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The weak couplingsvan Hoved limit of one parameter groups of contractions is
studied by the stationary approach. We show that the resolvent of the properly
renormalized and rescaled generator of a contractive semigroup has a limit as the
coupling constant goes to zero. This limit is the resolvent of the generator of a
certain contractive semigroup. Our results can be viewed as a stationary counterpart
to the well known results about the weak coupling limit obtained by the time-
dependent approach, due to Davies. We compare both approaches. ©2005 Ameri-
can Institute of Physics.fDOI: 10.1063/1.1904509g

I. INTRODUCTION

Let X be a Banach space with a distinguished bounded projectionP. Suppose thatUt
l is a one

parameter strongly continuous group of isometries onX generated byLlªL0+lQ. Assume thatP
commutes with the free dynamicsUt

0=etL0 or equivalentlyP commutes withL0. Our main object
of interest is the reduced dynamics

R { t ° PUt
lP

as an operator on RanP.
The reduced dynamics was studied in a series of papers4,5 and in the book6 by Davies. First he

showed that the reduced dynamics after appropriately rescaling, i.e.,

t ° PUt/l2
l P,

can be approximated, as the coupling constantl goes to zero, by a certain one parameter semi-
group on RanP depending onl. The generator of this semigroup is a quadratic polynomial inl−1.
By the convergence we mean that for each fixed timet the norm of the difference between the
resulting semigroup and the reduced rescaled dynamics tends to zero asulu becomes smaller. We
will call this result, for the reasons that soon become clear, the pointwisesin timed van Hove limit
with the first order term.

The second result obtained by Davies describes the case withPQP=0. He proved that the
reduced dynamics with a rescaled time renormalized by the free evolution, i.e.,

t ° U−t/l2
0 PUt/l2

l P, s1.1d

has a limit, for each fixed timet, as the coupling constantl goes to zero. The limit is a one
parameter semigroup, independent ofl. The generator of the resulting semigroup is often called
the Davies generator. We will call this limit the pointwisesin timed van Hove limit without the first
order term.

One can distinguish two approaches to semigroups, the time-dependent approach and the
stationary approach. The former concentrates on the study of semigroups themselves. The latter
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focuses at the resolvent of their generators. Davies used the time-dependent approach, both in the
choice of the assumptions for his results and in their statements. In our paper we use mostly the
stationary approach.

Our main results are contained in three theorems. First in Theorem 3.1 we study, the stationary
van Hove limit for the reduced dynamics as the coupling constantl goes to zero. More precisely,
we describe the asymptotics of the rescaled resolvent ofLl reduced byP by the resolvent of a
certain operatorAl,0. This is the stationary counterpart to the first result of Davies.

Theorem 3.2 describes the case without the first order termsPQP=0d. We additionally assume
that the spectrum ofPL0P consist of isolated points. We obtain a simple asymptotics of the
Laplace transform ofs1.1d given by the resolvent of a certain operatorG independent ofl
commuting withPL0P. We prove that the operatorG is the generator of a contractive semigroup.
This is the stationary counterpart to the second result of Davies.

The main results about the stationary van Hove limit involve resolvents. They have, however,
easy time-dependent corollaries, which we call the smeared out weak coupling limit. By this we
mean that the difference of the rescaled restricted dynamics and the approximating dynamics
averaged over time with some continuous function of compact support tends to zero as the
coupling constant goes to zero. This version of the result is also contained in Theorems 3.1 and
3.2.

In Theorem 3.3 we show how one can obtain pointwisesin timed van Hove limit without the
first order term starting from the stationary van Hove limit.

Theorem 3.5 gives conditions when one can apply both the time-dependent method of Davies
and our stationary results. We also find out that the semigroup obtained in the van Hove limit is
generated by the so-called level shift operator, see Refs. 9–11 and 7.

In the physical literature one can trace back the weak coupling limit to works of Wigner–
Weisskopf, Pauli and also van Hove.18–20 First rigorous mathematical treatment of this issue
comes from Davies,4–6 who gave both its abstract theory and presented applications to open
quantum systemsssee also Ref. 14d.

In his papers, Davies uses the time-dependent approach, i.e., he works with the restricted
dynamics. The key step in this approach is the construction of the resulting semigroup by the
integral formulase.g., Theorem 3.1.33 in Ref. 3d. The use of this formula induces technical
assumptions which may be not easy to verify. For the convenience of the reader we describe the
result of Davies in Theorem 3.4.

In our approach to the weak coupling limit, instead of working with the perturbed dynamics,
we investigate the resolvent of the perturbed generator. We use some regularity assumptions for
resolvents which seem easier to verify in some circumstances. In particular our regularity assump-
tions are closely related to the so-called limiting absorption principle which can be investigated
with help of the so-called Mourre theory.8

We end this introduction with a description of the main physical motivation of our work—an
application of the van Hove limit to open quantum systems. We essentially follow Ref. 14, see also
Refs. 4 and 5. For more information, especially concerning the relationship of the van Hove limit
to applications of the method of the level shift operator to the return to equilibrium, we refer the
reader to Ref. 11. For related analysis of open quantum systems see also Refs. 15–17.

Let us consider a quantum mechanical system which consists of two parts—the small system
S and the reservoir partR. To describeS one chooses appropriate Hilbert spaceHS. Then the
states are given by density matricessi.e., trace class normalized positive operators onHSd. The
time evolution of the isolated small systemS is implemented by the HamiltonianHS. In a similar
way we describe the reservoir partR. We have Hilbert spaceHR, the Liouvillean LR sthe
generator of the time evolutiond and density matrices onHR. Let us additionally assume that there
exists a stationary state, denotedvR, of R for the evolution implemented byLR.

The time evolution of whole systemS+R is given by self-adjoint operator
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Ll ª HS ^ 1R + 1S ^ LR + lV

acting onHªHS ^ HR whereV is some interaction operator andlPR. Hence for any density
matrix x on HS ^ HR its evolution is given by

Ut
lx ª e−tiLlxetiLl.

Assume that the initial state ofS+R is r ^ vR for some density matrixr on HS. Then after
time t the state ofS+R is given byUt

lsr ^ vRd. If we treatR just as a device which induces
changes ofS and we want only to know what happens toS, then to obtain the state ofS at time
t we take the partial trace over the degrees of freedom ofR,

rstd ª trRsUt
lsr ^ vRdd. s1.2d

Note that the action ofUt
l can be extended to the whole space of the trace class operators

B1sHS ^ HRd. Recall thatB1sHS ^ HRd is a Banach space under the normi ·i1=tru ·u andUt
l is a

one parameter strongly continuous group of isometries onB1sHS ^ HRd. If we introduce the
operator

P:B1sHS ^ HRd → B1sHSd ^ vR , B1sHS ^ HRd,

PWª trRsWd ^ vR,

thenP is a projection of norm one and the equations1.2d can be rewritten

rstd ^ vR ª PUt
lPsr ^ vRd.

Note also thatfUt
0,Pg=0. Therefore, we have a setup, where we can apply our results. In the weak

coupling limit we obtain completely positive semigroup of contractions which is sometimes called
a quantum dynamical Markov semigroup. Hence starting with a fully reversible dynamics for the
whole system, we end up with an irreversible evolution of the small subsystem. Now, in the weak
coupling approximation, when we study the small system we may exchange complicated object
PUt

lP for a semigroup and use it in order to determine physical quantities. However there is a
price to be paid—the results that we get in this approximation are typically the lowest order
nonvanishing corrections in the coupling constant to the real quantities.

II. PRELIMINARIES

Notation: Let X be a Banach space. For a linear operatorL on X, spL denotes its spectrum
and DomL its domain. IfJ is an isolated bounded subset of spL then the spectral projection of
L onto J, defined by the usual integral formula,13 is denoted1JsLd. If e is an isolated point of
spL, then we will write1esLd for 1hejsLd.

Let 1vv be a distinguished bounded projection onX. It will be convenient to denote1vv
ª1

−1vv. We also introduce closed subspaces

X v
ª 1vvX, X v̄

ª 1vvX = Ker 1vv,

so thatX is decomposed into a direct sum

X = X v
% X v̄. s2.1d

Any operatorH on X satisfying

DomsHd = sDomsHd ù X vd % sDomsHd ù X v̄d

can be written with respect to the decompositions2.1d as
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H = FHvv Hvv̄

Hv̄v HvvG = Hvv + Hvv̄ + Hv̄v + Hvv. s2.2d

ObviouslyHvv=1vvH1vv, etc. In particular

1ª F1vv 0

0 1vvG .

For eP iR and foraù0 we denote

Wedgese,ad ª hzP C:Rez. 0,uImsz− edu ø a Rezj.

III. MAIN RESULTS

Let L0 be the generator of a one parameter strongly continuous group of isometriest°etL0 on
the Banach spaceX. Recall thatL0 is norm closed, norm densely defined, conservative operator
si.e., bothL0 and −L0 are dissipatived and spL0, iR.3,6

Let 1vv be a distinguished projection onX such thati1vvi=1. Assume that1vv commutes with
L0 or equivalentlyf1vv ,etL0g=0 for all t. Then the operatorL0 written with respect to the decom-
position s2.1d has the form

L0 = FL0
vv 0

0 L0
vvG . s3.1d

We write for shortnessEªL0
vv. Note thatE generates a one parameter strongly continuous group

of isometries onX v.
Let Q with DomL0,DomQ be another operator that we will treat as a perturbation ofL0. Fix

l0.0. We assume that for 0øl,l0 the operator

Ll ª L0 + lQ,

defined on DomLl=DomL0 is the generator of a one parameter strongly continuous semigroup of
contractions onX.

We will assume that the off-diagonal elements ofQ, i.e., Qv̄v andQvv̄ are bounded. We also
assume that for all 0øl,l0 operatorE+lQvv generates a group of isometries onX v.

Note that if Ll with boundedQv̄v and Qvv̄ generates a group of isometries thenE+lQvv

generates a group of isometries onX v.

A. Van Hove limit—stationary approach

In this section we discuss the van Hove limit under the assumptions involving the resolvent of
Ll. The statement of our result is similar to the statement of the results of Davies, which we recall
later.

1. Van Hove limit with the first order term

Theorem 3.1:Assume that for all0øl,l0 :

sid For all j.0 we havej¹spsLl
vvd,

sii d there exists an operatorG0PBsX vd such that, for anyj.0,

G0 ª lim
l↘0

Qvv̄sl2j1vv − Ll
vvd−1Qv̄v. s3.2d

fNote that the right-hand side (RHS) of (3.2) may depend onj. We assume that it does notg.

Let
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Al,0ª E + lQvv + l2G0. s3.3d

Then the following holds:

s1d G0 generates a semigroup of contractions onX v.
s2d Al,0 generates a semigroup of contractions onX v.
s3d For eachj.0,

lim
l↘0

s1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1d = 0. s3.4d

s4d For any fPC0sf0,`fd

lim
l↘0

E
0

`

fssds1vvesl−2Ll1vv − esl−2Al,0dds = 0. s3.5d

Note that above we use the notationsz1vv−Ll
vvd−1 for the inverse of the operatorz1vv−Ll

vv re-
stricted toX v̄. We will often use a similar notation without a comment.

2. Van Hove limit without the first order term

In this section we describe two versions of the van Hove limit without the first order term. In
the first we either work at the resolvents or smear out the dynamics in time. In the second, we
work at the dynamics pointwise in time. The statement of the second result is essentially the same
as that of Davies, however assumptions are different.

We will need the following additional assumptions.
Assumption 3.A:spE is a finite set.
Note that Assumption 3.A implies that we can write

1vv = o
ePsp E

1esEd.

Assumption 3.B: Qvv=0.
Theorem 3.2:Let Assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0, for each ePspE and for all j.0 we have e+j¹spsLl
vvd,

sii d there exists an operatorGPBsX vd such that, for anyj.0,

G ª o
ePsp E

lim
l↘0

1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd. s3.6d

fNote that the RHS of (3.6) may depend onj. We assume that it does notg.
siii d For any e,e8PspE, eÞe8 and j.0,

lim
l↘0

l1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1e8sEd = 0,

lim
l↘0

l1e8sEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd = 0.

Then the following holds:

s1d G generates semigroup of contractions onX v,
s2d fE,Gg=0,
s3d for eachj.0 we have

lim
l↘0

o
ePsp E

1esEd1vvsj1 − l−2sLl − e1dd−11vv = sj1vv − Gd−1, s3.7d

s4d for any fPC0sf0,`fd,
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lim
l↘0

E
0

`

fssdse−sl−2E1vvesl−2Ll1vv − esGdds = 0. s3.8d

Theorem 3.3:Let assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0 and all jPC, Rej.0, we havej¹spsLl
vvd,

sii d for all a0ù0 and for anyjPWedges0,a0d, there exists an operatorGPBsX vd such that,

G ª o
ePsp E

lim
l↘0

1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd, s3.9d

fNote that the RHS of (3.9) may depend onj. We assume that it does notg.
siii d For each ePspE we have

sup
Re j.0;0øl,l0

iQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄vi , `.

Then,

s1d all statemants of the Theorem 3.2 hold. Besides (3) holds in a stronger form, fora0ù0 the
formula (3.7) is valid for eachjPWedges0,a0d.

s2d Let cPX v. For sù0 we have

lim
l↘0

se−sl−2E1vvesl−2Ll1vv − esGdc = 0 s3.10d

uniformly for sP ft0,t1g for any fixed0,t0øt1,`.

B. Van Hove limit—time-dependent approach

In this section we discuss the van Hove limit under the assumptions involving the dynamics.
In Theorem 3.4 we recall the original approach to the van Hove limit due to Davies.4–6 sStrictly
speaking, Davies assumed that the perturbationQ is bounded. In Theorem 3.4 we impose slightly
less restrictive assumptions, which can be handled by an essentially the same proof.d

Let L0, Q, and1vv be the same as before. Clearly,Ll
vv generates a semigroup onX v̄. Therefore,

we can define the operator

Ksl,td ª E
x=0

l−2t

e−xLl
vv

Qvv̄exLl
vv

Qv̄v dx. s3.11d

The following theorem describes the van Hove limit for the dynamics in both cases—with and
without the first order term.

Theorem 3.4:Assume additionally that

sid for all t1.0 there is a constant C.0 such thatiKsl ,tdi,C for uluø1 and 0øtøt1.
sii d There exists bounded operator K onX v such that if0,t0øt1,` then

lim
l↘0

s sup
t0øtøt1

iKsl,td − Kid = 0.

Then the following holds:

s1d

lim
l↘0

S sup
0øtøt1

i1vvetl−2Ll1vv − etl−2sE+lQvv+l2KdiD = 0. s3.12d

s2d If additionally Assumptions 3.A and 3.B hold then
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lim
l↘0

S sup
0øtøt1

ie−tl−2E1vvetl−2Ll1vv − etK\
iD = 0, s3.13d

where

K\
ª o

ePsp E

1esEdK1esEd = lim
a→`

1

2a
E

−a

a

etEKe−tE dt.

Let us recall how the operatorsKsl ,td are motivated. If we treat the off-diagonal elements of
Ll as asboundedd perturbation of the diagonal part ofLl then, by a well-known formula, we have

etLl = etsLl
vv+Ll

vvd + lE
s=0

t

est−sdsLl
vv+Ll

vvdsQvv̄ + Qv̄vdesLl ds.

Using this formula one gets

1vvel−2tLl1vv = 1vvel−2tLl
vv

+E
s=0

t

1vvel−2st−sdLl
vv

Ksl,t − sd1vvel−2sLl1vv ds.

Now we discuss how one can obtain the van Hove limit for the resolvents under time-
dependent assumptions. In fact we show when one can use both stationary and time-dependent
approaches. We will concentrate on the case without the first order term.

Theorem 3.5:Let Assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0 and all zPC, Rez.0 we have z¹spsLl
vvd,

sii d e0
`sup0øl,l0

iQvv̄esLl
vv

Qv̄vids,`,

siii d for any s.0, liml↘0Q
vv̄esLl

vv
Qv̄v=Qvv̄esL0

vv
Qv̄v.

Then

s1d The assumptions of both Theorem 3.2 and Theorem 3.4 hold. Moreover, we have

K\ = G.

s2d The following limits exist, coincide and equal toG:

lim
e↘0

o
ePsp E

1esEdQvv̄sse+ ed1vv − L0
vvd−1Qv̄v1esEd

= lim
e↘0

o
ePsp E

E
0

`

e−es1esEdQesL0Qe−sL01esEdds. s3.14d

Note that the assumptions of Theorem 3.5 are stronger than that of Theorem 3.3 and Theorem 3.4
s2d.

The operators3.14d is often called the level shift operator. It is used to describe the second
order shift of eigenvalues ofLl.7,9–11

IV. PROOFS

Lemma 4.1: For0øl,l0 the operator

L̃l = F 0 lQvv̄

lQv̄v L0
vv + lQvvG

defined onDomsL̃ld=X v % DomsL0
vvd generates a semigroup of contractions onX.

Proof: Let 0øl,l0. The operatorL̃l is densely defined. By the Lumer-Phillips theorem
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sTheorem 3.1.16 in Ref. 3d it is sufficient to show thatsId L̃l is dissipative,sII d for somee.0 we

havee¹spsL̃ld.
Step (I):For 0øl the operator,

Zª Ll − Ll
vv

with the domain DomsZd=DomsEd % DomsL0
vvd is densely defined and dissipative. Hence, by

Proposition 3.1.15 in Ref. 3,Z is closable and its closure is dissipative. But the closure ofZ

coincides withL̃l.
Step (II): For 0øl,l0 the operatorLl−lsQvv̄+Qv̄vd generates a semigroup such that for

Rez. ilsQvv̄+Qv̄vdi we havez¹spsLl−lsQvv̄+Qv̄vdd and

isz1 − sLl − lsQvv̄ + Qv̄vddd−1i ø sRez− ilsQvv̄ + Qv̄vdid−1.

Hence, for alle.e0 for somee0 large enough,

ise1 − sL̃l − lsQvv̄ + Qv̄vddd−1slsQvv̄ + Qv̄vddi , 1.

Hence, by the Neumann theorem,e1− L̃l is invertible for alle.e0, and soe¹spsL̃ld. h

By the Feshbach projection method,1,2,7,8if z¹spsLldøspsLl
vvd then the restricted resolvent is

given by

1vvsz1 − Lld−11vv = Gv
−1szd,

where

Gvszd = z1vv − E − lQvv − l2Qvv̄sz1vv − Ll
vvd−1Qv̄v.

Hence

1vvsj − l−2Lld−11vv = l2Gv
−1sl2jd.

In what follows we will use these facts without a comment.sSee Refs. 4 and 15–17.d
Proof of Theorem 3.1:

s1d By Lemma 4.1, the operatorL̃l generates a semigroup of contractions, which forj.0
implies

isj1vv − l2Qvv̄sj1vv − Ll
vvd−1Qv̄vd−1i = i1vvsj1 − L̃ld−11vvi ø j −1.

Hence, for allj.j0.0, the operatorsj1vv−Qvv̄sl2j1vv−Ll
vvd−1Qv̄vd−1 is uniformly bounded. We

know that for anyj.0,

lim
l↘0

sj1vv − Qvv̄sjl21vv − Ll
vvd−1Qv̄vd = j1vv − G0. s4.1d

Therefore, for allj.j0, the operatorj1vv−G0 is invertible onX v and

isj1vv − G0d−1i ø j −1.

HenceG0 generates a semigroup of contractions onX v sTheorem 2.21 and Corollary 2.22 in Ref.
6d.

s2d Let 0øl,l0. SinceE+lQvv generates a group of isometries andG0 is bounded and
dissipative then the result follows from Theorem 3.1.32 in Ref. 3.

s3d Let 0,l,l0. Recall that forj.0,

il2Gv
−1sl2jdi ø j −1, s4.2d
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isj1vv − l−2Al,0d−1i ø j −1, s4.3d

lim
l↘0

Qvv̄sl2j1vv − Ll
vvd−1Qv̄v = G0. s4.4d

For anyj.0 we have

i1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1i

= il2Gv
−1sl2jdsQvv̄sl2j1vv − Ll

vvd−1Qv̄v − G0dsj1vv − l−2Al,0d−1i.

Hence bys4.2d–s4.4d the RHS of the above expression tends to zero asl tends to zero.
s4d For j.0, by the Laplace transform, we have

1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1 =E
0

`

e−jss1vvel−2sLl1vv − el−2sAl,0dds.

Hence bys3.4d we get

lim
l↘0

E
0

`

e−jss1vvel−2sLl1vv − el−2sAl,0dds = 0. s4.5d

By the Stone–Weierstrass theorem, the family of functions

f0,`f { s ° e−jsPR, j . 0

forms an algebra which is dense in continuous functions of compact support onf0,`f. This fact
together withs4.5d implies s3.5d. h

Lemma 4.2: Let E be the generator of a group of isometries. Let e be an isolated point in
spsEd. Then e is a semisimple eigenvalue which means E1esEd=e1esEd and i1esEdi=1.

Proof: Let e be an isolated point in spsEd. Then for anye.0,

isse+ ed1vv − Ed−1i ø e−1. s4.6d

So for zP hzPC :distse,zd,dj \ hej for somed.0 we have

sz1vv − Ed−1 = 1esEdsz− ed−1 + hszd, s4.7d

whereh is an analytic function onhzPC :distse,zd,dj. Hencee is semisimple. Buts4.7d also
implies that

lim
e↘0

esse+ ed1vv − Ed−1 = 1esEd

and hence, bys4.6d, we geti1esEdi=1. h

For an isolated pointePspE let us write for shortness

1ee
ª 1esEd, 1ee

ª 1vv − 1esEd,

X e
ª Ran1esEd, X eI

ª Ran1ee

then

X v = X e
% X eI . s4.8d

If e8 ,ePspE andAPBsX vd then we denoteAe8e
ª1e8e8A1ee.

Proof of Theorem 3.2:s2d follows immediately if we note that Lemma 4.2 impliesE
=oePsp Ee1esEd and that we haveGªoePsp E1esEdG1esEd.

s3d Let ePspE. Set
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Glsj,ed ª j1vv + l−2se1vv − Ed − Qvv̄ssl2j + ed1vv − Ll
vvd−1Qv̄v.

For j.0 we have

Glsj,ed−1 = 1vvsj + l−2se− Lldd−11vv.

This and the dissipativity ofLl implies the bound

iGlsj,ed−1i ø j −1. s4.9d

Write for shortnessG instead ofGlsj ,ed.
DecomposeG=Gdiag+Goff into its diagonal and off-diagonal part,

Gdiagª o
e8Psp E

1e8e8G1e8e8,

Goff ª o
e8Psp E

1e8e8G1eI8eI8 = o
e8Psp E

1eI8eI8G1e8e8.

First we would like to show that forj.0 and small enoughl, Gdiag is invertible. By the
Neumann theorem, it is easy to see that1eeGdiag is invertible on Ran1ee for small enoughl.
Moreover, we have

i1eeGdiag
−1 i ø cl2. s4.10d

It is more complicated to prove that1eeGdiag is invertible on Ran1ee.
We fix j.0. We know thatG is invertible andiG−1iøj −1. Hence we can write

GdiagG
−1 = 1 −GoffG

−1.

Therefore

1eeGdiagG
−1 = 1ee− 1eeGoff1

eeG−1,

1eeGdiagG
−1 = 1ee− 1eeGoffG

−1. s4.11d

The latter identity can be for small enoughl transformed into

1eeG−1 = Gdiag
−1 1ee− Gdiag

−1 1eeGoffG
−1. s4.12d

We inserts4.12d into the first identity ofs4.11d to obtain

1eeGdiagG
−1 = 1ee− 1eeGoff1

eeGdiag
−1 + 1eeGoff1

eeGdiag
−1 GoffG

−1. s4.13d

We multiply s4.13d from the right by1ee to get

1eeGdiag1
eeG−11ee= 1ee+ 1eeGoff1

eeGdiag
−1 GoffG

−11ee. s4.14d

Now, using

lim
l↘0

ilGoffi = 0, s4.15d

s4.9d and s4.10d we obtain

lim
l↘0

1eeGoff1
eeGdiag

−1 GoffG
−11ee= 0.

Thus, for small enoughl,
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1eeGdiagB1 = 1ee,

where

B1 ª 1eeG−11ees1ee+ 1eeGoff1
eeGdiag

−1 GoffG
−11eed−1.

Similarly, for small enoughl, we findB2 such that

B21
eeGdiag= 1ee.

This implies that1eeGdiag is invertible on Ran1ee.
Next, we can write

G−1 = Gdiag
−1 − Gdiag

−1 GoffGdiag
−1 + Gdiag

−1 GoffGdiag
−1 GoffG

−1.

Hence

1eeG−1 = 1eeGdiag
−1 s1 − Goff1

eeGdiag
−1 + Goff1

eeGdiag
−1 GoffG

−1d. s4.16d

Therefore, for a fixedj, by s4.9d, s4.10d, ands4.15d, we see that asl↘0 we have

− Goff1
eeGdiag

−1 + Goff1
eeGdiag

−1 GoffG
−1 → 0.

Therefore, for small enoughl, we can invert the expression in the prentheses ofs4.16d. Conse-
quently,

1eesGdiag
−1 − G−1d = 1eeG−1s1 − Goff1

eeGdiag
−1 + Goff1

eeGdiag
−1 GoffG

−1d−1

3 sGoff1
eeGdiag

−1 − Goff1
eeGdiag

−1 GoffG
−1d. s4.17d

Therefore, for a fixedj, by s4.9d, s4.10d, ands4.15d, we see that asl↘0 we have

1eesGdiag
−1 − G−1d → 0. s4.18d

Equationss4.9d and s4.18d imply that 1eeGdiag
−1 is uniformly bounded asl↘0. We know that

1eeGdiag→ 1eej − 1eeG. s4.19d

Therefore,j1ee−1eeG is invertible on Ran1ee and

1eeGdiag
−1 → s1eej − 1eeGd−1.

Using agains4.18d we see that

1eeG−1 → s1eej − 1eeGd−1. s4.20d

Summing ups4.20d over e we obtain

o
ePsp E

1eeGlsj,ed−1 → sj1vv − Gd−1, s4.21d

which ends the proof ofs3d.
s1d We have

o
ePsp E

1eeGlsj,ed−1 = o
ePsp E

E
0

`

e−tsj+l−2ed1eeetLl/l2
1vv dt =E

0

`

e−tje−tE/l2
1vvetLl/l2

1vv dt.

s4.22d

Clearly, ie−tE/l2
1vvetLl/l2

1vviø1. Therefore,
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I o
ePsp E

1eeGlsj,ed−1I ø j −1.

Hence, bys4.21d,

isj1vv − Gd−1i ø j −1,

which means thatG is the generator of a semigroup of contractions.
s4d To prove this we repeat the argument used in the proof of Theorem 3.1.
Proof of Theorem 3.3:
s1d Follows by a simple modification of the argument used in Theorem 3.2.
s2d For ePspE and for Rej.0 we denote

Glsj,ed ª j1vv + l−2se1vv − Ed − Qvv̄ssl2j + ed1vv − Ll
vvd−1Qv̄v.

Obviously

Glsj,ed−1 = 1vvsj + l−2se− Lldd−11vv

and

iGlsj,ed−1i ø Rej −1. s4.23d

Let cPX v. Let v0.0 andsù0. By the inverse Laplace transformsRef. 12 Chap. XId and by
the proof of Theorem 3.2, uniformly for 0,t0øsøt1, we get

se−sl−2E1vvesl−2Ll1vv − esGdc

=
1

2pi
lim
R→`

E
v0+if−R,Rg

esj o
ePsp E

s1eessj + l−2ed1 − l−2Lld−11vv − sj1ee− Geed−1dc dj

=
1

2pi
o

ePsp E

lim
R→`

E
−R

R

flsy,edi dy,

where

flsy,ed ª essv0+iyds1eeGlsv0 + iy,ed−1 − ssv0 + iyd1ee− Geed−1dc.

For eachePspE,

I d

dy
flsy,edI ø esv02ssv0

−1 + v0
−2dici.

This shows that the familyflsy,ed is equicontinuous asl→0.
For any fixedR.0 if only a0=sR+1d /v0 then j=v0+ iyPWedges0,a0d hence, bys1d, we

get the pointwise convergenceflsy,ed→0 asl↘0 for yP f−R,Rg. Finally pointwise convergence
together with equicontinuity implies uniform convergence on compacts, so for any fixedR.0,

lim
l↘0

E
−R

R

flsy,edci dy =E
−R

R

lim
l↘0

flsy,edci dy = 0.

To end the proof it is sufficient to show that for eachePspE,

lim
R→`

sup
0øl,l0

IE
uyu.R

flsy,edi dyI = 0.

SinceGee is independent ofl we need only to show that
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lim
R→`

sup
0øl,l0

IE
uyu.R

essv0+iyd1eeGlsv0 + iy,ed−1c dyI = 0. s4.24d

DecomposeGlsj ,ed into its diagonal and off-diagonal part,

Gdiagª o
e8Psp E

1e8e8Glsj,ed1e8e8 = j1ee− Tlsj,edee+ o
e8Psp E;e8Þe

ssj − l−2se8 − edd1e8e8

− Tlsj,ede8e8d,

Goff ª o
e8Psp E

1e8e8Glsj,ed1eI8eI8 = o
e8Psp E

1eI8eI8Glsj,ed1e8e8 = o
e8Psp E

Tlsj,ede8eI8,

where

Tlsj,ed ª Qvv̄ssl2j + ed1vv − L0
vv − lQvvd−1Qv̄v.

By the assumption for eachePspE

sup
Re j.0;0øl,l0

iTlsj,edi , C , `. s4.25d

In the rest of the proof we write for shortnessG=Glsj ,ed andT=Tlsj ,ed.
Fix ePspE and letjªv0+ iy. Fix v0.C+1. Then, by the Neumann theorem, the operator

1eeGdiag=j1ee−Tee is invertible onX e and we have

isj1ee− Teed−1i ø suyu − Cd−1 for uyu . C. s4.26d

Note that for eache8PspE, e8Þe the operatorl−2se8−ed1e8e8 generates a group of isometries on
Xe8. Hence the operator1e8e8Gdiag=sj−l−2se8−edd1e8e8−Te8e8 is invertible onXe8 and we have

issj − l−2se8 − edd1e8e8 − Te8e8d−1i ø sv0 − Cd−1 , 1. s4.27d

This shows thatGdiag is invertible onX v. We have

1eeG−1 = 1eeGdiag
−1 s1ee− Goff1

eeG−1d = j −1s1ee+ Teesj1ee− Teed−1ds1ee− Goff1
eeG−1d

= j −1s1ee+ Teesj1ee− Teed−1ds1ee− Goff1
eeGdiag

−1 + Goff1
eeGdiag

−1 Goff1
eeG−1d.

Now, usings4.23d and s4.25d–s4.27d, we get foruyu.C,

ij −1Teesj1ee− Teed−1s1ee− Goff1
eeG−1di ø D1sv0

2 + y2d−1/2suyu − Cd−1

ij −1Goff1
eeGdiag

−1 Goff1
eeG−1i ø D1sv0

2 + y2d−1/2suyu − Cd−1

for someD1.0 independent ofl. Hence to proves4.24d if suffices to show that

lim
R→`

sup
ulu,l0

IE
uyu.R

essv0+iydsv0 + iyd−1s1ee− Goff1
eeGdiag

−1 dc dyI = 0.

The first term in the above expression is independent ofl hence we need only to consider the
second term. We have

1eeGdiag
−1 = o

e8Psp E;e8Þe

sj − l−2se8 − edd−1s1e8e8 + Te8e8ssj − l−2se8 − edd1e8e8 − Te8e8d−1d.

Hence, bys4.25d and s4.27d, we get
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iessv0+iydsv0 + iyd−1Goff1
eeGdiag

−1 i ø D2gsydgsy − l−1 Imse8 − edd s4.28d

for someD2.0 independent ofl, where

R { y ° gsyd ª sv0
2 + y2d−1/2 P R.

By the Hölder inequality

E
uyu.R

gsydgsy − l−1 Imse8 − edddy ø igiL2sg−`,−RgøfR,`f,dxdigiL2sR,dxd → 0. s4.29d

Now, by s4.28d and s4.29d, we get

IE
uyu.R

essv0+iydsv0 + iyd−1Goff1
eeGdiag

−1 c dyI→ 0

independently ofl. This ends the proof ofs3.10d. h

Proof of Theorem 3.5:Set

fssd ª sup
ulu,l0

iQvv̄esLl
vv

Qv̄vi.

We know thatfstd is integrable.
For anyeP iR andjù0 we can dominate the integrand in the integral,

Flse,jd ª E
0

`

Qvv̄esLl
vv

Qv̄ve−se+l2jds ds= Qvv̄s1vvse+ l2jd − Ll
vvd−1Qv̄v s4.30d

by fssd. Hence, using the dominated convergence theorem we see thatFlse,jd is continuous at
l=0 andjù0. But

o
ePsp E

1esEdF0se,0d1esEd = o
ePsp E

lim
l→0

1esEdQvv̄s1vvse+ l2jd − Ll
vvd−1Qv̄v1esEd = G.

Recall s3.11d, the definition ofKsl ,td,

Ksl,td ª E
0

l−2t

e−sEQvv̄esLl
vv

Qv̄v ds.

Its integrand can also be dominated byfssd. Hence, using again the dominated convergence
theorem, we see that, forl→0, Ksl ,td is convergent to

K =E
0

`

e−sEQvv̄esL0
vv

Qv̄v ds.

Therefore,

K\ = o
ePsp E

1esEdE
0

`

e−esQvv̄esL0
vv

Qvv̄ ds1esEd = o
ePsp E

1esEdF0se,0d1esEd.
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