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1 Introduction

These lecture notes are an expanded version of the lectures given by the first author
in the summer school "Open Quantum Systems” held in Grenoble, June 16—July 4,
2003. We are grateful to Stphane Attal, Alain Joye, and Claude-Alain Pillet for their
hospitality and invitation to speak.

Acknowledgments. The research of both authors was partly supported by the
EU Postdoctoral Training Program HPRN-CT-2002-0277 and the Polish grants
SPUB127 and 2 PO3A 027 25. A part of this work was done during a visit of the
first author to University of Montreal and to the Sétimger Institute in Vienna. We
acknowledge useful conversations with H. Spohn, C. A. Pillet, W. A. Majewski, and
especially with V. Jaki€.

1.1 Fermi Golden Rule and Level Shift Operator in an abstract setting

We will use the name “the Fermi Golden Rule” to describe the well-known second
order perturbative formula for the shift of eigenvalues of a family of operdtqrs-

Lo + AQ. Historically, the Fermi Golden Rule can be traced back to the early years
of Quantum Mechanics, and in particular to the famous paper by Dirac [Di]. Two
“Golden Rules” describing the second order calculations for scattering amplitudes
can be found in the Fermi lecture notes [Fe] on pages 142 and 148.
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In its traditional form the Fermi Golden Rule is applied to Hamiltonians of quan-
tum systems — self-adjoint operators on a Hilbert space. A nonzero imaginary shift
of an eigenvalue of., indicates that the eigenvalue is unstable and that it has turned
into a resonance under the influence of the perturbat{dn

In our lectures we shall use the term Fermi Golden Rule in a slightly more general
context, not restricted to Hilbert spaces. More precisely, we shall be interested in the
case whelfi., is a generator of a 1-parameter group of isometries on a Banach space.
For example]L, could be an anti-self-adjoint operator on a Hilbert space or the
generator of a group af-automorphisms of & *-algebra. These two special cases
will be of particular importance for us.

Note that the spectrum of the generator of a group of isometries is purely imagi-
nary. The shift computed by the Fermi Golden Rule may have a negative real part and
this indicates that the eigenvalue has turned into a resonance. Hence, our convention
differs from the traditional one by the factor of

In these lecture notes, we shall discuss several mathematically rigorous versions
of the Fermi Golden Rule. In all of them, the central role is played by a certain
operator that we call the Level Shift Operator (LSO). This operator will encode the
second order shift of eigenvalueslof under the influence of the perturbation. To
define the LSO foi., = Ly + AQ, we need to specify the projectifhcommuting
with Iy (typically, the projection onto the point spectrumiqf) and a perturbation
Q. For the most part, we shall assume tB&P = 0, which guarantees the absence
of the first order shift of the eigenvalues. Given the dafiyi,, Q), we shall define
the LSO as a certain operator on the range of the projettion

We shall describe several rigorous applications of the LSQfol,, Q). One
of them is the “weak coupling limit”, called also the “van Hove limit”. (We will
not, however, use the latter name, since it often appears in a different meaning
in statistical physics, denoting a special form of the thermodynamical limit). The
time-dependent form of the weak coupling limit says that the reduced and rescaled
dynamicse—tLo/>’ Petla /X’ P converges to the semigroup generated by the LSO.
The time dependent weak coupling limit in its abstract form was proven by Davies
[Dal, Da2, Da3]. In our lectures we give a detailed exposition of his results.

We describe also the so-called “stationary weak coupling limit”, based on the re-
centwork [DF2]. The stationary weak coupling limit says that appropriately rescaled
and reduced resolvent bf, converges to the resolvent of the LSO.

The LSO has a number of other important applications. It can be used to de-
scribe approximate location and multiplicities of eigenvalues and resonantgs of
for small nonzero\. It also gives an upper bound on the number of eigenvalues of
L, for small nonzero\.

1.2 Applications of the Fermi Golden Rule to open quantum systems

In these lectures, by an open quantum system we shall mean a “small” quantum sys-
tem S interacting with a large “environment” or “reservoiR. The small quantum
system is described by a finite dimensional Hilbert spdcand a Hamiltoniank'.

The reservoir is described byl&*-dynamical systen(i, 7) and a reference state
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wy, (for a discussion of reference states see the lecture [AJPP]). We shall assume that
wx 1S normal andr -invariant.

If wr is a(rr, 3)-KMS state, then we say that that the reservoir at inverse tem-
peratures and that the open quantum system is thermal. Another important special
case is wherR has additional structure, namely consistsnoindependent parts
Ri, -+, Ry, , Which are interpreted as sub-reservoirs. If the reference state of the
sub-reservoifR ; is 5;-KMS (for j = 1,--- ,n), then we shall call the correspond-
ing open quantum system multi-thermal.

In the literature one can find at least two distinct important applications of the
Fermi Golden Rule to the study of open quantum systems.

In the first application one considers the weak coupling limit for the dynamics
in the Heisenberg picture reduced to the small system. This limit turns out to be
an irreversible Markovian dynamics—a completely positive semigroup preserving
the identity acting on the observables of the small sysfefn x n matrices). The
generator of this semigroup is given by the LSO for the generator of the dynamics.
We will denote it by.

The weak coupling limit and the derivation of the resulting irreversible Marko-
vian dynamics goes back to the work of Pauli, Wigner-Weisskopf and van Hove
[WW, VH1, VH2, VH3] see also [KTH, Haa]. In the mathematical literature it was
studied in the well known papers of Davies [Dal, Da2, Da3], see also [LeSp, AL].
Therefore, the operatdv/ is sometimes called the Davies generator in the Heisen-
berg picture.

One can also look at the dynamics in the Sclinger picture (on the space of
density matrices). In the weak coupling limit one then obtains a completely positive
semigroup preserving the trace. It is generated by the adjoihf,afenoted by\/*,
which is sometimes called the Davies generator in the@&ltthger picture.

The second application of the Fermi Golden Rule to the study of open quan-
tum systems is relatively recent. It has appeared in papers on the so-called return to
equilibrium [JP1, DJ1, DJ2, BFS2, M]. The main goal of these papers is to show
that certaini/*-dynamics describing open quantum systems has only one stationary
normal state or no stationary normal states at all. This problem can be reformulated
into a question about the point spectrum of the so-called Liouvillean—the generator
of the natural unitary implementation of the dynamics. To study this problem, it is
convenient to introduce the LSO for the Liouvillean. We shall denote it/hyit
is an operator acting on Hilbert-Schmidt operators for the sysieragainn x n
matrices.

The use of I" in the spectral theory hinges on analytic techniques (Mourre theory,
complex deformations), which we shall not describe in our lectures. We shall take
it for granted that under suitable technical conditions such applications are possible
and we will focus on the algebraic properties [af, i/” and M *. To the best of
our knowledge, some of these properties have not been discussed previously in the
literature.

In Theorem 17 we give a simple characterization of the kernel of the imaginary
part the operatof. This characterization implies thathas no nontrivial real eigen-
values in a generic nonthermal case. In [DJ2], this result was proven in the context
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of Pauli-Fierz systems and was used to show the absence of normal stationary states
in a generic multithermal case. In our lectures we generalize the result of [DJ2] to a
more general setting.

The characterization of the kernel of the imaginary pait af the thermal case is
given in Theorem 18. It implies that generically this kernel consists only of multiples
of the square root of the Gibbs density matrix for the small system. In [DJ2], this
result was proven in the more restrictive context of Pauli-Fierz systems and was used
to show the return to equilibrium in the generic thermal case. A similar result was
obtained earlier by Spohn [Sp].

The operators\/, iI" and M* act on the same vector space (the space &f
n matrices) and have similar forms. Naively, one may expectithiahterpolates
in some sense betweeW and M*. Although this expectation is correct, its full
description involves some advanced algebraic tools (the so-called noncommutative
LP-spaces associated to a von Neumann algebra), and for reasons of space we will
not discuss it in these lecture notes (see [DJ4, JP6]).

In the thermal case, the relation between the operadthrsg” and M * is consid-
erably simpler—they are mutually similar and in particular have the same spectrum.
This result has been recently proven in [DJ3] and we will describe it in detail in our
lectures.

The similarity ofil” and M in the thermal case is closely related to the Detailed
Balance Condition fod/. In the literature one can find a number of different defini-
tions of the Detailed Balance Condition applicable to irreversible quantum dynamics.
In these lecture notes we shall propose another one and we will compare it with the
definition due to Alicki [A] and Frigerio-Gorini-Kossakowski-Verri [FGKV].

For reason of space we have omitted many important topics in our lectures—
they are treated in the review [DJ4], which is a continuation of these lecture notes.
Some additional information about the weak coupling limit and the Davies generator
can be also found in the lecture notes [AJPP].

2 Fermi Golden Rule in an abstract setting

2.1 Notation

Let L be an operator on a Banach spactespL, sp.. L, sp,, L ill denote the spec-
trum, the essential spectrum and the point spectrum (the set of eigenvalues) of the
operatorL. If e is an isolated point ispL, then1.(L) will denote the spectral pro-
jection of L ontoe given by the usual contour integral. Sometimes we can also define
1.(L) if e is not an isolated point in the spectrum. This is well know# i a nor-
mal operator on a Hilbert space. The definitionlpf L) for some other classes of
operators is discussed in Appendix, see (69), (70).

Let us now assume thdtis a self-adjoint operator on a Hilbert space. etB
be bounded operators. Suppose thatRR. We define

Alp£i0— L) 'B:= I%A(pj:ie—L)_lB, 1)
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provided that the right hand side of (1) exists. We will say thgt +i0 — L)' B
exists if the limit in (1) exists.
The principal value op — L

AP(p— L) 'B:= 1(A(p +i0—-L)"'B+ A(p—i0—L)"'B)

2
and the delta function gf — L

AS(p— L)B = i(A(p +i0— L)"'B— A(p—i0 — L)"'B)
are then well defined.

B(X) denotes the algebra of bounded operatorstonf X is a Hilbert space,
then B*(X) denotes the space of trace class operators Z#d’) the space of
Hilbert-Schmidt operators o. By a density matrix ont’ we meanp € B(X)
such thap > 0 andTrp = 1. We say thap is nondegenerate Kerp = {0}.

For more background material useful in our lectures we refer the reader to Ap-
pendix.

2.2 Level Shift Operator

In this subsection we introduce the definition of the Level Shift Operator. First we
describe the basic setup needed to make this definition.

Assumption 2.1 We assume that’ is a Banach spacé is projection of normi on
X ande' is a 1-parametey- group of isometries commuting with

We seft := Ly . andP := 1-P. Clearly,E is the generator of a 1-parameter

Ran

group of isometries oRanP. andLg

_ generates a 1—parameter group of isome-
nP

Ra

tries onRanP.

Later on, we will often WritéLoﬁ’ instead ofL _. Forinstance, in (2)(ie +

~ ~ RanlP 5
&P — LoP)~! will denote the inverse dfie + £)1 — L, restricted toRanlP. This is
a slight abuse of notation, which we will make often without a comment.

Most of the time we will also assume that

Assumption 2.2 P is finite dimensional.

Under Assumption 2.1 and 2.2, the operdids diagonalizable and we can write
its spectral decomposition:

E = Z iel;. (E).

iecspE

Note thatl;.(E) are projections of norm one.
In the remaining assumptions we impose our conditions on the perturbation:
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Assumption 2.3 We suppose tha® is an operator withDom@Q > Doml,, and,
for [A\| < Ao, Ly := Lo + AQ is the generator of a 1-parametéfy-semigroup of
contractions.

Assumption 2.3 implies th&QP andPQP are well defined.
Assumption 2.4 PQP = 0.

The above assumption is needed to guarantee that the first nontrivial contribution
for the shift of eigenvalues df is 2nd order in\.

It is also useful to note that if Assumption 2.2 holds, ttﬁ@l@ and IPQIP are
bounded. Note also that in the definition of LSO only the teRQ# andPQP will
play a role and the ter®QP will be irrelevant.

Assumption 2.5 We assume that for ailt € spE there exists

1. (E)Q((ie + 0)P — LoP) ~1Q1;.(E)

~ ~ 2
= Eh\r% 1ie<E)Q((ie+§)P_LOP)_1Q1ie(E) ( )

Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 we set
M= > 1 (E)Q((ie + 0)P — LoP) Q1. (E) (3)

ieespE
and call it the Level Shift Operator (LSO) associated to the t(iplé.o, Q).
It is instructive to give time-dependent formulas for the LSO:

M =1lim Y 1;(E) [;° e QQ(s)1;(E)ds

1Y ieespE

=lim Y 13 (E fo e 5Q(—5/2)Q(s/2)1;.(E)ds,

1Y ieespE

whereQ(t) := efloQe o,

2.3 LSO for C§-dynamics

In the previous subsection we assumed ithatis a generator of &'y-semigroup.

In one of our applications, however, we will deal with another type of semigroups,

the so-called”-semigroups (see Appendix for definitions and a discussion). In this

case, we will need to replace Assumptions 2.1 and 2.3 by their “dual versions”, which
we state below:

Assumption 2.1* We assume thaV is a Banach space and’ is its dual, that is
X = Y*, Pis a w* continuous projection of normon X ande'™ is a 1-parameter
Cj- group of isometries commuting with

Assumption 2.3* We suppose thdp is an operator withDomQ > Doml and,
for |A] < Ag, Ly := Lo + AQ is the generator of a 1-parametér;-semigroup of
contractions.
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2.4 LSO for W*-dynamics

The formalism of the Level Shift Operator will be applied to open quantum systems
in two distinct situations.

In the first application, the Banach spatds aW/*-algebraP is a normal con-
ditional expectation and is al¥*-dynamics.

Note thatl¥*-algebras are usually not reflexive ald*-dynamics are usually
not Cy-groups. Howeverly *-algebras are dual Banach spaces #nt-dynamics
areCg-groups.

The perturbation has the forifV, -] with V' being a self-adjoint element of the
W*-algebra. Therefores'» will be a W*-dynamics for all real — again aCj-

group.

2.5 LSO in Hilbert spaces

In our second applicatiot’ is a Hilbert space. Hilbert spaces are reflexive, therefore
we do not need to distinguish betwe€p andCj-groups.

All strongly continuous groups of isometries on a Hilbert space are unitary
groups. Therefore, the operatiog has to be anti-self-adjoint (that medng = iL,,
whereL is self-adjoint).

All projections of norm one on a Hilbert space are orthogonal. Therefore, the
distinguished projection has to be orthogonal.

In our applications to open quantum systesfs is a unitary dynamics. This
means in particular th& has the formQ = i), where(@ is hermitian.

In the case of a Hilbert space the LSO will be denatEdThus we will isolate
the imaginary unit 1", which is consistent with the usual conventions for operators
in Hilbert spaces, and also with the convention that we adopted in [DJ2].

Remark 1In [DJ2] we used a formalism similar to that of Subsection 2.2 in the
context of a Hilbert space. Note, however, that the terminology that we adopted there
is not completely consistent with the terminology used in these lectures. In [DJ2] we
considered a Hilbert space, an orthogonal projectio®, and self-adjoint operators

Lo, Q. If I' is the LSO for the triplg P, Lo, Q) according to [DJ2], theil" is the

LSO for (P,iLy,iQ) according to the present definition.

Let us quote the following easy fact valid in the case of a Hilbert space.

Theorem 1.Suppose thak’ is a Hilbert space, Assumptions 2.1, 2.2, 2.3 and 2.5
hold andQ is self-adjoint. Ther*!" is contractive fort > 0.

Proof. We use the notatioR = iF, Ly = iL, Q = iQ. We have
1
*(F - F*) = - Z le(E)Q5(€ - LO)Qle(E) < 0

2i
ecspE

Thereforeil is a dissipative operator arét’” is contractive for > 0. O
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Note that in Theorem 5 we will show that the LSO is the generator of a con-
tractive semigroup also in a more general situation, wkide a Banach space. The
proof of this fact will be however more complicated and will require some additional
technical assumptions.

2.6 The choice of the projectiornP

In typical application of the LSO, the operatdts andQ are given and our goal is
to study the operator
Ly := Lo + Q. (4)

More precisely, we want to know what happens with its eigenvalues when we switch
on the perturbation.

Therefore, it is natural to choose the projecfibas “the projection onto the point
spectrum ofLy", that is

P= Z 1ie(H‘0)7 (5)
e€R

provided that (5) is well defined.

More generally, if we were interested only about what happens around some

eigenvaluegies, . .., ie, } C sp,Lo, then we could use the LSO defined with the
projection
P= Z Lie; (Lo). (6)
j=1

Clearly, if X is a Hilbert space anily is anti-self-adjoint, theni;.(ILy) are well
defined for alle € R. Moreover, both (5) and (6) are projections of norm one com-
muting withILg, and hence they satisfy Assumption 2.1.

There is no guarantee that the spectral projectignd.,) are well defined in the
more general case whén, is the generator of a group of isometries on a Banach
space. If they are well defined, then they have norm one, however, we seem to have
no guarantee that their sums have norm one. In Appendix we discuss the problem of
defining spectral projections onto eigenvalues in this more general case.

Note, however, that in the situation considered by us later, we will have no such
problems. In factP will be always given by (5) and will always have norm one.

If 1;.(Lo) is well defined for ale € R and we takeé? defined by (5), the® will
be determined by the operatby, itself. We will speak about “the LSO fdk,", if
we have this projection in mind.

2.7 Three kinds of the Fermi Golden Rule

Suppose that Assumptions 2.1, 2.2, 2.3,2.4and 2.5, or 2.1*, 2.2, 2.3*,2.4and 2.5 are
satisfied. Lef? be given by (5) and// be the LSO for(P, Ly, Q). Our main object
of interest is the operatdi .

The assumption 2.4PQP = 0) guarantees that there are no first order effects
of the perturbation. The operatdf describes what happens with the eigenvalues of
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Ly under the influence of the perturbatiaf) at the second order of. Following
the tradition of quantum physics, we will use the name “the Fermi Golden Rule” to
describe the second order effects of the perturbation.

The Fermi Golden Rule can be made rigorous in many ways under various tech-
nical assumptions. We can distinguish at least three varieties of the rigorous Fermi
Golden Rule:

e Analytic Fermi Golden Rule: E 4 A\2M predicts the approximate location (up
to o(\?)) and the multiplicity of the resonances and eigenvaluds\dh a neigh-
borhood ofsp,LLo for small A.
The Analytic Fermi Golden Rule is valid under some analyticity assumptions on
L,. It is well known and follows essentially by the standard perturbation theory
for isolated eigenvalues ([Ka, RS4], see also [DF1]). The perturbation arguments
are applied not td., directly, but to the analytically deforméd,. More or less
explicitly, this idea was applied to Liouvilleans describing open quantum systems
[JP1, JP2, BFS1, BFS2]. One can also apply it to liti&-dynamics of open
quantum systems [JP4, JP5].
Thestationary weak coupling (or van Hove) limit of [DF2], described in The-
orem 2 and 5, can be viewed as an infinitesimal version of the Analytic Fermi
Golden Rule.

e Spectral Fermi Golden Rule: The intersection of the spectrum Bf+ \2M
with the imaginary line predicts possible location of eigenvaluds,ofor small
nonzero)\. It also gives an upper bound on their multiplicity.
Note that if the Analytic Fermi Golden Rule is true, then so is the Spectral Fermi
Golden Rule. However, to prove the Analytic Fermi Golden Rule we need strong
analytic assumption, whereas the Spectral Fermi Golden Rule can be shown un-
der much weaker conditions. Roughly speaking, these assumptions should allow
us to apply the so-called positive commutator method.
The Spectral Fermi Golden Rule is stated in Theorem 6.7 of [DJ2], which is
proven in [DJ1]. Strictly speaking, the analysis of [DJ1] and [DJ2] is restricted
to Pauli-Fierz operators, but it is easy to see that their arguments extend to much
larger classes of operators.
To illustrate the usefulness of the Spectral Fermi Golden Rule, suppos& that
is a Hilbert spacel., = iL, with L, self-adjoint andI" is the LSO. Then the
Spectral Fermi Golden Rule implies the bound

dimRan1,(Ly) < dim KerI™,

wherel™ := £ (I"—I"*). Bounds of this type were used in various papers related
to the Return to Equilibrium [JP1, JP2, DJ2, BFS2, M].

e Dynamical Fermi Golden Rule. The operatoret®+**M) describes approxi-
mately the reduced dynamiBs*“> P for small \.
The Dynamical Fermi Golden Rule was rigorously expressed in the fotimeof
weak coupling by Davies [Dal, Da2, Da3, LeSp]. Davies showed that under
some weak assumptions we have
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. _ 2 2
lim e~ E/A Petla/ATp — ot M
A—0

We describe his result in Theorems 3 and 5.

3 Weak coupling limit
3.1 Stationary and time-dependent weak coupling limit

In this section we describe in an abstract setting the weak coupling limit. We will
show that, under some conditions, the dynamics restricted to an appropriate sub-
space, rescaled and renormalized by the free dynamics, converges to the dynamics
generated by the LSO.

We will give two versions of the weak coupling limit: the time dependent and the
stationary one. The time-dependent version is well known and in its rigorous form is
due to Davies [Dal, Da2, Da3]. Our exposition is based on [Da3].

The stationary weak coupling limit describes the same phenomenon on the level
of the resolvent. Our exposition is based on recent work [DF2]. Formally, one can
pass from the time-dependent to stationary weak coupling limit by the Laplace trans-
formation. However, one can argue that the assumptions needed to prove the station-
ary weak coupling limit are sometimes easier to verify. In fact, they involve the exis-
tence of certain matrix elements of the resolvent (a kind of the “Limiting Absorption
Principle”) only at the spectrum @, a discrete subset of the imaginary line. This is
often possible to show by positive commutator methods.

Throughout the section we suppose that most of the assumptions of Subsection
2.2 are satisfied. We will, however, list explicitely the assumptions that we need for
each particular result.

The first theorem describes the stationary weak coupling limit.

Theorem 2. Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4, or 2.1*, 2.2, 2.3* and
2.4 are true. We also assume the following conditions:

1) For ie € spE, £ > 0, we havée + £ ¢ spPL,P.

2) There exists an operata¥/; on RanP such that, for any¥ > 0,

M=) lim L.(E)Q ((ie LAZP - ﬁLﬁ) - QLi(E). (7)

ieespE

(Note that a priori the right hand side of (7) may dependpwe assume that
it does not).
3) For anyie, ie’ € spE, e # ¢’ and¢ > 0,
~ ~ ~\ —1
lim AL (E)Q ((ie +A26)P - PLAIP’) QL (E) = 0,

lim AL/ (E)Q ((ie + AZP — Mﬁ) B Q1;.(E) = 0.
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Then the following holds:

1. e!Ms+ is a contractive semigroup.
2. Forany¢ >0

S Jim Le(E) (€~ A2 (L — i€)) P = (6P — M)
iecspE A—0
3. Foranyf € Cy([0, ),

lim / F(t)e BN Pella/A Pt — / F(t)eMeqt. ®)
- 0 0

Next we describe the time-dependent version of the weak coupling limitfer
groups.

Theorem 3. Suppose that Assumptions 2.1, 2.3 and 2.4 are true. We make also the
following assumptions: o
1) PQP andPQIP are bounded. (Note that this assumption guaranteesihat”
is the generator of &;-semigroup orRanP).
2) Set

272 _
Ky\(t) == / e EPQe* T PQPds. 9)
0
We suppose that for atl) > 0, there existg such that

sup  sup [|Kx(t)] < c.
[A[<Xo 0<t<to

3) There exists a bounded operatiron RanP such that

lim K,(t) = K
lim A(t)

forall 0 < ¢ < oo.
4) There exists an operatav/q,, such that

t
s— lim t_l/ e EKe *Fds = Mayn.

t—o0 0

Then the following holds:
1. etMayn js @ contractive semigroup.
2. For anyy € Ran)) andty > 0,

. _ 2 2
lim sup |[le B/A Pelr/A Py — etMavny || = 0,
A—=00<t<ty
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One of possible’}-versions of the above theorem is given below.

Theorem 3* Suppose that Assumptions 2.1*, 2.3* and 2.4 are true. We make also
the following assumptions:
0) e is aCy-group. (We already know that it is@z-group).
1) EQHEand I@QP are w* continuous. (Note that this assumption guarantees that
PL,P is a generator of a’;-semigroup orRanP).
2) Inthe sense of a w* integral [BR1] we set

A2t o
K\(t) := / e EPQes TP QPds. (10)
0

We suppose that for atl) > 0, there existg such that

sup sup |Kx(t)| <ec.
[A[<Xo 0<t<to

3) there exists a w* continuous operatir on RanP such that
lim K\(t) = K
lim Kx(?)

forall 0 < ¢ < co.
4) There exists an operata¥/q,, such that

t
| E 7-_—sE
s— lim ¢ / e Ke ** = Mayn.
0

t—o0

Then the same conclusions as in Theorem 3 hold.

Theorem 3 is due to Davies (we put together Theorem 5.18 and 5.11 from [Da3]).
Note that, following Davies, in Theorems 3 and 3* we do not make Assumption
2.2 about the finite dimension ®anP. Instead, we make the assumption 4) about
spectral averaging. If we impose Assumption 2.2, then we can drop 4) and make
some other minor simplifications, as is described below:

Theorem 4. Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 or 2.1*, 2.2, 2.3* and
2.4 are true. Set ., o
Ex(t) = [} e EPQeFIAPQPds.

We make also the following assumptions:
1) We suppose that for atl) > 0, there existg such that

sup  sup [|Kx(t)] < c.
[A<Xo 0<t<to

2) There exists an operatdd on RanP such that

)1\11}1%) K)\(t) =K
forall 0 < t < co. We set
Mayn =Y Li(E)K1;(E)

ie€spE
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Then the following holds:
1. etMayn js @ contractive semigroup.
2. For anyty > 0,

lim sup ||e*]Et/)‘2]PetH‘*/’\21P’ — etMavn || =0, (12)
A—0 0<t<tg

Note that if there exists an operatdfy; satisfying (8), and an operatdtqy,
satisfying (11), then they clearly coincide. In our last theorem of this section we will
describe a connection betwefy;, Mgy, and the LSO.

Theorem 5. Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4, or 2.1*, 2.2, 2.3* and
2.4 are true. Suppose also that the following conditions hold:

1) [y° sup |PQesPLrAPQP||ds < oo.
Al

<Xo
2) Foranys > 0, iir% PQePEAPQP = PQesPloQP.
Then

1. Assumption 2.5 holds, and hence the LSQI®iL,, Q), defined in (3) and de-
notedM, exists.

2. ¢tM is a contractive semigroup.

3. The assumptions of Theorem 2 hold add= M, consequently, for any > 0

lim Lie(E) (€ = A2(Ly —ie)) ' P = (6P — M)~ L.
ieespE

4. The assumptions of Theorem 4 hold addd= Ma,., consequently
lim sup |je B/ N Pel™ /NP — oM || = 0.
A—=00<t<t,
3.2 Proof of the stationary weak coupling limit
Proof of Theorem 2.We follow [DF2]. Letie € spE. Set
Ga(€,ie) == P+ A" 2(ieP — E)
~ ~ ~\ —1
—PQ ((/\25 +ie)P — IP’}LAIP) QP.

By the so-called Feshbach formula (see e.g. [DJ1, BFS1]y, fei0 we have

Ga(6ie) P =P (¢ + A 2(ie—1Ly)) ' P

This and the dissipativity df., implies the bound

IGA(E, i)~ < &7 (12)
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Write for shortness? instead ofG (¢, ie). Forie’ € spE, set
Per = 1ie (E),
Pz =P — 1;. ().
Decomposér = Gaiae + Gogt into its diagonal and off-diagonal part:

Gdiag = Z PE,G]Pe/v

ie’espE
Goﬁ" = Z Pe/G]P)g/ = Z ]P)g/ G]P)e/.
ie’espE ie’ €spE

First we would like to show that fgf > 0 and small enough, Gia, is invertible.
By an application of the Neumann seri@s(Gqiag iS invertible onRanlPz, and we
have the bound
IPeG LIl < X%, (13)
Itis more complicated to prove thBt G i, is inverible onRanP..
We fix ¢ > 0. We know that is invertible and|G || < ¢-1. Hence we can
write

GdiagGHl =1- GOHGil.

Therefore
IP)eC:diagC:71 =P, - PeGoﬁ']P%Gilv
(14)
]P)éGdiagGil =Pz — PEGOHGil-
The latter identity can be for small enoughiransformed into
PeG " = G Pe — GaingPeGon G (15)

We insert (15) into the first identity of (14) to obtain

PeGaingG ™! = Pe — P.GoiPeGyl, + PeGogPeG it GogG ™" (16)

diag diag

We multiply (16) from the right byP. to get

PeGingPe G~ P = Pe + P GogPeG ;. ,GonG ' Pe. (17)

Now, using
}\iHbAHGoﬂ”” =0, (18)

(12) and (13) we obtain

. —1 —
)1\11% PeGofiPeG g, Got G~ 'Pe = 0.

Thus, for small enough,
]PeGdiagBl = Pe»

where
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1
By :=P.G™'P, (IP’ + P.Gopt PGyl Gog G 'P )

diag

Similarly, for small enough\, we find B, such that
B2]P>6Gdiag =P..

This implies thatP. G 4ia is invertible onRanlP,.
Next, we can write

Gt =Gy — Gyl GogGyl GogG ™.

diag diag

+ Gl GogG ik

diag diag diag

Hence,

PG = PGyl (1= GogPeGal, + GonPeGah,GonG ™). (19)

diag

Therefore, for a fixed, by (12), (13) and (18) we see thatas- 0 we have

—GogPs Gt + Go Pz Gl GoﬁG*

diag diag

Therefore, for small enough, we can invert the expression in the bracket of (19).
Consequently,

1
Po(Gang — G = PG (1= GogPeGigl, + GonPeGt,GonG 1)
x (GonPeGiih, — GoPeG b, GorG ).
(20)
Therefore, for a fixed, by (12), (13) and (18) we see that, 8s- 0, we have
Pe(Giag — G~ — 0. (21)
Hence, (12) and (21) imply th&%eGCllag is uniformly bounded a3 — 0. We
know that
IEJJeGYcliag — Pl — Pe M. (22)

Therefore{P, — P. My, is invertible onRanP, and

PGl —

diag (]P)ef - ]P)EMSt)_l

Using again (21), we see that
P.G™! — (P& — P, M)~ . (23)

Summing up (23) ovet, we obtain

D PGS ie) Tt = (6P — My) 7Y, (24)

iecspE

which ends the proof of 2.
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Let us now prove 1. We have

Y PGa(Gie) ™t = 3 [e tETATOR o/ Pt
ie€spE ie€spE
€sp €spE 0 (25)

= jjoe_’fge_ﬂE/ﬂ]P’e’”l‘A /N pat
0

Clearly, [|e~tE/A*Petla /A P|| < 1. Therefore,

D PG ie) | <
ie€spE
Hence, by (24),
[(€P — Mye) Y| < €7
which proves 1.
Let f € Cy([0,0[) andd > 0. By the Stone-Weierstrass Theorem, we can find

a finite linear combination of functions of the forem*¢ for ¢ > 0, denotedy, such
that|[e? f — gl < €. Set

A(t) i= e BITPIAANTP Ay (1) = etMavn,
Note that|| A, (¢)]] < 1 and| Ao(t)]] < 1. Now
1S FOANE) = Ao@®))dt]] < || [e"g(t)(Ax(t) — Ao(t))dt]|
HI S (f(1) — e g(£) ANt +]| [(f() —e™*g(t)) Ao(t)dt].

By 2. and by the Laplace transformation, the first term on the right hand side goes
to 0 as\ — 0. The last two terms are estimated @yow e~%tdt, which can be made
arbitrarily small by choosing small. This proves 31

3.3 Spectral averaging

Before we present the time-dependent version of the weak coupling limit, we discuss
the spectral averaging of operators, following [Da3].

In this subsection) is an arbitrary Banach space aefé is a 1-parametef-
group of isometries oy. For K € B(Y) we define

t

K% :=s— tlim t_l/ e FKeEds, (26)
[ — 0O 0

provided that the right hand side exists.

Theorem 6. Suppose thak® exists. Then, for angy > 0,y € ),

lim sup He—t]E/Aet(]E+>\K)//\y_etK”

=0.
Jim sup yll
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Proof. Consider the spacé€([0,to],)) with the supremum norm. Set'(t) =
BN Ke /X For f € C([0,t0],)), define

Baf(t) = [ K(s/Nf(s)as,

t
Bof(t) := K* / f(s)ds.
0
Clearly, By and By, are linear operators afi([0, t¢], V) satisfying
Bl < tol| K. (27)

Moreover

To prove (28), by (27) it suffices to assume tiiat C*([0, ], )). Now

Baf(t) = (Jfy K(s/N)ds) £() = Jy (Jy dsiK(s1/X)) f'()ds
— tKUf(t) — [T sK"f(s)ds = By f(t).
We easily get
1830 < SKI, 1B < K| (29)
Lety € V. Sety, (t) := e 1B/ At EHAK) /Ay Note that

yr(t) =y + Baya(t), wo(t) =y + Boyo(t).

Treatingy as an element of'([0, ¢¢], ))) — the constant function equal towe can
write

(1-B)'y=> By, (1-Bo)'y=> Bpy,
n=0 n=0

where both Neumann series are absolutely convergent. Therefore, in the sense of the
convergence in ii©'([0, to], V), we get

oo o
y/\:ZB;Ly—)ZBgy:yO.
n=0 n=0
O

Theorem 7.Let) be finite dimesional. TheR* exists for anyK € B()’) and

K'= Y 1ie(B)KLi(E) = lim ¢! [y eEKe*Eds,

ieespE -
lim sup |[Je” B/ AetEHA)/A otK* || = 0.
A—0 0<t<to
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Proof. In finite dimension we can replace the strong limit by the norm limit. More-
over,

t eit(61*62) -1
tﬂ/ eFRe Fds = Y 1, ()KL, (B)——————.
0 ie1,iez€spE i(e; —e2)t

O

Remark 2The following results generalize some aspects of Theorem 7 to the case
whenP is not necessarily finite dimensional. They are proven in [Da3]. We will not
need these results.
1) If K* exists, then it commutes witf®.
2) If K is a compact operator andis a Hilbert space, theR® exists and we can
replace the strong limit in (26) by the norm limit.
3) If E has a total set of eigenvectors, thEh exists as well.

3.4 Second order asymptotics of evolution with the first order term

In this subsection we consider a somewhat more general situation than in Subsection
3.1. We make the Assumptions 2.1, 2.3 and 2.4, or 2.1*, 2.3* and 2.4 but we do not
assume thaP is finite dimensional, nor th&QP = 0. Thus we allow for a term of
first order in) in the asymptotics of the reduced dynamics. We again follow [Da3].
We assume also th&QP andPQIP are bounded or w* continuous and tfat-
APQP generates &'y- or C;-group of isometries oRanlP.
_ Using the boundedness of off-diagonal elemeh@P and PQP, we see that
PL,P is the generator of a continuous semigroup.
In this subsection, the definition &f), (¢) slightly changes as compared with (9):

A%t o
K\(t) = / e SERAREIPQe AP QPds.
0

Theorem 8. Suppose that the following assumptions are true:
1) For all ¢y > 0, there existg such that

sup  sup [|Kx(1)] < c.
[A<Xxo 0<t<to

2) There exists a bounded (w* continuous in tg case) operators on RanP
such that
lim K =K
am A(t)
forall 0 < t < oc.
Then fory € RanP

lim sup

2 2 2
Hpetb//\ Py — et E+HAPOPENK) /N
A—=00<t<ty

’:0.
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Proof. Set) := RanP. Consider the spac€([0, to],)). For f € C([0,t0],))
define . )

Hf(t) := [, eEHFORE=)/ AR, (8 — 5) f(s)ds,

Grf(t) i= [y eEHFURE=9)/ N K f(5)ds
Note thatH, andG, are linear operators ofi([0, ¢¢], V) satisfying

[HY|| < ctg/nl, |G < g /nl,
Thusl — H, andl — G, are invertible. In fact, they can be defined by the Neumann

series:

(1—Hy)~ ZH/\, (1—Gx)~ ZG"
Next we note that

[HY =GR < | Hx = Galle* g™/ (n = 1)), (30)
because

n—1 . .
1Hy — GRl < 32 IHLINGR M — Gl
,’_O

e ltn

Z WHHA Gill = (2cto)" [ Hx = Gall/(n = D).

Therefore,
(1= Hy)"' = (1= Gx) 7 < cllHy = Ga, (31)

Next,
t
(Hx— G\ f(t) = / EHNFUNE=)/N (¢, (¢ — 5) — K) f(s)ds.
0
and hence .
Hy — Gyl < / KA (s) — K]|ds — 0.
0

Thus
[(1—Hy) ' = (1 =G\ —0. (32)

Lety € ). Define the following elements of the spacé[0, ¢], V):

2
ga(t) = eEHAEIDy,

ha(t) i= Pelat/ NPy,

2 2
ga(t) i= EHAPQPHATE)L/A%,,

Now
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hx = gx + Hxha,

gr = gx + Gagn.

Thus
hy—gr=(1—Hy) gy —(1=Gx)lgr — 0.

3.5 Proof of time dependent weak coupling limit

Proof of Theorem 3 and 3*.In addition to the assumptions of Theorem 8 we sup-
pose thaPQP = 0 and K? exists.
Theorem 7 implies that

lim sup ||e_Et/’\2et(]E+)‘2K)/k2y - etKuyH =0.

A—=00<t<t,

Theorem 8 yields

lim sup ||]P’etL*/>‘QIP’y — et(E+’\2K)/’\2y|| =0.
A—0 0<t<to

Using thate*® is isometric we obtain

lim sup ||e_Et/’\2E”etL*/’\2IF’y — etKuyH =0. (33)
A—0 0<t<to

It is clear from (33) thattX " is contractive D

Proof of Theorem 4 Because of the finite dimension all operatorsRxmP are w*
continuous and the strong and norm convergence coincide. Besides, we can apply
Theorem 7 about the existencelgf. O

3.6 Proof of the coincidence ofVls; and Mgy, With the LSO
Proof of Theorem 5.Set

£(s) == sup ||PQeFLAPQP.
A< X0

We know thatf(t) is integrable.
For anye € R and¢ > 0 we can dominate the integrand in the integral

Fa(ie,€) = [;° PQeFLAPQPe~(e+X* 05
~ -1 (34)
— PQ (IE”(ie +22¢) — IP’LA]P’) QP
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by f(s). Hence, using the dominated convergence theorem we seé&ttiat¢) is
continuous at = 0 and¢ > 0. But

Z lie (E)FO (ie, 0)1ie (E)

iecspE

~ ~ ~\ —1
= Y lim 1.(E)Q (IP’(ie +A2) — IP’ILAIP’) QP1.(E) = M.
ieespE A—=0

Recall (9), the definition of<, (¢):

A% o
Ky\(t) == / e EPQes TP QPds.
0

Its integrand can also be dominated ). Hence, using again the dominated con-
vergence theorem, we see that, for- 0, K, (¢) is convergent to

o0 _
K= / e EPQe o QPds.
0

Therefore, _
K'= 3 1i(E) [§7 Qeof Q1 (E)ei*ds
ie€spE
= > 1. (E)Fy(ie, 0)1;(E).
ieespE
O

4 Completely positive semigroups

In this section we recall basic information about completely positive maps and semi-
groups, which are often used to describe irreversible dynamics of quantum systems.
For simplicity, most of the time we restrict ourselves to the finite dimensional case.

4.1 Completely positive maps

The following facts are well known and can be e.g. found in [BR2], Notes and Re-
marks to Section 5.3.1.

Let K1, K2 be Hilbert spaces. We say that a linear niap B(K,) — B(K2) is
positive iff A > 0 implies=(A4) > 0. We say that it is completely positive (c.p. for
short) iff for anyn, = ® 1gcn) is positive as a map(K; ® C*) — B(K, ® C™).

We will say that a positive mag' is Markov if =(1) = 1.

Recall thatB!(K;) denotes the space of trace class operator&priWe can
define positive and completely positive maps fr#{KC,) to B! (K ;) repeating ver-
batim the definition for the algebra of bounded operators. We will say that the map
is Markov if it preserves the trace.
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We can also speak of positive and completely positive mags?oK).

We will sometimes say that maps on the algeB(&’) are “in the Heisenberg
picture”, maps or3*(K) are “in the Schidinger picture” and maps oi?(K) are
“in the standard picture” (see the notion of the standard representation later on and
in [DJPY)).

From now on, for simplicity, in this section we will assume that the sp&Gese
finite dimensional. Thu$(k;) andB%(K;) and B'(K;) coincide with one another
as vector spaces. K is a map from matrices oif; to matrices oniC,, it is often
useful to distinguish whether it is understood as a map f&{ig; ) to B(K;) (we
then say that it is in the Heisenberg picture), as a map #830iC; ) to B2(K,) (we
then say that it is in the standard picture) or as a map 0K, ) to B (K>) (we
then say that it is in the Scbdinger picture).

Note thatB'(K;) andB(K;) are dual to one another. (This is one of the places
where we use one of propertie of finite dimensional spaces. In gef3¢kdl) is only
dual toB'(K;) and not the other way around.) The (sesquilinear) duality between
BY(K;) andB(K;) is given by

Trp*A, pe BYK;), AcB(K).

If = is a map “in the Heisenberg picture”, then its adjoffit, is a map “in the
Schibdinger picture” (and vice versa). Clearly,is a Markov transformation in the
Heisenberg picture ifE£* is Markov in the Schizdinger picture.

Note that (in a finite dimension) the definition 8f does not depend on whether
we consider=' in the Heisenberg, standard or Satlinger picture.

4.2 Stinespring representation of a completely positive map

By the Stinespring theorem [St; : B(K1) — B(K2) is completely positive iff there
exists an auxilliary finite dimensional Hilbert spateandWW € B(K., K1 ®H) such
that

In practice it can be useful to transform (35) into a slightly different form. Let
us fix an orthonormal basig, ..., e,) in H. Then the operatoW is completely
determined by giving a family of operato¥g,, ..., W,, € B(K2, K1) such that

Wy = Z(WJWQ) ® €;, Uy € K.

j=1
Then .
2(B) =Y _ W;BW;. (36)
j=1

There exists a third way of writing (35), which is sometimes useful H &k the
space conjugate t& and letH > & — & € H be the corresponding conjugation
(see e.g. [DJ2]). We definé™* € B(K,, K, @ H) by
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(W |V @ D) e, o = (U1 @ BIW W)k, m, (37)

(see [DJ2]). (Note that we use two different kinds of starfar the hermitian conju-
gation and« for (37)). LetTr;; denote the partial trace ovef. Then

Z(B) = TrzW*BW™*. (38)
If = is given by (35), therE™ can be written in the following three forms:

Z4(C) = TryWCW*

= > W,0W;
j=1
— W CR1W*,

whereC € B*(Ks).

4.3 Completely positive semigroups

Let K be a finite dimensional Hilbert space ahe> A(t) a continuous 1-parameter
semigroup of operators df(K). Let M be its generator, so that(t) = e*M.

We say thatA(t) is a completely positive semigroup iff(¢) is completely pos-
itive for anyt > 0. A(t) is called a Markov semigroup iffi(¢) is Markov for any
t > 0.

A(t) is a completely positive semigroup iff there exists an operdtan K and
a completely positive maf on B(K) such that

M(B) = AB+ BA* + 5(B), B e B(K). (39)

Operators of the form (39) are sometimes called Lindblad or Lindblad-Kossakowski
generators [GKS, L].
Let [, -]+ denote the anticommutatot(t) is Markov iff
. 1. _ =
M(B) =i(6,B] - 5[2(1), Bl; + Z(B),
where® := (A + A*).
If = is given by (35), then

M(B) =i[0,B] + 2 (W*(WB — BLW) + (BW* — W*B1)W))

. n (40)
=i[0,B] + 3 ] I(Wf[Wj,B] + [B, W} IW;),
=
and
M*(B) =i[©, B] — {[W*W, B]; + TryW BW*

=il0, Bl + X (=3[W; W, By + Wj*Bo1Wy).

n
Jj=1
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Suppose that*™ is a positive Markov semigroup in the Heisenberg picture. We
say that a density matrig on K is stationary with respect to this semiigroup iff
et™” (p) = p. Every positive Markov semigroup in a finite dimension has a stationary
density matrix.

Markov completely positive semigroups (both in the Heisenberg and8ictyer
picture) are often used in quantum physics. In the literature, they are called by many
names such as quantum dynamical or quantum Markov semigroups.

4.4 Standard Detailed Balance Condition

In the literature one can find a number of various properties that are called the De-
tailed Balance Condition (DBC). In the quantum context, probably the best known
is the defintion due to Alicki [A] and Frigerio-Gorini-Kossakowski-Verri [FGKV],
which we describe in the next subsection and call the DBC in the sense of AFGKV.

In this subsection we introduce a slightly different property that we think is the
most satisfactory generalization of the DBC from the clasical to the quantum case.
It is a modification of the DBC in the sense of AFGKV. To distinguish it from other
kinds of the DBC, we will call it the standard Detailed Balance Condition. The name
is justified by the close relationship of this condition to the standard representation.
We have not seen the standard DBC in the literature, but we know that it belongs to
the folklore of the subject. In particular, it was considered in the past by R. Alicki
and A. Majewski (private communication).

In the literature one can also find other properties called the Detailed Balance
Condition [Mal, Ma2, MaSt]. Most of them involve the notion of the time reversal,
which is not used in the case of the standard DBC or the DBC in the sense of AFGKV.

Let us assume thatis a nondegenerate density matrix/on(That meansy > 0,

Trp = 1, andp~! exists). On the space of operators /6rwe introduce the scalar
product given byp:
(A|B), = Trp'/2A*p'/?B. (41)

This space equipped with the scalar product (41) will be denotetﬂ%b)\ﬁ). Letxp
denote the hermitian conjugation with respect to this scalar product. Thdssfa
map onB(K), thenM** is defined by

(M**(A)|B), = (A[M(B)),-
Explicitly,
M*P(A) = p_l/QM*(pl/QApl/Q)p_l/z.

Definition 1. Let M be the generator of a Markov c.p. semigroup®ik). We will
say thatM satisfies the standard Detailed Balance Condition with respegt ifo
there exists a self-adjoint operatér on K such that

1

E(M - M) =[O, (42)

Theorem 9.Let M be the generator of a Markov c.p. semigroup®(kC).
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1) Let M satisfy the standard DBC with respectdoThen
(43)
M*(A) = =i[6, Al + p"/2My(p= /2 Ap=1/2)p!/2.

where My is a generator of another Markov c.p. semigroup satisfylidg =
M}” and © is a self-adjoint operator oC. Moreover,[0, p| = 0, M*(p) =
Mg (p) = 0. _

2) Let M be given by (40). If there exists a unitary operatdr H — H such that

[©,p] =0, [W*W,p] =0,
W+ = p= 20U Wpl/2,
thenM satisfies the standard DBC wst
Proof. 1) By (42),
O,]=-6,]"= —p_l/z[@,pl/Q . pl/z]p—l/z_

Using[O©, 1] = 0, we obtain[®, p] = 0.

SettingMy = %(M + M*P) we obtain the decomposition (43). Clearly—=
M (1) = Mg4(1). HenceM, is Markov. Next) = My(1) = M;”(1) givesMq(p) =
0.

To see 2) we note that if

1
My = 5[W*W, Bl —W* Bl W,
then
M;P(B) — p—1/2 (%[W*W, p1/2Bp1/2]+ — W p1/2Bp1/2 ®1 W*) p—1/2
_ %[W*m B]+ _ (p1/2®1 W*pl/Z)* B®1 p1/2®1 W*pfl/Q.
O
My is called the dissipative part of the generatér

4.5 Detailed Balance Condition in the sense of
Alicki-Frigerio-Gorini-Kossakowski-Verri

In this subsection we recall the definition of Detailed Balance Condition, which can
be found in [A, FGKV].
Let us introduce the scalar product

(AlB)(p) = TI‘pA*B.

Let B(zp)(IC) denote the space of operators 6requipped with this scalar product.

Let M*(») denote the conjugate @i with respect to this scalar product. Explicitly:

M*O)(4) = p~ M (pA).
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Definition 2. We will say thatM satisfies the Detailed Balance Condition with re-
spect top in the sense of AFGKYV if there exists a self-adjoint oper&@uch that
1
2i

Note that for DBC in the sense of AFGKY, the analog of Theorem 9 1) holds,
where we replace the scalar prod¢t),, with (-|-)(,).

In practical applications, c.p. semigroups usually originate from the weak cou-
pling limit of reduced dynamics, as we describe further on in our lectures. In this
case the standard DBC is equivalent to DBC in the sense of AFGKYV, which follows
from the following theorem:

(M — M*(P)) =[oe,].

Theorem 10.Suppose thad/ satisfies
p1/4M(p71/4Ap1/4)p71/4 — M(A)

Then M satisfies the DBC in the sense of (42) iff it satisfies DBC in the sense of
AFGKV. Moreover, the decompositiofd = i@, -] + My obtained in both cases
concide.

Proof. Itis enough to note that the map
BXK) > A p~t/*Apt* € B\ (K)

is unitary.O

5 Small quantum system interacting with reservoir

In this section we describe the classl®gf-dynamical systems that we consider in
our notes. They are meant to describe a small quantum sySteteracting with a
large reservoifR. Pauli-Fierz systems, considered in [DJ2], are typical examples of
such systems.

In Subsect. 5.1 we recall basic elements of the theorylotalgebras (see
[BR1, BR2, DJP] for more information). In Subsect. 5.2 we introduce the class
of W*-dynamical systems describir§ + R in purely algebraic (representation-
independent) terms. In Subsect. 5.3 and 5.4 we explain the construction of two rep-
resentations of oul*-dynamical system: the semistandard and the standard rep-
resentation. Both representations possess a distinguished unitary implementation of
the dynamics. Its generator will be called the semi-Liouvillean in the former case
and the Liouvillean in the latter case.

The standard representation and the Liouvillean can be defined for an arbitrary
W*-algebra (see next subsection, [DJP] and references therein). The semistandard
representation and the semi-Liouvillean are concepts whose importance is limited to
a system of the forn$ + R considered in these notes. Their names were coined in
[DJ2]. The advantage of the semistandard representation over the standard one is its
simplicity, and this is the reason why it appears often in the literature [Dal, LeSp].
The semistandard representation is in particular well adapted to the study of the
reduced dynamics.
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5.1 W*-algebras

In this subsection we recall the definitions of basic concepts related to the theory of
W*-algebras (see [BR1, BR2, DJP]).
A W*-dynamical systen{?), r) is a pair consisting of &/ *-algebra?t and
a l-parameter (pointwise)-weakly continuous group of-automorphisms ofi1,
R>t 7t
A standard representation ob&*-algebra) is a quadruplén, M, J, H™) con-
sisting of a representation, its Hilbert spaceH, an antilinear involution/ and a
self-dual cong{ ™ satisfying the following conditions:
1) Jr(OM)J = 7(M)’;
2) Jw(A)J = w(A)* for Ain the center oflt;
3) JU =vfor¥ e Ht;
4) n(A)Jr(A)HT C HT for A € M.
J is called the modular conjugation af¢ the modular cone. Everiy/*-algebra
possesses a standard representation, unique up to the unitary equivalence.
Suppose that we are given a faithful staten 93t. In the corresponding GNS
representationr,, : 9 — B(H, ), the statev is given by a cyclic and separating
vector 2,,. The Tomita-Takesaki theory yields the modul&r-dynamicst — of,
the modular conjugatior,, and the modular con®} := {AJ, A2, : A €M},
wherecl denotes the closure. The statesatisfies the-1-KMS condition for the
dynamicso,. The quadruplér,,, H,,, J.,, H}) is a standard representationgo.
Until the end of this subsection, we suppose that a standard representation
(m,H, J,HT) of Mis given.
Let w be a state oMt. Then there exists a unique vector in the modular cone
2 € H™ representing. (2 is cyclic iff §2 is separating iftv is faithful.
Lett — 7t be aW*-dynamics ortil. The LiouvilleanL of 7 is a self-adjoint
operator or{ uniquely defined by demanding that

n(tt(A)) = elr(A)e 1L, EHY = HT, teR.

(L implements the dynamics in the representati@nd preserves the modular cone).

It has many useful properties that make it an efficient tool in the study of the ergodic
properties of the dynamics. In particular, has no point spectrum iff has no
normal invariant states, arfdhas a 1-dimensional kernel iffhas a single invariant
normal state.

5.2 Algebraic description

The Hilbert space of the systefis denoted byC. Throughout the notes we will
assume thadim IC < oco. Let the self-adjoint operatdk be the Hamiltonian of the
small system. The free dynamics of the small systen} ($) := ' Be™''X | B ¢
B(KC). Thus the small system is described by Wié-dynamical systeni3(K), 7s).

The reservoifR is described by &/ *-dynamical systeni, 7= ). We assume
that it has a unique normal stationary state (not necessarily a KMS state). The
generator of-, is denoted by, (thatist} = e°=%).
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The coupled systei§ + R is described by th&/ *-algebradt := B(K) @ M.
The free dynamics is given by the tensor product of the dynamics of its constituents:

TH(A) = (theTh) (4), Aem.

We will denote by, the generator of;.
Let V be a self-adjoint element @ft. The full dynamicst — 7¢ := e is
defined by
(SA = (5() + 1/\[‘/, }

(One can consider also a more general situation, wheseonly affilliated to9t—
see [DJP] for details).

5.3 Semistandard representation

Suppose thdbt, is given in the standard form on the Hilbert spé&tg. Let1, stand
for the identity onH . We denote by}, Jx, and L the corresponding modular
cone, modular conjugation, and standard Liouvillean.f2gtbe the (unique) vector
representative ift(;; of the statev,. Clearly,(2 is an eigenvector af . |2 )(£2x|
denotes projection of?.

Let us represertt(K) on K and take the representation®fin the Hilbert space
K ® H. We will call it the semistandard representation and denote’ iy} : 9t —
B(K ® Hx). (To justify its name, note that it is standard on its reservoir part, but
not standard on the small system part). We will usually drsg' and treatt as a
subalgebra oB(K @ Hx).

Let us introduce the so-called free semi-Liouvillean

L™ =K®141® Lg. (44)
The full semi-Liouvillean is defined as
L™ = LE™ + AV.
It is the generator of the distinguished unitary implementation of the dynamyics
T(A) = A AT A e, (45)
with .
Oy = 1[LT™, .
5.4 Standard representation

Let us recall how one constructs the standard representation for the alg@bya
Recall thatB?(K) denotes the space of Hilbert-Schmidt operatorsofEquipped
with the inner product X |B) = Tr(X*B) it is a Hilbert space. Note thd (k)
acts naturally oB?(K) by the left multiplication. This defines a representatiqn:
B(K) — B(B?(K)). Let Js : B2(K) — B?(K) be defined by/s(X) = X*, and let
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B3 (K) be the set of all positivé&l € B*(K). The algebrars(B(K)) is in the standard
form on the Hilbert spac8?(K), and its modular cone and modular conjugation are
B%(K) and Js.

There exists a unique representationdt — B(B?(K) ® H ) satisfying

(B C)=rs(B)®C. (46)

The von Neumann algebrg) is in standard form on the Hilbert spaé(K) ®
H . The modular conjugation i = Js ® Jz. The modular cone can be obtained
as

HY = {x(A)Jr(A) (p@02) : Ae M,

wherep is an arbitrary nondegenerate elemenef K).
The Liouvillean of the free dynamics (the free Liouvillean) equals
Li=[K, |®1+1® Lg. (47)
and the Liouvillean of the full dynamics (the full Liouvillean) equals
Ly = Lo+ A(x(V) = Jr(V)J). (48)

Sometimes we will assume that the reservoir is thermal. By this we mean,that
is a3-KMS state for the dynamics,. Set

Wy = e K2 g 0.

Then the staté¥y|m(-)¥)/||¥o||? is a (7o, 3)-KMS state.
The Araki perturbation theory yields that

Wy € Dom(e AEotAT(V)/2),

the vector
Uy, 1= e PLo (V)2 (49)

belongs toH™ N KerLy, and that(@,|r(-)¥,)/||¥.||? is a (7, 3)-KMS state (see
[BR2, DJP)). In particular, zero is always an eigenvalud.gf Thus, in the thermal
case (M, 7, ) has at least one stationary state.

6 Two applications of the Fermi Golden Rule to open quantum
systems

In this section we keep all the notation and assumtions of the preceding section.
We will describe two applications of the Fermi Golden Rule to iié-dynamical
system(90t, 7 ) introduced in the previous section.

In the first application we compute the LSO for the generator of the dynaiics
We will call it the Davies generator and denotedy In the literature M appears in
the context of the Dynamical Fermi Golden Rule. Itis the generator of the semigroup
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obtained by the weak coupling limit to the reduced dynamics. This result can be used
to partly justify the use of completely positive semigroups to describe dynamics of
small quantum systems weakly interacting with environment [Dal, LeSp].

In the second application we consider the standard representation @fthe
dynamical system in the Hilbert spagéwith the Liouvillean L. We will compute
the LSO foriL,. We denote it byil". In the literaturejl” appears in the context of
the Spectral Golden Rule. It is used to study the point spectrum of the Liouvillean
L. The main goal of this study is a proof of the uniqueness of a stationary state in
the thermal case and of the nonexistence of a stationary state in the non-thermal state
under generic conditions [DJ1, DJ2, DJP]. (See also [JP1, JP2, BFS2] for related
results).

In Subsection 6.3, we will describe the result of [DJ3], which gives a relationship
between the two kinds of LSO’s in the thermal case.

In Subsections 6.4—6.6 we compute both LSO’s explicitly. In the case of the
Davies generator, these formulas are essentially contained in the literature, in the case
of the LSO for the Liouvillean, they are generalizations of the analoguous formulas
from [DJ2]. Both LSO's can be expressed in a number of distinct forms, each having
a different advantage. In particular, as a result of our computations, we describe a
simple characterization of the kernel of imaginary parf ofwhich can be used in
the proof of the return to equilibrium. This characterization is a generalization of a
result from [DJ2].

6.1 LSO for the reduced dynamics

It is easy to see that there exists a unique bounded lineafPnoa@t such that for
BeCeMmc BKe®HR)

P(B®C) =wr(C)B® 1.

P € B(9n) is a projection of norm 1. (It is an example o€anditional expectation
We identify B(K) with RanP by

B(K)> B+— B®1y € RanP. (50)

Note thatd, o €8N be identified with[ K, -].

We assume that, (V') = 0. That impliesP[V, -]P = 0.

Note that Assumptions 2.1*, 2.2, 2.3* and 2.4 are satisfied for the Banach space
M, the projectior?, the Cg-group of isometries’®°, and the perturbatioiiV, -].

Remark 30ne can ask whether the above defined projedtidgm given by the for-
mula (5). Note thaft is not a reflexive Banach space, so it is even not clear if this
formula makes sense.

Assume thab has no eigenvectors apart from scalar operators. Then the set of
eigenvalues of, equals{i(k — k') : k,k’ € spK}. One can also show that for
anye € R, dq is globally ergodic ate € iR (see Appendix) and the corresponding
eigenprojection is given by
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1 (6) (B2 C) = 3 we(C) (1x(K)Bly_o(K)) @1,
kespK

Therefore, in this case the answer to our question is positive and

P= Z 1ie(50)7

ecR
as suggested in Subsection 2.6.

We make the following assumption:

Assumption 6.1 Assumption 2.5 holds fdi?, dg, [V, -]). This means that there ex-
ists
Mi=— % LK DIV, Jle+0 = do) 'V, J1e([K, ). (81)

e€sp([K,-])

M is the LSO for(PP, d,i[V,]). It will be called the Davies generator (in the
Heisenberg picture).

To describe the physical interpretation/df, suppose that we are interested only
in the evolution of the observables corresponding to sysidtaking, however, into
account the influence 6®). We also suppose that initially the reservoir is given by
the statev. Let X be a density matrix on the Hilbert spake such that the initial
state of the system is described by the density mafrix |2 )({2z|. Let B € B(K)
be an observable for the systefnsuch that the measurement at the final tinie
given by the operatoB ® 1. Then the expectation value of the measurement is
given by

Tee (X ©[02)(2] 74(Bot) ) (52)
Obviously, (52) tensored with, equals
Trx (XPriP(B® 1)) .

Now under quite general conditions [Dal, Da2, Da3] we have

lim e KA/ N prt/ATp ot (53)
A—0 A

Thus M describes the reduced dynamics renormalizefiiay]/A? in the limit of
the weak coupling, where we rescale the time\By
Let us note the following fact:

Theorem 11.Suppose Assumption 6.1 holds. Théns the generator of a Markov
c.p. semigroup and for any € C,

M(B) :eZKM(efd(BeZK)e*ZK. (54)
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Proof. We know that LSOM commutes withE = i[K,-]. This is equivalent to
e*EMe=*® = M, which means (54).

The fact thatM is a Lindblad-Kossakowski generator and annihilatesl! fol-
low immediately from explicit formulas given in Subsection 6.4.

If we can prove 53, then an alternative proof is possible: we immediately see that
the left hand side of (53) is a Markov c.p. map for @rand ), hence so is**. O

6.2 LSO for the Liouvillean
Consider the the Hilbert spad¥¥ (K) ® H and the orthogonal projection
P =1px) ® [2R)(£2=].
We havePL, = LoP = [K, | P. We identify 3%(K) with RanP by
B*(K) > B — B ® {2 € RanP. (55)

We again assume that, (V') = 0. This impliesPn (V)P = PJn(V)JP = 0.

Note that Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied for the Hilbert space
B?(K) ® Hx, the projectionP, the strongly continuous unitary groep’c, and the
perturbation(7(Q) — Jm(Q)J).

Remark 4 Assume thal., has no eigenvectors apart frday, . Then the set of eigen-
values ofy, equals{i(k — k') : k, k" € spK} and

1(Lo)B@W = (2:[¥) > (14(K)Blj_(K)) @2x.
kespK

Therefore,
P=> 1(iLo)
ecR

is the spectral projection on the point spectrunilaf, as suggested in Subsection
2.6.

Assumption 6.2 Assumption 2.5 fo(P,iLg,i(w (V) — Jx(V)J)) is satisfied. This
means that there exists
iFi=— Y LK D@(V)~ Ja(V)J)
e€sp([K,])
x(ie + 0 —iLo) Y7 (V) — Jr(V)J)1([K,]).

iI" is the LSO for(P,iLo,i(m(V) — Jx(V)J)). We will call it the LSO for the
Liouvillean. The operatof” appeared in [DJ1], where it was used to give an upper
bound on the point spectrum &f, for small nonzero\.
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Theorem 12.Suppose that Assumption 6.2 holds. Tiérs the generator of a con-
tractive c.p. semigroup and for anye C,

I'(B) = *K (e *K Be*K)e *K (56)

Proof. The proof of (56) is the same as that of (54)! is contractive by Theorem
1. The proof of its complete positivity will be given later on (after (6@)).

6.3 Relationship between the Davies generator and the LSO for the
Liouvillean in thermal case.

Obviously, as vector space8(K) and B%(K) coincide. We are interested in the
relation betweenl” and generatof/. We will see that in the thermal case the two
operators are similar to one another.

The following theorem was proven in [DJ3]:

Theorem 13.Suppose that, is a (7x, 3)-KMS state. Assumption 6.1 holds if and
only if Assumption 6.2 holds. If these assumptions hold, theR fer3(K), we have

M(B) = il'(Be PK/2)efK/2
(57)
= eﬁK/4iF(e—ﬂK/4Be—[j‘K/4)eﬂK/4.

Remark 5Let p := e X and~y, : B(K) — B2(K) be the linear invertible map
defined by
Yp(B) := Bp'/?. (58)

Then the first identity of Theorem 13 can be writtends= i’yp_l ol'o7,. Therefore,
bothil” and M have the same spectrum.

Theorem 13 follows from the explicit formulas fad andil” given in Subsec-
tions 6.4-6.6. It is, however, instructive to give an alternative, time dependent proof
of Identity (57), which avoids calculating both LSO's. Strictly speaking, the identity
will be proven for the “the dynamical Level Shift Operatord,, andil 4y, which,
however, according to the Dynamical Fermi Golden Rule, under broad conditions,
coincide with the usual Level Shift Operatars andil".

Theorem 14.Suppose that, is a(7x, §)-KMS state. Then the following statements
are equivalent:
1) there exists an operata¥lq,,, satisfying

. i J/A2m t/A?
lim eI/ PT/\/ P = ¢tMayn
A—0
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2) there exists an operatdryy, satisfying

lim e it 1/A2 po—itLa/A? p _ Gitlayn
A—0

Moreover,
-1 .
Mdyn =% ©° lI‘dyn ©%p-

Proof. The Araki perturbation theory (see [DJP] and references therein) yields that
the vector?,, defined by (49), satisfieg, = ¥, + O(\) and L&, = 0. For
X, B € B(K) = B%(K), using the identifications (50) and (55), we have

Trie (X*Pry 'rL(B®1y))

_ (XeBK/z ® 2 ’ (e thogitla Bol, e iHhacitlo) efﬁK/2®9R>

L) (XIS 0 | e Hhoeithn Bl oty

L (XS @ 0 | e thodthn B, e K200y

= (X | (Pe~tloeitha (Be’ﬂK/2®QR)) e'BK/Q)
uniformly for ¢ > 0. Hence, sincdim K < oo,
e*it[K"]/AQIP’Tf\(B(@lR) = (e*it[K"V}?PeitLA (BefﬁK/z(XJQR))eﬁK/2 +0(N)
uniformly for ¢ > 0. We conclude that for a givernthe limit

i o~ s p ¢
exists iff the limit _ ) 2
;ir% e K /A ]P)T;/A P=:T*

exists. Moreover, if the limits exist, then

Tt = ’y;l o Tt o Yp-
In particular,T* is a semigroup iff" is a semigroup and their generatokg ., and
il'4yn respectively) satisfy (57).

Itis perhaps interesting that Theorem 14 can be immediately generalized to some
non-thermal cases.

Theorem 15.Suppose that instead of assuming that is KMS, we make the fol-
lowing stability assumption: We suppose thais a nondegenerate density ma-
trix on K, and for |A\|] < )\, there exists a normalized vectdr, € H such that
Uy = p/?2 @ 2 + o(\°) and L\¥, = 0. Then all the statements of Theorem 14
remain true, withp replacinge %,
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Let us return to the thermal case. It is well known [A, FGKV] that in this case
the Davies generator satisfies the Detailed Balance Condition. We will see that this
fact is essentially equivalent to Relation (57).

Theorem 16.Suppose thab is a (7=, 3)-KMS state and Assumption 6.1 holds.
Then the Davies generatde/ satisfies DBC foe X both in the standard sense
and in the sense of AFGKV.

Proof. Recall that the operator, defined in (58) is unitary fronlﬁ(2 ) (K) to B2(K).
Recall also that in the thermal case

M:'y;IOiFOfyp.

Hence,
M*(P) = —’y;l oil™ °Yp-

Thus,
5 (M — M*®))y =y o (I +T%) 0,

= ’Y;l © [ARa ] O %Yp = [ARv ']a

(whereAR will be defined in the next subsection). This proves DBC in the sense of
AFGKV.
By Theorem 11 and the fact thatis proportional toe=?%, for any 2 € C we
have
M(B) = p*M(p~*Bp*)p~".

Therefore, by Theorem 10, the DBC in the sense of AFGKV is equivalent to the
standard DBCO

6.4 Explicit formula for the Davies generator

In this subsection we suppose that Assumption 6.1 is true and we describe an explicit
formula for the Davies generatdr .

We introduce the following notation for the set of allowed transition frequencies
and the set of allowed transition frequencies frbra spK:

Fi={k1— ke : k1,ke €spK} =sp[K,:|, Fr:={k—Fk : k1 €spK}.
Let|{2) denote the map
Coz—|2)z:=20 € Hx.
Thenle®|2) € B(K,K ® Hy). Set
vi=V 1x®|£2)

Note thatv belongs ta3(K, K ® Hz). We also define
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Rk = 1k, (K)®1x v 1, (K);
P = Z vkk—p,
kespK

A= Y 3 (0)EFPIR(p +i0 — Ly) tok-pk
kespK pEFy

= > (07)*"1®(p +i0 — L) 'oP.
peF

The real and the imaginary part df are given by

AVi= A+ A) = 5 X ()R PIEP(p - L) ot

kespK pEFy
= > (") 1@P(p — Lr) 107
peF
A= LA-A) =7 ¥ ¥ (A r1@8(p - Lotk
kespK peFy

=m > (0")*1®6(p — Ly )0P;
pEF

37

Note thatA! > 0. Below we give four explicit formulas for the Davies generator in

the Heisenberg picture:
M(B) =i(AB — BA*)

+or 3 (57)* BRS(p — Ly )0

pEF
=i X:f(ﬂp)*1®(p —i0 — L)~ (0P B — B1,9P)
—piEZ (B(tP)* — (2P)* B@1y) 1®(p +i0 — L)~ 'oP
peF
= i[AR, B]
+7 3 (9P)*106(p — L) (BR1,9P — 3P B)
+ p;i ((0P)*B®1y — B(1P)*)1®4(p — Lr)0P
p

S Y Y L)@V, (K)7 (V) 2)1k(K) Bds
kespK peFy, 0

SGOY Y [ BLUO@VL () (V) ) 1(K)ds
kespK peFi —oco

+27T Z 7.0 lk(K)(Q|Vlk_p(K)Blk/_p(K)Tg(V)Q)]_k/(K)ds.

k,k'espK —
pEFLNF
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The first expression on the right has the standard form of a Lindblad-Kossakowski
generator (39). The second expression can be used in a characterization of the kernel
of M. In particular, it implies immediately thatc: € KerM. The third expression
shows the splitting of\/ into a reversible part and an irreversible part. The fourth
expression uses uses time-dependent quantities and is analoguous to formulas ap-
pearing often in the physics literature.

6.5 Explicit formulas for LSO for the Liouvillean

In this subsection we suppose that Assumption 6.2 is true and we describe an explicit
formula foril", the LSO for the Liouvillean.

Recall thatr denotes the standard representatio®dnd L is the Liouvillean
of the free reservoir dynamics.. Let L% denote the Liouvillean of the modular
dynamics for the state. The fact thatu, is stationary forr!, implies that the two
Liouvilleans commute:

. . 0 . 0 .
eltLRelsL72 _ elsLReltLR, ﬁ, s eR.

The following identities follow from the modular theory and will be useful in our
explicit formulas forl™:

Proposition 1. The following identities are true faB € B2(K):
(V) B2, = vB,
Jn(V)J B2, = B®el®/2y.
Moreover, if By, By € B2(K) and® € H, then
(By ® B|vBs) = (eX*/2vBy|By @ Jo ). (59)
Proof. To prove the second identity we note that
J Bo$2, = B*®0y,

Jr(V)B*@82 = e"*/2Ber(V)$2x.

To see (59), we note that it is enough to assume ¢hat A’'(2,, whereAd’ €
m(Mz)" andw (M)’ denotes the commutant ofMi ). Then

(By @ ®lvBs) = (B @ A'Q|n(V)By @ 25)
= (7(V)By ® 2 |By @ A" (2y,)
= (vBy|By ® eER/2 T, A'(2).
O

Note that if we compare (59) with the definition of theoperation (37), and if
we make the identificatio® = J. @, then we see that (59) can be rewritten as
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vt = elR/2y,
The LSO for the Liouvillean equals

il'(B) =iAB — iBA*
60
+21 32 (5P)* BRGS(p — Ly )el”/2P. (60)
peEF
Note that the term on the second line of (60) is completely positive. Therefore, (60)
is in the Lindblad-Kossakowski form. Hene#é! is a c.p. semigroup. This completes
the proof of Theorem 12.
Let us split!” into its real and imaginary part:
1

1
= _(r+r+, .= 5
1

: (I —I*).

(I'* is defined using the natural scalar producBi{K)). Then the real part is given

by
'(B) = [AR}, B]. (61)

The imaginary part equals

=7 (#)106(p — L) (B®eL%/2f;p _ @PB)

peF
0 (62)
IS ((6P)*B®eLR/2 - B(ﬁp)*) 180(p — L)
peF
Another useful formula fof ! represents it as a quadratic form:
TrBlfl(Bg)
(63)

=7 Y Te(?B; — Bi®@el®/257)*108(p — Ly ) (0P By — Ba®el®/257).
peEF

To see (63) we note the following identities:
(#°)* 120 (p — L )T? = Trp 108(p — Ly )elm P (aP)*,
(5P)* BR3(p — Ly )el®/2pp = Trye,, 1R6(p — Ly )eE%/257 B(oP)*,

which follow from (59).

The study of the kernel of" is important in applications based on the Spectral
Fermi Golden Rule. The identity (63) is very convenient for this purpose. It was first
discovered in the context of Pauli-Fierz systems in [DJ2].

In the thermal case (63) can be transformed into

TrBiI(By) =7 3. Tre PK (P B1ePK/2 — B1ePE/2®1, oP)*
pEF (64)
x1@6(p — Ly ) (9P BoePK/? — ByePK/2@1, 7).
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6.6 Identities using the fibered representation

Using the decomposition of the Hilbert spaidg into the fibered integral given by
the spectral decomposition éf,, we can rewrite (63) in an even more convenient
form. To describe the fibered form of (63), we will not strive at the greatest generality.
We will make the following assumptions (which are modelled after the version of the
JalSic-Pillet gluing condition considered in [DJ2]):

Assumption 6.3 There exists a Hilbertospacé and a linear isometnyU : G ®
L*(R) — Hx such thatRan v, Ran e’!=/2y ¢ K ® RanU and U*LU is the
operator of the multiplication by the variable R.

We will identify RanU with L?(R) ® G. Note that? € L?(R) ® G can be identified
with an almost everywhere defined functi&re p — ¥ (p) € G such that

(Lrx¥)(p) = p¥(p),

(see e.g. [DJ2]). We can (at least formally) writg as the direct integral:

(LY%®)(p) = L% (p)¥(p),

whereL? (p) are operators of.
Likewise,v € B(K, K®Hx) can be interpreted as an almost everywhere defined
functionR > p — v(p) € B(K, K ® G) such that

(Lrv®)(p) = pv(p)?, 2 €K.

Assumption 6.4 R > p — v(p), LY (p) are continuous ap € F, so that we can
define unambiguously(p), LY (p) for those values qf.

Under the above two assumptions we can define
wP :=0P(p) peF.
Then we can rewrite the formula (63) as
TrB1 I (Bs)
(65)

=7 3 Tr(wPBy — Bi®el=®)/2yP)* (wP B, — B2®6L0R(p)/2wp).
peF

(65) implies immediately

Theorem 17.The kernel of ! consists ofB € B%(K) such that

w? B = Be""W/2 yr pe F.
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Note that Theorem 17 implies that genericallyr/™ = {0}. Therefore, for a
generic open quantum system, if the Spectral Fermi Golden Rule can be applied,
then the LiouvilleanL, has no point spectrum for small nonzexoTherefore, for
the same\, theV*-dynamical systeni®t, 7, ) has no invariant normal states.

Identities (63), (65) and Theorem 17 are generalizations of similar statements
from [DJ2]. In [DJ2] the reader will find their rigorous application to Pauli-Fierz
systems.

If wr is a(7x, 3)-KMS state, we can transform (65) as follows:

TrBi T (By) = Y. Tre AKX (wP B1ePK/?2 — B1ePE12@1, wP)*
pEF (66)
X (wP ByePE/2 — ByePE/201, wP).

Following [DJ2], define
N:={C : wP C =01 w’, pe F} (67)
Repeating the arguments of [DJ2] we get

Theorem 18. 1) N is ax-algebra invariant wrte'*X . ¢e=*¥ and containingC1.
2) The kernel of ! consists ok~ #%/2C with C € NV.

Theorem 18 implies that in a thermal case, generically;,I™ = {0}. There-
fore, if the Spectral Fermi Golden Rule can be applied, for a generic open quantum
system, for small nonzera, the LiouvilleanL, has no point spectrum except for
a nondegenerate eigenvalue at zero. Therefore, for the sathe W *-dynamical
system(9t, 7, ) has a unique stationary normal state.

Again, ldentity (66) and Theorem 18 are generalizations of similar statements
from [DJ2], where they were used to study the return to equilibrium for thermal
Pauli-Fierz systems.

7 Fermi Golden Rule for a composite reservoir

In this section we describe a small quantum system interacting with several reser-
voirs. We will assume that the reservoRs, . . ., R,, do not interact directly—they
interact with one another only through the small syst&nWe will compute both
kinds of the LSO for the composite system. We will see that it is equal to the sum of
the LSO’s corresponding to the interaction®fvith a single reservoiRR ;.

Our presentation is divided into 3 subsections. The first uses the framework of
Section 2, the second—that of Section 5 and the third—that of Section 6.

7.1 LSO for a sum of perturbations

Let X be a Banach space. LBt,. .., P" be projections of norm 1 o®& such that
PP/ = PIPJ. Let Ly be the generator of a group of isometries such Iag? =
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PiLg, i = 1,...,n. Let Q' be operators such th&anP’* ¢ DomQ’ andQ'P! =
PiQ?, i # j. Set

Q= i@j, P:.= ﬁ}P’j, Xj = RanH}P’i.
j=1 j=1 i#]

Clearly,X; is left invariant bylLo, P/, Q7. Therefore, these operators can be restricted
to &;. We set

Lo,; :=Lo , Q=qQ

j Xj X

Clearly,

RanlPP = Ran}P’j ]Lo‘ = ]LO,j
RanP

RanP; '

We setE := L

RanP '

Theorem 19.Suppose thaP’Q’P?! =0, j = 1,...,n. Then:
1)PQP:0,P]QJIP] :0,] = 1,...,71.
2) Suppose in addition that the LSO’s f@f;, Lo ;, Q;), denoted);, exist. Then
the LSO for(IP, Ly, Q), denotedV, exists as well and

M = Xn:Mi.
=1

Proof. SetJ; := [],; P".
1) Itis obvious thaf*Q‘P* = 0 impliesP;Q;P; = 0.
2) We have

M= Y 1.(E)Q(e+0—Lo)'Q/1.(E),

i,j=11ie€spE
Mj = Z lle(E)@](le +0-— L07j)71leje(E).

ie€spE
Fori # j,
PQ' (ie + 0 — Lo) QP = PQ'J;(ie + 0 — Lo) QP = 0,
sincePQ'J; = PP'Q'P'J; = 0. Clearly,

PQ'(ie + 0 — Lo) "'Q'P = PQ; (ie + 0 — Lo ;) " Q;P.
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7.2 Multiple reservoirs

Suppose thatMx,, 7z, ),. .., (Mx, , 7, ) areW*-dynamical systems with/, =
et9”i . Let1,, denote the identity ofit,,. Suppose thaliz, have a standard repre-
sentation in Hilbert spaced, with the modular conjugations,,. Let L, be the
Liouvillean of the dynamicsy, .

Let (B(K), 7s) describe the small quantum system, with := ¢!*l-]) as in
Section 5. Define the free syster¥;, 7o ;) where

m; = B(K)® Mg,
Hi = B*(K) ® Hr,,
Ji = Js ® Jg,,
=1l ®@T1L =elfn,
do,i = i[K, -] + 6x,,
Lo; = [K,"] 4+ Lg,.

Let 7r; be the standard representatiordfif in H,; and.J; the corresponding conju-
gations.
Let V; € 9, and define the perturbed syste(®%;, 7 ;) whereT;i = etdni
and
I =00, +HiA[V}, -],
Ly = Lo; + XNm:(V;) — Jimi (Vi) Jy).

Likewise, consider the composite reservRirdescribed by théV*-dynamical
system(Mix, 7= ), where

Me i =Me, @+ @My,
Hr i =Hzr, ® - @ Hg,,
Jri=Jr, @ @ Jg,,,

Tt =1t ®~-~®Tfan:et‘5n,
O :=0g, + -+ 0x,,

Ly =Lz, + -+ Lg,.

Define the free composite systémmt, r,) where
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M := B(K) @ M,
H :=B*(K) ® Hr,
J=Js ® Jg,

t._ -t t
T =T ®T =€

t(;o
0o = i[K, ] + Ix,
Lo = [K, -} + Lx.

Let 7 be the standard representatiorD&ifin 7.
SetV = V; + --- + V,. The perturbed composite system describing the small
systemsS interacting with the composite reserv@ris (901, 7, ), wherer! := e,

Sy 1= 8o + iV, ],
Ly = Lo + A(x(V) — Jn(V)J).

7.3 LSO for the reduced dynamics in the case of a composite reservoir

Suppose that the reservoir dynamigs have stationary states,,. We introduce a
projection of norm one iMt, denoted?, such that

[Pi(B®A1®,"'®Ai®"'®An):Wni(Ai)B®A1®"'®1m®"'®An-

SetP := []_, P. The projectionP’ restricted to?)t; (which can be viewed as a
subalgebra ofit) is denoted byP;. Explicitly,

Assume thatv,, (V;) =0fori=1,...,n.

Note that we can apply the formalism of Subsection 7.1, where the Banach space
is X' is I, the projection®’ areP?, the generator of an isometric dynamicgis d,
and the perturbatior@’ arei[V;, -]. Clearly,X; can be identified witt)t; andRanP
with B(K).

We obtain the LSO fofP, dy,1[V, -]), denoted\/, and the LSO’s fo(P;, d¢ ;,i[V;, 1),
denoted)M;. By Theorem 19, we have

M= iMi,
=1

7.4 LSO for the Liovillean in the case of a composite reservoir

Let (25, be the standard vector representativergf. We define the orthogonal pro-
jection inB(H)
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Pi — 182()C) ® 1721 R ® |QR1)(QM| R ® 1Rn.
The projectionP’ restricted taH,; is denoted byP; and equals

Py = 1p2k) ® [2r,) (2=,

SetP =[], P

We can apply the formalism of Subsection 7.1, where the Banach spatesis
H, the projection®’ are P!, the generator of an isometric dynamicgis iL, and
the perturbation§)® arei(V; — J;V;J;). Clearly, X; can be identified with#; and
RanP with B2(K) (which as a vector space coincides WitHK)).

We obtain the LSO for(P,iLg,i(V — JV.J)), denotedil’, and the LSO for
(P;,iLo;,i(V; — J;ViJ;)), denoted ;. By Theorem 19, we have

ir = Z ir;.
=1

The following theorem follows from obvious properties of negative operators:

Theorem 20.Suppose that for some# j, dim KerI} = dimKerI’} = 1 and
KerI'f # Kerl'}. ThenKerI" = {0}.

Corollary 1. Suppose that for sonie# j, the statesu, andwy; are (1=, ;) and
(T=;,B;)-KMS. LetN; and NV be the corresponding-algebras defined as in (67).
Suppose that; # 8; and N = N = C1. ThenKerI" = {0}.

If we can apply the Spectral Fermi Golden Rule, then under the assumptions of
1, for sufficiently small nonzera, L, has no point spectrum. Consequently, for the
same), the systen{t,, 7, ), has no invariant normal states.

A Appendix — one-parameter semigroups

In this section we would like to discuss some concepts related to one-parameter
semigroups of operators in Banach spaces, which are used in our lectures. Even
though the material that we present is quite standard, we could not find a reference
that presents all of it in a convenient way. Most of it can be found in [BR1]. Less
pedantic readers may skip this appendix altogether.

Let X be a Banach space. Recall tHatc[> ¢t — U(t) € B(X) is called
a 1-parameter semigroup if(0) = 1 andU(¢1)U(t2) = U(t1 + t2). If [0,00]
is replaced withR, then we speak about a one-parameter group instead of a one-
parameter semigroup.

We say thatU (t) is a strogly continuous semigroup (oICg-semigroup) iff for
any® € X, t — U(t)P is continuous. Everg,-semigroup possesses its generator,
that is the operatad defined as follows:

¢ € DomA & fl{x(l)fl(U(t) —1)¢ =: AP exists
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The generator is always closed and densely defined and uniquely determines the
semigroup. We writd/ () = e'4.
Recall also the following well known characterization of contractive semigroups:

Theorem 21.The following conditions are equivalent:

1) e*4 is contractive for allt > 0.

2) Ais densely definedpA C {z € C : Rez <0}and|(z—A)7!|| < (Rez)~!

for Rez > 0.
3) (i) Aisdensely defined and for some with Rezy > 0, z4 € spA,
(i) A is dissipative, that is for ang € DomA there exist € X* with
(£|9) = [|2]] and (§|AP) < 0.

Moreover, if A is bounded, then we can onti} in 3).

There exists an obvious corollary of the above theorem for groups of isometries:

Theorem 22.The following conditions are equivalent:
1) e*4 is isometric for allt € R.
2) Ais densely definedpA C iR and||(z — A) 7| < |Rez|~! for Rez # 0.
3) (i) Ais densely defined and for some with +Rez1+ > 0, 21 & spA,
(ii) A is conservative, that is for ang € DomA there existg € X™* with
(£|9) = [|@]] andRe(¢|AP) = 0.
Morover, if A is bounded, then we can onfi} in (3).

Not all semigroups considered in our lectures @esemigroups. An important
role in our lectures (and in applications to statistical physics) is played by somewhat
less knowrC;-semigroups. In order to discuss them, first we need to say a few words
about dual Banach spaces.

Let X* denote the Banach space dualftdthe space of continuous linear func-
tionals onX’). We will use the sesquilinear duality betweait and X’: the form
(¢|P) will be antilinear in¢ € X* and linear ind € X.

The so-called weak(wx) topology onX* is defined by the seminormé |®)|,
where® ¢ X

The space of wcontinuous linear operators at* will be denoted by3,,,.. (X™*).
Note thatB,,.(X*) C B(X*). If A € B(X), and A* is its adjoint, thend*
B« (X*). Conversely, ifB € B,.(X*), then there exists a uniqué € B(X),
sometimes called the preadjoint 8f such thatB = A*. Likewise, if A is closed
and densely defined oti, then A* is wx closed and w densely defined o™ .

We say thaf0, co[> ¢t — W(t) € By.(X™*) is a w« continuous semigroup (or
a C§-semigroup) ifft > W(¢)¢ is wx continuous for any, € X*. Note that if
U(t) is aCy -semigroup, therd/ (¢)* is a C-semigroup. Conversely, iV (t) is a
C-semigroup onX’™*, then there exists a uniqu&-semigroup/(¢) on X such that
W(t) =U(t)*.

EveryCj-semigroupgh’ (t) possesses its generator, that is the operatdefined
as follows:

¢ €DomB & wx —tlga% t7H(W(t) — 1)¢ =: B¢ exists
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The generator is always#aclosed and w-densely defined and uniquely determines
the semigroup. We writé () = e'Z. We have
(etA)* — etA*-

On a reflexive Banach space, e.g. on a Hilbert space, the conceptsefaad
Cj-semigroup coincide. Unfortunatelyy *-algebras are usually not reflexive. They
are, however, dual Banach spaces: they are dual to the space of normal function-
als. In the context ofV *-algebras the wtopology is usually called the-weak or
ultraweak topology.

Groups of automorphisms &F *-algebras are rarel§/y-groups. To see this note
that if H is a self-adjoint operator on a Hilbert spadethen

t— eitH . efitH (68)

is always aC¢-group onB(H). Itis aCy-group (and even a norm continuous group)
iff H is bounded, which is usually a very severe restriction.

In the context ofi*-algebras,Cj groups are usually called (pointwise)
weakly continuous groupg’j-groups ofsx-automorphisms are often callddf *-
dynamics.

So far, all the material that we recalled can be found e.g. in [BR1]. Now we
would like to discuss how to define the spectral projection onto a (not necessarily
isolated) eigenvalue of a generator of contractive semigroup. We will see that a fully
satisfactory answer is available for purely imaginary eigenvalues in the case of a
reflexive Banach spaces. For non-reflexive Banach spaces the situation is much more
complicated. Our discussion is adapted from [Zs] and partly from [Da3].

Let A be the generator of a contractiZg-semigroup ot ande € R. Following
[Zs], we say thatA is ergodic aie iff

Lie(4) 1= lim €(€ +ie — 4)7! (69)

exists.
Let B be the generator of a contractig -semigroup oY’ ande € R. Follow-
ing [Zs], we say thaB is globally ergodic ate iff

1;.(B) ::w*—gl%g(ngie—B)*l (70)

exists and is w-continuous.
As we will see from the theorem below, (69) and (70) can be called spectral
projections onto the eigenvalie

Theorem 23.Let A, B ande € R be as above.
1) If Ais ergodic atie, thenl;.(A) is a projection of norm such that

Ranl;, (A) = Ker(4 —ie), Kerli.(A) = (Ran (A —ie))".
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2) On a reflexive Banach space, we have always the ergodic property for all gen-
erators of contractive semigroups and all€ iR.

3) If B is globally ergodic atie, then1;.(B) is a w«-continuous projection of
norm1 such that

Ranl;.(B) = Ker(B —ie), Kerl;.(B) = (Ran (A — ie))w*Cl .
4) Ais ergodic atie iff A* is globally ergodic at-ie and
Li.(A)" =1_;.(A").

1) and 2) are proven in [Da3] Theorem 5.1 and Corollary 5.2. 3) and 4) can be
proven by adapting the arguments of [Zs] Theorem 3.4 and Corollary 3.5.
As an ilustration of the above concepts considerifiedynamics (68). Clearly,
it is a group of isometries and the spectrum of its genetffr] is contained irR.
If H possesses only point spectrum, thig, -] is globally ergodic for anye € iR.
In fact, we have the following formula for

1ie(i[H’ ])(C) = Z 1w+e(H)C]-ac(H>'

z€R

Note thati[H, -] always possesses an eigenvaluend the corresponding eigen-
vectors are all operators commuting with It is never globally ergodic dt if H
has some continuous spectrum.
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