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Stationary van Hove limit
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The weak couplingvan Hove limit of one parameter groups of contractions is
studied by the stationary approach. We show that the resolvent of the properly
renormalized and rescaled generator of a contractive semigroup has a limit as the
coupling constant goes to zero. This limit is the resolvent of the generator of a
certain contractive semigroup. Our results can be viewed as a stationary counterpart
to the well known results about the weak coupling limit obtained by the time-
dependent approach, due to Davies. We compare both approacl2€5Ameri-

can Institute of Physic4DOI: 10.1063/1.1904509

I. INTRODUCTION

Let X be a Banach space with a distinguished bounded projeBtiGuppose thaﬂt* is a one
parameter strongly continuous group of isometriestayenerated by, := Ly+AQ. Assume thaP
commutes with the free dynamid:é’:e“-o or equivalentlyP commutes with_,. Our main object
of interest is the reduced dynamics

R s t— PUP

as an operator on Rdh
The reduced dynamics was studied in a series of pﬁﬁarﬂj in the boofkby Davies. First he
showed that the reduced dynamics after appropriately rescaling, i.e.,

t— PU}, ,P,

can be approximated, as the coupling conskagbes to zero, by a certain one parameter semi-
group on RarP depending on. The generator of this semigroup is a quadratic polynomialn
By the convergence we mean that for each fixed tintiee norm of the difference between the
resulting semigroup and the reduced rescaled dynamics tends to Zatdasomes smaller. We
will call this result, for the reasons that soon become clear, the pointimisiene) van Hove limit
with the first order term.

The second result obtained by Davies describes the caseP@t=0. He proved that the
reduced dynamics with a rescaled time renormalized by the free evolution, i.e.,

te> U°,PU, P, (1.

has a limit, for each fixed timé as the coupling constamt goes to zero. The limit is a one
parameter semigroup, independent\ofThe generator of the resulting semigroup is often called
the Davies generator. We will call this limit the pointwige time) van Hove limit without the first
order term.

One can distinguish two approaches to semigroups, the time-dependent approach and the
stationary approach. The former concentrates on the study of semigroups themselves. The latter
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focuses at the resolvent of their generators. Davies used the time-dependent approach, both in the
choice of the assumptions for his results and in their statements. In our paper we use mostly the
stationary approach.

Our main results are contained in three theorems. First in Theorem 3.1 we study, the stationary
van Hove limit for the reduced dynamics as the coupling constajdes to zero. More precisely,
we describe the asymptotics of the rescaled resolveit, sgEduced byP by the resolvent of a
certain operatoA, o. This is the stationary counterpart to the first result of Davies.

Theorem 3.2 describes the case without the first order (E@P=0). We additionally assume
that the spectrum oPL,P consist of isolated points. We obtain a simple asymptotics of the
Laplace transform of1.1) given by the resolvent of a certain operafdrindependent ofa
commuting withPLyP. We prove that the operatdris the generator of a contractive semigroup.
This is the stationary counterpart to the second result of Davies.

The main results about the stationary van Hove limit involve resolvents. They have, however,
easy time-dependent corollaries, which we call the smeared out weak coupling limit. By this we
mean that the difference of the rescaled restricted dynamics and the approximating dynamics
averaged over time with some continuous function of compact support tends to zero as the
coupling constant goes to zero. This version of the result is also contained in Theorems 3.1 and
3.2.

In Theorem 3.3 we show how one can obtain pointwisgime) van Hove limit without the
first order term starting from the stationary van Hove limit.

Theorem 3.5 gives conditions when one can apply both the time-dependent method of Davies
and our stationary results. We also find out that the semigroup obtained in the van Hove limit is
generated by the so-called level shift operator, see Refs. 9-11 and 7.

In the physical literature one can trace back the weak coupling limit to works of Wigner—
Weisskopf, Pauli and also van Ho¥&?° First rigorous mathematical treatment of this issue
comes from Davie$,;® who gave both its abstract theory and presented applications to open
guantum systemésee also Ref. 14

In his papers, Davies uses the time-dependent approach, i.e., he works with the restricted
dynamics. The key step in this approach is the construction of the resulting semigroup by the
integral formula(e.g., Theorem 3.1.33 in Ref).3The use of this formula induces technical
assumptions which may be not easy to verify. For the convenience of the reader we describe the
result of Davies in Theorem 3.4.

In our approach to the weak coupling limit, instead of working with the perturbed dynamics,
we investigate the resolvent of the perturbed generator. We use some regularity assumptions for
resolvents which seem easier to verify in some circumstances. In particular our regularity assump-
tions are closely related to the so-called limiting absorption principle which can be investigated
with help of the so-called Mourre theoffy.

We end this introduction with a description of the main physical motivation of our work—an
application of the van Hove limit to open quantum systems. We essentially follow Ref. 14, see also
Refs. 4 and 5. For more information, especially concerning the relationship of the van Hove limit
to applications of the method of the level shift operator to the return to equilibrium, we refer the
reader to Ref. 11. For related analysis of open quantum systems see also Refs. 15-17.

Let us consider a quantum mechanical system which consists of two parts—the small system
S and the reservoir pafR. To describeS one chooses appropriate Hilbert spd¢g. Then the
states are given by density matricg®., trace class normalized positive operatorsHy). The
time evolution of the isolated small systefis implemented by the Hamiltoniads. In a similar
way we describe the reservoir paR. We have Hilbert spacé{, the LiouvilleanLy (the
generator of the time evolutidgand density matrices oH . Let us additionally assume that there
exists a stationary state, denotegd, of R for the evolution implemented bly;.

The time evolution of whole systei+R is given by self-adjoint operator
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L)\== H5® 1R+1S® LR+)\V
acting on’H:=Hs® Hy WhereV is some interaction operator ands R. Hence for any density
matrix y on Hs® Hy, its evolution is given by
Uy := e7tibiyetila,

Assume that the initial state &f+R is p® wy for some density matriy on Hs. Then after
time t the state ofS+R is given byU;‘(p@ wr). If we treatR just as a device which induces
changes ofS and we want only to know what happens8pthen to obtain the state of at time
t we take the partial trace over the degrees of freedorR of

p(t) = trp(Ut(p ® wg)). (1.2

Note that the action oUtx can be extended to the whole space of the trace class operators
BYHs® Hz). Recall thaBY(Hs® Hy) is a Banach space under the ndfrfi,=tr|-| andU} is a
one parameter strongly continuous group of isometriesBéHs® Hy). If we introduce the
operator

P:BYHs ® Hz) — B Hs) ® wr CBYHs® Hy),

PW:= trR(V\/) & R,

thenP is a projection of norm one and the equatidn?) can be rewritten

p(t) ® wg == PUMP(p ® wy).

Note also thafU?, P]=0. Therefore, we have a setup, where we can apply our results. In the weak
coupling limit we obtain completely positive semigroup of contractions which is sometimes called
a quantum dynamical Markov semigroup. Hence starting with a fully reversible dynamics for the
whole system, we end up with an irreversible evolution of the small subsystem. Now, in the weak
coupling approximation, when we study the small system we may exchange complicated object
PU{‘P for a semigroup and use it in order to determine physical quantities. However there is a
price to be paid—the results that we get in this approximation are typically the lowest order
nonvanishing corrections in the coupling constant to the real quantities.

Il. PRELIMINARIES

Notation: Let X be a Banach space. For a linear operatan X, spL denotes its spectrum
and DomL its domain. IfE is an isolated bounded subset oflsthen the spectral projection of
L onto =, defined by the usual integral formufhijs denotedlz(L). If e is an isolated point of
spL, then we will write 1¢(L) for 1;g(L). o

Let 1'? be a distinguished bounded projection &nlt will be convenient to denoté&’’:=1
-1, We also introduce closed subspaces

XVi= 10X, XY= 1 X=Kerl®”,
so thatX’ is decomposed into a direct sum
X=X'® XY, (2.2
Any operatorH on X satisfying

Dom(H) = (Dom(H) N ) & (Dom(H) N &)

can be written with respect to the decompositi@rl) as
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lHUU vai

. _] :Huv+HvlT+ HE}+HE. (22)
Hve  Hw

ObviouslyH"=1""H1"’, etc. In particular
v 0
1:= 0 lw .

Wedgge, @) = {z € C:Rez>0,|Im(z-€)| < a Rez.

ForeeiR and fora=0 we denote

IIl. MAIN RESULTS

Let L, be the generator of a one parameter strongly continuous group of isonetr@® on
the Banach spac&’. Recall thatl, is norm closed, norm densely defined, conservative operator
(i.e., bothLy and -L, are dissipativeand spLoCiR.>®

Let 1°* be a distinguished projection gtisuch thaf|1v’||=1. Assume thal®” commutes with
Lo or equivalently[1*?,e'0]=0 for all t. Then the operatdr, written with respect to the decom-

position(2.1) has the form
L O
Lo= . (3.1

0 Ly
We write for shortnes&:=Lg’. Note thatkE generates a one parameter strongly continuous group
of isometries ont®.
Let Q with DomLyC Dom Q be another operator that we will treat as a perturbatidn,oFix
No>0. We assume that for9\ <\, the operator
Ly=Lo+\Q,

defined on Donk, =DomL, is the generator of a one parameter strongly continuous semigroup of
contractions on¥. B B

We will assume that the off-diagonal elements@fi.e., Q'Y andQ"’ are bounded. We also
assume that for all &\ <\, operatorE+\Q" generates a group of isometries afi.

Note that if L, with boundedQ' and Q"’ generates a group of isometries thEem\Q"
generates a group of isometries &fi.

A. Van Hove limit—stationary approach

In this section we discuss the van Hove limit under the assumptions involving the resolvent of
L,. The statement of our result is similar to the statement of the results of Davies, which we recall
later.

1. Van Hove limit with the first order term
Theorem 3.1: Assume that for alD==\ <X :

(i) For all £>0 we havef & sp(Li_”),
(i)  there exists an operatdry e B(X") such that, for any¥>0,

To:= lim QLY — LVV) Q. (3.2)
ANO
[Note that the right-hand side (RHS) of (3.2) may depend. dfe assume that it does not

Let
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Ay o= E+NQ™ + 22T, (3.3
Then the following holds:

(1) Ty generates a semigroup of contractions &H.
(2) A, generates a semigroup of contractions &f.
(3) For eaché>0,

lim (1°9(£1 = N72L,) 71 = (10 - N 2A 0 ) = 0. (3.4
A0

(4) For any fe Cy([0,9])

lim f f(0) (120%™ 1Y — e Avo)da = 0. (3.5
M0 Jo

Note that above we use the nota’ti(mw—Lﬁ_”)‘l for the inverse of the operataﬂE—L)”\_” re-
stricted tox". We will often use a similar notation without a comment.

2. Van Hove limit without the first order term

In this section we describe two versions of the van Hove limit without the first order term. In
the first we either work at the resolvents or smear out the dynamics in time. In the second, we
work at the dynamics pointwise in time. The statement of the second result is essentially the same
as that of Davies, however assumptions are different.

We will need the following additional assumptions.

Assumption 3.AspE is a finite set

Note that Assumption 3.A implies that we can write

v = > 14E).
eespE

Assumption 3.B: @=0.
Theorem 3.2:Let Assumptions 3.A and 3.B hold. Assume additionally that

(i) for 0=\ <A\, for each e= spE and for all ¢£>0 we have & ¢« sp(Li_”),
(i)  there exists an operatdr e B(X") such that, for any¥>0,
[= 3 lim LE)Q™((e+ 291" - L") 'Q™1(E). (3.6
eespE M\O
[Note that the RHS of (3.6) may dependfWe assume that it does rot
(i)  For any ee’ e spE, e#¢e’ and £>0,

lim ML(E)Q((e+\29)1% - L") 'Q" 1/(E) =0,
AN\O

lim Mg (E)Q™((e+\%)1% — L) 1Q" 1,(E) = 0.
A0

Then the following holds:

(1) T generates semigroup of contractions af,
(2 [ET]=0,
(3) for each&é>0 we have

lim > 1(E)1%(£1 -N4L, —el) ™10 = (&1 - 1) 7, (3.7
M0 eecspE

(4) for any fe Cy([0,o[),
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lim J f(0)(e N E1vemr 21 — eT)do = 0. (3.8
M0 Jo

Theorem 3.3:Let assumptions 3.A and 3.B hold. Assume additionally that

(i) for 0OsA<)Agand all ¢ C, Reé>0, we have§¢sp(Li_”),
(i)  forall ¢p=0 and for anyé € Wedge0, ), there exists an operatdr e B(X") such that

Ti= > lim 1(E)Q¥((e+N\291% - L) 1Q14(E), (3.9
eespE M\O

[Note that the RHS of (3.9) may dependfWe assume that it does ot
(i)  For each e= spE we have

sup Q7 ((e+ A2 - L) IQ <.

Re £>0;0SA<\g

Then

(1) all statemants of the Theorem 3.2 hold. Besides (3) holds in a stronger formg$o0 the
formula (3.7) is valid for eact e Wedg€0, «).
(2) LetyeX’. For 0=0 we have

lim (g7 “E1vve Phag — 7Ty = 0 (3.10
A0

uniformly for o e [ 7, 7] for any fixed0< rp< 7y <oo.

B. Van Hove limit—time-dependent approach

In this section we discuss the van Hove limit under the assumptions involving the dynamics.
In Theorem 3.4 we recall the original approach to the van Hove limit due to Dé‘\ﬁéSIrictly
speaking, Davies assumed that the perturbafias bounded. In Theorem 3.4 we impose slightly
less restrictive assumptions, which can be handled by an essentially the samg proof.

LetLy, Q, and1® be the same as before. Clealtly)y generates a semigroup aft. Therefore,
we can define the operator

\"2r w o — o —
K\, 7) = J ey Qurerhy QYU dx. (3.11)
X=

0

The following theorem describes the van Hove limit for the dynamics in both cases—with and
without the first order term.
Theorem 3.4: Assume additionally that

(i)  for all 7>0 there is a constant G 0 such that|K(\,7)||<C for \|<1 and0<7<m.
(i)  There exists bounded operator K aff such that if0< 7p< ;<o then

im( sup |[K(\,7)=K]|)=0.

I
M0 7gs7=T71
Then the following holds:

1)
lim ( sup [[1rvet gy - et”_z(E+”vi+)‘2K)||) =0. (3.12
A\ 0\O=st=7q

(2) If additionally Assumptions 3.A and 3.B hold then
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t\"2E vl N2y quu _ K” _
lim( sup|e™ "1 M }=0, (3.13
A\0\0<t<7;
where

1 a
> L(E)K1(E) = lim —— eFKetE dt.

eespE a—w 28J 4

Let us recall how the operatokg A, 7) are motivated. If we treat the off-diagonal elements of
L, as a(bounded perturbation of the diagonal part bf then, by a well-known formula, we have

t
etL)\ - et(LUU+LKU) + )\J e(t s) LUU+LKU)(QUU QUU)GSL)‘ ds.
s=0
Using this formula one gets
r
1uve)\_27'L)\10v — 1vve)\_ZTLKU + f 1uve)\_2(r—0')LivK()\, - U)lvve}\_zaL)\lvv do-.
0=0

Now we discuss how one can obtain the van Hove limit for the resolvents under time-
dependent assumptions. In fact we show when one can use both stationary and time-dependent
approaches. We will concentrate on the case without the first order term.

Theorem 3.5:Let Assumptions 3.A and 3.B hold. Assume additionally that

(i) for 0<A<\q and all ze C, Rez>0 we have % sp(Lf\_”),
(ii) foSUR)<>\<>\O||QUUeSL" QUU||dS<°°
(iii) for any s>0, |Im)\\0QU”eSL>\ Q””—Q””eSLO Qw.

Then
(1) The assumptions of both Theorem 3.2 and Theorem 3.4 hold. Moreover, we have
Kf=T.

(2) The following limits exist, coincide and equal o

lim X LE)Q™((e+ o1 - L§) Q" 1(E)
€\0 eecspE

=lim >, e 1,(E)Qe’oQe o1 (E)ds. (3.14)

€\0 eecspE

Note that the assumptions of Theorem 3.5 are stronger than that of Theorem 3.3 and Theorem 3.4
2.

The operator3.14) is often called the level shift operator. It is used to describe the second
order shift of eigenvalues df,.” %™
IV. PROOFS

Lemma 4.1: FolO<\ <\, the operator

- 0 AQY
=1 oo 504\ oo
AQ” LY +\Q

defined orDom([)\):X”@Dom(Lg_”) generates a semigroup of contractions &h
Proof: Let 0<A <\, The operator, is densely defined. By the Lumer-Phillips theorem
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(Theorem 3.1.16 in Ref.)3t is sufficient to show thatl) E)\ is dissipative(ll) for somee>0 we
havee & sp(L,).
Step (I): For 0=\ the operator,

Z=L,-LY

with the domain DorﬁZ):Dom(E)eaDom(L(”,_”) is densely defined and dissipative. Hence, by
Proposition 3.1.15 in Ref. 3 is closable and its closure is dissipative. But the closure of

coincides withtx. -
Step (Il): For 0=\ <\, the operator, -\ (Q""+Q"’) generates a semigroup such that for
Rez>|[A(Q"v+Q)| we havez ¢ sp(L,—\(Q"U+Q")) and
IzL = (L = MQV+ Q)7 = (Rez— [IMQ” + Q™))™

Hence, for alle> ¢, for somee, large enough,

(€1 - (L, = MQ™ + Q™)) 1N (Q™ + Q™)) < 1.

Hence, by the Neumann theoreel—[x is invertible for all > €, and soe ¢ sp(tx). O
By the Feshbach projection methb@l!®if z«& sp(L,) Usp(LYY) then the restricted resolvent is
given by

1"(z1- L) ™M™ =G, (),
where
G,(2) =21 — E - \Q™ - \2Q¥(z1" - LY)1Q™.
Hence
11/1)(%- _ )\_ZL)\)_llvv - )\ZG;l()\Zg) .

In what follows we will use these facts without a comme®ee Refs. 4 and 15-17.
Proof of Theorem 3.1:

(1) By Lemma 4.1, the 0peratd~r>\ generates a semigroup of contractions, which &or0
implies
(1 = N2Q (1 = L) Q™) Y = 1€l - L) T = g7

Hence, for all¢> & >0, the operatof£1?Y - Q(A2£1°° — L) 2Q") L is uniformly bounded. We
know that for anyé>0,

lim (£1° - Q(a21™ - L) ™'Q™) = £1% - T, (4.0

A0
Therefore, for allEé> &, the operatogl'’-T'; is invertible onX" and

ler -To 7Y < ¢

Hencel'y generates a semigroup of contractionsX(Theorem 2.21 and Corollary 2.22 in Ref.
6).

(2) Let 0<A<)\y. SinceE+\Q" generates a group of isometries ahglis bounded and
dissipative then the result follows from Theorem 3.1.32 in Ref. 3.

(3) Let 0O<A <\, Recall that foré>0,

N3G T N2)| < €78, (4.2
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(€10 = \2A O = €7 (4.3
lim QU (A2£1% - L) 1Q™ = T, (4.4)
PN
For any&é>0 we have
[19°(£1 = N2 ™M = (61 = NPAL 07|

=[IN2G; (A28 (QP (N2EL™ — L) 2QP — To)(£17 — N "2A, 9.

Hence by(4.2—(4.4) the RHS of the above expression tends to zera &nds to zero.
(4) For £>0, by the Laplace transform, we have

1UU(§]_ _ )\_ZL)\)_llUU _ (flvv _ )\_ZA)\’O)_l - f e_f"(lv”e"_z""'\lw _ e}‘_Z‘TA":O)dO'.
0

Hence by(3.4) we get
lim f e (17 "1 — @A) = 0. (4.5
AM\0J o
By the Stone—Weierstrass theorem, the family of functions
[0, 3 o€ ecR, £>0

forms an algebra which is dense in continuous functions of compact suppfBt®oh This fact
together with(4.5 implies (3.5). O
Lemma 4.2: Let E be the generator of a group of isometries. Let e be an isolated point in
sp(E). Then e is a semisimple eigenvalue which meahgHE=el,(E) and|/1(E)|=1.
Proof: Let e be an isolated point in $g). Then for anye>0,

l(e+ €1 -E) Y <€ (4.6)

So forze {ze C:dist(e,z) < 5}\{e} for somes>0 we have

(21" -E) = 1E)(z- €)'+ h(2), (4.7
whereh is an analytic function ofz e C:dist(e,z) < §}. Hencee is semisimple. Bu{4.7) also
implies that

lim e((e+ €)1"Y —E) 1= 1,E)
e\.0
and hence, by4.6), we get||1(E)||=1. O

For an isolated poing¢ € spE let us write for shortness

1= 1), 1%6:= 1 - 14(E),

X¢:= RanlyE), X*%:=Ranit®
then
X=X XC. (4.9

If & ,eespE andA e B(X?) then we denotd® ¢:=1¢'¢'A1ee

Proof of Theorem 3.2(2) follows immediately if we note that Lemma 4.2 implids
=2ecspe€le(E) and that we have':=Xq g e1(E)I"14(E).

(3) Let ee spE. Set
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Gy(£:6) = £1" + N 2(e1” ~ E) - QA2+ 917 - L) Q.
For £>0 we have
G\(&e) T =1"(E+ e - Ly) .
This and the dissipativity of, implies the bound
IG\(&e)™ <&t (4.9
Write for shortnesss instead ofG, (¢,e).

Decomposes=Gyijag*+ Gyt into its diagonal and off-diagonal part,

Guag= 2 19°G1°¢,

e espE
N r Al Al Al
Gor = > 1°9G18¢= > 1¢¢G1°°.
e espE e espE

First we would like to show that foé>0 and small enough, Gy, is invertible. By the
Neumann theorem, it is easy to see thé{G;,q is invertible on Rari® for small enough\.
Moreover, we have

185Gl =< N (4.10

It is more complicated to prove thatGg,q is invertible on Rari®®
We fix £>0. We know thatG is invertible and|G™Y|< &% Hence we can write

GdiagG_l =1- GOﬁG_l.

Therefore

1%%GyiagC = 1°°- 1°G 125G ™,

185G jiagG ' = 126~ 126G 4G ™. (4.11)
The latter identity can be for small enoughtransformed into
128G = Ggip 128~ Gingl2GorG ™. (4.12
We insert(4.12) into the first identity of(4.11) to obtain
1°GyiadG = 18- 186y 125G i + 1°G o 125G 5 Go G (4.13
We multiply (4.13 from the right by1®€to get
1°%Giagl®G 11%8= 1°°+ 1°5G 1 125G 51, Gort G 1% (4.19
Now, using
lim |G| = 0, (4.15
A0

(4.9 and(4.10 we obtain
lim 1°%G, 125G Gort G 11%°= 0.
AN\0

Thus, for small enough,
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1°GgjaB1 = 1%,
where
By := 1°G 11°9(1%°+ 1°%G 125G, Gor G '1°9 7.
Similarly, for small enough\, we find B, such that
leeeGdiag: 196.

This implies thatl®Gj,q is invertible on Rari®®
Next, we can write

G = Gghy~ Gt GoiiGaing* GamdGortCangGoiG -
Hence
196 = 1°G( 1 - Go12Cgaq + GorL™ChyGor G - (416
Therefore, for a fixed, by (4.9), (4.10, and(4.15, we see that ak\,0 we have
~ Goif1%G g + Goff 126G 515 GortG 2 — 0.

Therefore, for small enougk, we can invert the expression in the prenthese&idf6). Conse-
quently,

1%%Ggiag= G = 1°G (1 = G186 + Goir 128G 5inGortG ) ™
X (Goffle_eGailag_ Goffle_eGai%agGoffG_l)- (4.17
Therefore, for a fixed;, by (4.9), (4.10, and(4.15, we see that as 0 we have
1°4Gging— G — 0. (4.18
Equations(4.9) and (4.18 imply that 1"‘9(3;;9 is uniformly bounded a& \,0. We know that
1%G gjaq — 1%% - 1. (4.19
Therefore,£1°¢-1°" is invertible on Rari®® and
1°Gging— (1°% - 1) %,
Using again(4.18 we see that
1°6G71 — (1%% - 18) L. (4.20

Summing up(4.20 over e we obtain

> 115G (&0 (10 -7, (4.21)

eespE

which ends the proof of3).
(1) We have

E 1eeG)\(€_-, e)—l - E e—t(§+)\_ze)1eeetL)\/)\21vv di= f e—t§e—tE/)\210vetL}\/)\21UU dt.
eespE eespEJO 0

(4.22

2 2
Clearly, |etEA 1vvgtA" 10| < 1. Therefore,
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> 156G, (£e)t

eespE

<&t

Hence, by(4.21),

(x> -) < ¢,

which means thal is the generator of a semigroup of contractions.
(4) To prove this we repeat the argument used in the proof of Theorem 3.1.
Proof of Theorem 3.3:
(1) Follows by a simple modification of the argument used in Theorem 3.2.
(2) For ee spE and for Re£>0 we denote

Gy(£6) 1= €17 + N (el ~ E) - QP((N¢ + €17 - Li) Q™.
Obviously
Gr(£0) =17 (¢ + N He-Ly) M
and

[G\(&0)7Y < Reg™. (4.23

Let e XV. Let wyg>0 ando= 0. By the inverse Laplace transforiRef. 12 Chap. Xl and by
the proof of Theorem 3.2, uniformly forQ o< o< 71, we get

"2 -2
(e o\ Eluveo)\ L)\lvv_ 0'1")(/,

=— lim f e’ > (1°9(£+N"%e)1 - N72L,) T - (g1°8- T8 Yy d¢
wgti[ -RR]

eespE

1 R
= > Iimf fi(y,e)i dy,

27T| eespE R—w J_R

where

fi(y.e) = a(w0+iy)(1ee(3}\(w0 +iy,e)7t - ((wg +iy)1%¢- 9y
For eache e spE,

< 02wy’ + wp?)| .

d
d—yfx(y,e)

This shows that the family,(y,e) is equicontinuous as— 0.

For any fixedR>0 if only ag=(R+1)/wy then é=wy+iy e Wedgd0,«y) hence, by(1), we
get the pointwise convergenégy,e) — 0 as\ \,0 fory € [-R, R]. Finally pointwise convergence
together with equicontinuity implies uniform convergence on compacts, so for anyRixe@l

R R
lim j f,(y,€) ¥ dy:J lim f,(y,e)¢i dy=0.
M0 J-R RANO

To end the proof it is sufficient to show that for eaeh spE,

f fa(y,e)i dy
ly>R

Sincel*¢is independent ok we need only to show that

lim sup =0.

R—o 0=\<Aq
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R— 0=A<\q

lim sup f e”(@0*¥) 186G, (w, +iy,€) Ly dy|| = 0. (4.24)
Iy>R
Decomposes, (¢,e) into its diagonal and off-diagonal part,

Guag= 2 1°9G(£0)1°¢ =g1e-Ty(g0%+ > ((6-NHe -9)1°¢

e’ espE e espE;e’ #e

-T\(£0°°),

Go= 2 179G (0179 = X 1°9G\(£0)1°% = X (477,

e espE e espE e espE

where

TA(6€) = QU((NE+ 17 - Lg -AQ™) Q.
By the assumption for eadhe spE

sup [[Ty(& @)l <C <. (4.25
Re £>0;0sA<)\g

In the rest of the proof we write for shortneGs=G, (£,e) and T=T,(&,e).
Fix e e spE and leté:= wy+iy. Fix wy>C+1. Then, by the Neumann theorem, the operator
1°Gyiag= £1°°-T*¢is invertible onA® and we have

lg2*e-Te9 7 <yl -O)™* for |y|>C. (4.26

Note that for eacle’ e SpE, €’ # e the operaton%(e’ —€)1¢¢’ generates a group of isometries on
X% Hence the operatdt®’® Gyag=(6-\"2(e' —€))1°¢ - T*¢ is invertible onA®" and we have

(=N - )15 - T*¢) Y < (wy-C) T < 1. (4.27
This shows thaGg;,g is invertible onX™. We have

19071 = 190G (19~ Gy 128G ™) = (104 ToH¢1°0- T°9 1) (10~ Gy 12G ™)
= E7H(1%0+ TOR£1°°- T°9 1) (1°°- Gor12G g + Gor12GyingGor 155G ).

Now, using(4.23 and(4.25—(4.27, we get for|y|>C,

TR g1%e - T*971% - Gy 25671 = Da(wh + ¥ (| - O

€1 Goi 12 iagGor 1°G | < Da(wg +y2) ™Al - ©)F

for someD; >0 independent ok. Hence to prové4.24) if suffices to show that

lim sup f 70" (wq +iy) "H(1°8~ G 1&G ) ¢ dy|| = 0.

R—ee [\[<\o||J |y|>R
The first term in the above expression is independent bence we need only to consider the
second term. We have

1G5h,= 2 (E-NTHe - )T + TN - )1 - 1) .
e’ espE;e’ #e

Hence, by(4.25 and(4.27), we get
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e7t0™ (o +iy) *Gor1*Ciig| = D29(Y)G(y =\ Im(e’ ~ @) (4.29

for someD, >0 independent ok, where

R >y—g(y = (05 +y) ™ eR.
By the Holder inequality

fl | g(y)g(y =\t Im(e’ - €))dy =< |9l 2 -rju[rL.allOllL2R a0 — O- (4.29
y|>R

Now, by (4.28 and(4.29, we get

—0

J eo-((uo“'i)’)(wo + iy)_lGOffle_%ai:,lagl// dy
>R

independently oh. This ends the proof of3.10. O
Proof of Theorem 3.5Set

f(s):= sup||Qesx Q*.
[\[<Xg

We know thatf(t) is integrable.
For anyee iR and =0 we can dominate the integrand in the integral,

Frle.d) = f Qe Qe s ds= Q17 (e + N2 - LT IQ” (4.30
0

by f(s). Hence, using the dominated convergence theorem we se&,ffegt) is continuous at
A=0 andé=0. But

> 1EF(e01(E) = > lim 1 (E)Q(1%(e+\%) - L) Q" 1,(E) =T.

eespE eespE A0

Recall(3.11), the definition ofK(\,1),
4 — oo —
K(\,1) :=J e SEQuuesh Q™ ds.
0

Its integrand can also be dominated byg). Hence, using again the dominated convergence
theorem, we see that, far— 0, K(\,t) is convergent to

K= J eSEQweo Q™ ds.

0

Therefore,

Ki= X 14E) f ) QU QTS L(E) = D 1(E)Fg(e,01(E).
0

eespE eespE
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