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CANONICAL COMMUTATION

RELATIONS

Let (Y , ω) be a real vector space equipped with an antisymmetric

form. We will usually assume that ω is symplectic, which means

that if it is nondegenerate. We will denote by Sp(Y) the group of

linear transformations preserving ω.



Heuristically, we are interested in a linear map

Y 3 y 7→ φ̂(y)

with values in self-adjoint operators such that the Heisenberg com-

mutation relations hold:

[φ̂(y), φ̂(y′)] = iy·ωy′

This is unfortunately a non-rigorous statement, since typically

such φ̂(y) are unbounded. It is however possible to give a rigorous

formulation of the above idea.



A regular representations of the canonical commutation relations

or a regular CCR representation over (Y , ω) on a Hilbert space H
is a map

Y 3 y 7→ φ̂(y)

with values in self-adjoint operators on H such that

eiφ̂(y)eiφ̂(y
′) = e−

i
2y·ωy

′
eiφ̂(y+y

′),

φ̂(ty) = tφ(y), t ∈ R

φ̂(y) are called field operators. It is easy to show that they depend

linearly on y and satisfy the Heisenberg commutation relations on

appropriate domains.



Consider a regular CCR representation

Y 3 y 7→ φ̂(y). (1)

Let R ∈ Sp(Y). Then

Y 3 y 7→ φ̂(Ry) (2)

is also a regular CCR representation. We say that (2) has been

obtained from (1) by a Bogoliubov transformation.



One can ask whether there exists a unitary U such that

Uφ̂(y)U ∗ = φ̂(Ry), y ∈ Y .

Such a U is called a Bogoliubov implementer.

If Y = R2d is finite dimensional, then it is possible to characterize

all Bogoliubov implementers. They are products of operators of the

form eiĤ , where Ĥ is a Bogoliubov Hamiltonian

Ĥ =
∑

bijφ̂iφ̂j + c.



Let us describe two basic constructions of CCR representations

in the symplectic case:

1. the Schrödinger representation,

2. the Fock representation

Strictly speaking, the former works only for a finite number of

degrees of freedom. The latter works for any dimension of Y .



Consider the Hilbert space L2(Rd). Let φi denote the ith coor-

dinate of Rd. Let φ̂i denote the operator of multiplication by the

variable φi on and π̂i the momentum operator 1
i∂φi. Then,

Rd ⊕ Rd 3 (η, q) 7→ η · φ̂ + q · π̂ (3)

is an irreducible regular CCR representation on L2(Rd). (3) is

called the Schrödinger representation over the symplectic space

Rd ⊕ Rd.



Let (Y , ω) be a finite dimensional symplectic space. Clearly, Y
is always equivalent to Rd ⊕ Rd with the natural symplectic form.

The Stone–von Neumann Theorem says that all irreducible reg-

ular CCR representations over Y are unitarily equivalent to the

Schrödinger representation.



Let Z be a complex Hilbert space. Consider the bosonic Fock

space Γs(Z). We use the standard notation for creation/annihilation

operators â∗(z), â(z), z ∈ Z .

We equip Z with the symplectic form

z·ωz′ := Im(z|z′).

The following regular CCR representation is called the Fock repre-

sentation.

Z 3 z 7→ φ̂(z) :=
1√
2

(
â∗(z) + â(z)

)
.



BOGOLIUBOV TRANSFORMATIONS

AND QUADRATIC HAMILTONIANS

IN FOCK REPRESENTATION

For simplicity, we will assume that the one-particle space is finite

dimensional: Z = Cm. Operators on Cm are identified with m×m
matrices. If h = [hij] is a matrix, then h, h∗ and h# will denote its

complex conjugate, hermitian conjugate and transpose.



We are interested in operators on the bosonic Fock space Γs(Cm).

âi, â
∗
j will denote the standard annihilation and creation operators

on Γs(Cm), where â∗i is the Hermitian conjugate of âi,

[âi, âj] = [â∗i , â
∗
j ] = 0,

[âi, â
∗
j ] = δij.



It is convenient to consider the doubled Hilbert space Cm ⊕ Cm

equipped with the complex conjugation

J(z1, z2) = (z2, z1). (4)

Operators that commute with J have the form

R =

[
p q

q p

]
, (5)

and will be called J -real.



We also introduce the charge form

S =

[
1l 0

0 −1l

]
. (6)

We say that a J -real operator

R =

[
p q

q p

]
. (7)

is symplectic if

R∗SR = S.



Here are the equivalent conditions

p∗p− q#q = 1l, p∗q − q#p = 0,

pp∗ − qq∗ = 1l, pq# − qp# = 0.

We denote by Sp(R2m) the group of all symplectic transformations.



Note that

pp∗ ≥ 1l, p∗p ≥ 1l.

Hence p−1 and p∗−1 are well defined, and we can set

d1 := q#(p#)−1,

d2 := qp−1.

Note that d#1 = d1, d2 = d#2 . One has the following factorization:

R =

[
1l d2

0 1l

][
(p∗)−1 0

0 p

][
1l 0

d1 1l

]
. (8)



In the present context, U is a (Bogoliubov) implementer of a

symplectic transformation R if

Uâ∗iU
∗ = pijâ

∗
j + qijâj,

UâiU
∗ = qijâ

∗
j + pijâj.

Every symplectic transformation has an implementer, unique up to

a choice of a phase factor.



We will need a compact notation for double annihilators/creators:

if d = [dij] is a symmetric matrix, then

â∗(d) =
∑
ij

dijâ
∗
i â
∗
j ,

â(d) =
∑
ij

dijâiâj,



We have the following canonical choices: the natural implementer

Unat
R , and a pair of metaplectic implementers ±Umet

R :

Unat
R := | det pp∗|−

1
4e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1),

±Umet
R := ±(det p∗)−

1
2e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1).

Bogoliubov implementers fom a group called sometimes the

c-metaplectic group Mpc(R2m). Metaplectic Bogoliubov imple-

menters form a subgroup ofMpc(R2m) called the metaplectic group

Mp(R2m).

We have an obvious homomorphism Mpc(R2m) 3 U 7→ R ∈
Sp(R2m).



Various homomorphisms related to the metaplectic group can be

described by the following diagram

1 1 1

↓ ↓ ↓
1 → Z2 → U(1) → U(1) → 1

↓ ↓ ↓
1 → Mp(R2m) → Mpc(R2m) → U(1) → 1

↓ ↓ ↓
1 → Sp(R2m) → Sp(R2m) → 1

↓ ↓
1 1



Of special importance are positive symplectic transformations.

They satisfy

p = p∗, p > 0, q = q#. (9)

For such transformations d1 = d2 will be simply denoted by

d := q(p#)−1

For positive symplectic transformations the natural implementer

coincides with one of the metaplectic implementers:

Unat
R := det p−

1
2e−

1
2 â
∗(d)Γ

(
p−1
)
e
1
2 â(d).



By a quadratic classical Hamiltonians, we will mean an expression

of the form

H = 2
∑

hija
∗
iaj +

∑
gija

∗
ia
∗
j +
∑

gijaiaj,

where ai, a
∗
j are classical (commuting) variables such that a∗i is the

complex conjugate of ai and the following Poisson bracket relations

hold:

{ai, aj} = {a∗i , a∗j} = 0,

{ai, a∗j} = −iδij.

We will assume that h = h∗, g = g#.



Classical Hamiltonians can be identified with self-adjoint J -real

operators on the doubled space:

H =

[
h g

g h

]
,

We also introduce

B := SH =

[
h g

−g −h

]
.



By a quantization of H we will mean an operator on the bosonic

Fock space Γs(Cm) of the form∑
gijâ

∗
i â
∗
j +
∑

gijâiâj + 2
∑

hijâ
∗
i âj + c,

where c is an arbitrary real constant.



Two quantizations of H are especially useful: the Weyl quanti-

zation Ĥw and the normally ordered (or Wick) quantization Ĥn:

Ĥw :=
∑

gijâ
∗
i â
∗
j +
∑

gijâiâj +
∑

hijâ
∗
i âj +

∑
hijâjâ

∗
i ,

Ĥn :=
∑

gijâ
∗
i â
∗
j +
∑

gijâiâj + 2
∑

hijâ
∗
i âj.

The two quantizations obviously differ by a constant:

Ĥw = Ĥn + Trh.

For any quadratic Hamiltonian H , we have eitĤ
w ∈Mp(R2m).



Theorem Suppose that H > 0.

1. B has real nonzero eigenvalues.

2. sgn(B) is symplectic.

3. K := SsgnB is symplectic and has positive eigenvalues.

4. Using the positive square root, define R := K
1
2 . Then R is

symplectic and diagonalizes H . That means, for some h1,

R∗−1HR−1 =

[
h1 0

0 h#
1

]
.



Here is an alternative exppression for K:

K = H
1
2
(
H

1
2SHSH

1
2
)−1

2H
1
2 .

On the quantum level, if R diagonalizes H , then the correspond-

ing unitary Bogoliubov implementers U remove double annihila-

tors/creators from Ĥ :

UĤwU ∗ = 2h1,ijâ
∗
i âj + Ew,

UĤnU ∗ = 2h1,ijâ
∗
i âj + En,

where Ew, resp. En is the infimum of Ĥw, resp. of Ĥn.



We can compute the infimum of the Bogoliubov Hamiltonians

The simplest expression is valid for the Weyl quantization, which

we present in various equivalent forms:

Ew := inf Ĥw =
1

2
Tr
√
B2

=
1

2
Tr
√
H

1
2SHSH

1
2

= Tr

∫
B2

B2 + τ 2
dτ

2π

=
1

2
Tr

[
h2 − gg∗ −hg + gh#

g∗h− h#g∗ h#2 − g∗g

]1
2



Suppose now that

H0 =

[
h0 0

0 h0

]
(10)

is a “free” Hamiltonian. We set

B0 := SH0 =

[
h0 0

0 −h0

]
, V = B2 −B2

0, (11)

and we assume that

Tr(h− h0) = 0, h0 > 0. (12)



The infimum of the Weyl quantization of H can be rewritten as

Ew =

∞∑
j=0

Lj,

where

L0 = Tr

∫
B2

0

B2
0 + τ 2

dτ

2π
=

1

2
Tr|B0| = Trh,

Lj = Tr

∫
(−1)j+1

B2
0 + τ 2

(
V

1

B2
0 + τ 2

)j
τ 2

dτ

2π

= Tr

∫
(−1)j

2j

(
V

1

B2
0 + τ 2

)jdτ
2π
, j = 1, 2, . . . .



One can view Ĥn as a Hamiltonian renormalized by subtracting

L0:

Ĥn = Ĥw − L0.

Note the formula for the infimum:

En = Tr

∫
1

B2 + τ 2
V

1

B2
0 + τ 2

τ 2
dτ

2π

Formally,

En =

∞∑
j=1

Lj.



Sometimes one needs to renormalize the Hamiltonian further by

subtracting L1 as well:

Ĥren := Ĥw − L0 − L1

= Ĥn − L1.

Here is the formula for the infimum:

Eren := inf Ĥren = −Tr

∫
1

B2
0 + τ 2

V
1

B2 + τ 2
V

1

B2
0 + τ 2

τ 2
dτ

2π

Formally,

Eren =

∞∑
j=2

Lj.



The constant Lj arises in the diagramatic expasions as the evalu-

ation of the loop with 2j vertices. To see this, introduce the “prop-

agator”

G(t) :=
e−|B0|t

2|B0|
.

Clearly
1

B2
0 + τ 2

=

∫
G(s)eisτds.



Therefore,

Lj =

∫
dtj−1 · · ·

∫
dt1TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj)

= lim
T→∞

1

2T

∫ T

−T
dtj

∫ T

−T
dtj−1 · · ·

∫ T

−T
dt1

TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj).



EXAMPLE:

SCALAR FIELD WITH

POSITION DEPENDENT MASS

Consider classical variables parametrized by ~x ∈ R3 satisfying

the Poisson bracket relations

{φ(~x), φ(~y)} = {π(~x), π(~y)} = 0,

{φ(~x), π(~y)} = δ(~x− ~y).



Consider quadratic classical Hamiltonians of the free scalar field:

H0 =

∫ (1

2
π2(~x) +

1

2

(
~∂φ(~x)

)2
+

1

2
m2φ2(~x)

)
d~x,

We can assume that the mass squared depends on a position, ob-

taining a perturbed Hamiltonian

H =

∫ (1

2
π2(~x) +

1

2

(
~∂φ(~x)

)2
+

1

2
(m2 + κ(~x))φ2(~x)

)
d~x,



Let us replace classical variables φ, π with quantum operators

φ̂, π̂ satisfying the commutation relations

[φ̂(~x), φ̂(~y)] = [π̂(~x), π̂(~y)] = 0,

[φ̂(~x), π̂(~y)] = iδ(~x− ~y).



It is well-known how to quantize H0. The one-particle space con-

sists of positive-frequency modes. The normally ordered Hamilto-

nian

Ĥn
0 =

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
m2φ̂2(~x)

)
:d~x,

acts on the corresponding Fock space. The infimum of Ĥ0 is zero.

(The Weyl prescription Ĥw
0 is ill-defined).



In the case ofH , the normally-ordered prescription does not work.

One has to renormalize by subtracting the (infinite) contribution

of the loop with 2 vertices L1, which can be formally written as

Ĥren =

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
(m2 + κ(~x))φ̂2(~x)

)
:d~x− L1,

Let us stress that Ĥren is a well-defined self-adjoint operator acting

on the same space as Ĥn
0



The infimum of Ĥren is the sum of loops
∞∑
j=2

Lj

with at least 4 vertices. It is called the vacuum energy and is closely

related to the so-called effective action.


