CANONICAL COMMUTATION RELATIONS, BOGOLIUBOV TRANSFORMATIONS QUADRATIC HAMILTONIANS

Jan Dereziński

Based partly on joint work with

Christian Gérard

PLAN

- 1. CANONICAL COMMUTATION RELATIONS
- 2. BOGOLIUBOV TRANSFORMATIONS AND QUADRATIC HAMILTONIANS IN FOCK REPRESENTATION
- 3. EXAMPLE: SCALAR FIELD WITH POSITION DEPENDENT MASS

CANONICAL COMMUTATION RELATIONS

Let (\mathcal{Y}, ω) be a real vector space equipped with an antisymmetric form. We will usually assume that ω is symplectic, which means that if it is nondegenerate. We will denote by $Sp(\mathcal{Y})$ the group of linear transformations preserving ω .

Heuristically, we are interested in a linear map

$$\mathcal{Y} \ni y \mapsto \hat{\phi}(y)$$

with values in self-adjoint operators such that the Heisenberg commutation relations hold:

$$[\hat{\phi}(y), \hat{\phi}(y')] = iy \cdot \omega y'$$

This is unfortunately a non-rigorous statement, since typically such $\hat{\phi}(y)$ are unbounded. It is however possible to give a rigorous formulation of the above idea.

A regular representations of the canonical commutation relations or a regular CCR representation over (\mathcal{Y}, ω) on a Hilbert space \mathcal{H} is a map

$$\mathcal{Y} \ni y \mapsto \hat{\phi}(y)$$

with values in self-adjoint operators on \mathcal{H} such that

$$e^{i\hat{\phi}(y)}e^{i\hat{\phi}(y')} = e^{-\frac{i}{2}y\cdot\omega y'}e^{i\hat{\phi}(y+y')},$$
$$\hat{\phi}(ty) = t\phi(y), \quad t \in \mathbb{R}$$

 $\hat{\phi}(y)$ are called field operators. It is easy to show that they depend linearly on y and satisfy the Heisenberg commutation relations on appropriate domains.

Consider a regular CCR representation

$$\mathcal{Y} \ni y \mapsto \hat{\phi}(y). \tag{1}$$

Let $R \in Sp(\mathcal{Y})$. Then

$$\mathcal{Y} \ni y \mapsto \hat{\phi}(Ry) \tag{2}$$

is also a regular CCR representation. We say that (2) has been obtained from (1) by a Bogoliubov transformation.

One can ask whether there exists a unitary U such that

$$U\hat{\phi}(y)U^* = \hat{\phi}(Ry), \quad y \in \mathcal{Y}.$$

Such a U is called a Bogoliubov implementer.

If $\mathcal{Y} = \mathbb{R}^{2d}$ is finite dimensional, then it is possible to characterize all Bogoliubov implementers. They are products of operators of the form $e^{i\hat{H}}$, where \hat{H} is a Bogoliubov Hamiltonian

$$\hat{H} = \sum b_{ij}\hat{\phi}_i\hat{\phi}_j + c.$$

Let us describe two basic constructions of CCR representations in the symplectic case:

- 1. the Schrödinger representation,
- 2. the Fock representation

Strictly speaking, the former works only for a finite number of degrees of freedom. The latter works for any dimension of \mathcal{Y} .

Consider the Hilbert space $L^2(\mathbb{R}^d)$. Let ϕ_i denote the *i*th coordinate of \mathbb{R}^d . Let $\hat{\phi}_i$ denote the operator of multiplication by the variable ϕ_i on and $\hat{\pi}_i$ the momentum operator $\frac{1}{i}\partial_{\phi_i}$. Then,

$$\mathbb{R}^d \oplus \mathbb{R}^d \ni (\eta, q) \mapsto \eta \cdot \hat{\phi} + q \cdot \hat{\pi} \tag{3}$$

is an irreducible regular CCR representation on $L^2(\mathbb{R}^d)$. (3) is called the Schrödinger representation over the symplectic space $\mathbb{R}^d \oplus \mathbb{R}^d$.

Let (\mathcal{Y}, ω) be a finite dimensional symplectic space. Clearly, \mathcal{Y} is always equivalent to $\mathbb{R}^d \oplus \mathbb{R}^d$ with the natural symplectic form.

The Stone–von Neumann Theorem says that all irreducible regular CCR representations over \mathcal{Y} are unitarily equivalent to the Schrödinger representation.

Let \mathcal{Z} be a complex Hilbert space. Consider the bosonic Fock space $\Gamma_s(\mathcal{Z})$. We use the standard notation for creation/annihilation operators $\hat{a}^*(z)$, $\hat{a}(z)$, $z \in \mathcal{Z}$.

We equip \mathcal{Z} with the symplectic form

$$z \cdot \omega z' := \operatorname{Im}(z|z').$$

The following regular CCR representation is called the Fock representation.

$$\mathcal{Z} \ni z \mapsto \hat{\phi}(z) := \frac{1}{\sqrt{2}} (\hat{a}^*(z) + \hat{a}(z)).$$

BOGOLIUBOV TRANSFORMATIONS AND QUADRATIC HAMILTONIANS IN FOCK REPRESENTATION

For simplicity, we will assume that the one-particle space is finite dimensional: $\mathcal{Z} = \mathbb{C}^m$. Operators on \mathbb{C}^m are identified with $m \times m$ matrices. If $h = [h_{ij}]$ is a matrix, then \overline{h} , h^* and $h^\#$ will denote its complex conjugate, hermitian conjugate and transpose.

We are interested in operators on the bosonic Fock space $\Gamma_{\mathbf{s}}(\mathbb{C}^m)$. \hat{a}_i, \hat{a}_j^* will denote the standard annihilation and creation operators on $\Gamma_{\mathbf{s}}(\mathbb{C}^m)$, where \hat{a}_i^* is the Hermitian conjugate of \hat{a}_i ,

$$[\hat{a}_i, \hat{a}_j] = [\hat{a}_i^*, \hat{a}_j^*] = 0,$$

 $[\hat{a}_i, \hat{a}_j^*] = \delta_{ij}.$

It is convenient to consider the doubled Hilbert space $\mathbb{C}^m \oplus \mathbb{C}^m$ equipped with the complex conjugation

$$J(z_1, z_2) = (\overline{z}_2, \overline{z}_1). \tag{4}$$

Operators that commute with J have the form

$$R = \begin{bmatrix} p & q \\ \overline{q} & \overline{p} \end{bmatrix}, \tag{5}$$

and will be called J-real.

We also introduce the charge form

$$S = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \tag{6}$$

We say that a J-real operator

$$R = \begin{bmatrix} p & q \\ \overline{q} & \overline{p} \end{bmatrix}. \tag{7}$$

is symplectic if

$$R^*SR = S.$$

Here are the equivalent conditions

$$p^*p - q^\# \overline{q} = 1, \quad p^*q - q^\# \overline{p} = 0,$$

$$pp^* - qq^* = 1$$
, $pq^\# - qp^\# = 0$.

We denote by $Sp(\mathbb{R}^{2m})$ the group of all symplectic transformations.

Note that

$$pp^* \ge 1, \quad p^*p \ge 1.$$

Hence p^{-1} and p^{*-1} are well defined, and we can set

$$d_1 := q^{\#}(p^{\#})^{-1},$$

 $d_2 := q\overline{p}^{-1}.$

Note that $d_1^{\#} = d_1$, $d_2 = d_2^{\#}$. One has the following factorization:

$$R = \begin{bmatrix} \mathbb{1} & d_2 \\ 0 & \mathbb{1} \end{bmatrix} \begin{bmatrix} (p^*)^{-1} & 0 \\ 0 & \overline{p} \end{bmatrix} \begin{bmatrix} \mathbb{1} & 0 \\ \overline{d}_1 & \mathbb{1} \end{bmatrix}. \tag{8}$$

In the present context, U is a (Bogoliubov) implementer of a symplectic transformation R if

$$U\hat{a}_i^*U^* = p_{ij}\hat{a}_j^* + q_{ij}\hat{a}_j,$$

$$U\hat{a}_iU^* = \overline{q}_{ij}\hat{a}_j^* + \overline{p}_{ij}\hat{a}_j.$$

Every symplectic transformation has an implementer, unique up to a choice of a phase factor. We will need a compact notation for double annihilators/creators: if $d = [d_{ij}]$ is a symmetric matrix, then

$$\hat{a}^*(d) = \sum_{ij} d_{ij} \hat{a}_i^* \hat{a}_j^*,$$

$$\hat{a}(d) = \sum_{ij} \overline{d}_{ij} \hat{a}_i \hat{a}_j,$$

We have the following canonical choices: the natural implementer $U_R^{\rm nat}$, and a pair of metaplectic implementers $\pm U_R^{\rm met}$:

$$U_R^{\text{nat}} := |\det pp^*|^{-\frac{1}{4}} e^{-\frac{1}{2}\hat{a}^*(d_2)} \Gamma((p^*)^{-1}) e^{\frac{1}{2}\hat{a}(d_1)},$$

$$\pm U_R^{\text{met}} := \pm (\det p^*)^{-\frac{1}{2}} e^{-\frac{1}{2}\hat{a}^*(d_2)} \Gamma((p^*)^{-1}) e^{\frac{1}{2}\hat{a}(d_1)}.$$

Bogoliubov implementers fom a group called sometimes the c-metaplectic group $Mp^c(\mathbb{R}^{2m})$. Metaplectic Bogoliubov implementers form a subgroup of $Mp^c(\mathbb{R}^{2m})$ called the metaplectic group $Mp(\mathbb{R}^{2m})$.

We have an obvious homomorphism $Mp^c(\mathbb{R}^{2m}) \ni U \mapsto R \in Sp(\mathbb{R}^{2m})$.

Various homomorphisms related to the metaplectic group can be described by the following diagram

Of special importance are positive symplectic transformations. They satisfy

$$p = p^*, \quad p > 0, \quad q = q^\#.$$
 (9)

For such transformations $d_1 = d_2$ will be simply denoted by

$$d := q(p^{\#})^{-1}$$

For positive symplectic transformations the natural implementer coincides with one of the metaplectic implementers:

$$U_R^{\text{nat}} := \det p^{-\frac{1}{2}} e^{-\frac{1}{2}\hat{a}^*(d)} \Gamma(p^{-1}) e^{\frac{1}{2}\hat{a}(d)}.$$

By a quadratic classical Hamiltonians, we will mean an expression of the form

$$H = 2\sum_{i,j} h_{ij} a_i^* a_j + \sum_{i,j} g_{ij} a_i^* a_j^* + \sum_{i,j} \overline{g}_{ij} a_i a_j,$$

where a_i, a_j^* are classical (commuting) variables such that a_i^* is the complex conjugate of a_i and the following Poisson bracket relations hold:

$$\{a_i, a_j\} = \{a_i^*, a_j^*\} = 0,$$

 $\{a_i, a_j^*\} = -i\delta_{ij}.$

We will assume that $h = h^*$, $g = g^{\#}$.

Classical Hamiltonians can be identified with self-adjoint J-real operators on the doubled space:

$$H = \left[\begin{array}{c} h & g \\ \overline{g} & \overline{h} \end{array} \right],$$

We also introduce

$$B := SH = \begin{bmatrix} h & g \\ -\overline{g} & -\overline{h} \end{bmatrix}.$$

By a quantization of H we will mean an operator on the bosonic Fock space $\Gamma_{\rm s}(\mathbb{C}^m)$ of the form

$$\sum g_{ij}\hat{a}_i^*\hat{a}_j^* + \sum \overline{g}_{ij}\hat{a}_i\hat{a}_j + 2\sum h_{ij}\hat{a}_i^*\hat{a}_j + c,$$

where c is an arbitrary real constant.

Two quantizations of H are especially useful: the Weyl quantization \hat{H}^{w} and the normally ordered (or Wick) quantization \hat{H}^{n} :

$$\hat{H}^{W} := \sum_{j} g_{ij} \hat{a}_{i}^{*} \hat{a}_{j}^{*} + \sum_{j} \overline{g}_{ij} \hat{a}_{i} \hat{a}_{j} + \sum_{j} h_{ij} \hat{a}_{i}^{*} \hat{a}_{j} + \sum_{j} h_{ij} \hat{a}_{j}^{*} \hat{a}_{i}^{*},
\hat{H}^{n} := \sum_{j} g_{ij} \hat{a}_{i}^{*} \hat{a}_{j}^{*} + \sum_{j} \overline{g}_{ij} \hat{a}_{i} \hat{a}_{j} + 2 \sum_{j} h_{ij} \hat{a}_{i}^{*} \hat{a}_{j}.$$

The two quantizations obviously differ by a constant:

$$\hat{H}^{\mathrm{w}} = \hat{H}^{\mathrm{n}} + \mathrm{Tr}h.$$

For any quadratic Hamiltonian H, we have $e^{it\hat{H}^w} \in Mp(\mathbb{R}^{2m})$.

Theorem Suppose that H > 0.

- 1. B has real nonzero eigenvalues.
- $2. \operatorname{sgn}(B)$ is symplectic.
- 3. $K := S \operatorname{sgn} B$ is symplectic and has positive eigenvalues.
- 4. Using the positive square root, define $R := K^{\frac{1}{2}}$. Then R is symplectic and diagonalizes H. That means, for some h_1 ,

$$R^{*-1}HR^{-1} = \begin{bmatrix} h_1 & 0 \\ 0 & h_1^{\#} \end{bmatrix}.$$

Here is an alternative expression for K:

$$K = H^{\frac{1}{2}} \left(H^{\frac{1}{2}} S H S H^{\frac{1}{2}} \right)^{-\frac{1}{2}} H^{\frac{1}{2}}.$$

On the quantum level, if R diagonalizes H, then the corresponding unitary Bogoliubov implementers U remove double annihilators/creators from \hat{H} :

$$U\hat{H}^{W}U^{*} = 2h_{1,ij}\hat{a}_{i}^{*}\hat{a}_{j} + E^{W},$$

 $U\hat{H}^{n}U^{*} = 2h_{1,ij}\hat{a}_{i}^{*}\hat{a}_{j} + E^{n},$

where E^{w} , resp. E^{n} is the infimum of \hat{H}^{w} , resp. of \hat{H}^{n} .

We can compute the infimum of the Bogoliubov Hamiltonians. The simplest expression is valid for the Weyl quantization, which we present in various equivalent forms:

$$E^{W} := \inf \hat{H}^{W} = \frac{1}{2} \text{Tr} \sqrt{B^{2}}$$

$$= \frac{1}{2} \text{Tr} \sqrt{H^{\frac{1}{2}} S H S H^{\frac{1}{2}}}$$

$$= \text{Tr} \int \frac{B^{2}}{B^{2} + \tau^{2}} \frac{d\tau}{2\pi}$$

$$= \frac{1}{2} \text{Tr} \begin{bmatrix} h^{2} - g g^{*} & -h g + g h^{\#} \\ g^{*} h - h^{\#} g^{*} & h^{\#2} - g^{*} g \end{bmatrix}^{\frac{1}{2}}$$

Suppose now that

$$H_0 = \begin{bmatrix} h_0 & 0 \\ 0 & \overline{h}_0 \end{bmatrix} \tag{10}$$

is a "free" Hamiltonian. We set

$$B_0 := SH_0 = \begin{bmatrix} h_0 & 0 \\ 0 & -\overline{h}_0 \end{bmatrix}, \qquad V = B^2 - B_0^2, \tag{11}$$

and we assume that

$$Tr(h - h_0) = 0, \quad h_0 > 0.$$
 (12)

The infimum of the Weyl quantization of H can be rewritten as

$$E^{\mathbf{w}} = \sum_{j=0}^{\infty} L_j,$$

where

$$L_{0} = \operatorname{Tr} \int \frac{B_{0}^{2}}{B_{0}^{2} + \tau^{2}} \frac{d\tau}{2\pi} = \frac{1}{2} \operatorname{Tr} |B_{0}| = \operatorname{Tr} h,$$

$$L_{j} = \operatorname{Tr} \int \frac{(-1)^{j+1}}{B_{0}^{2} + \tau^{2}} \left(V \frac{1}{B_{0}^{2} + \tau^{2}} \right)^{j} \tau^{2} \frac{d\tau}{2\pi}$$

$$= \operatorname{Tr} \int \frac{(-1)^{j}}{2j} \left(V \frac{1}{B_{0}^{2} + \tau^{2}} \right)^{j} \frac{d\tau}{2\pi}, \quad j = 1, 2, \dots$$

One can view $\hat{H}^{\rm n}$ as a Hamiltonian renormalized by subtracting L_0 :

$$\hat{H}^{\mathrm{n}} = \hat{H}^{\mathrm{w}} - L_0.$$

Note the formula for the infimum:

$$E^{n} = \text{Tr} \int \frac{1}{B^{2} + \tau^{2}} V \frac{1}{B_{0}^{2} + \tau^{2}} \tau^{2} \frac{d\tau}{2\pi}$$

Formally,

$$E^{\mathbf{n}} = \sum_{j=1}^{\infty} L_j.$$

Sometimes one needs to renormalize the Hamiltonian further by subtracting L_1 as well:

$$\hat{H}^{\text{ren}} := \hat{H}^{\text{w}} - L_0 - L_1$$

= $\hat{H}^{\text{n}} - L_1$.

Here is the formula for the infimum:

$$E^{\text{ren}} := \inf \hat{H}^{\text{ren}} = -\text{Tr} \int \frac{1}{B_0^2 + \tau^2} V \frac{1}{B^2 + \tau^2} V \frac{1}{B_0^2 + \tau^2} \tau^2 \frac{d\tau}{2\pi}$$

Formally,

$$E^{\rm ren} = \sum_{j=2}^{\infty} L_j.$$

The constant L_j arises in the diagramatic expasions as the evaluation of the loop with 2j vertices. To see this, introduce the "propagator"

$$G(t) := \frac{e^{-|B_0|t}}{2|B_0|}.$$

Clearly

$$\frac{1}{B_0^2 + \tau^2} = \int G(s) e^{is\tau} ds.$$

Therefore,

$$L_j = \int dt_{j-1} \cdots \int dt_1 \operatorname{Tr} V G(t_j - t_1) V G(t_1 - t_2) \cdots V G(t_{j-1} - t_j)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} dt_j \int_{-T}^{T} dt_{j-1} \cdots \int_{-T}^{T} dt_1$$

$$\text{Tr}VG(t_j - t_1)VG(t_1 - t_2) \cdots VG(t_{j-1} - t_j).$$

EXAMPLE:

SCALAR FIELD WITH POSITION DEPENDENT MASS

Consider classical variables parametrized by $\vec{x} \in \mathbb{R}^3$ satisfying the Poisson bracket relations

$$\begin{split} \{\phi(\vec{x}),\phi(\vec{y})\} &= \{\pi(\vec{x}),\pi(\vec{y})\} \; = \; 0, \\ \{\phi(\vec{x}),\pi(\vec{y})\} \; &= \; \delta(\vec{x}-\vec{y}). \end{split}$$

Consider quadratic classical Hamiltonians of the free scalar field:

$$H_0 = \int \left(\frac{1}{2}\pi^2(\vec{x}) + \frac{1}{2}(\vec{\partial}\phi(\vec{x}))^2 + \frac{1}{2}m^2\phi^2(\vec{x})\right) d\vec{x},$$

We can assume that the mass squared depends on a position, obtaining a perturbed Hamiltonian

$$H = \int \left(\frac{1}{2}\pi^{2}(\vec{x}) + \frac{1}{2}(\vec{\partial}\phi(\vec{x}))^{2} + \frac{1}{2}(m^{2} + \kappa(\vec{x}))\phi^{2}(\vec{x})\right) d\vec{x},$$

Let us replace classical variables ϕ, π with quantum operators $\hat{\phi}, \hat{\pi}$ satisfying the commutation relations

$$\begin{split} [\hat{\phi}(\vec{x}), \hat{\phi}(\vec{y})] &= [\hat{\pi}(\vec{x}), \hat{\pi}(\vec{y})] \; = \; 0, \\ [\hat{\phi}(\vec{x}), \hat{\pi}(\vec{y})] \; &= \; \mathrm{i} \delta(\vec{x} - \vec{y}). \end{split}$$

It is well-known how to quantize H_0 . The one-particle space consists of positive-frequency modes. The normally ordered Hamiltonian

$$\hat{H}_{0}^{n} = \int : \left(\frac{1}{2}\hat{\pi}^{2}(\vec{x}) + \frac{1}{2}(\vec{\partial}\hat{\phi}(\vec{x}))^{2} + \frac{1}{2}m^{2}\hat{\phi}^{2}(\vec{x})\right) : d\vec{x},$$

acts on the corresponding Fock space. The infimum of \hat{H}_0 is zero. (The Weyl prescription \hat{H}_0^{w} is ill-defined).

In the case of H, the normally-ordered prescription does not work. One has to renormalize by subtracting the (infinite) contribution of the loop with 2 vertices L_1 , which can be formally written as

$$\hat{H}^{\text{ren}} = \int : \left(\frac{1}{2}\hat{\pi}^2(\vec{x}) + \frac{1}{2}(\vec{\partial}\hat{\phi}(\vec{x}))^2 + \frac{1}{2}(m^2 + \kappa(\vec{x}))\hat{\phi}^2(\vec{x})\right) : d\vec{x} - L_1,$$

Let us stress that $\hat{H}^{\rm ren}$ is a well-defined self-adjoint operator acting on the same space as $\hat{H}^{\rm n}_0$

The infimum of \hat{H}^{ren} is the sum of loops

$$\sum_{j=2}^{\infty} L_j$$

with at least 4 vertices. It is called the vacuum energy and is closely related to the so-called effective action.