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Abstract

We discuss self-adjoint operators given formally by expressions quadratic in bosonic creation and
annihilation operators. We give conditions when they can be defined as self-adjoint operators, possibly
after an infinite renormalization. We also discuss explicit formulas for their infimum.

Our main motivation comes from Local Quantum Field Theory, which furnishes interesting ex-
amples of bosonic quadratic Hamiltonians that require an infinite renormalization [De].

1 Introduction
Quantum bosonic quadratic Hamiltonians, or bosonic Bogoliubov Hamiltonians are formally given by
expressions of the form

Ĥ =
∑

hij â
∗
i âj + 1

2

∑
gij â

∗
i â
∗
j + 1

2

∑
gij âiâj + c, (1.1)

where h = [hij ] is a Hermitian matrix, g = [gij ] is a symmetric matrix, c is an arbitrary real number
(possibly, infinite!) and â∗i , âj are the usual bosonic creation/annihilation operators. They are often used
in quantum field theory to describe free theories interacting with a given external classical field [IZ, De].
They are responsible for the Casimir effect [IZ]. Bogoliubov applied them to the theory of interacting
Bose gas [Bo], which justifies the name Bogoliubov Hamiltonians.

Bogoliubov Hamiltonians that are bounded from below are especially useful. Their infimum E := inf Ĥ
is often interesting physically.

Bogoliubov Hamiltonians have a surprisingly rich mathematical theory. In infinite dimension this
theory sometimes involves interesting pathologies. For instance, Ĥ is often ill defined, but one can
define its “infimum” E. In some situations, one needs to perform an infinite renormalization in order to
define Ĥ, or at least to compute E. This is typical for Bogoliubov Hamiltonians that are motivated by
relativistic quantum field theory [De]. Another example of interesting mathematics related to Bogoliubov
Hamiltonians can be found in a recent paper [NNS], which contains a beautiful proof of diagonalizability
of normally ordered Bogoliubov Hamiltonians under essentially optimal conditions.

Our paper is devoted to a systematic theory of bosonic Bogoliubov Hamiltonians in an abstract setting.
We do not restrict ourselves to the normally ordered case (with c = 0 in (1.1)). We start from a more
general definition saying that a Bogoliubov Hamiltonian is the self-adjoint generator of a one-parameter
unitary group on a bosonic Fock space that implements a symplectic group. There are interesting and
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physically important examples where the normally ordered Bogoliubov Hamiltonian is ill defined, whereas
renormalized ones exist [De].

The family of Bogoliubov Hamiltonians given by fixing h, g and varying c ∈ R (1.1) can be understood
as various quantizations of a single classical quadratic Hamiltonian,

H =
∑

hija
∗
i aj + 1

2

∑
gija

∗
i a
∗
j + 1

2

∑
gijaiaj , (1.2)

where ai, a∗j are classical (commuting) variables. c, which appears in (1.1), can be understood as the
ambiguity of quantization due to noncommutativity of âi, âj . The most popular choice is probably
c = 0, corresponding to the normally (Wick) ordered Hamiltonian. It will be denoted Ĥn. The choice
c = 1

2

∑
i hii, which we call the Weyl Bogoliubov Hamiltonian and denote Ĥw, has its advantages as

well. In some situations, however, one needs to consider other quantizations, where the constant c may
turn out to be infinite, and can be viewed as a renormalization counterterm. We describe one particular
possibility, which we call Ĥren. In the language of Feynman diagrams Ĥren corresponds to discarding
loops of order 2 or less, which is often implicit in quantum field theory.

We will use the following notation for the infimum of the three main Bogoliubov Hamiltonians that
we discuss:

Ew := inf Ĥw, En := inf Ĥn, Eren := inf Ĥren. (1.3)

In physics the infimum of the Hamiltonian appears under various names, eg. vacuum energy, Casimir
energy, vacuum polarization, effective potential. Physicists often compute the vacuum energy without
worrying whether the corresponding quantum Hamiltonian is well defined as a self-adjoint operator.
Following this philosophy, we may consider En or Eren under conditions that are more general than the
conditions for the existence of the corresponding Hamiltonians.

1.1 Comparison with literature
It is not always very easy to read the literature on Bogoliubov Hamiltonians and to compare statements
in various papers. Their authors often use different conventions, terminology and notations.

Most of these issues disappear when one fixes a basis in the 1-particle space, identifying it with Cm.
Then a Bogoliubov Hamiltonian is determined by two matrices, h = [hij ] and g = [gij ], and possibly a
number c, see (1.1).

When we want to use a basis independent language, replacing Cm by an abstract Hilbert space W,
it is clear how to interpret h—it is a self-adjoint operator on W. It is less obvious how to interpret
g. One possibility is to view g as a symmetric tensor, that is, an element of ⊗2

sW. Often, however,
it is preferable to view g as an operator from Cm to Cm. These two Cm should be however viewed as
two distinct spaces—one is the complex conjugate of the other, see eg. [De]. The notion of a complex
conjugate space is somewhat subtle and has a few equivalent but superficially distinct interpretations,
see Subsection A.1. Various authors prefer distinct interpretations, see eg. the footnote 6 in Appendix A
of [HS]. (Strictly speaking, this footnote refers to the fermionic case, however the fermionic and bosonic
cases are quite analogous).

When we consider an infinite dimensional space, there are additional problems: various operators are
often unbounded, are not trace class, or simply do not exist.

Because of these two kinds of problems, our paper is divided into two parts. In the first part we
assume that the 1-particle space is finite dimensional and has a fixed orthonormal basis. All operators
are represented by matrices. We do not worry about conceptual subtleties related to antilinear maps and
the complex conjugate space. Infinite renormalization is not needed and all formulas are valid with no
technical restrictions.

In the second part of our paper, the 1-particle space is an abstract space W of any dimension. We
follow mostly the conceptual framework of [DG]. We distinguish between W and its complex conjugate
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W. We need to give technical conditions guaranteeing that various concepts and formulas survive into
infinite dimension.

Throughout the paper it is assumed that the reader is familiar with mathematical formalism of 2nd
quantization. Properties of the metaplectic representation in the Fock space play an important role, such
as the Shale Theorem and formulas for the Bogoliubov implementers (2.17) and (2.18). These formulas
were known to Friedrichs [F1], analysed later by Ruisenaars [Ru1, Ru2] and Berezin [Be]. We treat [DG]
as the basic reference on this subject, where in particular various questions related to the unboundedness
of bosonic creation and annihilation operators are discussed in detail.

Large parts of Sect. 2 is well known. Thm 2.3 about diagonalizability of a quadratic Hamiltonian
by a positive symplectic transformation is implicitly contained in [DG] (see Thm 11.20 (3) together with
Thm 18.5 (3)). We come back to this issue in the next section, where an arbitrary dimension introdces
additional technical issues. Note that a similar fact proven in [NNS] does not provide a construction of
a distinguished diagonalizing operator.

The basic formula for the infimum of a quadratic Hamiltonian comes from [BD]. However, some of
the formulas for the infimum of the normally ordered Hamiltonians, such as (2.68), (2.69) and (2.70) seem
to be new. In finite dimension they are not so interesting, however they become quite useful in infinite
dimension.

It seems that the construction of the renormalized Hamiltonians described in Subsects 2.12 and 2.13
has never been presented in the literature in the abstract setting. Their importance is evident in concrete
situations of Quantum Field Theory described in [De]. We give a brief discussion of the examples from
QFT at the end of Introduction.

Quadratic Hamiltonians in infinite dimensions is a rather technical topic of operator theory. Therefore,
we prefer to give a self-contained treatment of this subject. Many results and definitions that we present
are new, however at some places we recall proofs contained in the literature.

Note that it would be awkward and restrictive to define Bogoliubov Hamiltonians in the infinite
dimensional context by an expression of the form (1.1). Instead, we define them as self-adjoint generators
of one parameter unitary groups implementing Bogoliubov transformations. (In the bosonic context
the term “Bogoliubov transformations” is usually meant to denote “symplectic transformations”). The
abstract approach makes it sometimes difficult to define some objects, since we cannot refer to a formula
of the form (1.1). Fortunately, it is obvious how to define the Weyl Bogoliubov Hamiltonian—as the
generator of a group inside the metaplectic group. It is less obvious how to define normally ordered
Hamiltonians. The definition that we propose in Subsec. 3.7 seems to be new—in particular, it is more
general from the definition of [BD].

Subsect. 3.7 and 3.8 give criteria for the existence of various quantizations. In these subsections there
is no assumption on the positivity of h. On the other hand, most results require the boundedness of g.
Some results in this part of the paper come from [Be] and [BD]. However, Thm 3.18 (1), which gives a
convenient criterion for the implementability of classical dynamics, seems to be new. It is useful in the
context of examples from QFT discussed below.

In the following subsections we adopt a different set of assumptions. In particular, we assume that h
is positive and g is form bounded wrt h with bound less than 1. This condition guaratees the positivity
and diagonalizability of classical Hamiltonians.

Diagonalization of Bogoliubov Hamiltonians on the quantum level was considered already by Berezin
[Be], then by Bach and Bru [BB]. In a recent paper [NNS], Napiórkowski, Phan Thanh Nam and
Solovej gave a new beautiful proof of diagonalizability. In our paper we repeat some of the arguments of
[NNS], describing their result in Thm 3.21, giving essentially optimal conditions for diagonalization. In
distinction to [NNS], we show that there exists a distinguished positive symplectic operator diagonalizing
a given Bogoliubov Hamiltonian.

In Thm 3.23 we also describe a construction of normally ordered Bogoliubov Hamiltonian based on
the form techniques (involving the so-called KLMN Theorem) presented in [NNS]. This is an important
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improvement (even if it sounds technical) as compared to the results of [BD], which were restricted to
operator type perturbations.

These theorems are complemented with new results. In Thm 3.24, we show that the dynamics
generated by the normally ordered Hamiltonian implements the corresponding classical dynamics. On
a formal level this therem seems obvious, nevertheless due to the unboundedness of various operators it
needs a careful proof. Another new result, easy in finite dimension and rather technical in the general
case is the formula for the ground state energy described in Thm 3.29. We also discuss a criterion for the
existence of the Weyl Bogoliubov Hamiltonians in Thm 3.31 and for the existence of the renormalized
ground state energy in Thm 3.32.

Let us mention some topics that are left out of our paper. We do not discuss time-dependent Bo-
goliubov Hamiltonians, the implementability and the phase of the corresponding scattering operator.
This is interesting, especially in the context of charged relativistic fields in an external electromagnetic
potential. An infinite renormalization is needed in order to define the vacuum energy. This topic on
a partly heuristic level is discussed in [De]. Its fermionic counterpart (a Dirac particle in an external
electromagnetic potential) is better known in the literature, see eg. [DDMS].

1.2 Applications to QFT
Let us first discuss the question of naturalness of the definition of various kinds of Bogoliubov Hamilto-
nians.

The Weyl Hamiltonian Ĥw is the most natural. In fact, it is invariant wrt symplectic transformations,
see (2.31). Unfortunately, it is often ill defined.

The normally ordered Hamiltonian Ĥn is naturally defined given a Fock representation. In particular,
this is the case when we have a distinguished positive classical quadratic Hamiltonian which is treated
as the “free” one. Then there exists a unique Fock representation where the free Hamiltonian has can be
quantized without any double creation/annihillation operators. It is usually quantized in the normally
ordered form. We will denote it by Ĥn

0

Suppose that we are interested in the “full” Hamiltonian, which is quadratic, but more complicated
than the free one and involves an interaction with external fields. We can then ask whether the corre-
sponding classical Hamiltonian can be quantized. The most straightforward procedure seems to consider
the normally ordereded full quantum Hamiltonian Ĥn. Then the corresponding ground state energy
formally equals then the diference of the “free Weyl ground state energy” and the “full Weyl ground state
energy” (in typical situations both infinite).

It sometimes happens that Ĥn is ill defined as well. Then we can try to subtract from Ĥn another
counterterm. As examples from QFT show, the most natural possibility is to subtract the 2nd order
contribution in the perturbative expansion, obtaining Ĥren as in Subsect. 2.12 and 2.13. Below we
briefly describe two examples where one needs to perform such a renormalization. These examples are
discussed in more detail in [De].

Consider the neutral massive scalar quantum field φ̂(~x). Its conjugate field is denoted π̂(~x) with the
usual equal time commutation relations

[φ̂(~x), φ̂(~y)} = [π̂(~x), π̂(~y)] = 0,

[φ̂(~x), π̂(~y)] = iδ(~x− ~y). (1.4)

The free Hamiltonian is defined in the standard way:

Ĥn
0 :=

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
m2φ̂2(x)

)
:d~x, (1.5)

where the double dots denote the normal ordering.
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Suppose that the mass is perturbed by a Schwartz function κ(~x). One can check that the normally
ordered full Hamiltonian does not exist. However, the renormalized Hamiltonian is well-defined (see
Chap. III Subsect. C14 of [De]). Formally, it can be written a

Ĥren :=

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
(m2 + κ(~x))φ̂2(~x)

)
:d~x− E2, (1.6)

where the infinite counterterm E2 is the contribution of loop diagrams with 2 vertices, see Subsect. 2.13.
The next example is more singular. Consider the charged massive scalar quantum field ψ̂(~x), with

ψ̂∗(~x) denoting its Hermitian adjoint. The conjugate field will be denoted η̂(~x), so that we have the
commutation relations

[ψ̂(~x), ψ̂(~y)] = [ψ̂(~x), η̂(~y)] = [η̂(~x), η̂(~y)] = 0, (1.7)

[ψ̂(~x), η̂∗(~y)] = [ψ̂∗(~x), η̂(~y)] = iδ(~x− ~y). (1.8)

The free Hamiltonian is of course

Ĥn
0 =

∫
:
(
η̂∗(~x)η̂(~x) + ~∂ψ̂∗(~x)~∂ψ̂(~x) +m2ψ̂∗(~x)ψ̂(~x)

)
:d~x.

Suppose now that we consider an external stationary electromagnetic potential, described by, say,
Schwartz functions (A0, ~A). Then the natural candidate for the full Hamiltonian is (see Chap. VI,
Subsec. B17 of [De]):

Ĥren =

∫
d~x
(
η̂∗(~x)η̂(~x) + ieA0(~x)

(
ψ̂∗(~x)η̂(~x)− η̂∗(~x)ψ̂(~x)

)
+(∂i − ieAi(~x))ψ̂∗(~x)(∂i + ieAi(~x))ψ̂(~x)

+m2ψ̂∗(~x)ψ̂(~x)
)
− E0 − E1 − E2, (1.9)

where E0, E1, E2 are infinite counterterms, which come from the expansion described in (2.99).
Unfortunately, the classical dynamics is implementable only if the vector potential ~A vanishes every-

where. Therefore, Ĥren is well defined only in this case. However, the infimum of (1.9), that is Eren, is a
well defined gauge-invariant number also for nonzero ~A.

Note that both Hamiltonians (1.6) and (1.9) can be derived from local Lagrangians. Therefore, even
if the models based on these Hamiltonians do not satisfy Haag-Kastler axioms in the strict sense (because
of the absence of translation invariance), they belong to Local Quantum Field Theory: they lead to nets
satisfying the Einstein causality, and they have bounded from below Hamiltonians. At the same time,
all of them require an infinite renormalization, typical for computations in perturbative Quantum Field
Theory.

The examples 1.5 and 1.9 are especially interesting in the context of more complicated interacting
quantum field theory when, typically, κ, A0 and ~A are promoted to the role of a quantum fields. Then
Eren can be interpreted as the value of certain renormalized loop diagrams. In particular, Eren of the
second example is usually called the vacuum poarization (in scalar QED).

Acknowledgements. I would like to thank Marcin Napiórkowski, Phan Thành Tham and Jan Philip
Solovej for useful discussions. I gratefully acknowledge financial support of the National Science Center,
Poland, under the grant UMO-2014/15/B/ST1/00126.

2 Finite dimensions, basis dependent formalism
Let us first describe the basic theory of bosonic quadratic Hamiltonians in finite dimensions, assuming
that the one-particle space is Cm. Seemingly, our formulas will depend on the choice of the canonical basis
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in Cm. In reality, after an appropriate interpretation, they are basis independent. This interpretation
will be given in the next section, when we discuss an arbitrary dimension.

Operators on Cm will be identified with matrices. If h = [hij ] is a matrix, then h, h∗ and h# will
denote its complex conjugate, hermitian conjugate and transpose.

2.1 Creation/annihilation operators
We consider the bosonic Fock space Γs(Cm). âi, â∗j are the standard annihilation and creation operators
on Γs(Cm). â∗i is the Hermitian conjugate of âi,

[âi, âj ] = [âi, âj ] = 0,

[âi, â
∗
j ] = δij .

(We decorate creation/annihilation operators with hats, because we want to distinguish them from
their classical analogs).

We use the more or less standard notation for operators on Fock spaces. In particular, we use the
standard notation Γ(·) and dΓ(·), which will be recalled in Subsection 3.2. If w = [wi] ∈ Cm, then the
corresponding creation/annihilation operators are

â∗(w) :=
∑
i

wiâ
∗
i , â(w) :=

∑
i

wiâi. (2.1)

If g = [gij ] is a symmetric m×m matrix, then the corresponding double creation/annihilation operators
are

â∗(g) :=
∑
ij

gij â
∗
i â
∗
j , â(g) :=

∑
ij

gij âj âi.

2.2 Classical phase space
To specify a linear combination of operators âi, â∗j we need to choose a vector (w,w′) ∈ Cm ⊕ Cm:

φ̂(w,w′) :=
∑
i

â∗iwi +
∑
i

âiw
′
i (2.2)

(2.2) is self-adjoint iff w = w′. Therefore, it is natural to introduce the doubled space Cm⊕Cm equipped
with the complex conjugation

J

[
w
w′

]
=

[
w′

w

]
. (2.3)

Vectors left invariant by J have the form [
w
w

]
, w ∈ Cm. (2.4)

They form a 2m-dimensional real subspace of Cm ⊕ Cm, which can be identified with R2m. (In what
follows, when we speak of R2m we usually mean the space of vectors of the form (2.4)).

Operators on Cm ⊕ Cm that commute with J , or equivalently preserve R2m, have the form

R =

[
p q
q p

]
, (2.5)

and will be called J-real. Note that if we know the restriction of R to (2.4) then we can uniquely extend
it to a (complex linear) operator on Cm ⊕ Cm.
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The operator

S =

[
1l 0
0 −1l

]
. (2.6)

determines the commutation relations:[
φ̂(w1, w

′
1)∗, φ̂(w2, w

′
2)
]

= (w1|w2)− (w′1|w′2) =
(
(w1, w

′
1)|S(w2, w

′
2)
)
. (2.7)

Instead of quantum operators â∗i and âj , one can also consider classical (commuting) variables ai, a∗j ,
i = 1, . . . ,m, such that a∗i is the complex conjugate of ai and the following Poisson bracket relations hold:

{ai, aj} = {ai, aj} = 0,

{ai, a∗j} = −iδij . (2.8)

Setting
φ(w,w′) :=

∑
i

a∗iwi +
∑
i

aiw
′
i, (2.9)

we can rewrite (2.8) as

{φ(w1, w
′
1)∗, φ(w2, w

′
2)} = −i(w1|w2) + i(w′1|w′2) = −i

(
(w1, w

′
1)|S(w2, w

′
2)
)
. (2.10)

In particular, φ(w,w) are real, and (2.10) can be rewritten as

{φ(w1, w1)∗, φ(w2, w2)} = 2Im(w1|w2) = Im
(
(w1, w1)|S(w2, w2)

)
. (2.11)

Thus S determines a symplectic structure on R2m (and sometimes S itself is called, incorrectly, a sym-
plectic form).

2.3 Symplectic transformations
In this subsection we recall some basic facts concerning the symplectic and metaplectic group. We follow
mostly [DG].

We say that an operator R on Cm ⊕ Cm is symplectic if it is J-real and preserves S:

R∗SR = S. (2.12)

We denote by Sp(R2m) the group of all symplectic transformations.
Note that if R is symplectic, then so is R∗. In fact, iS is symplectic, and

R∗ = iSR−1(iS)−1. (2.13)

The operator

R =

[
p q
q p

]
. (2.14)

satisfies (2.12) iff
p∗p− q#q = 1l, p∗q − q#p = 0,

pp∗ − qq∗ = 1l, pq# − qp# = 0.

Note that
pp∗ ≥ 1l, p∗p ≥ 1l.

Hence p−1 is well defined, and we can set

d1 := q#(p#)−1, (2.15)
d2 := qp−1. (2.16)

We have d#
1 = d1, d2 = d#

2 .
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2.4 Metaplectic transformations
Let U be a unitary operator on Γs(Cm). Let R be a symplectic transformation written as (2.14). We say
that U implements R if

Uâ∗iU
∗ = â∗jpji + âjqji,

UâiU
∗ = â∗jqji + âjpji.

U will be called a (Bogoliubov) implementer of R. Every symplectic transformation has an implementer,
unique up to a a phase factor. One can distinguish some canonical choices: the natural implementer Unat

R ,
and a pair of metaplectic implementers ±Umet

R :

Unat
R := |det pp∗|− 1

4 e−
1
2 â
∗(d2)Γ

(
(p∗)−1

)
e

1
2 â(d1), (2.17)

±Umet
R := ±(det p∗)−

1
2 e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e

1
2 â(d1), (2.18)

see eg. Thm 11.33 and Def. 11.36 of [DG].
It is easy to see that the set of Bogoliubov implementers is a group. It is sometimes called the

c-metaplectic group Mpc(R2m).
It is a little less obvious, but also true, that the set of metaplectic Bogoliubov implementers is a

subgroup of Mpc(R2m). It is called the metaplectic group Mp(R2m).
We have a homomorphism Mpc(R2m) 3 U 7→ R ∈ Sp(R2m), where to U implements R.
Various homomorphism related to the metaplectic group can be described by the following diagram:

1 1 1
↓ ↓ ↓

1 → Z2 → U(1) → U(1) → 1
↓ ↓ ↓

1 → Mp(R2m) → Mpc(R2m) → U(1) → 1
↓ ↓ ↓

1 → Sp(R2m) → Sp(R2m) → 1
↓ ↓
1 1

(2.19)

2.5 Positive symplectic transformations
Positive symplectic transformation are especially important. They satisfy

p = p∗, p > 0, q = q#. (2.20)

For positive transformations, d1 equals d2, and it will be simply denoted by d. We have

d := q(p#)−1.

The natural implementer coincides in this case with one of the metaplectic implementers:

Unat
R := (det p)−

1
2 e−

1
2a
∗(d)Γ

(
p−1
)
e

1
2a(d).

Positive symplectic transformations have special properties. In particular, one can diagonalize them
in an explicit way. We will need this later on.

Proposition 2.1 Assume that R is positive symplectic and Ker(p − 1l) = {0}. Then q is invertible, so
that we can define u := q|q|−1 with |q| :=

√
q∗q. Besides,

M :=
1√
2

[
1l −u
u∗ 1l

]
(2.21)
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is unitary and diagonalizes R:

R = M

[
p+

√
p2 − 1l 0

0 p−
√
p2 − 1l

]
M∗. (2.22)

Proof. We have the polar decomposition q = u|q|. u is a unitary operator and we have |q| = u|q|u∗

Now (2.22) follows using upu∗ = p, |q| =
√
p2 − 1l,

√
1l + |q|2 = p. 2

2.6 Classical quadratic Hamiltonians
It is easy to analyze generators of 1-parameter symplectic groups. In fact, eitB ∈ Sp(R2m) for any t ∈ R
iff BS is J-real and self-adjoint. All such operators can be written as

B =

[
h −g
g −h

]
. (2.23)

where h, g are m×m matrices satisfying h = h∗, g = g#. Note that iB is J-real, and

SB = B∗S. (2.24)

With every such an operator B we associate another operator AB by

AB := BS =

[
h g

g h

]
, (2.25)

As we noted above, AB is self-adjoint and J-real. The corresponding classical quadratic Hamiltonian is
the expression

HB =
∑

hija
∗
i aj + 1

2

∑
gija

∗
i a
∗
j + 1

2

∑
gijaiaj , (2.26)

which can be viewed as a quadratic function on the classical phase space. Moreover,

{HB , φ(w,w′)} = −iφ(w1, w
′
1),

[
w1

w′1

]
= B

[
w
w′

]
. (2.27)

Clearly, for any symplectic R,
ARBR−1 = RABR

∗. (2.28)

In what follows we will often abuse the terminology: AB will also be called a classical Hamiltonian
just as HB . B will be called a symplectic generator. Besides, we will often drop the subscript B from
HB and AB .

2.7 Quantum quadratic Hamiltonians
Let B be a symplectic generator of the form (2.23).

By a quantization of HB (2.26) we will mean an operator on Γs(Cm) of the form

Ĥc
B :=

∑
hij â

∗
i âj + 1

2

∑
gij â

∗
i â
∗
j + 1

2

∑
gij âiâj + c, (2.29)

where c is an arbitrary real constant. By an abuse of terminology, we will usually say that (2.29) is a
quantization of B (2.25). We will often drop the subscript B from Ĥc

B , and c will be replaced by other
superscripts corresponding to some special choices.
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Two quantizations of B are especially useful: the Weyl (or symmetric) quantization Ĥw
B and the

normally ordered (or Wick) quantization Ĥn
B :

Ĥw
B := 1

2

∑
hij â

∗
i âj + 1

2

∑
hij âj â

∗
i + 1

2

∑
gij â

∗
i â
∗
j + 1

2

∑
gij âiâj ,

Ĥn
B :=

∑
hij â

∗
i âj + 1

2

∑
gij â

∗
i â
∗
j + 1

2

∑
gij âiâj .

Here is the relation between these two quantizations:

Ĥw
B = Ĥn

B + 1
2Trh. (2.30)

Note a special relationship of the Weyl quantization to the metaplectic group (defined in Subsect.
2.3): for any B, eitĤw

B belongs to Mp(R2m), see eg. Thm 11.34 of [DG]. Besides, if R is symplectic and
UR is its implementer, then

URĤ
w
BU
∗
R = Ĥw

RBR−1 . (2.31)

2.8 Diagonalization of quadratic Hamiltonians
In this subsection we show that if AB > 0, then AB can be diagonalized. By this we mean that we can
find a symplectic transformation R that kills off-diagonal terms of AB :

AB = R

[
hdg 0

0 hdg

]
R∗ (2.32)

for some hdg. Of course, hdg has to be positive.
Clearly, this is equivalent to diagonalizing B, that is to killing its off-diagonal terms: of B, that is,

B = R

[
hdg 0

0 −hdg

]
R−1. (2.33)

On the quantum level, this is equivalent to finding a unitary operator U that removes double annihi-
lators and double creators. Then the free constant equals the infimum of the quantum Hamiltonian:

U∗ĤwU = dΓ(hdg) + Ew,

U∗ĤnU = dΓ(hdg) + En.

As a preparation for a construction of a diagonalizing operator, let us prove the following proposition.

In this proposition we will use the function sgnt :=


1 t > 0,

0 t = 0,

−1 t < 0.

Proposition 2.2 Suppose that AB > 0.
(1) The operator B has only real nonzero eigenvalues. Therefore, sgn can be interpreted as a holomorphic

function on a neighborhood of spB, and we can define sgn(B) by the standard holomorphic functional
calculus.

(2) A symplectic transformation R diagonalizes B iff

sgn(B) = RSR−1. (2.34)

10



Proof. It is useful to endow the space Cm⊕Cm with the scalar product given by the positive operator
SAS. More precisely, if v = (v1, v2), w = (w1, w2) ∈ Cm ⊕ Cm, we set

(v|w)en = (v|SASw) = (v1|hw1)− (v1|gw2)− (v2|gw1) + (v2|hw2). (2.35)

(2.35) is sometimes called the energy scalar product.
Note that we also have the original scalar product

(v|w) = (v1|w1) + (v2|w2),

which is used for basic notation such as the Hermitian adjoints.
First note that B is self-adjoint in the energy scalar product and has a zero nullspace. Indeed

(v|Bw)en = (v|SASASw)

= (ASv|SASw) = (Bv|w)en,

(Bv|Bv)en = (v|SASASASv) > 0, v 6= 0.

This shows (1).
Now let R be symplectic. Set

Bdg := R−1BR, Adg := BdgS = R−1AR∗−1.

Then, by functional calculus,
sgn(B) = Rsgn(Bdg)R−1. (2.36)

R diagonalizes A iff

Adg =

[
hdg 0

0 hdg

]
, Bdg =

[
hdg 0

0 −hdg

]
. (2.37)

A is strictly positive, hence so are Adg and hdg. Therefore,

sgn(Bdg) = S. (2.38)

Together with (2.36), this implies (2.34).
Conversely, suppose that (2.34) holds. Together with (2.36), this implies (2.38). Hence Bdg is diagonal.

2

It is possible to find a distinguished positive symplectic transformation R diagonalizing B.

Theorem 2.3 Suppose that AB > 0.
(1) i sgn(B) is symplectic.

(2) R0 := sgn(B)S is symplectic and has positive eigenvalues.

(3) Using holomorphic calculus and the principal square root (which for positive arguments has positive
values), define

R := R
1
2
0 . (2.39)

Then R is positive, symplectic and diagonalizes B.

(4) Here is an alternative formula for R0, where the square root can be interpreted in terms of functional
calculus for self-adjoint operators:

R0 = SA
− 1

2

B

(
A

1
2

BSABSA
1
2

B

) 1
2A
− 1

2

B S. (2.40)

11



Proof. B satisfies (2.24). Hence for any function f holomorphic on the spectrum of B

Sf(B)S−1 = f(B∗). (2.41)

In particular
Ssgn(B)S−1 = sgn(B∗). (2.42)

But sgn is real, hence sgn(B∗) = sgn(B)∗. Besides, away from 0 we have sgn(t) = sgn(t)−1. Hence,
sgn(B) = sgn(B)−1. Therefore, (2.42) can be rewritten as

Ssgn(B)S−1 = sgn(B)∗−1. (2.43)

Hence, (
i sgn(B)

)∗
Si sgn(B) = S. (2.44)

This means that i sgn(B) preserves S. Besides,

i sgnB =
(
− (iB)2

) 1
2 (iB)−1 (2.45)

is also J-real. Thus we have shown that i sgn(B) is symplectic.
−iS is also symplectic. Therefore, so is R0 =

(
i sgn(B)

)(
− iS

)
.

Now,

R0 = (B2)
1
2B−1S (2.46)

= (ASAS)
1
2SA−1S (2.47)

= SA−
1
2

(
A

1
2SASA

1
2

) 1
2A−

1
2S. (2.48)

Therefore, (2.40) is true and R0 is a positive self-adjoint operator for the original scalar product. Hence
it has positive eigenvalues.

R0 = R∗0 and R0 is symplectic. Hence,

SR0S
−1 = R−1

0 .

Hence for any Borel function f ,
Sf(R0)S−1 = f(R−1

0 ).

Choosing f to be the (positive) square root we obtain

SR
1
2
0 S
−1 = R

− 1
2

0 .

Thus R := R
1
2
0 is symplectic, positive and self-adjoint for the original scalar product.

Now
sgn(B) = R2S = RSR−1.

Hence (2.34) is true. 2

2.9 Positive Weyl Bogoliubov Hamiltonians
Theorem 2.4 (1) If AB ≥ 0, then the Weyl quantization of B is positive. Hence all quantizations of

B are bounded from below.

(2) If B possesses a quantization that is bounded from below, then AB ≥ 0.

12



Proof. (1) Let A ≥ 0. Then there exists a symplectic transformation R and a decomposition
Cm = Cm1 ⊕ Cm−m1 such that RAR∗ decomposes into the direct sum of the following two terms:[

hdg 0

0 hdg

]
on Cm1 ⊕ Cm1 ,

1
2

[
1l 1l
1l 1l

]
on Cm−m1 ⊕ Cm−m1 ,

where hdg ≥ 0 and can be assumed to be diagonal. This is a well-known fact, proven eg. in [Ho1, DG].
It is a very special case of a more general and more complicated classification of quadratic forms on a
symplectic space called Williamson’s Theorem, proven eg. in [Wi, Ho]. If we strengthen the assumption
and demand that h > 0, it follows also from the diagonalizability of A (Theorem 2.3). Thus, after an
application of the transformation R, and a diagonalization of hdg, the classical Hamiltonian becomes

HRBR−1 =

m1∑
i=1

hdg,iia
∗
i ai +

m∑
m1+1

1

2
(a∗i + ai)

2. (2.49)

After application of an implementer of R, the quantum Weyl Hamiltonian becomes

URĤ
w
BU
∗
R = Ĥw

RBR−1 =

m1∑
i=1

1

2
hdg,ii(â

∗
i âi + âiâ

∗
i ) +

m∑
m1+1

1

2
(â∗i + âi)

2. (2.50)

Thus Ĥw
B is positive.

(2) Consider the family of coherent vectors

Ωw := eâ
∗(w)−â(w)Ω, w ∈ Cm. (2.51)

Note that

e−â
∗(w)+â(w)â∗i e

â∗(w)−â(w) = â∗i + wi, e−â
∗(w)+â(w)âie

â∗(w)−â(w) = âi + wi. (2.52)

Obviously, if one of quantizations of B is bounded from below, then so are all of them. Let Ĥn
B be

bounded from below by −c. Then, using (2.52), we obtain

−c ≤ (Ωw|Ĥn
BΩw) (2.53)

=
(

Ω|e−â
∗(w)+â(w)Ĥn

Beâ
∗(w)−â(w)Ω

)
(2.54)

=
∑

hijwiwj +
1

2

∑
gijwiwj +

1

2

∑
gijwiwj . (2.55)

Thus the classical Hamiltonian is quadratic polynomial and is bounded from below. But if a quadratic
polynomial is bounded from below, then it is nonegative. 2

Note that by the above theorem, every B satisfying AB ≥ 0, beside Ĥw
B and Ĥn

B , possesses another
natural quantization: the zero infimum quantization Ĥz

B fixed by the condition

inf Ĥz
B = 0. (2.56)

The infimum of the Weyl Bogoliubov Hamiltonians can be computed from several formulas described
in the following theorem borrowed from [BD, DG]:
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Theorem 2.5 Assume that AB ≥ 0. Then

Ew
B := inf Ĥw

B =
1

4
Tr
√
B2 (2.57)

=
1

4
Tr

[
h2 − gg −hg + gh

gh− hg h
2 − gg

] 1
2

(2.58)

=
1

4
Tr
√
A

1
2SASA

1
2 (2.59)

=
1

4
Tr

∫
B2

B2 + τ2

dτ

2π
. (2.60)

Proof. Let R be as in the proof of Theorem 2.4. Clearly,

inf(â∗i âi + âiâ
∗
i ) = 1, (2.61)

inf(â∗i + âi)
2 = 0. (2.62)

Hence, by (2.50),

inf Ĥw
B = inf URĤ

w
BU
∗
R = inf Ĥw

RBR−1 =
1

2

∑
hdg,ii =

1

2
Trhdg (2.63)

=
1

4
Tr
√
B2

dg =
1

4
TrR
√
B2R−1 =

1

4
Tr
√
B2. (2.64)

This gives (2.57), which implies (2.58) and (2.59).
(2.60) follows by an application of the identity (A.5). 2

2.10 Infimum of normally ordered Hamiltonians
Here are a few formulas for the infimum of the normally ordered Hamiltonian:

Theorem 2.6 Assume that AB ≥ 0. Then

En
B := inf Ĥn

B = Ew
B − 1

2Trh (2.65)

=
1

4
Tr
(√
B2 −

√
B2

0

)
(2.66)

=
1

4
Tr

([
h2 − gg −hg + gh

gh− hg h
2 − gg

] 1
2

−
[
h 0

0 h

])
(2.67)

=
1

8

∫ 1

0

dσTr
Bσ√
B2
σ

G. (2.68)

=
1

8

∫ 1

0

dσTrA
1
2
σ (A

1
2
σSAσSA

1
2
σ )−

1
2A

1
2
σGS (2.69)

=
1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)Tr

1

(Aσ + iτS)
SG

1

(Aσ + iτS)
SG. (2.70)
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where

G := B −B0 =

[
0 −g
g 0

]
, (2.71)

Aσ = A0 + σGS =

[
h σg

σg h

]
, (2.72)

Bσ := B0 + σG =

[
h −σg
σg −h

]
, σ ∈ R. (2.73)

Proof. (2.65), (2.66) and (2.67) follow immediately from Theorem 2.5 and (2.30).
Starting from (2.66), let us prove (2.68), which immediately implies (2.69):

1

4
Tr
(√
B2 −

√
B2

0

)
(2.74)

=
1

4

∫
Tr
( B2

B2 + τ2
− B2

0

B2
0 + τ2

)dτ

2π
(2.75)

= −1

4

∫
Tr
( 1

B2 + τ2
− 1

B2
0 + τ2

)τ2dτ

2π
(2.76)

= −1

4

∫ 1

0

dσ

∫
d

dσ
Tr

1

B2
σ + τ2

τ2dτ

2π
(2.77)

=
1

4

∫ 1

0

dσ

∫
Tr

1

B2
σ + τ2

(BσG+GBσ)
1

B2
σ + τ2

τ2dτ

2π
(2.78)

=
1

2

∫ 1

0

dσ

∫
Tr

Bσ
(B2

σ + τ2)2
G
τ2dτ

2π
(2.79)

=
1

8

∫ 1

0

dσTr
Bσ√
B2
σ

G, (2.80)

where at the end we used the identity (A.6).
Now, starting from (2.68), we prove (2.70):

1

8

∫ 1

0

dσ

∫
dτ

2π
Tr

Bσ
B2
σ + τ2

G (2.81)

=
1

16

∫ 1

0

dσ

∫
dτ

2π
Tr
( 1

(Bσ + iτ)
+

1

(Bσ − iτ)

)
G (2.82)

=
1

8

∫ 1

0

dσ

∫
dτ

2π
Tr

1

(Bσ + iτ)
G (2.83)

=
1

8

∫ 1

0

dσ

∫ σ

0

dσ1

∫
dτ

2π

d

dσ1
Tr

1

(Bσ1
+ iτ)

G (2.84)

= −1

8

∫ 1

0

(1− σ)dσ

∫
dτ

2π
Tr

1

(Bσ + iτ)
G

1

(Bσ + iτ)
G (2.85)

= −1

8

∫ 1

0

(1− σ)dσ

∫
dτ

2π
Tr

1

(Aσ + iτS)
SG

1

(Aσ + iτS)
SG. (2.86)

In (2.84)⇒(2.85) we used

d

dσ1

1

(Bσ1
+ iτ)

= − 1

(Bσ1
+ iτ)

G
1

(Bσ1
+ iτ)

. (2.87)
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2

2.11 Loop expansion
Suppose now that

B0 =

[
h0 0

0 −h0

]
, (2.88)

is a “free” symplectic generator. We assume that h0 > 0. Note that we allow h0 to be different from h.
We set

A0 := B0S =

[
h0 0

0 h0

]
, (2.89)

V := B2 −B2
0 =

[
h2 − h2

0 − gg −hg + gh

gh− hg h
2 − h2

0 − gg

]
. (2.90)

(2.60) can be rewritten as

Ew =
1

4
Tr

∫
B2

0

B2
0 + τ2

dτ

2π
+

1

4
Tr

∫
1

B2 + τ2
V

1

B2
0 + τ2

τ2 dτ

2π

=

k∑
j=0

Lj +
1

4
Tr

∫
(−1)k

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)k
τ2 dτ

2π

=

∞∑
j=0

Lj ,

where

L0 =
1

4
Tr

∫
B2

0

B2
0 + τ2

dτ

2π
=

1

4
Tr|B0| =

1

2
Trh0, (2.91)

Lj =
1

4
Tr

∫
(−1)j+1

B2
0 + τ2

(
V

1

B2
0 + τ2

)j
τ2 dτ

2π
(2.92)

=
1

4
Tr

∫
(−1)j+1

2j

(
V

1

B2
0 + τ2

)j dτ

2π
, j = 1, 2, . . . . (2.93)

The last identity for Lj follows by a cyclic relocation of operators under the trace and by an application
of integration by parts.

We can further simplify the formula for L1:

L1 = Tr

∫
1

8
V

1

B2
0 + τ2

dτ

2π
=

1

8
TrV

1

|B0|
=

1

4
Tr(h2 − h2

0 − gg)h−1
0 . (2.94)

The constant Lj arises in the diagramatic expasion as the evaluation of the loop with j vertices. To
see this, introduce the “time variable” t and the “Feynman propagator”

G(t) :=
e−|B0|t

2|B0|
.

Clearly, τ can be interpreted as the “energy variable” and

1

B2
0 + τ2

=

∫
G(t)eitτdt.
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Therefore,

Lj =
1

4

∫
dtj−1 · · ·

∫
dt1TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj) (2.95)

= lim
T→∞

1

2T

1

4

∫ T

−T
dtj

∫ T

−T
dtj−1 · · ·

∫ T

−T
dt1TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj). (2.96)

2.12 Renormalization I
Note that in general V (2.90) contains terms of the 1st and 2nd order. Explicitly, let λ be a “coupling
constant”. Let h = h0 + λh1 and replace g with λg (to keep track of the order of perturbation). Then
V = λV1 + λ2V2, where

V1 :=

[
h0h1 + h1h0 −h0g + gh0

gh0 − h0g h0h1 + h0h1

]
, (2.97)

V2 :=

[
h2

1 − gg∗ −h1g + gh1

gh1 − h1g h
2

1 − g∗g

]
. (2.98)

We can expand Ew wrt the coupling constant λ:

Ew =

∞∑
n=0

λnEn. (2.99)

We have,

L0 = E0 =
1

2
Trh0. (2.100)

However, in general, Ln of higher orders differ from λnEn.
There are situations when it is natural to introduce the renormalized vacuum energy

Eren := Ew − E0 − λE1 − λ2E2 =
∞∑
n=3

λnEn. (2.101)

and the renormalized Hamiltonian

Ĥren := Ĥw − E0 − λE1 − λ2E2, (2.102)

so that Eren = inf Ĥren. The numbers E0, E1 and E2 can be called counterterms.
The above constuctions are natural e.g. in the theory of charged scalar fields in external electro-

magnetic potentials. In this case, E0, E1, E2 are infinite. Ĥren is usually also ill defined. However Eren

is typically finite. Thus we have a somewhat paradoxical situation: the Hamiltonian does not exists,
however the “infimum of the Hamiltonian” is well defined.

2.13 Renormalization II
Suppose now that

h2
1 = gg, h1g = gh1. (2.103)

(2.103) implies V2 = 0. Therefore, the loop expansion coincides with the expansion into powers of λ.
Putting λ = 1, we thus have

En = Ln, n = 0, 1, . . . (2.104)
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We can compute the loop with one vertex:

L1 =
1

4
Tr(h0h1 + h1h0)h−1

0 =
1

2
Trh1. (2.105)

Thus
L0 + L1 =

1

2
Tr(h0 + h1) =

1

2
Trh. (2.106)

Therefore, the loop expansion for the infimum of the normally ordered Hamiltonian amounts to omitting
L0 and L1:

inf En = Ew − 1

2
Trh =

∞∑
n=2

Ln. (2.107)

Note that L1, and especially L0, are often infinite. Sometimes, L2 is infinite as well. Then we can
renormalize the vacuum energy even further, introducing

Eren := Ew − L0 − L1 − L2 =

∞∑
n=3

Ln (2.108)

= −1

4

∫
Tr

1

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)2

τ2 dτ

2π
. (2.109)

We can also introduce the renormalized Hamiltonian

Ĥren := Ĥw − L0 − L1 − L2, (2.110)

so that
Eren = inf Ĥren. (2.111)

The situation described in this subsection is typical for a charged particle in an external electrostatic
potential (without a vector potential), as well as for a neutral scalar particle with a masslike perturbation
[De]. One can then often introduce the renormalized Hamiltonian Ĥren, which is a well-defined self-adjoint
operator so that (2.111) holds.

3 Arbitrary dimensions, basis independent formalism
In this section we consider Bogoliubov Hamiltonians in any dimension. Unlike in the previous section,
we will use a basis independent notation.

We will use the standard notation for the Hilbert-Schmidt and trace class norm:

‖g‖2 :=
√

Trg∗g, ‖g‖1 := Tr
√
g∗g. (3.1)

3.1 Doubled space in abstract setting
Let W be a Hilbert space. W will serve as the 1-particle space.

Let W be another Hilbert space with a fixed antiunitary map χ : W → W. W will be called the
complex conjugate of W,

We will often use the doubled space W ⊕W equipped with the conjugation

J =

[
0 χ−1

χ 0

]
. (3.2)
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A J-real operator is an operator on W⊕W commuting with J . Bounded J-real operators have the form

R =

[
p q
χqχ χpχ−1

]
, (3.3)

for some p ∈ B(W), q ∈ B(W,W).
J-real operators leave invariant the real subspace of vectors[

w
χw

]
, w ∈ W,

which we will denote Y. Note also that every J-real operator in B(W⊕W) restricts to an operator B(Y),
and conversely, each operator in B(Y) extends uniquely to an operator in B(W ⊕W).

In what follows, we will usually write w for χw. We will write p, q for χpχ−1 and χqχ. We will write
p#, q# for χp∗χ−1 and χ−1q∗χ−1. In Appendix A.1 we explain why it is natural to use this simplified
notation.

To reduce the formalism of this section to that of Section 2 it suffices to set W = Cm and replace χ
with the complex conjugation.

3.2 Fock spaces
If D is a vector space of any dimension (with or without a Hilbert space structure), then we can introduce
its algebraic nth symmetric power, denoted by

al⊗
n

s D and the the algebraic bosonic Fock space

al

Γs(W) :=
∞
al⊕
n=0

al⊗
n

sD,

which is the space of finite symmetric tensor products of vectors of D [DG]. If W is a Hilbert space, then
we prefer to use the Hilbert space versions of the above constructions. Thus ⊗nsW will denote the nth
symmetric tensor power of W in the sense of Hilbert spaces and, as usual, the bosonic Fock space over
the one-particle space W, is defined as

Γs(W) :=
∞
⊕
n=0
⊗nsW.

Ω := (1, 0, · · · ) denotes the vacuum vector and

Γfin
s (W) :=

∞
al⊕
n=0
⊗nsW

=
{

(Ψ0, · · · ,Ψn, · · · ) ∈ Γs(W) | Ψn = 0 for all but a finite number of n
}
,

is the finite particle bosonic Fock space.
Note that if D is dense in W, then

al

Γs(D) is dense in Γs(W).
If h is an operator on W, dΓ(h) will denote

dΓ(h)d⊗n
sW :=

n∑
j=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗h⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

d⊗n
sW .

If q is an operator on W of norm less than 1, we define Γ(q) : Γs(W)→ Γs(W) by

Γ(q)d⊗n
s H:= q ⊗ · · · ⊗ qd⊗n

s H.
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3.3 Quadratic forms on Fock spaces
For any operator h on W such that h ≥ c, its form domain is defined as

Dom(|h| 12 ) = (1l + |h|)− 1
2W. (3.4)

For w1, w2 ∈ Dom(|h| 12 ), we can define (wi|hw2). Dom(|h| 12 ) is a Hilbert space for the scalar product(
w1|(h+ c+ 1l)w2

)
. We say that D is a form core for h if it is a dense subspace of the form domain of h.

Lemma 3.1 Suppose that h ≥ 0 and D is a form core of h. Then
al

Γs(D) is a form core of dΓ(h).

Proof. It is easy to see that
1l + dΓ(h) ≤ Γ(1l + h). (3.5)

Hence,
Γ(1l + h)−

1
2 Γs(W) ⊂

(
1l + dΓ(h)

)− 1
2 Γs(W). (3.6)

Let Ψ ∈
(
1l + dΓ(h)

)− 1
2 Γs(W). Set

Ψn := 1l[0,n]

(
Γ(1l + h)

)
Ψ. (3.7)

By the spectral theorem and the fact that 1l + dΓ(h) and Γ(1l + h) commute with one another, Ψn ∈
DomΓ(1l + h)

1
2 and Ψn → Ψ in

(
1l + dΓ(h)

)− 1
2 Γs(W). Hence

Γ(1l + h)−
1
2 Γs(W) is dense in

(
1l + dΓ(h)

)− 1
2 Γs(W). (3.8)

Now D is dense in (1l + h)−
1
2W. Hence

al

Γs(D) is dense in Γs

(
(1l + h)−

1
2W
)

= Γ(1l + h)−
1
2 Γs(W). (3.9)

Putting together (3.8) and (3.9) we obtain

al

Γs(D) is dense in
(
1l + dΓ(h)

)− 1
2 Γs(W). (3.10)

But the RHS of (3.10) is the form domain of dΓ(h). 2

3.4 Creation/annihilation operators
For any w ∈ W, â(w) and â∗(w) denote the usual annihilation/creation operators

â∗(w)Ψ :=
√
n+ 1w ⊗s Ψ, Ψ ∈ ⊗nsW, (3.11)

â(w)Ψ :=
√
n+ 1(w| ⊗ 1⊗n Ψ, Ψ ∈ ⊗n+1

s W, (3.12)

These operators, originally well defined on Γfin
s (W), extend to closed operators on on Γs(W). We set

φ̂(w,w′) := â∗(w) + â(w′). (3.13)

Note that φ̂(w,w) are self-adjoint. One can also introduce the so-called Weyl operators eiφ̂(w,w).

Remark 3.2 Sometimes we may want to define creation/annihilation operators for w that do not belong
to W, but are functionals, possibly unbounded, with domain D ⊂ W. Then we can still define the
annihilation operator â(w) by the formula (3.12), at least for Ψ ∈

al

Γs(D). If w is unbounded, then â(w)
is not closable and (3.11), the definiton of â∗(w) as an operator, is incorrect. However, we can interpret
both â(w) and â∗(w) as quadratic forms on

al

Γs(D).
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The following inequality is sometimes called the Nτ -estimate:

Proposition 3.3 Let h > 0 and w ∈ W. Then

‖â(w)Φ‖2 ≤ (w|h−1w)(Φ|dΓ(h)Φ). (3.14)

Therefore, ∥∥dΓ(h)−
1
2 â∗(w)

∥∥ ≤ ‖h− 1
2w‖. (3.15)

Proof. Clearly,
|w)(w| ≤ (w|h−1w)h. (3.16)

Applying dΓ, we obtain
â∗(w)â(w) = dΓ

(
|w)(w|

)
≤ (w|h−1w)dΓ(h). (3.17)

2

Let g ∈ ⊗2
sW. We define the annihilation and creation operators associated to g as follows:

â∗(g)Ψ :=
√
n+ 2

√
n+ 1g ⊗s Ψ, Ψ ∈ ⊗nsW, (3.18)

â(g)Ψ :=
√
n+ 2

√
n+ 1(g| ⊗ 1l⊗n Ψ, Ψ ∈ ⊗n+2

s W. (3.19)

Again, these operators, originally defined on Γfin
s (W), extend to closed operators on on Γs(W):

Remark 3.4 Again, if g does not belong to ⊕2
sW, but is a functional with the domain

al⊗
2

s D ⊂ ⊗2
sW,

then we can define â(g) and â∗(g) as quadratic forms on
al

Γs(D).

It is important to note that each g ∈ ⊗2W defines a linear Hilbert-Schmidt operator from W to W,
denoted by the same symbol g, by the identity

(w1 ⊗ w2|g) = (w2|gχw1). (3.20)

This provides an isometric isomorphism of ⊗2W with B2(W,W)–the space of Hilbert-Schmidt operators
from W to W. Symmetric tensors (elements of ⊗2

sW) are mapped onto symmetric operators (where the
symmetry of g means g = g#).

Let us state the following fact about this identification:

Proposition 3.5 Let p1, p2 ∈ B(W). Then the tensor p1⊗p2 g corresponds to the operator p1gp
#
2 .

Proposition 3.6 Let w ∈ W, h ∈ B(W), g ∈ W ⊗sW. Then the following identities are true:

[dΓ(h), â∗(w)] = â∗(hw), [dΓ(h), â(w)] = −â(hw), (3.21)
[â(g), â∗(w)] = 2â∗(gw), [â∗(g), â(w)] = −2â(gw). (3.22)

3.5 Symplectic and metaplectic transformations in infinite dimensions
As in (2.6) we introduce the operator

S =

[
1l 0
0 −1l

]
. (3.23)

Let R ∈ B(W ⊕W). As in Subsection 2.3, R is called symplectic if R∗SR = S. Bounded symplectic
transformations form a group, which we denote Sp(Y).

Various properties of symplectic operators described in Subsection 2.3 are valid in the present setting.
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Theorem 3.7 Let
R =

[
p q
q p

]
∈ Sp(Y). (3.24)

Then the following conditions are equivalent:
(1) There exists a unitary U such that

Uâ∗(w)U∗ = â∗(pw) + â(qw),

Uâ(w)U∗ = â∗(qw) + â(pw), w ∈ W. (3.25)

(2) There exists a unitary U such that

Ueiφ̂(w,w)U∗ = eiφ̂(w′,w′), R

[
w
w

]
=

[
w′

w′

]
, w ∈ W. (3.26)

(3) There exists a ∗-automorphism αR of B(Γs(W)) such that

αR
(
eiφ̂(w,w)

)
= eiφ̂(w′,w′), R

[
w
w

]
=

[
w′

w′

]
, w ∈ W. (3.27)

Let (1), (2) and (3) be true. Then U (common for (1) and (2)) is uniquely determined up to a phase
factor. Besides, αR is uniquely defined.

If R satisfies the conditions of the above theorem, then we say that R is implementable. The unitary
U is called a (Bogoliubov) implementer of R. αR is called the Bogoliubov automorphism associated to R.

We leave the proof of this theorem to the reader. Let us only mention that to show (3)⇒(2) we need
to use Proposition A.1. To obtain the uniqueness of αR we use the weak density of linear combinations
of Weyl operators in B(Γs(W)).

Spres(Y) will denote the restricted symplectic group, which consists of R ∈ Sp(Y) such that q is
Hilbert-Schmidt. The importance of Spres(Y) is due to the Shale Theorem [Sh], which we quote below
in the form given in [DG].

Theorem 3.8 R ∈ Sp(Y). Then R is implementable iff R ∈ Spres(Y). For such R, we can define the
natural implementer of R

Unat
R := |det pp∗|− 1

4 e−
1
2 â
∗(d2)Γ

(
(p∗)−1

)
e

1
2 â(d1), (3.28)

where d2, d1 are defined as in (2.15) and (2.16). All implementers of R ∈ Spres(Y) coincide with Unat
R ,

up to a phase factor.

Bogoliubov implementeres form a group, which is denoted Mpc(Y). We have a short exact sequence

1l→ U(1)→Mpc(Y)→ Spres(Y)→ 1l.

Let us mention the following criterion, which was used in [NNS]:

Proposition 3.9 If R∗R− 1l is Hilbert-Schmidt, then R ∈ Spres(Y).

Proof.
R∗R =

[
p∗p+ q#q p∗q + q#p
p#q + q∗p p#p+ q∗q

]
=

[
1l + 2q#q 2p∗q

2p#q 1l + 2q∗q

]
.
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Now

‖1l−R∗R‖22 = 8Trq∗q + 8Trq∗qq∗q + 8Trq∗pp∗q (3.29)
= 16Trq∗qq∗q + 16Trq∗q ≥ 16Trq∗q. (3.30)

2

Spaf(Y) will denote the anomaly-free symplectic group, which consists of R ∈ Sp(Y) such that 1l− p
is trace class [DG].

Proposition 3.10 Spaf(Y) is a subgroup of Spres(Y).

Proof. We have
q∗q = p∗p− 1l = (p∗ − 1l)p+ p− 1l. (3.31)

Therefore, ‖p− 1l‖1 <∞ implies ‖q‖2 <∞. 2

For R ∈ Spaf(Y) we can define a pair of metaplectic Bogoliubov implementers

± Umet
R := ±(det p∗)−

1
2 e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e

1
2 â(d1). (3.32)

They form a group, which we denote Mpaf(Y) [DG]. We have a short exact sequence

1l→ Z2 →Mpaf(Y)→ Spaf(Y)→ 1l.

3.6 Classical quadratic Hamiltonians
In this subsection we consider strongly continuous 1-parameter groups of symplectic transformations.
The following proposition describes their generators:

Proposition 3.11 Let iB be a generator of a 1-parameter group on W ⊕W. The following statements
are equivalent:
(1) eiBt, t ∈ R, is a strongly continuous 1-parameter group of symplectic transformations.

(2) iB is J-real, SB∗ ⊃ BS.
(3) AB := BS is J-real and A∗B ⊃ AB (in other words, AB is Hermitian).

Proof. We have for w1, w2 ∈ Dom(B)

d

dt
(eitBw1|SeitBw2)

∣∣∣
t=0

= −i(Bw1|Sw2) + i(w1|SBw2). (3.33)

Hence preservation of S by eitB is equivalent to (SAS)∗ = B∗S ⊃ SB = SAS, which means that SAS is
Hermitian. This is equivalent to A being Hermitian. 2

For brevity, we will say that B is a symplectic generator if iB generates a one-parameter group of
symplectic transformations. Similarly as in the previous section, AB := BS will be sometimes called the
classical Hamiltonian of B, and we will often write A instead of AB .

Note that in finite dimensions the converse of Proposition 3.11 (3) is true: If A is is Hermitian and
J-real, then B := AS is a symplectic generator. This is probably not the case in infinite dimensions.
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3.7 Bogoliubov Hamiltonians
Let B be, as usual, a symplectic generator, and A = BS. We will write

eitB =

[
pt qt
qt pt

]
. (3.34)

Theorem 3.12 The following conditions are equivalent:

(1) There exists a self-adjoint operator Ĥ on Γs(W) such that eitĤ implements eitB for any t ∈ R.
(2) There exists αt, a 1-parameter C∗0 -group of ∗-automorphisms of B(Γs(W)), such that

αt
(
eiφ̂(w,w)

)
= eiφ̂(wt,wt),

[
wt
wt

]
= eitB

[
w
w

]
, w ∈ W. (3.35)

(3) lim
t→0
‖qt‖2 = 0.

Let (1), (2), (3) be true. Then αt is determined uniquely. Ĥ is uniquely defined up to an additive
constant.

Ĥ will be called a quantization of B. We will also say that Ĥ is a quantum quadratic Hamiltonian, or
shorter, a Bogoliubov Hamiltonian. If the equivalent conditions of the above theorem are satisfied, then
we will say that B possesses quantizations.

Proof. (1)⇔(2) is a consequence of Proposition A.2. We need to show that (1),(2)⇔(3)
If eitB , t ∈ R, is implementable, then ‖qt‖2 <∞, for all t ∈ R.
If lim
t→0
‖qt‖2 = 0, then ‖qt‖2 < ∞, for small enough t. But since Spres(Y) is a group, ‖qt‖2 < ∞, for

all t ∈ R.
Thus, in all cases (1), (2) and (3) we can define

Unat
t := Unat

eitB , (3.36)

(see (3.28)). Set
αt(C) := Unat

t CUnat
−t . (3.37)

Clearly, t 7→ αt is a 1-parameter group of ∗-automorphisms satisfying (3.35). The proof will be completed
if we show the equivalence of the following statements:
(i) t 7→ Unat

t is strongly continuous at zero;

(ii) t 7→ αt is a C∗0 -group of ∗-automorphisms;

(iii) d2,t := qtp
−1
t satisfies lim

t→0
‖d2,t‖2 = 0;

(iv) lim
t→0
‖qt‖2 = 0.

(i)⇒(ii): We easily see that if t 7→ Unat
t is strongly continuous at zero and if C is a bounded operator,

then t 7→ Unat
t CUnat

−t is weakly continuous at zero. This implies that t 7→ αt is a C∗0 -group.
(ii)⇒(iii): Let |Ω)(Ω| denote the orthogonal projection onto Ω. We have(

Ω|α
(
|Ω)(Ω|

)
Ω
)

=
∣∣(Ω|Unat

t Ω)
∣∣2

=
∣∣det ptp

∗
t

∣∣− 1
2 = det

(
1l− d∗2,td2,t

) 1
2 (3.38)

= exp
(1

2
Tr log

(
1l− d∗2,td2,t

))
. (3.39)

24



In (3.38) we used the identity
p#−1
t p−1

t = 1l− d∗2,td2,t. (3.40)

(ii) implies that (3.39) goes to 1 for t → 0. This is equivalent to lim
t→0

Tr log(1l − d∗2,td2,t) = 0, which is
equivalent to lim

t→0
Trd∗2,td2,t = 0.

(iii)⇒(i): We have
Unat
t eiφ̂(w,w)Ω = eiφ̂(wt,wt)|det ptp

∗
t |−

1
4 e−

1
2a
∗(d2,t)Ω. (3.41)

But t 7→ eiφ̂(wt,wt) is strongly continuous. By (3.40), lim
t→0
|det ptp

∗
t |−

1
4 = 1. Besides, (iii) implies that

lim
t→0

e−
1
2a
∗(d2,t)Ω = Ω. Therefore, (3.41) is continuous at t = 0. But the span of eiφ̂(w,w)Ω is dense and

Unat
t is unitary. Hence Unat

t is strongly continuous at t = 0.
(iii)⇔(iv) follows from the identities

qtq
∗
t = d∗2,td2,t

(
1l− d∗2,td2,t

)−1
, (3.42)

d∗2,td2,t = qtq
∗
t

(
1l + qtq

∗
t

)−1
. (3.43)

2

Below we describe 3 distinguished quantizations.

(1) If the group eitĤ implementing eitB is contained in Mpaf(Y), then Ĥ will be called Weyl. It is easy
to see that for a given symplectic generator B, its Weyl quantization, if it exists, is unique. We will
denote it by Ĥw

B . An alternative name for Ĥw
B : the symmetric quantization of B.

(2) We say that a quantization Ĥ of B is normally ordered

d

dt
(Ω|eitĤΩ)

∣∣∣
t=0

= 0. (3.44)

Again, a given symplectic generator B possesses at most one normally ordered quantization. We will
denote it by Ĥn

B . An alternative name for Ĥn
B : the Wick quantization of B.

(3) If B possess a quantization, which is bounded from below, then all of its quantizations are bounded
from below. Then one can introduce the zero-infimum quantization Ĥz

B fixed by the condition

inf Ĥz
B = 0.

Let us stress that there exist B that possess quantizations, but they do not possess Ĥw
B , Ĥ

n
B or Ĥz

B .
We will usually drop the subscript B in the above symbols.
Note that whereas the definitions of Ĥw and Ĥz are quite obvious, it is less clear how to generalize the

concept of normally ordered Bogoliubov Hamiltonian to infinite dimensions. In the following proposition
we formulate another condition, which could be considered as another candidate for a definition of Ĥn.

Proposition 3.13 Suppose that B possesses a quantization Ĥ such that Ω ∈ Dom
(
|Ĥ| 12

)
(the vacuum

belongs to the form domain of Ĥ). Then B possesses the normally ordered quantization.

Proof. We easily check that
Ĥn := Ĥ − (Ω|ĤΩ). (3.45)

satisfies (3.44). 2

Theorem 3.14 Consider (3.34).
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(1) The condition
lim
t→0
‖pt − 1l‖1 = 0. (3.46)

is equivalent to B possessing the Weyl quantization Ĥw. If this is the case, then

eitĤw

= (det p∗t )
− 1

2 e−
1
2 â
∗(d2,t)Γ

(
(p∗t )

−1
)
e

1
2 â(d1,t), (3.47)

where the sign of the square root is determined by continuity.

(2) Suppose that there exists a self-adjoint operator h on W such that

lim
t→0

‖e−ithpt − 1l‖1
t

= 0. (3.48)

Then B possesses the normally ordered quantization Ĥn and

eitĤn

= (det p∗t e
ith)−

1
2 e−

1
2 â
∗(d2,t)Γ

(
(p∗t )

−1
)
e

1
2 â(d1,t), (3.49)

where the sign of the square root is determined by continuity. The operator h that appears in (3.48)
is uniquely defined.

(3) Suppose that the assumptions of (2) hold. In addition, assume that h in (3.48) is trace class. Then
B possesses both normally ordered and Weyl quantization, and

Ĥn +
1

2
Trh = Ĥw. (3.50)

Proof. (1): lim
t→0
‖1l − pt‖1 = 0 implies that eitB ∈ Spaf(Y) at least for small t. But Spaf(Y) is a

group. Therefore, eitB ∈ Spaf(Y) for all t ∈ R.
Besides, t 7→ eitB is continuous in the topology of Spaf(Y) at zero. By the group property of Spaf(Y),

it is continuous for all t ∈ R.
Hence, Umet

t given by (3.47) is a well defined. Umet
t obviously is one of the metaplectic implementers

of eitB . We have
(Ω|Umet

t Ω) = (det p∗t )
− 1

2 (3.51)

depends continuously on t.
Using thatMp(Y) is a group and the continuity of (3.51), we see that Umet

t satisfies the group property.
Next, repeating the argument of the proof of Thm 3.12, we see that Umet

t is contiunuous on coherent
vectors.

Thus Umet
t is a strongly continuous group of metaplectic implementers of eitB . Hence B posseses the

Weyl quantization.
Conversely, if B possesses the Weyl quantization Ĥw, then Umet

t = eitĤw

. Then (3.51) is true. But
lim
t→0
‖1l− pt‖1 = 0 is equivalent to the continuity of the rhs of (3.51).
(2): (3.48) implies

lim
t→0
‖e−ithpt − 1l‖1 = 0. (3.52)

Therefore, the identity

q∗t qt = p∗t pt − 1l = (p∗t e
ith − 1l)e−ithpt + e−ithpt − 1l (3.53)

shows that lim
t→0
‖qt‖2 = 0. Therefore, (3.49) is well defined and depends continuously on t. Clearly,

∣∣det p∗t e
ith
∣∣2 = det p∗t pt. (3.54)
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Hence, (3.49) differs from Unat
eitB by a phase factor. We check by direct calculation that it satisfies the

group property [BD].
Using (3.52) and the differentiability of the determinant in the trace norm, for small enough t we have∣∣ det p∗t e

ith − 1
∣∣ ≤ c‖p∗t eith − 1l‖1. (3.55)

Hence (3.48) implies

lim
t→0

det p∗t e
ith − 1

t
= 0. (3.56)

Therefore, using also (3.52),

lim
t→0

(det p∗t e
ith)−

1
2 − 1

t
= 0. (3.57)

By (3.49), (
Ω|eitĤn

Ω
)

= (det p∗t e
ith)−

1
2 . (3.58)

Hence, (3.44) is true.
Suppose that for h1, h2 we have (3.48). Let w,w′ ∈ W be normalized. Then

1

t

∣∣(w|eith1w′)− (w|eith2w′)
∣∣ ≤ 1

t
‖eith1 − eith2‖ (3.59)

≤ 1

t
‖eith1 − eith2‖1 (3.60)

≤ 1

t
‖eith1 − pt‖1 +

1

t
‖pt − eith2‖1 → 0. (3.61)

Hence h1 = h2 by Lemma A.4.
(3): Using ‖h‖1 <∞, we can write

det pt = det eith det e−ithpt = eitTrh det e−ithpt. (3.62)

Thus we see that both (3.47) and (3.49) are well defined and

eitĤw

= eit 12 TrheitĤn

. (3.63)

2

3.8 Criteria for existence of quantizations of classical Hamiltonians
In this subsection we restrict our study to symplectic generators that are bounded perturbations of
diagonal symplectic generators.

We will always assume that h is a self-adjoint operator on W and g = g#. Besides,

B :=

[
h −g
g −h

]
, B0 :=

[
h 0

0 −h

]
, (3.64)

A = BS =

[
h g

g h

]
, A0 = B0S =

[
h 0

0 h

]
, G =

[
0 −g
g 0

]
. (3.65)

The following proposition is immediate:

Proposition 3.15 If g is bounded, then B is a symplectic generator. Besides, AB = BS is self-adjoint.
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Proof. Clearly, B0 is a symplectic generator and A0 is self-adjoint. We can add a bounded pertur-
bation without destroing these properties. 2

The following theorem is a slightly strengthened version of a criterion due to Berezin [Be], see also
[BD]. Throughout the subsection we set

f(t) :=

∫ t

0

eishgeishds. (3.66)

Theorem 3.16 (1) Suppose that g is bounded and lim
t→0
‖f(t)‖2 = 0. Then B possesses quantizations.

(2) In addition to assumptions of (1) suppose that lim
t→0
‖gf(t)‖1 = 0. Then B possesses the normally

ordered quantization.

(3) In addition to assumptions of (2) suppose that ‖h‖1 <∞. Then B possesses both the Weyl and the
normally ordered quantizations, and

Ĥn +
1

2
Trh = Ĥw. (3.67)

Proof. (1): Using repeatedly the identity

f(2t) = f(t) + eithf(t)eith (3.68)

we see that ‖f(t)‖2 is finite for all t.
Set

V (t) := eitBe−itB0 , (3.69)

G(t) := eitB0Ge−itB0 =

[
0 −eishgeish

e−ishge−ish 0

]
, (3.70)

F (t) :=

∫ t

0

G(s)ds =

[
0 −f(t)

f(t) 0

]
. (3.71)

From

V (t) = 1l + i

∫ t

0

V (s)G(s)ds (3.72)

and ‖G(t)‖ = ‖G‖, we obtain
‖V (t)‖ ≤ e|t|‖G‖. (3.73)

Iterating (3.72) gives

V (t) = 1l + iF (t)−
∫ t

0

V (s)G(s)eisB0F (t− s)e−isB0ds. (3.74)

Therefore,

‖V (t)− 1l‖2 ≤ ‖F (t)‖2 +

∫ t

0

‖V (s)‖‖G‖‖F (t− s)‖2ds. (3.75)

But ‖F (t)‖2 =
√

2‖f(t)‖2, ‖G‖ = ‖g‖. Hence ‖V (t)− 1l‖2 is finite and goes to zero as t→ 0. Arguing as
in Proposition 3.9, we obtain

16‖q(t)‖22 ≤ ‖V (t)− 1l‖2. (3.76)
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Therefore, ‖q(t)‖2 is finite and goes to zero as t→ 0. This means that the assumption of Theorem 3.12
(3) is satisfied. Hence B possesses quantizations.

(2): We rewrite (3.74) as[
pt − eith qt + if(t)e−ith

qt − if(t)eith pt − e−ith

]
= eitB − eitB0 − iF (t)eitB0 (3.77)

= −
∫ t

0

V (s)G(s)eisB0F (t− s)ei(t−s)B0ds. (3.78)

Therefore, by (A.9),

2‖pt − eith‖1 ≤ ‖eitB − eitB0 − iF (t)eitB0‖1 (3.79)

≤
∫ t

0

‖V (s)‖‖GF (t− s)ei(t−s)B0‖1ds. (3.80)

Using ‖GF (t)‖1 = 2‖gf(t)‖1 and lim
t→0
‖gf(t)‖1 = 0, we see that (3.80) is o(t). Thus we obtain ‖pt−eith‖1 =

o(t). This means that the assumption of Theorem 3.14 (2) is satisfied. Hence, B possesses the normally
ordered quatization.

(3): We apply Theorem 3.14 (3). 2

The assumptions of Theorem 3.16 are not very convenient to verify. Our next aim is to formulate
criteria for the existence of quantizations, which are more conveneient to check.

Define
γ(g) := (h⊗ 1l + 1l⊗ h)−1g, (3.81)

where we use the tensor interpretation of g and assume that g ∈ Dom(h⊗ 1l + 1l⊗ h)−1.

Proposition 3.17 In the operator interpretation, γ(g) corresponds to

γ(g) = i lim
ε↘0

∫ ∞
0

e−εte−ithge−ithdt (3.82)

and satisfies

hγ(g) + γ(g)h = g. (3.83)

For h > 0 we can “Wick rotate” the formula (3.82) and write

γ(g) =

∫ ∞
0

e−thge−thdt. (3.84)

Proof. By Prop. 3.5 and h = h#, we can identify the operator e−ithge−ith with the tensor

e−ith ⊗ e−ithg = e−it(h⊗1l+1l⊗h)g. (3.85)

Clearly,

i

∫ ∞
0

e−εte−it(h⊗1l+1l⊗h)g = (h⊗ 1l + 1l⊗ h− iε)−1g → (h⊗ 1l + 1l⊗ h)−1g, (3.86)

where we use the usual Hilbert space convergence, which proves (3.82).
Set

γε(g) := i

∫ ∞
0

e−εse−ishge−ishds. (3.87)
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We compute:

e−ithγε(g)e−ith = i

∫ ∞
t

e−ε(s−t)e−ishge−ishds (3.88)

= −i

∫ t

0

e−ishge−ishe−εsds+ eεtγε(g). (3.89)

We differentiate wrt t at t = 0, obtaining

− i
(
hγε(g) + γε(g)h

)
= −ig + εγε(g). (3.90)

Taking the limit as ε↘ 0, we obtain (3.83).
The proof of (3.84) is almost the same as that of (3.82). 2

We will also write

γ(G) :=

[
0 −γ(g)

γ(g) 0

]
. (3.91)

Note that in the operator interpretation we have

[B0, γ(G)] = G. (3.92)

The following criterion is a consequence of Theorem 3.16.

Theorem 3.18 (1) Suppose that g is bounded and g = g1 + g2, where ‖g1‖2 <∞ and ‖γ(g2)‖2 <∞.
Then the assumptions of Theorem 3.16 are satisfied, and hence B possesses quantizations.

(2) Suppose that ‖g‖2 <∞. Then B possesses the normally ordered quantization.
(3) Suppose that ‖h‖1 < ∞ and ‖g‖2 < ∞. Then B possesses both the Weyl and the normally ordered

quantization. Besides,
Ĥw = Ĥn + Trh. (3.93)

Proof. (1): Set

fi(t) :=

∫ t

0

eishgie
ishds. (3.94)

It is clear that lim
t→0
‖f1(t)‖2 = 0. The fact that lim

t→0
‖f2(t)‖2 = 0 follows from∫ t

0

eishg2eishds = −i

∫ t

0

d

ds
eishγ(g2)eishds = −ieithγ(g2)eith + iγ(g2). (3.95)

Hence assumptions of Thm 3.16 (1) are satisfied.
(2): Clearly, ‖gf(t)‖1 ≤ t‖g‖22. Hence assumptions of Thm 3.16 (2) are satisfied.
Now (3) follows immediately from Thm 3.16 (3). 2

Note that the assumption of Theorem 3.21 implies that of Theorem 3.18:

Proposition 3.19 h > 0 and ‖h− 1
2 gh

− 1
2 ‖2 <∞ implies ‖γ(g)‖2 <∞.

Proof. h−
1
2 gh

− 1
2 corresponds to h−

1
2 ⊗ h− 1

2 g in the tensor interpretation. Clearly,

2h⊗ h ≤ (h⊗ 1l + 1l⊗ h)2. (3.96)

Hence,
h−1 ⊗ h−1 ≥ 2(h⊗ 1l + 1l⊗ h)−2. (3.97)

Therefore,
‖h− 1

2 gh
− 1

2 ‖2 = ‖h− 1
2 ⊗ h− 1

2 g‖ ≥
√

2‖(h⊗ 1l + 1l⊗ h)−1g‖ =
√

2‖γ(g)‖2. (3.98)
2
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3.9 Positive classical Hamiltonians and their diagonalization
The following theorem is an extension of Theorem 2.3 to arbitrary dimensions. It says that a large class
of classical Hamiltonians can be diagonalized by a positive symplectic transformation. This theorem
is implicitly contained in [DG] (see Thm 11.20 (3) together with Thm 18.5 (3)). [NNS] contains also
a related result about the diagonalizabilty of classical Hamiltonians. It does not provide, however, a
construction of a distinguished diagonalizing operator.

We will use the notation introduced in (3.64) and (3.65) We will assume that h > 0. It will not be
necessary to assume that g is bounded—we will assume that g = g# is a bilinear form with the right
domain Dom|h| 12 and the left domain Dom|h| 12 .

Theorem 3.20 Let h be positive and

‖h− 1
2 gh

− 1
2 ‖ =: a < 1. (3.99)

Then A is a positive self-adjoint operator with the form domain DomA
1
2
0 . The coresponding B is a

symplectic generator.
Besides,

R0 = SA−
1
2 (A

1
2SASA

1
2 )

1
2A−

1
2S, (3.100)

is a bounded invertible positive symplectic operator. Hence so is

R = R
1
2
0 (3.101)

R diagonalizes B and A, that is, for some positive self-adjoint hdg

B = R

[
hdg 0

0 −hdg

]
R−1, (3.102)

A = R

[
hdg 0

0 hdg

]
R∗. (3.103)

Moreover,
(1− a)

1
4

(1 + a)
1
4

≤ ‖R‖ ≤ (1 + a)
1
4

(1− a)
1
4

. (3.104)

Proof. GS is a form bounded perturbation of A0:

|(v|GSv)| ≤ a(v|A0v), v ∈ Dom(A
1
2
0 ).

Therefore, A extends to a positive self-adjoint operator by the KLMN Theorem.
A satisfies

(1− a)A0 ≤ A ≤ (1 + a)A0. (3.105)

Similarly,
SAS = A0 −GS

extends to a positive operator satisfying

(1− a)A0 ≤ SAS ≤ (1 + a)A0. (3.106)

Therefore
A

1
2SASA

1
2 ≥ (1− a)A

1
2A0A

1
2 ≥ (1− a)

(1 + a)
A2. (3.107)
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A
1
2SASA

1
2 ≤ (1 + a)A

1
2A0A

1
2 ≤ (1 + a)

(1− a)
A2. (3.108)

Hence, √
1− a√
1 + a

A ≤ (A
1
2SASA

1
2 )

1
2 ≤
√

1 + a√
1− a

A. (3.109)

Thus R0, defined by (3.100), is a well defined bounded invertible positive operator. Hence so is R.
Repeating the arguments of the proof of Theorem 2.3, we obtain (3.102) and (3.103). By (3.102) we

have

eitB = R

[
eithdg 0

0 e−ithdg

]
R−1. (3.110)

(3.110) is clearly symplectic. Hence B is a symplectic generator. 2

For further use we note that we can rewrite (3.100) as follows:

R0 = SA−
1
2

(∫ τ2

(τ2 +A
1
2SASA

1
2 )

dτ

2π

)
A−

1
2S.

As a side remark note that h > 0 and (3.99) not only imply A > 0, but the converse implication is
“almost true”. More precisely, set W0 := (Kerh)⊥. Then A ≥ 0 is equivalent to the following condition:
(1) h ≥ 0,

(2) Kerg ⊃ W⊥0 (and hence, since g = g#, we have Rang ⊂ W0)

(3) ‖h− 1
2 gh

− 1
2 ‖ ≤ 1, in the sense of operators from W0.

3.10 Implementable diagonalizability of positive Hamiltonians
The following theorem is due to [NNS]. The proof that we present below follows closely that of [NNS],
with only minor modifications.

Theorem 3.21 In addition to the assumptions of Thm 3.20, suppose that

‖h− 1
2 gh

− 1
2 ‖2 < ∞. (3.111)

Let R be the symplectic operator given by Thm 3.20 and q be given by (3.24). Then

‖q‖2 ≤ 2
1

(1− a)
‖h− 1

2 gh
− 1

2 ‖2. (3.112)

In particular, R ∈ Spres(Y) and hence R is implementable.

Under the assumptions of the above theorem, R possesses a Bogoliubov implementer U . If hdg is
given by (3.102), then

UdΓ(hdg)U∗ (3.113)

is the zero-infimum quantization of B. (3.113) possesses a ground state (its infimum is an eigenvalue).
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Proof of Thm 3.21. We start from estimating R∗R− 1l = R2 − 1l = R0 − 1l. We have

S(R0 − 1l)S

= A−
1
2 (A

1
2SASA

1
2 )

1
2A−

1
2 −A− 1

2 (A2)
1
2A−

1
2

=

∫
dτ

2π
A−

1
2

( A
1
2SASA

1
2

τ2 +A
1
2SASA

1
2

− A2

τ2 +A2

)
A−

1
2

= −
∫
τ2dτ

2π
A−

1
2

( 1

τ2 +A
1
2SASA

1
2

− 1

τ2 +A2

)
A−

1
2

=

∫
τ2dτ

2π
A

1
2

1

τ2 +A
1
2SASA

1
2

A−
1
2 (SAS −A)

1

τ2 +A2

=:

∫
τ2dτ

2π
T (τ).

Now, for any ε > 0,

±2T (τ)

= ±2A−
1
2

1

τ2 +A
1
2SASA

1
2

A
1
2 (SAS −A)

1

τ2 +A2

≤ ε−1 1

τ2 +A2
(SAS −A)A

1
2

1

A
1
2SASA

1
2

A
1
2 (SAS −A)

1

τ2 +A2

+ εA−
1
2

A
1
2SASA

1
2

τ2 +A
1
2SASA

1
2

A−
1
2

=: ε−1T1(τ) + εT2(τ).

We deal with the second term: ∫
τ2dτ

2π
T2(τ)

=

∫
τ2dτ

2π
A−

1
2

A
1
2SASA

1
2

τ2 +A
1
2SASA

1
2

A−
1
2

= A−
1
2 (A

1
2SASA

1
2 )

1
2A−

1
2

= R0.

Next we treat the first term:

K :=

∫
τ2dτ

2π
T1(τ)

=

∫
τ2dτ

2π

1

τ2 +A2
(SAS −A)S

1

A
S(SAS −A)

1

τ2 +A2
.

We have,

TrK =

∫
τ2dτ

2π

1

(τ2 +A2)2
(SAS −A)S

1

A
S(SAS −A) (3.114)

= Tr
1

A
(SAS −A)S

1

A
S(SAS −A) (3.115)

≤ 1

(1− a)2
Tr

1

A0
(SAS −A)

1

A0
(SAS −A) (3.116)

= 8
1

(1− a)2
Trh

−1
gh−1g. (3.117)
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Thus we proved that
± 2S(R0 − 1l)S ≤ ε−1K + εSR0S, (3.118)

where K is positive operator with trace bounded by (3.117). We rewrite (3.118) with sign + as

(2− ε)S(R0 − 1l)S ≤ ε−1K + ε. (3.119)

Let sn(C) denote the nth singular value of an operator C, that means, the nth eigenvalue of |C| :=√
C∗C in the descending order. We will write for brevity λn := sn(|q|2).
Using U defined in (2.21), we have

R0 − 1l = R2 − 1l = 2U

[
u(|q|2 + |q|

√
1l + |q|2)u∗ 0

0 |q|2 − |q|
√

1l + |q|2

]
U∗. (3.120)

Therefore,
sn(R0 − 1l) = 2(λn +

√
λn + λ2

n). (3.121)
Thus,

2(2− ε)(λn +
√
λn + λ2

n) ≤ ε−1sn(K) + ε. (3.122)
Let c be an arbitrary positive number. Let

λn ≤ c. (3.123)

Clearly, (3.122) implies
2(2− ε)

√
λn ≤ ε−1sn(K) + ε. (3.124)

Taking into account (3.123), we obtain

4
√
λn ≤ ε−1sn(K) + ε(1 + 2

√
c). (3.125)

Optimizing wrt ε, we obtain

4
√
λn ≤ 2

√
sn(K)

√
1 + 2

√
c. (3.126)

Hence,

λn ≤ sn(K)
1 + 2

√
c

4
. (3.127)

Let
c ≤ λn. (3.128)

Clearly, (3.122) implies
4(2− ε)λn ≤ ε−1sn(K) + ε. (3.129)

Taking into account (3.128), we obtain

λn ≤
1

ε
(
8− ε(4 + c−1)

)sn(K). (3.130)

Optimizing wrt ε, we obtain

λn ≤
4 + c−1

16
sn(K). (3.131)

Setting c = 1
4 in (3.127) and (3.131), we obtain

λn ≤
1

2
sn(K). (3.132)

Hence,

‖q‖22 =

∞∑
n=1

λn ≤
1

2

∞∑
n=1

sn(K) =
1

2
TrK. (3.133)

This together with (3.117) yields (3.112). 2
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3.11 Normally ordered Hamiltonian
In this subsection we give conditions on B that guarantee the existence of a bounded from below normally
ordered quantization. We follow [NNS], whose approach is based on quadratic forms. Similar results were
contained in [BD]. They were however weaker, since only operator bounded perturbations were used in
[BD].

Suppose that Φ,Ψ ∈ Γs(W). Define the reduced 1-body density operator γΨ,Φ and the pairing operator
αΨ,Φ as follows:

(w1|γΨ,Φw2) := (Φ|â∗(w2)â(w1)Ψ),

(αΦ,Ψw2|w1) = (αΦ,Ψ|w1 ⊗ w2) := (Φ|â∗(w2)â∗(w1)Ψ), w1, w2 ∈ W.

(Note that, as usual for similar objects, αΨ,Φ has two interpretations: as a symmetric operator from W
toW, or as an element of the Hilbert space ⊗2

sW. We will treat the former interpretation as the standard
one).

We will write
γΦ := γΦ,Φ, αΦ := αΦ,Φ.

Note that
α#

Φ,Ψ = αΦ,Ψ, (3.134)[
γΦ αΦ

αΦ 1l + γΦ

]
≥ 0. (3.135)

For further use note that (3.135) is equivalent to

γΦ ≥ 0, γΦ ≥ αΦ(1l + γΦ)−1αΦ. (3.136)

Clearly, if h is an operator on W and g ∈ ⊗2
sW, then

(Φ|dΓ(h)Ψ) = TrγΦ,Ψh, (3.137)
(Φ|â∗(g)Ψ) = Trα∗Φ,Ψg, (3.138)
(Φ|â(g)Ψ) = TrαΨ,Φg

∗. (3.139)

Note that (3.138) and (3.139) are still true if g is an unbounded functional on ⊗2
sW with domain

al⊗
2

s D, provided that Ψ,Φ ∈
al

Γs(D) where D = Domh−
1
2 , as discussed in Remark 3.4.

The following proposition provides a key estimate for the construction of normally ordered Bogoliubov
Hamiltonians:

Proposition 3.22 Assume that ‖h− 1
2 gh

− 1
2 ‖ ≤ 1 and Trg∗h−1g < ∞. Let ‖h− 1

2 gh
− 1

2 ‖ ≤ c. Then for
Φ ∈ Γs(W) with ‖Φ‖ = 1,

(Φ|â∗(g)Φ) ≤ c(Φ|dΓ(h)Φ) +
1

2c
Tr(g∗h−1g). (3.140)
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Proof.

(Φ|â∗(g)Φ) = |TrαΦg|
=

∣∣Tr(1l + γΦ)−
1
2αΦh

1
2h−

1
2 g(1l + γΦ)

1
2

∣∣
≤

(
Trh

1
2αΦ(1l + γΦ)−1α∗Φh

1
2

) 1
2

×
(

Trh−
1
2 g(1l + γΦ)g∗h−

1
2

) 1
2

≤
(

Trh
1
2 γΦh

1
2

) 1
2
(

Trh−
1
2 gg∗h−

1
2 + ‖h− 1

2 gh−
1
2 ‖2Trh

1
2 γΦh

1
2

) 1
2

=
(

(Φ|dΓ(h)Φ)
) 1

2
(

Trg∗h−1g + ‖h− 1
2 gh−

1
2 ‖2(Φ|dΓ(h)Φ)

) 1
2

.

Then we use the inequality √
x(y + c20x) ≤ cx+

y

2c
(3.141)

valid for x, y ≥ 0, c > c0. 2

Theorem 3.23 Assume that ‖h− 1
2 gh

− 1
2 ‖ < 1 and Trg∗h−1g <∞. Then the quadratic form

dΓ(h) + 1
2 â
∗(g) + 1

2 â(g) (3.142)

defined on the form domain of dΓ(h) is closed and bounded from below by − 1
2Tr(g∗h−1g). Hence it defines

a self-adjoint operator, which we temporarily denote by C. It satisfies(
1 + dΓ(h)

) 1
2 (i + C)−1

(
1 + dΓ(h)

) 1
2 is bounded. (3.143)

Proof. By Proposition 3.22,

1
2 |
(
Φ|(â∗(g) + â(g))Φ)| ≤ c(Φ|dΓ(h)Φ) +

1

2c
Trg∗h−1g‖Φ‖2. (3.144)

Setting c := ‖h− 1
2 gh

− 1
2 ‖ < 1 and using the KLMN Theorem, we see that the form (3.142) is closed and

bounded from below, and hence defines a bounded from below self-adjoint operator C. Setting c = 1, we
see that

− 1
2Tr(g∗h−1g) < C. (3.145)

(3.143) is also a consequence of the KLMN Theorem. 2

Theorem 3.24 The operator defined in Thm 3.23 is the normally ordered quantization of B. In other
words, following the notation introduced in Subsection 3.7, C = Ĥn

B.

On a formal level the above theorem is essentially obvious. However, there are technical difficulties,
for which we will need a few technical lemmas. In these lemmas we use h ≥ 0 and ‖h− 1

2 gh
− 1

2 ‖ < 1. Note
that under this assumption, iτ belongs to the resolvent set of B for τ 6= 0.

Lemma 3.25 For τ 6= 0, B(τ2 +B2)−1 has a dense range.
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Proof. We write
B(τ2 +B2)−1 = (iτ +B)−1(−iτ +B)−1B. (3.146)

We will show that (3.146) has a dense range when restricted to DomB.
First note that B = AS where A is self-adjoint and S is unitary. Hence DomB = SDomA and

BDomB = ADomA. This shows that BDomB is dense.
Then we apply twice Lemma A.3 to the bounded operators with dense range (iτ +B)−1 and (−iτ +

B)−1. 2

Lemma 3.26 For τ 6= 0, the operator A−
1
2

0 B(τ2 +B2)−1 is bounded.

Proof. First note that∥∥(iτS +A0)−
1
2GS(iτS +A0)−

1
2

∥∥ =
∥∥h 1

2 gh
1
2
∥∥ < 1. (3.147)

Next we check that all the terms on the right of the following identity are bounded:

A
− 1

2
0 B(iτ +B)−1 = (1 +A

− 1
2

0 GSA
− 1

2
0 ) (3.148)

×A
1
2
0 (iτS +A0)−

1
2 (3.149)

×
(
1 + (iτS +A0)−

1
2GS(iτS +A0)−

1
2

)−1 (3.150)

×(iτS +A0)−
1
2 . (3.151)

(To see that (3.150) is well defined we use (3.147)). Therefore, A−
1
2

0 B(iτ + B)−1 is bounded, which
obviously implies the boundedness of A−

1
2

0 B(τ2 +B2)−1. 2

Proof of Thm 3.24. Consider w ∈ RanB(B2 + 1)−1. By Lemma 3.25, such w are dense in W.
Set [

wt
wt

]
:= eitB

[
w
w

]
. (3.152)

By Lemma 3.26, ‖h− 1
2wt‖ is uniformly bounded. Therefore, by Prop. 3.3,

(1 + dΓ(h))−
1
2 φ̂(wt, wt)(1 + dΓ(h))−

1
2 (3.153)

is uniformly bounded. Hence, by (3.143), so is

k(t) := (C + i)−1e−itC φ̂(wt, wt)e
itC(C + i)−1. (3.154)

We know that (wt, wt) ∈ Dom(B). But this does not necessarily imply that wt ∈ Domh. It only
implies wt ∈ Domh

1
2 . Therefore, strictly speaking, we cannot write

d

dt
wt = ihwt − igwt, (3.155)

but only
d

dt
h−

1
2wt = ih−

1
2hwt − ih−

1
2 gwt. (3.156)

However, using the boundedness of (i + C)−1
(
i + dΓ(h)

) 1
2 and Prop. 3.3, it is sufficient to compute:

(i + C)−1i
[
C, φ̂(wt, wt)

]
(i + C)−1 (3.157)

= (i + C)−1
(
â∗(hwt) + â(gwt)− â(hwt)− â∗(gwt)

)
(i + C)−1 (3.158)

= (i + C)−1φ̂
(

d
dtwt,

d
dtwt

)
(i + C)−1. (3.159)
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Therefore,

d

dt
k(t) = (C + i)−1e−itC

(
− i
[
C,
(
φ̂(wt, wt)

)]
(3.160)

+φ̂
(

d
dtwt,

d
dtwt)

)
eitC(C + i)−1 = 0. (3.161)

This shows that k(t) does not depend on t. Therefore,

(C + i)−1eitC φ̂(w,w)e−itC(C + i)−1 = (C + i)−1φ̂(wt, wt)(C + i)−1. (3.162)

This proves that eitC implements eitB .
Clearly, γΩ = 0, αΩ = 0, and Ω ∈ Dom(dΓ(h)

1
2 ) = Dom(|C| 12 ). Therefore,

(Ω|CΩ) = 0. (3.163)

Thus, by Proposition 3.13, the operator temporarily denoted C is the normally ordered quantization of
B. 2

3.12 Infimum of normally ordered Hamiltonians
In Subsection 2.10, in the finite dimensional context, we defined En

B as the infimum of the normally
ordered Hamiltonian Ĥn

B . In infinite dimension it is useful to define En
B independently of whether Ĥn

B

exists or not.
As a basic condition on the symplectic generator B we assume that h > 0, ‖h− 1

2 gh
− 1

2 ‖ < 1. As in
(2.72), for σ ∈ R we set

Aσ := A0 + σGS =

[
h σg

σg h

]
, (3.164)

so that A = A1.
Out of the formulas for En listed in (2.65)–(2.70) valid in finite dimensions, the most suitable for

infinite dimensions seems to be (2.69), which we choose as the definition of En:

En
B :=

1

8

∫ 1

0

dσTrA
1
2
σ (A

1
2
σSAσSA

1
2
σ )−

1
2A

1
2
σGS, (3.165)

provided that the above integral is well defined.
(2.70) is another formula for En useful in infinite dimension:

Proposition 3.27 We have

En
B :=

1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)Tr

1

(Aσ + iτS)
SG

1

(Aσ + iτS)
SG. (3.166)

More precisely, if (3.166) is well defined as a convergent integral, then it coincides with (3.165).

Below we list a few criteria for the existence of En
B .

Theorem 3.28 (1) Let ‖g‖1 <∞. Then En
B is well defined by (3.165).

(2) Let s− < 1
2 < s+. Suppose that and Trgh

−s−
g∗h−s− < ∞ and Trgh

−s+
g∗h−s+ < ∞. Then En

B is
well defined by (3.165) or (3.166).

(3) Suppose that Trgh−1g∗ <∞. Then En
B is well defined by (3.165) or (3.166).
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Proof. (1): We apply Inequality (A.7) to the operator Y := A
1
2
σ (A

1
2
σSAσSA

1
2
σ )−

1
2A

1
2
σ and X := GS.

Note that Y is uniformly bounded for σ ∈ [0, 1]. We obtain

|En| ≤ 1

8

∫ 1

0

dσ
∣∣TrA

1
2
σ (A

1
2
σSAσSA

1
2
σ )−

1
2A

1
2
σGS

∣∣ (3.167)

≤ 1

8

∫ 1

0

dσ
∥∥A 1

2
σ (A

1
2
σSAσSA

1
2
σ )−

1
2A

1
2
σ

∥∥Tr
√
G2 ≤ cTr

√
G2. (3.168)

But Tr
√
G2 = 2Tr

√
gg. This proves (1).

(2): First note that for 0 ≤ s ≤ 1

‖A
s
2
0 (A0 + iτS)−

1
2 ‖ ≤ τ− 1

2 + s
2 . (3.169)

Indeed,
A

s
2
0 (A0 + iτS)−

1
2 = A

s
2
0 (A0 + iτS)−

s
2 × (A0 + iτS)−

1
2 + s

2 , (3.170)

where the first term is bounded by 1 and the second is bounded by τ−
1
2 + s

2 .
Moreover,

‖(A0 + iτS)−
1
2GS(A0 + iτS)−

1
2 ‖ ≤ ‖A−

1
2

0 GSA
− 1

2
0 ‖ = a < 1. (3.171)

Therefore, we can write

(Aσ + iτS)−1 = (A0 + iτS)−
1
2

(
1l− σ(A0 + iτS)−

1
2GS(A0 + iτS)−

1
2

)−1
(A0 + iτS)−

1
2 . (3.172)

(3.172) together with (3.169) and (3.171) yield∥∥A s
2
0 (Aσ + iτS)−1A

s
2
0

∥∥ ≤ (1− a)−1τ−1+s. (3.173)

Now, ∣∣∣Tr
1

(Aσ + iτS)
GS

1

(Aσ + iτS)
G
∣∣∣ (3.174)

≤
∥∥∥A s

2
0 (Aσ + iτS)−1A

s
2
0

∥∥∥2

TrGA−s0 G∗A−s0 , (3.175)

≤ (1− a)−2τ2s−2TrGA−s0 G∗A−s0 , (3.176)

where we first used Inequality (A.8) with Y = Z := A
s
2
0 (Aσ + iτS)−1A

s
2
0 and X := A

− s
2

0 GA
− s

2
0 , and then

we applied (3.173). Thus

|En| ≤ 1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)

∣∣∣Tr
1

(Aσ + iτS)
GS

1

(Aσ + iτS)
G
∣∣∣ (3.177)

≤ cTrGA
−s+
0 G∗A

−s+
0

∫ 1

0

τ2s+−2dτ + cTrGA
−s−
0 G∗A

−s−
0

∫ ∞
1

τ2s−−2dτ. (3.178)

But TrGA
−s±
0 GA

−s±
0 = 2Trgh−s±gh

−s± . This proves (2).
(3): Applying (A.8) to

Y = Z :=
(
1l− σ(A0 + iτS)−

1
2GS(A0 + iτS)−

1
2

)−1
, X := (A0 + iτS)−

1
2GS(A0 + iτS)−

1
2 ,
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and using (3.172), (3.171), we obtain∣∣∣Tr
1

(Aσ + iτS)
GS

1

(Aσ + iτS)
GS
∣∣∣ (3.179)

= TrXYXY ≤ ‖Y ‖2TrXX∗ (3.180)

≤ 1

(1− σa)2
Tr

1

(A2
0 + τ2)

1
2

G
1

(A2
0 + τ2)

1
2

G∗ (3.181)

≤ 1

(1− σa)2
TrG

1

(A2
0 + τ2)

G∗. (3.182)

Therefore,

|En| ≤ 1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)

∣∣∣Tr
1

(Aσ + iτS)
GS

1

(Aσ + iτS)
GS
∣∣∣ (3.183)

≤ 1

8

∫ 1

0

dσ
(1− σ)

(1− aσ)2

∫
dτ

2π
TrG

1

(A2
0 + τ2)

G∗ (3.184)

=
(− log(1− a)− a)

8a2
TrG

1

A0
G∗. (3.185)

But TrG 1
A0
G = 2Trgh−1g∗. This proves (3) 2

Theorem 3.29 Suppose that Trgh−1g∗ < ∞, as in Thm 3.28 (3). Let Ĥn
B be defined as in Subsect.

3.11. Let En
B be defined as in (3.165). Then

En
B = inf Ĥn

B . (3.186)

If W is finite dimensional, then (3.186) was proven in Thm 2.6. In our proof, we will reduce the full
problem to this case. The proof will be divided into several steps.
Step 1. Suppose that there exists a finite dimensional W0 such that Rang ⊂ W0 and h preserves W0.
Then (3.186) is true.

Proof. SetW1 :=W⊥0 . Note that g = g# implies thatW1 ⊂ Kerg. Let h0, g0 denote the restrictions
of g, h to W0. Let h1 denotes the restriction of h to W1. Consider the symplectic generator on W0

B0 :=

[
h0 −g0

g0 −h0

]
, (3.187)

and the corresponding normally ordered Bogoliubov Hamiltonian

Ĥn
0 := Ĥn

B0
= dΓ(h0) +

1

2

(
â∗(g0) + â(g0)

)
. (3.188)

We will write En
0 , resp. En for En

B0
, resp. En

B .
We have the decomposition

Γs(W) ' Γs(W0)⊗ Γs(W1) (3.189)

The operator Ĥn can be decomposed as

Ĥn ' Ĥn
0 ⊗ 1l + 1l⊗ dΓ(h1). (3.190)
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We have

inf Ĥn = inf Ĥn
0 = En

0 = En, (3.191)

where in the middle step we used the finite dimension of W0. 2

Step 2. Suppose that g is finite dimensional and 1l[δ,δ−1](h)g = g. Then (3.186) is true.
Proof. Let ε > 0. Let us set

πε,n := 1l[(1+ε)n,(1+ε)n+1[(h), (3.192)

hε :=

∞∑
n=−∞

(1 + ε)n+1πε,n. (3.193)

Note that
(1 + ε)−1hε ≤ h ≤ hε. (3.194)

Hence,
dΓ
(
(1 + ε)−1hε

)
≤ dΓ(h) ≤ dΓ(hε). (3.195)

Now

Ĥn
ε,− := dΓ

(
(1 + ε)−1hε

)
+

1

2

(
â∗(g) + â(g)

)
≤ Ĥn ≤ dΓ

(
hε
)

+
1

2

(
â∗(g) + â(g)

)
=: Hn

ε,+.

Let Wε,0 be the smallest subspace of W containing Rang and left invariant by hε. In other words,

Wε,0 := Span{πε,nw : w ∈ Rang}. (3.196)

Note that πε,nRang = 0 for |n| large enough. Therefore, Wε,0 is finite dimensional.
Thus Ĥn

ε,± satisfy the conditions of Step 1, and so

inf Ĥn
ε,± = En

ε,±, (3.197)

in the obvious notation. Using Lemma 3.30 we show that

lim
ε→0

En
ε,± = En, (3.198)

Besides,
inf Ĥn

ε,− ≤ inf Hn ≤ inf Ĥn
ε,+. (3.199)

2

Step 3. Suppose that for some δ > 0 we have 1l[δ,δ−1](h)g = g. Then (3.186) is true.

Proof. We know that h−
1
2 g is Hilbert-Schmidt. Finite dimensional operators are dense in Hilbert-

Schmidt operators. Therefore, given ε > 0, we can find a finite dimensional gε such that gε = g#
ε ,

1l[δ,δ−1](h)g = g and ∥∥h− 1
2 g − h−

1
2 gε
∥∥

2
=
√

Tr(g − g′δ)h−1(g − g′δ) < ε2. (3.200)

Now, the Hilbert-Schmidt norm dominates the operator norm. Hence, (3.200) implies

‖h− 1
2 (g − gε)‖ ≤ ε. (3.201)

As a consequence,
‖h− 1

2 (g − gε)h
− 1

2 ‖ ≤ εδ− 1
2 . (3.202)
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Therefore, by (3.202),

‖h− 1
2 gεh

− 1
2 ‖ ≤ ‖h− 1

2 gh
− 1

2 ‖+ ‖h− 1
2 (g − gε)h

− 1
2 ‖ (3.203)

≤ a+ εδ−
1
2 =: a1. (3.204)

By choosing ε small enough we can guarantee that a1 < 1.
Now

Ĥn = (1− ν)dΓ(h) +
1

2

(
â∗(gε) + â(gε)

)
(3.205)

+νdΓ(h) +
1

2

(
â∗(g − gε) + â(g − gε)

)
(3.206)

≥ (1− ν)dΓ(h) +
1

2

(
â∗(gε) + â(gε)

)
− ε2

ν
, (3.207)

Ĥn = (1 + ν)dΓ(h) +
1

2

(
â∗(gε) + â(gε)

)
(3.208)

−νdΓ(h) +
1

2

(
â∗(g − gε) + â(g − gε)

)
(3.209)

≤ (1 + ν)dΓ(h) +
1

2

(
â∗(gε) + â(gε)

)
+
ε2

ν
. (3.210)

The Hamiltonians (1± ν)dΓ(h) + 1
2

(
â∗(gε) + â(gε)

)
satisfy the assumptions of Step 2. 2

Step 4. (3.186) is true without additional assumptions.
Proof. h−

1
2 g is Hilbert-Schmidt and s− lim

δ→0
1l[δ,δ−1](h) = 1l. Hence, for any ε > 0 we can find

1 ≥ δ > 0 such that if we set
gδ := 1l[δ,δ−1](h)g1l[δ,δ−1](h), (3.211)

then ∥∥h− 1
2 g − h−

1
2 g′δ
∥∥

2
=
√

Tr(g − gδ)h−1(g − gδ) < ε. (3.212)

Note that
‖h− 1

2 gδh
− 1

2 ‖ ≤ ‖h− 1
2 gh

− 1
2 ‖ = a. (3.213)

Then we estimate similarly as at the end of Step 3. We argue, that we need only estimates about the
Hamiltonians (1± ν)dΓ(h) + 1

2

(
â∗(gδ) + â(gδ)

)
, which satisfy the assumptions of Step 3. 2

A result about the continuity of En
B with respect to h, which we needed in the above proof, is described

below.

Lemma 3.30 Let

B =

[
h −g
g −h

]
, B′ =

[
h′ −g
g −h′

]
. (3.214)

with
‖h− 1

2 gh
− 1

2 ‖, ‖h′− 1
2 gh

′− 1
2 ‖ ≤ a, Trgh−1g∗, Trgh′−1g∗ ≤ a1

Then ∥∥En
B − En

B′

∥∥ ≤ c‖h− 1
2 (h− h′)h′− 1

2 ‖, (3.215)

where c depends only on a and a1.
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Proof.

En
B − En

B′

=
1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)Tr

1

(Aσ + iτS)
(A′0 −A0)

1

(A′σ + iτS)
SG

1

(Aσ + iτS)
SG

+
1

8

∫ 1

0

dσ

∫
dτ

2π
(1− σ)Tr

1

(A′σ + iτS)
SG

1

(Aσ + iτS)
(A′0 −A0)

1

(A′σ + iτS)
SG.

Then we argue similarly as in the proof of Theorem 3.28 (3). 2

3.13 Weyl Bogoliubov Hamiltonian
Weyl Bogoliubov Hamiltonians play a central role in the theory of Bogoliubov Hamiltonians, providing
the simplest algebraic formulas. Unfortunately, in infinite dimensions they are usually ill-defined.

If AB ≥ 0, then we can define

Ew
B :=

1

4
Tr

√
A

1
2

BSABSA
1
2

B , (3.216)

which is a nonnegative number, often infinite. Recall that in finite dimension it coincides with the infimum
of Ĥw

B .
The following theorem gives (rather restrictive) conditions when we can define the Weyl quantization

in any dimension.

Theorem 3.31 Assume that h > 0, ‖h− 1
2 gh

− 1
2 ‖ =: a < 1 and Trh <∞. Then the following holds:

(1) Trg∗h−1g <∞.
(2) ‖g‖1 <∞.
(3) By (1), we can define Ĥn

B as in Subsect. 3.11, En
B is well defined as in Subsect 3.12, and by Thm

3.29,
inf Hn

B = En
B . (3.217)

(4) By Thm 3.18 (3), Hw
B is well defined. We have

Ĥw
B := Ĥn

B + 1
2Trh. (3.218)

(5)
√
A

1
2

BSABSA
1
2

B is trace class, so that Ew
B is finite. We have

Ew
B = En

B +
1

2
Trh (3.219)

Ew
B = inf Ĥw

B . (3.220)

Proof. We have
h−

1
2 gg∗h−

1
2 = h−

1
2 gh

− 1
2hh

− 1
2 g∗h−

1
2 . (3.221)

But h−
1
2 gh

− 1
2 and h

− 1
2 g∗h−

1
2 are bounded and h is trace class. Therefore, (3.221) is trace class. Hence

(1) is true.

‖g‖1 = ‖h 1
2h−

1
2 gh

− 1
2h

1
2 ‖1 ≤ ‖h

1
2 ‖2‖h−

1
2 gh

− 1
2 ‖‖h

1
2 ‖2 ≤ a‖h‖1 (3.222)
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proves (2).
We know that h is trace class. Besides, ‖g‖1 < ∞ implies ‖g‖2 < ∞. Therefore, the assumptions of

Thm 3.18 (3) are satisfied. Therefore, Ĥw
B is well defined.

By (3.107), (3.108) √
A

1
2SASA

1
2 ≤ (1 + a)

1
2

(1− a)
1
2

A ≤ (1 + a)
3
2

(1− a)
1
2

A0. (3.223)

But A0 is trace class. Hence so is the left hand side of (3.223).
By repeating the arguments of Thm 2.6 we see that (3.219) is true. By Thm 3.18 (3) we have (3.218).

Combining (3.217), (3.219) and (3.218), we obtain (3.220). 2

3.14 Infimum of the renormalized Hamiltonian
Recall that in Subsections 2.12 and 2.13 we discussed the renormalized Hamiltonians Ĥren

B and its infimum
Eren
B in the context of finite dimension. These objects are of course especially interesting in infinite

dimensions.
Note that it may happen that Eren

B is well defined and Ĥren
B is not. In this subsection we discuss only

Eren
B , without asking whether Ĥren

B exists.
We will use the framework of Subsection 2.13 with λ = 1. That means, we assume that h0 > 0,

h = h0 + h1 and h2
1 = gg, h1g = gh1. Recall that we have

B0 =

[
h0 0

0 −h0

]
, (3.224)

A0 = B0S =

[
h0 0

0 h0

]
, (3.225)

B2
0 = A2

0 =

[
h2

0 0

0 h
2

0

]
, (3.226)

V = B2 −B2
0 =

[
h0h1 + h1h0 −h0g + gh0

gh0 − h0g h0h1 + h0h1

]
. (3.227)

We use (2.109) to define Eren
B :

Eren := −1

4

∫
Tr

1

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)2

τ2 dτ

2π
, (3.228)

provided that the above integral is well defined. Below we give a simple criterion for the well definedness
of Eren.

Theorem 3.32 Suppose that ∥∥B−1
0 V B−1

0

∥∥ =: a1 < 1, (3.229)

and

L3 :=
1

4 · 6

∫
Tr
(
V

1

B2
0 + τ2

)3 dτ

2π
, (3.230)

L4 := − 1

4 · 8

∫
Tr
(
V

1

B2
0 + τ2

)4 dτ

2π
(3.231)

are finite. (In the case of L4 the meaning of the assumption is clear, since the integrand is always positive.
This does not need to be the case of L3—here we assume that the integrand is integrable). Then Eren is
well defined.
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Proof. Assumption (3.229) is equivalent to

a1B
2
0 ≤ V ≤ a1B

2
0 . (3.232)

Therefore,
B2 = B2

0 + V ≥ (1− a1)B2
0 . (3.233)

Hence, with c := 1
1−a1 > 0,

1

(B2 + τ2)
≤ c 1

(B2
0 + τ2)

. (3.234)

Besides,

Eren :=
1

4 · 6

∫
Tr
(
V

1

B2
0 + τ2

)3 dτ

2π
(3.235)

−1

4

∫
Tr
( 1

B2
0 + τ2

V
)2 1

B2 + τ2

(
V

1

B2
0 + τ2

)2

τ2 dτ

2π
. (3.236)

The first term is precisely L3. The second term is controlled by L4, because

0 ≤ 1

4

∫
Tr
( 1

B2
0 + τ2

V
)2 1

B2 + τ2

(
V

1

B2
0 + τ2

)2

τ2 dτ

2π
(3.237)

≤ c

4

∫
Tr
( 1

B2
0 + τ2

V
)2 1

B2
0 + τ2

(
V

1

B2
0 + τ2

)2

τ2 dτ

2π
(3.238)

=
c

4 · 8

∫
Tr
(
V

1

B2
0 + τ2

)4 dτ

2π
= −cL4. (3.239)

To pass from (3.238) to (3.239) we use identity (2.93), which involves integration by parts. 2

A Appendix

A.1 Complex conjugate space
This appendix is a side remark about complex conjugate spaces. This well known but abstract and
somewhat confusing concept appears naturally in the context of Bogoliubov Hamiltonians. We follow
[DG].

Let W be a Hilbert space. By definition, a space complex conjugate to W is another Hilbert space W
equipped with a fixed anti-unitary map χ :W →W.

In the literature, various authors use several concrete realizations of χ and W.
(1) We can assume that W =W and χ is antiunitary on W satisfying χ2 = 1l. Suppose that we choose

a basis fixed by χ (which is always possible). Then χ amounts to conjugating the components of
vectors in this basis.

(2) We can also identify W with the space of continuous linear functionals on W. We then define χ to
be the Riesz isomorphism, that is,

〈χz|w〉 := (z|w), (A.1)

(where (·|·) denotes the scalar product and 〈·|·〉 the action of a linear functional). If we choose
an orthonormal basis in W and the dual basis in W, then again χ amounts to conjugating the
components of vectors in this basis.
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(3) Finally, one can set W = W as the real vector space, changing only the complex structure to the
opposite one and the scalar product to the complex conjugate of the original scalar product. χ is
defined to be the identity operator. If we fix any basis, then similarly as before, χ is conjugating the
components of vectors.

The interpretation (1) is the most naive one. It is often natural–especially ifW is L2 of some measure
space. It is used eg. in Sect. 1 or in [HS]. The interpretation (2) is used in [NNS]. The interpretation (3)
is probably the most “orthodox” option–it does not invoke anything besides the vector space structure.
In particular, it does not involve the Hilbert space structure of W.

Note that for all three interpretations, in typical bases, the action of χ is equivalent to conjugating
components of vectors. Similarly χpχ−1 and χqχ amounts to conjugating matrix elements of p and q.

A.2 ∗-automorphisms of the algebra of bounded operators
Let H be a Hilbert space. A bijective linear map α on B(H) is a ∗-automorphism if

α(BC) = α(B)α(C), α(C∗) = α(C)∗, B, C ∈ B(H). (A.2)

Proposition A.1 (Example 3.2.14, [BR1]). The following statements are equivalent:
(1) α is a ∗-automorphism of B(H).

(2) There exists a unitary U ∈ B(H) such that

α(C) = UCU∗, C ∈ B(H), (A.3)

If (1),(2) hold, then U is determined uniquely up to a phase factor.

Let R 3 t 7→ αt be a 1-parameter group of ∗-automorphisms of B(H). We say that it is a C∗0 -group if
t 7→ αt(C) for any C ∈ B(H) is weakly continuous.

Proposition A.2 (Example 3.2.35, [BR1]). The following statements are equivalent:
(1) t 7→ αt is a C∗0 -group of ∗-automorphisms of B(H).

(2) There exists self-adjoint H on H such that

αt(C) = eitHCe−itH , C ∈ B(H). (A.4)

If (1), (2) hold, then H is defined uniquely up to an additive real constant.

A.3 Useful identities and inequalities∫
dτ

2π

1

(C2 + τ2)
=

1√
C2

. (A.5)∫
τ2dτ

2π

1

(C2 + τ2)2
=

1

4
√
C2

. (A.6)

|TrXY | ≤ ‖Y ‖Tr
√
XX∗. (A.7)

|TrXYXZ| ≤
√

TrXY Y ∗X∗
√
X∗Z∗ZX ≤ ‖Y ‖‖Z‖TrXX∗. (A.8)

‖a11‖1 + ‖a22‖1 ≤
∥∥∥∥[ a11 a12

a21 a22

]∥∥∥∥
1

. (A.9)
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A.4 Useful lemmas
Lemma A.3 Let C be a bounded operator on W with a dense range. Let D be a dense subspace of W.
Then CD is dense.

Proof. Let w ∈ W. We can find v1 ∈ W such that ‖w − Cv1‖ < ε
2 . We can find v2 ∈ D such that

‖v1 − v2‖ < ε
2‖C‖ . Now

‖w − Cv2‖ < ‖w − w1‖+ ‖Cv1 − Cv2‖ < ε. (A.10)

2

Lemma A.4 Suppose that h1, h2 are self-adjoint operators on W such that for any w,w′ ∈ W

lim
t→0

1

t

((
w|eith1w′

)
−
(
w|eith2w′

))
= 0. (A.11)

Then h1 = h2.

Proof. Let w ∈ Domh1 and w′ ∈ Domh2. Then (A.11) implies

(h1w|w′) = (w|h2w
′). (A.12)

This means that h1 ⊂ h∗2 = h2 and h2 ⊂ h1 = h∗1. Hence h1 = h2. 2
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