k and m, when it does not define a bounded operator.

1.3. Overview of main results

Our paper is devoted to perturbed Bessel operators, that is, to operators of the form

Lm2 := −∂2
x +

(
m2 − 1

4

) 1
x2 + Q(x).

We allow m to be complex and Q to be complex-valued. Throughout the paper, we will 
assume that Q ∈ L1

loc]0, ∞[.
Note that the condition Re(m) > −1 which we saw e.g. in (1.23) appears in several 

places in our analysis. One can argue that the case Re(m) ≤ −1 is less important for 
applications, because then x

1
2+m is not square integrable at zero. Nevertheless, if possible 

we keep m arbitrary, without restricting it to Re(m) > −1.
Our first concern in this paper is the construction of solutions in AC1]0, ∞[ to the 

equation

Lm2f = −k2f (1.26)

with a prescribed behavior near 0 or near ∞. We will show that under some condi-
tions on perturbations these solutions are quite similar to solutions of the unperturbed 
eigenequation (1.12).

First of all we show that if the perturbation is slightly weaker than 1/x2 near zero, then 
there exists a solution of the perturbed equation approximating the principal solution, 
as described in the following proposition:

Proposition 1.1. Let Re(m) ≥ 0, k ∈ C and suppose that

1∫
0

x|Q(x)|dx < ∞, if m 
= 0; (1.27)

1∫
0

x(1 + |ln(x)|)|Q(x)|dx < ∞, if m = 0. (1.28)

Suppose that g0 is a solution of (1.12) such that g0(x) = O(x 1
2+Re(m)) near 0. Then, 

there exists a unique solution g ∈ AC1]0, ∞[ to (1.26) such that,

g(x) − g0(x) = o(x 1
2+Re(m)),

∂xg(x) − ∂xg
0(x) = o(x− 1

2+Re(m)), x → 0.
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In order to be able to well approximate all unperturbed solutions, including the more 
singular ones, we need to strengthen the assumption on the perturbation.

Proposition 1.2. Let Re(m) ≥ 0, k ∈ C and suppose that

1∫
0

x1−2Re(m)|Q(x)|dx < ∞, if m 
= 0; (1.29)

1∫
0

x
(
1 + (ln(x))2

)
|Q(x)|dx < ∞, if m = 0. (1.30)

Then for any g0 ∈ AC1]0, ∞[ solving (1.12) there exists a unique g ∈ AC1]0, ∞[ solving 
(1.26) such that

g(x) − g0(x) = o(x 1
2+Re(m)),

∂xg(x) − ∂xg
0(x) = o(x− 1

2+Re(m)), x → 0.

Here are consequences of Propositions 1.1 and 1.2:

Corollary 1.3. Let m ∈ C, k ∈ C and suppose that

1∫
0

x1−ε|Q(x)|dx < ∞, ε ≥ 0, Re(m) ≥ −ε

2 , m 
= 0; (1.31)

1∫
0

x(1 + |ln(x)|)|Q(x)|dx < ∞, m = 0. (1.32)

Then there exists a unique um(·, k) ∈ AC1]0, ∞[ that solves (1.26) and satisfies

um(x, k) − u0
m(x, k) = o(x 1

2+|Re(m)|),

∂xum(x, k) − ∂xu
0
m(x, k) = o(x− 1

2+|Re(m)|), x → 0.

Corollary 1.4. Let k ∈ C and suppose that

1∫
0

x(1 + (ln(x))2)|Q(x)|dx < ∞, m = 0. (1.33)

Then there exists a unique p0(·, k) ∈ AC1]0, ∞[ that solves (1.26) and satisfies
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p0(x, k) − p0
0(x, k) = o(x 1

2 ),

∂xp0(x, k) − ∂xp
0
0(x, k) = o(x− 1

2 ), x → 0.

Note that if |Q(x)| � |x|α near 0, then Condition (1.31) is satisfied for α > −2 + ε.
Conditions (1.27) and (1.28) are the minimal assumptions near zero in the context of 

our paper. They are enough to guarantee that the behavior near zero of non-principal 
solutions is roughly as in the unperturbed case:

Proposition 1.5. Let Re(m) ≥ 0, Re(k) ≥ 0. Under the assumptions (1.27) and (1.28), 
for all g ∈ N (Lm2 + k2), we have

g(x) = O(x 1
2−Re(m)), ∂xg(x) = O(x− 1

2−Re(m)), (1.34)

g(x) = O(x 1
2 ln(x)), ∂xg(x) = O(x− 1

2 ln(x)), x → 0. (1.35)

As described in Proposition 1.1, the above assumptions are enough for the existence of 
um with Re(m) ≥ 0. However, it seems that to have distinguished non-principal solutions 
one needs to impose stronger conditions on Q, as described in Corollaries 1.3 and 1.4: 
In particular, if ε ≥ 0 and Condition (1.31) holds, then um is constructed only in the 
region Re(m) ≥ − ε

2 . This suggests the following question, which we believe is open and 
interesting:

Open Problem 1.6. Let Q satisfy condition (1.31) with ε > 0. Does it imply that the 
function m �→ um(x, k) extends holomorphically (or at least meromorphically) to the 
whole C? (This is true for the Coulomb potential [17].).

Let us now consider the behavior near infinity. To prove the existence of solutions 
well approximating exponentially decaying solutions, called Jost solutions, we need the 
so-called short-range condition on the potential.

Proposition 1.7. Let m ∈ C. Suppose that

∞∫
1

|Q(x)|dx < ∞.

Let k 
= 0 be such that Re(k) ≥ 0. Then there exists a unique solution wm(·, k) =
w−m(·, k) ∈ AC1]0, ∞[ to (1.26) such that

wm(x, k) − w0
m(x, k) = o(e−xRe(k)),

∂xwm(x, k) − ∂xw
0
m(x, k) = o(e−xRe(k)), x → ∞.

Similarly as in the unperturbed case, it is often convenient to use differently normal-
ized Jost solutions vm(x, k) :=

√
π
(

k
)m

wm(x, k).
2k 2
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Proposition 1.7 does not cover the zero energy, that is, k = 0. To handle this case we 
need to impose stronger conditions on the decay of perturbations, as described in the 
following two propositions.

Proposition 1.8. Let m ∈ C. Suppose that

∞∫
1

xδ|Q(x)|dx < ∞, if m 
= 0, with δ = 1 + 2 max
(
Re(m), 0

)
;

∞∫
1

x(1 + ln(x))|Q(x)|dx < ∞, if m = 0.

Then there exists a unique qm ∈ AC1]0, ∞[ solving (1.26) at k = 0 such that,

qm(x) − x
1
2+m = o(x 1

2−Re(m)),

∂xqm(x) − ∂xx
1
2+m = o(x− 1

2−Re(m)), x → ∞.

Proposition 1.9. Let m = 0. Suppose that

∞∫
1

x(1 + (ln(x))2)|Q(x)|dx < ∞.

Then there exists a unique q0,ln ∈ AC1]0, ∞[ solving (1.26) for k = 0 such that,

q0,ln(x) − x
1
2 ln(x) = o(x 1

2 ),

∂xq0,ln(x) − ∂xx
1
2 ln(x) = o(x− 1

2 ), x → ∞.

The zero energy eigenequation near infinity is equivalent to the zero energy eigenequa-
tion near zero. This follows from the identity

−∂2
x +

(
m2 − 1

4

) 1
x2 + Q(x) = y3

(
− ∂2

y +
(
m2 − 1

4

) 1
y2 + Q̃(y)

)
y, (1.36)

y = 1
x
, Q̃(y) := y−4Q(y−1). (1.37)

Note also a simple relationship between the integral conditions near zero on Q and near 
infinity on Q̃:

1∫
x1−ε|Q(x)|dx =

∞∫
y1+ε|Q̃(y)|dy, (1.38)
0 1
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1∫
0

x(1 + | ln(x)|α)|Q(x)|dx =
∞∫
1

y(1 + | ln(y)|α)|Q̃(y)|dy. (1.39)

Thus one can derive Propositions 1.8 and 1.9 from the k = 0 case of Corollaries 1.3 and 
1.4.

The main tools used in the construction of eigenfunctions are various Green’s op-
erators for the unperturbed Bessel operator. The forward Green’s operator is used in 
Propositions 1.1, 1.2 and their corollaries. For instance,

um(·, k) =
(
1l + G0

m2,→(−k2)Q
)−1

u0
m(·, k), (1.40)

p0(·, k) =
(
1l + G0

0,→(−k2)Q
)−1

p0
0(·, k). (1.41)

The backward Green’s operator is used in Propositions 1.7, 1.8 and 1.9:

wm(·, k) =
(
1l + G0

m2,←(−k2)Q
)−1

w0
m(·, k), (1.42)

qm =
(
1l + G0

m2,←(0)Q
)−1

u0
m(·, 0), (1.43)

q0,ln =
(
1l + G0

0,←(0)Q
)−1

p0
0(·, 0). (1.44)

In quantum physics the equation for the Jost solution (1.42) is called the Lippmann–
Schwinger Equation.

If (1.31) holds and ε
2 < Re(m), then Corollary 1.3 guarantees the existence only of 

um(·, k), but not of u−m(·, k). Therefore, in this case it is more complicated to describe 
non-principal solutions. One way to do this is to use the two-sided Green’s operator with 
pure boundary conditions G0

m,�� (where we assume that Re(m) ≥ 0). Unfortunately, 
1l + G0

m,��(−k2)Q may be not invertible. In order to guarantee the invertibility we can 
compress G0

m,��(−k2) to a sufficiently small interval ]0, a[. The corresponding compressed 

Green’s operator is denoted G0(a)
m,��(−k2) (see Appendix A).

In the case m = 0 one may prefer to use the logarithmic Green’s operator G0
�(−k2), 

or actually its compressed version G0(a)
� (−k2).

Proposition 1.10. Suppose the assumptions of Proposition 1.1 hold. If a is small enough, 
the following functions are well defined and solve (1.26) on ]0, a[:

u
��(a)
−m (·, k) :=

(
1l + G

0(a)
m,��(−k2)Q

)−1
u0
−m(·, k), (1.45)

p
�(a)
0 (·, k) :=

(
1l + G

0(a)
0,� (−k2)Q

)−1
p0
0(·, k). (1.46)

In the case m = 0 the function p�(a)
0 is well defined by (1.46) under slightly less 

restrictive condition on Q than p0 defined in Corollary 1.4: the difference is just one 
power of the logarithm less in (1.28) than in (1.29), which is not much. However the 
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difference between the assumptions for u��(a)
−m (·, k) defined in (1.45) and um(·, k) defined 

in Corollary 1.3 is quite substantial.
Unfortunately, the construction (1.45) and (1.46) has obvious drawbacks. It is not 

very explicit: it involves inverting a complicated integral operator. It also depends on an 
arbitrary parameter a even if the dependence on a is actually quite weak – if we change a, 
(1.45) and (1.46) are shifted by a multiple of the corresponding principal solution. Note 
that we cannot fix the value of a once for all, because the invertibility of 1l+G

0(a)
m,��(−k2)Q

and 1l + G
0(a)
0,� (−k2)Q depends on Q and other parameters.

We will describe below an alternative approach, which leads to a simpler description 
of non-principal solutions for Re(m) > 0. We choose a non-negative integer n. We expand 
the denominator (1.45) into a formal power series, retaining n first terms. For definiteness, 
we fix a = 1 (quite arbitrarily) and set

u
0[n]
−m(x, k) =

n∑
j=0

(−G
0(1)
�� (0)Q)ju0

−m(x, k). (1.47)

Note that u0[n]
−m depends on Q.

Proposition 1.11. Let Re(k) ≥ 0. Let n be a nonnegative integer such that Condition 
(1.31) is satisfied for − ε

2 (n + 1) ≤ Re(−m) ≤ 0. Then there exists a unique solution 

u
[n]
−m(·, k) in AC1]0, ∞[ of (1.26) such that

u
[n]
−m(x, k) − u

0[n]
−m(x, k) = o(x 1

2+Re(m)), (1.48)

∂xu
[n]
−m(x, k) − ∂xu

0[n]
−m(x, k) = o(x− 1

2+Re(m)), x → 0. (1.49)

Thus for sufficiently large n the function u[n]
−m(·, k) determines uniquely a non-principal 

element of N (Lm2 + k2) under much weaker assumptions than before.
Boundary conditions determined by u0[n]

−m(·, k) still have an unpleasant feature – they 
depend on k. If we want to have boundary conditions independent of k we need to assume 
that |Re(m)| < 1. Then it is reasonable to choose k = 0, which we do setting

u
0[n]
−m(x) := u

0[n]
−m(x, 0). (1.50)

In particular, under the condition |Re(m)| < 1 in Proposition 1.11 we can replace 
u

0[n]
−m(·, k) with u0[n]

−m(·). This condition is also important in the L2 theory of perturbed 
Bessel operators as we explain below.

In concrete cases, the function u0[n]
−m can be easily computed. For instance, if Q has a 

Coulomb singularity at 0, such as Q(x) = −β
x1l]0,1](x) with β ∈ C, then we need to take 

n = 1 to cover |Re(m)| < 1. Then in the generic case m 
= 1
2 we have

u
0[1]
−m(x) = jβ,−m(x) + O(x 1

2+Re(m)), jβ,−m(x) := x
1
2−m

(
1 − βx )

,
Γ(1 −m) 1 − 2m
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the function jβ,−m being precisely the function used to define Whittaker operators in 
[12,17].

An important object of our analysis is the Jost function Wm(k), that is the Wronskian 
of the two main solutions um(·, k) and vm(·, k). We prove that it is well-behaved as a 
function of k:

Proposition 1.12. Assume Re(m) > −1, as well as (1.31) if m 
= 0, or (1.33) if m = 0. 
Then

lim
|k|→∞

Wm(k) = 1, Re(k) ≥ 0. (1.51)

Note the assumption Re(m) > −1 that appears in the above proposition – which 
again anticipates the basic condition needed in the L2 analysis.

The last section of our paper, Section 6, is devoted to closed realizations of Lm2 on the 
Hilbert space L2]0, ∞[. First we prove that under the assumptions of Propositions 1.1
and 1.7, we have

|Re(m)| ≥ 1 implies Lmin
m2 = Lmax

m2 , (1.52)

|Re(m)| < 1 implies dimD(Lmax
m2 )/D(Lmin

m2 ) = 2. (1.53)

Thus the basic picture is the same as in the unperturbed case described in (1.21) and 
(1.22)

In particular, for |Re(m)| < 1, beside the minimal and maximal realizations, there 
exists a 1-parameter family of closed realizations of Lm2 defined by boundary conditions 
at zero. Boundary conditions can be fixed by specifying continuous linear functionals 
on D(Lmax

m2 ) vanishing on D(Lmin
m2 ), called boundary functionals. The method to describe 

boundary functionals which seems to work the best in our context uses the Wronskian at 
zero, that is W (f, ·; 0) := lim

x→0
W (f, ·; x), for appropriately chosen functions f . In practice 

the most convenient f are approximate zero energy eigenfunctions of Lm2 .
One can ask about distinguished bases of the boundary space

Bm2 :=
(
D(Lmax

m2 )/D(Lmin
m2 )

)′
,

where the prime denotes the dual. Under the assumptions of Proposition 1.1 one can 
always distinguish the principal boundary functional. For 0 ≤ Re(m) < 1 it can be 
defined as W (x 1

2+m, ·; 0). There are also “non-principal boundary functional”, which 
lead to boundary conditions roughly of the type x

1
2−m for m 
= 0, or x 1

2 ln(x) for m = 0. 
In general their choice is less canonical: under the assumptions of Proposition 1.1, a basis 
of Bm2 , 0 ≤ Re(m) < 1, m 
= 0, is given by

(
W (x 1

2+m, ·; 0),W (u��(a)
−m (·, k), ·; 0)

)
,
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with a small enough as in Proposition 1.10. Likewise, if m = 0, then
(
W (x 1

2 , ·; 0),W (p�(a)
0 , ·; 0)

)
,

is a basis of B0.
Let us now impose the assumption

1∫
0

x1−ε|Q(x)|dx < ∞. (1.54)

If 2 > ε > 0, then for 0 ≤ Re(m) ≤ ε/2 we have a distinguished non-principal boundary 
functional given by W (x 1

2−m, ·; 0) if m 
= 0 and W (x 1
2 ln(x), ·; 0) if m = 0. Thus we 

obtain three families of perturbed Bessel operators{
− ε

2 < Re(m)
}
� m �→ Hm, (1.55){

|Re(m)| < ε

2

}
×
(
C ∪ {∞}

)
� (m,κ) �→ Hm,κ, (1.56)(

C ∪ {∞}
)
� ν �→ Hν

0 , (1.57)

fully analogous to the families of the unperturbed case. All three families are holomorphic 
except for a singularity of (1.56) at (m, κ) = (0, −1). They are defined as the restrictions 
of Lm2 to the domains:

D(Hm) :=
{
f ∈ D(Lmax

m2 ) | W (x 1
2+m, f ; 0) = 0

}
,

D(Hm,κ) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2+m + κx

1
2−m, f ; 0

)
= 0

}
, κ ∈ C,

D(Hm,∞) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2−m, f ; 0

)
= 0

}
,

D(Hν
0 ) :=

{
f ∈ D(Lmax

0 ) | W
(
νx

1
2 + x

1
2 ln(x), f ; 0

)
= 0

}
, ν ∈ C,

D(H∞
0 ) := D(H0).

The maps m �→ Hm and (m, κ) �→ Hm,κ are also continuous on {− ε
2 ≤ Re(m)}, respec-

tively {|Re(m)| ≤ ε
2 , κ ∈ C ∪ {∞}, (m, κ) 
= (0, −1)} (continuous families of closed 

operators are defined similarly as holomorphic families of closed operators, see Ap-
pendix B).

The holomorphic family (1.55) for Re(m) ≥ 1 coincides with Lmin
m2 = Lmax

m2 . It involves 
the boundary conditions that can be viewed as “the most natural”, and which we call 
pure. Note that (1.55) is restricted to {Re(m) > − ε

2}. This leaves the following open 
question.

Open Problem 1.13. Under the minimal conditions of Proposition 1.1, does m �→ Hm

extend to {Re(m) > −1} holomorphically, or at least meromorphically?
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Let us now consider a nonnegative integer n. Under the assumption (1.54), 2(n +1) >
ε > 0 and 0 ≤ Re(m) ≤ ε

2 (n +1) we can use the function u0[n]
−m that was defined in (1.50). 

Then every non-principal boundary functional can be written as

W (Γ(1 −m)u0[n]
−m + κx

1
2+m, ·; 0) (1.58)

for some κ ∈ C. Clearly, (1.58) is proportional to W (x 1
2−m + κx

1
2+m, ·; 0) for n = 0. 

For n ≥ 1 (1.58) is less canonical. If n, n′ are two integers and (1.58) are well defined 
for n and n′, then their difference is proportional to the principal boundary functional 
W (x 1

2+m, ·; 0). Thus the set of non-principal boundary conditions can be viewed as a 1-
dimensional affine space, where we can use W (Γ(1 −m)u0[n]

−m, ·; 0) as a possible “reference 
point”.

The boundary functional (1.58) can be used to define a family of perturbed Bessel 
operators which includes all possible boundary conditions at 0:

{
|Re(m)| < ε

2(n + 1)
}
×

(
C ∪ {∞}

)
� (m,κ) �→ H [n]

m,κ. (1.59)

Note that (1.59) is less canonical than (1.56), however it is defined on a wider region.
The distinguished solutions to (1.26) can be used to write down the resolvent of Hm

and its cousins with mixed boundary conditions. For instance, the integral kernel of 
(Hm + k2)−1 coincides with (1.8) with h1(x) = um(x, k) and h2(x) = vm(x, k).

One of the main difficulties of the analysis comes from the need to consider separately 
the case m = 0, because generic estimates are not true due to logarithmic terms. This 
case is actually very important – it corresponds to the 2-dimensional Laplacian in the 
s-wave sector.

The case k = 0 also requires special care and is particularly important. One can argue 
that the most natural way to define boundary conditions at zero involves zero-energy 
eigenfunctions [12]. Moreover, the behavior of zero energy eigenfunctions at large dis-
tances described by the so-called scattering length is responsible for large scale properties 
of quantum systems, see Subsection 6.9 and [30].

1.4. Comparison with the literature

The present paper can be viewed as a continuation of a series of related papers devoted 
to 1d Schrödinger operators. This series includes [7,14–16] about holomorphic families 
of Bessel operators, [12,17] about holomorphic families of Whittaker operators and [13]
devoted to the general theory.

Of course, the literature devoted to Schrödinger operators on the half-line is vast 
and goes back several decades. Here is a selection of classical sources: Edmunds-Evans 
[21], Reed-Simon vol. II [35], Titchmarsh [38], Coddington-Levinson [10], Dunford-
Schwartz [20], Yafaev [41], Levitan-Sargsjan [29], Weidmann [40], Derkach-Malamud 
[19], Marchenko [31]. See also Gesztesy-Zinchenko [24].
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Most of this literature is restricted to real potentials and to self-adjoint realizations. 
The theory of general closed realizations of Schrödinger 1d operators with complex po-
tentials is actually a relatively straightforward extension of the real theory and also has 
a long tradition. The number of sources for complex potentials is much smaller, but 
includes some of the classics, such as Titchmarsh [38], Edmunds-Evans [21], Naimark 
[33] and Dunford-Schwartz [20]. (Note that the real case has a rather different termi-
nology from the complex case: e.g. “self-adjoint extensions of symmetric operators” and 
“limit point/limit circle case” replace “closed realizations of the formal operator”, and 
“trivial/nontrivial boundary space”).

Most of these sources start from the 1-dimensional Laplacian on the half-line with 
Dirichlet or Neumann conditions. This corresponds to the Bessel operator H 1

2
(Dirichlet) 

and H− 1
2

(Neumann) in the terminology of our paper. Usually the potential is assumed 
to be integrable near zero. Note that this excludes not only the 1/x2 potential, but even 
the 1/x potential, and makes the theory of boundary conditions very straightforward.

Self-adjoint extensions for potentials 1/x2 and 1/x are of course also discussed in the 
literature by many authors, e.g. in [1,2,6,8,22,23,25,28,32].

There are also many treatments of d-dimensional Schrödinger operators. They are 
closely related to the Bessel operators for m = d

2 − 1, especially in the spherically 
symmetric case. We are convinced that for many readers our analysis of perturbed Bessel 
operators can serve as a good introduction to the subject of Schrödinger operators in 
various dimensions.

Perturbed Bessel operators with complex m were considered to be an important sub-
ject already in the 70’s, especially in view of applications to the so-called Regge poles 
[11].

There exists large literature about defining boundary conditions with the help of the 
so-called boundary triplets, see e.g. [4]. In order to define a boundary triplet one needs to 
select a transversal pair of Lagrangian subspaces inside the boundary space. In the case of 
perturbed Bessel operators this amounts to selecting two complementary 1-dimensional 
subspaces, such as (if possible) those defined by W (x 1

2+m, ·, 0) and W (x 1
2−m, ·; 0). Thus 

the analysis of our paper can be treated as a preparation for an application of the 
boundary triplets formalism.

The concept of a holomorphic family of closed operators goes back to [26]. The use-
fulness of organizing perturbed Bessel operators in holomorphic families was recognized 
by Kato [26,27].

The behavior of zero energy eigensolutions near infinity and the related concept of 
the scattering length is a standard tool of contemporary physics, at least in dimension 
3 (sometimes also 2). Mathematical treatment of this concept for all dimensions can be 
found in [30].

Many elements and partial results of our paper can be found in the literature. We 
are not aware, however, of previous work about all closed realizations of Lm2, their pure 
point spectra and their holomorphic properties under the general (and rather weak) 
assumptions on Q that we consider. In this respect, we believe that our results are not 
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far from being sharp, at least concerning the behavior of Q near zero. As we see in our 
paper, the full picture is quite complex. Note in particular that the cases m = 0 and 
k = 0 are quite subtle, both near 0 and ∞. We have also never seen a systematic analysis 
involving the boundary conditions given by u0[n]

m , see (1.59), which shows how to deal 
with a perturbation where the most straightforward approach fails.

The direction where our results could be somewhat strengthened is the regularity of 
Q. This can be done e.g. using the method of Shkalikov and Savchuk [36,37], however it 
would introduce an extra layer of technical complication in our analysis.

1.5. Notations

On L2]0, ∞[, the notation 〈·|·〉 stands for the bilinear form defined by

〈f |g〉 :=
∞∫
0

f(x)g(x)dx, f, g ∈ L2]0,∞[. (1.60)

More generally, we will use the notation

〈f |g〉 =
∞∫
0

f(x)g(x)dx,

for any measurable functions f, g such that fg ∈ L1]0, ∞[.
The transpose of an operator A, that is, the adjoint with respect to (1.60) will be 

denoted A#, as in [13].
The Wronskian of two differentiable functions f, g is denoted by

W (f, g;x) := f(x)g′(x) − f ′(x)g(x), x ∈]0,∞[. (1.61)

Moreover,

W (f, g; 0) := lim
x→0

W (f, g;x), W (f, g;∞) := lim
x→∞

W (f, g;x),

if these limits exist. If f, g ∈ AC1]0, ∞[ are two solutions to the equation (L•
m2+k2)u = 0, 

where L•
m2 stands for L0

m2 or Lm2 , then their Wronskian is constant and is denoted by 
W (f, g).

To shorten notations below, for b, c ∈ R ∪∞, we use the shorthand

(m, k) ∈ {Re(m) > b,Re(k) > c},

with the obvious meaning that (m, k) ∈ C2 are such that Re(m) > b, Re(k) > c, and 
likewise if Re(m) > b is replaced by Re(m) ≥ b and so on.
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Let Ω ⊂ C ×C. We will say that a function

Ω � (m, k) �→ f(m, k)

is regular on Ω if it is continuous, and for any m0, k0 ∈ C the functions

{k ∈ C | (m0, k) ∈ Ω}◦ � k �→ f(m0, k),

{m ∈ C | (m, k0) ∈ Ω}◦ � m �→ f(m, k0)

are analytic, where K◦ denotes the interior of a set K ⊂ C. Note that if Ω is open, then 
by Hartog’s theorem f is regular if and only if it is analytic.

In several proofs, C will stand for a positive constant depending on the parameters 
and which may vary from line to line. Moreover the notation a � b stands for a ≤ Cb

where C is a positive constant depending on the parameters.
If A is an operator, then D(A) will denote its domain and N (A) its kernel (nullspace).

1.6. Hypotheses

Recall that throughout the paper, we assume that Q ∈ L1
loc]0, ∞[. Depending on the 

results, we will require further integrability conditions near 0 and/or ∞. Our minimal 
conditions will be

Q ∈ L
(0)
0 :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

1∫
0

x|Q(x)|dx < ∞
}
, if m 
= 0;

Q ∈ L
(0)
0,ln :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

1∫
0

x(1 + |ln(x)|)|Q(x)|dx < ∞
}
, if m = 0,

near 0 and

Q ∈ L
(∞)
0 :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

∞∫
1

|Q(x)|dx < ∞
}
,

near ∞. We will sometimes strengthen these conditions to

Q ∈ L (0)
ε :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

1∫
0

x1−ε|Q(x)|dx < ∞
}

;

Q ∈ L
(0)
ε,lnβ :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

1∫
x1−ε(1 + |ln(x)|β)|Q(x)|dx < ∞

}
,

0
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with ε ≥ 0, β ≥ 0 and

Q ∈ L
(∞)
δ :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

∞∫
1

xδ|Q(x)|dx < ∞
}
,

Q ∈ L
(∞)
δ,ln :=

{
Q ∈ L1

loc]0,∞[
∣∣∣

∞∫
1

xδ(1 + ln(x))|Q(x)|dx < ∞
}
,

with δ ≥ 0.
Obviously, if 0 ≤ ε < ε′, 0 ≤ β < β′, then

L
(0)
ε′ ⊂ L

(0)
ε,lnβ′ ⊂ L

(0)
ε,lnβ ⊂ L (0)

ε .

Likewise, if 0 ≤ δ < δ′ then L (∞)
δ′ ⊂ L

(∞)
δ,ln ⊂ L

(∞)
δ . Moreover, since Q ∈ L1

loc]0, ∞[, the 
integrability conditions on ]0, 1[ are equivalent to the same integrability conditions on 
]0, a[ for any a > 0 and the integrability conditions on ]1, ∞[ are equivalent to the same 
integrability conditions on ]a, ∞[ for any a > 0.

2. Solutions of the unperturbed eigenequation

In this section we describe solutions to the unperturbed eigenequation

L0
m2g = −k2g. (2.1)

2.1. Bessel equation

The eigenequation (2.1) with the eigenvalue −k2 = −1 has the form

(
− ∂2

z +
(
m2 − 1

4

) 1
z2 + 1

)
g = 0. (2.2)

We will call (2.2) the hyperbolic Bessel equation for dimension 1, or the hyperbolic 1d 
Bessel equation.

Eq. (2.2) is fully equivalent to the usual modified Bessel equation, see [39], which 
corresponds to dimension 2,

(
− ∂2

z − 1
z
∂z + m2

z2 + 1
)
g = 0. (2.3)

We use the name the hyperbolic 2d Bessel equation for (2.3). In general, we will prefer 
to use (2.2) as our standard form of the Bessel equation.

In this subsection we briefly describe solutions of the hyperbolic 1d Bessel equation, 
following mostly [12,17]. There are two kinds of standard solutions to the hyperbolic 1d 
Bessel equation (2.2).
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The hyperbolic 1d Bessel function Im is defined by

Im(z) =
∞∑

n=0

√
π
(
z
2
)2n+m+ 1

2

n!Γ(m + n + 1) =
√

πz

2 Im(z) =
√
π
(z

2

) 1
2+m

Fm

(z2

4

)
.

Here Im is the usual modified Bessel function, which solves the hyperbolic 2d Bessel 
equation and Fm is the appropriately normalized (0, 1)-hypergeometric function

Fm(w) := 0F1(m + 1;w)
Γ(m + 1) =

∞∑
n=0

wn

n!Γ(m + n + 1) .

Note that for m ∈ Z

Im(z) = I−m(z), F−m(w) = w2mFm(w). (2.4)

The analytic continuation around 0 by the angle ±π multiplies Im by a phase factor, 
namely

Im(e±iπ z) = e±iπ(m+ 1
2 ) Im(z).

The 1d Macdonald function Km is defined by

Km(z) =
√
z√
2π

∞∫
0

exp
(
−z

2(s + s−1)
)
s−m−1ds =

√
2z
π
Km(z)

= 1
sin(πm)

(
I−m(z) − Im(z)

)
.

Here Km is the usual Macdonald function, which solves the hyperbolic 2d Bessel equa-
tion.

For any m ∈ C we have Km(z) = K−m(z).
For any fixed m ∈ C, the maps z �→ Im(z) and z �→ Km(z) are analytic except for 

a branch point at z = 0. Thus the natural domain for these solutions is the Riemann 
surface of the logarithm. One can parametrize this surface by |z| ∈]0, ∞[ and arg(z) ∈ R. 
It is often convenient to restrict the domain to C\] −∞, 0], that is, to |arg(z)| < π. One 
can also include two copies of ] −∞, 0], from above and from below, that is arg(z) = ±π. 
For any fixed z in this domain, the maps m �→ Im(z) and m �→ Km(z) are analytic on 
C.

The functions z �→ Km(e±iπ z), obtained from Km by analytic continuation, are also 
solutions of (2.2). Typically, it is natural to consider the pairs of functions

z �→ Km(z), z �→ Km(e±iπ z),
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on 0 ≤ ∓arg(k) ≤ π. Both pairs are linearly independent. In particular, Im(z) can be 
expressed in terms of these functions:

Km(e±iπm z) = ∓i
sin(πm)

(
e±iπm Im(z) − e∓iπm I−m(z)

)
,

Im(z) = 1
2
(
Km(e±iπ z) ∓ i e∓iπm Km(z)

)
.

Here are the asymptotics of the solutions Im and Km near 0:

Im(z) =
√
π

Γ(m + 1)

(z
2

)m+ 1
2 + O(|z| 52+Re(m)), m 
= −1,−2, . . . ;

(2.5)

Km(z) = Γ(m)√
π

(z
2

)−m+ 1
2 + O(|z| 52−Re(m)), Re(m) > 1; (2.6)

Km(z) = Γ(m)√
π

(z
2

)−m+ 1
2 − Γ(−m)√

π

(z
2

)m+ 1
2 + O(|z| 52−Re(m)), |Re(m)| < 1, m 
= 0;

(2.7)

K0(z) = −
√

2z√
π

(
ln
(z

2

)
+ γ

)
+ O

(
|z| 52 ln|z|

)
, m = 0; (2.8)

K1(z) = 1√
π

(z
2

)− 1
2 + O(|z| 32 ln|z|), m = ±1. (2.9)

Recall that γ denotes Euler’s constant.
Using the integral representation of Km(z) one can prove the following asymptotics 

at infinity: for any ε > 0,

Km(z) = e−z
(
1 + O(z−1)

)
, |arg(z)| ≤ 3

2π − ε, |z| → ∞. (2.10)

Note that the sector |arg(z)| < 3
2π is maximal for the estimate (2.10). Beyond this sector 

the estimate no longer holds.
The following estimates near zero, say, for |z| ≤ 1, follow from the series expansions:

|Im(z)| � |z| 12+Re(m);

|Km(z)| � |z| 12−|Re(m)|, m 
= 0;

|K0(z)| � |z| 12 (1 + |ln(z)|), m = 0.

We also have the following estimates near ∞, say, for |z| ≥ 1 (and any ε > 0):

|Km(z)| � e−Re(z) |arg(z)| ≤ 3
2π − ε;

|Km(e±iπ z)| � eRe(z), |arg(z) ∓ π| ≤ 3
π − ε;
2
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|Im(z)| � eRe(z) + e−Re(z) .

Here are global estimates:

|Km(z)| � min(1, |z|) 1
2−|Re(m)| e−Re(z), |arg(z)| ≤ 3

2π − ε, m 
= 0; (2.11)

|Km(e±iπ z)| � min(1, |z|) 1
2−|Re(m)| eRe(z), |arg(z) ∓ π| ≤ 3

2π − ε, m 
= 0; (2.12)

|K0(z)| � min(1, |z|) 1
2 (1 + |ln min(1, |z|)|) e−Re(z), |arg(z)| ≤ 3

2π − ε, m = 0;
(2.13)

|K0(e±iπ z)| � min(1, |z|) 1
2 (1 + |ln min(1, |z|)|) eRe(z), |arg(z) ∓ π| ≤ 3

2π − ε, m = 0;
(2.14)

|Im(z)| � min(1, |z|) 1
2+Re(m)( e−Re(z) + eRe(z) ). (2.15)

Here are the Wronskians of various solutions of the hyperbolic 1d Bessel equation:

W (Im, I−m) = − sin(πm),

W (Km, Im) = 1,

W
(
Km,Km(e±iπ ·)

)
= 2,

W
(
Im,Km(e±iπ ·)

)
= ∓i e±iπm .

2.2. Equation L0
m2g = −k2g

Let us now analyze the eigenvalue equation for L0
m2 and an arbitrary eigenvalue 

−k2 
= 0:
(
− ∂2

x +
(
m2 − 1

4

) 1
x2

)
g = −k2g. (2.16)

A direct computation shows that for k 
= 0 (2.16) is solved by the following functions

u0
m(x, k) :=

√
2
πk

(2
k

)m

Im(kx), (2.17)

v0
m(x, k) :=

√
π

2k

(k
2

)m

Km(kx). (2.18)

For m = 0 we also introduce the solution

p0
0(x, k) := −

√
π

2kK0(kx) −
(
ln
(k

2

)
+ γ

)√ 2
πk

I0(kx) (2.19)

= −v0
0(x, k) −

(
ln
(k

2

)
+ γ

)
u0

0(x, k).
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Here are their Wronskians:

W
(
u0
m(·, k), u0

−m(·, k)
)

= −2 sin(πm)
π

, (2.20)

W
(
v0
m(·, k), u0

m(·, k)
)

= 1, W
(
u0

0(·, k), p0
0(·, k)

)
= 1. (2.21)

We define these functions also for k = 0:

u0
m(x, 0) = x

1
2+m

Γ(m + 1) , (2.22)

v0
m(x, 0) = Γ(m)x 1

2−m

2 , Re(m) ≥ 0, m 
= 0, (2.23)

p0
0(x, 0) = x

1
2 ln(x). (2.24)

Clearly (2.22), (2.23) and (2.24) are annihilated by L0
m2 . Note that for any fixed x > 0, 

u0
m(x, k) and p0

0(x, k) are continuous in k down to k = 0. If Re(m) ≥ 0, m 
= 0, the same 
is true for v0

m(x, k).

Proposition 2.1. Let x > 0. Then

(i) The function (m, k) �→ u0
m(x, k) is analytic on C ×C.

(ii) The function (m, k) �→ v0
m(x, k) is regular on

C×{Re(k) ≥ 0} \
(
{Re(m) < 0}×{k = 0} ∪ {m = 0}×{k = 0}

)
.

(iii) The function k �→ p0
0(x, k) is regular on

{Re(k) ≥ 0}.

Proof. We can rewrite the definitions (2.17) and (2.18) as

u0
m(x, k) := x

1
2+mFm

(k2x2

4

)
, (2.25)

v0
m(x, k) := πx

1
2−m

2 sin(πm)

(
F−m

(k2x2

4

)
−

(k2x2

4

)m

Fm

(k2x2

4

))
. (2.26)

From (2.25) the regularity of u0
m(x, k) is obvious. (2.26) directly shows the regularity of 

v0
m(x, k) on the considered domain at m /∈ Z. To see the regularity of v0

m(x, k) at m ∈ Z

it suffices to use (2.4) and the de l’Hopital rule.
(iii) follows from (i) and (ii) at k 
= 0. At k = 0, as mentioned above, a direct 

computation shows that p0
0(x, k) → p0

0(x, 0), as k → 0. �
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Remark 2.2. Note that v0
m(x, k) can be continued across the cut arg(k) = ±π

2 , so that 
k = 0 becomes its branch point. The restriction to {Re(k) ≥ 0} = {| arg(k)| ≤ π

2 } is 
convenient in view of applications. It is however interesting to note that for m ∈ Z + 1

2 , 
after this continuation, one obtains an univalent function of k.

For Re(k) ≥ 0, we have the following estimates:

|u0
m(x, k)| � min(|k|−1, x) 1

2+Re(m) eRe(k)x; (2.27)

|v0
m(x, k)| � min(|k|−1, x) 1

2−|Re(m)| e−Re(k)x, Re(m) ≥ 0, m 
= 0; (2.28)

|v0
0(x, k)| � min(|k|−1, x) 1

2 (1 − ln min(1, |k|x)) e−Re(k)x, m = 0; (2.29)

|p0
0(x, k)| � min(|k|−1, x) 1

2 (1 − ln min(|k|−1, x)) eRe(k)x, m = 0. (2.30)

The reason for complicated prefactors in (2.17) and (2.18) is the good behavior near 
k = 0. When we are interested in k large, we usually prefer to replace v0

m with a differently 
normalized solution

w0
m(x, k) :=

√
2k
π

(2
k

)m

v0
m(x, k) = Km(kx) (2.31)

behaving as e−kx for x → ∞.

2.3. Canonical bisolution

In this and the following subsection we introduce a few integral kernels naturally 
associated with L0

m2 + k2. The corresponding operators are not always bounded on 
L2]0, ∞[, however, they will play an important role in our paper.

Let h0
1, h

0
2 be any pair of solutions to L0

m2f = −k2f satisfying W (h0
1, h

0
2) 
= 0. Then, 

following [13], we introduce the operator

G0
↔ = G0

m2,↔(−k2) := 1
W (h0

1, h
0
2)

(
h0

1〈h0
2|·〉 − h0

2〈h0
1|·〉

)
.

It has the kernel

G0
↔(x, y) = G0

m2,↔(−k2;x, y) = 1
W (h0

1, h
0
2)
(
h0

1(x)h0
2(y) − h0

2(x)h0
1(y)

)
.

Note that G0
↔ does not depend on the choice of the functions h0

1, h
0
2, which justifies the 

adjective canonical. The operator G0
↔ is called the canonical bisolution of L0

m2 + k2. It 
satisfies

(L0
m2 + k2)G0

↔ = G0
↔(L0

m2 + k2) = 0,



26 J. Dereziński, J. Faupin / Journal of Functional Analysis 284 (2023) 109728
which justifies calling it bisolution. In particular, since the Wronskian of v0
m and u0

m is 
1, one has

G0
m2,↔(−k2;x, y) = v0

m(x, k)u0
m(y, k) − u0

m(x, k)v0
m(y, k).

For m = 0 we also have

G0
0,↔(−k2;x, y) = −p0

0(x, k)u0
0(y, k) + u0

0(x, k)p0
0(y, k).

The canonical bisolution is defined also for k = 0:

G0
m2,↔(0;x, y) = 1

2m
(
x

1
2−my

1
2+m − x

1
2+my

1
2−m

)
, m 
= 0;

G0
0,↔(0;x, y) = x

1
2 y

1
2
(
ln(y) − ln(x)

)
, m = 0.

Proposition 2.3. Let x, y > 0. Then the map

(m2, k2) �→ G0
m2,↔(−k2;x, y),

is analytic on C ×C.

Proof. We can write

G0
↔(x, y) =

π
√
xy

sin(πm)x
my−m

(
Fm

(k2x2

4

)
F−m

(k2y2

4

)

−x−2my2mF−m

(k2x2

4

)
Fm

(k2y2

4

))
.

For m /∈ Z, the analyticity in m, k2 is obvious from this expression. For m ∈ Z, we apply 
first the de l’Hopital rule. Then we obtain a function analytic in m, k2.

G0
↔ is invariant with respect to the change m → −m. Together with the analyticity 

in m, it implies the analyticity in m2. �
2.4. Green’s operators

We will need several kinds of Green’s operators. The forward Green’s operator
G0

m2,→(−k2) and the backward Green’s operator G0
m2,←(−k2) are defined by

G0
→(x, y) = G0

m2,→(−k2;x, y) := θ(x− y)G0
m2,↔(−k2;x, y),

G0
←(x, y) = G0

m2,←(−k2;x, y) := −θ(y − x)G0
m2,↔(−k2;x, y).

Here θ is the Heaviside function:
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θ(x) :=
{

0 if x < 0,
1 if x ≥ 0.

Many properties of forward and backward Green’s operators can be directly deduced 
from those of the canonical bisolution.

Proposition 2.4. Let x, y > 0. Then the maps

(m2, k2) �→G0
m2,→(−k2;x, y), G0

m2,←(−k2;x, y)

are analytic on C ×C.

L0
m2 possesses various Green’s operators defined by imposing boundary conditions at 

0 and ∞, which can be called two-sided. Among them we should distinguish G0
m,��(−k2)

given for Re(k) ≥ 0, k 
= 0, by its integral kernel

G0
��(x, y) =G0

m,��(−k2;x, y)

:= θ(x− y)v0
m(x, k)u0

m(y, k) + θ(y − x)u0
m(x, k)v0

m(y, k).

We will call it the two-sided Green’s operator with pure boundary conditions, often abusing 
the terminology and shortening the name to just the two-sided Green’s operator. Note 
that it depends on m and not on m2. Note also that at the moment we do not insist on 
the conditions Re(m) > −1 and Re(k) > 0, which will be needed to make it a bounded 
operator.

Note the connection between the forward and two-sided Green’s operators:

G0
m,��(−k2;x, y) = u0

m(x, k)v0
m(y, k) + G0

m2,→(−k2;x, y), (2.32)

= v0
m(x, k)u0

m(y, k) + G0
m2,←(−k2;x, y). (2.33)

For m 
= 0, G0
m,��(−k2) can be also defined for k = 0, when its integral kernel is

G0
m,��(0;x, y) := 1

2m
(
x

1
2−my

1
2+mθ(x− y) + x

1
2+my

1
2−mθ(y − x)

)
.

For m = 0 and k = 0 Green’s operator G0
�� is not well defined. This motivates us 

to introduce another kind of Green’s operator at m = 0, which will be called Green’s 
operator logarithmic near zero:

G0
�(x, y) = G0

0,�(−k2;x, y) := −u0
0(x, k)p0

0(y, k)θ(x− y) − p0
0(x, k)u0

0(y, k)θ(y − x).

It has a limit at k = 0:

G0
0,�(0;x, y) := −x

1
2 y

1
2
(
ln(x)θ(x− y) + ln(y)θ(y − x)

)
.
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Observe that G0
� and G0

�� differ by a term that diverges as k → 0:

G0
0,�(−k2;x, y) = G0

0,��(−k2;x, y) +
(
ln
(k

2

)
+ γ

)
u0

0(x, k)u0
0(y, k).

For m = 0 it is also natural to introduce Green’s operator logarithmic near infinity:

G0
0,�(x, y) = G0

0,�(−k2;x, y) := p0
0(x, k)u0

0(y, k)θ(x− y) + u0
0(x, k)p0

0(y, k)θ(y − x).

It also has a limit at k = 0:

G0
0,�(0;x, y) := x

1
2 y

1
2
(
ln(y)θ(x− y) + ln(x)θ(y − x)

)
.

One could compare G0
0,� and G0

0,←:

G0
0,�(−k2;x, y) = G0

0,←(−k2;x, y) + p0
0(x, k)u0

0(y, k).

Proposition 2.5. Let x, y > 0.

(i) The function (m, k) �→ G0
m,��(−k2; x, y) is regular on

C × {Re(k) ≥ 0} \ {Re(m) ≤ 0}×{k = 0}.

(ii) The function k �→ G0
0,�(−k2; x, y) is regular on {Re(k) ≥ 0}.

Proof. This is a direct consequence of Proposition 2.1. �
Let a > 0. If G0

• is one of Green’s operators, then we introduce the corresponding 
Green’s operator compressed to the interval ]0, a[ by

G
0(a)
• (x, y) := G0

•(x, y)θ(a− x)θ(a− y). (2.34)

For m ∈ C, κ ∈ C ∪ {∞} and ν ∈ C ∪ {∞} one can also introduce Green’s operators 
with mixed boundary conditions

G0
m,κ(−k2;x, y) :=

1
Γ(−m) (k/2)−mG0

m,��(−k2) − κ
Γ(m) (k/2)mG0

−m,��(−k2)
1

Γ(−m) (k/2)−m − κ
Γ(m) (k/2)m

, m 
= 0;

(2.35)
G0

0,κ(−k2;x, y) := G0
0,��(−k2;x, y); (2.36)

G0,ν
0 (−k2;x, y) :=

(
ν − γ − ln(k/2)

)
G0

0,��(−k2) + G0′
0,��(−k2)

ν − γ − ln(k/2) ; (2.37)

where G0′
0,��(−k2) denotes ∂mG0

m,��(−k2)
∣∣
m=0. Eq. (2.35) is (6.3) of [16] (generalized to 

m ∈ C). Eq. (2.37) follows from (2.35) by the de l’Hopital method if we set κ = νm−1
νm+1

as in Remark 2.5 of [16]. Note that (2.37) is consistent with (7.1) of [16].
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3. Solutions of the perturbed eigenequation with prescribed behavior near origin

In this section we construct solutions to the equation

Lm2g = −k2g, (3.1)

and study their properties. We will try to find solutions whose behavior near origin is 
similar to solutions of the unperturbed equation

L0
m2g0 = −k2g0. (3.2)

To shorten notations below, we will often write

u0(x) = u0
m(x) = u0

m(x, k), v0(x) = v0
m(x) = v0

m(x, k),

where u0
m(x, ·), v0

m(x, ·) are the solutions of (3.2) introduced in (2.17) and (2.18). Re-
call that the space of solutions in AC1]0, ∞[ to (3.1), respectively to (3.2) is denoted 
N (Lm2 + k2), respectively N (L0

m2 + k2).

3.1. Weights

One of our main tools will be various weighted L∞ spaces. Let us introduce notation 
that we will use to denote such spaces.

Let ]a, b[⊂ ]0, ∞[. For any positive measurable function φ on ]a, b[, we define the 
following Banach space of (equivalence classes of) measurable functions on ]a, b[:

L∞(]a, b[, φ) :=
{
f :]a, b[→ C |

∥∥∥∥fφ
∥∥∥∥
∞

:= ess sup
x∈]a,b[

∣∣∣∣f(x)
φ(x)

∣∣∣∣ < ∞
}
, (3.3)

L∞
0 (]0, b[, φ) :=

{
f ∈ L∞(]0, b[, φ) | lim

x→0

f(x)
φ(x) = 0

}
, (3.4)

L∞
∞(]a,∞[, φ) :=

{
f ∈ L∞(]a,∞[, φ) | lim

x→∞
f(x)
φ(x) = 0

}
. (3.5)

We will use the following convention. Suppose that the operator 1l+G0
•Q is invertible 

on L∞(]0, a[, φ) for some a > 0 and some positive measurable function φ on ]0, a[, 
where G0

• is a Green’s operator. If f :]0, ∞[→ C is such that its restriction to ]0, a[
belongs to L∞(]0, a[, φ), then (1l + G0

•Q)−1f should be understood as (1l + G0
•Q)−1

applied to the restriction of f on ]0, a[. Clearly, if in addition f ∈ N (L0
m2 + k2), then 

(1l+G0
•Q)−1f is a solution to (3.1) on ]0, a[. The unique solution on ]0, ∞[ which coincides 

with (1l + G0
•Q)−1f on ]0, a[ will be denoted by the same symbol.

In order to make the notation more compact, we introduce the following k-dependent 
weights on ]0, ∞[:
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μk(x) := min(|k|−1, x), η±k(x) := e±Re(k)x, (3.6)

λk(x) := 1 − ln
(
|k|μk(x)

)
. (3.7)

Note that for k = 0 we have μk(x) = x and λk is ill defined. For x > |k|−1, we have 
μk(x) = |k|−1 and λk(x) = 1.

With these shorthands we can concisely rewrite our basic estimates on unperturbed 
eigenfunctions (2.27)–(2.30):

|u0
m(x, k)| � μk(x) 1

2+Re(m)ηk(x); (3.8)

|v0
m(x, k)| � μk(x) 1

2−Re(m)η−k(x), Re(m) ≥ 0, m 
= 0; (3.9)

|v0
0(x, k)| � μk(x) 1

2λk(x)η−k(x), m = 0, k 
= 0; (3.10)

|p0
0(x, k)| � μk(x) 1

2
(
1 + |lnμk(x)|

)
ηk(x), m = 0. (3.11)

Note that estimates (3.8), (3.9), (3.10) and (3.11) are uniform in x ∈]0, ∞[ and Re(k) ≥ 0.

3.2. The forward Green’s operator

In this subsection we study the boundedness of the operator G0
→Q between suitable 

weighted L∞-spaces. The forward Green’s operator is insensitive to the change of the 
sign at m. Therefore, without limiting generality, we can assume that Re(m) ≥ 0.

The first lemma is devoted to global properties of G0
→Q on the whole ]0, ∞[. Note 

that, if ε ≥ 0 and k 
= 0, the condition (3.12) is equivalent to Q ∈ L
(0)
ε ∩ L

(∞)
0 , while 

(3.13) is equivalent to Q ∈ L
(0)
ε,lnβ ∩ L

(∞)
0 .

Lemma 3.1. Let Re(k) ≥ 0 and Q ∈ L1
loc]0, ∞[.

(i) Let Re(m) ≥ 0, m 
= 0 and ε1 + ε ≥ 1
2 + Re(m). Suppose that

∞∫
0

μk(y)1−ε|Q(y)|dy < ∞. (3.12)

Then

G0
→Q : L∞(

]0,∞[, με1
k ηk

)
→ L∞

0
(
]0,∞[, με1+ε

k ηk
)

is a bounded operator whose norm is less than C×(3.12) uniformly in k.
(ii) Let m = 0, k 
= 0, 1 ≤ β − α and ε1 + ε ≥ 1

2 . Suppose that

∞∫
μk(y)1−ελk(y)β |Q(y)|dy < ∞. (3.13)
0
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Then

G0
→Q : L∞(

]0,∞[, με1
k λα

kηk
)
→ L∞

0
(
]0,∞[, με1+ε

k λα+1−β
k ηk

)
is a bounded operator whose norm is less than C×(3.13) uniformly in k.

Proof. For m 
= 0 we use

(G0
→Qf)(x) = v0(x)

x∫
0

u0(y)Q(y)f(y)dy − u0(x)
x∫

0

v0(y)Q(y)f(y)dy.

By (3.8)–(3.9), we have
∣∣∣∣∣∣u0(x)

x∫
0

v0(y)Q(y)f(y)dy

∣∣∣∣∣∣
� μk(x) 1

2+Re(m)ηk(x)
x∫

0

μk(y)
1
2−Re(m)+ε1η−k(y)|Q(y)|ηk(y)dy

∥∥∥∥ f

με1
k ηk

∥∥∥∥
∞

,

and ∣∣∣∣∣∣v0(x)
x∫

0

u0(y)Q(y)f(y)dy

∣∣∣∣∣∣
� μk(x) 1

2−Re(m)η−k(x)
x∫

0

μk(y)
1
2+Re(m)+ε1ηk(y)|Q(y)|ηk(y)dy

∥∥∥∥ f

με1
k ηk

∥∥∥∥
∞

.

Using the fact that y �→ μk(y) and y �→ ηk(y) are increasing together with −1
2 ∓Re(m) +

ε + ε1 ≥ 0, we estimate both expressions by

� μk(x)ε1+εηk(x)
x∫

0

μk(y)1−ε|Q(y)|dy
∥∥∥∥ f

με1
k ηk

∥∥∥∥
∞

.

Since
x∫

0

μk(y)1−ε|Q(y)|dy = o(x0),

we obtain

∣∣(G0
→Qf)(x)

∣∣ ≤ o(x0)μk(x)ε1+εηk(x)
∥∥∥∥ f

ε1

∥∥∥∥ .

μk ηk ∞
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This proves (i).
For m = 0, using (3.8) and (3.10), we have

∣∣∣∣∣∣u0(x)
x∫

0

v0(y)Q(y)f(y)dy

∣∣∣∣∣∣
� μk(x) 1

2 ηk(x)
x∫

0

μk(y)
1
2+ε1λk(y)1+αη−k(y)|Q(y)|ηk(y)dy

∥∥∥∥ f

με1
k λα

kηk

∥∥∥∥
∞

,

and ∣∣∣∣∣∣v0(x)
x∫

0

u0(y)Q(y)f(y)dy

∣∣∣∣∣∣
� μk(x) 1

2λk(x)η−k(x)
x∫

0

μk(y)
1
2+ε1λk(y)αηk(y)|Q(y)|ηk(y)dy

∥∥∥∥ f

με1
k λα

kηk

∥∥∥∥
∞

.

Besides the arguments used in (i), we need to notice that y �→ λk(y) is decreasing and 
that 1 + α− β ≤ 0. We then estimate both above expressions by

� μk(x)ε1+ελk(x)1+α−βηk(x)
x∫

0

μk(y)1−ελk(y)β |Q(y)|dy
∥∥∥∥ f

με1
k λα

kηk

∥∥∥∥
∞

.

Since
x∫

0

μk(y)1−ελk(y)β |Q(y)|dy = o(x0),

we obtain

∣∣(G0
→Qf)(x)

∣∣ ≤ o(x0)μk(x)ε1+ελk(x)1+α−βηk(x)
∥∥∥∥ f

με1
k λα

kηk

∥∥∥∥
∞

.

This proves (ii). �
Corollary 3.2. Let Re(k) ≥ 0 and n ∈ N.

(i) Let Re(m) ≥ 0, m 
= 0. Suppose that Q ∈ L
(0)
0 . Then, for all a > 0, for all 

f ∈ L∞(
]0, a[, μ

1
2+Re(m)
k ηk

)
and 0 < x < a,

|(G0
→Q)nf(x)|

μk(x) 1
2+Re(m)ηk(x)

≤ Cn+1

n!

( x∫
μk(y)|Q(y)|dy

)n

sup
y<x

|f(y)|
μk(y)

1
2+Re(m)ηk(y)

.

0
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(ii) Suppose k 
= 0. Let m = 0 and β ≥ 1. Suppose that Q ∈ L
(0)
0,lnβ . Then, for all 

a > 0, f ∈ L∞(
]0, a[, μ

1
2
k λ

β−1
k ηk

)
and 0 < x < a,

|(G0
→Q)nf(x)|

μk(x) 1
2λk(x)β−1ηk(x)

≤ Cn+1

n!

( x∫
0

μk(y)λk(y)β |Q(y)|dy
)n

× sup
y<x

|f(y)|
μk(y)

1
2λk(y)β−1ηk(y)

.

(iii) Let Re(m) ≥ 0, m 
= 0. Suppose that Q ∈ L
(0)
2Re(m). Then, for all a > 0, for all 

f ∈ L∞(
]0, a[, μ

1
2−Re(m)
k ηk

)
and 0 < x < a,

|(G0
→Q)nf(x)|

μk(x) 1
2−Re(m)ηk(x)

≤ Cn+1

n!

( x∫
0

μk(y)1−2Re(m)|Q(y)|dy
)n

sup
y<x

|f(y)|
μk(y)

1
2−Re(m)ηk(y)

.

Above, C is a constant independent of n and k.

Proof. To prove (i) we first follow the proof of Lemma 3.1(i) with ε1 = 1
2 +Re(m), ε = 0, 

obtaining

∣∣∣∣∣μk(y)
1
2+Re(m)ηk(y)

μk(x) 1
2+Re(m)ηk(x)

G0
→(x, y)Q(y)

∣∣∣∣∣ ≤ μk(y)Q(y)θ(x− y). (3.14)

The operator G0
→Q is clearly a forward Volterra operator (see Appendix A). Applying 

Proposition A.2 with K(x, y) given by the integral kernel appearing in the left hand side 
of (3.14) then yields (i).

To prove (ii) we proceed analogously, using Lemma 3.1(ii) with ε1 = 1
2 , ε = 0, α =

β − 1, obtaining

∣∣∣∣∣μk(y)
1
2+Re(m)λk(y)β−1ηk(y)

μk(x) 1
2+Re(m)ηk(x)

G0
→(x, y)Q(y)

∣∣∣∣∣ ≤ μk(y)λk(y)βQ(y)θ(x− y).

Assuming β ≥ 1 and using that λk(x) ≥ 1, this implies

∣∣∣∣∣ μk(y)
1
2+Re(m)λk(y)β−1ηk(y)

μk(x) 1
2+Re(m)λk(x)β−1ηk(x)

G0
→(x, y)Q(y)

∣∣∣∣∣ ≤ μk(y)λk(y)βQ(y)θ(x− y),

and hence we can conclude as in the case (i).
To prove (iii) we follow the proof of Lemma 3.1(i) with ε1 = 1

2 − Re(m), ε =
2Re(m). �
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Unfortunately, the case m = 0, k = 0 is not covered by Lemma 3.1 and Corollary 3.2, 
because then λk is ill defined. The following lemma and its corollary work for this case. 
Note however that Lemma 3.3 is not global in x ∈]0, ∞[ and Re(k) ≥ 0 – we need to 
restrict the values of x and k.

Lemma 3.3. Let Re(k) ≥ 0, m = 0 and Q ∈ L1
loc]0, ∞[. Let ε1 + ε ≥ 1

2 , 1 ≤ β − α. 
Suppose that

1∫
0

y1−ε(1 + |ln(y)|β)|Q(y)|dy < ∞. (3.15)

Let k0 > 0. Then

G0
→Q : L∞(

]0, 1[, xε1(1 + |ln(x)|α)
)
→ L∞

0
(
]0, 1[, xε1+ε(1 + |ln(x)|α+1−β)

)
(3.16)

is a bounded operator whose norm is less than C×(3.15) uniformly in |k| ≤ k0.

Proof. Suppose (3.15). Recall that the solution p0
0(·, k) has been introduced in (2.19). 

We write p0
0(x) = p0

0(x, k) and u0
0(x) = u0

0(x, k) to shorten notations. We then have that

(G0
→Qf)(x) = −p0

0(x)
x∫

0

u0
0(y)Q(y)f(y)dy + u0

0(x)
x∫

0

p0
0(y)Q(y)f(y)dy.

Now, for 0 < x ≤ 1, by (3.8) and (3.11),
∣∣∣∣∣∣u0

0(x)
x∫

0

p0
0(y)Q(y)f(y)dy

∣∣∣∣∣∣ � x
1
2

x∫
0

y
1
2+ε1(1 + |ln(y)|1+α)|Q(y)|dy

∥∥∥∥ f

xε1(1 + |ln(x)|α)

∥∥∥∥
∞

,

and∣∣∣∣∣∣p0
0(x)

x∫
0

u0
0(y)Q(y)f(y)dy

∣∣∣∣∣∣ � x
1
2 (1 + |ln(x)|)

×
x∫

0

y
1
2+ε1(1 + |ln(y)|α)|Q(y)|dy

∥∥∥∥ f

xε1(1 + |ln(x)|α)

∥∥∥∥
∞

.

Using the fact that y �→ |ln(y)| is decreasing and 1 +α− β ≤ 0, we estimate both above 
expressions by

� xε1+ε(1 + |ln(x)|1+α−β)
x∫

0

y1−ε(1 + |ln(y)|β)|Q(y)|dy
∥∥∥∥ f

xε1(1 + |ln(x)|α)

∥∥∥∥
∞

.
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Applying

x∫
0

y1−ε(1 + |ln(y)|β)|Q(y)|dy = o(x0),

we obtain

∣∣(G0
→Qf)(x)

∣∣ ≤ o(x0)xε1+ε(1 + |ln(x)|1+α−β)
∥∥∥∥ f

xε1 |(1 + |ln(x)|α)

∥∥∥∥
∞

.

This concludes the proof of (3.16). �
Corollary 3.4. Let k = 0, m = 0 and n ∈ N.

(i) Suppose that Q ∈ L
(0)
0,ln. Then, for all 0 < a < 1, f ∈ L∞(

]0, a[, x 1
2
)

and 0 < x < a,

|(G0
→Q)nf(x)|

x
1
2

≤ Cn+1

n!

( x∫
0

y
(
1 + |ln(y)|

)
|Q(y)|dy

)n

sup
y<x

|f(y)|
y

1
2

.

(ii) Suppose that Q ∈ L
(0)
0,ln2 . Then, for all 0 < a < 1, f ∈ L∞(

]0, a[, x 1
2 (|ln(x)| + 1)

)
and 0 < x < a,

|(G0
→Q)nf(x)|

x
1
2 (1 + |ln(x)|)

≤ Cn+1

n!

( x∫
0

y
(
1 + |ln(y)|2

)
|Q(y)|dy

)n

sup
y<x

|f(y)|
y

1
2 (1 + |ln(y)|)

.

Proof. The proof is the same as that of Corollary 3.2, applying Lemma 3.3. To prove 
(i), we use (3.16) with ε1 = 1

2 , ε = 0, β = 1 and α = 0. To prove (ii), we use (3.16) with 
ε1 = 1

2 , ε = 0, β = 2 and α = 1. �
3.3. Solutions constructed with the help of the forward Green’s operator

In this subsection we construct solutions to (3.1) that approximate near 0 the solu-
tions to the unperturbed equation using the forward Green’s operator as the main tool. 
Here the behavior of the perturbation at infinity is irrelevant, therefore we need only 
assumptions on Q restricted to the interval ]0, a[, where a > 0 is arbitrary.

The following theorem implies Propositions 1.1 and 1.2 from the introduction. Note 
that (i) and (ii) concern principal solutions, (iii) and (iv) concern arbitrary solutions.

Theorem 3.5. Let Re(k) ≥ 0.

(i) Suppose that Re(m) ≥ 0, m 
= 0, ε ≥ 0, Q ∈ L
(0)
ε . Let g0 ∈ N (L0

m2 + k2) and 
g0 = O(x 1

2+Re(m)). Then
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g := (1l + G0
→Q)−1g0

is the unique solution in AC1]0, ∞[ to (3.1) such that,

g(x) − g0(x) = o(x 1
2+Re(m)+ε), (3.17)

∂xg(x) − ∂xg
0(x) = o(x− 1

2+Re(m)+ε), x → 0. (3.18)

(ii) Suppose that m = 0, ε ≥ 0, Q ∈ L
(0)
ε,ln. Let g0 ∈ N (L0

0 + k2) and g0 = O(x 1
2 ). 

Then

g := (1l + G0
→Q)−1g0

is the unique solution in AC1]0, ∞[ to (3.1) such that,

g(x) − g0(x) = o(x 1
2+ε),

∂xg(x) − ∂xg
0(x) = o(x− 1

2+ε), x → 0.

(iii) Suppose that Re(m) ≥ 0, m 
= 0, ε ≥ 2Re(m), Q ∈ L
(0)
ε . Let g0 ∈ N (L0

m2 + k2). 
Then

g := (1l + G0
→Q)−1g0

is the unique solution in AC1]0, ∞[ to (3.1) such that,

g(x) − g0(x) = o(x 1
2−Re(m)+ε),

∂xg(x) − ∂xg
0(x) = o(x− 1

2−Re(m)+ε), x → 0.

(iv) Suppose that m = 0, ε ≥ 0, Q ∈ L
(0)
ε,ln2 . Let g0 ∈ N (L0

0 + k2). Then

g := (1l + G0
→Q)−1g0

is the unique solution in AC1]0, ∞[ to (3.1) such that,

g(x) − g0(x) = o(x 1
2+ε),

∂xg(x) − ∂xg
0(x) = o(x− 1

2+ε), x → 0.

Proof. To prove (i), we use Corollary 3.2(i) which shows that, for any a > 0, 1l + G0
→Q

is invertible on L∞(]0, a[, μ
1
2+Re(m)
k ) with inverse given by

(
(1l + G0

→Q)−1f
)
(x) =

∞∑(
(−G0

→Q)nf
)
(x). (3.19)
n=0
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Hence, if g0 ∈ N (L0
m2 + k2) satisfies g0 = O(x 1

2+Re(m)), g = (1l + G0
→Q)−1g0 is well 

defined in L∞
loc]0, ∞[. Since G0

→ is a Green’s operator, it then easily follows that g belongs 
to AC1]0, ∞[ and is a solution to (3.1). The asymptotic behavior near 0 of g and ∂xg
follow from the Neumann series expansion (3.19) and Lemma 3.1(i). Finally, uniqueness 
is a consequence of standard properties of the Wronskian of two solutions in N (Lm2+k2). 
Indeed, if g1, g2 are two solutions in N (Lm2 + k2), then their Wronskian W (g1, g2; x)
is a constant function. If in addition g1 and g2 both satisfy (3.17)–(3.18), then it is not 
difficult to verify that W (g1, g2; 0) = 0. Hence g1 and g2 are proportional. Since they 
have the same asymptotic behavior near 0, they coincide.

To prove (ii) we proceed analogously, using Corollary 3.2(ii) (with β = 1) and 
Lemma 3.1(ii) in the case where k 
= 0. If k = 0, we use Corollary 3.4(i) and Lemma 3.3.

To prove (iii) we use Corollary 3.2(iii) and Lemma 3.1(i).
To prove (iv), we use Corollary 3.2(ii) with β = 2 and Lemma 3.1(ii) in the case where 

k 
= 0. If k = 0, we use Corollary 3.4(ii) and Lemma 3.3. �
We can apply Theorem 3.5(i) and (ii) to g0(x) = u0

m(x, k). We obtain the following 
result, which implies Corollary 1.3 from the introduction.

Proposition 3.6. Let m ∈ C, ε ≥ 2 max
(
− Re(m), 0

)
. Suppose that

Q ∈ L (0)
ε , if m 
= 0, Q ∈ L

(0)
ε,ln, if m = 0.

Then

um(·, k) := (1l + G0
→Q)−1u0

m(·, k)

is the unique solution in AC1]0, ∞[ to (3.1) such that,

um(x, k) − u0
m(x, k) = o(x 1

2+Re(m)+ε), (3.20)

∂xum(x, k) − ∂xu
0
m(x, k) = o(x− 1

2+Re(m)+ε), x → 0. (3.21)

Note that Re(m) +ε ≥ |Re(m)|. Therefore, the error in (3.20) and (3.21) is always of a 
smaller order than the most regular solutions to (3.2). Let us stress that Proposition 3.6
includes the case k = 0, where u0

m(x, 0) = x
1
2+m/Γ(m + 1).

Recall that in (2.19) we have introduced the family of solutions to (3.2) for m = 0 with 
a logarithmic behavior near zero, denoted p0

0(x, k). This family includes the logarithmic 
case m = 0, k = 0, which does not belong to the family u0

0(x, k):

p0
0(x, 0) := x

1
2 ln(x).

We can apply Theorem 3.5(iv) to g0(x) = p0
0(x, k), obtaining the following eigensolutions 

of the perturbed eigenequation. Note that Proposition 3.7 implies Corollary 1.4 from the 
introduction.
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Proposition 3.7. Let Re(k) ≥ 0, m = 0, ε ≥ 0 and Q ∈ L
(0)
ε,ln2 . Then

p0(·, k) := (1l + G0
→Q)−1p0

0(·, k) (3.22)

is the unique solution in AC1]0, ∞[ to (3.1) such that,

p0(x, k) − p0
0(x, k) = o(x 1

2+ε),

∂xp0(x, k) − ∂xp
0
0(x, k) = o(x− 1

2+ε), x → 0.

In the following proposition we fix the perturbation Q and study the regularity of the 
solutions um(·, k) and p0(·, k) with respect to m and k.

Proposition 3.8.
(i) Let ε > 0 and suppose that Q ∈ L

(0)
ε . Then for any x > 0 the maps

{
Re(m) ≥ −ε

2

}
×C � (m, k) �→ um(x, k), ∂xum(x, k) (3.23)

are regular.
(ii) Let Q ∈ L

(0)
0 . Then for any x > 0 the maps

{
Re(m) ≥ 0, m 
= 0

}
×C � (m, k) �→ um(x, k), ∂xum(x, k) (3.24)

are regular. If we strengthen the assumption to Q ∈ L
(0)
0,ln, then in (3.24) we can 

include m = 0.
(iii) Let Q ∈ L

(0)
0,ln2 . Then for any x > 0 the maps

{
Re(k) ≥ 0

}
� k �→ p0(x, k), ∂xp0(x, k) (3.25)

are regular.

Proof. We use the continuity and analyticity of the function u0 and of the map G0
→Q with 

respect to parameters. More precisely, for all fixed (x, y), the map (m, k) �→ G0
→(x, y)

is analytic. Lemma 3.2 and an induction argument then shows that, for all x > 0, 
(G0

→Q)nu0(x) is analytic on {Re(m) > −ε/2}. Since, by Lemma 3.2, the series

um(x, k) =
∞∑

n=0
(−G0

→Q)nu0
m(x, k),

converges uniformly on every compact subset of {Re(m) > −ε/2}, this implies the 
statement concerning the analyticity of um. Continuity is proven similarly.

The regularity of ∂xum, p0 and ∂xp0 follows in the same way. �
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We conclude this subsection with the following more precise estimate (compared to 
Proposition 3.6) on the difference between u0 and u0

0 (assuming that the stronger con-
dition Q ∈ L

(0)
ε,ln2 holds). We will need this estimate to study closed realization of L0 in 

Section 6.

Proposition 3.9. Let Re(k) ≥ 0, m = 0 and suppose that Q ∈ L
(0)
0,ln2 . Then

u0(x, k) − u0
0(x, k) = o(x 1

2 |ln(x)|−1),

∂xu0(x, k) − ∂xu
0
0(x, k) = o(x− 1

2 |ln(x)|−1), x → 0.

Proof. Recall from Proposition 3.6 that u0−u0
0 = −G0

→Qu0 and that u0(x, k) = O(x 1
2 ). 

If k = 0, it then suffices to use Lemma 3.1(ii) with ε1 = 1
2 , ε = 0, β = 2, α = 0. If k = 0, 

we use Lemma 3.3, also with ε1 = 1
2 , ε = 0, β = 2, α = 0. �

3.4. Asymptotics of non-principal solutions near 0

In this subsection, under the minimal assumptions Q ∈ L
(0)
0 if m 
= 0, Q ∈ L

(0)
0,ln if 

m = 0, we show that solutions to (3.1) not proportional to a principal solution behave 
like non-principal unperturbed solutions near 0.

The following proposition provides a rather rough estimate on all eigensolutions. Note 
that, for m 
= 0, if Q ∈ L

(0)
ε and ε ≥ 2Re(m), then Proposition 3.10(i) is a consequence 

of Theorem 3.5(iii). Likewise, if m = 0 and Q ∈ L
(0)
0,ln2 , then Proposition 3.10(ii) is a 

consequence of Theorem 3.5(iv).

Proposition 3.10. Let Re(k) ≥ 0.

(i) Let Re(m) ≥ 0, m 
= 0. Suppose that Q ∈ L
(0)
0 . Then, for all g ∈ N (Lm2 + k2),

g(x) = O(x 1
2−Re(m)), ∂xg(x) = O(x− 1

2−Re(m)), x → 0. (3.26)

Moreover, if Re(m) > 0 and g is linearly independent of um(·, k), then

lim
x→0

g(x)
x

1
2−m

exists and does not vanish. (3.27)

(ii) Let m = 0 and Q ∈ L
(0)
0,ln. Then, for all g ∈ N (L0 + k2),

g(x) = O(x 1
2 ln(x)), ∂xg(x) = O(x− 1

2 ln(x)), x → 0. (3.28)

Moreover, if g is linearly independent of u0(·, k), then

lim
x→0

g(x)
1
2

exists and does not vanish. (3.29)

x ln(x)
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Proof. We prove (i), (ii) follows in the same way. It is well known that the Wronskian of 
two eigensolutions of a 1-dimensional Schrödinger equation is constant. Proposition 3.6
gives the solution u = um ∈ N (Lm2 + k2). Assuming that um and W are known, we 
solve the ordinary differential equation

g(x)u′(x) − g′(x)u(x) = W, (3.30)

for the unknown function g. Obviously the solutions to

g(x)u′(x) − g′(x)u(x) = 0,

are given by g(x) = λu(x), λ ∈ C, and we seek a particular solution to (3.30) of the form 
g(x) = λ(x)u(x), with λ ∈ C1]0, ∞[. This gives

λ′(x)u(x)2 = W.

By (2.17) we know that for some C0 
= 0

u(x) − C0x
1
2+m = o(x 1

2+Re(m)).

This implies that there exists α > 0 such that u(x) 
= 0 for 0 < x ≤ α, and hence

λ(x) − λ(α) =
x∫

α

W

u(y)2 dy =
x∫

α

W
(
C0y

−1−2m + o(y−1−2Re(m))
)
dy

= Cx−2m + o(x−2Re(m)).

Now

g(x) =
(
λ(α) +

x∫
α

W

u(y)2 dy
)
u(x),

implies (3.26) and (3.27). �
Note that Proposition 3.10 implies, under rather weak assumptions, that um(·, k) is 

the only solution square integrable near zero if Re(m) ≥ 1.

3.5. The two-sided Green’s operator

Mapping properties of the two-sided Green’s operator G0
�� will be needed to construct 

solutions with a prescribed behavior near zero in situations where we cannot apply the 
forward Green’s operator G0

→. Note that the two-sided Green’s operator is not invari-
ant with respect to the change m → −m. The following lemma is meaningful only for 
Re(m) ≥ 0.
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The operator G0
��Q is not Volterra. In order to make 1l + G0

��Q invertible, we will 
compress it to a sufficiently small interval ]0, a[. Recall from (2.34) that G0

�� compressed 
to the interval ]0, a[ is denoted G0(a)

�� .

Lemma 3.11. Let Re(k) ≥ 0, 0 < a ≤ ∞ and Q ∈ L1
loc]0, ∞[.

(i) Let m 
= 0, 1
2 − Re(m) ≤ ε1 + ε ≤ 1

2 + Re(m) and

a∫
0

μk(y)1−ε|Q(y)|dy < ∞. (3.31)

Then

G
0(a)
�� Q : L∞(

]0, a[, με1
k η−k

)
→ L∞(

]0, a[, με1+ε
k η−k

)
(3.32)

is a bounded operator whose norm is less than C×(3.31) uniformly in k and a. 
Moreover, if ε1+ε < 1

2+Re(m), then the image of (3.32) is in L∞
0
(
]0, a[, με1+ε

k η−k

)
.

(ii) Let m = 0, k 
= 0, 1
2 = ε1 + ε and 0 ≤ β − α ≤ 1. Let

a∫
0

μk(y)1−ελk(y)β |Q(y)|dy < ∞. (3.33)

Then

G
0(a)
�� Q : L∞(

]0, a[, με1
k λα

kη−k

)
→ L∞(

]0, a[, με1+ε
k λα−β+1

k η−k

)
(3.34)

is a bounded operator whose norm is less than C×(3.33) uniformly in k and a. 
Moreover, if β−α < 1, then the image of (3.34) is in L∞

0
(
]0, a[, με1+ε

k λα−β+1
k η−k

)
.

Proof. For simplicity, let a = ∞. We prove (i). We have

G0
��Qf(x) = u0(x)

∞∫
x

v0(y)Q(y)f(y)dy + v0(x)
x∫

0

u0(y)Q(y)f(y)dy.

The second term is treated as in the proof of Lemma 3.1, using 1
2 − Re(m) ≤ ε1 + ε, 

namely ∣∣∣∣∣∣v0(x)
x∫

0

u0(y)Q(y)f(y)dy

∣∣∣∣∣∣
� μk(x)ε1+εη−k(x)

x∫
0

μk(y)1−ε|Q(y)|dy
∥∥∥∥ f

με1
k η−k

∥∥∥∥
∞

.
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Consider now the first term. We estimate

∣∣∣u0(x)
∞∫
x

v0(y)Q(y)f(y)dy
∣∣∣

� μk(x) 1
2+Re(m)ηk(x)

∞∫
x

μk(y)
1
2−Re(m)+ε1η−k(y)2|Q(y)|dy

∥∥∥∥ f

με1
k η−k

∥∥∥∥
∞

� μk(x)ε1+εη−k(x)
∞∫
x

μk(y)1−ε|Q(y)|dy
∥∥∥∥ f

με1
k η−k

∥∥∥∥
∞

,

where we used 1
2 + Re(m) ≥ ε1 + ε. This proves (3.32).

Suppose now that ε1 + ε < 1
2 + Re(m). Since y �→ μk(y)1−ε|Q(y)| is integrable on 

]0, ∞[, we can apply Lemma C.1 with h(y) = μk(y)
1
2+Re(m)−ε1−εηk(x), which gives

∞∫
x

μk(y)
1
2−Re(m)+ε1η−k(y)2|Q(y)|dy = o

(
μk(x)− 1

2−Re(m)+ε1+εη−k(x)2
)
, x → 0.

This yields

G0
��Qf(x) = o

(
με1+ε
k (x)η−k(x)

) ∥∥∥∥ f

με1
k η−k

∥∥∥∥
∞

,

and hence concludes the proof of (i).
To prove (ii), we proceed similarly, replacing the estimate (3.9) on v0

m by the estimate 
(3.10) for m = 0. �
Remark 3.12. Applying Lemma 3.11 with ε = 0, it follows that, for m 
= 0 and 1

2 −
Re(m) ≤ ε1 ≤ 1

2 + Re(m),

∥∥G0(a)
�� Q

∥∥ ≤ C

a∫
0

μk(y)1−ε|Q(y)|dy on L∞(
]0, a[, με1

k η−k

)
,

where the constant C is independent of k and a, but dependent on m. However, if the 
values of m are restricted to |m| > m0, 0 ≤ Re(m) ≤ M for some m0 > 0, M > 0, then 
one infers from the proof that the constant C can be chosen uniformly.

In the next corollary we show the invertibility of 1l + G
0(a)
�� Q for small enough a > 0.

Corollary 3.13. Let Re(k) ≥ 0.
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(i) Let m 
= 0 and 1
2 − Re(m) ≤ ε1 ≤ 1

2 + Re(m). Suppose that Q ∈ L
(0)
0 . Then, for 

small enough a > 0, we have

∥∥G0(a)
�� Q

∥∥ < 1 on L∞(]0, a[, με1
k η−k),

so that (1l + G
0(a)
�� Q)−1 exists.

(ii) Let m = 0, k 
= 0. Suppose that Q ∈ L
(0)
0,ln and 0 ≤ α ≤ 1. Then, for small enough 

a > 0, we have

∥∥G0(a)
�� Q

∥∥ < 1 on L∞(]0, a[, με1
k λα

kη−k),

so that (1l + G
0,(a)
�� Q)−1 exists.

Proof. To prove (i), it suffices to apply Lemma 3.11(i) with ε = 0.
To prove (ii), we apply Lemma 3.11(ii) with ε = 0 and β = 1. �

3.6. Solutions constructed with the help of the two-sided Green’s operator

The goal of this subsection is similar to that of Subsection 3.3: to construct solutions 
to (3.1) that approximate near 0 the solutions to the unperturbed equation (3.2). In 
this subsection we cover a different parameter range than in Subsection 3.3. This is 
accomplished by using a different tool. Instead of the forward Green’s operator, we use 
the two-sided Green’s operator compressed to a sufficiently small interval ]0, a[, G0(a)

�� , 
which was studied in the previous subsection. The construction here will be less canonical 
than in Subsection 3.3 – it will depend on the parameter a.

Theorem 3.14. Let Re(k) ≥ 0.

(i) Let m0 > 0, M > 0 and Q ∈ L
(0)
0 . Then for small enough a > 0, for all m ∈ C

such that |m| > m0, 0 ≤ Re(m) ≤ M , for all g0 ∈ N (L0
m2 + k2),

g�� := (1l + G
0(a)
�� Q)−1g0

is a solution in AC1]0, ∞[ to (3.1). If in addition 0 ≤ ε < 2Re(m), then

g��(x) − g0(x) = o(x 1
2−Re(m)+ε), (3.35)

∂xg
��(x) − ∂xg

0(x) = o(x− 1
2−Re(m)+ε). (3.36)

(ii) Let m = 0 and assume that k 
= 0. Suppose that Q ∈ L
(0)
0,ln. Then for small enough 

a > 0, for all g0 ∈ N (L0
0 + k2),

g�� := (1l + G
0(a)
�� Q)−1g0
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is a solution in AC1]0, ∞[ to (3.1) such that

g��(x) − g0(x) = o(x 1
2 ln(x)),

∂xg
��(x) − ∂xg

0(x) = o(x− 1
2 ln(x)).

Proof. To prove (i), we apply Corollary 3.13(i) (and Remark 3.12) with ε1 = 1
2 −Re(m): 

By making a > 0 small enough, we can thus make sure that for |m| > m0, 0 ≤ Re(m) ≤
M , m 
= 0, the operator G0(a)

�� Q has the norm < 1 on the space L∞(]0, a[, μ
1
2−Re(m)
k η−k). 

Hence g�� is well-defined and is a solution to (3.1).
We have g�� − g0 = (−G

0(a)
�� Q)g��. Since g�� = O(x 1

2−Re(m)) by Proposition 3.10
and since ε < 2Re(m), we can apply Lemma 3.11(i) with ε1 = 1

2 − Re(m). This yields 
(3.35)–(3.36).

To prove (ii) we proceed in the same way, using Corollary 3.13(ii) and Lemma 3.11(ii) 
with ε = 0 and α = β = 1. �

We can apply Theorem 3.14(i) to the unperturbed solutions g0 equal to u0
−m(·, k)

and u0
m(·, k), obtaining solutions u��(a)

−m (·, k) and u��(a)
m (·, k). The solutions u��(a)

m (·, k) for 
Re(m) ≥ 0 are not very useful, since we have then um(·, k) at our disposal. Therefore, 
in the following proposition we restrict ourselves to u��(a)

−m (·, k). They can serve as a 
non-principal solution defined when u−m is not available.

Proposition 3.15. Let Re(k) ≥ 0. Suppose that Q ∈ L
(0)
0 . Let m0 > 0, M > 0. Let a > 0

be small enough as in the previous theorem. Then for |m| > m0, 0 ≤ Re(m) ≤ M , setting

u
��(a)
−m (·, k) := (1l + G

0(a)
�� Q)−1u0

−m(·, k)

we obtain a solution in AC1]0, ∞[ to (3.1). If we impose the assumption Q ∈ L
(0)
ε for 

0 ≤ ε < 2Re(m), then

u
��(a)
−m (x, k) − u0

−m(x, k) = o(x 1
2−Re(m)+ε), (3.37)

∂xu
��(a)
−m (x, k) − ∂xu

0
−m(x, k) = o(x− 1

2−Re(m)+ε). (3.38)

If Q ∈ L
(0)
ε with 0 ≤ 2Re(m) ≤ ε and m /∈ N, then there exists c��(a)

m (k) ∈ C such that

u
��(a)
−m (x, k) = u−m(x, k) + c��(a)

m (k)um(x, k). (3.39)

Proof. The first part of the proposition is a direct consequence of Theorem 3.14(i). To 
see (3.39) note that by Proposition 3.6, both um(·, k) and u−m(·, k) are well-defined. 
Moreover, if m /∈ N, they are linearly independent, as follows from their asymptotics 
near 0. �
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The eigensolutions u��(a)
−m constructed in Proposition 3.15 are given by convergent 

expansions

u
��(a)
−m (x, k) =

∞∑
j=0

(−G
0(a)
�� Q)ju0

−m(x, k). (3.40)

Note that the individual terms on the right hand side of (3.40) are well defined under 
rather weak assumptions and their behavior near zero weakly depends on a.

Lemma 3.16. Let Re(k) ≥ 0. Assume that Re(m) ≥ 0, m 
= 0 and Q ∈ L
(0)
0 , or m = 0, 

Q ∈ L
(0)
0,ln and k 
= 0. Let 0 < a, b. Then for any j ∈ N there exists cjm(k) such that

(G0(a)
�� Q)ju0

−m(x, k) − (G0(b)
�� Q)ju0

−m(x, k) = cjm(k)u0
m(x, k) + o(x 1

2+Re(m)). (3.41)

Proof. Suppose that m 
= 0. We will prove (3.41) by induction with respect to j. Let us 
denote the left hand side of (3.41) by zj(x, k). Clearly, z0(x, k) = 0. Assume that (3.41)
is true for a given j. Let 0 ≤ x ≤ a < b. Now

zj+1(x) = (G0(a)
�� Q−G

0(b)
�� Q)(G0(a)

�� Q)ju0
−m(x) + G

0(b)
�� Qzj(x)

= u0
m(x)

b∫
a

v0
m(y)Q(y)(G0(a)

�� Q)ju0
−m(y)dy + u0

m(x)
b∫

0

v0
m(y)Q(y)zj(y)dy

− u0
m(x)

x∫
0

v0
m(y)Q(y)zj(y)dy + v0

m(y)
x∫

0

u0
m(y)Q(y)zj(y)dy.

The first term is clearly proportional to u0
m. By the induction assumption zj =

O(x 1
2+Re(m)). Therefore the integral in the second term is finite, and hence the second 

term is also proportional to u0
m. By the same argument the third term is o(x 1

2+Re(m)). 
Finally, since zj = O(x 1

2+Re(m)), the integral in the fourth term is o(x2Re(m)). Hence the 
fourth term is also o(x 1

2+Re(m)).
The case m = 0 with Q ∈ L

(0)
0,ln and k 
= 0 can be treated in the same way. �

Under the assumptions of Lemma 3.16, we introduce the following notation for a 
partial sum of the series (3.40):

u
0(a)[n]
−m (x, k) :=

n∑
j=0

(−G
0(a)
�� Q)ju0

−m(x, k), (3.42)

u
0[n]
−m(x, k) := u

0(1)[n]
−m (x, k). (3.43)

Thus we choose (quite arbitrarily) a = 1 as the “standard value” in (3.42).
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The next proposition shows that the functions u0[n]
−m(·, k) well approximate non-

principal solutions under the assumption 0 ≤ Re(m) ≤ ε
2 (n + 1), m 
= 0.

Proposition 3.17. Let Re(k) ≥ 0 and Re(m) ≥ 0, m 
= 0. Assume that ε ≥ 0 and 
Q ∈ L

(0)
ε . Let n be a nonnegative integer such that ε ≥ 2

n+1Re(m). Suppose that a > 0
is small enough, so that u��(a)

−m (·, k) is well defined, as described in Proposition 3.15. Then 

there exists c(a)[n]
m (k) ∈ C such that

u
��(a)
−m (x, k) − u

0[n]
−m(x, k) − c(a)[n]

m (k)um(x, k) = o(x 1
2+Re(m)),

∂xu
��(a)
−m (x, k) − ∂xu

0[n]
−m(x, k) − c(a)[n]

m (k)∂xum(x, k) = o(x− 1
2+Re(m)).

Proof. Applying

(G0(a)
�� Qf)(x) = u0(x)

a∫
0

v0(y)Q(y)f(y)dy + G0
→Qf(x), (3.44)

we can write

u
��(a)
−m (x, k) =u

0(a)[n]
−m (x, k) + (−G

0(a)
�� Q)n+1u

��(a)
−m (x, k)

=u
0(a)[n]
−m (x, k) − u0

m(x, k)
a∫

0

v0
m(x, k)Q(y)(−G

0(a)
�� Q)nu��(a)

−m (y, k)dy

−G0
→Q(−G

0(a)
�� Q)nu��(a)

−m (x, k). (3.45)

Suppose n > 0. Let ñ ≤ n be a positive integer such that 2
ñRe(m) > ε ≥ 2

ñ+1Re(m). We 
apply repeatedly Lemma 3.11(i) with ε1 = 1

2 − Re(m) + jε for j = 0, . . . , ̃n − 1, noting 
that 1

2 − Re(m) ≤ ε1 + ε < 1
2 + Re(m), to show that

(−G
0(a)
�� Q)ñu��(a)

−m (x, k) = o(x 1
2−Re(m)+ñε). (3.46)

Applying then again repeatedly Lemma 3.11(i) with ε = 0 we deduce that

(−G
0(a)
�� Q)nu��(a)

−m (x, k) = o(x 1
2−Re(m)+ñε). (3.47)

Because of this, and since ε ≥ 2
ñ+1Re(m),

a∫
0

v0
m(y, k)Q(x)(−G

0(a)
�� Q)nu��(a)

−m (y, k)dy (3.48)

is finite. Now we apply Lemma 3.1(i) with ε1 = 1
2 − Re(m) + ñε, noting that ε1 + ε ≥

1 + Re(m), to show that
2
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G0
→Q(−G

0(a)
�� Q)nu��(a)

−m (x, k) = o(x 1
2+Re(m)). (3.49)

If n = 0, applying Lemma 3.1(i) with ε1 = 1
2 − Re(m), we see that (3.49) still holds. 

Finally, by Lemma 3.16 we can replace u0(a)[n]
−m (x, k) with u0[n]

−m(x, k). �
We can use the functions u0[n]

−m(·, k) to describe boundary conditions near zero of non-
principal solutions.

Proposition 3.18. Let Re(k) ≥ 0 and Re(m) ≥ 0, m 
= 0. Suppose that Q ∈ L
(0)
ε , ε ≥ 0. 

Let n be a nonnegative integer such that ε2 (n + 1) ≥ Re(m). Then

u
[n]
−m(·, k) := u

0[n]
−m(·, k) + (−1)n+1(1l + G0

→Q
)−1

G0
→Q

(
G

0(1)
�� Q)nu0

−m(·, k) (3.50)

is a solution in AC1]0, ∞[ to (3.1) such that

u
[n]
−m(x, k) − u

0[n]
−m(x, k) = o(x 1

2+Re(m)), (3.51)

∂xu
[n]
−m(x, k) − ∂xu

0[n]
−m(x, k) = o(x− 1

2+Re(m)). (3.52)

Proof. Note that u0[n]
−m(x, k) = O(x 1

2−Re(m)). As in the proof of the previous proposition, 
applying repeatedly Lemma 3.11(i) and next Lemma 3.1(i), we obtain that

G0
→Q

(
G0

��Q)nu0[n]
−m(·, k) = o(x 1

2+Re(m)).

Then we can use Corollary 3.2(i) which shows that, for any a > 0, 1l+G0
→Q is invertible 

on L∞(]0, a[, μ
1
2+Re(m)
k ). Applying Lm2 +k2 = (L0

m2 +k2)(1l+G0
→Q) to (3.50) and using 

the definition (3.42), we then obtain

(Lm2 + k2)(u[n]
−m(·, k))

= (Lm2 + k2)
n∑

j=0
(−G

0(1)
�� Q)ju0

−m(·, k) −Q
(
−G

0(1)
�� Q)nu0

−m(·, k).

Next, using that Lm2 + k2 = L0
m2 + k2 + Q together with the fact that G0(1)

�� is a right 
inverse of L0

m2 + k2 gives

(Lm2 + k2)(u[n]
−m(·, k)) = −Q

n∑
j=1

(−G
0(1)
�� Q)j−1u0

−m(·, k)

+ Q
n∑

j=0
(−G

0(1)
�� Q)ju0

−m(·, k) −Q
(
−G

0(1)
�� Q)nu0

−m(·, k) = 0.

Hence u[n]
−m(·, k) belongs to AC1]0, ∞[ and is a solution to (3.1) satisfying (3.51)–

(3.52). �
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Proposition 3.19. Let ε ≥ 0, n a nonnegative integer and suppose that Q ∈ L
(0)
ε . Then 

for any x > 0 the maps
{ε

2(n + 1) ≥ Re(m) ≥ 0, m 
= 0
}
×

{
Re(k) ≥ 0

}
� (m, k) �→ u

[n]
−m(x, k), ∂xu[n]

−m(x, k)

are regular.

Proof. The proof is similar to that of Proposition 3.8. �
Here is a drawback of Proposition 3.18: the boundary conditions are described by a 

function u0[n]
−m(·, k) which depends on k. We already know that for principal solutions the 

boundary condition does not depend on k. One can ask whether one can use the same 
boundary conditions for all k in the non-principal case, e.g.

u
0[n]
−m(x) := u

0[n]
−m(x, 0). (3.53)

Thus we would like to use k = 0 as the “standard value” in (3.53), which typically gives 
the simplest expressions.

Let us check what is the situation in the unperturbed case. Let Re(m) ≥ 0. We have

u0
−m(x, k) = x

1
2−m

Γ(1 −m) + O(x 5
2−Re(m)), u0

m(x, k) = O(x 1
2+Re(m)). (3.54)

Hence we need the condition Re(m) < 1 to make sure that

u0
−m(x, k) = x

1
2−m

Γ(1 −m) + o(x 1
2+Re(m)), (3.55)

which guarantees that u0
−m(x, k) with distinct k give the same boundary condition.

Proposition 3.20. In addition to the assumptions of Proposition 3.18 suppose that 
Re(m) < 1. Then in (3.51) and (3.52) we can replace u0[n]

−m(x, k) with u0[n]
−m(x) defined in 

(3.53), (or with u0[n]
−m(x, k′) for any k′).

Proof. Proposition 3.20 easily follows from the definition (3.53) of u0[n]
−m(x, k) together 

with (3.55). �
In concrete cases, it is not difficult to compute u0[n]

−m explicitly. The following remark 
provides an example in the case where Q has a Coulomb singularity at 0.

Remark 3.21. Suppose that Q(x) = −β
x1l]0,1](x) with β ∈ C. Then Q ∈ L

(0)
ε for ε < 1. 

Hence for 0 ≤ Re(m) < 1, m 
= 0, we can take n = 1 in Proposition 3.17 and we have 
that
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u
0[1]
−m(x) = u0

−m(x, 0) −G
0(1)
�� Qu0

−m(x, 0).

Consider for simplicity the generic case m 
= 1
2 . Since u0

±m(x, 0) = x
1
2±m

Γ(1±m) and 

v0
m(x, 0) = 1

2Γ(m)x 1
2−m, we can compute

G
0(1)
�� Qu0

−m(x) = 1
2mΓ(1 −m)

(
x

1
2+m

1∫
x

y1−2m−β

y
dy + x

1
2−m

x∫
0

y
−β

y
dy

)

= β

2mΓ(1 −m)

(
x

1
2+m x1−2m

1 − 2m − x
1
2+m

1 − 2m − x
3
2−m

)

= x
1
2−m

Γ(1 −m)
βx

1 − 2m − βx
1
2+m

2m(1 − 2m)Γ(1 −m) .

Hence

u
0[1]
−m(x) = x

1
2−m

Γ(1 −m)

(
1 − βx

1 − 2m

)
− βx

1
2+m

2m(1 − 2m)Γ(1 −m) .

We recover the function jβ,−m from (2.3) of [12], which was used to describe the boundary 
conditions of the Whittaker operator.

3.7. The logarithmic Green’s operator

For m = 0 we could use Lemma 3.11(ii), Corollary 3.13(ii) and Theorem 3.14(ii) 
to construct eigensolutions with the help of the two-sided Green’s operator G0

��. The 
drawback of this approach is the lack of the limit at k = 0. Therefore for m = 0 we 
prefer to use the logarithmic Green’s operator G0

�, which is well defined for k = 0. More 
precisely, we will use the logarithmic Green’s operator compressed to a finite interval, 
G

0(a)
� .
Below we describe mapping properties of G0(a)

� . The result is analogous to Lemma 
3.11(ii), however includes k = 0.

Lemma 3.22. Let k0 > 0, Re(k) ≥ 0 such that |k| ≤ k0, 0 < a < 1, 1
2 = ε1 + ε and 

0 ≤ β − α ≤ 1. Suppose that Q ∈ L1
loc]0, ∞[ and

a∫
0

y1−ε
(
1 − ln(y)

)β |Q(y)|dy < ∞. (3.56)

Then

G
0(a)
� Q : L∞(

]0, a[, xε1(1 − ln(x))α
)
→ L∞(

]0, a[, xε1+ε(1 − ln(x))α+1−β
)

(3.57)
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is a bounded operator whose norm is less than C×(3.56) uniformly in 0 < a < 1 and |k| ≤
k0. If in addition β−α < 1, then the image of (3.57) is contained in L∞

0
(
]0, a[, xε1+ε(1 −

ln(x))α+1−β
)
.

Proof. The proof is identical to that of Lemma 3.11(ii), using the solution p0
0 instead of 

v0
0 and (3.11) instead of (3.10). �

Corollary 3.23. Let k0 > 0, Re(k) ≥ 0 such that |k| ≤ k0. Suppose that Q ∈ L
(0)
0,ln. Then 

for 0 ≤ α ≤ 1 and small enough a > 0 we have

‖G0(a)
� Q‖ < 1 on L∞(]0, a[, x 1

2 (1 − ln(x))α),

so that (1l + G
0(a)
� Q)−1 exists.

Proof. It suffices to apply Lemma 3.22 with ε = 0 and β = 1. �
3.8. Solutions constructed with help of the logarithmic Green’s operator

We continue with the case m = 0. The following theorem is the analog of Theo-
rem 3.14(ii) in the context of the logarithmic Green’s operator G0

�.

Theorem 3.24. Let k0 > 0 and Re(k) ≥ 0 such that |k| ≤ k0. Suppose that Q ∈ L
(0)
0,ln. 

Then for all g0 ∈ N (L0
0 + k2), for small enough a

g� := (1l + G
0(a)
� Q)−1g0

exists and is a solution in AC1]0, ∞[ to (3.1) such that

g�(x) − g0(x) = o(x 1
2 ln(x)),

∂xg
�(x) − ∂xg

0(x) = o(x− 1
2 ln(x)).

Proof. It suffices to proceed as in the proof of Proposition 3.14, using Corollary 3.23 and 
Lemma 3.22 with α = β = 1. �

Applying Theorem 3.24 to p0
0, we obtain the following result.

Proposition 3.25. Let k0 > 0, Re(k) ≥ 0 such that |k| ≤ k0. Suppose that Q ∈ L
(0)
0,ln. 

Then for a > 0 small enough,

p
�(a)
0 := (1l + G

0(a)
� Q)−1p0

0 (3.58)

is a non-principal solution in AC1]0, ∞[ to (3.1) such that
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p
�(a)
0 (x, k) − p0

0(x, k) = o(x 1
2 ln(x)),

∂xp
�(a)
0 (x, k) − ∂xp

0
0(x, k) = o(x− 1

2 ln(x)).

Proof. This is a direct consequence of Theorem 3.24. �
3.9. Summary of distinguished solutions

Table 1 summarizes the distinguished solutions of the perturbed eigenequation with 
a prescribed behavior near the origin constructed in this section.

Table 1
Distinguished solutions of the perturbed eigenequation with a prescribed behavior near 0. Our convention 
is that a solution gm(·, k) of (1.26) (with g = u, p, . . . ) has the same behavior near 0 as the unperturbed 
solution g0

m(·, k). We everywhere assume that Re(k) ≥ 0. The second column recalls the range of parameters 
for which the solution gm(·, k) is defined, the third column gives the conditions on Q that are required in 
order to define gm(·, k) and the fourth column recalls the Green’s operator used to construct gm(·, k).

Solution Parameters Conditions on Q Green’s operator

um(·, k) Re(m) ≥ − ε
2 , m �= 0 Q ∈ L (0)

ε , ε ≥ 0 Forward G0
→

m = 0 Q ∈ L
(0)
0,ln

p0(·, k) m = 0 Q ∈ L
(0)
0,ln2 Forward G0

→

u��(a)
m (·, k) −M ≤ Re(m) < 0, |m| > m0 > 0 Q ∈ L

(0)
0 Two-sided G0(a)

��

compressed to ]0, a[

u
[n]
−m(·, k) ε

2 (n + 1) ≥ Re(m) ≥ 0, Q ∈ L (0)
ε , ε > 0 Forward G0

→
and two-sided G0(1)

��

p
�(a)
0 (·, k) m = 0, |k| ≤ k0 Q ∈ L

(0)
0,ln Logarithmic G0(a)

�

compressed to ]0, a[

4. Solutions of the perturbed Bessel equation regular near infinity

Recall that w0
m(·, k) is a solution of the unperturbed eigenequation which is pro-

portional to v0
m(·, k) and behaves as e−kx at infinity. In this section we construct and 

study the solution to (3.1) with the same asymptotic behavior. In the literature, when 
m = ±1/2 and Q is real-valued, this solution is usually called the Jost solution. We will 
use the same name in our more general context.

We will assume that m ∈ C is arbitrary and Re(k) ≥ 0, or equivalently, |arg(k)| ≤ π
2 . 

The proofs of the results stated in this section are often similar to that of Section 3. We 
will focus on the differences.

Recall that μk, λk, η±k are defined in (3.6)–(3.7) and that the spaces L∞(]a, ∞[, φ) and 
L∞
∞(]a, ∞[, φ) are defined in (3.3)–(3.5). We use a similar convention as in the previous 



52 J. Dereziński, J. Faupin / Journal of Functional Analysis 284 (2023) 109728
section: if the operator 1l + G0
•Q is invertible on L∞(]a, ∞[, φ) for some a > 0 and 

some positive measurable function φ on ]a, ∞[, where G0
• is a Green’s operator, and 

if f :]0, ∞[→ C is such that its restriction to ]a, ∞[ belongs to L∞(]a, ∞[, φ), then 
(1l + G0

•Q)−1f should be understood as (1l + G0
•Q)−1 applied to the restriction of f on 

]a, ∞[. Clearly, if in addition f ∈ N (L0
m2 + k2), then (1l+G0

•Q)−1f is a solution to (3.1)
on ]a, ∞[. The unique solution on ]0, ∞[ which coincides with (1l + G0

•Q)−1f on ]a, ∞[
will be denoted by the same symbol.

To simplify notations, we often write w0 = w0
m(·, k).

4.1. The backward Green’s operator

We consider the operator G0
←Q. The results proven here will be used to construct Jost 

solutions. Note that G0
← is invariant with respect to the change of sign of m. Therefore, 

it is enough to assume that Re(m) ≥ 0.

Lemma 4.1. Let Re(k) ≥ 0 and Q ∈ L1
loc]0, ∞[.

(i) Let Re(m) ≥ 0, m 
= 0 and ε + ε1 ≤ 1
2 − Re(m). Suppose that

∞∫
0

μk(y)1−ε|Q(y)|dy < ∞. (4.1)

Then

G0
←Q : L∞(

]0,∞[, με1
k η−k

)
→ L∞

∞
(
]0,∞[, με1+ε

k η−k

)
is a bounded operator whose norm is less than C×(4.1) uniformly in k.

(ii) Let m = 0, k 
= 0, ε1 + ε ≤ 1
2 , α ≥ β and

∞∫
0

μk(y)1−ελk(y)β |Q(y)|dy < ∞. (4.2)

Then

G0
←Q : L∞(

]0,∞[, με1
k λα

kη−k

)
→ L∞

∞
(
]0,∞[, με1+ε

k λα+1−β
k η−k

)
is a bounded operator whose norm is less than C×(4.2) uniformly in k.

Proof. The proof is essentially the same as that of Lemma 3.1. �
Here is a corollary of the above lemma.



J. Dereziński, J. Faupin / Journal of Functional Analysis 284 (2023) 109728 53
Corollary 4.2. Let Re(k) ≥ 0 and n ∈ N.

(i) Let Re(m) ≥ 0, m 
= 0. Suppose that Q ∈ L
(∞)
0 . Then, for all a > 0, for all 

f ∈ L∞(
]a, ∞[, μ

1
2−Re(m)
k η−k

)
and x > a,

∣∣(G0
←Q)nf(x)

∣∣
μk(x) 1

2−Re(m)η−k(x)
≤ Cn+1

n!

( ∞∫
x

μk(y)|Q(y)|dy
)n

sup
y>x

|f(y)|
μk(y)

1
2−Re(m)η−k(y)

.

(ii) Suppose k 
= 0. Let m = 0. Suppose that Q ∈ L
(∞)
0 . Then, for all a > 0, for all 

f ∈ L∞(
]a, ∞[, μ

1
2
k λkη−k

)
and x > a,

∣∣(G0
←Q)nf(x)

∣∣
μk(x) 1

2λk(x)η−k(x)
≤ Cn+1

n!

( ∞∫
x

μk(y)λk(y)|Q(y)|dy
)n

sup
y>x

|f(y)|
μk(y)

1
2λk(y)η−k(y)

.

Above, C is a constant independent of n and k.

Proof. We proceed as in the proof of Corollary 3.2.
To prove (i) we use Lemma 4.1(i) with ε = 1 and ε1 = −1

2 + Re(m).
To prove (ii) we use Lemma 4.1(ii) with ε = 1, ε1 = −1

2 and α = β = 1. �
The case m = 0, k = 0 is not covered by Lemma 4.1 and Corollary 4.2, because then 

λk is ill defined. The following lemma and its corollary work for this case.

Lemma 4.3. Let m = 0, k = 0 and Q ∈ L1
loc]0, ∞[. Let ε1 +ε ≤ 1

2 , β−α ≥ 1 and suppose

∞∫
1

y1−ε(1 + ln(y))β |Q(y)|dy < ∞.

Then

G0
←Q : L∞(]1,∞[, xε1(1 + ln(x))α

)
→ L∞

∞
(
]1,∞[, xε+ε1(1 + ln(x))α+1−β

)
is bounded.

Proof. It suffices to proceed as in the proof of Lemma 3.3, using that y �→ y−
1
2+ε1+ε and 

y �→ (ln(y))1−β+α are decreasing on ]1, ∞[. �
Corollary 4.4. Let k = 0, m = 0 and n ∈ N.
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(i) Suppose that Q ∈ L
(∞)
1,ln . Then, for all a > 1, f ∈ L∞(

]a, ∞[, x 1
2
)

and a < x,

|(G0
←Q)nf(x)|

x
1
2

≤ Cn+1

n!

( ∞∫
x

y
(
1 + |ln(y)|

)
|Q(y)|dy

)n

sup
y>x

|f(y)|
y

1
2

.

(ii) Suppose that Q ∈ L
(∞)
1,ln2 . Then, for all a > 1, f ∈ L∞(

]a, ∞[, x 1
2 |ln(x)|

)
and 

a < x,

|(G0
←Q)nf(x)|

x
1
2 (1 + |ln(x)|)

≤ Cn+1

n!

( ∞∫
x

y
(
1 + |ln(y)|

)2|Q(y)|dy
)n

sup
y>x

|f(y)|
y

1
2 (1 + |ln(y)|)

.

Proof. The proof is the same as that of Corollary 3.2, applying Lemma 4.3. To prove (i), 
we use Lemma 4.3 with ε1 = 1

2 , ε = 0, β = 1 and α = 0. To prove (ii), we use Lemma 4.3
with ε1 = 1

2 , ε = 0, β = 2 and α = 1. �
4.2. Jost solutions constructed with the help of the backward Green’s operator

In this subsection, using the backward Green’s operator, we construct the solution to 
(3.1) which behaves as e−kx at infinity.

The next proposition implies Proposition 1.7 from the introduction.

Proposition 4.5. Suppose that Q ∈ L
(∞)
0 . Let m ∈ C and Re(k) ≥ 0, k 
= 0. Then

wm(·, k) := (1l + G0
←Q)−1w0(·, k)

is the unique solution in AC1]0, ∞[ to (3.1) such that

wm(x, k) − w0
m(x, k) = o(e−xRe(k)), (4.3)

∂xwm(x, k) − ∂xw
0
m(x, k) = o(e−xRe(k)), x → ∞. (4.4)

Moreover, for all m ∈ C, we have

wm(x, k) = w−m(x, k). (4.5)

Proof. Let a > 0. Clearly, w0 ∈ L∞(]a, ∞[, μkη−k), hence, by Corollary 4.2,

w = (1l + G0
←Q)−1w0 ∈ L∞(]a,∞[, μkη−k) (4.6)

is well defined. As in the proof of Theorem 3.5, this implies that w ∈ AC1]0, ∞[ and, 
using in addition that G0

← is a right inverse of Lm2 , that w is a solution to (3.1).
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Next, since

w − w0 = −G0
←Qw, (4.7)

applying Lemma 4.1, we obtain that w − w0 ∈ L∞
∞
(
]a, ∞[, e−xRe(k) ). This proves (4.3). 

Equation (4.4) is proven similarly.
Uniqueness follows exactly as in the proof of Theorem 3.5. This in turn implies (4.5)

since w0
m = w0

−m. �
Now, for a fixed Q, we can study the regularity of Jost solutions with respect to (m, k).

Proposition 4.6. Suppose that Q ∈ L
(∞)
0 . Then for all x > 0, the maps

{
Re(k) ≥ 0, k 
= 0

}
� (m, k) �→ wm(x, k), ∂xwm(x, k)

are regular.

Proof. The analyticity and continuity follow as in the proof of Proposition 3.8, using the 
analyticity of w0 and the map G0

←Q together with Lemma 4.2. �
Remark 4.7. In general, (m, k) �→ wm(x, k) does not extend analytically to {π

2 ≤ |arg(k)|}
in the same way as for (m, k) �→ um(x, k). However, if the condition Q ∈ L

(∞)
0 is 

strengthened, assuming

∞∫
1

eΛy |Q(y)|dt < ∞,

for some Λ > 0, then one can verify that (m, k) �→ wm(x, k) extends analytically to

{Re(k) > −Λ/2, |arg(k)| < π}.

Proposition 4.5 is restricted to k 
= 0, because the usual short-range condition is 
insufficient to cover the zero energy case. Therefore, in our analysis most of the time 
we avoid considering Jost solutions for k = 0. In the remainder of this subsection, we 
describe a modification of Proposition 4.5 about the case k = 0.

It will be convenient to introduce notation for differently normalized Jost solutions, 
parallel to the unperturbed case:

vm(x, k) :=
√

π

2k

(k
2

)m

wm(x, k). (4.8)

Recall that the unperturbed eigenequation has the following solutions at k = 0:

u0
m(x, 0) := x

1
2+m

, m ∈ C; p0(x, 0) := x
1
2 ln(x), m = 0.
Γ(1 + m)
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The following proposition implies Proposition 1.8 of the introduction.

Proposition 4.8. Let m ∈ C, k = 0. Suppose that δ ≥ 1 + 2 max(−Re(m), 0) and

Q ∈ L
(∞)
δ , if m 
= 0, Q ∈ L

(∞)
δ,ln , if m = 0.

Then

q−m := (1l + G0
←Q)−1u0

−m(·, 0)

is the unique solution in AC1]0, ∞[ to (3.1) for k = 0 such that,

q−m(x) − x
1
2−m = o(x 3

2−Re(m)−δ), (4.9)

∂xq−m(x) − ∂xx
1
2−m = o(x 1

2−Re(m)−δ), x → ∞. (4.10)

Besides, if m 
= 0, then

lim
k→0

vm(x, k) = 1
2Γ(m)q−m(x). (4.11)

Proof. We proceed as in the proof of Theorem 3.5. In particular, the fact that q−m is 
well-defined follows from Corollary 4.2(i) in the case m 
= 0 and Corollary 4.4(i) if m = 0.

The limit (4.11) follows from (4.3), (4.9) and (2.31). �
Note that 3

2 − Re(m) − δ ≤ 1
2 − Re(m). Therefore, the error in (4.9) is always of a 

smaller order than x
1
2−m.

Proposition 4.9.
(i) Let Q ∈ L

(∞)
1 . Then for any x > 0 the maps

{
Re(m) ≥ 0, m 
= 0

}
� m �→ q−m(x), ∂xq−m(x) (4.12)

are regular. If we strengthen the assumption to Q ∈ L
(∞)
1,ln , then in (4.12) we can 

include m = 0.
(ii) Let δ > 1 and Q ∈ L

(∞)
δ . Then for any x > 0 the maps

{
Re(m) ≥ 1

2(1 − δ)
}
� m �→ q−m(x), ∂xq−m(x) (4.13)

are regular.

Proof. The proof is similar to that of Proposition 3.8. �
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For k = 0, m = 0, we can also construct a solution with the same behavior as x 1
2 ln(x)

at ∞, but we need to strengthen the condition on Q. Note that Proposition 4.10 implies 
Proposition 1.9 from the introduction.

Proposition 4.10. Let m = 0, k = 0, δ ≥ 1, β ≥ 2. Suppose that Q ∈ L
(∞)
δ,lnβ . Then

q0,ln := (1l + G0
←Q)−1p0(·, 0) (4.14)

is the unique solution in AC1]0, ∞[ to (3.1) for k = 0 such that

q0,ln(x) − x
1
2 ln(x) = o(x 3

2−δln(x)2−β)), (4.15)

∂xq0,ln(x) − ∂xx
1
2 ln(x) = o(x 1

2−δln(x)2−β)), x → ∞. (4.16)

Proof. The proof is again similar to that of Theorem 3.5, using now Corollary 4.4(ii) 
and Lemma 4.3. �
4.3. Asymptotics of non-principal solutions near ∞

In this subsection, under the minimal assumptions Q ∈ L
(∞)
0 , we show that all 

elements of N (Lm2 + k2) not proportional to Jost solutions behave like non-principal 
unperturbed solutions near ∞. In particular, the following proposition shows that they 
are not square integrable.

Proposition 4.11. Let m ∈ C, Re(k) ≥ 0 and k 
= 0. Suppose that Q ∈ L
(∞)
0 . Let g be a 

solution of (3.1) linearly independent with wm(·, k) constructed in Proposition 4.5. Then 
there exists a constant C 
= 0 such that

g(x) = C ekx +o(eRe(k)x), x → ∞. (4.17)

Proof. Similarly as in the proof of Proposition 3.10, assuming that w ≡ wm(·, k) and W
are known, we solve the ordinary differential equation

g(x)w′(x) − g′(x)w(x) = W.

The ansatz g(x) = λ(x)w(x) yields

λ′(x)w(x)2 = W.

By Proposition 4.5 and (2.10), we know that

w(x) = e−kx +o(e−kx), x → ∞.

This implies that there exists α > 0 such that w(x) 
= 0 for x ≥ α, and hence
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λ(x) − λ(α) =
x∫

α

W

w(y)2 dy =
x∫

α

W
(

e2ky +o(e2ky)
)
dy = W

2k e2kx +o(e2kx).

Now

g(x) =
(
λ(α) +

x∫
α

W

w(y)2 dy
)
w(x),

implies the estimate (4.17). �
4.4. Global estimates on Jost solutions

In the sequel we will need an estimate of the Jost solutions constructed in Proposi-
tion 4.5 global in x and k, which we prove in this subsection.

Since wm(·, k) = w−m(·, k), we can assume in the next proposition that Re(m) ≥ 0.

Proposition 4.12. Let m ∈ C be such that Re(m) ≥ 0. Suppose that Q ∈ L
(∞)
0 . We have 

then the following estimates on the solution wm(·, k) to (3.1), where the constant C is 
uniform in Re(k) ≥ 0, k 
= 0: for all x > 0,

|wm(x, k)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C|k| 12−Re(m)μk(x) 1
2−Re(m)η−k(x)exp

(
C

∞∫
x

μk(y)|Q(y)|dy
)
, m 
= 0;

C|k| 12μk(x) 1
2λk(x)η−k(x)exp

(
C

∞∫
x

μk(y)λk(y)|Q(y)|dy
)
, m = 0.

The same estimates hold for |∂xwm(x, k)|, replacing μk(x) 1
2−Re(m) by μk(x)− 1

2−Re(m).

Proof. Note that by (2.31) and the estimates recalled in Subsection 2.1, we have

∣∣w0
m(x, k)

∣∣ � |k| 12−Re(m)μk(x) 1
2−Re(m)η−k(x),∣∣∂xw0

m(x, k)
∣∣ � |k| 12−Re(m)μk(x)− 1

2−Re(m)η−k(x), if m 
= 0,∣∣w0
0(x, k)

∣∣ � |k| 12μk(x) 1
2λk(x)η−k(x),∣∣∂xw0

0(x, k)
∣∣ � |k| 12μk(x)− 1

2λk(x)η−k(x), if m = 0.

Hence w0
m(·, k) ∈ L∞(]0, ∞[, μ

1
2−Re(m)
k η−k

)
for m 
= 0, w0

0(·, k) ∈ L∞(]0, ∞[, μ
1
2
k λkη−k

)
for m = 0, and therefore since wm(·, k) = (1l + G0

←Q)−1w0
m(·, k), we can apply Corol-

lary 4.2. �
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4.5. Asymptotics of Jost solutions near 0

In the next section we will need the asymptotics near 0 of the Jost solution w =
wm(·, k). It is given by the following proposition.

Proposition 4.13. Let Re(k) ≥ 0, k 
= 0. Suppose that Q ∈ L
(∞)
0 .

(i) If m 
= 0, 0 ≤ ε < 2Re(m) and Q ∈ L
(0)
ε , then as x → 0,

wm(x) = w0
m(x) + 〈u0

m|Qwm〉v0
m(x) + o(x 1

2−Re(m)+ε), (4.18)

∂xwm(x) = ∂xw
0
m(x) + 〈u0

m|Qwm〉∂xv0
m(x) + o(x− 1

2−Re(m)+ε). (4.19)

(ii) If m 
= 0, 0 ≤ 2Re(m) ≤ ε, Q ∈ L
(0)
ε , then as x → 0,

wm(x) = w0
m(x) + 〈u0

m|Qwm〉v0
m(x) − 〈v0

m|Qwm〉u0
m(x) + o(x 1

2−Re(m)+ε),
(4.20)

∂xwm(x) = ∂xw
0
m(x) + 〈u0

m|Qwm〉∂xv0
m(x) − 〈v0

m|Qwm〉∂xu0
m(x)

+ o(x− 1
2−Re(m)+ε). (4.21)

(iii) If 0 ≤ ε, Q ∈ L
(0)
ε,ln2 , and m = 0, then as x → 0,

w0(x) = w0
0(x) + 〈u0

0|Qw0〉v0
0(x) − 〈v0

0 |Qw0〉u0
0(x) + o(x 1

2+ε), (4.22)

∂xw0(x) = ∂xw
0
0(x) + 〈u0

0|Qw0〉∂xv0
0(x) − 〈v0

0 |Qw0〉∂xu0
0(x) + o(x− 1

2+ε).
(4.23)

Proof. We only prove the statements for wm. The statements for ∂xwm are proven in 
the same way. We omit the index m and the argument k in this proof. Recall (4.7):

w = w0 −G0
←Qw.

Suppose first that m 
= 0. By Proposition 4.12, we have

w(x) = O(x 1
2−Re(m)), ∂xw(x) = O(x− 1

2−Re(m)), x → 0;

w(x) = O(e−Re(k)x) ∂xw(x) = O(e−Re(k)x), x → ∞.

First assume that 2Re(m) ≤ ε. Then, since Q ∈ L
(∞)
0 ∩L

(0)
ε , it follows from Propo-

sition 4.12 that G0
↔Qw are well-defined. Thus we can write

G0
←Qw = G0

↔Qw + G0
→Qw.
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We can use Lemma 3.1(i) with ε1 = 1
2 − Re(m), which gives

G0
→Qw = o(x 1

2−Re(m)+ε).

This proves (4.20).
Suppose now that 0 ≤ ε < 2Re(m). Then 〈u0|Qw〉 is still well-defined but 〈v0|Qw〉 is 

not any more. For a > 0 and 0 < x < a, we write

G0
←Qw(x) = −〈u0|Qw〉v0(x) −G

0(a)
�� Qw(x) + O(x 1

2+Re(m)).

Applying Lemma 3.11(i) with ε1 = 1
2 − Re(m), we obtain

G
0(a)
�� Qw = o(x 1

2−Re(m)+ε),

which establishes (4.18).
The proof in the case m = 0 is similar, using Lemma 3.11(i) with ε1 = 1

2 , α = 1, 
β = 2. �
4.6. Summary of distinguished solutions

In this subsection we recall the distinguished solutions of the perturbed eigenequation 
with a prescribed behavior near infinity constructed in this section. They are described 
in Table 2, which has the same structure as that of Subsection 3.9.

Table 2
Distinguished solutions of the perturbed eigenequation with a prescribed behavior near ∞.

Solution Parameters Conditions on Q Green’s operator

wm(·, k)

vm(·, k)

m ∈ C, Re(k) ≥ 0, k �= 0 Q ∈ L
(∞)
0 Backward G0

←

q−m(·) Re(m) ≥ 1−δ
2 , k = 0 Q ∈ L

(∞)
δ , δ ≥ 1, if m �= 0 Backward G0

←

Q ∈ L
(∞)
1,ln , if m = 0

q0,ln(·) m = 0, k = 0 Q ∈ L
(∞)
1,ln2 Backward G0

←

5. Wronskians

In this section we study the Wronskians of distinguished solutions constructed in the 
previous two sections.
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5.1. The Jost function

Suppose that Q ∈ L
(∞)
0 and Q ∈ L

(0)
ε with ε ≥ max

(
0, −2Re(m)

)
if m 
= 0, 

Q ∈ L
(0)
0,ln if m = 0. Let Re(k) ≥ 0, k 
= 0. Then, by Propositions 3.6 and 4.5, both 

um(·, k) and vm(·, k) are well defined. Their Wronskian

Wm(k) := W
(
vm(·, k), um(·, k)

)
(5.1)

will be called the Jost function. Assuming in addition that Q ∈ L
(∞)
δ for some δ ≥ 1, 

we also set for k = 0 and Re(m) ≥ 1
2 (1 − δ), m 
= 0,

Wm(0) := 1
2Γ(m)W

(
q−m(·), um(·, 0)

)
. (5.2)

Using the regularity properties of um(x, k) and vm(x, k), we obtain the regularity of 
the map (m, k) �→ Wm(k) on suitable domains.

Proposition 5.1.
(i) If Q ∈ L

(0)
ε ∩ L

(∞)
0 for some ε > 0, then the map (m, k) �→ Wm(k) is regular on

{
Re(m) ≥ −ε

2

}
×

{
Re(k) ≥ 0, k 
= 0

}
. (5.3)

(ii) If Q ∈ L
(0)
0 ∩ L

(∞)
0 , then the map (m, k) �→ Wm(k) is regular on

{
Re(m) ≥ 0, m 
= 0

}
×
{

Re(k) ≥ 0, k 
= 0
}
. (5.4)

(iii) If Q ∈ L
(0)
0,ln ∩ L

(∞)
1 , then the map (m, k) �→ Wm(k) is regular on

{
Re(m) ≥ 0

}
×

{
Re(k) ≥ 0

}
\
{
m = 0

}
×

{
k = 0

}
. (5.5)

Proof. Analyticity and continuity are consequences of the analyticity and continuity of 
the maps um(x, k), wm(x, k), qm(x) and their derivatives (see Propositions 3.8, 4.6 and 
4.9).

Continuity at k = 0 in (5.5) uses in addition the limit (4.11). �
The next proposition gives a convenient representation of the Jost function.

Proposition 5.2. Suppose that Q ∈ L
(∞)
0 . Let m ∈ C. Suppose that Q ∈ L

(0)
ε with 

ε = max(0, −2Re(m)) if m 
= 0, or Q ∈ L
(0)
0,ln2 if m = 0. Then for Re(k) ≥ 0, k 
= 0

Wm(k) = 1 + 〈u0
m(·, k)|Qvm(·, k)〉. (5.6)
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Proof. Consider first m 
= 0. By Proposition 3.6 with ε = max(0, −2Re(m)), for x → 0
we have

um(x, k) = u0
m(x, k) + o(x 1

2+|Re(m)|), (5.7)

∂xum(x, k) = ∂xu
0
m(x, k) + o(x− 1

2+|Re(m)|). (5.8)

By Proposition 4.13(i) with ε = 0 we have

vm(x, k) = v0
m(x, k) + 〈u0

m|Qvm〉v0
m(x, k) + o(x 1

2−|Re(m)|), (5.9)

∂xvm(x, k) = ∂xv
0
m(x, k) + 〈u0

m|Qvm〉∂xv0
m(x, k) + o(x− 1

2−|Re(m)|). (5.10)

Now (2.31), (5.7)–(5.8) and (5.9)–(5.10) yield

W (vm, um;x) = W (v0
m, um;x)

(
1 + 〈u0

m|Qvm〉
)

+ o(x0).

Moreover it follows from (5.7) and (5.8) that

lim
x→0

W (v0
m, um;x) = W (v0

m, u0
m;x) + o(x0) = 1 + o(x0).

Then note that W (vm, um; x) does not depend on x and use the definition (5.1) of Wm(k).
In the case m = 0, we use Proposition 4.13 (iii). Then we repeat the same arguments, 

using in addition

W (u0
0, u0;x) = W (u0

0, u
0
0;x) + o(x0), W (u0

0, u
0
0;x) = 0.

This ends the proof of (5.6). �
The asymptotic behavior of the Jost function can be deduced from Proposition 5.2

together with the following lemma.

Lemma 5.3. Let m ∈ C. Suppose that Q ∈ L
(0)
ε ∩ L

(∞)
0 with ε = max(0, −2Re(m)) if 

m 
= 0, or Q ∈ L
(0)
0,ln2 ∩ L

(∞)
0 if m = 0. Then

〈u0
m|Qvm〉 = o(|k|0) + O(|k|−1+ε), |k| → ∞, Re(k) ≥ 0. (5.11)

Proof. Assume that m 
= 0. We have the estimate

|u0
m(x, k)| � μk(x) 1

2+Re(m)ηk(x), (5.12)

uniformly in k. Next, in the estimate of Proposition 4.12, we first note that the big 
exponential on the right hand side is uniformly bounded for large k. Therefore, uniformly 
for large enough |k|,
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|vm(x, k)| � μk(x) 1
2−|Re(m)|η−k(x). (5.13)

Hence
∣∣〈u0

m|Qvm〉
∣∣

=
∣∣∣

∞∫
0

u0
m(y)Q(y)vm(y)dy

∣∣∣

�
∞∫
0

μk(x)1−ε|Q(x)|dx

�
( 1

|k|∫
0

x1−ε|Q(x)|dx + |k|−1+ε

1∫
1

|k|

|Q(x)|dx + |k|−1+ε

∞∫
1

|Q(x)|dx
)
.

First note that
1

|k|∫
0

x1−ε|Q(x)|dx = o(1) and
∞∫
1

|Q(x)|dx = O(1).

Therefore, the first term on the right is o 
(
|k|0

)
and the third is O(|k|−1+ε).

If 1 > ε ≥ 0, then applying Lemma C.1 with h(y) = y1−ε and x = 1
|k| , we obtain

1∫
1

|k|

|Q(x)|dx = o(|k|1−ε).

So the middle term is o(|k|0).
If ε ≥ 1, then

1∫
1

|k|

|Q(x)|dx = o(|k|1−ε).

So the middle term is O(|k|−1+ε).
Finally, if m = 0, the proof is identical, the only difference being that

∣∣〈u0
0|Qv0〉

∣∣
�

( 1
|k|∫
0

x(1 − |ln(|k|x)|)|Q(x)|dx + |k|−1
1∫

1

|Q(x)|dx + |k|−1
∞∫
1

|Q(x)|dx
)
. �
|k|
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We deduce from the previous lemma that, for Re(m) > −1, Wm cannot constantly 
vanish except on a discrete set. Corollary 5.4 implies Proposition 1.12 from the intro-
duction.

Corollary 5.4. In addition to the assumptions of Proposition 5.2, suppose that Re(m) >
−1. Then

lim
|k|→∞

Wm(k) = 1, Re(k) ≥ 0. (5.14)

Therefore,
{
k ∈ C, Re(k) > 0, Wm(k) = 0

}
is discrete.

Proof. Under the condition Re(m) > −1 the right hand side of (5.11) becomes o(|k|0). 
Hence (5.14) follows by (5.6).

The fact that {k ∈ C, Re(k) > 0, Wm(k) = 0} is discrete is then a consequence of the 
analyticity of Wm stated in Proposition 5.1. �

Note that Corollary 5.4 is the second place in our paper where the condition Re(m) >
−1 appears (see also Proposition 3.20). This condition will play an important role in 
Section 6 about closed realizations.

5.2. Wronskians – refined results

If u−m is ill-defined, we can often use u[n]
−m instead.

Proposition 5.5. Let Re(k) ≥ 0, k 
= 0. Suppose that Q ∈ L
(0)
ε ∩ L

(∞)
0 , ε ≥ 0. Let n be 

a nonnegative integer, ε2 (n + 1) ≥ Re(m) ≥ 0, m /∈ N. Then

W
(
u

[n]
−m(·, k), um(·, k)

)
= 2 sin(mπ)

π
. (5.15)

Hence there exists a constant C [n]
m (k) such that

vm(·, k) = Wm(k)π
2 sin(mπ)u

[n]
−m(·, k) + C [n]

m (k)um(·, k). (5.16)

Proof. First we check (5.15), which follows from (2.20), using also Propositions 3.6 and 
3.18. Then we write

vm(·, k) = B[n]
m (k)u[n]

−m(·, k) + C [n]
m (k)um(·, k), (5.17)

and take the Wronskian of both sides with um(·, k). This allows us to compute B[n]
m (k)

and yields (5.16). �
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Proposition 5.6. Suppose that the assumptions of Proposition 5.5 are satisfied. Then the 
map {

0 ≤ Re(m) ≤ ε

2(n + 1), m 
= 0
}
×

{
Re(k) ≥ 0, k 
= 0

}
� (m, k) �→ W (vm(·, k), u[n]

−m(·, k))

is regular.

Proof. This follows from Propositions 3.19 and 4.6. �
5.3. Green’s functions for perturbed Bessel operators

As for every 1-dimensional Schrödinger operator, we can define the canonical bisolu-
tion and various Green’s functions for perturbed Bessel operators. The solutions that we 
constructed allow us to give explicit expressions for these Green’s functions.

As usual, when defining Green’s operators we will always assume that Re(k) ≥ 0
(although sometimes an extension to a larger domain is possible). Let Q ∈ L

(∞)
0 ∩L

(0)
0

for m 
= 0, and Q ∈ L
(∞)
0 ∩ L

(0)
0,ln, for m = 0. The canonical bisolution associated with 

the operator Lm2 + k2 is

Gm2,↔(−k2;x, y) = 1
Wm(k)

(
vm(x, k)um(y, k) − um(x, k)vm(y, k)

)
, (5.18)

where vm(·, k), um(·, k) are the solutions to (1.26) constructed in Propositions 3.6 and 
4.5, and Wm(k) is the Jost function defined in (5.1). The expression (5.18) is well-defined 
when Wm(k) 
= 0 and has a limit at k = 0. For m = 0 we can use

G0,↔(−k2;x, y) = 1
W0(k)

(
− p0(x, k)u0(y, k) + u0(x, k)p0(y, k)

)
.

From the canonical bisolution, we can construct in the usual way the forward Green’s 
operator Gm2,→(−k2) and the backward Green’s operator Gm2,←(−k2) of Lm2 + k2:

Gm2,→(−k2;x, y) := θ(x− y)G0
m2,↔(−k2;x, y), (5.19)

Gm2,←(−k2;x, y) := −θ(y − x)G0
m2,↔(−k2;x, y). (5.20)

Green’s operators defined by specifying boundary conditions at zero and at infinity 
will be called two-sided. They will often be bounded on L2]0, ∞[ and coincide with the 
resolvents of various closed realizations of Lm2 . However, they are of interest even when 
they do not define bounded operators and do not correspond to closed realizations of 
Lm2 .

The most natural two-sided Green’s operator corresponds to pure boundary conditions. 
In the unperturbed case they are usually called homogeneous boundary conditions, but 
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in the perturbed case this name seems no longer appropriate. It can be defined for 0 ≤ ε, 
Q ∈ L

(∞)
0 ∩ L

(0)
ε , m 
= 0, − ε

2 ≤ Re(m), and Q ∈ L
(∞)
0 ∩ L

(0)
0,ln, m = 0. Moreover, if 

Re(m) ≤ 0 we need to assume k 
= 0. Then if Wm(k) 
= 0 we set

Gm,��(−k2;x, y) := 1
Wm(k)

{
um(x, k)vm(y, k), x < y,

vm(x, k)um(y, k), y < x.
(5.21)

We also have Green’s operators with mixed boundary conditions. The cleanest situa-
tion we have under the assumption 0 ≤ ε, Q ∈ L

(∞)
ε ∩L

(0)
0 , m 
= 0, |Re(m)| ≤ ε

2 , k 
= 0. 
Then if k 
= 0, κ ∈ C ∪ {∞} and Wm(k) + κΓ(1−m)

Γ(1+m)
k2m

22m W−m(k) 
= 0, we define

Gm,��,κ(−k2;x, y) (5.22)

:= 1(
Wm(k) + κΓ(1−m)

Γ(1+m)
k2m

22m W−m(k)
)
{

(um + κΓ(1−m)
Γ(1+m)u−m)(x, k)vm(y, k), x < y,

vm(x, k)(um + κΓ(1−m)
Γ(1+m)u−m)(y, k), y < x.

Note that

Gm,��,κ(−k2;x, y) = G−m,��,κ−1(−k2;x, y). (5.23)

Similarly, for Q ∈ L
(∞)
0 ∩L

(0)
0,ln, m = 0, if νW0(k) + W (v0(·, k), p0(·, k)) 
= 0, then we 

define

Gν
0,��(−k2;x, y) (5.24)

:= 1(
νW0(k) + W (v0(·, k), p0(·, k))

)
{

(νu0 + p0)(x, k)v0(y, k), x < y,

v0(x, k)(νu0 + p0)(y, k), y < x.

Without the assumption Re(m) ≥ − ε
2 we are not guaranteed the existence of um, and 

hence we are not sure whether Green’s function with pure boundary conditions can be 
extended. However, we can use the boundary conditions given by u[n]

−m. Choose ε > 0, 
Q ∈ L

(∞)
ε ∩L

(0)
0 , m 
= 0, and a nonnegative integer n. Then for − ε

2 (n +1) ≤ Re(m) < 0
if k 
= 0, κ ∈ C ∪ {∞} and W

(
vm(·, k), u[n]

m (·, k)
)

+ κΓ(1−m)
Γ(1+m)

k2m

22m W−m(k) 
= 0, we can 
define

G
[n]
m,��,κ(−k2;x, y) := 1

W
(
vm(·, k), u[n]

m (·, k)
)

+ κΓ(1−m)
Γ(1+m)

k2m

22m W−m(k)
(5.25)

×
{

(u[n]
m + κΓ(1−m)

Γ(1+m)u−m)(x, k)vm(y, k), x < y,

vm(x, k)(u[n]
m + κΓ(1−m)

Γ(1+m)u−m)(y, k), y < x.

6. Closed realizations of Lm2

In this section we describe realizations of Lm2 as closed operators on L2]0, ∞[. We will 
see that under certain assumptions on the perturbation Q one can impose the boundary 
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condition at 0 in a similar way as in the unperturbed case. If we fix Q, it is also natural to 
organize these operators in holomorphic families, analogous to the holomorphic families 
studied in [12].

In the first two subsections we recall the basics of the theory of 1d Schrödinger oper-
ators and their boundary conditions.

6.1. 1-dimensional Schrödinger operators on the halfline

We will follow [13], other references include [20,21].
Suppose that ]0, ∞[� x �→ V (x) is a function in L1

loc]0, ∞[, possibly complex valued. 
Consider the expression

L := −∂2
x + V (x),

viewed as a linear map from AC1]0, ∞[ to L1
loc]0, ∞[. Let us describe the four most 

obvious closed realizations of L on L2]0, ∞[.
First define

D(Lmax) :=
{
f ∈ L2]0,∞[∩AC1]0,∞[ | Lf ∈ L2]0,∞[

}
,

D(Lmin) := the closure of {f ∈ D(Lmax) | f = 0 near 0 and ∞},
D(L0) := the closure of {f ∈ D(Lmax) | f = 0 near 0},
D(L∞) := the closure of {f ∈ D(Lmax) | f = 0 near ∞}.

Above, D(Lmax) is treated as a Hilbert space with the norm given by ‖f‖2
L := ‖Lf‖2 +

‖f‖2. We define

Lmax := L
∣∣
D(Lmax), Lmin := L

∣∣
D(Lmin), L0 := L

∣∣
D(L0), L∞ := L

∣∣
D(L∞).

Then Lmax, Lmin, L0 and L∞ are closed operators satisfying

Lmax ⊃ L∞ ⊃ Lmin, Lmax ⊃ L0 ⊃ Lmin.

Let us quote some general results. The following proposition is well-known, it is e.g. 
proven as Proposition 5.15 of [13]:

Proposition 6.1. If

lim sup
c→∞

c+1∫
c

|V (x)|dx < ∞, (6.1)

then
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Lmax = L∞, L0 = Lmin. (6.2)

Thus, there is no need to set boundary conditions at infinity.

By [13, Theorem 6.15], we have

Proposition 6.2. Suppose that (6.2) holds. Then we have the following alternative:

(i) either dimD(Lmax)/D(Lmin) = 0

and dim
{
f ∈ N (L− λ) | f is square integrable near 0

}
≤ 1 for all λ ∈ C ;

(ii) or dimD(Lmax)/D(Lmin) = 2

and dim{f ∈ N (Lmax − λ) | f is square integrable near 0} = 2 for all λ ∈ C.

Until the end of this subsection we suppose that alternative (ii) of Proposition 6.2
holds. Fix λ ∈ C and ξ ∈ Cc[0, ∞[ equal 1 near 0. Then by [13] we have a direct sum 
decomposition

D(Lmax) = D(Lmin) ⊕ {ξf | f ∈ N (L)}, (6.3)

where N (L) denotes all functions in AC1[0, ∞[ annihilated by L.
We are interested in operators L• lying “in the middle” between Lmin and Lmax, that 

is satisfying

Lmin ⊂ L• ⊂ Lmax,

where both inclusions are of codimension 1. All such operators correspond to one-
dimensional subspaces of D(Lmax)/D(Lmin). To specify such a subspace it is enough 
to choose

r ∈ D(Lmax), r /∈ D(Lmin), (6.4)

and to define

D(Lr) : = D(Lmin) + Cr, (6.5)

Lr : = Lmax∣∣
D(Lr). (6.6)

6.2. Boundary functionals

We continue to analyze general 1d Schrödinger operators. Until the end of this sub-
section we assume (6.2). We will give a method to describe boundary conditions which 
is often more practical than (6.5).
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First recall the concept of Wronskian (1.61). If f, g ∈ D(Lmax), then f, g ∈ AC1]0, ∞[⊂
C1]0, ∞[, hence their Wronskian at x ∈]0, ∞[, denoted W (f, g; x), is well defined. Inter-
estingly, the Wronskian extends to the boundary x = 0, as follows e.g. from [13, Theorem 
4.4]:

Proposition 6.3. For f, g ∈ D(Lmax)

lim
x↘0

W (f, g;x) =: W (f, g; 0)

exists and defines a continuous bilinear form. If in addition (6.2) holds, then

D(Lmin) =
{
f ∈ D(Lmax) | W (f, g; 0) = 0 for all g ∈ D(Lmax)

}
.

Let us define the boundary space

B :=
(
D(Lmax)/D(Lmin)

)′
,

where the prime denotes the dual.
Let r be as in (6.4). Let φ 
= 0 be a boundary functional (that is, an element of B) 

such that φ(r) = 0. Obviously,

D(Lr) : = {f ∈ D(Lmax) | φ(f) = 0}

is equivalent to (6.5).
The boundary functional φ can be simply written as

φ = cW (r, ·; 0), (6.7)

where c 
= 0. Using (6.3) and (6.7) we obtain

Corollary 6.4. Suppose that the alternative (ii) of Proposition 6.2 holds. Fix λ ∈ C. Then 
we have a natural isomorphism of B and N (L − λ):

B = {W (f, ·; 0) | f ∈ N (L− λ)}. (6.8)

We will say that a function f ∈ C1]0, ∞[ possesses the Wronskian at zero on D(Lmax)
if

W (f, g; 0) := lim
x↘0

W (f, g;x), g ∈ D(Lmax),

exists. Proposition 6.3 says that each function in D(Lmax) possesses the Wronskian at 
zero on D(Lmax).
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In practice, it may be difficult to make explicit an element r in D(Lmax) describing 
the functional φ by (6.7). Instead, we can often find a simpler function r1, not necessarily 
in D(Lmax), which also possesses the Wronskian at zero on D(Lmax) and such that

W (r, ·; 0) = W (r1, ·; 0). (6.9)

Then instead of (6.5) the domain of Lr can be equivalently characterized as:

D(Lr) : = {f ∈ D(Lmax) | W (r1, f ; 0) = 0}. (6.10)

6.3. The maximal and minimal realizations of Lm2

As everywhere in this paper, we assume that ]0, ∞[� x �→ Q(x) belongs to L1
loc]0, ∞[. 

For m ∈ C, set

Vm2(x) :=
(
m2 − 1

4

) 1
x2 + Q(x).

We consider the differential expression

Lm2 := −∂2
x + Vm2(x),

as a linear map on AC1]0, ∞[. By applying the definitions of Subsection 6.1, we can 
introduce the closed operators Lmax

m2 , Lmin
m2 such that

(
Lmin
m2

)# = Lmax
m2 ,

(
Lmax
m2

)# = Lmin
m2 .

Until the end of this section we assume that Q ∈ L
(∞)
0 .

Proposition 6.5. Let m ∈ C. Suppose that

Q ∈ L
(0)
0 , if m 
= 0, Q ∈ L

(0)
0,ln, if m = 0.

Then the following holds:

(i) If 1 ≤ |Re(m)|, then Lmin
m2 = Lmax

m2 .
(ii) If |Re(m)| < 1, then D(Lmin

m2 ) is a closed subspace of D(Lmax
m2 ) of codimension 2.

Proof. Obviously, the condition (6.1) holds. Therefore, only the boundary conditions at 
zero matter.

We can assume that Re(m) ≥ 0 and Re(k) ≥ 0. For m 
= 0, in the space N (Lm2+k2) all 
elements proportional to um(·, k) behave as x 1

2+m, and all other elements of N (Lm2+k2), 
by Proposition 3.10, behave as x 1

2−m. For m = 0 they behave respectively as x 1
2 and 

x
1
2 ln(x). Both are square integrable iff |Re(m)| < 1. Hence
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dim
{
f ∈ N (Lmax

m2 + k2) | f is square integrable near 0
}
≤ 1 for all Re(k) ≥ 0

iff |Re(m)| ≥ 1;
(6.11)

and

dim{f ∈ N (Lmax
m2 + k2) | f is square integrable near 0} = 2 for all Re(k) ≥ 0

iff |Re(m)| < 1.
(6.12)

Now we apply Proposition 6.2: (i) corresponds to (6.11) and (ii) corresponds to 
(6.12). �
6.4. Closed realizations of the unperturbed Bessel operator

Let us recall the basic theory of closed realizations of L0
m2 . We will essentially follow 

[16], except that we will put the superscript 0 on the symbols of various operators.
Let B0

m2 denote the boundary space of L0
m2 . Below we give natural bases of B0

m2 :

W (x 1
2−m, ·; 0), W (x 1

2+m, ·; 0), m 
= 0; (6.13)

W (x 1
2 , ·; 0), W (x 1

2 ln(x), ·; 0), m = 0. (6.14)

Note that for |Re(m)| < 1,

W (x 1
2−m, x

1
2+m) = 2m, (6.15)

W (x 1
2 , x

1
2 ln(x)) = 1, (6.16)

which implies the linear independence of (6.13) and (6.14).
Let us describe the basic families of closed realizations of Bessel operators. We will 

use two kinds of definitions of their domains. In what follows, ξ is a smooth compactly 
supported function equal to 1 near x = 0.

We have the family of realizations with pure boundary conditions defined for Re(m) >
−1:

D(H0
m) :=D(L0

m2) + Cx
1
2+mξ(x) (6.17)

=
{
f ∈ D(L0,max

m2 ) | W (x 1
2+m, f ; 0) = 0

}
, (6.18)

H0
m :=L0

m2

∣∣
D(H0

m). (6.19)

We have also two families with mixed boundary conditions. The first is the generic 
family defined for −1 < Re(m) < 1, κ ∈ C ∪ {∞}:
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D(H0
m,κ) := D(L0,min

m2 ) + C
(
x

1
2+m + κx

1
2−m

)
ξ(x) (6.20)

=
{
f ∈ D(L0,max

m2 ) | W
(
x

1
2+m + κx

1
2−m, f ; 0

)
= 0

}
, (6.21)

D(H0
m,∞) := D(H0

−m), H0
m,κ := L0

m2

∣∣
D(H0

m,κ). (6.22)

The second family corresponds to m = 0 and depends on ν ∈ C ∪ {∞}:

D(H0,ν
0 ) := D(L0,min

m2 ) + C
(
x

1
2 ln(x) + νx

1
2
)
ξ(x) (6.23)

=
{
f ∈ D(L0,max

0 ) | W
(
νx

1
2 + x

1
2 ln(x), f ; 0

)
= 0

}
, (6.24)

D(H0,∞
0 ) := D(H0

0 ), H0,ν
0 := L0

0
∣∣
D(H0,ν

0 ). (6.25)

The families of closed operators defined in (6.19), (6.22) and (6.25) are clearly indepen-
dent of the cutoff ξ. They are holomorphic with respect to the parameters m, κ, ν, except 
that (6.22) has a singularity at (m, κ) = (0, −1). They are situated between L0,min

m2 and 
L0,max
m2 .

6.5. Boundary functionals for perturbed Bessel operators

In this subsection, as well as in Subsections 6.6, 6.7 and 6.8, we analyze boundary con-
ditions near zero and the corresponding closed realizations of perturbed Bessel operators. 
For definiteness, throughout these four subsections we assume that Q ∈ L

(∞)
0 .

It does not seem practical to define boundary conditions for perturbed Bessel oper-
ators analogously as in (6.17), (6.20) and (6.23). In fact, even after imposing stronger 
conditions on Q, such as in Proposition 3.7, it is not easy to describe explicitly suffi-
ciently well the behavior of elements in D(Lmax

m2 ) near zero. In particular, conditions of 
Theorem 3.5 in general do not allow us to conclude that x 1

2±mξ(x) belongs to D(Lmax
m2 )

and x
1
2 ln(x)ξ(x) to D(Lmax

0 ).
Fortunately, we can use the method of (6.18), (6.21) and (6.24) involving the Wron-

skian at 0. The precise choice of a boundary functional is in general more complicated 
than in the unperturbed case, as we explain below.

Let us first describe some properties of the minimal domain. In the next proof, we 
denote by G→ = Gm2,→(−k2) the forward Green’s operator associated to Lm2 defined 
in (5.19).

Lemma 6.6. Suppose that h ∈ D(Lmin
m2 ).

(i) Let 0 ≤ Re(m) < 1, m 
= 0, Q ∈ L
(0)
0 . Then

h(x) = o(x 3
2 ), ∂xh(x) = o(x 1

2 ). (6.26)
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(ii) Let m = 0, Q ∈ L
(0)
0,ln. Then

h(x) = o(x 3
2 ln(x)), ∂xh(x) = o(x 1

2 ln(x)). (6.27)

Proof. Let h ∈ D(Lmin
m2 ) and c > 0. Let Re(k) ≥ 0 be such that Wm(k) 
= 0 (k exists 

by Corollary 5.4). Using e.g. [13, Proposition 7.3] we know that there exists f ∈ L2]0, c[
such that

h
∣∣
]0,c[ = G→(−k2)f

∣∣
]0,c[.

By e.g. [13, Proposition 7.5]

|G→(−k2)f(x)| ≤ 1
2
(
|wm(x, k)|‖um(·, k)‖x + |um(x, k)|‖wm(·, k)‖x

)
‖f‖x,

|∂xG→(−k2)f(x)| ≤ 1
2
(
|∂xwm(x, k)|‖um(·, k)‖x + |∂xum(x, k)|‖wm(·, k)‖x

)
‖f‖x,

where ‖f‖x := (
∫ x

0 |f(y)|2dy) 1
2 . By Proposition 4.12, for small x,

|wm(x, k)| � x
1
2−Re(m), |∂xwm(x, k)| � x− 1

2−Re(m), if m 
= 0,

|w0(x, k)| � x
1
2 |ln(x)|, |∂xwm(x, k)| � x− 1

2 |ln(x)|, if m = 0,

while, by Proposition 3.6,

|um(x, k)| � x
1
2+Re(m), |∂xum(x, k)| � x− 1

2+Re(m).

This yields the estimates (6.26)–(6.27). �
Lemma 6.7.

(i) Let 0 ≤ Re(m) < 1, m 
= 0 and Q ∈ L
(0)
0 . Let g ∈ AC1]0, ∞[ be such that 

g(x) = o(x 1
2+Re(m)) and ∂xg(x) = o(x− 1

2+Re(m)). Then

W (g, f ; 0) = 0 for all f ∈ D(Lmax
m2 ).

(ii) The same holds if m = 0, Q ∈ L
(0)
0,ln and g ∈ AC1]0, ∞[ satisfies g(x) =

o(x 1
2 |ln(x)|−1) and ∂xg(x) = o(x− 1

2 |ln(x)|−1).

Proof. Fix any k ∈ C. Every f ∈ D(Lmax
m2 ) can be written as f = ξf0 + f1 where f0 ∈

N (Lmax
m2 +k2) and f1 ∈ D(Lmin

m2 ). Now (i) follows by Lemma 6.6(i) and Proposition 3.10(i), 
and (ii) follows by Lemma 6.6(ii) and Proposition 3.10(ii). �

In what follows, we will denote by Bm2 the space of boundary functionals of Lm2 with 
a given perturbation Q. We will describe convenient bases of Bm2. In other words, we 
will find pairs of linearly independent functionals on D(Lmax

m2 ) that vanish on D(Lmin
m2 ).
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Note that cases (i)(a) and (iii)(a) of the next theorem have quite weak assumptions 
on the perturbation, however their non-principal boundary functionals depend on an 
arbitrary parameter a.

Theorem 6.8.
(i) Let 0 < Re(m) < 1.

(a) Assume Q ∈ L
(0)
0 . Let a > 0 be small enough as in Proposition 3.15. Then

W (u��(a)
−m (·, 0), ·; 0), W (x 1

2+m, ·; 0), (6.28)

is a basis of Bm2 .
(b) Suppose that the assumption is strengthened to Q ∈ L

(0)
ε for some ε > 0

(but we drop the assumption on a). Let n be a non-negative integer such that 
Re(m) ≤ (n+1)ε

2 . Then

W (u0[n]
−m, ·; 0), W (x 1

2+m, ·; 0) (6.29)

is a basis of Bm2 .
(c) If we assume 0 < ε, 0 < Re(m) ≤ ε

2 and Q ∈ L
(0)
ε , then

W (x 1
2−m, ·; 0), W (x 1

2+m, ·; 0) (6.30)

is a basis of Bm2 .

(ii) Let Re(m) = 0, m 
= 0. Assume Q ∈ L
(0)
0 . Then

W (x 1
2−m, ·; 0), W (x 1

2+m, ·; 0) (6.31)

is a basis of Bm2 .
(iii) Let m = 0.

(a) Assume Q ∈ L
(0)
0,ln. Let a > 0 be small enough as in Proposition 3.15. Then

W (p�(a)
0 , ·; 0), W (u0(·, 0), ·; 0) (6.32)

is a basis of B0.
(b) Suppose that the assumption on Q is strengthened to Q ∈ L

(0)
0,ln2 (but we drop 

the condition on a). Then

W (p0, ·; 0), W (x 1
2 , ·; 0) (6.33)

is a basis of B0.
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(c) If the assumption is further strengthened to Q ∈ L
(0)
ε for some ε > 0, then

W (x 1
2 ln(x), ·; 0), W (x 1

2 , ·; 0) (6.34)

is a basis of B0.

Proof. (i) Recall that in Propositions 3.6 and 3.15 we introduced the functions 
um(·, 0), u��(a)

−m (·, 0) spanning N (Lm2). Therefore, by (6.8),

W (u��(a)
−m (·, 0), ·; 0), W (um(·, 0), ·; 0) (6.35)

is a basis of Bm2 . Using (3.20)–(3.21) and Lemma 6.7(i) we see that

W (um(·, 0), ·; 0) = 1
Γ(m + 1)W (x 1

2+m, ·; 0). (6.36)

Therefore, we can replace um(·, 0) by x
1
2+m, obtaining the basis (6.28).

Assume now that Q ∈ L
(0)
ε for some ε > 0 and suppose that n is a positive integer, 

0 < ε < 2
n+1 , 0 < Re(m) ≤ ε(n+1)

2 and Q ∈ L
(0)
ε . By Proposition 3.17, we have

W (u��(a)
−m (·, 0), ·; 0) = W (u0[n]

−m, ·; 0) + c(a)[n]
m W (um(·, 0), ·; 0),

for some constant c(a)[n]
m depending on the parameters. Therefore, (6.29) is also a basis 

of Bm2 .
If 2Re(m) ≤ ε, then we can take n = 0:

u
0[0]
−m(·, 0) = u0

−m(·, 0) = x
1
2−m

Γ(1 −m) (6.37)

Then we can replace W (u0[0]
−m(·, 0), ·; 0) with W (x 1

2−m, ·; 0) obtaining the basis (6.30).
(ii) By Proposition 3.6, both um(·, 0) and u−m(·, 0) are well defined and span N (Lm2). 

By (6.8), we obtain a basis of Bm2

W (um(·, 0), ·; 0), W (u−m(·, 0), ·; 0).

Now (6.36) is still valid so that we can replace u±m(·, 0) by x
1
2±m, obtaining the basis 

(6.31)
(iii) In Propositions 3.6 and 3.25 we constructed functions u0(·, 0) and p�(a)

0 (·, 0)
spanning N (L0). It follows from (6.8) that (6.32) is a basis of B0.

If we strengthen the assumption to Q ∈ L
(0)
0,ln2 , then in Proposition 3.7 we defined 

p0(·, 0) ∈ N (L0). The functions p0(·, 0) and u0(·, 0) span N (L0). Therefore, by (6.8),

W (u0(·, 0), ·; 0), W (p0(·, 0), ·; 0)
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is a basis of B0. Besides, by Proposition 3.9 and Lemma 6.7(ii) we have

W (u0(·, 0), ·; 0) = W (x 1
2 , ·; 0).

Therefore, (6.33) is a basis of B0.
If the assumption is further strengthened to Q ∈ L

(0)
ε with ε > 0, then by Proposi-

tion 3.7 and Lemma 6.7(ii) we have

W (p0, ·; 0) = W (x 1
2 ln(x), ·; 0).

Therefore, (6.34) is a basis of B0. �
Remark 6.9. Let Q(x) = −β

x1l]0,1](x) as in Remark 3.21. Taking n = 1 in the previous 
theorem, it follows from that remark that for 0 < Re(m) < 1,

W
(
x

1
2−m

(
1 − βx

1 − 2m

)
, ·; 0

)
, W (x 1

2+m, ·; 0)

forms a basis of Bm2 .

Table 3 summarizes the bases of Bm2 that we constructed, depending on the values 
of −1 < Re(m) < 1 and on the conditions on Q.

Table 3
Bases of the boundary space Bm2 of Lm2 . In each case, we write g1, g2 if W (g1, ·; 0), W (g2, ·; 0) is a basis 
of Bm2 . To shorten notations, we write u��(a)

m for u��(a)
m (·, 0) and likewise for other functions. Note that 

u��(a)
m and p�(a)

0 depend on an arbitrary parameter a. Each line corresponds to a condition on Q, from the 
minimal one Q ∈ L

(0)
0 to the strongest one Q ∈ L (0)

ε , with ε > 0 (beside the condition Q ∈ L
(∞)
0 which 

we everywhere assume). In the last line, j ∈ {0, . . . , n}, where n is the smallest nonnegative integer such 
that (n+1)ε

2 ≥ 1.

−1 < Re(m) < 0 Re(m) = 0 0 < Re(m) < 1
m �= 0 m = 0

Q ∈ L
(0)
0 x

1
2
−m, u��(a)

m x
1
2
−m, x

1
2
+m ? u

��(a)
−m , x

1
2
+m

Q ∈ L
(0)
0,ln x

1
2
−m, u��(a)

m x
1
2
−m, x

1
2
+m p

�(a)
0 , x

1
2 u

��(a)
−m , x

1
2
+m

Q ∈ L
(0)
0,ln2 x

1
2
−m, u��(a)

m x
1
2
−m, x

1
2
+m p0, x

1
2 u

��(a)
−m , x

1
2
+m

Q ∈ L (0)
ε − (j+1)ε

2 ≤ Re(m) ≤ 0 x
1
2
−m, x

1
2
+m x

1
2 ln(x), x

1
2 0 ≤ Re(m) ≤ (j+1)ε

2

x
1
2
−m, u0[j]

m u
0[j]
−m, x

1
2
+m

As mentioned above, in the last line, for j = 0, u0[0]
m can be replaced by x

1
2+m and 

u
0[0]
−m can be replaced by x

1
2−m. For growing values or Re(m) > 0, the picture is then 

that, to pass from the region Rj := { jε
2 < Re(m) ≤ (j+1)ε

2 } to Rj+1, one needs to add a 

further term to u0[j]
−m in order to still have an element of Bm2 . Of course, we could also 

use u0[n]
−m in the whole region 0 < Re(m) < 1 for any n such that (n+1)ε

2 ≥ 1, but then 

all the terms of order o(x 1
2+m) in u0[n]

−m are irrelevant.
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6.6. The perturbed Bessel operator with pure boundary conditions

In this subsection we introduce the most natural family of perturbed Bessel operators. 
It is parallel to what in the unperturbed case was called the family of homogeneous Bessel 
operators. (In the perturbed case the homogeneity is no longer true, therefore the name 
has to be changed).

Let m ∈ C, −1 < Re(m). We assume that

Q ∈ L (0)
ε , m 
= 0, ε = max

(
0,−2Re(m)

)
;

Q ∈ L
(0)
0,ln2 , m = 0.

We can then define

D(Hm) :=
{
f ∈ D(Lmax

m2 ) | W (x 1
2+m, f ; 0) = 0

}
,

Hm := Lm2
∣∣
D(Hm),

which we will call the perturbed Bessel operator with pure boundary conditions.
Using Theorem 6.8 we see that the operator Hm is closed,

Lmin
m2 = Hm = Lmax

m2 , Re(m) ≥ 1;

Lmin
m2 ⊂ Hm ⊂ Lmax

m2 , −1 < Re(m) < 1;

and both inclusions are of codimension 1.

Proposition 6.10. Suppose that the assumptions on Q stated at the beginning of this 
subsection hold. Let Re(k) > 0. Then k2 /∈ σ(Hm) if and only if Wm(k) 
= 0. Moreover, 
the operator Gm,��(−k2) defined in (5.21) is then bounded and

Gm,��(−k2) = (k2 + Hm)−1.

Proof. We use [13, Proposition 7.7] together with the asymptotic behavior near 0 of 
um(x, k) established in Proposition 3.6. �

In the following theorem we fix a perturbation Q and consider the operator valued 
family Hm. In the definition of regularity we use the concept of a holomorphic family of 
closed operators recalled in Appendix B. Moreover, the continuity of a family of closed 
operators should be understood in the weak resolvent sense.

Theorem 6.11.
(i) Let 2 > ε > 0 and suppose that Q ∈ L

(0)
ε . Then

{
− ε

2 ≤ Re(m)
}
� m �→ Hm (6.38)
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is regular.
(ii) Let Q ∈ L

(0)
0 . Then

{
Re(m) ≥ 0, m 
= 0

}
� m �→ Hm, (6.39)

is regular. If we strengthen the assumption to Q ∈ L
(0)
0,ln2 , then we can include 

m = 0 in (6.39).

Proof. In view of Proposition 6.10, we can proceed as in the proof of Theorem 3.10 in 
[12]: It suffices to use Propositions 3.8, 4.6 and 5.1. �

Note that for Re(m) ≥ 1 the operator Hm is the unique closed realization of Lm2 . 
Theorem 6.11 shows that the holomorphic function

{Re(m) > 1} � m �→ Hm

has an analytic continuation to a larger region, (6.38) or (6.39), where the width of the 
additional strip depends on the assumption on the potential.

6.7. The perturbed Bessel operator with mixed boundary conditions I

In this subsection we describe closed realizations of perturbed Bessel operators with 
mixed boundary conditions under sufficiently strong conditions on the perturbation, 
which guarantee that these realizations are very similar to the unperturbed case.

Let m 
= 0, |Re(m)| < 1, ε = 2|Re(m)| and Q ∈ L
(0)
ε . For κ ∈ C ∪ {∞} we set

D(Hm,κ) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2+m + κx

1
2−m, f ; 0

)
= 0

}
, κ ∈ C,

D(Hm,∞) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2−m, f ; 0

)
= 0

}
,

Hm,κ := Lm2
∣∣
D(Hm,κ).

If m = 0 we assume Q ∈ L
(0)
0,ln2 . For ν ∈ C ∪ {∞} we set

D(Hν
0 ) :=

{
f ∈ D(Lmax

0 ) | W
(
νx

1
2 + p0, f ; 0

)
= 0

}
, ν ∈ C,

D(H∞
0 ) := D(H0),

Hν
0 := L0

∣∣
D(Hν

0 ).

Note that if Q ∈ L
(0)
ε with ε > 0, then

D(Hν
0 ) :=

{
f ∈ D(Lmax

0 ) | W
(
νx

1
2 + x

1
2 ln(x), f ; 0

)
= 0

}
.
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Clearly, the operators Hm,κ, Hν
0 are closed,

Lmin
m2 ⊂ Hm,κ ⊂ Lmax

m2 , (6.40)

Lmin
0 ⊂ Hν

0 ⊂ Lmax
0 , (6.41)

and both inclusions in (6.40) and (6.41) are of codimension 1.
One can compute the resolvents of Hm,κ in the same way as for Hm.

Proposition 6.12. Let Re(k) > 0.

(i) Let m 
= 0, |Re(m)| < 1, ε = 2|Re(m)|, Q ∈ L
(0)
ε and κ ∈ C ∪ {∞}. We 

have k2 /∈ σ(Hm,κ) if and only if Wm(k) + κΓ(1−m)
Γ(1+m)

k2m

22m W−m(k) 
= 0. Besides, the 
operator Gm,��,κ(−k2) defined in (5.22) is then bounded and

Gm,��,κ(−k2) = (k2 + Hm,κ)−1.

(ii) Let m = 0, Q ∈ L
(0)
0,ln2 and ν ∈ C ∪ {∞}. We have k2 /∈ σ(Hν

m) if and only 
if W (w0, νu0 + p0) 
= 0. Besides, the operator Gν

0,��(−k2) with kernel defined in 
(5.24) is then bounded and

Gν
0,��(−k2) = (k2 + Hν

0 )−1.

Proof. The argument is the same as in the proof of Proposition 6.10. �
Let us fix a perturbation Q and consider the operator valued families with mixed 

boundary conditions.

Theorem 6.13.
(i) Let 2 > ε > 0 and Q ∈ L

(0)
ε . Then

{
(m,κ) | |Re(m)| ≤ ε

2 , κ ∈ C ∪ {∞}, (m,κ) 
= (0,−1)
}
� (m,κ) �→ Hm,κ

(6.42)

is regular. Besides, Hm,κ = H−m,κ−1 .
(ii) Let m = 0. Suppose that Q ∈ L

(0)
0,ln2 . Then

C ∪ {∞} � ν �→ Hν
0 , (6.43)

is analytic.

Proof. This follows as in Theorem 6.11. �
Remark 6.14. Proposition 3.11(ii) in [12] (in the case Q = 0) shows that (m, κ) �→ Hm,κ

cannot be extended by continuity at (0, −1).
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6.8. The perturbed Bessel operator with mixed boundary conditions II

As discussed in Theorem 6.8 we can define closed realizations of Lm2 under much 
weaker conditions on Q than those in the previous subsection. Let us choose a nonnega-
tive integer n. A natural method to describe them is by using the boundary functionals 
defined by u0[n]

−m.
Let 0 ≤ Re(m) < 1, m 
= 0, ε = 2Re(m)

n+1 and Q ∈ L
(0)
ε . For κ ∈ C ∪ {∞} we set

D(H [n]
−m,κ) :=

{
f ∈ D(Lmax

m2 ) | W
(
u

0[n]
−m + κ

Γ(1 −m)
Γ(1 + m)x

1
2+m, f ; 0

)
= 0

}
, κ ∈ C,

D(H [n]
−m,∞) :=

{
f ∈ D(Lmax

m2 ) | W
(
x

1
2+m, f ; 0

)
= 0

}
,

H
[n]
−m,κ := Lm2

∣∣
D(H−m,κ).

Clearly, the operators H [n]
−m,κ are closed,

Lmin
m2 ⊂ H

[n]
−m,κ ⊂ Lmax

m2 (6.44)

and both inclusions in (6.44) are of codimension 1.
Note that in the particular case n = 0 we have H [0]

−m,κ = H−m,κ.

Proposition 6.15. Let 0 ≤ Re(m) < 1, m 
= 0, ε = 2Re(m)
n+1 and Q ∈ L

(0)
ε . We have 

k2 /∈ σ(H [n]
−m,κ) if and only if W (vm(·, k), u[n]

−m(·, k)) + κΓ(1−m)
Γ(1+m)Wm(k) 
= 0. Besides, the 

operator G[n]
m,��,κ(−k2) defined in (5.25) is then bounded and

G
[n]
m,��,κ(−k2) = (k2 + H

[n]
−m,κ)−1.

Proof. The argument is the same as in the proof of Proposition 6.10. �
The following theorem can be compared with Theorem 6.13:

Theorem 6.16. Let 1 > ε(n+1)
2 > 0 and Q ∈ L

(0)
ε . Then

{
− ε(n + 1)

2 ≥ −Re(m) ≥ 0,m 
= 0
}
× (C ∪ {∞}) � (−m,κ) �→ H

[n]
−m,κ (6.45)

is regular.

6.9. Scattering length

Suppose that

Q ∈ L
(∞)
δ , if 0 ≤ Re(m), m 
= 0, δ = 1 + 2Re(m);



J. Dereziński, J. Faupin / Journal of Functional Analysis 284 (2023) 109728 81
Q ∈ L
(∞)
1,ln2 , if m = 0.

(Note that we do not impose conditions on Q near 0 apart from the usual local integrabil-
ity) By Propositions 4.8 and 4.10, under these assumptions the space N (Lm2) possesses 
a distinguished basis

q−m, qm, m 
= 0;

q0, q0,ln, m = 0.

Therefore, the boundary space Bm2 has a basis

W (q−m, ·; 0), W (qm, ·; 0), m 
= 0; (6.46)

W (q0, ·; 0), W (q0,ln, ·; 0), m = 0. (6.47)

Suppose that H• is one of the realizations of the Bessel operator such that

Lmin
m2 � H• � Lmax

m2 .

As we discussed above, to define H• we need to fix a non-zero boundary functional. So 
far, we tried to express boundary functionals in terms of the asymptotics of functions 
near zero, as in Subsection 6.5.

In quantum mechanics one often prefers to describe realizations of perturbed Bessel 
operators using (6.46) and (6.47). We say that the scattering length of H• is a ∈ C if

D(H•) = {f ∈ D(Lmax
m2 ) | W (qm − aq−m, f ; 0) = 0}, m 
= 0; (6.48)

D(H•) = {f ∈ D(Lmax
m2 ) | W (q0,ln − aq0, f ; 0) = 0}, m = 0. (6.49)

If

D(H•) = {f ∈ D(Lmax
m2 ) | W (q−m, f ; 0) = 0}, m 
= 0; (6.50)

D(H•) = {f ∈ D(Lmax
m2 ) | W (q0, f ; 0) = 0}, m = 0, (6.51)

then we say that the scattering length of H• is a = ∞.
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Appendix A. Integral operators

In this appendix we recall a few elementary properties of operators defined by their 
integral kernels, especially, the so-called Volterra operators. We start with the following 
easy lemma:

Lemma A.1. Suppose that (x, y) �→ K(x, y) is a measurable function on ]0, ∞[×]0, ∞[
such that

sup
x

∞∫
0

|K(x, y)|dy =: C < ∞.

Then the operator K defined by

Kf(x) :=
∞∫
0

K(x, y)f(y)dy

is bounded on L∞]0, ∞[ and ‖K‖ ≤ C.

Given an integral operator K as in the previous lemma and a > 0, the operator K(a)

is defined as an operator on L∞]0, a[ by the kernel

K(a)(x, y) := θ(a− x)θ(a− y)K(x, y).

The operator K(a) is called the compression of K to ]0, a[.
We will say that the operator K with the kernel K(x, y) is a forward, respectively 

backward Volterra operator if K(x, y) = 0 for x < y, respectively x > y. The following 
proposition can be proven by an induction argument.

Proposition A.2. Suppose that K is a forward Volterra operator and

∞∫
0

|K(x, y)|dy =: C(x) < ∞.

Then for any a > 0, K(a) is bounded and 1l(a) + K(a) is invertible on L∞]0, a[. Besides, 
for all x > 0, n ∈ N,

|(Knf)(x)| ≤ 1
n!C(x)n ess sup

y<x
|f(y)|,

so that for f ∈ L∞]0, a[ the series
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(1l + K)−1f(x) =
∞∑

n=0
(−K)nf(x)

is convergent.

Appendix B. Holomorphic families of closed operators

In this appendix we recall the concept of a holomorphic family of operators on a 
complex Banach space H.

Let Θ be an open subset of Cd. We say that a family {B(z)}z∈Θ of bounded operators 
on H is a holomorphic family of bounded operators if for any f, g ∈ H

Θ � z �→ (f |B(z)g) (B.1)

is holomorphic. Note that this is equivalent to a weaker condition: {B(z)}z∈Θ is locally 
bounded on Θ and there exists a dense subspace D ⊂ H such that, for all f, g ∈ D, the 
map (B.1) is holomorphic.

One can also introduce another concept: that of holomorphic families of closed oper-
ators. We will not give here its general definition, which can be found e.g. in [7,18,26]
and will not be used here. We will restrict ourselves to defining this concept for families 
that have a nonempty resolvent set.

More precisely, suppose that {H(z)}z∈Θ is a function with values in closed operators 
on H. Suppose that for any z0 ∈ Θ, there exist λ ∈ C and a neighborhood Θ0 ⊂ Θ of z0

such that, for all z ∈ Θ0, λ is in the resolvent set of H(z). Then we say that {H(z)}z∈Θ
is holomorphic if for all such Θ0 the map Θ0 � z �→ (H(z) − λ)−1 is holomorphic as a 
family of bounded operators.

Appendix C. Technical lemma

The following easy lemma was used several times in the main part of the manuscript.

Lemma C.1. Let a > 0 or a = ∞. Let f ∈ L1
loc]0, a[ and h :]0, a[→ R be a positive 

increasing function such that h(x) → 0 as x → 0 and

a∫
0

h(x)|f(x)|dx < ∞.

Then

a∫
f(y)dy = o

(
h(x)−1), x → 0.
x
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Proof. Let

w(x, y) := h(x)|f(y)|1[x,a[(y).

Clearly, for a.e. y ∈]0, a[, w(x, y) → 0 as x → 0. Moreover, since h is increasing,

w(x, y) ≤ h(y)|f(y)|,

for all x, y ∈]0, a[. Since y �→ h(y)|f(y)| is integrable on ]0, a[ by assumption, the domi-
nated convergence theorem implies that

a∫
0

w(x, y)dy → 0, x → 0.

This proves the lemma. �
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