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We discuss self-adjoint operators given formally by expressions quadratic in bosonic
creation and annihilation operators. We give conditions when they can be defined
as self-adjoint operators, possibly after an infinite renormalization. We also dis-
cuss explicit formulas for their infimum. Our main motivation comes from local
quantum field theory, which furnishes interesting examples of bosonic quadratic
Hamiltonians that require an infinite renormalization. Published by AIP Publishing.
https://doi.org/10.1063/1.5017931

I. INTRODUCTION

Quantum bosonic quadratic Hamiltonians or bosonic Bogoliubov Hamiltonians are formally
given by expressions of the form

Ĥ =
∑

hijâ
∗
i âj +

1
2

∑
gijâ

∗
i â∗j +

1
2

∑
gijâiâj + c, (1.1)

where h = [hij] is a Hermitian matrix, g = [gij] is a symmetric matrix, c is an arbitrary real number
(possibly, infinite), and â∗i , âj are the usual bosonic creation/annihilation operators. They are often used
in quantum field theory (QFT) to describe free theories interacting with a given external classical
field.8,11 They are responsible for the Casimir effect.11 Bogoliubov applied them to the theory of
interacting Bose gas,3 which justifies the name Bogoliubov Hamiltonians.

Bogoliubov Hamiltonians that are bounded from below are especially useful. Their infimum
E := inf Ĥ is often interesting physically.

Bogoliubov Hamiltonians have a surprisingly rich mathematical theory. In infinite dimensions,
this theory sometimes involves interesting pathologies. For instance, Ĥ is often ill defined, but one
can define its “infimum” E. In some situations, one needs to perform an infinite renormalization
in order to define Ĥ or at least to compute E. This is typical for Bogoliubov Hamiltonians that
are motivated by relativistic quantum field theory.8 Another example of interesting mathematics
related to Bogoliubov Hamiltonians can be found in a recent paper,15 which contains a beautiful
proof of diagonalizability of normally ordered Bogoliubov Hamiltonians under essentially optimal
conditions.

Our paper is devoted to a systematic theory of bosonic Bogoliubov Hamiltonians in an abstract
setting. We do not restrict ourselves to the normally ordered case [with c = 0 in (1.1)]. We start from
a more general definition saying that a Bogoliubov Hamiltonian is the self-adjoint generator of a
one-parameter unitary group on a bosonic Fock space that implements a symplectic group. There are
interesting and physically important examples where the normally ordered Bogoliubov Hamiltonian
is ill defined, whereas renormalized ones exist.8

The family of Bogoliubov Hamiltonians given by fixing h and g and varying c ∈R in (1.1) can
be understood as various quantizations of a single classical quadratic Hamiltonian

H =
∑

hija
∗
i aj +

1
2

∑
gija

∗
i a∗j +

1
2

∑
gijaiaj, (1.2)
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where ai, a∗j are classical (commuting) variables. c, which appears in (1.1), can be understood as
the ambiguity of quantization due to noncommutativity of âi and âj. The most popular choice is
probably c = 0, corresponding to the normally (Wick) ordered Hamiltonian. It will be denoted by
Ĥn. The choice c= 1

2

∑
i hii, which we call the Weyl Bogoliubov Hamiltonian and denote Ĥw, has its

advantages as well. In some situations, however, one needs to consider other quantizations, where
the constant c may turn out to be infinite and can be viewed as a renormalization counterterm. One
particular possibility, which we call the second order renormalized quantization and denote Ĥ2ren,
plays an important role in quantum field theory in 1 + 3 dimensions. In the language of Feynman
diagrams, Ĥ2ren corresponds to discarding loops of order 2 or less.

We will use the following notation for the infimum of the three main Bogoliubov Hamiltonians
that we discuss:

EwB inf Ĥw, EnB inf Ĥn, E2renB inf Ĥ2ren. (1.3)

In physics, the infimum of the Hamiltonian appears under various names, e.g., vacuum energy, Casimir
energy, vacuum polarization, and effective potential. Physicists often compute the vacuum energy
without worrying whether the corresponding quantum Hamiltonian is well defined as a self-adjoint
operator. Following this philosophy, we may consider En or E2ren under conditions that are more
general than the conditions for the existence of the corresponding Hamiltonians.

A. Comparison with literature

It is not always very easy to read the literature on Bogoliubov Hamiltonians and to com-
pare statements in various papers. Their authors often use different conventions, terminology, and
notations.

Most of these issues disappear when one fixes a basis in the 1-particle space, identifying it with
Cm. Then a Bogoliubov Hamiltonian is determined by two matrices, h = [hij] and g = [gij], and
possibly a number c; see (1.1).

When we want to use a basis independent language, replacing Cm by an abstract Hilbert
space W, it is clear how to interpret h—it is a self-adjoint operator on W. It is less obvious how
to interpret g. One possibility is to view g as a symmetric tensor, that is, an element of ⊗2

sW.
Often, however, it is preferable to view g as an operator from Cm to Cm. These two Cm should
be however viewed as two distinct spaces—one is the complex conjugate of the other; see, e.g.,
Ref. 8. The notion of a complex conjugate space is somewhat subtle and has a few equivalent,
but superficially distinct, interpretations; see Subsection 1 of the Appendix. Various authors prefer
distinct interpretations; see, e.g., the footnote Ref. 6 in Appendix A of Ref. 12. (Strictly speak-
ing, this footnote refers to the fermionic case; however, the fermionic and bosonic cases are quite
analogous.)

When we consider an infinite dimensional space, there are additional problems: various operators
are often unbounded, are not trace class, or simply do not exist.5

Because of these two kinds of problems, our paper is divided into two parts. In the first part, we
assume that the 1-particle space is finite dimensional and has a fixed orthonormal basis. All operators
are represented by matrices. We do not worry about conceptual subtleties related to antilinear maps
and the complex conjugate space. Infinite renormalization is not needed and all formulas are valid
with no technical restrictions.

In the second part, the 1-particle space is an abstract space W of any dimension. We follow
mostly the conceptual framework of Ref. 7. We distinguish between W and its complex conjugate
W. We need to give technical conditions guaranteeing that various concepts and formulas survive
into infinite dimensions.

Throughout this paper it is assumed that the reader is familiar with mathematical formal-
ism of 2nd quantization. Properties of the metaplectic representation in the Fock space play an
important role, such as the Shale theorem and formulas for the Bogoliubov implementers (2.17)
and (2.18). These formulas were known to Friedrichs10 and analysed later by Ruijsenaars16,17 and
Berezin.2 We treat Ref. 7 as the basic reference on this subject, where, in particular, various ques-
tions related to the unboundedness of bosonic creation and annihilation operators are discussed in
detail.
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A major part of Sec. II is well known. Theorem 2.3 about diagonalizability of a quadratic
Hamiltonian by a positive symplectic transformation is implicitly contained in Ref. 7 [see Theorem
11.20 (3) together with Theorem 18.5 (3)]. We come back to this issue in Sec. III, where an arbitrary
dimension introduces additional technical issues. Note that a similar fact proven in Ref. 15 does not
provide a construction of a distinguished diagonalizing operator.

The basic formula for the infimum of a quadratic Hamiltonian comes from Ref. 6. However,
some of the formulas for the infimum of the normally ordered Hamiltonians, such as (2.73)–(2.75),
seem to be new. In finite dimensions, they are not so interesting; however, they become quite useful
in infinite dimensions.

It seems that the construction of the renormalized Hamiltonians described in Subsections II L
and II M has never been presented in the literature in the abstract setting. Their importance is evident
in concrete situations of quantum field theory described in Ref. 8. We give a brief discussion of the
examples from QFT at the end of the Introduction.

Quadratic Hamiltonians in infinite dimensions is a rather technical topic of operator the-
ory. Therefore, we prefer to give a self-contained treatment of this subject. Many results and
definitions that we present are new; however, at some places we recall proofs contained in the
literature.

Note that it would be awkward and restrictive to define Bogoliubov Hamiltonians in the infi-
nite dimensional context by an expression of form (1.1). Instead, we define them as self-adjoint
generators of one parameter unitary groups implementing Bogoliubov transformations. (In the
bosonic context, the term “Bogoliubov transformations” is usually meant to denote “symplec-
tic transformations.”) The abstract approach makes it sometimes difficult to define some objects
since we cannot refer to a formula of form (1.1). Fortunately, it is obvious how to define the
Weyl Bogoliubov Hamiltonian—as the generator of a group inside the metaplectic group. It
is less obvious how to define normally ordered Hamiltonians. The definition that we propose
in Subsection III G seems to be new—in particular, it is more general than the definition of
Ref. 6.

Subsections III G and III H give criteria for the existence of various quantizations. In these
subsections, there is no assumption on the positivity of h. On the other hand, most results require the
boundedness of g. Some results in this part of the paper come from Refs. 2 and 6. However, Theorem
3.18 (1), which gives a convenient criterion for the implementability of classical dynamics, seems to
be new. It is useful in the context of examples from QFT discussed below.

In Subsections III I–III N, we adopt a different set of assumptions. In particular, we assume that h
is positive and g is form bounded with respect to h with bound less than 1. This condition guarantees
the positivity and diagonalizability of classical Hamiltonians.

Diagonalization of Bogoliubov Hamiltonians on the quantum level was considered already by
Berezin2 and then by Bach and Bru.1 In a recent paper,15 Napiórkowski, Nam, and Solovej gave a
new beautiful proof of diagonalizability. In our paper, we repeat some of the arguments of Ref. 15,
describing their result in Theorem 3.21, giving essentially optimal conditions for diagonalization.
In distinction to Ref. 15, we show that there exists a distinguished positive symplectic operator
diagonalizing a given Bogoliubov Hamiltonian.

In Theorem 3.23, we also describe a construction of normally ordered Bogoliubov Hamiltonians
based on the form techniques (involving the so-called Kato, Lions, Lax, Milgram and Nelson (KLMN)
theorem) presented in Ref. 15. This is an important improvement (even if it sounds technical) as
compared to the results of Ref. 6, which were restricted to operator-type perturbations.

These theorems are complemented with new results. In Theorem 3.24, we show that the dynamics
generated by the normally ordered Hamiltonian implements the corresponding classical dynamics.
On a formal level, this theorem seems obvious; nevertheless, due to the unboundedness of various
operators, it needs a careful proof. Another new result, easy in finite dimensions and rather technical
in the general case, is the formula for the ground state energy described in Theorem 3.29. We also
discuss a criterion for the existence of the Weyl Bogoliubov Hamiltonians in Theorem 3.31 and for
the existence of the renormalized ground state energy in Theorem 3.32.

Let us mention some topics that are left out of our paper. We do not discuss time-dependent
Bogoliubov Hamiltonians and the implementability and the phase of the corresponding scattering
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operator. This is interesting, especially in the context of charged relativistic fields in an external
electromagnetic potential. An infinite renormalization is needed in order to define the vacuum
energy. This topic on a partly heuristic level is discussed in Ref. 8. Its fermionic counterpart (a
Dirac particle in an external electromagnetic potential) is better known in the literature; see, e.g.,
Ref. 9.

B. Applications to QFT

Let us first discuss the question of naturalness of the definition of various kinds of Bogoliubov
Hamiltonians.

The Weyl Hamiltonian Ĥw is the most natural. In fact, it is invariant with respect to symplectic
transformations; see (2.31). Unfortunately, it is often ill defined.

The normally ordered Hamiltonian Ĥn is naturally defined given a Fock representation. In partic-
ular, this is the case when we have a distinguished positive classical quadratic Hamiltonian which is
treated as the “free” one. Then there exists a unique Fock representation where the free Hamiltonian
can be quantized without any double creation/annihilation operators. It is usually quantized in the
normally ordered form. We will denote it by Ĥn

0 .
Suppose that we are interested in the “full” Hamiltonian, which is quadratic but more complicated

than the free one and involves an interaction with external fields. We can then ask whether the
corresponding classical Hamiltonian can be quantized. The most straightforward procedure seems to
involve the normally ordered full quantum Hamiltonian Ĥn. The corresponding ground state energy
then formally equals the difference of the “free Weyl ground state energy” and the “full Weyl ground
state energy” (in typical situations both infinite).

It sometimes happens that Ĥn is ill defined as well. Then we can try to subtract from Ĥn another
counterterm. In typical examples from QFT in 1 + 3 dimensions, it is enough to subtract the sec-
ond order term in the perturbative expansion, obtaining finite E2ren. Sometimes, but not always, this
makes Ĥ2ren well defined as well. This subtraction procedure in an abstract setting is explained in
Subsections II L and II M. Below we briefly describe two examples from QFT where such a
renormalization works. These examples are discussed in more detail in Ref. 8.

Consider the neutral massive scalar quantum field φ̂(~x). Its conjugate field is denoted π̂(~x) with
the usual equal time commutation relations

[φ̂(~x), φ̂(~y)} = [π̂(~x), π̂(~y)]= 0,

[φ̂(~x), π̂(~y)]= iδ(~x −~y). (1.4)

The free Hamiltonian is defined in the standard way,

Ĥn
0 B

∫
:
(1
2
π̂2(~x) +

1
2
(~∂φ̂(~x)

)2 +
1
2

m2φ̂2(x)
)
:d~x, (1.5)

where the double dots denote the normal ordering.
Suppose that the mass squared is perturbed by a Schwartz function κ(~x). One can check that the

normally ordered full Hamiltonian does not exist. However, the 2nd order renormalized Hamiltonian
is well defined. Formally, it can be written as

Ĥ2renB

∫
:
(1
2
π̂2(~x) +

1
2
(~∂φ̂(~x)

)2 +
1
2

(m2 + κ(~x))φ̂2(~x)
)
:d~x − E2, (1.6)

where the infinite counterterm E2 is the contribution of a loop diagram with 2 vertices; see
Subsection II M.

(1.6) is well defined, but physically somewhat artificial. To obtain a physically more satisfactory
Hamiltonian, one needs to perform an additional finite subtraction, adding Eren

2 to (1.6), the renor-
malized value of E2. The renormalization can be performed with the help of any method described
in textbooks of QFT, e.g., by the Pauli-Villars method, by dispersion relations, or by dimensional
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regularization. All these methods are equivalent and one obtains a renormalized Hamiltonian with
only local counterterms, which formally can be written as

Ĥ renB

∫
:
(1
2
π̂2(~x) +

1
2
(~∂φ̂(~x)

)2 +
1
2

(m2 + κ(~x))φ̂2(~x)
)
:d~x − C

∫
|κ(~x)|2d~x, (1.7)

where C is infinite. This example is discussed in detail in Chap. III, Subsection C14 of Ref. 8.
The next example is more singular. Consider the charged massive scalar quantum field ψ̂(~x),

with ψ̂∗(~x) denoting its Hermitian adjoint. The conjugate field will be denoted η̂(~x) so that we have
the commutation relations

[
ψ̂(~x), ψ̂(~y)

]
= [ψ̂(~x), η̂(~y)]= [η̂(~x), η̂(~y)]= 0, (1.8)

[
ψ̂(~x), η̂∗(~y)

]
= [ψ̂∗(~x), η̂(~y)]= iδ(~x −~y). (1.9)

The free Hamiltonian is of course

Ĥn
0 =

∫
:
(
η̂∗(~x)η̂(~x) + ~∂ψ̂∗(~x)~∂ψ̂(~x) + m2ψ̂∗(~x)ψ̂(~x)

)
:d~x.

Suppose now that we consider an external stationary electromagnetic potential, described by,
say, Schwartz functions (A0, ~A). A candidate for the full Hamiltonian is

Ĥ2ren =

∫
d~x

(
η̂∗(~x)η̂(~x) + ieA0(~x)

(
ψ̂∗(~x)η̂(~x) − η̂∗(~x)ψ̂(~x)

)
+ (∂i − ieAi(~x))ψ̂∗(~x)(∂i + ieAi(~x))ψ̂(~x) + m2ψ̂∗(~x)ψ̂(~x)

)
−E0 − E2, (1.10)

where E0 and E2 are infinite counterterms that come from the expansion described in (2.101)
(E1 = 0 by the Furry theorem). Again, physically one prefers to add Eren

2 to (1.10), the renormalized
value of E2 so that all counterterms are local. One obtains the renormalized Hamiltonian formally
written as

Ĥ ren =

∫
d~x

(
η̂∗(~x)η̂(~x) + ieA0(~x)

(
ψ̂∗(~x)η̂(~x) − η̂∗(~x)ψ̂(~x)

)
+ (∂i − ieAi(~x))ψ̂∗(~x)(∂i + ieAi(~x))ψ̂(~x) + m2ψ̂∗(~x)ψ̂(~x)

)
−E0 − C

∫ (
∂µAν(~x) − ∂νAµ(~x)

) (
∂µAν(~x) − ∂νAµ(~x)

)
d~x, (1.11)

where C is infinite. This example is worked out in detail in Chap. VI, Subsection B17 of Ref. 8.
Unfortunately, the classical dynamics is implementable only if the vector potential ~A vanishes

everywhere. Therefore, both Ĥ2ren and Ĥ ren are well defined only in this case. However, the infimum
of (1.11) is a well-defined gauge-invariant number also for nonzero ~A.

Note that both Hamiltonians (1.7) and (1.11) can be derived from local Lagrangians. Therefore,
even if the models based on these Hamiltonians do not satisfy Haag-Kastler axioms in the strict sense
(because of the absence of translation invariance), they belong to local quantum field theory: they
lead to nets satisfying the Einstein causality, and they have bounded from below Hamiltonians. At the
same time, all of them require an infinite renormalization, typical for computations in perturbative
quantum field theory.

Examples (1.7) and (1.11) are especially interesting in the context of more complicated interacting
quantum field theories, where, typically, κ, respectively, A, are promoted to the role of quantum fields.
Then Eren

2 can be interpreted as the value of certain renormalized diagrams involving the field φ̂,
respectively, ψ̂, in a loop and κ̂, respectively, Â, in an external line. In particular, Eren

2 of the second
example is usually called the vacuum polarization (in scalar QED).
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II. FINITE DIMENSIONS: BASIS DEPENDENT FORMALISM

Let us first describe the basic theory of bosonic quadratic Hamiltonians in finite dimensions,
assuming that the one-particle space is Cm. Seemingly, our formulas will depend on the choice of the
canonical basis in Cm. In reality, after an appropriate interpretation, they are basis independent. This
interpretation will be given in Sec. III, when we discuss an arbitrary dimension.

Operators on Cm will be identified with matrices. If h = [hij] is a matrix, then h, h∗, and h# will
denote its complex conjugate, Hermitian conjugate, and transpose, respectively.

A. Creation/annihilation operators

We consider the bosonic Fock space Γs(Cm). âi, â∗j are the standard annihilation and creation
operators on Γs(Cm). â∗i is the Hermitian conjugate of âi,

[âi, âj]= [âi, âj]= 0,

[âi, â∗j ]= δij.

(We denote creation/annihilation operators with hats because we want to distinguish them from their
classical analogs.)

We use the more or less standard notation for operators on Fock spaces. In particular, we use the
standard notations Γ(·) and dΓ(·), which will be recalled in Subsection III B. If w = [wi] ∈Cm, then
the corresponding creation/annihilation operators are

â∗(w)B
∑

i

wiâ
∗
i , â(w)B

∑
i

w iâi. (2.1)

If g = [gij] is a symmetric m×m matrix, then the corresponding double creation/annihilation operators
are

â∗(g)B
∑

ij

gijâ
∗
i â∗j , â(g)B

∑
ij

gijâjâi.

B. Classical phase space

To specify a linear combination of operators âi and â∗j , we need to choose a vector (w, w ′)
∈Cm ⊕ Cm,

φ̂(w, w ′)B
∑

i

â∗i wi +
∑

i

âiw
′
i . (2.2)

(2.2) is self-adjoint if and only if w = w ′. Therefore, it is natural to introduce the doubled space
Cm ⊕ Cm equipped with the complex conjugation

J


w

w ′


=



w ′

w


. (2.3)

Vectors left invariant by J have the form



w

w


, w ∈Cm. (2.4)

They form a 2m-dimensional real subspace of Cm ⊕ Cm, which can be identified with R2m. [In what
follows, when we speak of R2m we usually mean the space of vectors of the form (2.4).]

Operators on Cm ⊕ Cm that commute with J, or equivalently preserve R2m, have the form

R=


p q

q p


(2.5)

and will be called J-real. Note that if we know the restriction of R to (2.4), then we can uniquely
extend it to a (complex linear) operator on Cm ⊕ Cm.
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The operator

S =

[
1 0
0 −1

]
(2.6)

determines the commutation relations
[
φ̂(w1, w ′1)∗, φ̂(w2, w ′2)

]
= (w1 |w2) − (w ′1 |w

′
2)=

(
(w1, w ′1)|S(w2, w ′2)

)
. (2.7)

Instead of quantum operators â∗i and âj, one can also consider classical (commuting) variables
ai, a∗j , i = 1, . . . , m, such that a∗i is the complex conjugate of ai and the following Poisson bracket
relations hold:

{ai, aj} = {ai, aj} = 0,

{ai, a∗j } =−iδij. (2.8)

Setting

φ(w, w ′)B
∑

i

a∗i wi +
∑

i

aiw
′
i , (2.9)

we can rewrite (2.8) as
{
φ(w1, w ′1)∗, φ(w2, w ′2)

}
=−i(w1 |w2) + i(w ′1 |w

′
2)=−i

(
(w1, w ′1)|S(w2, w ′2)

)
. (2.10)

In particular, φ(w, w) are real, and (2.10) can be rewritten as{
φ(w1, w1)∗, φ(w2, w2)

}
= 2Im(w1 |w2)= Im

(
(w1, w1)|S(w2, w2)

)
. (2.11)

Thus S determines a symplectic structure on R2m (and sometimes S itself is called, incorrectly, a
symplectic form).

C. Symplectic transformations

In this subsection, we recall some basic facts concerning the symplectic and metaplectic groups.
We follow mostly Ref. 7.

We say that an operator R on Cm ⊕ Cm is symplectic if it is J-real and preserves S,

R∗SR= S. (2.12)

We denote by Sp(R2m) the group of all symplectic transformations.
Note that if R is symplectic, then so is R∗. In fact, iS is symplectic, and

R∗ = iSR−1(iS)−1. (2.13)

The operator

R=


p q

q p


(2.14)

satisfies (2.12) if and only if

p∗p − q#q= 1, p∗q − q#p= 0,

pp∗ − qq∗ = 1, pq# − qp# = 0.

Note that

pp∗ ≥ 1, p∗p ≥ 1.

Hence p�1 is well defined, and we can set

d1 B q#(p#)−1, (2.15)

d2 B qp−1. (2.16)

We have d#
1 = d1 and d2 = d#

2 .



121101-8 Jan Dereziński J. Math. Phys. 58, 121101 (2017)

D. Metaplectic transformations

Let U be a unitary operator on Γs(Cm). Let R be a symplectic transformation written as (2.14).
We say that U implements R if

Uâ∗i U∗ = â∗j pji + âjqji,

UâiU
∗ = â∗j qji + âjpji.

U will be called a (Bogoliubov) implementer of R. Every symplectic transformation has an imple-
menter, unique up to a phase factor. One can distinguish some canonical choices: the natural
implementer Unat

R and a pair of metaplectic implementers ±Umet
R ,

Unat
R B | det pp∗ |−

1
4 e−

1
2 â∗(d2)

Γ
(
(p∗)−1)e

1
2 â(d1), (2.17)

±Umet
R B ±(det p∗)−

1
2 e−

1
2 â∗(d2)

Γ
(
(p∗)−1)e

1
2 â(d1). (2.18)

See, e.g., Theorem 11.33 and Definition 11.36 of Ref. 7.
It is easy to see that the set of Bogoliubov implementers is a group. It is sometimes called the

c-metaplectic group Mpc(R2m).
It is a little less obvious, but also true, that the set of metaplectic Bogoliubov implementers is a

subgroup of Mpc(R2m). It is called the metaplectic group Mp(R2m).
We have a homomorphism Mpc(R2m) 3U 7→R ∈ Sp(R2m), where U implements R.
Various homomorphisms related to the metaplectic group can be described by the following

diagram:

1 1 1
↓ ↓ ↓

1→ Z2 → U(1) → U(1)→ 1
↓ ↓ ↓

1→ Mp(R2m)→ Mpc(R2m)→ U(1)→ 1
↓ ↓ ↓

1→ Sp(R2m) → Sp(R2m) → 1
↓ ↓

1 1

. (2.19)

E. Positive symplectic transformations

Positive symplectic transformations are especially important. They satisfy

p= p∗, p> 0, q= q#. (2.20)

For positive transformations, d1 equals d2, and it will be simply denoted by d. We have

dB q(p#)−1.

The natural implementer coincides in this case with one of the metaplectic implementers

Unat
R B (det p)−

1
2 e−

1
2 a∗(d)

Γ
(
p−1)e

1
2 a(d).

Positive symplectic transformations have special properties. In particular, one can diagonalize
them in an explicit way. We will need this later on.

Proposition 2.1. Assume that R is positive symplectic and Ker(p � 1) = {0}.Then q is invertible
so that we can define u := q|q|�1 with |q|B

√
q∗q. Besides,

MB
1
√

2



1 −u

u∗ 1


(2.21)

is unitary and diagonalizes R,
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R=M



p +
√

p2 − 1 0

0 p −
√

p2
− 1


M∗. (2.22)

Proof. We have the polar decomposition q = u|q|. u is a unitary operator and we have |q| = u|q|u∗

Now (2.22) follows using upu∗ = p, |q| =
√

p2
− 1, and

√
1 + |q|2 = p. �

F. Classical quadratic Hamiltonians

It is easy to analyze generators of 1-parameter symplectic groups. In fact, eitB ∈ Sp(R2m) for any
t ∈R if and only if BS is J-real and self-adjoint. All such operators can be written as

B=


h −g

g −h


, (2.23)

where h and g are m × m matrices satisfying h = h∗ and g = g# . Note that iB is J-real, and

SB=B∗S. (2.24)

With every such operator B, we associate another operator AB by

ABBBS =


h g

g h


. (2.25)

As we noted above, AB is self-adjoint and J-real. The corresponding classical quadratic Hamiltonian
is the expression

HB =
∑

hija
∗
i aj +

1
2

∑
gija

∗
i a∗j +

1
2

∑
gijaiaj, (2.26)

which can be viewed as a quadratic function on the classical phase space. Moreover,

{HB, φ(w, w ′)} =−iφ(w1, w ′1),


w1

w ′1


=B

[
w
w ′

]
. (2.27)

Clearly, for any symplectic R,

ARBR−1 =RABR∗. (2.28)

In what follows, we will often abuse the terminology: AB will also be called a classical Hamil-
tonian just as HB. B will be called a symplectic generator. Besides, we will often drop the subscript
B from HB and AB.

G. Quantum quadratic Hamiltonians

Let B be a symplectic generator of form (2.23).
By a quantization of HB (2.26), we will mean an operator on Γs(Cm) of the form

Ĥc
BB

∑
hijâ

∗
i âj +

1
2

∑
gijâ

∗
i â∗j +

1
2

∑
gijâiâj + c, (2.29)

where c is an arbitrary real constant. By an abuse of terminology, we will usually say that (2.29) is a
quantization of B (2.25). We will often drop the subscript B from Ĥc

B, and c will be replaced by other
superscripts corresponding to some special choices.



121101-10 Jan Dereziński J. Math. Phys. 58, 121101 (2017)

Two quantizations of B are especially useful: the Weyl (or symmetric) quantization Ĥw
B and the

normally ordered (or Wick) quantization Ĥn
B,

Ĥw
B B

1
2

∑
hijâ

∗
i âj +

1
2

∑
hijâjâ

∗
i +

1
2

∑
gijâ

∗
i â∗j +

1
2

∑
gijâiâj,

Ĥn
BB

∑
hijâ

∗
i âj +

1
2

∑
gijâ

∗
i â∗j +

1
2

∑
gijâiâj.

The following is the relation between these two quantizations:

Ĥw
B = Ĥn

B +
1
2

Trh. (2.30)

Note a special relationship of the Weyl quantization to the metaplectic group (defined in Sub-
section II C): for any B, eitĤw

B belongs to Mp(R2m); see, e.g., Theorem 11.34 of Ref. 7. Besides, if R
is symplectic and UR is its implementer, then

URĤw
B U∗R = Ĥw

RBR−1 . (2.31)

H. Diagonalization of quadratic Hamiltonians

In this subsection, we show that if AB > 0, then AB can be diagonalized. By this, we mean that
we can find a symplectic transformation R that kills off-diagonal terms of AB,

AB =R


hdg 0

0 hdg


R∗, (2.32)

for some hdg. Of course, hdg has to be positive.
Clearly, this is equivalent to diagonalizing B, that is, to killing its off-diagonal terms,

B=R


hdg 0

0 −hdg


R−1. (2.33)

On the quantum level, this is equivalent to finding a unitary operator U that removes dou-
ble annihilators and double creators. The free constant then equals the infimum of the quantum
Hamiltonian,

U∗ĤwU = dΓ(hdg) + Ew,

U∗ĤnU = dΓ(hdg) + En.

As a preparation for a construction of a diagonalizing operator, let us prove the following

proposition. In this proposition, we will use the function sgntB



1, t > 0,
0, t = 0,
−1, t < 0.

Proposition 2.2. Suppose that AB > 0.

(1) The operator B has only real nonzero eigenvalues. Therefore, sgn can be interpreted as a
holomorphic function on a neighborhood of spB, and we can define sgn(B) by the standard
holomorphic functional calculus.

(2) A symplectic transformation R diagonalizes B if and only if

sgn(B)=RSR−1. (2.34)

Proof. It is useful to endow the space Cm ⊕ Cm with the scalar product given by the positive
operator SAS. More precisely, if v = (v1, v2), w = (w1, w2) ∈Cm ⊕ Cm, we set
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(v |w)en = (v |SASw)= (v1 |hw1) − (v1 |gw2) − (v2 |gw1) + (v2 |hw2). (2.35)

(2.35) is sometimes called the energy scalar product.
Note that we also have the original scalar product

(v |w)= (v1 |w1) + (v2 |w2),

which is used for a basic notation such as the Hermitian adjoints.
First note that B is self-adjoint in the energy scalar product and has a zero null space. Indeed

(v |Bw)en = (v |SASASw)

= (ASv |SASw)= (Bv |w)en,

(Bv |Bv)en = (v |SASASASv)> 0, v , 0.

This shows (1).
Now let R be symplectic. Set

BdgBR−1BR, AdgBBdgS =R−1AR∗−1.

Then, by functional calculus,

sgn(B)=Rsgn(Bdg)R−1. (2.36)

R diagonalizes A if and only if

Adg =



hdg 0

0 hdg


, Bdg =



hdg 0

0 −hdg


. (2.37)

A is strictly positive, hence are Adg and hdg. Therefore,

sgn(Bdg)= S. (2.38)

Together with (2.36), this implies (2.34).
Conversely, suppose that (2.34) holds. Together with (2.36), this implies (2.38). Hence Bdg is

diagonal. �

It is possible to find a distinguished positive symplectic transformation R diagonalizing B.

Theorem 2.3. Suppose that AB > 0.

(1) i sgn(B) is symplectic.
(2) R0 := sgn(B)S is symplectic and has positive eigenvalues.
(3) Using holomorphic calculus and the principal square root (which for positive arguments has

positive values), define

RBR
1
2
0 . (2.39)

Then R is positive symplectic and diagonalizes B.
(4) The following is an alternative formula for R0, where the square root can be interpreted in

terms of functional calculus for self-adjoint operators:

R0 = SA
− 1

2
B

(
A

1
2
B SABSA

1
2
B

) 1
2 A
− 1

2
B S. (2.40)

Proof. B satisfies (2.24). Hence for any function f holomorphic on the spectrum of B,

Sf (B)S−1 = f (B∗). (2.41)
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In particular,

Ssgn(B)S−1 = sgn(B∗). (2.42)

But sgn is real; hence sgn(B∗) = sgn(B)∗. Besides, away from 0, we have sgn(t) = sgn(t)�1. Hence,
sgn(B) = sgn(B)�1. Therefore, (2.42) can be rewritten as

Ssgn(B)S−1 = sgn(B)∗−1. (2.43)

Hence, (
i sgn(B)

)∗Si sgn(B)= S. (2.44)

This means that i sgn(B) preserves S. Besides,

i sgnB=
(
− (iB)2) 1

2 (iB)−1 (2.45)

is also J-real. Thus we have shown that i sgn(B) is symplectic.
�iS is also symplectic. Therefore, so is R0 =

(
i sgn(B)

) (
−iS

)
.

Now,

R0 = (B2)
1
2 B−1S (2.46)

= (ASAS)
1
2 SA−1S (2.47)

= SA−
1
2
(
A

1
2 SASA

1
2
) 1

2 A−
1
2 S. (2.48)

Therefore, (2.40) is true and R0 is a positive self-adjoint operator for the original scalar product.
Hence it has positive eigenvalues.

R0 =R∗0 and R0 is symplectic. Hence,

SR0S−1 =R−1
0 .

Hence for any Borel function f,

Sf (R0)S−1 = f (R−1
0 ).

Choosing f to be the (positive) square root, we obtain

SR
1
2
0 S−1 =R

− 1
2

0 .

Thus RBR
1
2
0 is symplectic, positive, and self-adjoint for the original scalar product.

Now

sgn(B)=R2S =RSR−1.

Hence (2.34) is true. �

I. Positive Weyl Bogoliubov Hamiltonians

Theorem 2.4. (1) If AB ≥ 0, then the Weyl quantization of Bis positive. Hence all quantizations
of B are bounded from below.
(2) If B possesses a quantization that is bounded from below, then AB ≥ 0.

Proof. (1) Let A ≥ 0. Then there exists a symplectic transformation R and a decomposition
Cm =Cm1 ⊕ Cm−m1 such that RAR∗ decomposes into the direct sum of the following two terms:



hdg 0

0 hdg


on Cm1 ⊕ Cm1 ,

1
2



1 1
1 1


on Cm−m1 ⊕ Cm−m1 ,
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where hdg ≥ 0 and can be assumed to be diagonal. This is a well-known fact proven, e.g., in Refs.
13 and 7. It is a very special case of a more general and more complicated classification of quadratic
forms on a symplectic space called Williamson’s theorem, proven, e.g., in Refs. 19 and 14. If we
strengthen the assumption and demand that h > 0, it follows also from the diagonalizability of A
(Theorem 2.3). Thus, after an application of the transformation R, and a diagonalization of hdg, the
classical Hamiltonian becomes

HRBR−1 =

m1∑
i=1

hdg,iia
∗
i ai +

m∑
m1+1

1
2

(a∗i + ai)
2. (2.49)

After application of an implementer of R, the quantum Weyl Hamiltonian becomes

URĤw
B U∗R = Ĥw

RBR−1 =

m1∑
i=1

1
2

hdg,ii(â
∗
i âi + âiâ

∗
i ) +

m∑
m1+1

1
2

(â∗i + âi)
2. (2.50)

Thus Ĥw
B is positive.

(2) Consider the family of coherent vectors

ΩwB eâ∗(w)−â(w)
Ω, w ∈Cm. (2.51)

Note that

e−â∗(w)+â(w)â∗i eâ∗(w)−â(w) = â∗i + w i, e−â∗(w)+â(w)âie
â∗(w)−â(w) = âi + wi. (2.52)

Obviously, if one of the quantizations of B is bounded from below, then so are all of them. Let
Ĥn

B be bounded from below by �c. Then, using (2.52), we obtain

−c ≤ (Ωw |Ĥ
n
BΩw) (2.53)

=
(
Ω|e−â∗(w)+â(w)Ĥn

Beâ∗(w)−â(w)
Ω
)

(2.54)

=
∑

hijw iwj +
1
2

∑
gijw iw j +

1
2

∑
gijwiwj. (2.55)

Thus the classical Hamiltonian is a quadratic polynomial and is bounded from below. But if a quadratic
polynomial is bounded from below, then it is non-negative. �

Note that by the above theorem, every B satisfying AB ≥ 0, besides Ĥw
B and Ĥn

B, possesses another
natural quantization: the zero infimum quantization Ĥz

B fixed by the condition

inf Ĥz
B = 0. (2.56)

The infimum of the Weyl Bogoliubov Hamiltonians can be computed from several formulas
described in the following theorem borrowed from Refs. 6 and 7:

Theorem 2.5. Assume that AB ≥ 0. Then

Ew
B B inf Ĥw

B =
1
4

Tr
√

B2 (2.57)

=
1
4

Tr


h2 − gg −hg + gh

gh − hg h
2
− gg



1
2

(2.58)

=
1
4

Tr

√
A

1
2 SASA

1
2 (2.59)

=
1
4

Tr
∫

B2

(B2 + τ2)

dτ
π

. (2.60)



121101-14 Jan Dereziński J. Math. Phys. 58, 121101 (2017)

Proof. Let R be as in the proof of Theorem 2.4. Clearly,

inf(â∗i âi + âiâ
∗
i ) = 1, (2.61)

inf(â∗i + âi)
2 = 0. (2.62)

Hence, by (2.50),

inf Ĥw
B = inf URĤw

B U∗R = inf Ĥw
RBR−1 =

1
2

∑
hdg,ii =

1
2

Trhdg (2.63)

=
1
4

Tr
√

B2
dg =

1
4

TrR
√

B2R−1 =
1
4

Tr
√

B2. (2.64)

This gives (2.57), which implies (2.58) and (2.59).
(2.60) follows by an application of identity (A5). �

J. Infimum of normally ordered Hamiltonians

As usual, we have

B=


h −g

g −h


, B0 =



h 0

g 0


, (2.65)

AB =A=


h g

g h


, A0 =



h 0

0 h


. (2.66)

It is convenient to set

G B B − B0 =



0 −g

g 0


, (2.67)

Aσ = A0 + σGS =


h σg

σg h


, (2.68)

Bσ B B0 + σG=


h −σg

σg −h


, σ ∈R. (2.69)

The following are a few formulas for the infimum of the normally ordered Hamiltonian.

Theorem 2.6. Assume that AB ≥ 0. Then

En
BB inf Ĥn

B = Ew
B −

1
2

Trh (2.70)

=
1
4

Tr
(√

B2 −

√
B2

0

)
(2.71)

=
1
4

Tr
*..
,



h2 − gg −hg + gh

gh − hg h
2
− gg



1
2

−



h 0

0 h



+//
-

(2.72)

=
1
4

∫ 1

0
dσTr

Bσ√
B2
σ

G (2.73)

=
1
4

∫ 1

0
dσTrA

1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2 A

1
2
σGS (2.74)

=
1
4

∫ 1

0
dσ

∫
dτ
π

(1 − σ)Tr
1

(Aσ + iτS)
SG

1
(Aσ + iτS)

SG. (2.75)

Proof. (2.70)–(2.72) follow immediately from Theorem 2.5 and (2.30).
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Starting from (2.71), let us prove (2.73),

1
4

Tr
(√

B2 −

√
B2

0

)
(2.76)

=
1
4

∫
Tr

( B2

B2 + τ2
−

B2
0

B2
0 + τ2

) dτ
π

(2.77)

= −
1
4

∫
Tr

( 1

B2 + τ2
−

1

B2
0 + τ2

) τ2dτ
π

(2.78)

= −
1
4

∫ 1

0
dσ

∫
d

dσ
Tr

1

B2
σ + τ2

τ2dτ
π

(2.79)

=
1
4

∫ 1

0
dσ

∫
Tr

1

B2
σ + τ2

(BσG + GBσ)
1

B2
σ + τ2

τ2dτ
π

(2.80)

=
1
2

∫ 1

0
dσ

∫
Tr

Bσ
(B2
σ + τ2)2

G
τ2dτ
π

(2.81)

=
1
4

∫ 1

0
dσTr

Bσ√
B2
σ

G, (2.82)

where at the end we used identity (A6).
(2.73) together with identity (2.46) = (2.48) implies (2.74).
Now, starting from (2.73), we prove (2.75),

1
4

∫ 1

0
dσ

∫
dτ
π

Tr
Bσ

B2
σ + τ2

G (2.83)

=
1
8

∫ 1

0
dσ

∫
dτ
π

Tr
( 1
(Bσ + iτ)

+
1

(Bσ − iτ)

)
G (2.84)

=
1
4

∫ 1

0
dσ

∫
dτ
π

Tr
1

(Bσ + iτ)
G (2.85)

=
1
4

∫ 1

0
dσ

∫ σ

0
dσ1

∫
dτ
π

d
dσ1

Tr
1

(Bσ1 + iτ)
G (2.86)

= −
1
4

∫ 1

0
(1 − σ)dσ

∫
dτ
π

Tr
1

(Bσ + iτ)
G

1
(Bσ + iτ)

G (2.87)

= −
1
4

∫ 1

0
(1 − σ)dσ

∫
dτ
π

Tr
1

(Aσ + iτS)
SG

1
(Aσ + iτS)

SG. (2.88)

In (2.86)⇒ (2.87), we used

d
dσ1

1
(Bσ1 + iτ)

=−
1

(Bσ1 + iτ)
G

1
(Bσ1 + iτ)

. (2.89)

�

K. Loop expansion

Suppose now that

B0 =



h0 0

0 −h0


(2.90)

is a “free” symplectic generator. We assume that h0 > 0. Note that we allow h0 to be different
from h.

We set
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A0BB0S =


h0 0

0 h0


, (2.91)

V BB2 − B2
0 =



h2 − h2
0 − gg −hg + gh

gh − hg h
2
− h

2
0 − gg


. (2.92)

(2.60) can be rewritten as

Ew =
1
4

Tr
∫

B2
0

B2
0 + τ2

dτ
π

+
1
4

Tr
∫

1

B2 + τ2
V

1

B2
0 + τ2

τ2 dτ
π

=

k∑
j=0

Lj +
1
4

Tr
∫

(−1)k

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)k
τ2 dτ

π

=

∞∑
j=0

Lj,

where

L0 =
1
4

Tr
∫

B2
0

B2
0 + τ2

dτ
π
=

1
4

Tr|B0 | =
1
2

Trh0, (2.93)

Lj =
1
4

Tr
∫

(−1)j+1

B2
0 + τ2

(
V

1

B2
0 + τ2

) j
τ2 dτ

π
(2.94)

=
1
4

Tr
∫

(−1)j+1

2j

(
V

1

B2
0 + τ2

) j dτ
π

, j = 1, 2, . . . . (2.95)

The last identity for Lj follows by a cyclic relocation of operators under the trace and by an application
of integration by parts.

We can further simplify the formula for L1,

L1 =Tr
∫

1
8

V
1

B2
0 + τ2

dτ
π
=

1
8

TrV
1
|B0 |
=

1
4

Tr(h2 − h2
0 − gg)h−1

0 . (2.96)

The constant Lj arises in the diagrammatic expansion as the evaluation of the loop with j vertices.
To obtain this, introduce the “time variable” t and the “Feynman propagator”

G(t)B
e−|B0 |t

2|B0 |
.

Clearly, τ can be interpreted as the “energy variable” and

1

B2
0 + τ2

=

∫
G(t)eitτdt.

Therefore,

Lj =
1
4

∫
dtj−1 · · ·

∫
dt1TrVG(tj − t1)VG(t1 − t2) · · ·VG(tj−1 − tj) (2.97)

= lim
T→∞

1
2T

1
4

∫ T

−T
dtj

∫ T

−T
dtj−1 · · ·

∫ T

−T
dt1TrVG(tj − t1)VG(t1 − t2) · · ·VG(tj−1 − tj). (2.98)

L. Renormalization I

Note that in general V (2.92) contains terms of the 1st and 2nd order. Explicitly, let λ be a
“coupling constant.” Let h = h0 + λh1 and replace g with λg (to keep track of the order of perturbation).
Then V = λV1 + λ2V2, where
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V1B


h0h1 + h1h0 −h0g + gh0

gh0 − h0g h0h1 + h0h1


, (2.99)

V2 B



h2
1 − gg∗ −h1g + gh1

gh1 − h1g h
2
1 − g∗g


. (2.100)

We can expand Ew with respect to the coupling constant λ,

Ew =

∞∑
n=0

λnEn. (2.101)

We have

L0 =E0 =
1
2

Trh0. (2.102)

However, in general, Ln of higher orders differ from λnEn.
There are situations when it is useful to introduce the nth order renormalized vacuum energy

EnrenBEw −

n∑
j=0

λjEj =

∞∑
j=n+1

λjEj (2.103)

and the nth order renormalized Hamiltonian

ĤnrenB Ĥw −

n∑
j=0

λjEj (2.104)

so that Enren = inf Ĥnren. The numbers λ0E0,. . . , λnEn can be called counterterms.
The above construction is relevant, e.g., in the theory of charged scalar fields in external electro-

magnetic potentials in 1 + 3 dimensions. In this case, E0, E1, and E2 are infinite so that one is forced
to perform the 2nd order renormalization. Ĥ2ren is usually also ill defined. However E2ren is typically
finite. Note that we have a somewhat paradoxical situation: the Hamiltonian does not exist; however,
the “infimum of the Hamiltonian” is well defined.

Actually, physically, E2ren is still somewhat artificial. It is natural to make an additional finite
subtraction so that all counterterms are formally local; see Ref. 8. The resulting finite quantity Eren

is sometimes called the (renormalized) vacuum energy or the vacuum polarization.

M. Renormalization II

Suppose now that

h2
1 = gg, h1g= gh1. (2.105)

(2.105) implies V2 = 0. Therefore, the loop expansion coincides with the expansion into powers of
λ. Putting λ = 1, we thus have

En =Ln, n= 0, 1, . . . . (2.106)

We can compute the loop with one vertex,

L1 =
1
4

Tr(h0h1 + h1h0)h−1
0 =

1
2

Trh1. (2.107)

Thus

L0 + L1 =
1
2

Tr(h0 + h1)=
1
2

Trh. (2.108)

Therefore, the loop expansion for the infimum of the normally ordered Hamiltonian amounts to
omitting L0 and L1,

inf Hn =Ew −
1
2

Trh=
∞∑

n=2

Ln =E1ren. (2.109)
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Note that L1 and especially L0 are often infinite. Sometimes, L2 is infinite as well. Then we can
renormalize the vacuum energy even further obtaining

E2ren B Ew − L0 − L1 − L2 =

∞∑
n=3

Ln (2.110)

= −
1
4

∫
Tr

1

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)2
τ2 dτ

π
. (2.111)

We also have the 2nd order renormalized Hamiltonian

Ĥ2renB Ĥw − L0 − L1 − L2 (2.112)

so that
E2ren = inf Ĥ2ren. (2.113)

The situation described in this subsection is typical for a charged particle in an external electro-
static potential (without a vector potential), as well as for a neutral scalar particle with a mass-like
perturbation.8 Under rather broad assumptions, the 2nd order renormalized Hamiltonian Ĥ2ren is then
a well-defined self-adjoint operator.

Actually, as in Subsection II L, subtracting only L0 + L1 + L2 is somewhat artificial from
the physical point of view. To obtain physically relevant objects, one performs an additional finite
renormalization so that all counterterms are formally local, obtaining a finite renormalized vacuum
energy Eren and a well-defined renormalized Hamiltonian Ĥ ren so that Eren = inf Ĥ ren. See Ref. 8 for
details.

III. ARBITRARY DIMENSIONS: BASIS INDEPENDENT FORMALISM

In this section, we consider Bogoliubov Hamiltonians in any dimension. Unlike in Sec. II, we
will use a basis independent notation.

We will use the standard notation for the Hilbert-Schmidt and trace class norms,

‖g‖2B
√

Trg∗g, ‖g‖1BTr
√

g∗g. (3.1)

A. Doubled space in abstract setting

Let W be a Hilbert space. W will serve as the 1-particle space.
Let W be another Hilbert space with a fixed antiunitary map χ :W→W. W will be called the

complex conjugate of W.
We will often use the doubled space W ⊕W equipped with the conjugation

J =


0 χ−1

χ 0


. (3.2)

A J-real operator is an operator on W ⊕W commuting with J. Bounded J-real operators have the
form

R=


p q

χqχ χpχ−1


, (3.3)

for some p ∈ B(W) and q ∈ B(W,W).
J-real operators leave invariant the real subspace of vectors

[
w
χw

]
, w ∈W,

which we will denote by Y. Note also that every J-real operator in B(W ⊕W) restricts to an operator
in B(Y), and conversely, each operator in B(Y) extends uniquely to an operator in B(W ⊕W).

In what follows, we will usually write w for χw. We will write p and q for χpχ�1 and χqχ. We
will write p# and q# for χp∗ χ�1 and χ�1q∗χ�1. In Subsection 1 of the Appendix, we explain why it
is natural to use this simplified notation.
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To reduce the formalism of this section to that of Sec. II, it suffices to set W=Cm and replace χ
with the complex conjugation.

B. Fock spaces

If D is a vector space of any dimension (with or without a Hilbert space structure), then we can

introduce its algebraic n-th symmetric power, denoted by
al
⊗

n

s D, and the algebraic bosonic Fock space

al
Γs(W)B

∞
al
⊕
n=0

al
⊗

n

sD,

which is the space of finite symmetric tensor products of vectors of D.7 If W is a Hilbert space, then
we prefer to use the Hilbert space versions of the above constructions. Thus ⊗n

sW will denote the n-th
symmetric tensor power of W in the sense of Hilbert spaces and, as usual, the bosonic Fock space
over the one-particle space W is defined as

Γs(W)B
∞
⊕

n=0
⊗n

s W.

Ω := (1, 0, · · · ) denotes the vacuum vector and

Γ
fin
s (W)B

∞
al
⊕
n=0
⊗n

sW

=
{
(Ψ0, . . . ,Ψn, · · · ) ∈ Γs(W) | Ψn = 0 for all but a finite number of n

}
is the finite particle bosonic Fock space.

Note that if D is dense in W, then
al
Γs(D) is dense in Γs(W).

If h is an operator on W, dΓ(h) will denote

dΓ(h)
⌈
⊗n

sWB
∑n

j=1
1 ⊗ · · · ⊗ 1︸       ︷︷       ︸

j−1

⊗h ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
n−j

⌈
⊗n

sW.

If q is an operator on W of norm less than 1, we define Γ(q) : Γs(W)→ Γs(W) by

Γ(q)
⌈
⊗n

s HB q ⊗ · · · ⊗ q
⌈
⊗n

s H.

C. Quadratic forms on Fock spaces

For any operator h on W such that h ≥ c, its form domain is defined as

Dom(|h|
1
2 )= (1 + |h|)−

1
2 W. (3.4)

For w1, w2 ∈Dom(|h|
1
2 ), we can define (wi |hw2). Dom(|h|

1
2 ) is a Hilbert space for the scalar product(

w1 |(h + c +1)w2
)
. We say that D is a form core of h if it is a dense subspace of the form domain of h.

Lemma 3.1. Suppose that h ≥ 0 and D is a form core of h. Then
al
Γs(D) is a form core of dΓ(h).

Proof. It is easy to see that
1 + dΓ(h) ≤ Γ(1 + h). (3.5)

Hence,

Γ(1 + h)−
1
2 Γs(W ) ⊂

(
1 + dΓ(h)

)− 1
2 Γs(W ). (3.6)

Let Ψ ∈
(
1 + dΓ(h)

)− 1
2 Γs(W ). Set

ΨnB 1[0,n]
(
Γ(1 + h)

)
Ψ. (3.7)

By the spectral theorem and the fact that 1 + dΓ(h) and Γ(1 + h) commute with one another, Ψn

∈DomΓ(1 + h)
1
2 and Ψn → Ψ in

(
1 + dΓ(h)

)− 1
2 Γs(W ). Hence
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Γ(1 + h)−
1
2 Γs(W ) is dense in

(
1 + dΓ(h)

)− 1
2 Γs(W ). (3.8)

Now D is dense in (1 + h)−
1
2 W. Hence

al
Γs(D) is dense in Γs

(
(1 + h)−

1
2 W

)
= Γ(1 + h)−

1
2 Γs(W ). (3.9)

Putting together (3.8) and (3.9), we obtain

al
Γs(D) is dense in

(
1 + dΓ(h)

)− 1
2 Γs(W ). (3.10)

But the RHS of (3.10) is the form domain of dΓ(h). �

D. Creation/annihilation operators

For any w ∈W, â(w) and â∗(w) denote the usual annihilation/creation operators,

â∗(w)Ψ B
√

n + 1w ⊗s Ψ, Ψ ∈ ⊗n
sW, (3.11)

â(w)Ψ B
√

n + 1(w | ⊗ 1⊗n
Ψ, Ψ ∈ ⊗n+1

s W. (3.12)

These operators, originally well defined on Γfin
s (W ), extend to closed operators on Γs(W ). We set

φ̂(w, w ′)B â∗(w) + â(w ′). (3.13)

Note that φ̂(w, w) are self-adjoint. One can also introduce the so-called Weyl operators eiφ̂(w,w).

Remark 3.2. Sometimes we may want to define creation/annihilation operators for w that do not
belong to W, but are functionals, possibly unbounded, with domain D ⊂W. Then we can still define

the annihilation operator â(w) by formula (3.12), at least for Ψ ∈
al
Γs(D). If w is unbounded, then â(w)

is not closable. Besides, (3.11), the definition of â∗(w) as an operator, is incorrect. However, we can

interpret both â(w) and â∗(w) as quadratic forms on
al
Γs(D).

The following inequality is sometimes called the Nτ-estimate:

Proposition 3.3. Let h > 0 and w ∈W. Then

‖â(w)Φ‖2 ≤ (w |h−1w)(Φ|dΓ(h)Φ). (3.14)

Therefore,



dΓ(h)−
1
2 â∗(w)

 ≤ ‖h−

1
2 w‖. (3.15)

Proof. Clearly,

|w) (w | ≤
(
w |h−1w

)
h. (3.16)

Applying dΓ, we obtain

â∗(w)â(w)= dΓ
(
|w)(w |

)
≤ (w |h−1w)dΓ(h). (3.17)

�

Let g ∈ ⊗2
sW. We define the annihilation and creation operators associated with g as follows:

â∗(g)Ψ B
√

n + 2
√

n + 1g ⊗s Ψ, Ψ ∈ ⊗n
sW, (3.18)

â(g)Ψ B
√

n + 2
√

n + 1(g| ⊗ 1⊗n
Ψ, Ψ ∈ ⊗n+2

s W. (3.19)

Again, these operators, originally defined on Γfin
s (W ), extend to closed operators on Γs(W ).
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Remark 3.4. Again, if g does not belong to⊕2
sW, but is a functional with the domain

al
⊗

2

s D ⊂ ⊗2
sW,

then we can define â(g)and â∗(g) as quadratic forms on
al
Γs(D).

It is important to note that each g ∈ ⊗2W defines a linear Hilbert-Schmidt operator from W to
W, denoted by the same symbol g, by the identity

(w1 ⊗ w2 |g)= (w2 |gχw1). (3.20)

This provides an isometric isomorphism of ⊗2W with B2(W,W)—the space of Hilbert-Schmidt
operators from W to W. Symmetric tensors (elements of ⊗2

sW) are mapped onto symmetric operators
(where the symmetry of g means g = g# ).

Let us state the following fact about this identification:

Proposition 3.5. Let p1, p2 ∈ B(W ). Then the tensor p1 ⊗ p2 g corresponds to the operator p1gp#
2.

Proposition 3.6. Let w ∈W, h ∈ B(W ), and g ∈W ⊗s W. Then the following identities are true:[
dΓ(h), â∗(w)

]
= â∗(hw), [dΓ(h), â(w)]=−â(hw), (3.21)[

â(g), â∗(w)
]
= 2â∗(gw), [â∗(g), â(w)]=−2â(gw). (3.22)

E. Symplectic and metaplectic transformations in infinite dimensions

As in (2.6), we introduce the operator

S =


1 0

0 −1


. (3.23)

Let R ∈ B(W⊕W). As in Subsection II C, R is called symplectic if R∗SR = S. Bounded symplectic
transformations form a group, which we denote by Sp(Y).

Various properties of symplectic operators described in Subsection II C are valid in the present
setting.

Theorem 3.7. Let

R=


p q

q p


∈ Sp(Y). (3.24)

Then the following conditions are equivalent:

(1) There exists a unitary U such that

Uâ∗(w)U∗ = â∗(pw) + â(qw),

Uâ(w)U∗ = â∗(qw) + â(pw), w ∈W. (3.25)

(2) There exists a unitary U such that

Ueiφ̂(w,w)U∗ = eiφ̂(w′,w′), R


w

w


=



w ′

w ′


, w ∈W. (3.26)

(3) There exists a ∗-automorphism αR of B(Γs(W )) such that

αR
(
eiφ̂(w,w)) = eiφ̂(w′,w′), R



w

w


=



w ′

w ′


, w ∈W. (3.27)

Let (1), (2), and (3) be true. Then U [common for (1) and (2)] is uniquely determined up to a phase
factor. Besides, αR is uniquely defined.

If R satisfies the conditions of the above theorem, then we say that R is implementable. The
unitary U is called a (Bogoliubov) implementer of R. αR is called the Bogoliubov automorphism
associated with R.
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We leave the proof of this theorem to the reader. Let us only mention that to show (3) ⇒ (2),
we need to use Proposition A.1. To obtain the uniqueness of αR, we use the weak density of linear
combinations of Weyl operators in B(Γs(W )).

Spres(Y ) will denote the restricted symplectic group, which consists of R ∈ Sp(Y ) such that q is
Hilbert-Schmidt. The importance of Spres(Y ) is due to the Shale theorem,18 which we quote below
in the form given in Ref. 7.

Theorem 3.8. Let R ∈ Sp(Y ). Then R is implementable if and only if R ∈ Spres(Y ). For such R,
we can define the natural implementer of R,

Unat
R B | det pp∗ |−

1
4 e−

1
2 â∗(d2)

Γ
(
(p∗)−1)e

1
2 â(d1), (3.28)

where d2 and d1 are defined as in (2.15) and (2.16). All implementers of R ∈ Spres(Y ) coincide with
Unat

R up to a phase factor.

Bogoliubov implementers form a group, which is denoted by Mpc(Y ). We have a short exact
sequence

1→U(1)→Mpc(Y )→ Spres(Y )→ 1.

Let us mention the following criterion, which was used in Ref. 15:

Proposition 3.9. If R∗R � 1 is Hilbert-Schmidt, then R ∈ Spres(Y ).

Proof.

R∗R=


p∗p + q#q p∗q + q#p

p#q + q∗p p#p + q∗q


=



1 + 2q#q 2p∗q

2p#q 1 + 2q∗q


.

Now

‖1 − R∗R‖22 = 8Trq∗q + 8Trq∗qq∗q + 8Trq∗pp∗q (3.29)

= 16Trq∗qq∗q + 16Trq∗q ≥ 16Trq∗q. (3.30)

�
Spaf(Y ) will denote the anomaly-free symplectic group, which consists of R ∈ Sp(Y ) such that 1

� p is a trace class.7

Proposition 3.10. Spaf(Y ) is a subgroup of Spres(Y ).

Proof. We have
q∗q= p∗p − 1= (p∗ − 1)p + p − 1. (3.31)

Therefore, ‖p − 1‖1 <∞ implies ‖q‖2 <∞. �

For R ∈ Spaf(Y), we can define a pair of metaplectic Bogoliubov implementers

±Umet
R B±(det p∗)−

1
2 e−

1
2 â∗(d2)

Γ
(
(p∗)−1)e

1
2 â(d1). (3.32)

They form a group, which we denote by Mpaf(Y ).7 We have a short exact sequence

1→Z2→Mpaf(Y )→ Spaf(Y )→ 1.

F. Classical quadratic Hamiltonians

In this subsection, we consider strongly continuous 1-parameter groups of symplectic transfor-
mations. The following proposition describes their generators:

Proposition 3.11. Let iB be a generator of a 1-parameter group on W ⊕ W. The following
statements are equivalent:
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(1) eiBt, where t ∈R, is a strongly continuous 1-parameter group of symplectic transformations.
(2) iB is J-real, SB∗ ⊃ BS.
(3) AB := BS is J-real and A∗B ⊃ AB (in other words, AB is Hermitian).

Proof. We have for w1, w2 ∈ Dom(B),

d
dt

(eitBw1 |SeitBw2)���t=0
=−i(Bw1 |Sw2) + i(w1 |SBw2). (3.33)

Hence preservation of S by eitB is equivalent to (SAS)∗ = B∗S ⊃ SB = SAS, which means that SAS is
Hermitian. This is equivalent to A being Hermitian. �

For brevity, we will say that B is a symplectic generator if iB generates a one-parameter group of
symplectic transformations. Similarly as in Sec. III E, AB := BS will be sometimes called the classical
Hamiltonian of B, and we will often write A instead of AB.

Note that in finite dimensions, the converse of Proposition 3.11 (3) is true: If A is Hermitian and
J-real, then B := AS is a symplectic generator. This is probably not the case in infinite dimensions.

G. Bogoliubov Hamiltonians

Let B be, as usual, a symplectic generator, and A = BS. We will write

eitB =



pt qt

qt pt


. (3.34)

Theorem 3.12. The following conditions are equivalent:

(1) There exists a self-adjoint operator Ĥ on Γs(W) such that eitĤ implements eitB for any t ∈R.
(2) There exists αt , a 1-parameter C∗0-group of ∗-automorphisms of B(Γs(W )), such that

αt
(
eiφ̂(w,w)) = eiφ̂(wt ,wt ),



wt

w t


= eitB



w

w


, w ∈W. (3.35)

(3) limt→0 ‖qt ‖2 = 0.

Let (1), (2), and (3) be true. Then αt is determined uniquely. Ĥ is uniquely defined up to an
additive constant.

Ĥ will be called a quantization of B. We will also say that Ĥ is a quantum quadratic Hamiltonian,
or shorter, a Bogoliubov Hamiltonian. If the equivalent conditions of the above theorem are satisfied,
then we will say that B possesses quantizations.

Proof. (1)⇔ (2) is a consequence of Proposition A.2. We need to show that (1), (2)⇔ (3).

If eitB, t ∈R, is implementable, then ‖qt ‖2 < ∞, for all t ∈R.
If lim

t→0
‖qt ‖2 = 0, then ‖qt ‖2 < ∞, for small enough t. But since Spres(Y) is a group, ‖qt ‖2 < ∞,

for all t ∈R.
Thus, in all cases (1)–(3), we can define

Unat
t BUnat

eitB (3.36)

[see (3.28)]. Set

αt(C)BUnat
t CUnat

−t . (3.37)

Clearly, t 7→ αt is a 1-parameter group of ∗-automorphisms satisfying (3.35). The proof will be
completed if we show the equivalence of the following statements:

(i) t 7→Unat
t is strongly continuous at zero;

(ii) t 7→ αt is a C∗0-group of ∗-automorphisms;
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(iii) d2,tB qtp
−1
t satisfies lim

t→0
‖d2,t ‖2 = 0;

(iv) lim
t→0
‖qt ‖2 = 0.

(i)⇒ (ii): We easily see that if t 7→Unat
t is strongly continuous at zero and if C is a bounded operator,

then t 7→Unat
t CUnat

−t is weakly continuous at zero. This implies that t 7→ αt is a C∗0-group.
(ii)⇒ (iii): Let |Ω )(Ω| denote the orthogonal projection onto Ω. We have(

Ω|α
(
|Ω )(Ω|

)
Ω
)
= ��(Ω|Unat

t Ω)��2

= �� det ptp
∗
t
��−

1
2 = det

(
1 − d∗2,td2,t

) 1
2 (3.38)

= exp
(1
2

Tr log
(
1 − d∗2,td2,t

))
. (3.39)

In (3.38), we used the identity

p#−1
t p−1

t = 1 − d∗2,td2,t . (3.40)

(ii) implies that (3.39) goes to 1 for t → 0. This is equivalent to lim
t→0

Tr log(1 − d∗2,td2,t)= 0, which is

equivalent to lim
t→0

Trd∗2,td2,t = 0.

(iii)⇒ (i): We have

Unat
t eiφ̂(w,w)

Ω= eiφ̂(wt ,wt ) | det ptp
∗
t |
− 1

4 e−
1
2 a∗(d2,t )Ω. (3.41)

But t 7→ eiφ̂(wt ,wt ) is strongly continuous. By (3.40), lim
t→0
| det ptp∗t |

− 1
4 = 1. Besides, (iii) implies that

lim
t→0

e−
1
2 a∗(d2,t )Ω=Ω. Therefore, (3.41) is continuous at t = 0. But the span of eiφ̂(w,w)Ω is dense and

Unat
t is unitary. Hence Unat

t is strongly continuous at t = 0.
(iii)⇔ (iv) follows from the identities

qtq
∗
t = d∗2,td2,t

(
1 − d∗2,td2,t

)−1, (3.42)

d∗2,td2,t = qtq
∗
t
(
1 + qtq

∗
t
)−1. (3.43)

�

Below we describe three distinguished quantizations.

(1) If the group eitĤ implementing eitB is contained in Mpaf(Y), then Ĥ will be called Weyl. It is
easy to see that for a given symplectic generator B, its Weyl quantization, if it exists, is unique.
We will denote it by Ĥw

B . An alternative name for Ĥw
B is the symmetric quantization of B.

(2) We say that a quantization Ĥ of B is normally ordered if

d
dt

(Ω|eitĤ
Ω)���t=0

= 0. (3.44)

Again, a given symplectic generator B possesses at most one normally ordered quantization.
We will denote it by Ĥn

B. An alternative name for Ĥn
B is the Wick quantization of B.

(3) If B possesses a quantization, which is bounded from below, then all of its quantizations are
bounded from below. Then one can introduce the zero-infimum quantization Ĥz

B fixed by the
condition

inf Ĥz
B = 0.

Let us stress that there exist B that possess quantizations, but they do not possess Ĥw
B , Ĥn

B, or
Ĥz

B.

We will usually drop the subscript B in the above symbols.
Note that whereas the definitions of Ĥw and Ĥz are quite obvious, it is less clear how to generalize

the concept of normally ordered Bogoliubov Hamiltonian to infinite dimensions. In the following
proposition, we formulate another condition, which could be considered as another candidate for a
definition of Ĥn.
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Proposition 3.13. Suppose that B possesses a quantization Ĥ such that Ω ∈Dom
(
|Ĥ |

1
2
)

(the
vacuum belongs to the form domain of Ĥ). Then B possesses the normally ordered quantization.

Proof. We easily check that
ĤnB Ĥ − (Ω|ĤΩ) (3.45)

satisfies (3.44). �

Theorem 3.14. Consider (3.34).

(1) The condition
lim
t→0
‖pt − 1‖1 = 0 (3.46)

is equivalent to B possessing the Weyl quantization Ĥw. If this is the case, then

eitĤw
= (det p∗t )−

1
2 e−

1
2 â∗(d2,t )Γ

(
(p∗t )−1)e

1
2 â(d1,t ), (3.47)

where the sign of the square root is determined by continuity.
(2) Suppose that there exists a self-adjoint operator h on W such that

lim
t→0

‖e−ithpt − 1‖1
t

= 0. (3.48)

Then B possesses the normally ordered quantization Ĥn and

eitĤn
= (det p∗t eith)−

1
2 e−

1
2 â∗(d2,t )Γ

(
(p∗t )−1)e

1
2 â(d1,t ), (3.49)

where the sign of the square root is determined by continuity. The operator h that appears in
(3.48) is uniquely defined.

(3) Suppose that the assumptions of (2) hold. In addition, assume that h in (3.48) is a trace class.
Then B possesses both normally ordered and Weyl quantizations, and

Ĥn +
1
2

Trh= Ĥw. (3.50)

Proof. (1): lim
t→0
‖1 − pt ‖1 = 0 implies that eitB ∈ Spaf(Y ) at least for small t. But Spaf(Y ) is a group.

Therefore, eitB ∈ Spaf(Y ) for all t ∈R.
Besides, t 7→ eitB is continuous in the topology of Spaf(Y ) at zero. By the group property of

Spaf(Y ), it is continuous for all t ∈R.
Hence, Umet

t given by (3.47) is well defined. Umet
t obviously is one of the metaplectic

implementers of eitB. We have

(Ω|Umet
t Ω)= (det p∗t )−

1
2 , (3.51)

which depends continuously on t.
Using that Mp(Y) is a group and the continuity of (3.51), we see that Umet

t satisfies the group
property. Next, repeating the argument of the proof of Theorem 3.12, we see that Umet

t is continuous
on coherent vectors.

Thus Umet
t is a strongly continuous group of metaplectic implementers of eitB. Hence B possesses

the Weyl quantization.
Conversely, if B possesses the Weyl quantization Ĥw, then Umet

t = eitĤw
. Then (3.51) is true. But

lim
t→0
‖1 − pt ‖1 = 0 is equivalent to the continuity of the rhs of (3.51).

(2): (3.48) implies
lim
t→0
‖e−ithpt − 1‖1 = 0. (3.52)

Therefore, the identity

q∗t qt = p∗t pt − 1= (p∗t eith − 1)e−ithpt + e−ithpt − 1 (3.53)
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shows that lim
t→0
‖qt ‖2 = 0. Therefore, (3.49) is well defined and depends continuously on t. Clearly,

�� det p∗t eith��2 = det p∗t pt . (3.54)

Hence, (3.49) differs from Unat
eitB by a phase factor. We check by direct calculation that it satisfies the

group property.6

Using (3.52) and the differentiability of the determinant in the trace norm, for small enough t we
have

�� det p∗t eith − 1�� ≤ c‖p∗t eith − 1‖1. (3.55)

Hence (3.48) implies

lim
t→0

det p∗t eith − 1

t
= 0. (3.56)

Therefore, using also (3.52),

lim
t→0

(det p∗t eith)−
1
2 − 1

t
= 0. (3.57)

By (3.49), (
Ω|eitĤn

Ω
)
= (det p∗t eith)−

1
2 . (3.58)

Hence, (3.44) is true.
Suppose that for h1 and h2 we have (3.48). Let w, w ′ ∈W be normalized. Then

1
t

��(w |eith1w ′) − (w |eith2w ′)�� ≤
1
t
‖eith1 − eith2 ‖ (3.59)

≤
1
t
‖eith1 − eith2 ‖1 (3.60)

≤
1
t
‖eith1 − pt ‖1 +

1
t
‖pt − eith2 ‖1 → 0. (3.61)

Hence h1 = h2 by Lemma A.4.
(3): Using ‖h‖1 < ∞, we can write

det pt = det eith det e−ithpt = eitTrh det e−ithpt . (3.62)

Thus we see that both (3.47) and (3.49) are well defined and

eitĤw
= eit 1

2 TrheitĤn
. (3.63)

�
H. Criteria for existence of quantizations of classical Hamiltonians

In this subsection, we restrict our study to symplectic generators that are bounded perturbations
of diagonal symplectic generators.

We will always assume that h is a self-adjoint operator on W and g = g# . Besides,

BB


h −g

g −h


, B0B



h 0

0 −h


, (3.64)

A=BS =


h g

g h


, A0 =B0S =



h 0

0 h


, G=



0 −g

g 0


. (3.65)

The following proposition is immediate:

Proposition 3.15. If g is bounded, then B is a symplectic generator. Besides, A is self-adjoint.

Proof. Clearly, B0 is a symplectic generator and A0 is self-adjoint. We can add a bounded
perturbation without destroying these properties. �

The following theorem is a slightly strengthened version of a criterion due to Berezin;2 see also
Ref. 6. Throughout this subsection we set
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f (t)B
∫ t

0
eishgeishds. (3.66)

Theorem 3.16. (1) Suppose that g is bounded and lim
t→0
‖f (t)‖2 = 0. Then B possesses quantiza-

tions.
(2) In addition to assumptions of (1) suppose that lim

t→0
‖gf (t)‖1 = 0. Then B possesses the normally

ordered quantization.
(3) In addition to assumptions of (2) suppose that ‖h ‖1 < ∞. Then B possesses both the Weyl and
the normally ordered quantizations, and

Ĥn +
1
2

Trh= Ĥw. (3.67)

Proof. (1): Using repeatedly the identity

f (2t)= f (t) + eithf (t)eith, (3.68)

we see that ‖f (t)‖2 is finite for all t.
Set

V (t) B eitBe−itB0 , (3.69)

G(t) B eitB0 Ge−itB0 =



0 −eishgeish

e−ishge−ish 0


, (3.70)

F(t) B
∫ t

0
G(s)ds =



0 −f (t)

f (t) 0


. (3.71)

From

V (t)= 1 + i
∫ t

0
V (s)G(s)ds (3.72)

and ‖G(t)‖ = ‖G‖, we obtain
‖V (t)‖ ≤ e |t | ‖G‖ . (3.73)

Iterating (3.72) gives

V (t)= 1 + iF(t) −
∫ t

0
V (s)G(s)eisB0 F(t − s)e−isB0 ds. (3.74)

Therefore,

‖V (t) − 1‖2 ≤ ‖F(t)‖2 +
∫ t

0
‖V (s)‖‖G‖‖F(t − s)‖2ds. (3.75)

But ‖F(t)‖2 =
√

2‖f (t)‖2 and ‖G‖ = ‖g‖. Hence ‖V (t) � 1‖2 is finite and goes to zero as t → 0.
Arguing as in Proposition 3.9, we obtain

16‖q(t)‖22 ≤ ‖V (t) − 1‖2. (3.76)

Therefore, ‖q(t)‖2 is finite and goes to zero as t → 0. This means that the assumption of Theorem
3.12 (3) is satisfied. Hence B possesses quantizations.

(2): We rewrite (3.74) as



pt − eith qt + if (t)e−ith

qt − if (t)eith pt − e−ith


= eitB − eitB0 − iF(t)eitB0 (3.77)

= −

∫ t

0
V (s)G(s)eisB0 F(t − s)ei(t−s)B0 ds. (3.78)

Therefore, by (A9),
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2‖pt − eith‖1 ≤ ‖e
itB − eitB0 − iF(t)eitB0 ‖1 (3.79)

≤

∫ t

0
‖V (s)‖‖GF(t − s)ei(t−s)B0 ‖1ds. (3.80)

Using ‖GF(t)‖1 = 2‖gf (t)‖1 and lim
t→0
‖gf (t)‖1 = 0, we see that (3.80) is o(t). Thus we obtain ‖pt

�eith‖1 = o(t). This means that the assumption of Theorem 3.14 (2) is satisfied. Hence, B possesses
the normally ordered quantization.

(3): We apply Theorem 3.14 (3). �

The assumptions of Theorem 3.16 are not very convenient to verify. Our next aim is to formulate
criteria for the existence of quantizations, which are more convenient to check.

Define

γ(g)B (h ⊗ 1 + 1 ⊗ h)−1g, (3.81)

where we use the tensor interpretation of g and assume that g ∈ Dom(h ⊗ 1 + 1 ⊗ h)�1.

Proposition 3.17. In the operator interpretation, γ(g) corresponds to

γ(g)= i lim
ε↘0

∫ ∞
0

e−ε te−ithge−ithdt (3.82)

and satisfies

hγ(g) + γ(g)h= g. (3.83)

For h > 0 we can “Wick rotate” the formula (3.82) and write

γ(g)=
∫ ∞

0
e−thge−thdt. (3.84)

Proof. By Proposition 3.5 and h= h#, we can identify the operator e−ithge−ith with the tensor

e−ith ⊗ e−ithg= e−it(h⊗1+1⊗h)g. (3.85)

Clearly,

i
∫ ∞

0
e−ε te−it(h⊗1+1⊗h)g= (h ⊗ 1 + 1 ⊗ h − iε)−1g →

ε↘0
(h ⊗ 1 + 1 ⊗ h)−1g, (3.86)

where we use the usual Hilbert space convergence, which proves (3.82).
Set

γε (g)B i
∫ ∞

0
e−εse−ishge−ishds. (3.87)

We compute

e−ithγε (g)e−ith = i
∫ ∞

t
e−ε (s−t)e−ishge−ishds (3.88)

= −i
∫ t

0
e−ishge−ishe−εsds + eε tγε (g). (3.89)

We differentiate with respect to t at t = 0, obtaining

−i
(
hγε (g) + γε (g)h

)
=−ig + εγε (g). (3.90)

Taking the limit as ε ↘ 0, we obtain (3.83).
The proof of (3.84) is almost the same as that of (3.82). �
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We will also write

γ(G)B


0 −γ(g)

γ(g) 0


. (3.91)

Note that in the operator interpretation, we have

[B0, γ(G)]=G. (3.92)

The following criterion is a consequence of Theorem 3.16.

Theorem 3.18. (1) Suppose that g is bounded and g = g1 + g2, where ‖g1‖2 < ∞ and ‖γ(g2)‖2
< ∞. Then the assumptions of Theorem 3.16 are satisfied, and hence B possesses quantizations.
(2) Suppose that ‖g‖2 < ∞. Then B possesses the normally ordered quantization.
(3) Suppose that ‖h‖1 <∞ and ‖g‖2 <∞. Then B possesses both the Weyl and the normally ordered
quantizations. Besides,

Ĥw = Ĥn + Trh. (3.93)

Proof. (1): Set

fi(t)B
∫ t

0
eishgie

ishds. (3.94)

It is clear that lim
t→0
‖f1(t)‖2 = 0. The fact that lim

t→0
‖f2(t)‖2 = 0 follows from

∫ t

0
eishg2eishds=−i

∫ t

0

d
ds

eishγ(g2)eishds=−ieithγ(g2)eith + iγ(g2), (3.95)

where we used (3.83). Hence assumptions of Theorem 3.16 (1) are satisfied.
(2): Clearly, ‖gf (t)‖1 ≤ t‖g‖22. Hence assumptions of Theorem 3.16 (2) are satisfied.
Now (3) follows immediately from Theorem 3.16 (3). �

The following is another condition that implies the assumptions of (1) of Theorem 3.18 and
hence the existence of quantizations of B:

Proposition 3.19. h > 0 and ‖h−
1
2 gh

− 1
2
‖2 <∞ implies ‖γ(g)‖2 < ∞.

Proof. h−
1
2 gh

− 1
2 corresponds to h−

1
2 ⊗ h−

1
2 g in the tensor interpretation. Clearly,

2h ⊗ h ≤ (h ⊗ 1 + 1 ⊗ h)2. (3.96)

Hence,
h−1 ⊗ h−1 ≥ 2(h ⊗ 1 + 1 ⊗ h)−2. (3.97)

Therefore,

‖h−
1
2 gh

− 1
2
‖2 = ‖h

− 1
2 ⊗ h−

1
2 g‖ ≥

√
2‖(h ⊗ 1 + 1 ⊗ h)−1g‖ =

√
2‖γ(g)‖2. (3.98)

�

I. Positive classical Hamiltonians and their diagonalization

The following theorem is an extension of Theorem 2.3 to arbitrary dimensions. It says that a
large class of classical Hamiltonians can be diagonalized by a positive symplectic transformation.
This theorem is implicitly contained in Ref. 7 [see Theorem 11.20 (3) together with Theorem 18.5
(3)]. Reference 15 contains also a related result about the diagonalizability of classical Hamiltonians.
It does not provide, however, a construction of a distinguished diagonalizing operator.

We will use the notation introduced in (3.64) and (3.65). We will assume that h > 0. It will not
be necessary to assume that g is bounded—we will assume that g = g# is a bilinear form with the
right domain Dom|h|

1
2 and the left domain Dom|h|

1
2 .
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Theorem 3.20. Let h be positive and

‖h−
1
2 gh

− 1
2
‖ =: a < 1. (3.99)

Then A is a positive self-adjoint operator with the form domain DomA
1
2
0 . The corresponding B is a

symplectic generator.
Besides,

R0 = SA−
1
2 (A

1
2 SASA

1
2 )

1
2 A−

1
2 S (3.100)

is a bounded invertible positive symplectic operator, so is

R=R
1
2
0 . (3.101)

R diagonalizes B and A, that is, for some positive self-adjoint hdg

B=R


hdg 0

0 −hdg


R−1, (3.102)

A=R


hdg 0

0 hdg


R∗. (3.103)

Moreover,

(1 − a)
1
4

(1 + a)
1
4

≤ ‖R‖ ≤
(1 + a)

1
4

(1 − a)
1
4

. (3.104)

Proof. GS is a form bounded perturbation of A0,

|(v |GSv)| ≤ a(v |A0v), v ∈Dom(A
1
2
0 ).

Therefore, A extends to a positive self-adjoint operator by the KLMN theorem.
A = A0 + GS satisfies

(1 − a)A0 ≤ A ≤ (1 + a)A0. (3.105)

Similarly, SAS = A0 + SG extends to a positive operator satisfying

(1 − a)A0 ≤ SAS ≤ (1 + a)A0. (3.106)

Therefore,

A
1
2 SASA

1
2 ≥ (1 − a)A

1
2 A0A

1
2 ≥

(1 − a)
(1 + a)

A2, (3.107)

A
1
2 SASA

1
2 ≤ (1 + a)A

1
2 A0A

1
2 ≤

(1 + a)
(1 − a)

A2. (3.108)

Hence,
√

1 − a
√

1 + a
A ≤ (A

1
2 SASA

1
2 )

1
2 ≤

√
1 + a
√

1 − a
A. (3.109)

Thus R0, defined by (3.100), is a well-defined bounded invertible positive operator, so is R.
Repeating the arguments of the proof of Theorem 2.3, we obtain (3.102) and (3.103). By (3.102),

we have

eitB =R


eithdg 0

0 e−ithdg


R−1. (3.110)

(3.110) is clearly symplectic. Hence B is a symplectic generator. �

For further use, we note that we can rewrite (3.100) as follows:
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R0 = SA−
1
2
( ∫ τ2

(τ2 + A
1
2 SASA

1
2 )

dτ
2π

)
A−

1
2 S.

As a side remark, note that h > 0 and (3.99) do not only imply A > 0, but the converse implication
is “almost true.” More precisely, set W0B (Kerh)⊥. Then A ≥ 0 is equivalent to the following
conditions:

(1) h ≥ 0,
(2) Kerg ⊃W⊥0 (and hence, since g = g# , we have Rang ⊂W0),

(3) ‖h−
1
2 gh

− 1
2
‖ ≤ 1, in the sense of operators from W0.

J. Implementable diagonalizability of positive Hamiltonians

The following theorem is due to Ref. 15. The proof that we present below follows closely that
of Ref. 15, with only minor modifications.

Theorem 3.21. In addition to the assumptions of Theorem 3.20, suppose that

‖h−
1
2 gh

− 1
2
‖2 <∞. (3.111)

Let R be the symplectic operator given by Theorem 3.20 and q be given by (3.24). Then

‖q‖2 ≤ 2
1

(1 − a)
‖h−

1
2 gh

− 1
2
‖2. (3.112)

In particular, R ∈ Spres(Y) and hence R is implementable.

Let us note that, by Proposition 3.19, h > 0 and (3.111) imply the assumptions of (1) of The-
orem 3.18 about the existence of quantizations. Therefore, we already know that the assumptions
of Theorem 3.21 imply the existence of quantizations of B. However, Theorem 3.21 implies that
these quantizations have some important additional properties: e.g., they are bounded from below
and possess a ground state.

In fact, R possesses a Bogoliubov implementer U. If hdg is given by (3.110), then

UdΓ(hdg)U∗ (3.113)

is the zero-infimum quantization of B, where obviously dΓ(hdg) possesses a ground state.

Proof of Theorem 3.21. We start from estimating R∗R � 1 = R2
� 1 = R0 � 1. We have

S(R0 − 1)S

= A−
1
2 (A

1
2 SASA

1
2 )

1
2 A−

1
2 − A−

1
2 (A2)

1
2 A−

1
2

=

∫
dτ
π

A−
1
2
( A

1
2 SASA

1
2

τ2 + A
1
2 SASA

1
2

−
A2

τ2 + A2

)
A−

1
2

= −

∫
τ2dτ
π

A−
1
2
( 1

τ2 + A
1
2 SASA

1
2

−
1

τ2 + A2

)
A−

1
2

=

∫
τ2dτ
π

A
1
2

1

τ2 + A
1
2 SASA

1
2

A−
1
2 (SAS − A)

1

τ2 + A2

=:
∫

τ2dτ
π

T (τ).

Now, for any ε > 0,
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±2T (τ)

= ±2A−
1
2

1

τ2 + A
1
2 SASA

1
2

A
1
2 (SAS − A)

1

τ2 + A2

≤ ε−1 1

τ2 + A2
(SAS − A)A

1
2

1

A
1
2 SASA

1
2

A
1
2 (SAS − A)

1

τ2 + A2

+ εA−
1
2

A
1
2 SASA

1
2

τ2 + A
1
2 SASA

1
2

A−
1
2

=: ε−1T1(τ) + εT2(τ).

We deal with the second term ∫
τ2dτ
π

T2(τ)

=

∫
τ2dτ
π

A−
1
2

A
1
2 SASA

1
2

τ2 + A
1
2 SASA

1
2

A−
1
2

=A−
1
2 (A

1
2 SASA

1
2 )

1
2 A−

1
2

=R0.

Next we treat the first term

KB
∫

τ2dτ
π

T1(τ)

=

∫
τ2dτ
π

1

τ2 + A2
(SAS − A)S

1
A

S(SAS − A)
1

τ2 + A2
.

We have

TrK =

∫
τ2dτ
π

1

(τ2 + A2)2
(SAS − A)S

1
A

S(SAS − A) (3.114)

=
1
2

Tr
1
A

(SAS − A)S
1
A

S(SAS − A) (3.115)

≤
1

2(1 − a)2
Tr

1
A0

(SAS − A)
1

A0
(SAS − A) (3.116)

= 4
1

(1 − a)2
Trh

−1
gh−1g. (3.117)

Thus we have proved that
±2S(R0 − 1)S ≤ ε−1K + εSR0S, (3.118)

where K is positive operator with a trace bounded by (3.117). We rewrite (3.118) with sign + as

(2 − ε)S(R0 − 1)S ≤ ε−1K + ε . (3.119)

Let sn(C) denote the nth singular value of an operator C, that means, the nth eigenvalue of
|C |B

√
C∗C in the descending order. We will write for brevity λn := sn(|q|2).

Using U defined in (2.21), we have

R0 − 1=R2 − 1= 2U

[
u(|q|2 + |q|

√
1 + |q|2)u∗ 0

0 |q|2 − |q|
√
1 + |q|2

]
U∗. (3.120)

Therefore,

sn(R0 − 1)= 2(λn +
√
λn + λ2

n). (3.121)

Thus,

2(2 − ε)(λn +
√
λn + λ2

n) ≤ ε−1sn(K) + ε . (3.122)
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Let c be an arbitrary positive number. Let

λn ≤ c. (3.123)

Clearly, (3.122) implies

2(2 − ε)
√
λn ≤ ε

−1sn(K) + ε . (3.124)

Taking into account (3.123), we obtain

4
√
λn ≤ ε

−1sn(K) + ε(1 + 2
√

c). (3.125)

Optimizing with respect to ε , we obtain

4
√
λn ≤ 2

√
sn(K)

√
1 + 2

√
c. (3.126)

Hence,

λn ≤ sn(K)
1 + 2

√
c

4
. (3.127)

Let
c ≤ λn. (3.128)

Clearly, (3.122) implies
4(2 − ε)λn ≤ ε

−1sn(K) + ε . (3.129)

Taking into account (3.128), we obtain

λn ≤
1

ε
(
8 − ε(4 + c−1)

) sn(K). (3.130)

Optimizing with respect to ε , we obtain

λn ≤
4 + c−1

16
sn(K). (3.131)

Setting c= 1
4 in (3.127) and (3.131), we obtain

λn ≤
1
2

sn(K). (3.132)

Hence,

‖q‖22 =
∞∑

n=1

λn ≤
1
2

∞∑
n=1

sn(K)=
1
2

TrK . (3.133)

This together with (3.117) yields (3.112). �

K. Normally ordered Hamiltonian

In this subsection, we give conditions on B that guarantee the existence of a bounded from below
normally ordered quantization. We follow Ref. 15, whose approach is based on quadratic forms.
Similar results were contained in Ref. 6. They were however weaker since only operator bounded
perturbations were used in Ref. 6.

Suppose that Φ,Ψ ∈ Γs(W ). Define the reduced 1-body density operator γΨ,Φ and the pairing
operator αΨ,Φ as follows:

(w1 |γΨ,Φw2)B (Φ|â∗(w2)â(w1)Ψ),

(αΦ,Ψw2 |w1)= (αΦ,Ψ |w1 ⊗ w2)B (Φ|â∗(w2)â∗(w1)Ψ), w1, w2 ∈W.

(Note that, as usual for similar objects, αΨ,Φ has two interpretations: as a symmetric operator from
W to W or as an element of the Hilbert space ⊗2

sW. We will treat the former interpretation as the
standard one.)

We will write
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γΦB γΦ,Φ, αΦB αΦ,Φ.

Note that

α#
Φ,Ψ = αΦ,Ψ, (3.134)



γΦ αΦ

αΦ 1 + γΦ


≥ 0. (3.135)

For further use, note that (3.135) is equivalent to

γΦ ≥ 0, γΦ ≥ αΦ(1 + γΦ)−1αΦ. (3.136)

Clearly, if h is an operator on W and g ∈ ⊗2
sW, then

(Φ|dΓ(h)Ψ) = TrγΦ,Ψh, (3.137)

(Φ|â∗(g)Ψ) = Trα∗
Φ,Ψg, (3.138)

(Φ|â(g)Ψ) = TrαΨ,Φg∗. (3.139)

Note that (3.138) and (3.139) are still true if g is an unbounded functional on ⊗2
sW with domain

al
⊗

2

s D, provided that Ψ,Φ ∈
al
Γs(D), where D=Domh−

1
2 , as discussed in Remark 3.4.

The following proposition provides a key estimate for the construction of normally ordered
Bogoliubov Hamiltonians:

Proposition 3.22. Assume that ‖h−
1
2 gh

− 1
2
‖ ≤ 1 and Trg∗h�1g <∞. Let ‖h−

1
2 gh

− 1
2
‖ ≤ c. Then for

Φ ∈ Γs(W ) with ‖Φ‖ = 1,

(Φ|â∗(g)Φ) ≤ c(Φ|dΓ(h)Φ) +
1
2c

Tr(g∗h−1g). (3.140)

Proof.
(Φ|â∗(g)Φ) = |TrαΦg|

= ��Tr(1 + γΦ)−
1
2 αΦh

1
2 h−

1
2 g(1 + γΦ)

1
2 ��

≤
(
Trh

1
2 αΦ(1 + γΦ)−1α∗Φh

1
2
) 1

2

×
(
Trh−

1
2 g(1 + γΦ)g∗h−

1
2
) 1

2

≤
(
Trh

1
2 γΦh

1
2
) 1

2
(
Trh−

1
2 gg∗h−

1
2 + ‖h−

1
2 gh−

1
2 ‖

2
Trh

1
2 γΦh

1
2
) 1

2

=
(
(Φ|dΓ(h)Φ)

) 1
2
(
Trg∗h−1g + ‖h−

1
2 gh−

1
2 ‖

2
(Φ|dΓ(h)Φ)

) 1
2 .

Then we use the inequality √
x(y + c2

0x) ≤ cx +
y

2c
(3.141)

valid for x, y ≥ 0, c > c0. �

Theorem 3.23. Assume that ‖h−
1
2 gh

− 1
2
‖ < 1 and Trg∗h�1g < ∞.Then the quadratic form

dΓ(h) +
1
2

â∗(g) +
1
2

â(g) (3.142)

defined on the form domain of dΓ(h) is closed and bounded from below by − 1
2 Tr(g∗h−1g). Hence it

defines a self-adjoint operator, which we temporarily denote by C. It satisfies that(
1 + dΓ(h)

) 1
2 (i + C)−1 (1 + dΓ(h)

) 1
2 is bounded. (3.143)
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Proof. By Proposition 3.22,

1
2
|
(
Φ|(â∗(g) + â(g))Φ

)
| ≤ c(Φ|dΓ(h)Φ) +

1
2c

Trg∗h−1g‖Φ‖2. (3.144)

Setting cB ‖h−
1
2 gh

− 1
2
‖ < 1 and using the KLMN theorem, we see that form (3.142) is closed and

bounded from below and hence defines a bounded from below self-adjoint operator C. Setting c = 1,
we see that

−
1
2

Tr(g∗h−1g)<C. (3.145)

(3.143) is also a consequence of the KLMN theorem. �

Theorem 3.24. The operator defined in Theorem 3.23 is the normally ordered quantization of
B. In other words, following the notation introduced in Subsection III G, C = Ĥn

B.

On a formal level, the above theorem is essentially obvious. However, there are technical difficul-

ties for which we will need a few technical lemmas. In these lemmas, we use h ≥ 0 and ‖h−
1
2 gh

− 1
2
‖ < 1.

Note that under this assumption, iτ belongs to the resolvent set of B for τ , 0.

Lemma 3.25. For τ , 0, B(τ2 + B2)−1 has a dense range.

Proof. We write

B(τ2 + B2)−1 = (iτ + B)−1(−iτ + B)−1B. (3.146)

We will show that (3.146) has a dense range when restricted to DomB.
First note that B = AS, where A is self-adjoint and S is unitary. Hence DomB = SDomA and

BDomB = ADomA. This shows that BDomB is dense.
Then we apply Lemma A.3 twice to the bounded operators with dense range (iτ + B)�1 and (�iτ

+ B)�1. �

Lemma 3.26. For τ , 0, the operator A
− 1

2
0 B(τ2 + B2)−1 is bounded.

Proof. First note that



(iτS + A0)−
1
2 GS(iτS + A0)−

1
2 

= 

h

1
2 gh

1
2 

< 1. (3.147)

Next we check that all the terms on the right of the following identity are bounded:

A
− 1

2
0 B(iτ + B)−1 = (1 + A

− 1
2

0 GSA
− 1

2
0 ) (3.148)

×A
1
2
0 (iτS + A0)−

1
2 (3.149)

×
(
1 + (iτS + A0)−

1
2 GS(iτS + A0)−

1
2
)−1 (3.150)

× (iτS + A0)−
1
2 . (3.151)

[To see that (3.150) is well defined, we use (3.147).] Therefore, A
− 1

2
0 B(iτ + B)−1 is bounded, which

obviously implies the boundedness of A
− 1

2
0 B(τ2 + B2)−1. �

Proof of Theorem 3.24. Consider w ∈RanB(B2 + 1)−1. By Lemma 3.25, such w are dense in W.
Set



wt

w t


B eitB



w

w


. (3.152)
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By Lemma 3.26, ‖h−
1
2 wt ‖ is uniformly bounded. Therefore, by Propostion 3.3,

(1 + dΓ(h))−
1
2 φ̂(wt , w t)(1 + dΓ(h))−

1
2 (3.153)

is uniformly bounded. Hence, by (3.143), so is

k(t)B (C + i)−1e−itC φ̂(wt , w t)e
itC(C + i)−1. (3.154)

We know that (wt , w t) ∈Dom(B). But this does not necessarily imply that wt ∈Domh. It only
implies wt ∈Domh

1
2 . Therefore, strictly speaking, we cannot write

d
dt
wt = ihwt − igw t , (3.155)

but only
d
dt

h−
1
2 wt = ih−

1
2 hwt − ih−

1
2 gw t . (3.156)

However, using the boundedness of (i + C)−1 (i + dΓ(h)
) 1

2 and Proposition 3.3, it is sufficient to
compute

(i + C)−1i
[
C, φ̂(wt , w t)

]
(i + C)−1 (3.157)

= (i + C)−1
(
â∗(hwt) + â(gw t) − â(hwt) − â∗(gw t)

)
(i + C)−1 (3.158)

= (i + C)−1φ̂
( d

dtwt , d
dtw t

)
(i + C)−1. (3.159)

Therefore,

d
dt

k(t) = (C + i)−1e−itC
(
−i

[
C,

(
φ̂(wt , w t)

)]
(3.160)

+ φ̂
(

d
dtwt , d

dtw t

))
eitC(C + i)−1 = 0. (3.161)

This shows that k(t) does not depend on t. Therefore,

(C + i)−1eitC φ̂(w, w)e−itC(C + i)−1 = (C + i)−1φ̂(wt , w t)(C + i)−1. (3.162)

This proves that eitC implements eitB.
Clearly, γΩ = 0, αΩ = 0, and Ω ∈Dom(dΓ(h)

1
2 )=Dom(|C |

1
2 ). Therefore,

(Ω|CΩ)= 0. (3.163)

Thus, by Proposition 3.13, the operator temporarily denoted as C is the normally ordered quantization
of B. �

L. Infimum of normally ordered Hamiltonians

In Subsection II J, in the finite dimensional context, we defined En
B as the infimum of the normally

ordered Hamiltonian Ĥn
B. In infinite dimensions, it is useful to define En

B independently of whether
Ĥn

B exists or not.
As a basic condition on the symplectic generator B, we assume that h > 0, ‖h−

1
2 gh

− 1
2
‖ < 1. As

in (2.68), for σ ∈R, we set

AσBA0 + σGS =


h σg

σg h


(3.164)

so that A = A1.
Out of the formulas for En listed in (2.70)–(2.75) valid in finite dimensions, the most suitable

one for infinite dimensions seems to be (2.74), which we choose as the definition of En,

En
BB

1
8

∫ 1

0
dσTrA

1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2 A

1
2
σGS, (3.165)
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provided that the above integral is well defined.
(2.75) is another formula for En useful in infinite dimensions:

Proposition 3.27. We have

En
BB

1
8

∫ 1

0
dσ

∫
dτ
π

(1 − σ)Tr
1

(Aσ + iτS)
SG

1
(Aσ + iτS)

SG. (3.166)

More precisely, if (3.166) is well defined as a convergent integral, then it coincides with (3.165).

Below we list a few criteria for the existence of En
B.

Theorem 3.28. (1) Let ‖g‖1 < ∞. Then En
B is well defined by (3.165).

(2) Let s− < 1
2 < s+. Suppose that Trgh

−s−
g∗h−s− <∞ and Trgh

−s+
g∗h−s+ <∞. Then En

B is well defined
by (3.165) or (3.166).
(3) Suppose that Trgh�1g∗ < ∞. Then En

B is well defined by (3.165) or (3.166).

Proof. (1): Repeating the arguments that lead to inequality (3.109), we obtain for σ ∈ [0, 1]

√
1 − aσ
√

1 + aσ
Aσ ≤ (A

1
2
σSAσSA

1
2
σ)

1
2 ≤

√
1 + aσ
√

1 − aσ
Aσ . (3.167)

Therefore, Y BA
1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2 A

1
2
σ is uniformly bounded.

We apply inequality (A7) to the operator Y and X := GS. We obtain

|En | ≤
1
8

∫ 1

0
dσ��TrA

1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2 A

1
2
σGS�� (3.168)

≤
1
8

∫ 1

0
dσ

A

1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2 A

1
2
σ



Tr
√

G2 ≤ cTr
√

G2. (3.169)

But Tr
√

G2 = 2Tr
√

gg. This proves (1).
(2): First note that for 0 ≤ s ≤ 1,

‖A
s
2
0 (A0 + iτS)−

1
2 ‖ ≤ τ−

1
2 + s

2 . (3.170)

Indeed,

A
s
2
0 (A0 + iτS)−

1
2 =A

s
2
0 (A0 + iτS)−

s
2 × (A0 + iτS)−

1
2 + s

2 , (3.171)

where the first term is bounded by 1 and the second term is bounded by τ−
1
2 + s

2 .
Moreover,

‖(A0 + iτS)−
1
2 GS(A0 + iτS)−

1
2 ‖ ≤ ‖A

− 1
2

0 GSA
− 1

2
0 ‖ = a < 1. (3.172)

Therefore, we can write

(Aσ + iτS)−1 = (A0 + iτS)−
1
2
(
1 − σ(A0 + iτS)−

1
2 GS(A0 + iτS)−

1
2
)−1(A0 + iτS)−

1
2 . (3.173)

(3.173) together with (3.170) and (3.172) yields



A
s
2
0 (Aσ + iτS)−1A

s
2
0



 ≤ (1 − a)−1τ−1+s. (3.174)

Now,
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���Tr
1

(Aσ + iτS)
GS

1
(Aσ + iτS)

G��� (3.175)

≤



A

s
2
0 (Aσ + iτS)−1A

s
2
0





2
TrGA−s

0 G∗A−s
0 (3.176)

≤ (1 − a)−2τ2s−2TrGA−s
0 G∗A−s

0 , (3.177)

where we first used inequality (A8) with Y =ZBA
s
2
0 (Aσ + iτS)−1A

s
2
0 and XBA

− s
2

0 GA
− s

2
0 , and then

we applied (3.174). Thus

|En | ≤
1
8

∫ 1

0
dσ

∫
dτ
π

(1 − σ)���Tr
1

(Aσ + iτS)
GS

1
(Aσ + iτS)

G��� (3.178)

≤ cTrGA−s+
0 G∗A−s+

0

∫ 1

0
τ2s+−2dτ + cTrGA−s−

0 G∗A−s−
0

∫ ∞
1

τ2s−−2dτ. (3.179)

But TrGA−s±
0 GA−s±

0 = 2Trgh−s±gh
−s±

. This proves (2).
(3): Applying (A8) to

Y =ZB
(
1 − σ(A0 + iτS)−

1
2 GS(A0 + iτS)−

1
2
)−1, XB (A0 + iτS)−

1
2 GS(A0 + iτS)−

1
2 ,

and using (3.173) and (3.172), we obtain

���Tr
1

(Aσ + iτS)
GS

1
(Aσ + iτS)

GS��� (3.180)

= TrXYXY ≤ ‖Y ‖2TrXX∗ (3.181)

≤
1

(1 − σa)2
Tr

1

(A2
0 + τ2)

1
2

G
1

(A2
0 + τ2)

1
2

G∗ (3.182)

≤
1

(1 − σa)2
TrG

1

(A2
0 + τ2)

G∗. (3.183)

Therefore,

|En | ≤
1
8

∫ 1

0
dσ

∫
dτ
π

(1 − σ)���Tr
1

(Aσ + iτS)
GS

1
(Aσ + iτS)

GS��� (3.184)

≤
1
8

∫ 1

0
dσ

(1 − σ)

(1 − aσ)2

∫
dτ
π

TrG
1

(A2
0 + τ2)

G∗ (3.185)

=
(− log(1 − a) − a)

8a2
TrG

1
A0

G∗. (3.186)

But TrG 1
A0

G= 2Trgh−1g∗. This proves (3). �

Theorem 3.29. Suppose that Trgh�1g∗ < ∞, as in Theorem 3.28 (3). Let Ĥn
B be defined as in

Subsection III K. Let En
B be defined as in (3.165). Then

En
B = inf Ĥn

B. (3.187)

If W is finite dimensional, then (3.187) was proven in Theorem 2.6. In our proof, we will reduce
the full problem to this case. The proof will be divided into several steps.
Step 1. Suppose that there exists a finite dimensional W0 such that Rang ⊂W0 and h preserves W0.
Then (3.187) is true.

Proof. Set W1BW⊥0 . Note that g = g# implies that W1 ⊂Kerg. Let h0 and g0 denote the restric-
tions of g and h to W0. Let h1 denote the restriction of h to W1. Consider the symplectic generator
on W0,
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B0B



h0 −g0

g0 −h0


, (3.188)

and the corresponding normally ordered Bogoliubov Hamiltonian

Ĥn
0 B Ĥn

B0
= dΓ(h0) +

1
2
(
â∗(g0) + â(g0)

)
. (3.189)

We will write En
0 , respectively, En, for En

B0
, respectively, En

B.
We have the decomposition

Γs(W )' Γs(W0) ⊗ Γs(W1). (3.190)

The operator Ĥn can be decomposed as

Ĥn ' Ĥn
0 ⊗ 1 + 1 ⊗ dΓ(h1). (3.191)

We have

inf Ĥn = inf Ĥn
0 =En

0 =En, (3.192)

where in the middle step we used the finite dimension of W0. �

Step 2. Suppose that g is finite dimensional and 1[δ,δ−1](h)g= g. Then (3.187) is true.

Proof. Let ε > 0. Let us set

πε ,nB 1[ (1+ε )n,(1+ε )n+1[ (h), (3.193)

hε B
∞∑

n=−∞

(1 + ε)n+1πε ,n. (3.194)

Note that

(1 + ε)−1hε ≤ h ≤ hε . (3.195)

Hence,

dΓ
(
(1 + ε)−1hε

)
≤ dΓ(h) ≤ dΓ(hε ). (3.196)

Now

Ĥn
ε ,−B dΓ

(
(1 + ε)−1hε

)
+

1
2
(
â∗(g) + â(g)

)
≤ Ĥn ≤ dΓ

(
hε

)
+

1
2
(
â∗(g) + â(g)

)
=: Hn

ε ,+.

Let Wε ,0 be the smallest subspace of W containing Rang and left invariant by hε . In other words,

Wε ,0BSpan{πε ,nw : w ∈Rang}. (3.197)

Note that πε ,nRang = 0 for |n| large enough. Therefore, Wε ,0 is finite dimensional.
Thus Ĥn

ε ,± satisfy the conditions of Step 1, and so

inf Ĥn
ε ,± =En

ε ,± (3.198)

in the obvious notation. Using Lemma 3.30, we show that

lim
ε→0

En
ε ,± =En. (3.199)

Besides,

inf Ĥn
ε ,− ≤ inf Hn ≤ inf Ĥn

ε ,+. (3.200)

�

Step 3. Suppose that for some δ > 0 we have 1[δ,δ−1](h)g= g. Then (3.187) is true.
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Proof. We know that h−
1
2 g is Hilbert-Schmidt. Finite dimensional operators are dense in Hilbert-

Schmidt operators. Therefore, given ε > 0, we can find a finite dimensional gε such that gε = g#
ε ,

1[δ,δ−1](h)g= g, and



h−
1
2 g − h−

1
2 gε

2 =

√
Tr(g − g′δ)h−1(g − g′δ)< ε2. (3.201)

Now, the Hilbert-Schmidt norm dominates the operator norm. Hence, (3.201) implies

‖h−
1
2 (g − gε )‖ ≤ ε . (3.202)

As a consequence,

‖h−
1
2 (g − gε )h

− 1
2
‖ ≤ εδ−

1
2 . (3.203)

Therefore, by (3.203),

‖h−
1
2 gεh

− 1
2
‖ ≤ ‖h−

1
2 gh

− 1
2
‖ + ‖h−

1
2 (g − gε )h

− 1
2
‖ (3.204)

≤ a + εδ−
1
2 =: a1. (3.205)

By choosing ε small enough, we can guarantee that a1 < 1.
Now

Ĥn = (1 − ν)dΓ(h) +
1
2
(
â∗(gε ) + â(gε )

)
(3.206)

+νdΓ(h) +
1
2
(
â∗(g − gε ) + â(g − gε )

)
(3.207)

≥ (1 − ν)dΓ(h) +
1
2
(
â∗(gε ) + â(gε )

)
−
ε2

ν
, (3.208)

Ĥn = (1 + ν)dΓ(h) +
1
2
(
â∗(gε ) + â(gε )

)
(3.209)

−νdΓ(h) +
1
2
(
â∗(g − gε ) + â(g − gε )

)
(3.210)

≤ (1 + ν)dΓ(h) +
1
2
(
â∗(gε ) + â(gε )

)
+
ε2

ν
. (3.211)

The Hamiltonians (1 ± ν)dΓ(h) + 1
2

(
â∗(gε ) + â(gε )

)
satisfy the assumptions of Step 2. �

Step 4. (3.187) is true without additional assumptions.

Proof. h−
1
2 g is Hilbert-Schmidt and s- lim

δ→0
1[δ,δ−1](h)= 1. Hence, for any ε > 0, we can find

1 ≥ δ > 0 such that if we set

gδB 1[δ,δ−1](h)g1[δ,δ−1](h), (3.212)

then



h−
1
2 g − h−

1
2 gδ

2 =

√
Tr(g − gδ)h−1(g − gδ)< ε . (3.213)

Note that

‖h−
1
2 gδh

− 1
2
‖ ≤ ‖h−

1
2 gh

− 1
2
‖ = a. (3.214)

Then we estimate similarly as at the end of Step 3. We argue that we need only estimates about the
Hamiltonians (1 ± ν)dΓ(h) + 1

2

(
â∗(gδ) + â(gδ)

)
, which satisfy the assumptions of Step 3. �

A result about the continuity of En
B with respect to h, which we needed in the above proof, is

described below.
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Lemma 3.30. Let

B=


h −g

g −h


, B′ =



h′ −g

g −h
′


(3.215)

with

‖h−
1
2 gh

− 1
2
‖, ‖h′−

1
2 gh

′− 1
2
‖ ≤ a, Trgh−1g∗, Trgh′−1g∗ ≤ a1.

Then


En

B − En
B′



 ≤ c‖h−
1
2 (h − h′)h′−

1
2 ‖, (3.216)

where c depends only on a and a1.

Proof.
En

B − En
B′

=
1
8

∫ 1

0
dσ

∫
dτ
π

(1 − σ)Tr
1

(Aσ + iτS)
(A′0 − A0)

1
(A′σ + iτS)

SG
1

(Aσ + iτS)
SG

+
1
8

∫ 1

0
dσ

∫
dτ
π

(1 − σ)Tr
1

(A′σ + iτS)
SG

1
(Aσ + iτS)

(A′0 − A0)
1

(A′σ + iτS)
SG.

Then we argue similarly as in the proof of Theorem 3.28 (3). �

M. Weyl Bogoliubov Hamiltonian

Weyl Bogoliubov Hamiltonians play a central role in the theory of Bogoliubov Hamiltonians,
providing the simplest algebraic formulas. Unfortunately, in infinite dimensions, they are usually ill
defined.

If AB ≥ 0, then we can define

Ew
B :=

1
4

Tr

√
A

1
2
B SABSA

1
2
B , (3.217)

which is a nonnegative number, often infinite. Recall that in finite dimensions, it coincides with the
infimum of Ĥw

B .
The following theorem gives (rather restrictive) conditions when we can define the Weyl

quantization in any dimension.

Theorem 3.31. Assume that h> 0, ‖h−
1
2 gh

− 1
2
‖ =: a < 1, and Trh<∞. Then the following hold:

(1) Trg∗h�1g < ∞.
(2) ‖g‖1 < ∞.
(3) By (1), we can define Ĥn

B as in Subsection III K and En
B is well defined as in Subsection III L,

and by Theorem 3.29,

inf Hn
B =En

B. (3.218)

(4) By Theorem 3.18 (3), Hw
B is well defined. We have

Ĥw
B B Ĥn

B +
1
2

Trh. (3.219)

(5)
√

A
1
2
B SABSA

1
2
B is a trace class so that Ew

B is finite. We have

Ew
B =En

B +
1
2

Trh, (3.220)

Ew
B = inf Ĥw

B . (3.221)
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Proof. We have

h−
1
2 gg∗h−

1
2 = h−

1
2 gh

− 1
2 hh

− 1
2 g∗h−

1
2 . (3.222)

But h−
1
2 gh

− 1
2 and h

− 1
2 g∗h−

1
2 are bounded and h is a trace class. Therefore, (3.222) is a trace class.

Hence (1) is true and

‖g‖1 = ‖h
1
2 h−

1
2 gh

− 1
2 h

1
2
‖1 ≤ ‖h

1
2 ‖2‖h

− 1
2 gh

− 1
2
‖‖h

1
2
‖2 ≤ a‖h‖1 (3.223)

proves (2).
We know that h is a trace class. Besides, ‖g‖1 <∞ implies ‖g‖2 <∞. Therefore, the assumptions

of Theorem 3.18 (3) are satisfied. Therefore, Ĥw
B is well defined.

By (3.107) and (3.108), √
A

1
2 SASA

1
2 ≤

(1 + a)
1
2

(1 − a)
1
2

A ≤
(1 + a)

3
2

(1 − a)
1
2

A0. (3.224)

But A0 is a trace class, so is the left hand side of (3.224).
By repeating the arguments of Theorem 2.6, we see that (3.220) is true. By Theorem 3.18 (3),

we have (3.219). Combining (3.218), (3.220), and (3.219), we obtain (3.221). �

N. Infimum of the 2nd order renormalized Hamiltonian

Recall that in Subsections II L and II M, we discussed the 2nd order renormalized Hamiltonians
Ĥ2ren

B and its infimum E2ren
B in the context of finite dimensions. These objects are of course especially

interesting in infinite dimensions.
Note that it may happen that E2ren

B is well defined and Ĥ2ren
B is not. In this subsection, we discuss

only E2ren
B , without asking whether Ĥ2ren

B exists.
We will use the framework of Subsection II M with λ = 1. That means we assume that h0 > 0, h

= h0 + h1, h2
1 = gg, and h1g= gh1. Recall that we have

B0 =



h0 0

0 −h0


, (3.225)

A0 =B0S =


h0 0

0 h0


, (3.226)

B2
0 =A2

0 =



h2
0 0

0 h
2
0


, (3.227)

V =B2 − B2
0 =



h0h1 + h1h0 −h0g + gh0

gh0 − h0g h0h1 + h0h1


. (3.228)

We use (2.111) to define E2ren
B ,

E2renB−
1
4

∫
Tr

1

B2
0 + τ2

V
1

B2 + τ2

(
V

1

B2
0 + τ2

)2
τ2 dτ

π
, (3.229)

provided that the above integral is well defined. Below we give a simple criterion for the well
definedness of E2ren.

Theorem 3.32. Suppose that



B−1
0 VB−1

0


=: a1 < 1, (3.230)

and
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L3B
1

4 · 6

∫
Tr

(
V

1

B2
0 + τ2

)3 dτ
π

, (3.231)

L4 B −
1

4 · 8

∫
Tr

(
V

1

B2
0 + τ2

)4 dτ
π

(3.232)

are finite. (In the case of L4, the meaning of the assumption is clear since the integrand is always
positive. This does not need to be the case of L3—here we assume that the integrand is integrable.)
Then E2ren is well defined.

Proof. Assumption (3.230) is equivalent to

a1B2
0 ≤ V ≤ a1B2

0. (3.233)

Therefore,

B2 =B2
0 + V ≥ (1 − a1)B2

0. (3.234)

Hence, with cB 1
1−a1

> 0,

1

(B2 + τ2)
≤ c

1

(B2
0 + τ2)

. (3.235)

Besides,

E2renB
1

4 · 6

∫
Tr

(
V

1

B2
0 + τ2

)3 dτ
π

(3.236)

−
1
4

∫
Tr

( 1

B2
0 + τ2

V
)2 1

B2 + τ2

(
V

1

B2
0 + τ2

)2
τ2 dτ

π
. (3.237)

The first term is precisely L3. The second term is controlled by L4 because

0 ≤
1
4

∫
Tr

( 1

B2
0 + τ2

V
)2 1

B2 + τ2

(
V

1

B2
0 + τ2

)2
τ2 dτ

π
(3.238)

≤
c
4

∫
Tr

( 1

B2
0 + τ2

V
)2 1

B2
0 + τ2

(
V

1

B2
0 + τ2

)2
τ2 dτ

π
(3.239)

=
c

4 · 8

∫
Tr

(
V

1

B2
0 + τ2

)4 dτ
π
= −cL4. (3.240)

To pass from (3.239) to (3.240), we use identity (2.95), which involves integration by parts. �
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APPENDIX: USEFUL STRUCTURES AND RESULTS

1. Complex conjugate space

This appendix is a side remark about complex conjugate spaces. This well known but abstract
and somewhat confusing concept appears naturally in the context of Bogoliubov Hamiltonians. We
follow Ref. 7.

Let W be a Hilbert space. By definition, a space complex conjugate to W is another Hilbert space
W equipped with a fixed anti-unitary map χ :W→W.

In the literature, various authors use several concrete realizations of χ and W.
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(1) We can assume that W=W and χ is antiunitary on W satisfying χ2 = 1. Suppose that we
choose a basis fixed by χ (which is always possible). Then χ amounts to conjugating the
components of vectors in this basis.

(2) We can also identify W with the space of continuous linear functionals on W. We then define
χ to be the Riesz isomorphism, that is,

〈χz |w〉B (z |w), (A1)

where (·|·) denotes the scalar product and 〈·|·〉 denotes the action of a linear functional. If we
choose an orthonormal basis inW and the dual basis inW, then again χ amounts to conjugating
the components of vectors in this basis.

(3) Finally, one can set W=W as the real vector space, changing only the complex structure to the
opposite one and the scalar product to the complex conjugate of the original scalar product.
χ is defined to be the identity operator. If we fix any basis, then similarly as before, χ is
conjugating the components of vectors.

Interpretation (1) is the most naive one. It is often natural—especially ifW is L2 of some measure
space. It is used, e.g., in Sec. 1 or in Ref. 12. Interpretation (2) is used in Ref. 15. Interpretation (3) is
probably the most “orthodox” option—it does not invoke anything besides the vector space structure.
In particular, it does not involve the Hilbert space structure of W.

Note that for all three interpretations, in typical bases, the action of χ is equivalent to conju-
gating components of vectors. Similarly χpχ�1 and χqχ amount to conjugating matrix elements of
p and q.

2. ∗-automorphisms of the algebra of bounded operators

Let H be a Hilbert space. A bijective linear map α on B(H) is a ∗-automorphism if

α(BC)= α(B)α(C), α(C∗)= α(C)∗, B, C ∈ B(H). (A2)

Proposition A.1 (Example 3.2.14, Ref. 4). The following statements are equivalent:

(1) α is a∗-automorphism of B(H).
(2) There exists a unitary U ∈ B(H) such that

α(C)=UCU∗, C ∈ B(H). (A3)

If (1) and (2) hold, then U is determined uniquely up to a phase factor.

Let R 3 t 7→ αt be a 1-parameter group of ∗-automorphisms of B(H). We say that it is a C∗0-group
if t 7→ αt(C) for any C ∈ B(H) is weakly continuous.

Proposition A.2 (Example 3.2.35, Ref. 4). The following statements are equivalent:

(1) t 7→ αt is a C∗0-group of ∗-automorphisms of B(H).
(2) There exists a self-adjoint H on H such that

αt(C)= eitHCe−itH , C ∈ B(H). (A4)

If (1) and (2) hold, then H is defined uniquely up to an additive real constant.

3. Useful identities and inequalities
∫

dτ
π

1

(C2 + τ2)
=

1
√

C2
. (A5)

∫
τ2dτ
π

1

(C2 + τ2)2
=

1

2
√

C2
. (A6)

|TrXY | ≤ ‖Y ‖Tr
√

XX∗. (A7)
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|TrXYXZ | ≤
√

TrXYY ∗X∗
√

XZZ∗X∗ ≤ ‖Y ‖‖Z ‖TrXX∗. (A8)

‖a11‖1 + ‖a22‖1 ≤











a11 a12

a21 a22









1

. (A9)

4. Useful lemmas

Lemma A.3. Let C be a bounded operator on W with a dense range. Let D be a dense subspace
of W. Then CD is dense.

Proof. Let w ∈W. We can find v1 ∈W such that ‖w − Cv1‖ <
ε
2 . We can find v2 ∈D such that

‖v1 − v2‖ <
ε

2‖C ‖ . Now
‖w − Cv2‖ < ‖w − w1‖ + ‖Cv1 − Cv2‖ < ε . (A10)

�

Lemma A.4. Suppose that h1 and h2 are self-adjoint operators onW such that for any w, w ′ ∈W,

lim
t→0

1
t

((
w |eith1w ′

)
−

(
w |eith2w ′

))
= 0. (A11)

Then h1 = h2.

Proof. Let w ∈Domh1 and w ∈Domh2. Then (A11) implies

(h1w |w
′)= (w |h2w

′). (A12)

This means that h1 ⊂ h∗2 = h2 and h2 ⊂ h1 = h∗1. Hence h1 = h2. �
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