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Abstract

The main purpose of these notes is a review of various models of Quan-
tum Field Theory involving quadratic Lagrangians. We discuss scalar and
vector bosons, spin 1

2
fermions, both neutral and charged. Beside free the-

ories, we study their interactions with classical perturbations, called, de-
pending on the context, an external linear source, mass-like term, current
or electromagnetic potential. The notes may serve as a first introduction
to QFT.
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1.1.4 Poincaré group . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 Double covering of the Poincaré group . . . . . . . . . . . 13
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0 Introduction

In these notes we discuss various models of Quantum Field Theory in 1+3
dimensions involving quadratic Lagrangians or, equivalently, quadratic Hamil-
tonians.

First of all, we describe basic types of free fields:

(1) neutral scalar bosons,

(2) neutral massive vector bosons (“massive photons”),

(3) neutral massless vector bosons (“massless photons”),

(4) charged scalar bosons,

(5) (charged) Dirac fermions,

(6) (neutral) Majorana fermions.

We also consider free fields perturbed by a linear or quadratic perturbation
involving a classical (c-number) function.

(1) neutral scalar bosons interacting with a linear source,
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(2) neutral scalar bosons interacting with a mass-like perturbation,

(3) massive photons interacting with a classical current,

(4) massless photons interacting with a classical current,

(5) charged scalar bosons interacting with an electromagnetic potential,

(6) Dirac fermions interacting with an electromagnetic potential.

All the above models are (or at least can be) well understood in the non-
perturbative sense. Perturbation theory is not necessary to compute their scat-
tering operators and Green’s functions, which is not the case (at least so far) of
truly interacting models.

Quantum fields interacting with classical perturbations is a topic with many
important applications to realistic physical systems. Therefore, the formalism
developed in our text is well motivated physically.

Clearly, many important issues of quantum field theory are outside of the
scope of free fields interacting with classical perturbations. However, surpris-
ingly many difficult topics can be discussed already on this level. Therefore, we
believe that our text has pedagogical value, as a kind of an introduction to full
quantum field theory.

In our text we stress the deductive character of quantum field theory. Models
that we discuss are quite rigid and built according to strict principles. Among
these principles let us mention the Poincaré covariance, the Einstein causality
and the boundedness of the Hamiltonian from below. Some of these principles
are encoded in the Haag-Kastler and Wightman axioms. Even if these axioms
are often too restrictive, they provide useful guidelines.

The only known models for Haag-Kastler or Wightman axioms in 1+3 dimen-
sions are free theories. Their scattering theory is trivial. To obtain interesting
physical information one needs interacting theories. Unfortunately, interacting
theories are known only perturbatively.

Free theories are the quantizations of covariant 2nd order linear hyperbolic
equations on the Minkowski space. These equations can be perturbed by 0th or
1st order terms involving an arbitrary space-time functions called, depending
on the context, a classical (=external) linear source, mass-like term, current or
electromagnetic potential. We can consider the quantization of the perturbed
equation. Such a theory is still essentially exactly solvable, since the Hamilto-
nian is quadratic. It has no Poincaré covariance. However, it still gives rise to
a net of observable algebras satisfying the Einstein causality.

In our discussion we always start from the study of the classical theory of
a covariant 2nd order linear hyperbolic equation. In particular, we discuss this
equation from the Hamiltonian and Lagrangian point of view. Then we discuss
its quantization. Even though in all these cases the Hamiltonian is quadratic,
its quantization often has various subtle points. In some cases, especially for
vector fields, there are several natural approaches to quantization, which in
the end lead to the same physical results. We try to discuss various possible
approaches. In our opinion, the existence of seemingly different formalisms
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for the same physical system constitutes one of the most confusing aspects of
quantum field theory.

Classical perturbations that we consider are usually described by smooth
space-time functions that decay fast both in space and time. In particular,
their dynamics is typically described by time-dependent Hamiltonians. This is
a certain minor difficulty, which is often ignored in the literature. We discuss
how to modify the usual formalism in order to deal with this problem.

The models that we discuss illustrate many problems of interacting theories,
such as the ultraviolet problem, the infrared problem and the gauge invariance.

The ultraviolet problem means that when we try to define a theory in a
naive way some integrals are divergent for large momenta. In the context of our
paper this is never due to classical perturbations, which we always assume to be
smooth – the source of ultraviolet divergences is the behavior of propagators.

The ultraviolet problem is already visible when we consider neutral fields
with a masslike perturbation or charged fields with a classical electromagnetic
potential. In these systems classical dynamics exists under rather weak assump-
tions. However there are problems with the quantum dynamics.

In some cases the quantum dynamics cannot be implemented on a Hilbert
space. This is the case of charged particles (bosons or fermions) in the presence
of variable spatial components of the electromagnetic potential. If the electro-
magnetic potential goes to zero in the past and future, then the object that
exists under rather weak assumptions is the scattering operator.

Even if we are able to implement the classical dynamics or the classical scat-
tering operator, we encounter another unpleasant surprise. The only quantity
that is not fixed by the classical considerations is the phase factor of the scat-
tering operator, written as e−iE/~, where E is usually called the vacuum energy.
Computed naively, it often turns out to be divergent. In order to make this
phase factor finite it is necessary to renormalize the naive expression. This di-
vergence appears in low order vacuum energy diagrams. It was first successfully
studied by Heisenberg and Euler in the 30’s. A quantity closely related to this
phase factor is the effective action, which for a constant field was computed
exactly by Schwinger.

The infrared problem means that in a naive theory some integrals are di-
vergent for small momenta. This problem appears already in non-relativistic
quantum mechanics – in scattering theory with Coulomb forces. These forces
are long-range, which makes the usual definition of the scattering operator im-
possible [10]. Its another manifestation is the appearance of inequivalent rep-
resentations of canonical commutation relations when we consider scattering of
photons against a classical current that has a different direction in the past and
in the future [9, 11]. Thus, even in these toy non-relativistic situations the usual
scattering operator is ill-defined. Therefore, it is not surprising that (much big-
ger) problems are present eg. in the full QED. One can cope with the infra-red
problem by approximating massless photons with massive ones and restricting
computations only to inclusive cross-sections justified by an imperfect resolution
of the measuring device [47, 22, 45].

The expression gauge invariance has in the context of quantum field theory

8



several meanings.

(1) The most common meaning, discussed already in the context of classi-
cal electrodynamics, is the fact that if a total derivative is added to a
4-potential solving the Maxwell equation, then it still solves the Maxwell
equations. Of course, this no longer holds for the Proca equations – the
massive generalization of the Maxwell equations. Therefore, it is often
stressed that gauge invariance implies that the photons are massless.

(2) There exists another meaning of gauge invariance: we can multiply charged
fields by a space-time dependent phase factor and compensate it by chang-
ing the external potentials.

1. and 2. go together in the full QED, which is invariant with respect to
these two gauge transformations applied simultaneously.

(3) One often uses the term “gauge invariance” in yet another meaning: To
compute the scattering operator we can use various (free) photon prop-
agators. Equivalently, we have the freedom of choosing a Lagrangian in
the path integral formalism. This meaning applies both to massive and
massless photons. Some of these propagators are distinguished, such as
the propagator in the Feynman or the Coulomb gauge. (Note, however,
that time-ordered N -point Green’s functions depend on the choice of the
propagator).

All these three meanings of gauge invariance can be illustrated with models
that we consider.

Our paper is most of the time rigorous mathematically. In the places where
it is not, we believe that many readers can quite easily make it rigorous. We
try to make the presentation of various models parallel by applying, if possible,
coherent notation and formalism. This makes our text sometimes repetitious –
we believe that this helps the reader to understand small but often confusing
differences between distinct models.

Mathematical language that we use is most of the time elementary. Some-
times we use some mathematical concepts and facts that are, perhaps, less
commonly known, such as C∗-algebras, von Neumann algebras, the Schwartz
Kernel Theorem. The readers unfamiliar with them should not be discouraged
– their role in the article is minor.

Most of the material of this work has been considered in one way or another
in the literature. Let us give a brief and incomplete review of references.

On the formal level examples of quantum fields with classical perturbations
are discussed in most textbooks on quantum field theory, see eg. [21, 22, 36, 40,
45, 44, 5].

Linear hyperbolic equations is a well established domain of partial differential
equations, see eg [3].

Axioms of quantum field theory are discussed in [42, 18, 17].
A necessary and sufficient condition for the implementability of Bogoliubov

transformation was given by Shale for bosons [38] and by Shale and Stinespring
for fermions [39], see also [11]
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Problems with implementability of the dynamics of charged particles in ex-
ternal potentials was apparently first noticed on a heuristic level in [35]. It
was studied rigorously by various authors. In particular, charged bosons were
studied in [37, 27, 28, 29, 20, 1] and charged fermions in [32, 25, 24, 33, 8].

The renormalization of the vacuum energy goes back to pioneering work of
[19]. In the mathematically rigorous literature it leads to the concept of a causal
phase discussed in [34].

The infrared problem goes back to [6, 23], see also [9].
The Gupta-Bleuler method of quantization of photon fields goes back to

[15, 16]. The C∗-algebraic formulation of the subsidiary condition method is
discussed in [43].

Rigorous study of vacuum energy for Dirac fermions in a stationary potential
is given in [14].
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1 Basic concepts

1.1 Minkowski space

1.1.1 Coordinates in Minkowski space

The coordinates of the Minkowski space R1,3 will be typically denoted by xµ,
µ = 0, 1, 2, 3. By definition, the Minkowski space is the vector space R4 equipped
with the canonical pseudo-euclidean form of signature (−+ ++)

gµνx
µxν = −(x0)2 +

3∑
i=1

(xi)2.

(Throughout these notes the velocity of light c has the value 1 and we use the
Einstein summation convention). We use metric tensor [gµν ] to lower the indices
and its inverse [gµν to raise the the indices:

xµ = gµνx
ν , xµ = gµνxν .
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For a function R1,3 3 x 7→ f(x), we will sometimes use various kind of
notation for partial derivatives:

∂f(x)

∂xµ
= ∂xµf(x) = ∂µf(x) = f,µ(x).

Writing R3 we will typically denote the spatial part of the Minkowski space
obtained by setting x0 = 0. If x ∈ R1,3, then ~x will denote the projection of
x onto R3. Latin letters i, j, k will sometimes denote the spatial indices of a
vector. Note that xi = xi.

εijk denotes the 3-dimensional Levi-Civita tensor (the fully antisymmetric
tensor satisfying ε123 = 1).

For a vector field R3 3 ~x 7→ ~A(~x) we define its divergence and rotation in
the standard way:

div ~A = ∂iA
i, (rot ~A)i = εijk∂jAk.

We write ~∂ ~A as the shorthand for the tensor ∂iAj , moreover,(
~∂ ~A
)2

:=
∑
ij

(
∂iAj

)2
.

On R1,3 we have the standard Lebesgue measure denoted dx. The notation
d~x will be used for the Lebesgue measure on R3 ⊂ R1,3.

We will often write t for x0 = −x0. The time derivative will be often denoted
by a dot:

ḟ(t) =
∂f(t)

∂t
= ∂tf(t) =

∂f(x0)

∂x0
= ∂0f(x0) = f,0(x0).

θ(t) will denote the Heaviside function. We set |t|+ := θ(t)|t|.

1.1.2 Causal structure

A nonzero vector x ∈ R1,3 is called

timelike if xµx
µ < 0,

causal if xµx
µ ≤ 0,

lightlike if xµx
µ = 0,

spacelike if xµx
µ > 0.

A causal vector x is called

future oriented if x0 > 0,

past oriented if x0 < 0.

The set of future/past oriented causal vectors is called the future/past light
cone and denoted J±. We set J := J+ ∪ J−.
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If O ⊂ R1,3, its causal shadow is defined as J(O) := O + J . We also define
its future/past shadow J±(O) := O + J±.

Let Oi ⊂ R1,3, i = 1, 2. We will write O1 ×O2 iff J(O1)∩O2 = ∅, or equiv-
alently, O1 ∩ J(O2) = ∅. We then say that O1 and O2 are spatially separated.

A function on R1,3 is called space-compact iff there exists a compactK ⊂ R1,3

such that suppf ⊂ J(K). It is called future/past space-compact iff there exists
a compact K ⊂ R1,3 such that suppf ⊂ J±(K).

The set of space-compact smooth functions will be denoted C∞sc (R1,3). The
set of future/past space-compact smooth functions will be denoted C∞±sc(R1,3).

1.1.3 Fourier transform

We will use the standard definition for the Fourier transform: If R3 3 ~x 7→ f(~x)
is a function, then

Ff(~k) :=

∫
e−i~k·~xf(~x)d~x.

Often, we will drop F writing f(~k) for Ff(~k). The name of the variable should
suffice to indicate whether we use the position or momentum representation.

For the time variable (typically t) we reverse the sign in the Fourier transform

f(ε) =

∫
eiεtf(t)dt.

1.1.4 Poincaré group

The pseudo-Euclidean group O(1, 3) is called the Lorentz group. Its connected
component of unity is denoted SO↑(1, 3). The affine extension of the Lorentz
group R1,3 oO(1, 3) is called the Poincaré group.

The Lorentz group contains special elements: the time reversal T and the
space inversion (the parity) P and the space-time inversion X := PT:

T(x0, ~x) = (−x0, ~x), P(x0, ~x) = (x0,−~x), Xx = −x.

It consists of four connected components

SO↑(1, 3), T·SO↑(1, 3), P·SO↑(1, 3), X·SO↑(1, 3).

O(1, 3) has three subgroups of index two: the special Lorentz group (preserving
the spacetime orientation), the orthochronous Lorentz group (preserving the
forward light cone) and the chiral Lorentz group (preserving the spatial parity):

SO(1, 3) = SO↑(1, 3) ∪X·SO↑(1, 3), (1.1)

O↑(1, 3) = SO↑(1, 3) ∪ P·SO↑(1, 3), (1.2)

Ochir(1, 3) = SO↑(1, 3) ∪ T·SO↑(1, 3). (1.3)
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1.1.5 Double covering of the Poincaré group

The group SO↑(1, 3) has a connected double covering called Spin↑(1, 3), which
happens to be isomorphic to Sl(2,C). This defines Spin↑(1, 3) uniquely, up to
isomorphism. We have the short exact sequence

1l→ Z2 → Spin↑(1, 3)→ SO↑(1, 3)→ 1l.

The group O(1, 3) has 8 non-isomorphic double coverings ([41] Sect. 3.10).
Among them one can distinguish the groups Pin±(1, 3). They are generated by
Spin↑(1, 3) and elements P̃± and T̃± that cover P and T and satisfy

T̃2
± = ±1l, P̃2

± = ±1l, T̃±P̃± + P̃±T̃± = 0.

We have the short exact sequence

1l→ Z2 → Pin±(1, 3)→ O(1, 3)→ 1l.

Each group (1.1), (1.2) and (1.3) has two non-isomorphic double coverings.
In particular, we have

1l→ Z2 → Spin(1, 3)→ SO(1, 3)→ 1l.

The group Spin(1, 3) is contained in both Pin+(1, 3) and Pin−(1, 3). It is
obtained from Spin↑(1, 3) by adjoining X̃ satisfying X̃2 = −1l. (The other
covering, obtained by adjoining X̃ satisfying X̃2 = 1l will not play a role in our
considerations).

We also have two pairs of double coverings contained in Pin±(1, 3):

1l→ Z2 → Pin↑±(1, 3)→ O↑(1, 3)→ 1l.

obtained by adjoining P̃ satisfying P̃2 = ±1l,

1l→ Z2 → Pinchir
± (1, 3)→ Ochir(1, 3)→ 1l.

obtained by adjoining T̃ satisfying T̃2 = ±1l.
Clearly, R1,3 o Pin(1, 3) is a double covering of the Poincaré group. Its

elements will be often written as (a, Λ̃) and then the corresponding element of
R1,3 oO(1, 3) will be denoted by (a,Λ).

Obviously, all the groups discussed in this subsubsection can be complexified.
In particular, we have the group Pin(4,C), which is the complexification of both
Pin−(1, 3) and Pin+(1, 3).

It will be also useful to introduce the group Pinext(1, 3), which is a subgroup
of Pin(4,C) and is generated by Pin−(1, 3) and i1l, and also by Pin+(1, 3) and
i1l.
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1.2 General concepts of quantum field theory

1.2.1 Quantum mechanics

Quantum states are described by normalized vectors in a Hilbert space. In typ-
ical situations the dynamics is generated by a bounded from below self-adjoint
operator called the Hamiltonian. It does not affect any physical predictions if we
subtract from the Hamiltonian the infimum of its spectrum. The Hamiltonian
has often a ground state. The ground state is typically nondegenerate.

It will be convenient to formalize these properties. We will say that (H, H,Ω)
satisfy the standard requirements of quantum mechanics if

(1) H is a Hilbert space;

(2) H is a positive self-adjoint operator on H (called the Hamiltonian);

(3) Ω is a normalized eigenvector of H with eigenvalue 0.

(4) Ω is nondegenerate as an eigenvector of H.

When discussing quantization of various relativistic equations we will often
invoke the requirements (1)-(3). (In our discussion we will not need to invoke
(4), because it will follow anyway). For shortness, we will just say that (H, H,Ω)
satisfy the standard requirements of QM (1)-(3).

1.2.2 Relativistic quantum mechanics

The relativistic covariance is expressed by choosing a strongly continuous uni-
tary representation of the double cover of the Poincaré group

R1,3 o Spin↑(1, 3) 3 (x, Λ̃) 7→ U(x, Λ̃) ∈ U(H).

We will denote the self-adjoint generator of space-time translations by P =
(P 0, ~P ). P 0 = H is the Hamiltonian. ~P is called the momentum. Thus

U((t, ~x), 1l) = e−itH+i~x~P .

(We assume that the Planck constant ~ equals 1).
Representations of Spin↑(1, 3) can be divided into two categories. Integer

spin representations induce a representation of SO↑(1, 3), and half-integer rep-
resentations do not. The projections

1

2

(
1l + U(0,−1l)

)
, resp.

1

2

(
1l− U(0,−1l)

)
project onto the spaces of representations of integer, resp. half-integer spin. We
will write

I := U(0,−1l).

Anticipating the connection of spin and statistics we will call I the fermionic
parity.

The following conditions will be called the basic requirements of relativistic
quantum mechanics:
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(1) Existence of a Poincaré invariant vacuum: There exists a (normalized)
vector Ω invariant with respect to R1,3 o Spin↑(1, 3).

(2) Spectral condition: The joint spectrum of the energy-momentum operator
is contained in the forward light cone, that is, sp(P ) ⊂ J+.

(3) Uniqueness of the vacuum: The vector Ω is unique up to a phase factor.

(4) Integer and half-integer spin states live in separate superselection sectors:
Observables commute with I.

Note that conditions (1)-(3) imply the standard requirements of quantum
mechanics.

More precisely, (2) implies H ≥ 0. Conversely, the Poincaré invariance and
the boundedness from below of H implies (2).

(2) implies also that Ω is the ground state of H. (3) implies that this ground
state is unique.

Obviously, PI = IP and IΩ = Ω.
We still need some postulates that express the idea of causality. In the

mathematical physics literature one can find two basic sets of axioms that try
to formalize this concept: the Haag-Kastler and the Wightman axioms. Even
though the Wightman axioms were formulated earlier, it is more natural to start
with the Haag-Kastler axioms.

Note that we keep the basic requirements of relativistic quantum mechanics
as a part of both sets of axioms.

Remark 1.1 Sometimes the expression relativistic quantum mechanics is used
to denote the theory of relativistic linear hyperbolic equations, such as the Klein-
Gordon and Dirac equation. For the Klein-Gordon equation this is certainly
incorrect. This is a classical equation – in particular, it does not have a nat-
ural interpretation in terms of a unitary dynamics on a Hilbert space. In our
terminology Dirac equation is also a classical equation – its unitary dynamics is
non-physical because the Hamiltonian is unbounded from below.

1.2.3 Haag-Kastler axioms for observable algebras

To each open bounded setO ⊂ R1,3 we associate a von Neumann algebra A(O) ⊂
B(H). Self-adjoint elements of the algebras A(O) are supposed to describe
observables in O. This means that in principle an observer contained in O
can perturb the dynamics by a self-adjoint operator from A(O), and only from
A(O).

We will say that the family A(O), O open in R1,3, is a net of observable
algebras satisfying the Haag-Kastler axioms if the following conditions hold:

(1) Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

(2) Poincaré covariance: for (a, Λ̃) ∈ R1,3 o Spin↑(1, 3), we have

U(a, Λ̃)A(O)U(a, Λ̃)∗ = A
(
(a,Λ)O

)
.
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(3) Einstein causality: Let O1 ×O2. Then

Ai ∈ A(Oi), i = 1, 2, implies A1A2 = A2A1.

(4) Irreducibility:
(⋃
O
A(O)

)′
= Span{I, 1l}.

(5) Local bosonic/fermionic superselection rule: I commutes with A(O), for all
O.

(3) means that measurements in spatially separated regions are independent.
The least obvious axiom is that of irreduciblity and is often relaxed. Note

that in this axiom the inclusion ⊃ follows from Axiom (5).

Remark 1.2 One can ask why von Neumann algebras are used in the Haag-
Kastler axioms to describe sets of observables. We would like to argue that it is
a natural choice.

Suppose we weaken the Haag-Kaster axioms as follows: We replace the fam-
ily of von Neumann algebras A(O) by arbitrary sets B(O) of self-adjoint ele-
ments of B(H), and otherwise we keep the axioms unchanged. Then, if we set
A(O) := B(O)′′ (which obviously contain B(O)), we obtain a family of von
Neumann algebras satisfying the usual Haag-Kastler axioms. In particular, to
see that the Einstein causality still holds, we use the following easy fact:

Let B1, B2, be two ∗-invariant subsets of B(H) such that

A1 ∈ B1, A2 ∈ B2 implies A1A2 = A2A1.

Set A1 := B′′1 , A1 := B′′1 . Then

A1 ∈ A1, A2 ∈ A2 implies A1A2 = A2A1.

1.2.4 Haag-Kastler axioms for field algebras

It is often natural to consider nets of algebras containing not only observables,
but also other operators that can be useful to construct observables. They
are called field algebras and satisfy a slightly modified version of Haag-Kastler
axioms.

We say that a family of von Neumann algebras F(O) ⊂ B(H) associated
to bounded open subsets O of R1,3 is a net of field algebras in the sense of
Haag-Kastler axioms if the following conditions hold:

(1)’ Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

(2)’ Poincaré covariance: for (a, Λ̃) ∈ R1,3 o Spin↑(1, 3), we have

U(a, Λ̃)A(O)U(a, Λ̃)∗ = A
(
(a,Λ)O

)
.

(3)’ Twisted Einstein causality. Let O1 ×O2. Then

Ai ∈ F(Oi), Ai = (−1)jiIAiI, i = 1, 2, implies A1A2 = (−1)j1j2A2A1.
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(4)’ Irreducibility:
(⋃
O
F(O)

)′
= C1l.

(5)’ Local bosonic/fermionic superselection rule: IA(O)I = A(O), for all O.

The main reason for introducing the twisted Einstein causality is the need to
use anticommuting fermionic fields. Clearly, if the net F(O), O ⊂ R1,3 satisfies
the Haag-Kastler axioms for field algebras, then the net of their fermionic even
subalgebras

F0(O) := {B ∈ F(O) : IBI = B}, O ⊂ R1,3,

satisfies the Haag-Kastler axioms for observable algebras.
Another situation where we need field algebras is the case of global symme-

tries (in the old literature called sometimes gauge symmetries of the first kind).
Suppose that a group G acts on the algebras F(O) by ∗-automorphisms

G 3 g 7→ αg ∈ Aut(F(O)). (1.4)

We assume that (1.4) are compatible for various O and commute with the
fermionic parity B 7→ IBI. We define the gauge invariant subalgebras

Fgi(O) = {B ∈ F0(O) : αg(B) = B, g ∈ G}.

Clearly, the net O 7→ Fgi(O) satisfies then the Haag-Kastler axioms for observ-
able algebras except, possibly, for Axiom (4) (the irreducibility).

Note that in our formulation the decomposition H = H0 ⊕H1 given by the
operator I plays a double role.

(1) It describes the decomposition of the Hilbert space into integer and half-
integer spin representations.

(2) In the Einstein causality axiom, block-diagonal operators have the bosonic
character and block-off-diagonal operators have the fermionic character.

A priori it is not obvious that these two properties should give the same decom-
position. However, one can show that it is natural to assume from the beginning
that this is the case. This is the content the theorem about the connection of
the spin and statistics, described eg. in [42].

1.2.5 Quantum fields

In practical computations of quatum field theory the information is encoded
in quantum fields R1,3 3 x 7→ φ̂a(x), where a = 1, . . . , n enumerates the “inter-
nal degrees of freedom”, eg. the species of particles and the value of their spin
projected on a distinguished axis. These functions can be viewed as “opera-
tor valued distributions”, which become (possibly unbounded) operators when
smeared out with test functions in C∞c (R1,3). Some of the fields are bosonic,
some are fermionic. They commute or anticommute for spatially separated
points, which is expressed by the commutation/anticommutation relations

[φ̂a(x), φ̂b(y)]± = 0, (x− y)2 > 0.
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We can organize the internal degrees of freedom into a finite dimensional
vector space V = Rn. At first we restrict ourselves to real smearing functions.
Thus for any f = (fa) ∈ C∞c (R1,3,Rn) we obtain a smeared out quantum field,
which is the operator

φ̂[f ] :=
∑
a

∫
fa(x)φ̂a(x)dx. (1.5)

From the mathematical point of view it is natural to treat φ̂[f ] as the basic
objects.
1.2.6 Wightman axioms for neutral fields

We assume that V is a finite dimensional real vector space equipped with a
representation

Spin↑(1, 3) 3 Λ̃ 7→ S(Λ̃). (1.6)

We can decompose uniquely this space as V = V0 ⊕ V1. where V0, resp. V1 is
the space of integer spin, resp. half-integer spin.

We assume that the basic requirements of relativistic quantum mechanics
are satisfied.

We suppose that D is a dense subspace of H containing Ω and we have a
map

C∞c (R1,3,V) 3 f 7→ φ̂[f ] (1.7)

into linear operators on D satisfying the following conditions:

(1) Continuity: For any Φ,Ψ ∈ D,

C∞c (R1,3,V) 3 f 7→ (Φ|φ̂[f ]Ψ) (1.8)

is continuous.

(2) Poincaré covariance: for (x, Λ̃) ∈ R1,3 o Spin↑(1, 3) we have

U(x, Λ̃)φ̂[f ]U(x, Λ̃)∗ = φ̂
[
S(Λ̃)f ◦ (x,Λ)−1

]
.

(3) Einstein causality: O1 ×O2 and fi ∈ C∞c (Oi,Vji), i = 1, 2, imply

φ̂[f1]φ̂[f2] = (−1)j1j2 φ̂[f2]φ̂[f1].

(4) Cyclicity of the vacuum:{
φ̂[fn] · · · φ̂[f1]Ω : f1, . . . , fn ∈ C∞c (R1,3), n = 0, 1, 2, . . .

}
is dense in H.

(5) Hermiticity: φ̂[f ]∗ = φ̂[f ].

(6) Compatibility of I and V = V0 ⊕ V1: If f ∈ A(O,Vj), then

φ̂[f ] = (−1)jIφ̂[f ]I.

In what follows a map (1.7) satisfying Axiom (1) will be called an operator
valued distribution. By saying that it is cyclic we will mean that it satisfies
Axiom (4).
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1.2.7 Global symmetries

In the formalism of Wightman axioms we can easily encode global symmetries.
Let G be a group acting on the space V preserving the decomposition V =
V0 ⊕ V1. Then, for g ∈ G, σg(φ̂[f ]) := φ̂[gf ] extends to a ∗-automorphism of

each algebra Falg(O) and Falg
0 (O). We set Falg

gi (O) to be the subalgebra of fixed

points of this action on Falg
0 (O). One could argue that this ∗-algebra should

describe observables in O.
Note that what we described is a global symmetry and not a local gauge

invariance (in the older literature sometimes called the gauge invariance of the
second kind). Satisfactory treatment of local gauge invariance, even Abelian, in
the framework of Wightman axioms seems to be problematic. In fact, a conve-
nient description of gauge fields apparently requires a space with an indefinite
scalar product. This goes beyond the usual Wightman axioms and poses serious
technical problems [46].

Haag-Kastler axioms seem to provide a satisfactory general framework for
quantum field theory on a flat spacetime. Their weakness is the abstractness
and great generality. For instance, we do not see how to recognize that a given
family of algebras satisfying Haag-Kastler axioms corresponds to a theory with
local gauge invariance. (There exists, however, a beautiful theory developed by
Doplicher-Haag-Roberts that allows us to recognize the global symmetries.)

Wightman axioms seem more concrete. However, they have flaws. As we
mentioned earlier, they seem to be incompatible with the local gauge invariance.

In any case, both Haag-Kastler and Wightman axioms are useful as guiding
principles for quantum field theory.

1.2.8 Relationship between Haag-Kastler and Wightman axioms

“Morally”, Wightman axioms are stronger than the Haag-Kastler axioms. In
fact, let Falg(O) be the ∗-algebra in L(D) (linear operators on D) generated by

φ̂[f ] with suppf ⊂ O. Then the family of ∗-algebras O 7→ Falg(O) is almost a

net of field algebras and O 7→ Falg
0 (O) is almost a net of observable algebras in

the sense of the Haag-Kastler axioms. Unfortunately, elements of Falg(O) are
defined only on D and not on the whole H, and often do not extend to bounded
operators on H.

We know that the fields φ̂[f ] are hermitian onD. Suppose they are essentially
self-adjoint. Then their closures are self-adjoint operators on H and we could
consider the von Neumann algebra F(O) generated by bounded functions of φ̂[f ],
suppf ⊂ O. Then there is still no guarantee that the family O 7→ F0(O) satisfies
the Haag-Kastler axioms: we are not sure whether the Einstein causality holds.

To see this we recall that there are serious problems with commutation of
unbounded operators [?]. One says that two self-adjoint operators commute
(or strongly commute) if all their spectral projections commute. There exist
however examples of pairs of two self-adjoint operators A, B and a subspace
D ⊂ DomA ∩DomB with the following property:

(1) A and B preserve D and are essentially self-adjoint on D.
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(2) A and B commute on D.

(3) A and B do not commute strongly.

(4) D is dense.

More about what is known about the relationship between the Haag-Kastler
and Wightman axioms the reader can find in [2], Sect. 4.9.

1.2.9 Charged fields

In the version of Wightman axioms we gave in Subsubsect. 1.2.6 we as-
sumed that smeared fields are Hermitian and smearing functions are real. This
formalism is used mostly for neutral fields. Charged fields are described by
a pair of operator valued distributions Hermitian conjugate to one another
R1,3 3 x 7→ ψ̂a(x), ψ̂∗a(x), a = 1, . . . ,m. After smearing with complex test
functions

ψ̂[h] :=
∑
a

∫
ha(x)ψ̂a(x)dx,

ψ̂∗[h] :=
∑
a

∫
ha(x)ψ̂∗a(x)dx,

we obtain linear operators on D such that ψ̂[h]∗ is an extension of ψ̂∗[h].
Clearly, for any charged field, by setting

φ̂a,R(x) :=
1√
2

(ψ̂a(x) + ψ̂∗a(x)),

φ̂a,I(x) :=
1

i
√

2
(ψ̂a(x)− ψ̂∗a(x))

we obtain a pair of neutral fields.
One usually organizes the space describing the species of fields into two finite

dimensional spaces: a real space Vn describing neutral fields equipped with a
real representation

Spin↑(1, 3) 3 Λ̃ 7→ Sn(Λ̃) (1.9)

and a complex space Vc describing charged fields equipped with a complex rep-
resentation

Spin↑(1, 3) 3 Λ̃ 7→ Sc(Λ̃) (1.10)

The axiom about the Poincaré covariance has then the following form:

U(x, Λ̃)φ̂[f ]U(x, Λ̃)∗ = φ̂
[
Sn(Λ̃)f ◦ (x,Λ)−1

]
, f ∈ C∞c (R1,3,Vn);

U(x, Λ̃)ψ̂[h]U(x, Λ̃)∗ = ψ̂
[
Sc(Λ̃)h ◦ (x,Λ)−1

]
, h ∈ C∞c (R1,3,Vc).
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It will be convenient to reformulate this axiom in terms of the unsmeared fields:

U(a, Λ̃)φa(x)U(a, Λ̃)∗ =
∑
b

Sn−1

ab (Λ̃)φb(Λx+ a), (1.11)

U(a, Λ̃)ψa(x)U(a, Λ̃)∗ =
∑
b

Sc−1

ab (Λ̃)ψb(Λx+ a), (1.12)

1.2.10 U(1) symmetry and charge conjugation

Consider the group U(1) = R/2πZ. A global U(1) symmetry is usually encoded
by dividing fields into neutral φ and complex ψ and demanding that

σθ
(
φ̂a(x)

)
= φ̂a(x),

σθ
(
ψ̂a(x)

)
= e−iθψ̂a(x).

This obviously implies

σθ
(
ψ̂∗a(x)

)
= eiθψ̂∗a(x).

We extend U(1) 3 θ 7→ σθ to an action on all polynomials in fields.
We say that a unitary operator C is a charge conjugation if it satisfies

CΩ = Ω, (1.13)

Cφa(x)C∗ =
∑
b

κn−1

ab φb(x), (1.14)

Cψa(x)C∗ =
∑
b

κc−1

ab ψ
∗
b (x), (1.15)

where κn and κc are some linear transformations on Vn and Vc. One usually
also assumes that

κnκn = ±1l, κcκc = ±1l, (1.16)

so that the automorphism, given by C is involutive or anti-involutive. We have

Cσθ(A)C∗ = σ−θ(A),

which justifies the name charge conjugation.
Note that C is linear, even though it acts on fields antilinearly.

1.2.11 Parity invariance

Recall that in the basic requirements of relativistic quantum mechanics we have
a representation

R1,3 o Spin↑(1, 3) 3 (a, Λ̃) 7→ U(aΛ̃). (1.17)

We can try to extend this group to a larger subgroup of R1,3 o Pin(1, 3).
Suppose that we have a representation

R1,3 o Pin↑±(1, 3) 3 (a, Λ̃) 7→ U(aΛ̃). (1.18)
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In particular, the space inversion P̃ is represented in the Hilbert space by a
unitary operator U(P̃), denoted often P . Then we say that the theory is P -
invariant.

We can easily adapt the Wightman axioms with the representation (1.17)
extended to (1.18). Obviously, we need to demand that the representations
(1.9) and (1.10), as well as relations (1.11) and (1.12) are extended to the group
Pin↑(1, 3).

In particular, we have the action of the parity P := U(P̃):

Pφa(x0, ~x)P ∗ =
∑
b

Sn−1

ab (P̃)φb(x
0,−~x),

Pψa(x0, ~x)P ∗ =
∑
b

Sc−1

ab (P̃)ψb(x
0,−~x).

Obviously, P is linear and acts on fields linearly.
Note that P satisfies P 2 = 1l or P 2 = −1l. By multiplying P with i we can

switch between these two possibilities.

1.2.12 Time reversal invariance

Suppose now for a moment that we have a unitary representation of

R1,3 o Pinchir
± (1, 3) 3 (a, Λ̃) 7→ U(aΛ̃). (1.19)

Then U(T̃), called the Racah time reversal, satisfies

U(T̃)U(a)U(T̃)∗ = U(−a).

Therefore,
U(T̃)HU(T̃)∗ = −H.

If H ≥ 0, then this implies H = 0. Therefore, the basic requirements of rela-
tivistic quantum mechanics are incompatible with the invariance wrt a Racah
time reversal.

Instead, let us assume that the values of the representation (1.19) are anti-
unitary for Λ̃ ∈ T̃·Spin↑(1, 3). Then the antiunitary operator U(T̃ ), called the
Wigner time reversal satisfies

U(T̃)U(a)U(T̃)∗ = U(−a),

which implies
U(T̃)HU(T̃)∗ = H.

This is compatible with the positivity of H.
We can easily adapt the Wightman axioms with the representation (1.17)

extended to (1.18). Obviously, the representations (1.9) and (1.10) should be
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extended to include T̃·Spin↑(1, 3), where one has to demand that (1.10) is an-
tilinear. Similarly one needs to extend the relations (1.11) and (1.12), in the
latter case they need a slight modification:

U(a, Λ̃)ψa(x)U(a, Λ̃)∗ =
∑
b

Sc−1

ab (Λ̃)ψ∗b (Λx+ a), Λ̃ ∈ T̃·Spin↑(1, 3).

In particular, the Wigner time reversal T := U(T̃) acts on the fields as
follows

Tφa(x0, ~x)T ∗ =
∑
b

Sn−1

ab (T̃)φb(−x0, ~x),

Tψa(x0, ~x)T ∗ =
∑
b

Sc−1

ab (T̃)ψ∗b (x0,−~x).

Note that T is antilinear and acts on fields antilinearly.

1.2.13 CPT invariance

Suppose that we have a theory satisfying the Wightman axioms. Recall that
these axioms involve the covariance wrt the group Spin↑(1, 3). In particular, this
group acts on Vn ⊕ Vc with finite dimensional representations (1.9) and (1.10).
We would like to argue that these representations possess natural extensions to
a the larger group Spin(1, 3).

Spin(1, 3), which is disconnected, can be embedded in the complex connected
group Spin(4,C). Every finite dimensional representation of Spin↑(1, 3) extends
uniquely by holomorphic continuation to a representation of Spin(4,C). We can
restrict it to a representation of Spin(1, 3).

A deep theorem, called the CPT Theorem, says that we can extend the
representation (1.17) to a representation of Spin(1, 3) such that U(a, Λ̃) are
anti-unitary on T̃·Spin↑(1, 3), moreover, (1.11) and (1.12) hold on the whole
Spin(1, 3). In particular, if we set X := U(X̃), then

Xφa(x)X∗ =
∑
b

Sn−1

ab (X̃)φb(−x),

Xψa(x)X∗ =
∑
b

Sc−1

ab (X̃)ψb(−x).

Note that X is antilinear but acts on the fields linearly.
Suppose now that a theory is Pin↑−(1, 3) and Pinchir

− (1, 3) invariant, or

Pin↑+(1, 3) and Pinchir
+ (1, 3) invariant. (If the theory is Pin↑−(1, 3) and Pinchir

+ (1, 3)

invariant, or Pin↑+(1, 3) and Pinchir
− (1, 3) invariant, we multiply P by the imag-

inary unit and get the same signs). By the CPT Theorem the theory is also
Spin(1, 3) invariant. Note that we do not assume that together they form a
representation of the whole R1,3 o Pin±(1, 3).
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In particular, we have the operators given by S(X̃), S(T̃−1) and S(P̃−1).
We assume that each pair of these operators either commutes or anticommutes.
We also have the operators X, T and P . Define

κn := Sn(X̃)Sn(T̃−1)Sn(P̃−1),

κc := Sc(X̃)Sc(T̃−1)Sc(P̃−1),

C := XT−1P−1.

Then κn and κc satisfy (1.16). Besides, C is unitary and satisfies (1.13), (1.14),
(1.15), Thus C is an example of a charge conjugation.

Obviously, X = CPT . This is explains the name of the CPT Theorem.
(Note, however, that the theorem holds also if the theory is not P and T invari-
ant, so that we cannot write X = CPT ).

1.2.14 N-point Wightman and Green’s functions

Wightman axioms allow us to define a multilinear map

Cc(R1,3,V)× · · · × Cc(R1,3,V)

3 (fN , . . . , f1) 7→ (Ω|φ̂[fN ] · · · φ̂[f1]Ω) ∈ C, (1.20)

which is separately continuous in its arguments. By the Schwartz Kernel The-
orem [12], (1.20) can be extended to a linear map

Cc

(
(R1,3)N ,V⊗N

)
3 F 7→

∫
W (xN , . . . , x1)F (xN , . . . , x1)dxN · · · dx1,

where R(1,3)N 3 (xN , . . . , x1) 7→W (xN , . . . , x1) is a distribution on R(1,3)N with
values in the space dual to V⊗N , called the N -point Wightman function, so that
(1.20) equals ∫

W (xN , . . . , x1)fN (x1) · · · f1(x1)dxN . . . dx1.

From the point of view of the Wightman axioms, the collection of Wightman
functions WN , N = 0, 1, . . . , contains all the information about a given quantum
field theory. In particular,(

φ̂[fN ] · · · φ̂[f1]Ω|φ̂[gM ] · · · φ̂[g1]Ω
)

=

∫
W (y1, . . . , yN , xM , . . . , x1)

×f1(x1) · · · fN (xN )gM (yM ) · · · g1(y1)dx1 · · · dxNdyM · · · dy1.

This is expressed in the so called Wightman Reconstruction Theorem [42].
In practical computations Wightman functions are not often used. Much

more frequent are the so-called (time-ordered) Green’s functions. Their formal
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definition is as follows:

G(xN , . . . , x1) (1.21)

:=
∑
σ∈SN

sgnε(σ)θ
(
x0
σ(N) − x

0
σ(N−1)

)
· · · θ

(
x0
σ(2) − x

0
σ(1)

)
W (xσ(N), . . . , xσ(1)),

where sgna(σ) is the sign of the permutation of the fermionic elements among
N, . . . , 1.

Note that we multiply a distribution with a discontinuous function in (1.21),
which strictly speaking is illegal. Disregarding this problem, Green’s functions
are covariant due to the commutativity/anticommutativity of fields at spacelike
separations.

1.3 Time-dependent Hamiltonians

1.3.1 Time ordered exponential

We will often use the formalism of time-dependent Hamiltonians. In this sub-
section we describe the main concepts of this formalism.

Assume that I is a unitary involution. (In applications, I will be the
fermionic parity operator). We call an operator B even, resp. odd, if B = ±IBI.
Such operators will be called of pure parity.

Let t 7→ Bk(t), . . . , B1(t) be time dependent operators of pure parity. Let
tn, . . . , t1 be pairwise distinct. We define the time-ordered product of Bn(tn),...,
Bi(t1) by

T (Bn(tn) · · ·B1(t1)) := sgna(σ)Bσn(tσn) · · ·Bσ1(tσ1),

where (σ1, . . . , σn) is the permutation such that tσn ≥ · · · ≥ tσ1
and sgna(σ) is

the sign of this permutation restricted to the odd elements among Bi.
Let t+ > t−. Consider a family of self-adjoint Hamiltonians [t−, t+] 3 t 7→

H(t). We will assume that H(t) are even. We define the time-ordered exponen-
tial

Texp

(
−i

∫ t+

t−

H(t)dt

)

:=

∞∑
n=0

(−i)n
∫
· · ·
∫

t+≥tn≥···≥t1≥t−

H(tn) · · ·H(t1)dtn · · · dt1

=

∞∑
n=0

(−i)n
∫ t+

t−

· · ·
∫ t+

t−

1

n!
T (H(tn) · · ·H(t1)) dtn · · · dt1.

For brevity, we will write

U(t+, t−) := Texp

(
−i

∫ t+

t−

H(t)dt

)
. (1.22)
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We call (1.22) the dynamics generated by t 7→ H(t). (Of course, if H(t) are
unbounded, the above definition should be viewed only as a heuristic indication
how to define the family of unitary operators U(t+, t−).)

Clearly, if H(t) = H, then U(t+, t−) = e−i(t+−t−)H .

1.3.2 Time-dependent perturbations

Our time-dependent Hamiltonians will usually have the form

H(t) := Hfr + V (t),

where Hfr is a self-adjoint operator and R 3 t 7→ V (t) is a family of self-adjoint
operators.

Let R 3 t 7→ A(t) be an operator-valued function. The interaction Hamilto-
nian is defined as

HInt(t) := eitHfrV (t)e−itHfr .

We define the scattering operator by

S := lim
t+,−t−→∞

eit+HfrU(t+, t−)eit−Hfr

= Texp

(
−i

∫ ∞
−∞

HInt(t)dt

)
.

We also introduce the Møller operators

S− := lim
t→∞

U(0,−t)eitHfr

= Texp

(
−i

∫ 0

−∞
HInt(t)dt

)
,

S+ := lim
t→∞

U(t, 0)∗e−itHfr

= Texp

(
−i

∫ ∞
0

HInt(t)dt

)
,

.

Clearly, S = S+∗S−.
Let A be an operator. We have its evolution in the Heisenberg picture wrt.

the free dynamics
Afr(t) := eitHfrAe−itHfr .

Equivalently, A(t) is the solution of

d

dt
Afr(t) = i [Hfr, Afr(t)] ,

A(0) = A,

We also have the Heisenberg picture wrt. the full dynamics:

A(t) := U(0, t)AU(t, 0).
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Equivalently, A(t) is the solution of

d

dt
A(t) = i [HHP(t), A(t)] ,

A(0) = A,

where the time-dependent Hamiltonian in the Heisenberg picture is defined as

HHP(t) := U(0, t)H(t)U(t, 0).

Thus the dynamics can be described by two time-dependent Hamiltonians: t→
H(t) and t→ HHP(t).

1.3.3 Time ordered Green’s functions

Assume that Hfr and V (t) are even. Let Φfr be a fixed even vector with
HfrΦfr = 0. (In our applications, Φfr will be always the ground state of Hfr.) Let
Ak, . . . , A1 be operators of fixed parity. The free time-ordered Green’s functions
are defined as

Gfr(Ak, tk, . . . , A1, t1)

:=
(
Φfr|T

(
Ak,fr(tk) · · ·A1,fr(t1)

)
Φfr

)
. (1.23)

Suppose that there exist

Φ± := lim
t→±∞

U(0, t)Φfr. (1.24)

The interacting time-ordered Green’s functions are defined as

G(Ak, tk, . . . , A1, t1)

:=
(
Φ+|T

(
Ak(tk) · · ·A1(t1)

)
Φ−
)
. (1.25)

We can express interacting Green’s functions by the free ones:

G(Ak, tk, . . . , A1, t1)

=

∞∑
n=0

(−iλ)n

n!

∫ ∞
−∞

dsn · · ·
∫ ∞
−∞

ds1 (1.26)

×Gfr (V (sn), sn, · · · , V (s1), s1, Ak, tk, · · · , A1, t1) .

1.3.4 Adiabatic switching

Let V be a (time-independent) self-adjoint perturbation. It is often convenient
to extract information about Hfr + λV from the time-dependent formalism.
This can be done by introducing the so called adiabatical switching invented by
Gell-Mann and Low.

Let ε > 0. We define Vε(t) := e−ε|t|V . We will write

Hε(t) := Hfr + λVε
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for the corresponding time-dependent Hamiltonian. We also introduce the cor-
responding scattering operator Sε.

Assume that Φfr is an eigenvector of Hfr with HfrΦfr = EfrΦfr. Let E be the
eigenvalue of H + λV close to Efr.

The so called Sucher formula, which we give below, is often used in practical
calculations as the definition of the energy shift. For its derivation see [31].

E − Efr = lim
ε↘0

iελ

2
∂λ log(Φfr|SεΦfr). (1.27)

Note that the right hand side of the Sucher formula may have a nonzero
imaginary part. In this case we expect that it describes the resonance close to
Efr.

2 Neutral scalar bosons

In this section we consider the Klein-Gordon equation

(−2 +m2)φ(x) = 0 (2.1)

and we quantize the space of its real solutions. We study two kinds of interac-
tions: an external linear source

(−2 +m2)φ(x) = −j(x), (2.2)

and a mass-like perturbation

(−2 +m2)φ(x) = −κ(x)φ(x). (2.3)

2.1 Free neutral scalar bosons

2.1.1 Special solutions and Green’s functions

Every function ζ that solves the (homogeneous) Klein-Gordon equation

(−2 +m2)ζ(x) = 0 (2.4)

can be written as

ζ(x) =
1

(2π)3

∫
e−ikxg(k)δ(k2 +m2)dk

=
1

(2π)3

∑
±

∫
d~k√

~k2 +m2
g
(
±
√
~k2 +m2,~k

)
e±ix0

√
~k2+m2−i~x~k,

where g is a function on the two-sheeted hyperboloid k2 +m2 = 0. A special role
is played by the following 3 special solutions of the homogeneous Klein-Gordon
equation.
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(1) The positive frequency or Wightman, resp. negative frequency or anti-
Wightman solution:

D(±)(x) = ± i

(2π)3

∫
e−ikxθ(∓k0)δ(k2 +m2)dk

= ± i

(2π)3

∫
d~k

2
√
~k2 +m2

e∓ix0
√
~k2+m2−i~x~k

=
1

4π
sgnx0δ(x2)

±mθ(−x
2)

8π
√
−x2

H∓sgnx0

1 (m
√
−x2)± miθ(x2)

4π2
√
x2
K1(m

√
x2).

where H±1 are the Hankel functions and K1 is the MacDonald function of
the 1st order.

(2) The Pauli-Jordan or the commutator function:

D(x) =
i

(2π)3

∫
e−ikxsgn(k0)δ(k2 +m2)dk

=
1

(2π)3

∫
d~k√

~k2 +m2
e−i~x~k sin

(
x0

√
~k2 +m2

)
=

1

2π
sgnx0δ(x2)− mθ(−x2)

4π
√
−x2

J1(m
√
−x2),

where J1 is the Bessel function of the 1st order. D(x) is the unique solution
of the Klein-Gordon equation satisfying

D(0, ~x) = 0, Ḋ(0, ~x) = δ(~x).

We have, suppD ⊂ J .

Solutions of
(−2 +m2)ζ(x) = δ(x), (2.5)

are called Green’s functions or fundamental solutions of the Klein-Gordon equa-
tion. In particular, let us introduce the following 3 Green’s functions.

(1) The retarded, resp. advanced Green’s function:

D±(x) =
1

(2π)4

∫
e−ikx

k2 +m2 ∓ i0sgnk0
dk

=
1

2π
θ(±x0)δ(x2)− mθ(−x2)θ(±x0)

4π
√
−x2

J1(m
√
−x2).

We have suppD± ⊂ J±. In the literature, D+(x) is usually denotedDret(x)
and D−(x) is usually denoted Dadv(x).

29



(2) The causal or Feynman(-Stueckelberg) Green’s function:

Dc(x) =
1

(2π)4

∫
e−ikx

k2 +m2 − i0
dk

=
1

4π
δ(x2)− mθ(−x2)

8π
√
−x2

H−1 (m
√
−x2) +

miθ(x2)

4π2
√
x2
K1(m

√
x2).

The special solutions and Green’s functions introduced above are often called
propagators. They satisfy the following relations

D(x) = D(x) = −D(−x) = D(+)(x) +D(−)(x)

= D+(x)−D−(x),

D(−)(x) = D(+)(x) = −D(−)(−x),

D+(x) = D+(x) = D−(−x) = θ(x0)D(x),

D−(x) = D−(x) = D+(−x) = θ(−x0)D(x),

Dc(x) = Dc(−x) = θ(x0)D(+)(x)− θ(−x0)D(−)(x).

Let us prove the last identity.

Dc(x) =
1

(2π)4

∫
e−ikx

k2 +m2 − i0
dk

=
1

(2π)4

∫
eik0x0−i~k~x

2
√
~k2 +m2

(√
~k2 +m2 − |k0| − i0

)dk

+
1

(2π)4

∫
eik0x0−i~k~x

2
√
~k2 +m2

(√
~k2 +m2 + |k0|

)dk

=
1

(2π)4

∫
eik0x0−i~k~x

2
√
~k2 +m2

(√
~k2 +m2 − k0 − i0

)dk

+
1

(2π)4

∫
e−ik0x0−i~k~x

2
√
~k2 +m2

(√
~k2 +m2 − k0 − i0

)dk, (2.6)

where in the last step we cut the integration w.r.t. k0 into a piece on the positive
and negative half-line and swapped the parts on the negative half-line.

(2.6) equals

=
i

(2π)3
θ(x0)

∫
e−i
√
~k2+m2x0−i~k~x

2
√
~k2 +m2

d~k +
i

(2π)3
θ(−x0)

∫
ei
√
~k2+m2x0−i~k~x

2
√
~k2 +m2

d~k

= θ(x0)D(+)(x) + θ(−x0)D(+)(−x),

where we used the identity∫
eits

a− s− i0
ds = 2πieitaθ(−t).
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Let us now prove that suppD+ ⊂ J+. By the Lorentz covariance it suffices
to prove that D+ is zero on the lower half-plane. We write

D+(x) =
1

(2π)4

∫
e−ikx

k2 +m2 + i0sgnk0
dk

=
1

(2π)4

∫
eik0x0−i~k~x

~k2 +m2 − (k0 − i0)2
dk0d~k.

Next we push the integration wrt k0 by k0 − iR, where R→∞, and note that
the denominator is safe and eix0(k0−iR) goes to zero (remember that x0 < 0).

2.1.2 Space of solutions

A space-like subspace S of codimension 1 will be called a Cauchy subspace.
Solutions of the Cauchy problem are uniquely parametrized by their Cauchy

data (the value and the normal derivative on a Cauchy surface). They can be
expressed by the Cauchy data with help of the Pauli-Jordan function.

Theorem 2.1 Let ς, ϑ ∈ C∞c (R3). Then there exists a unique ζ ∈ C∞sc (R1,3)
that solves

(−2 +m2)ζ = 0 (2.7)

with initial conditions ζ(0, ~x) = ς(~x), ζ̇(0, ~x) = ϑ(~x). It satisfies suppζ ⊂
J(suppς ∪ suppϑ) and is given by

ζ(t, ~x) =

∫
R3

Ḋ(t, ~x− ~y)ς(~y)d~y +

∫
R3

D(t, ~x− ~y)ϑ(~y)d~y. (2.8)

Let YKG, resp. CYKG denote the space of real, resp. complex, space-compact
solutions of the Klein Gordon equation.

For ζ1, ζ2 ∈ C∞(R1,3) we define

jµ(x) = jµ(ζ1, ζ2, x) := −∂µζ1(x)ζ2(x) + ζ1(x)∂µζ2(x). (2.9)

We easily check that

∂µj
µ(x) = (−2 +m2)ζ1(x)ζ2(x)− ζ1(x)(−2 +m2)ζ2(x),

Therefore, if ζ1, ζ2 ∈ CYKG, then

∂µj
µ(x) = 0.

One says that jµ(x) is a conserved current.
The flux of jµ across any Cauchy subspace does not depend on its choice.

It defines a symplectic form on YKG

ζ1ωζ2 =

∫
S
jµ(ζ1, ζ2, x)dsµ(x)

=

∫ (
−ζ̇1(t, ~x)ζ2(t, ~x) + ζ1(t, ~x)ζ̇2(t, ~x)

)
d~x. (2.10)
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Clearly, the form (2.10) is well defined also if only ζ2 ∈ YKG, and ζ1 is a
distributional solution of the Klein-Gordon equation.

The Poincaré group R1,3 oO(1, 3) acts on YKG and CYKG by

r(a,Λ)ζ(x) := ζ
(
(a,Λ)−1x

)
.

r(a,Λ) are symplectic (preserve the symplectic form) for Λ ∈ O↑(1, 3), otherwise
they are antisymplectic (change the sign in front of the symplectic form). For
brevity, we will write ra for r(a,1l), where a ∈ R1,3, and rΛ for r0,Λ, where
Λ ∈ O(1, 3).

The Pauli-Jordan function D can be used to construct solutions of the Klein-
Gordon equation parametrized by space-time functions, which are especially
useful in the axiomatic formulation of QFT.

Theorem 2.2 (1) For any f ∈ C∞c (R1,3,R), D ∗ f ∈ YKG, where

D ∗ f(x) :=

∫
D(x− y)f(y)dy.

(2) Every element of YKG is of this form.

(3)

−(D ∗ f1)ω(D ∗ f2) =

∫
f1(x)D(x− y)f2(y)dxdy. (2.11)

(4) If suppf1 × suppf2, then

(D ∗ f1)ω(D ∗ f2) = 0.

The right hand side of (2.11) is sometimes called the Peierls bracket of f1 and
f2.

Let us prove (2.11). Choose time t later than suppfi, i = 1, 2. Then we have
D ∗ fi = D+ ∗ fi. Now

−(D ∗ f1)ω(D ∗ f2)

=

∫ (
(Ḋ+ ∗ f1)(t, ~x)(D+ ∗ f2)(t, ~x)− (D+ ∗ f1)(t, ~x)(̇D+ ∗ f2)(t, ~x)

)
d~x

=

∫
x0<t

(
− (2−m2)(D+ ∗ f1)(x)(D+ ∗ f2)(x)

+(D+ ∗ f1)(x)(2−m2)(D+ ∗ f2)(x)
)

dx

=

∫ (
f1(x)(D+ ∗ f2)(x)− (D+ ∗ f1)(x)f2(x)

)
dx

=

∫ (
f1(x)(D+ ∗ f2)(x)− f1(x)(D− ∗ f2)(x)

)
dx =

∫
f1(x)(D ∗ f2)(x)dx.
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2.1.3 Classical fields

We will also consider the space dual to YKG. More precisely, we can endow the
space YKG with the standard topology of C∞c (R3)⊕C∞c (R3) given by the initial
conditions. The space of real, resp. complex continuous functionals on YKG will
be denoted by Y#

KG, resp. by CY#

KG. The action of T ∈ CY#

KG on ζ ∈ YKG will
be denoted by 〈T |ζ〉, and sometimes simply by Tζ.

Let us stress that the space YKG is real, which reflects the fact that in this
section we consider neutral fields. In the section devoted to charged fields the
main role will be played by the complexification of YKG, that isWKG := CYKG.
Anticipating the charged formalism, let us introduce some notation concerning
the space dual to WKG. If T is a complex linear functional on WKG, then we
have two kinds of natural complex conjugations of T :

〈T |ζ〉 := 〈T |ζ〉, 〈T ∗|ζ〉 := 〈T |ζ〉.

Note that T is (complex) linear and T ∗ is antilinear. Both maps T 7→ T and T 7→
T ∗ are antilinear. When restricted to the real subspace YKG, the functionals T
and T ∗ coincide.

Note also that in this context the star does not denote the Hermitian con-
jugation (which in our text is the standard meaning of the star).

For x ∈ R1,3, φ(x), π(x) will denote the functionals on YKG given by

〈φ(x)|ζ〉 := ζ(x), 〈π(x)|ζ〉 := ζ̇(x).

They are called classical fields. Clearly, for any ζ ∈ YKG we have

(−2 +m2)〈φ(x)|ζ〉 = 0.

Thus the equation
(−2 +m2)φ(x) = 0 (2.12)

is a tautology.
On Y#

KG we have the action of the Poincaré group (a,Λ) 7→ r#−1
(a,Λ). Note that

r#−1
(a,Λ)φ(x) = φ(Λx+ a).

Clearly, φ̇(x) = π(x) and, by (2.8),

φ(t, ~x) =

∫
Ḋ(t, ~x− ~y)φ(0, ~y)d~y +

∫
D(t, ~x− ~y)π(0, ~y)d~y. (2.13)

By (2.10), the symplectic form can be written as

ζ1ωζ2 =

∫
(−〈π(t, ~x)|ζ1〉〈φ(t, ~x)|ζ2〉+ 〈φ(t, ~x)|ζ1〉〈π(t, ~x)|ζ2〉) d~x,

or more simply,

ω =

∫
φ(t, ~x) ∧ π(t, ~x)d~x.

The conserved current can be written as

jµ(x) = φ(x) ∧ ∂µφ(x).
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2.1.4 Poisson brackets

The symplectic structure on the space YKG leads to a Poisson bracket on func-
tions on YKG:

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y). (2.14)

The relations (2.14) can be viewed as mnemotechnic identities that yield the
correct Poisson bracket for more regular functions, eg. the smeared out fields in
(2.16) or (2.18) described below. Note that formally φ(t, ~x) and π(t, ~x) generate
all functions on YKG.

Using (2.13) we obtain

{φ(x), φ(y)} = D(x− y).

Therefore, the Pauli-Jordan solution is often called the commutator function.

2.1.5 Smeared fields

There are two basic methods to introduce smeared fields.
One way to smear them out is to use the pairing given by the symplectic

form. It is convenient to allow complex smearing functions paired antilinearly.
More precisely, for ζ ∈ CYKG we introduce the functional on YKG given by

〈φ((ζ))|ρ〉 := ζωρ, ρ ∈ YKG.

Note in passing that ω can be treated as a linear map from YKG to Y#

KG,
which satisfies

−(ωζ)ρ = ζωρ.

Therefore, a possible alternative notation for φ((ζ)) is −ωζ.
Clearly,

φ((ζ)) =

∫ (
−ζ̇(t, ~x)φ(t, ~x) + ζ(t, ~x)π(t, ~x)

)
d~x. (2.15)

Note that
{φ((ζ1)), φ((ζ2))} = ζ1ωζ2. (2.16)

We can also smear fields with space-time functions. For f ∈ C∞c (R1,3,R),
we set

φ[f ] :=

∫
f(x)φ(x)dx.

We have

φ[f ] = φ((−D ∗ f)), (2.17)

{φ[f1], φ[f2]} =

∫ ∫
f1(x)D(x− y)f2(y)dxdy. (2.18)
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To see (2.17), write an element of YKG as Dg for some g ∈ C∞c (R1,3,R):

〈φ((−D ∗ f))|D ∗ g〉 = (D ∗ f)ω(D ∗ g) =

∫
f(x)D(x− y)g(y)dxdy

=

∫
f(x)〈φ(x)|D ∗ g〉dx = 〈φ[f ]|D ∗ g〉.

2.1.6 Lagrangian formalism

In classical mechanics we have the Hamiltonian formalism, where the basic ob-
ject is the phase space equipped with a symplectic form, and the Lagrangian
formalism, where we start from the configuration space. In the context of classi-
cal field theory we also can use both formalism. In this context, the Hamiltonian
approach is often called the on-shell formalism. This means that the field φ(x)
acts on the space of solutions of the equations of motion. In other words, the
field φ(x) that we use in the Hamiltonian formalism satisfies the equation (2.12)
– one says that it is on-shell.

In the Lagrangian formalism one also uses a classical field, which we will
denote by φ(x), as before. But now, this field is off-shell. This means, we do
not enforce any equation on φ(x). One can interpret φ(x) as the functional on,
say, C∞(R1,3) such that 〈φ(x)|f〉 := f(x).

Using φ(x) in the off-shell formalism, introduce the Lagrangian density

L(x) = − 1
2∂µφ(x)∂µφ(x)− 1

2m
2φ(x)2. (2.19)

The Euler-Lagrange equation

∂φL − ∂µ
∂L
∂φ,µ

= 0 (2.20)

yields the Klein-Gordon equation.
When we go from the Lagrangian to Hamiltonian formalism, we enforce the

on-shell condition, that is, the Euler-Lagrange equation, and we introduce the
variable conjugate to φ(x):

π(x) :=
∂L

∂φ,0(x)
= φ,0(x).

Then we express everything in terms of φ(x) and π(x).

2.1.7 Stress-energy tensor

We can also introduce the stress-energy tensor

T µν(x) := − ∂L(x)

∂φ,µ(x)
φ,ν(x) + gµνL(x) (2.21)

= ∂µφ(x)∂νφ(x)− gµν 1

2

(
∂αφ(x)∂αφ(x) +m2φ(x)2

)
.
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We check that the stress-energy tensor is conserved for a solution of the
Klein-Gordon equation (on shell)

∂µT µν(x) = 0.

We express the stress-energy tensor in terms of φ(x) and π(x). Its compo-
nents with the first temporal coordinate are called the Hamiltonian density and
momentum density:

H(x) := T 00(x) =
1

2

(
π(x)2 +

(
~∂φ(x)

)2
+m2φ(x)2

)
,

Pi(x) := T 0i(x) = −π(x)∂iφ(x).

They are examples of quadratic functionals on YKG:

〈H(x)|ζ〉 =
1

2

(
ζ̇(x)2 +

(
~∂ζ(x)

)2
+m2ζ(x)2

)
,

〈Pi(x)|ζ〉 = −ζ̇(x)∂iζ(x).

We introduce the (total) Hamiltonian and momentum:

H :=

∫
S
T µ0(x)dsµ(x) =

∫
H(t, ~x)d~x,

P i :=

∫
S
T µi(x)dsµ(x) =

∫
Pi(t, ~x)d~x. (2.22)

where S is any Cauchy subspace.
H and ~P are the generators of the time and space translations:

φ̇(x) = {H,φ(x)}, π̇(x) = {H,π(x)},
~∂φ(x) = −{~P , φ(x)}, ~∂π(x) = −{~P , π(x)}.

The observables H, P 1, P 2 and P 3 are in involution. (This means that the
Poisson bracket of every pair among these observables vanishes).

2.1.8 Diagonalization of the equations of motion

For ~k ∈ R3, set ε = ε(~k) :=
√
~k2 +m2 and k := (ε(~k),~k). k ∈ R1,3 of this form

will be called on shell. Define

φt(~k) :=

∫
φ(t, ~x)e−i~k~xd~x,

πt(~k) :=

∫
π(t, ~x)e−i~k~xd~x.

Clearly,

φ∗t (
~k) = φt(−~k),

π∗t (~k) = πt(−~k),

{φ∗t (~k), φt(~k
′)} = {π∗t (~k), πt(~k

′)} = 0,

{φ∗t (~k), πt(~k
′)} = (2π)3δ(~k − ~k′).
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The equations of motion are

φ̇t(~k) = πt(~k),

π̇t(~k) = −ε2(~k)φt(~k).

For k on shell we set

at(k) = (2π)−
3
2

(√
ε(~k)

2
φt(~k) +

i√
2ε(~k)

πt(~k)

)
,

a∗t (k) = (2π)−
3
2

(√
ε(~k)

2
φ∗t (

~k)− i√
2ε(~k)

π∗t (~k)

)
.

We have the equations of motion

ȧt(k) = −iε(~k)at(k),

ȧ∗t (k) = iε(~k)a∗t (k).

We will usually write a(k), a∗(k) instead of a0(k), a∗0(k), so that

a(k) : = (2π)−
3
2

∫
d~xe−i~k~x

(√
ε(~k)

2
φ(0, ~x) +

i√
2ε(~k)

π(0, ~x)

)
, (2.23)

a∗(k) = (2π)−
3
2

∫
d~xei~k~x

(√
ε(~k)

2
φ(0, ~x)− i√

2ε(~k)
π(0, ~x)

)
. (2.24)

Thus

at(k) = e−itε(~k)a(k),

a∗t (k) = eitε(~k)a∗(k).

and the Poisson brackets are

{a(k), a(k′)} = {a∗(k), a∗(k′)} = 0,

{a(k), a∗(k′)} = −iδ(~k − ~k′).

The fields can be written as

φ(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
eikxa(k) + e−ikxa∗(k)

)
,

π(x) = (2π)−
3
2

∫ d~k

√
ε(~k)

i
√

2

(
eikxa(k)− e−ikxa∗(k)

)
.
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Thus every ζ ∈ CYKG can be written as

ζ(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
eikx〈a(k)|ζ〉+ e−ikx〈a∗(k)|ζ〉

)
. (2.25)

a(k), a∗(k) diagonalize simultaneously the Hamiltonian, momentum and
symplectic form:

H =

∫
d~kε(~k)a∗(k)a(k),

~P =

∫
d~k~ka∗(k)a(k),

iω =

∫
d~ka∗(k) ∧ a(k).

With ζ1, ζ2 ∈ YKG, the last identity is the shorthand for

iζ1ωζ2 =

∫ (
〈a(k)|ζ1〉〈a(k)|ζ2〉 − 〈a(k)|ζ1〉〈a(k)|ζ2〉

)
d~k.

2.1.9 Plane waves

Let k ∈ R1,3 satisfy k2 +m2 = 0, that is k0 = ±ε(~k). A plane wave |k) is defined
as

(x|k) =
1

(2π)3/2

√
2ε(~k)

eikx. (2.26)

Following Dirac, we denote plane waves using the “ket notation” |k) when they
appear on the right of a bilinear form. If they appear on the left, we employ
the “bra notation”, which implies an additional complex conjugation:

(k|x) = (x|k) = (x| − k) =
1

(2π)3/2

√
2ε(~k)

e−ikx.

Note that we can distinguish between positive frequency plane waves, corre-
sponding to k0 > 0, and negative frequency plane waves, with k0 < 0. If |k) is
a positive frequency plane wave, then | − k) = |k) is a negative frequency plane
wave. In the neutral case, as a rule we restrict ourselves to positive frequency
plane waves.

Let k = (ε(~k),~k). We have

i(−k|ω|k′) = i(k|ω| − k′) = 0,

−i(−k|ω| − k′) = i(k|ω|k′) = δ(~k − ~k′).
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a(k) and a∗(k), defined in (2.23) and (2.24) will be called plane wave functionals.
They can be expressed as

a(k) = iφ((|k)))

= i

∫ (
∂t(k|0, ~x)φ(0, ~x)− (k|0, ~x)π(0, ~x)

)
d~x,

a∗(k) = −iφ((| − k)))

= −i

∫ (
∂t(−k|0, ~x)φ(0, ~x)− (−k|0, ~x)π(0, ~x)

)
d~x.

The fields can be written in terms of plane waves functionals as

φ(x) =

∫ (
(x|k)a(k) + (x|k)a∗(k)

)
d~k.

Every ζ ∈ CYKG satisfies

〈a(k)|ζ〉 = i(k|ωζ, (2.27)

〈a∗(k)|ζ〉 = −i(−k|ωζ. (2.28)

2.1.10 Positive frequency space

W(±)
KG will denote the subspace of CYKG consisting of positive, resp. negative

frequency solutions, that is,

W(+)
KG := {g ∈ CYKG : (k|ωg = 0, k0 < 0},

W(−)
KG :=W(+)

KG = {g ∈ CYKG : (k|ωg = 0, k0 > 0}.

In other words,W(+)
KG is a subspace of CYKG that consists of functions of the

form

g(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

eikx〈a(k)|g〉d~k.

For g1, g2 ∈ W(+)
KG we define the scalar product

(g1|g2) := ig1ωg2 =

∫
〈a(k)|g1〉〈a(k)|g2〉d~k

The Hilbert space of positive energy solutions is denoted ZKG, and is the com-

pletion of W(+)
KG in this scalar product.

Note that
〈a(k)|g〉 = (k|g), g ∈ ZKG.

R1,3 oO↑(1, 3) leaves ZKG invariant.
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We have a natural identification of YKG with W(+)
KG . Indeed, if ζ ∈ YKG is

given by (2.25), then we can project it onto W(+)
KG obtaining

ζ(+)(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

eikx〈a(k)|ζ〉. (2.29)

This identification allows us to define a real scalar product on YKG:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 ).

We can compute explicitly this scalar product:

〈ζ1|ζ2〉Y =

∫ ∫
ζ̇1(0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇2(0, ~y)d~xd~y (2.30)

+

∫ ∫
ζ1(0, ~x)(−∆~x +m2)(−i)D(+)(0, ~x− ~y)ζ2(0, ~y)d~xd~y.

2.1.11 Quantization

Let us describe the quantization of the Klein-Gordon equation. We will use the
“hat” to denote the quantized objects.

We will use the formalism of quantization of neutral bosonic systems [11].
We want to construct a Hilbert space, a self-adjoint operator and normalized

vector (H, Ĥ,Ω) satisfying the standard requirements (1)-(3) (see Subsubsect.
1.2.1) and a self-adjoint operator valued distribution

R1,3 3 x 7→ φ̂(x), (2.31)

such that, with π̂(x) :=
˙̂
φ(x),

(1) (−2 +m2)φ̂(x) = 0,

(2) [φ̂(0, ~x), φ̂(0, ~y)] = [π̂(0, ~x), π̂(0, ~y)] = 0,

[φ̂(0, ~x), π̂(0, ~y)] = iδ(~x− ~y).

(3) eitĤ φ̂(x0, ~x)e−itĤ = φ̂(x0 + t, ~x).

(4) Ω is cyclic for φ̂(x).

The above problem has a solution, which is unique up to a unitary equiva-
lence. Let us describe this solution.

For the Hilbert space we should take the bosonic Fock space H = Γs(ZKG)
and for Ω the Fock vacuum. Introduce the operator valued distribution â(k)
defined on the mass shell by

â∗(k) := â∗
(
|k)
)
, (2.32)

or equivalently ∫
(k|g)â∗(k)d~k = â∗(g), g ∈ ZKG. (2.33)
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Note that in (2.32) and (2.33) “mathematician’s notation” for creation operators
is used on the right.

We set

φ̂(x) := (2π)−
3
2

∫
d~k√
2ε(~k)

(
eikxâ(k) + e−ikxâ∗(k)

)
.

The Hamiltonian and the momentum are

Ĥ :=

∫
â∗(k)â(k)ε(~k)d~k,

~̂
P :=

∫
â∗(k)â(k)~kd~k.

Note that the whole R1,3oO↑(1, 3) is unitarily implemented onH by U(a,Λ) :=

Γ
(
r(a,Λ)

∣∣∣
ZKG

)
:

U(a,Λ)φ̂(x)U(a,Λ)∗ = φ̂
(
(a,Λ)x

)
.

This is true even though we only required that time translations are imple-
mented.

The operator Ĥ is automatically positive and

[φ̂(x), φ̂(y)] = −iD(x− y).

For f ∈ C∞c (R1,3,R) set

φ̂[f ] :=

∫
f(x)φ̂(x)dx. (2.34)

(2.34) satisfy the Wightman axioms with D := Γfin
s (ZKG).

For an open set O ⊂ Rd we set

A(O) := {exp(iφ̂[f ]) : f ∈ C∞c (O,R)}′′.

The algebras A(O) satisfy the Haag-Kastler axioms.

2.1.12 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses smeared fields instead of point fields, which may better appeal to
some people.

Again, we want to construct (H, Ĥ,Ω) satisfying the standard requirements.
Instead of (2.31) we look for a linear function

YKG 3 ζ 7→ φ̂((ζ))

with values in self-adjoint operators such that
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(1)

[φ̂((ζ1)), φ̂((ζ2))] = iζ1ωζ2. (2.35)

(2)

φ̂((r(t,~0)ζ)) = eitĤ φ̂((ζ))e−itĤ .

(3) Ω is cyclic for the algebra generated by φ̂((ζ)).

One can pass between these two versions of the quantization by

φ̂((ζ)) =

∫ (
−ζ̇(t, ~x)φ̂(t, ~x) + ζ(t, ~x)π̂(t, ~x)

)
d~x. (2.36)

2.1.13 Quantization in terms of C∗-algebras

Let us mention yet another equivalent approach to quantization, using the lan-
guage of C∗-algebras.

Let CCR(YKG) denote the (Weyl) C∗-algebra of the CCR over YKG. By
definition, it is generated by W (ζ), ζ ∈ YKG, such that

W (ζ1)W (ζ2) = e−i
ζ1ωζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

R1,3 oO↑(1, 3) acts on CCR(YKG) by ∗-automorphisms defined by

r̂(a,Λ) (W (ζ)) := W
(
r(a,Λ)(ζ)

)
.

We are looking for a cyclic representation of this algebra with the time evolution
generated by a positive Hamiltonian.

The solution is provided by the state on CCR(YKG) defined by

ψ
(
W (ζ)

)
= exp

(
− 1

2
〈ζ|ζ〉Y

)
.

Let (Hψ, πψ,Ωψ) be the GNS representation generated by the state ψ. Then this
representation has the required properties. Hψ can be identified with Γs(ZKG)
and the fields are related to the Weyl operators by

πψ(W (ζ)) = eiφ̂((ζ)).

2.1.14 Two-point functions

Note the identities

(Ω|φ̂(x)φ̂(y)Ω) = −iD(+)(x− y), (2.37)

(Ω|T(φ̂(x)φ̂(y))Ω) = −iDc(x− y). (2.38)
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In fact,

(Ω|φ̂(x)φ̂(y)Ω) = (2π)−3

∫ ∫
d~kd~k′√
2ε
√

2ε′
eikx−ik′y(Ω|â(k)â∗(k′)Ω)

= (2π)−3

∫
d~k

2ε(~k)
eik(x−y)

= −iD(+)(x− y);

(Ω|T(φ̂(x)φ̂(y))Ω) = θ(x0 − y0)(Ω|φ̂(x)φ̂(y)Ω) + θ(y0 − x0)(Ω|φ̂(y)φ̂(x)Ω)

= −iθ(x0 − y0)D(+)(x− y)− iθ(y0 − x0)D(+)(y − x)

= −iDc(x− y).

For the smeared fields and Weyl operators we have

(Ω|φ̂[f ]2Ω) = −i

∫ ∫
f(x)D(+)(x− y)f(y)dxdy, (2.39)

(Ω|eiφ̂[f ]Ω) = exp

(
i

2

∫ ∫
f(x)D(+)(x− y)f(y)dxdy

)
, (2.40)

(Ω|φ̂((ζ))
2
Ω) = −i

∫ ∫
ζ̇(0, ~x)D(+)(0, ~x− ~y)ζ̇(0, ~y)d~xd~y (2.41)

−i

∫ ∫
ζ(0, ~x)(−∆~x +m2)D(+)(0, ~x− ~y)ζ(0, ~y)d~xd~y

= 〈ζ|ζ〉Y ,

(Ω|eiφ̂((ζ))Ω) = = exp
(
− 1

2
〈ζ|ζ〉Y

)
. (2.42)

(Recall that the scalar product on YKG was introduced in (2.30)).
(2.39) follows immediately from (2.37), which implies (2.40).
From (2.37), we obtain

(Ω|φ̂(0, ~x)φ̂(0, ~y)Ω) = −iD(+)(0, ~x− ~y), (2.43)

(Ω|φ̂(0, ~x)π̂(0, ~y)Ω) = 0, (2.44)

(Ω|π̂(0, ~x)π̂(0, ~y)Ω) = i∂2
tD

(+)(0, ~x− ~y)

= −i(−∆~x +m2)D(+)(0, ~x− ~y). (2.45)

(2.43), (2.44) and (2.45) are real symmetric kernels. Hence we obtain (2.41),
which implies (2.42).

2.2 Neutral scalar bosons with a linear source

2.2.1 Classical fields

We go back to the classical theory. The fields studied in the previous subsection
will be called free fields. We change slightly the notation: free classical fields
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will be now denoted by φfr(x), πfr(x). Clearly, they satisfy

(−2 +m2)φfr(x) = 0, (2.46)

πfr(x) = φ̇fr(x).

Fix a function
R1,3 3 x 7→ j(x) ∈ R, (2.47)

which will be called the (external) linear source. In most of this subsection we
will assume that (2.47) is Schwartz. The interacting fields satisfy the equation

(−2 +m2)φ(x) = −j(x), (2.48)

π(x) = φ̇(x). (2.49)

We would like to have the same equal-time Poisson-brackets as for free fields:

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y). (2.50)

There are several, usually equivalent, ways to introduce interacting fields.
One way is to treat them as functionals on the space of solutions to the free

Klein-Gordon equation, YKG. We can demand in addition that

φfr(0, ~x) = φ(0, ~x), πfr(0, ~x) = π(0, ~x). (2.51)

This condition determines the field φ(x) uniquely:

φ(x) := φfr(x)

+

∫ (
D+(x− y)θ(y0) +D−(x− y)θ(−y0)

)
j(y)dy.

Let us mention some alternative ways to define the interacting fields φ(x).
First of all, there is nothing special about the time t = 0 in (2.51) – we can
replace it with any t = t0. Alternatively, we can demand

lim
t→∞

(φfr(t, ~x)− φ(t, ~x)) = 0, lim
t→∞

(πfr(t, ~x)− π(t, ~x)) = 0,

or lim
t→−∞

(φfr(t, ~x)− φ(t, ~x)) = 0, lim
t→−∞

(πfr(t, ~x)− π(t, ~x)) = 0.

Another possibility is to introduce YKG(j), the space of smooth real space-
compact solutions of

(−2 +m2)ζ(x) = −j(x), (2.52)

and define φ(x) by
〈φ(x)|ζ〉 := ζ(x), ζ ∈ YKG(j).
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2.2.2 Lagrangian and Hamiltonian formalism

We can obtain the equations (2.48) as the Euler-Lagrange equations for the
Lagrangian density

L(x) = − 1
2∂µφ(x)∂µφ(x)− 1

2m
2φ(x)2 − j(x)φ(x). (2.53)

The conjugate variable is

π(x) :=
∂L

∂φ,0(x)
= ∂0φ(x),

just as in the free case.
The Legendre transformation leads to the Hamiltonian density

H(x) :=
1

2

(
π(x)2 +

(
~∂φ(x)

)2
+m2φ(x)2

)
+ j(x)φ(x).

and the (time-dependent) Hamiltonian

H(t) =

∫
H(t, ~x)d~x.

The Hamiltonian generates the dynamics:

φ̇(t, ~x) = {H(t), φ(t, ~x)}, π̇(t, ~x) = {H(t), π(t, ~x)}.

2.2.3 Quantization

We will use the notation φ̂fr(x) for the free quantum fields studied in the previous

section. We are now looking for interacting quantum fields φ̂(x) satisfying

(−2 +m2)φ̂(x) = −j(x). (2.54)

We also set
π̂(x) :=

˙̂
φ(x) (2.55)

and require the equal time commutation relations

[φ̂(t, ~x), φ̂(t, ~y)] = [π̂(t, ~x), π̂(t, ~y)] = 0,

[φ̂(t, ~x), π̂(t, ~y)] = iδ(~x− ~y). (2.56)

We would like to solve (2.54) and (2.56) in terms of free fields. That means,

we are looking for φ̂(x) on the Hilbert space of the free Klein-Gordon fields,
Γs(ZKG). We will in addition demand that

φ̂fr(0, ~x) = φ̂(0, ~x), π̂fr(0, ~x) = π̂(0, ~x). (2.57)

Clearly, the unique solution is

φ̂(x) := φ̂fr(x)

+

∫
D+(x− y)θ(y0)j(y)dy +

∫
D−(x− y)θ(−y0)j(y)dy. (2.58)
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It can be written as

φ̂(t, ~x) = Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
φ̂(0, ~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
, (2.59)

where the Hamiltonian in the Schrödinger picture equals

Ĥ(t) :=

∫
d~x :

(
1

2
π̂2(~x) +

1

2
∂iφ̂(~x)∂iφ̂(~x) +

m2

2
φ̂2(~x) + j(t, ~x)φ̂(~x)

)
:. (2.60)

(Note that we use the “double dots” to denote the Wick quantization, see Sub-
subsect. A.1.3.) In Ĥ(t), the fields are at time zero:

φ̂(~x) = φ̂(0, ~x) = φ̂fr(0, ~x),

π̂(~x) = π̂(0, ~x) = π̂fr(0, ~x).

In principle, one could replace Ĥ(t) by Ĥ(t)+C(t) for an arbitrary real function
t 7→ C(t). The choice that we made satisfies

(Ω|Ĥ(t)Ω) = 0, t ∈ R.

One can also use the Hamiltonian in the Heisenberg picture

ĤHP(t) =

∫
d~x :

(
1

2
π̂2(t, ~x) +

1

2
∂iφ̂(t, ~x)∂iφ̂(t, ~x) +

m2

2
φ̂2(t, ~x) + j(t, ~x)φ̂(t, ~x)

)
:

= Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
Ĥ(t)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
, (2.61)

which appears in the equations

∂tφ̂(t, ~x) = i[ĤHP(t), φ̂(t, ~x)],

∂tπ̂(t, ~x) = i[ĤHP(t), π̂(t, ~x)]. (2.62)

We also have the Hamiltonian in the interaction picture

ĤInt(t) =

∫
j(t, ~x)φ̂fr(t, ~x)d~x. (2.63)

2.2.4 Operator valued source

So far we assumed that j(x) is a c-number. Most of the formalism works, at
least formally, for operator valued sources. The main additional difficulty is the
need to distinguish between the source in various pictures.

Let us start with the Schrödinger picture. Let R1,3 3 x 7→ ĵ(x) be an
operator-valued function (or distribution) that commutes with time zero fields:

[φ̂(~x), ĵ(t, ~y)] = [π̂(~x), ĵ(t, ~y)] = 0, ~x, ~y ∈ R3, t ∈ R.

Define the Hamiltonian in the Schrödinger picture Ĥ(t) by (2.60), where j(x)
is replaced by ĵ(x).
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Then we define the fields in the Heisenberg picture φ̂(x), π̂(x), as in (2.59).
We also have the source in the Heisenberg picture

ĵHP(t, ~x) := Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
ĵ(t, ~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
having the commutation relations

[φ̂(t, ~x), ĵHP(t, ~y)] = [π̂(t, ~x), ĵHP(t, ~y)] = 0.

The Klein-Gordon equation (2.54) and the relation (2.58) generalize:

(−2 +m2)φ̂(x) = −jHP(x), (2.64)

φ̂(x) := φ̂fr(x)

+

∫
D+(x− y)θ(y0)ĵHP(y)dy +

∫
D−(x− y)θ(−y0)ĵHP(y)dy.

We can also introduce the Hamiltonian in the Heisenberg picture, by repeating
(2.61) with j(t, ~x) replaced with ĵHP(t, ~x). The usual equations of motion (2.62)
are satisfied.

We can also introduce the source in the interaction picture

ĵInt(t, ~x) := eitĤfrj(t, ~x)e−itĤfr ,

satisfying the commutation relations

[φ̂fr(t, ~x), ĵInt(t, ~y)] = [π̂fr(t, ~x), ĵInt(t, ~y)] = 0, ~x, ~y ∈ R3, t ∈ R.

Finally, we have the Hamiltonian in the interaction picture

ĤInt(t) =

∫
ĵInt(t, ~x)φ̂fr(t, ~x)d~x,

which is obtained from (2.63) by replacing j(t, ~x) with ĵInt(t, ~x).

2.2.5 Scattering operator

We go back to a c-number source j(x). The Hamiltonian in the interaction
picture written in terms of creation and annihilation operators equals

ĤInt(t) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
e−itε(~k)j(t,~k)â(k) + eitε(~k)j(t,~k)â∗(k)

)
.

An application of the time-dependent BCH formula gives the scattering operator

Ŝ = exp

(
i

2(2π)4

∫
|j(k)|2

k2 +m2 − i0
dk

)
(2.65)

× exp

− i

(2π)
3
2

∫
j(ε(~k),~k)d~k√

2ε(~k)
â∗(k)d~k

 exp

− i

(2π)
3
2

∫
j(ε(~k),~k)d~k√

2ε(~k)
â(k)d~k

 .
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On the level of creation and annihilation operators it acts as

Sa∗(k)S∗ = a∗(k)− i
j
(
ε(~k),~k

)
(2π)

3
2

√
2ε(~k)

, (2.66)

Sa(k)S∗ = a(k) + i
j
(
ε(~k),~k

)
(2π)

3
2

√
2ε(~k)

. (2.67)

For distinct k1, . . . , kn on shell, set

|kn, . . . , k1) := a∗(kn) · · · a∗(k1)Ω.

Matrix elements of the scattering operator between such vectors are called scat-
tering amplitudes:(

k+
1 , . . . , k

+
n+ | Ŝ |k−n− , . . . , k

−
1

)
(2.68)

= exp

(
i

2(2π)4

∫
|j(k)|2

k2 +m2 − i0
dk

)
(−i)n

++n−

(2π)
3
2 (n++n−)

×j(ε(
~k+

1 ),~k+
1 )√

2ε(~k+
1 )

· · ·
j(ε(~k+

n+),~k+
n+)√

2ε(~k+
n+)

j(ε(~k−n−),~k−n−)√
2ε(~k−n−)

· · · j(ε(
~k−1 ),~k−1 )√
2ε(~k−1 )

.

2.2.6 Green’s functions

Recall that the N -point Green’s function is defined for xN , . . . , x1 as follows:

G(xN , . . . , x1)

:=
(

Ω+|T
(
φ̂(xN ) · · · · · · φ̂(x1)

)
Ω−
)
, (2.69)

where

Ω± := lim
t→±∞

Texp

(
−i

∫ t

0

Ĥ(s)ds

)
Ω

= Texp

(
−i

∫ ±∞
0

ĤInt(s)ds

)
Ω.

One can organize Green’s functions in terms of the generating function:

Z(f) =

∞∑
N=0

∫
· · ·
∫

(−i)N

N !
G(xN , . . . , x1)f(xN ) · · · f(x1)dxN · · · dx1

=

(
Ω+
∣∣∣Texp

(
−i

∫ ∞
−∞

(
Ĥ(t) +

∫
f(t, ~x)φ̂(~x)d~x

)
dt

)
Ω−
)

=

(
Ω
∣∣∣Texp

(
−i

∫ ∞
−∞

ĤInt(t)dt− i

∫
f(x)φ̂fr(x)dx

)
Ω

)
= exp

(
i

2(2π)4

∫
|j(k) + f(k)|2

k2 +m2 − i0
dk

)
. (2.70)
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One can retrieve Green’s functions from the generating function:

G(xN , . . . , x1) = iN
∂N

∂f(xN ) · · · ∂f(x1)
Z(f)

∣∣∣
f=0

. (2.71)

We introduce also amputated Green’s functions:

Gamp(kn, . . . , k1)

= (k2
n +m2) · · · (k2

1 +m2)G(kn, . . . , k1). (2.72)

Amputated Green’s functions can be used to compute scattering amplitudes:(
k+

1 , . . . , k
+
n+ | Ŝ |k−n− , . . . , k

−
1

)
(2.73)

=
Gamp

(
k+

1 , . . . , k
+
n+ ,−k−n− , . . . ,−k

−
1

)
(2π)

3
2 (n++n−)

√
2ε(k+

1 ) · · ·
√

2ε(k+
n+)
√

2ε(k−n−) · · ·
√

2ε(k−1 )
,

where all k±i are on shell.

2.2.7 Path integral formulation

Recall that the generating function equals

Z(f) = exp

(
i

2

∫ (
j(x) + f(x)

)
Dc(x− y)

(
j(x) + f(x)

)
dx

)
(2.74)

= exp

(
i

2(2π)4

∫ (
j(k) + f(k)

)
(k2 +m2 − i0)−1

(
j(k) + f(k)

)
dk

)
We have the following expressions for the action integral:∫

Lfr(x)dx = −
∫

1

2
φ(x)(−2 +m2)φ(x)dx,∫

(L(x)− φ(x)f(x)) dx =

∫
Lfr(x)dx−

∫
φ(x)(j(x) + f(x))dx.

Consider heuristically the space of all (off-shell) configurations with the Lebesgue
measure Π

x
dφ(x). Physicists like to rewrite (2.74) as

Z(f) =

∫
Π
x

dφ(x) exp
(
i
∫ (
L(x)− f(x)φ(x)

)
dx
)

∫
Π
x

dφ(x) exp
(
i
∫
Lfr(x)dx

) , (2.75)

which follows by basic rules of Gaussian integrals. Note that strictly speaking
(2.75) is ambiguous, sinceDc, the causal propagator, is only one of many inverses
(Green’s functions) of −2 + m2. The choice of the causal propagator is an
additional convention that is not explicitly contained in the expression (2.75).
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2.2.8 Feynman rules

Perturbative expansions can be organized in terms of Feynman diagrams. The
prescriptions how to draw Feynman diagrams and to evaluate them are called
Feynman rules. We restrict ourselves to Feynman rules in the momentum space.

We have 1 kind of lines and 1 kind of vertices. At each vertex just one
line ends. Vertices are denoted by solid dots. Lines have no distinguished
orientation. However, when we fix the orientation of a line, we can associate to
it a momentum k.

Diagrams for Green’s functions, in addition to internal lines have external
lines ending with insertion vertices, which will be denoted by small circles. To
compute Green’s functions we do as follows:

(1) We draw all possible Feynman diagrams. More precisely, we put N dots for
insertion vertices, labelled 1, . . . , N . We put n dots, labelled 1, . . . , n, for
interaction vertices. Then we connect them in all possible allowed ways.
The expression for the diagram is then divided by n!.

(2) To each vertex we associate the factor −ij(k), where k is the momentum
flowing towards this vertex.

(3) To each line we associate the propagator

−iDc
fr(k) =

−i

k2 +m2 − i0
.

(4) For internal lines we integrate over the variables with the measure d4k
(2π)4 .

∞ 

Figure 1: Diagram for Green’s function.

Diagrams used to compute scattering amplitudes with N− incoming and N+

outgoing particles are similar to diagrams for N−+N+-point Green’s functions,
except that instead of insertion vertices we have incoming and outgoing particles.
For the incoming lines, −k are on-shell, for the outgoing lines, k is on-shell. The
rules are changed only concerning the external lines:

(i) To each incoming external line we associate 1√
(2π)32ε(~k)

.
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Figure 2: Diagram for scattering amplitude.

(ii) To each outgoing external line we associate 1√
(2π)32ε(~k)

.

2.2.9 Vacuum energy

Let D denote the value of the (unique) connected diagram with no external
lines. We have

log(Ω|ŜΩ) =
i

2(2π)4

∫
|j(k)|2

k2 +m2 − i0
dk =

D

2
.

Figure 3: Diagram for vacuum energy.

We can derive it diagrammatically as follows. At the order 2m there are
(2m)!
2mm! pairings. Hence

(Ω|ŜΩ) =

∞∑
m=0

1

(2m)!

(2m)!

2mm!
Dm = exp(D/2).

2.2.10 Problems with the scattering operator

Ŝ can be ill defined.
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First of all,

Re
1

2(2π)4

∫
|j(k)|2dk

k2 +m2 − i0
=

1

2(2π)4

∫
|j(k)|2dk

k2 +m2
(2.76)

can be infinite. This is not a very serious problem. (2.76) is responsible only for
the phase of the scattering amplitude and does not influence scattering cross-
sections.

We can try to remedy the problem by an apropriate renormalization of the
phase In particular, in the case of a stationary source or, more generally, a source
travelling with a constant velocity, we can use the adiabatic switching and the
Gell-Mann and Low construction to obtain a meaningful scattering operator.
We will describe this construction in the next subsubsection.

The problem with Ŝ is more serious if

Im
1

2(2π)4

∫
|j(k)|2

k2 +m2 − i0
dk =

1

2(2π)3

∫
|j(ε(~k),~k)|2

ε(~k)
d~k

is infinite. Then no unitary operator S satisfies the relations (2.66) and (2.67),
see (??). The scattering operator is ill defined. However, as we describe in
Subsubsect. 2.2.13, also in this situation there is a pragmatic solution – we can
define inclusive cross-sections.

This may happen for m = 0 because of the infrared problem, which means
that the divergence comes from ~k ≈ 0.

2.2.11 Travelling source

To illustrate the Gell-Mann and Low construction, consider a source of a profile
given by a function q ∈ C∞c (R3) travelling with velocity ~v. That means

j(t, ~x) = q(~x− t~v). (2.77)

We note that the Fourier transform of (2.77) in the spatial variables equals

j(t,~k) = q(~k)e−it~v~k.

The interaction Hamiltonian becomes

Ĥε,Int(t) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
e−it

(
ε(~k)−~v~k

)
q(~k)â(k) + eit

(
ε(~k)−~v~k

)
q(~k)â∗(k)

)
.

This is precisely interaction Hamiltonian for a time-independent perturbation
where we replaced the 1-particle energy ε(~k) with ε(~k)− ~v~k.

We use the Gell-Mann and Low type adiabatic switching, so that we replace
j with

jε(t, ~x) := e−|t|εj(t, ~x).
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Let Ŝ±ε denote the Møller operators for the Gell-Mann and Low adiabatic
Hamiltonian. The renormalized Møller operators are defined as

Ŝ±GL = lim
ε↘0

|(Ω|Ŝ±ε Ω)|
(Ω|Ŝ±ε Ω)

Ŝ±ε

= exp
(
− 1

(2π)
3
2

∫
q(~k)√

2ε(~k)(ε(~k)− ~v~k)
a∗(k)d~k

)

× exp
( 1

(2π)
3
2

∫
q(~k)√

2ε(~k)(ε(~k)− ~v~k)
a(k)d~k

)

× exp
(
− 1

2(2π)3

∫
|q(~k)|2

2ε(~k)(ε(~k)− ~v~k)2
d~k
)
.

(GL stands for the Gell-Mann–Low).
Note that if |v| < 1 (if the source is slower than light) and m > 0, then Ŝ±GL

are well defined unitary operators We have S+
GL = S−GL and

S±GLHfr = HS±GL.

If m = 0 and
∫
f(~x)d~x 6= 0, then the infrared problem shows up: Ŝ±GL are ill

defined.
It is interesting to assume that the source has a different asymptotics in the

future and in the past. For simplicity, suppose that the change occurs sharply
at time t = 0 and consider

j(t, ~x) =

{
q−(~x− t~v−), t < 0,
q+(~x− t~v+), t > 0.

The following operator can be used as a scattering operator:

Ŝ+∗
GLŜ

−
GL (2.78)

= exp

(
1

(2π)
3
2

∫
1√

2ε(~k)

( q+(~k)

(ε(~k)− ~v+
~k)
− q−(~k)

(ε(~k)− ~v−~k)

)
â∗(k)d~k

)

× exp

(
1

(2π)
3
2

∫
1√

2ε(~k)

(
−

q+(~k)

(ε(~k)− ~v+
~k)

+
q−(~k)

(ε(~k)− ~v−~k)

)
â(k)d~k

)

× exp

(
− 1

2(2π)3

∫
1

2ε(~k)

( |q+(~k)|2

(ε(~k)− ~v+
~k)2

+
|q−(~k)|2

(ε(~k)− ~v−~k)2

− 2q+(~k)q−(~k)

(ε(~k)− ~v+
~k)(ε(~k)− ~v−~k)

)
d~k

)
.

Let m = 0. Then (2.78) is ill defined if
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(1)
∫
q+(~x)d~x 6=

∫
q−(~x)d~x,

or

(2)
∫
q+(~x)d~x =

∫
q−(~x)d~x 6= 0 and v+ 6= v−.

Alternatively, we can introduce first the scattering operator Ŝε with the
adiabatically switched interaction. Then we can define the Gell-Mann and Low
scattering operator by taking ε↘ 0 and renormalizing the phase:

SGL := lim
ε↘0

|(Ω|ŜεΩ)|
(Ω|ŜεΩ)

Ŝε (2.79)

= exp

(
1

(2π)
3
2

∫
1√

2ε(~k)

( q+(~k)

(ε(~k)− ~v+
~k)
− q−(~k)

(ε(~k)− ~v−~k)

)
â∗(k)d~k

)

× exp

(
1

(2π)
3
2

∫
1√

2ε(~k)

(
−

q+(~k)

(ε(~k)− ~v+
~k)

+
q−(~k)

(ε(~k)− ~v−~k)

)
â(k)d~k

)

× exp

(
− 1

2(2π)3

∫
1

2ε(~k)

∣∣∣ q+(~k)

(ε(~k)− ~v+
~k)
− q−(~k)

(ε(~k)− ~v−~k)

∣∣∣2.
Note that (2.78) and (2.79) differ only by a phase. (2.79) is given by (2.65)
where we replace ∫

|j(k)|2

k2 +m2 − i0
dk

with

Im

∫
|j(k)|2

k2 +m2 − i0
dk = π

∫
|j(ε(~k),~k)|2

2ε(~k)
d~k.

Here, j(k) is the Fourier transform of the source (2.77):

j(k) =

∫
j(t, ~x)e−i~k~x+ik0tdxdt

= − iq+(~k)

~k~v+ − k0 − i0
+

iq−(~k)

~k~v− − k0 + i0
.

If we do not like the adiabatic switching approach we can directly define the
Møller operators by removing the (possibly infinite) phase shift from (2.65).

2.2.12 Scattering cross-sections

We consider again an arbitrary source term j. Given on-shell momenta of in-
coming particles k−n− , . . . , k

−
1 and outgoing particles k+

1 , . . . , k
+
n+ we can compute

the scattering cross-section for the corresponding process, or actually its density
w.r.t. the Lebesgue measure dk+

1 · · · dk
+
n+ :
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σ
(
k+

1 , . . . , k
+
n+ ; k−n− , . . . , k

−
1

)
=

∣∣∣(k+
1 , . . . , k

+
n+ | Ŝ |k−n− , . . . , k

−
1

)∣∣∣2
= (2π)−(n++n−)/2 exp

(
−
∫
|j(ε(~k),~k)|2

(2π)32ε(~k)
dk
)

×|j(ε(
~k+

1 ),~k+
1 )|2

2ε(~k+
1 )

· · ·
|j(ε(~k+

n+),~k+
n+)|2

2ε(~k+
n+)

|j(ε(~k−n−),~k−n−)|2

2ε(~k−n−)
· · · |j(ε(

~k−1 ),~k−1 )|2

2ε(~k−1 )
.

2.2.13 Inclusive cross-section

Let δ > 0. The 1-particle Hilbert space can be split as Z = Z<δ ⊕ Z>δ corre-
sponding to the soft momenta |~k| < δ and hard momenta |~k| > δ. Clearly,

Γs(Z) ' Γ(Z<δ)⊗ Γ(Z>δ).

Assume first that m > 0 and the scattering operator is computed as above.
Clearly, the scattering operator and scattering cross-sections factorize:

Ŝ ' Ŝ<δ ⊗ Ŝ>δ, σ = σ<δ σ>δ.

More precisely, let

|~q+
1 |, . . . , |~q

+
m+ |, |~q−1 |, . . . , |~q

−
m− | < δ. (2.80)

Then we have soft scattering cross-sections

σ<δ
(
q+
1 , . . . , q

+
m+ ; q−m− , . . . , q

−
1

)
=

∣∣∣(q+
1 , . . . , q

+
m+ | Ŝ>δ |q−m− , . . . , q

−
1

)∣∣∣2
= (2π)−(m++m−)/2 exp

(
−
∫
|~q|<δ

|j(ε(~q), ~q)|2

(2π)32ε(~q)
dq
)

×|j(ε(~q
+
1 ), ~q+

1 )|2

2ε(~q+
1 )

· · ·
|j(ε(~q+

m+), ~q+
m+)|2

2ε(~q+
m+)

|j(ε(~q−m−), ~q−m−)|2

2ε(~q−m−)
· · · |j(ε(~q

−
1 ), ~q−1 )|2

2ε(~q−1 )
.

Likewise, let
|~k+

1 |, . . . , |~k
+
n+ |, |~k−1 |, . . . , |~k

−
n− | > δ. (2.81)

The corresponding hard scattering cross-section are

σ>δ
(
k+

1 , . . . , k
+
n+ ; k−n− , . . . , k

−
1

)
=

∣∣∣(k+
1 , . . . , k

+
n+ | Ŝ>δ |k−n− , . . . , k

−
1

)∣∣∣2
= (2π)−(n++n−)/2 exp

(
−
∫
|~k|>δ

|j(ε(~k),~k)|2

(2π)32ε(~k)
dk
)

×|j(ε(
~k+

1 ),~k+
1 )|2

2ε(~k+
1 )

· · ·
|j(ε(~k+

n+),~k+
n+)|2

2ε(~k+
n+)

|j(ε(~k−n−),~k−n−)|2

2ε(~k−n−)
· · · |j(ε(

~k−1 ),~k−1 )|2

2ε(~k−1 )
.
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We have

σ>δ
(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
(2.82)

= σ
(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
+

∞∑
j=1

∫
|~q1|<δ

· · ·
∫
|~qj |<δ

σ
(
k+

1 , . . . , k
+
n+ , q1, . . . , qm; k−n− , · · · , k

−
1

)
d~q1 · · · d~qj .

σ>δ can be interpreted to describe the experiment which does not measure
outgoing particles of momentum less than δ and in the incoming state we there
are no particles of momentum less than δ. Actually, we would have obtained
the same scattering cross-section if the part of the incoming state below the
momentum δ was arbitrary. This is an example of an incluive cross-section – a
cross-section which involves summing over many unobserved final states.

If m↘ 0, the soft scattering operator Ŝ<δ has no limit. All σ<δ go to zero.
In fact, they are proportional to

σ<δ = exp
(
−
∫
|~q|<δ

|j(ε(~q), ~q)|2

(2π)32ε(~q)
dq
)
.

The hard scattering operator Ŝ<δ and σ<δ have well defined limits. Therefore,
they can have a physical meaning.

One can imagine various experimental scenarios that lead to different inclu-
sive cross-sections. For example, imagine that our apparatus does not detect
soft particles of total energy less than δ. This leads to the following inclusive
cross-section:

σemp
>δ

(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
:= σ

(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
+

∞∑
j=1

∫
ε(~q1)+···+ε(~qj)<δ

σ
(
k+

1 , . . . , k
+
n+ , q1, . . . , qj ; k

−
n− , · · · , k

−
1

)
d~q1 · · · d~qj .

Note that both σ>δ and σemp
>δ are proportional to one another:

σemp
>δ

(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
σ>δ

(
k+

1 , . . . , k
+
n+ ; k−n− , · · · , k

−
1

)
:= (Ω<δ|Ŝ∗<δ1l[0,δ](Ĥfr)Ŝ<δΩ<δ) = σ<δ(; ) (2.83)

+

∞∑
j=1

∫
ε(~q1)+···+ε(~qj)<δ

σ<δ (q1, . . . , qj ; ) d~q1 · · · d~qj .

This ratio is in practice not very interesting – it contributes a common numerical
factor to all scattering cross-sections for hard particles.
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2.2.14 Energy shift

Suppose now that the source does not depend on time and is given by a Schwartz
function R3 3 ~x 7→ j(~x). Then we have the time-independent Hamiltonian

Ĥ =

∫
:
(1

2
π̂(~x)2 +

1

2

(
~∂φ̂(~x)

)2
+ j(~x)φ̂(~x)

)
:d~x.

By the method of completing the square (A.8) we compute the infinum of Ĥ:

E = −1

2

∫
j(~x)

e−m|~x−~y|

4π|~x− ~y|
j(~y)d~xd~y.

The incoming and outgoing Møller operators coincide and are equal to

Ŝ±GL = exp
(
− 1

(2π)
3
2

∫
j(~k)√
2ε(~k)3

a∗(k)d~k
)

× exp
( 1

(2π)
3
2

∫
j(~k)√
2ε(~k)3

a(k)d~k
)

× exp
(
− 1

2(2π)3

∫
|j(~k)|2

2ε(~k)3
d~k
)
.

If m > 0 or if
∫
j(~x)d~x = 0, then Ĥ has a ground state and the operators

Ŝ±GL are well defined.

If m = 0 and
∫
j(~x)d~x 6= 0, then Ĥ has no ground state (even though it is

bounded from below) and the operators Ŝ±GL are ill defined.

2.3 Neutral scalar bosons with a mass-like perturbation

2.3.1 Classical fields

A scalar field can be also perturbed by a mass-like perturbation. Classically,
this is expressed by the equation

(−2 +m2)φ(x) = −κ(x)φ(x), (2.84)

where R1,3 3 x 7→ κ(x) is a given function. In most of this subsection we will
assume that κ is Schwartz and m > 0.

Let us define the corresponding retarded and advanced propagators as the
unique distributional solutions of

(−2x +m2 + κ(x))D±(x, y) = δ(x− y), (2.85)

satisfying
suppD± ⊂ {x, y : x ∈ J±(y)}.
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We also generalize the Pauli-Jordan function:

D(x, y) := D+(x, y)−D−(x, y).

Note that
suppD ⊂ {x, y : x ∈ J(y)}.

The function D can be used to solve the initial value problem of (2.84):

φ(t, ~x) = −
∫
∂sD(t, ~x, s, ~y)

∣∣∣
s=0

φ(0, ~y)d~y

+

∫
D(t, ~x, 0, ~y)φ̇(0, ~y)d~y. (2.86)

We would like to interpret the classical field φ(x) satisfying (2.84) as a func-
tional on the space YKG. Together with the conjugate field defined as in (2.49)
we demand that they coincide at time t = 0, as in (2.57). This allows us to
express uniquely the field φ in terms of the free field:

φ(t, ~x) = −
∫
∂sD(t, ~x, s, ~y)

∣∣∣
s=0

φfr(0, ~y)d~y

+

∫
D(t, ~x, 0, ~y)πfr(0, ~y)d~y. (2.87)

2.3.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

L(x) = −1

2
∂µφ(x)∂µφ(x)− 1

2
(m2 + κ(x))φ(x)2.

As in Subsubsect. 2.2.2, the variable conjugate to φ(x) is π(x). We easily obtain
the Hamiltonian density

H(x) =
1

2
π2(x) +

1

2

(
~∂φ(x)

)2
+

1

2
(m2 + κ(x))φ2(x),

so that the full Hamiltonian generating the dynamics is

H(t) =

∫
H(t, ~x)d~x.

2.3.3 Dynamics in the interaction picture

We can also consider the classical Hamiltonian in the interaction picture. It can
be expressed in terms of plane wave functionals:

HInt(t) =
1

2

∫
κ(t, ~x)φ2

fr(t, ~x)d~x (2.88)

=
1

(2π)32

∫
d~k1d~k2κ(t,~k1 + ~k2)√

2ε(~k1)

√
2ε(~k2)

(
e−itε(~k1)−itε(~k2)a(−k1)a(−k2)

+2eitε(~k1)−itε(~k2)a∗(k1)a(−k2) + eitε(~k1)+itε(~k2)a∗(k1)a∗(k2)
)
.
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Consider the equations of motion in the interaction picture:

ȧ∗t (k) = {HInt(t), a
∗
t (k)}

=
i

(2π)3

∫
d~k1κ(t,−~k + ~k1)√

2ε(~k)

√
2ε(~k1)

×
(

e−itε(~k)−itε(~k1)at(−k1) + e−itε(~k)+itε(~k1)a∗t (k1)
)
,

a∗0(k) = a∗(k).

The solution of these equations can be expressed in terms of a matrix of the
form [

pt+,t− qt+,t−

qt+,t− pt+,t−

]
(2.89)

in the following way:[
a∗t+(k)

at+(k)

]
=

∫
d~k1

[
pt+,t−(k, k1) qt+,t−(k, k1)

qt+,t−(k, k1) pt+,t−(k, k1)

][
a∗t−(k1)

at−(k1)

]

(2.89) has a limit as t+,−t− → ∞, which can be called the classical scattering
operator.

One can try to solve the equations of motion by iterations. The first iteration
is often (at least in the quantum context) called the Born approximation, and
it gives the following formula for the elements of (2.89):

pBorn
t+,t−(k, k1) = δ(~k − ~k1) +

i

(2π)3

∫ t+

t−

ds
κ(s,−~k + ~k1)√
2ε(~k)

√
2ε(~k1)

e−isε(~k)+isε(~k1),

qBorn
t+,t−(k, k1) =

i

(2π)3

∫ t+

t−

ds
κ(s,−~k + ~k1)√
2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1).

2.3.4 Quantization

Again, we are looking for quantum fields R1,3 7→ φ̂(x) satisfying

(−2 +m2)φ̂(x) = −κ(x)φ̂(x), (2.90)

and with the conjugate field given by (2.55), having the equal time commutators
(2.56). With the usual identification of zero time fields, the solution is given by
putting “hats” onto (2.87).

We would like to check whether the classical scattering operator and the
classical dynamics are implementable in the Fock space for nonzero κ. To this
end we need to check the Shale condition, that is, whether the off-diagonal
elements of (2.89) are square integrable. For simplicity, we will restrict ourselves
to the Born approximation; the higher order terms do not change the conclusion.
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The verification of the Shale condition is easier for the scattering operator.
Consider

qBorn
∞,−∞(k, k1) =

i

(2π)3

∫ ∞
−∞

ds
κ(s,−~k + ~k1)√
2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1). (2.91)

Recall that κ is a Schwartz function. Therefore, we can integrate by parts as
many times as we want:

qBorn
∞,−∞(k, k1) =

in+1

(2π)3

∫ ∞
−∞

ds
∂ns κ(s,−~k + ~k1)√

2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1)

(ε(~k) + ε(~k1))n
. (2.92)

This decays in ~k and ~k1 as any inverse power, and hence is square integrable on
R3 × R3. Therefore the classical scattering operator is implementable.

Next let us check the implementability of the dynamics, believing again that
it is sufficient to check the Born approximation. We integrate by parts once:

qBorn
t+,t−(k, k1)

=
1

(2π)3

(
− κ(t+,−~k + ~k1)e−it+ε(~k)−it+ε(~k1) + κ(t−,−~k + ~k1)e−it−ε(~k)−it−ε(~k1)

)√
2ε(~k)

√
2ε(~k1)(ε(~k) + ε(~k1))

+
1

(2π)3

∫ t+

t−

ds
∂sκ(s,−~k + ~k1)e−isε(~k)−isε(~k1)√

2ε(~k)

√
2ε(~k1)(ε(~k) + ε(~k1))

. (2.93)

Using that κ(s,~k+~k1) decays fast in the second variable, we see that (2.93) can
be estimated by

C

(ε(~k) + ε(~k1))2
,

which is square integrable. Therefore, the dynamics is implementable for any
t−, t+.

By a similar computation we check that if we freeze t0 ∈ R, the dynamics
generated by the momentary Hamiltonian HInt(t0) is implementable.

2.3.5 Quantum Hamiltonian

We may try to write the quantum Hamiltonian as

Ĥ(t) :=

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
(m2 + κ(t, ~x))φ̂2(x)

)
:d~x+ C(t),

so that (2.59) is true. It may seem natural to put C(t) = 0 and use Wick-ordered
momentary quantum Hamiltonians. When deriving the Feynman rules we will
in fact assume that C(t) = 0. However, this will lead to divergent diagrams.

It is actually possible to introduce correctly defined Hamiltonians Ĥ(t).
They are bounded from below, however the vacuum is not contained in their
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form domain. Therefore, the condition (Ω|Ĥ(t)Ω) = 0 for all t, which is equiv-
alent to the Wick ordering, cannot be imposed. Formally, these Hamiltonians
will have an infinite constant C(t).

The Hamiltonian in the interaction picture is

ĤInt(t) =
1

2

∫
κ(t, ~x):φ̂2

fr(t, ~x):d~x+ C(t) (2.94)

=
1

(2π)32

∫
d~k1d~k2κ(t,~k1 + ~k2)√

2ε(~k1)

√
2ε(~k2)

(
e−itε(~k1)−itε(~k2)â(−k1)â(−k2)

+2eitε(~k1)−itε(~k2)â∗(k1)â(−k2) + eitε(~k1)+itε(~k2)â∗(k1)â∗(k2)
)

+ C(t).

As in the case of linear sources, we define the scattering operator, scattering
amplitudes, Green’s functions, amputated Green’s functions and the generating
function, see (2.68)–(2.73).

2.3.6 Path integral formulation

The generating function (and hence all the other quantities introduced above)
can be computed exactly. It equals

Z(f) =

(
det
((
−2 +m2

)(
−2 +m2 + κ− i0

)−1
exp
(
κ

1

−2 +m2 − i0

))) 1
2

× exp

(
i

2
f(−2 +m2 + κ− i0)−1f

)
=

(
det
(
1l + κDc

fr

)−1
exp
(
κDc

fr

)) 1
2

× exp

(
i

2
fDc

fr (1l + κDc
fr)
−1
f

)
. (2.95)

Here, the determinant is understood (at least formally) as the Fredholm deter-

minant on the space L2(R1,3). The term exp
(
κDc

fr

) 1
2 is responsible for the Wick

ordering.
Physicists often try to express (2.95) in terms of path integrals, similarly as

in (2.75):

C

∫
Π
x

dφ(x) exp

(
i

∫ (
L(x)− f(x)φ(x)

)
dx

)
. (2.96)

Here, C is a normalization constant, which does not depend on f . Again, the
formula (2.96) is only symbolic, the full information is contained in (2.95).

2.3.7 Feynman rules

Feynman rules are similar as in the case of a linear source. The difference is
that now vertices have 2-legs. The rule (2) for calculating Green’s functions
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Figure 4: Diagram for Green’s function.

Figure 5: Diagram for scattering amplitude.

changes: for each vertex with incoming momenta k1, k2 we insert the number
−iκ(k1 + k2), where k1 and k2 are the momenta of lines entering the vertex.
Another difference is that we do not allow a line to begin and end at the same
vertex – this is because we use the Wick ordered Ĥ(t).

Diagrams for Green’s functions can be decomposed in connected components
of two kinds:

1. lines ending at insertion vertices (for Green’s functions) or on-shell parti-
cles (for scattering amplitudes) with 0, 1, 2, . . . interaction vertices;

2. loops with 2, 3, . . . interaction vertices.
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Note that loops with 1 interaction vertex do not appear because of the Wick
ordering.

Diagrams only without loops (both for Green’s functions and scattering am-
plitudes) are finite, because the external momenta are fixed and on interaction
vertices we have the fast decaying function κ.

Consider a loop with 4-momenta k1, . . . , kn flowing around it. On vertices we
have the function κ, which essentially identifies ki with ki+1. The propagators
give the power |ki|−2. Thus we are left with 4 degrees of freedom and the
integrand that behaves as |k|−2n. This is integrable if n > 2, but divergent
for n = 2, the 2-vertex loop. We will see that only the imaginary part of this
diagram is divergent.

2.3.8 Vacuum energy

The classical scattering operator is well defined. The quantum scattering oper-
ator, if computed naively (that is, using the Wick ordered Hamiltonian) is ill
defined. Its problem comes from the overall phase, which is not fixed by the
classical transformation.

One can say that this phase has no physical meaning, since it does not appear
in scattering cross-sections. However, it may be relevant for a more complete
theory. We will see that there is a natural choice of this phase, which leads
to a renormalized scattering operator Ŝren(κ). We will also see that there is a
natural renormalized Hamiltonian Ĥren(t).

Figure 6: Vacuum energy

The logarithm of the vacuum-to-vacuum scattering amplitude times the imag-
inary unit will be called the vacuum energy. It can be computed exactly:

E := i log(Ω|ŜΩ) = i logZ(0)

=
i

2
Tr
(

log(−2+m2−i0)− log(−2+m2+κ−i0) + κ(−2+m2−i0)−1
)

=
i

2
Tr
(
− log(1 + κDc

fr) + κDc
fr

)
= i

∞∑
n=2

(−1)n

2n
Tr(κDc

fr)
n =:

∞∑
n=2

En. (2.97)
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Here, Tr is understood (at least formally) as the usual trace of operators on

L2(R1,3). Besides, En := i (−1)n

2n Tr(κDc
fr)
n is the nth order contribution to the

vacuum energy. Note that for n = 1 there is no contribution because of the
Wick ordering and for n = 2 it is divergent.

We have En = iDn2n , where Dn is the value of the loop with n vertices. This

is a special case of a more general rule saying that to compute log(Ω|ŜΩ) we
need to sum over all connected diagrams with no external lines divided by the
symmetry factor (the order of the group of the symmetries of the diagram). In
the case of a loop with n vertices its group of symmetries is the nth dihedral
group, hence the symmetry factor is 2n.

2.3.9 Pauli-Villars renormalization

The lowest contribution to the vacuum energy is of the second order and comes
from the loop with two vertices. Formally, it can be written as

E2 =

∫
κ(−k)κ(k)π(k)

dk

(2π)4
=

∫
|κ(k)|2π(k)

dk

(2π)4
,

where the right hand side defines the vacuum energy function π(k). Unfortu-
nately, computed naively, π(k) is divergent.

The renormalization of a mass-like perturbation is not very difficult and can
be done in many ways. We will describe 3 methods of renormalization. All of
them will lead to the same renormalized vacuum energy function pren(k).

We start withe the Pauli-Villars method. In the context of a mass-like per-
turbation, the Pauli-Villars regularization consists in introducing an additional
fictitious field that has a (large) mass M and appears only in loops. (Thus we
ignore diagrams involving external lines of the fictitious particle). In addition,
each loop of the fictitios field has a (nonphysical) coefficient −1. We organize
our computations by setting where m0 = m, C0 = 1, m1 = M , and C1 = −1.
The Pauli-Villars regularized vacuum energy function is the sum of the loop of
the physical particle and of the fictitious one:

64



4πM (k2) = i

∫
d4q

(2π)4

∑
i

Ci
1

((q + 1
2k)2 +m2

i − i0)((q − 1
2k)2 +m2

i − i0)

= −i

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci exp

(
−i(α1 + α2)

(
q2 +

1

4
k2 +m2

i

)
− i(α1 − α2)qk

)
= − 1

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci
1

(α1 + α2)2
exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
k2

)
= − 1

(4π)2

∫ 1

0

dv

∫ ∞
0

dρ

ρ

∑
i

Ci exp

(
−iρ

(
m2
i +

(1− v2)k2

4

))
=

1

(4π)2

∫ 1

0

dv
∑
i

Ci log
(
m2
i +

k2(1− v2)

4
− i0

)
=

1

(4π)2

∫ 1

0

dv
∑
i

Ci

(
log

(
1 +

(1− v2)k2

4m2
i

− i0

)
+ logm2

i

)
.

We used the identities (A.14) and (A.16). We inserted

1 =

∫ ∞
0

dρδ(ρ− α1 − α2),

and then changed the variables as α1 = ρ (1−v)
2 , α2 = ρ (1+v)

2 , so that dα1dα2 =
1
2ρdvdρ. We also used the symmetry v 7→ −v to restrict the integration from
[−1, 1] to [0, 1]. At the end we use the identity (A.17).

We define the renormalized vacuum energy function as

πren(k2) := lim
M→∞

(
πM (k2)− πM (0)

)
= lim

M→∞

(
πM (k2) +

1

4(4π)2
log

M2

m2

)
=

1

4(4π)2

∫ 1

0

log
(

1 +
k2(1− v2)

4m2
− i0

)
dv.

Note that πren(0) = 0. Using (A.18) we obtain

πren(k2)

=
1

4(4π)2

(√
k2 + 4m2

√
k2

log

√
k2 + 4m2 +

√
k2

√
k2 + 4m2 −

√
k2
− 2

)
, 0 < k2.

Using the analyticity and log x+iy
x−iy = 2i arctan y

x we can extend this formula for

65



k2 < 0:

πren(k2)

=
1

4(4π)2

(√
k2 + 4m2

√
−k2

2 arctan

√
−k2

√
k2 + 4m2

− 2

)
, −4m2 < k2 < 0;

=
1

4(4π)2

(√
−k2 − 4m2

√
−k2

(
log

√
−k2 − 4m2 +

√
−k2

√
−k2 − 4m2 −

√
−k2

− iπ
)
− 2

)
, k2 < −4m2.

2.3.10 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum
energy. We start with computing the imaginary part of π(k) without a regular-
ization, which gives a finite result:

Imπren(k2) = Im i

∫
d4q

4(2π)4

1

((q + 1
2k)2 +m2 − i0)((q − 1

2k)2 +m2 − i0)

= Im
1

4(4π)2

∫ 1

0

dv

(
log

(
1 +

(1− v2)k2

4m2
− i0

)
+ logm2

)
.

Using log(t − i0) = log |t| − iπθ(−t), we see that the imaginary part of the
logarithm is very simple. Hence

Imπren(k2) = − π

4(4π)2

∫ 1

0

θ
(
− 1− (1− v2)k2

4m2

)
dv

= − π

4(4π)2
√
−k2

√∣∣∣− k2 − 4m2
∣∣∣
+
.

We can obtain the real part by using the fact that πren(0) = 0 and the once
subtracted dispersion relations for the lower complex halfplane:

Reπren(k2) = − 1

π
P
∫ −4m2

−∞
dsImπren(s)

(
1

s− k2
− 1

s

)
. (2.98)

2.3.11 Wick rotation

The causal propagator Dc can be interpreted as a boundary value of a holomor-
phic function(

C\
(
]−∞,−m] ∪ [m,∞[

))
× R3 3 (p0, ~p) (2.99)

7→ Dc(p) =
1

−(p0)2 + ~p2 +m2
=

1

p2 +m2
.
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Its physical region lies at the boundary: at ]0,∞[×R3 from above and on ] −
∞, 0[×R3 from below:

R× R3 3 (p0, ~p) 7→ Dc(p0, ~p) = lim
φ↘0

1

−
(
eiφp0)2 + ~p2 +m2

=
1

−(p0)2 + ~p2 +m2 − i0
.

Inside the Euclidean region iR× R3, we have a particularly nice expression for
the propagator:

Dc(ip0, ~p) =
1

(p0)2 + ~p2 +m2
.

The Euclidean region can be reached from the physical region by a continuous
transformation inside the holomorphy domain called the Wick rotation:

[0, π/2] 3 φ 7→ Dc(eiφp0, ~p).

Define the Euclidean scalar product as

〈p|q〉E := p0q0 + ~p~q,

and the Euclidean propagator(
C\
(
]− i∞,−im] ∪ [im, i∞[

))
× R3 3 (p0, ~p) (2.100)

7→ DE(p0, ~p) :=
1

(p0)2 + ~p2 +m2
=

1

〈p|p〉2E +m2
.

Clearly, we can express the causal propagator in terms of the Euclidean propa-
gator:

Dc(p0, ~p) = lim
φ↗π/2

DE(e−iφp0, ~p).

Suppose now that a physical quantity is given by an integral

R1,3 3 p 7→ F (p) :=

∫
d4q

(2π)4

G(p2, pq, q2)(
ap2 + 2bpq + cq2 +m2 − i0

)n , (2.101)

where G is holomorphic and the matrix

[
a b
b c

]
is positive definite. Then

instead of F we can consider the holomorphic function(
C\
(
]−∞,−m] ∪ [m,∞[

))
× R3 3 (p0, ~p) (2.102)

7→ F (p) :=

∫
d4q

(2π)4

G(p2, pq, q2)(
ap2 + 2bpq + cq2 +m2

)n ,
where there is no need to put i0, because the denominator is automatically
invertible. The physical function (2.101) is the boundary value of (2.102):

lim
φ↘0

F (eiφp0, ~p).
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We can also introduce the Euclidean version of F given by

FE(p) = FE(p0, ~p) := F (ip0, ~p)

=

∫
id4q

(2π)4

G(〈p|p〉2E, 〈p|q〉E, 〈q|q〉2E)(
a〈p|p〉2E + 2b〈p|q〉E + c〈q|q〉2E +m2

)n ,
where in the integral we substituted (iq0, ~q) for (q0, ~q). This substitution can be
reached from the original variables inside the holomorphy domain by the Wick
rotation, hence it does not affect the integral. FE is holomorphic on the domain
of (2.100). We can retrieve the physical values of F from FE by

F (p0, ~p) = lim
φ↗π/2

FE(e−iφp0, ~p).

In what follows, whenever we use Euclidean functions such as FE, we will
use the Euclidean scalar product 〈p|q〉E. We will denote this scalar product
simply by pq, since its use will be obvious from the context.

2.3.12 Dimensional renormalization

Let us renormalize the vacuum energy by yet another method – the method of
dimensional regularization. We will use the Euclidean quantities.

Let us first compute formally the 2-vertex loop:

4πE(k2) = −
∫

d4q

(2π)4

1

((q + 1
2k)2 +m2)((q − 1

2k)2 +m2
)

= −1

2

∫ 1

−1

dv

∫
d4q

(2π)4

1(
q2 + k2

4 +m2 + vqk
)2

= −
∫ 1

0

dv

∫
d4q

(2π)4

1(
q2 + k2

4 (1− v2) +m2
)2 , (2.103)

where we used the Feynman identity (A.20), replaced q + vp
2 with q, used the

symmetry v → −v to replace 1
2

∫ 1

−1
dv with

∫ 1

0
dv. After this preparation, we

use the dimensional regularization:∫
dq4

(2π)4
is replaced by

µ4−dΩd
(2π)d

∫ ∞
0

|q|d−1d|q|, (2.104)

where Ωd is the “area of the unit sphere in d dimension”, see (A.22). Thus
instead of (2.103) we consider its dimensionally regularized version:

4πE,d(k2) = −µ
4−dΩd
(2π)d

∫ 1

0

dv

∫ ∞
0

|q|d−1(
q2 + k2

4 (1− v2) +m2
)2 d|q|

' − 1

(4π)2

∫ 1

0

dv
(
− γ + log(µ24π)− log

(k2

4
(1− v2) +m2

))
− 1

(4π)2(2− d/2)
(2.105)

68



To renormalize we demand that πE,ren(0) = 0. Thus

πE,ren(k2) = lim
d→4

(
πE,d(k2)− πE,d(0)

)
=

1

4(4π)2

∫ 1

0

dv log
(

1 +
k2

4m2
(1− v2)

)
,

which coincides with the Wick rotated result obtained by the Pauli-Villars
method. Thus the renormalization of (2.105) amounts to choosing

log
µ2

m2
= γ − log 4π, (2.106)

dropping the pole term and setting d = 4.

2.3.13 Renormalization of the scattering operator

We are now ready to define the renormalized scattering operator. It is enough
to define its vacuum expectation value:

(Ω|ŜrenΩ) = e−iEren
2

∞∏
n=3

e−iEn .

Let us use, for instance, the Puli-Villars method.

Eren
2 = − 1

(2π)4

∫
πren(k)|κ(k)|2dk

= − lim
M→∞

1

(2π)4

∫
|κ(k)|2

(
πM (k)− πM (0)

)
dk

= − lim
M→∞

(
1

(2π)4

∫
|κ(k)|2πM (k)dk − iπM (0)

∫
|κ(x)|2dx

)
.

We can formally write π∞(k) := lim
M→∞

πM (k) (which is typically infinite) and

Ŝren = eiπ∞(0)
∫
|κ(x)|2dxS, (2.107)

Ĥren(t) = Ĥ(t)− π∞(0)

∫
|κ(t, ~x)|2d~x. (2.108)

Note that Ĥren(t) is a well defined self-adjoint operator. Ĥ(t) is its Wick ordered
expression.

The counterterm has an infinite coefficient π∞(0). Otherwise, it is quite well
behaved – it depends locally on the interaction, and therefore the renormaliza-
tion preserves the Einstein causality. This manifests itself in the identity

Ŝren(κ2)Ŝren(κ1) = Ŝren(κ2 + κ1),

whenever suppκ2 is later than suppκ1.
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We also have a compact formula for the renormalized vacuum energy:

Eren = − i

2
Tr
(

log(1 + κDc
fr)− κDc

fr +
(κDc

fr)
2

2

)
+

∫
|κ(k)|2πren(k)

dk

(2π)4
(2.109)

2.3.14 Energy shift

Suppose that the perturbation does not depend on time and is given by a
Schwartz function R3 3 ~x 7→ κ(~x). The naive (Wick ordered) Hamiltonian
is

Ĥ :=

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2

(
m2 + κ(~x)

)
φ̂2(x)

)
:d~x

The infimum of a quadratic Wick ordered Hamiltonian can be computed exactly
(A.13):

E = Tr
(1

2
(−∆ +m2 + κ)1/2 − 1

2
(−∆ +m2)1/2 − 1

4
(−∆ +m2)−1/2κ

)
=

∫
Tr

(
−∆ +m2 + κ

(−∆ +m2 + κ+ τ2)
− −∆ +m2

(−∆ +m2 + τ2)
− τ2

(−∆ +m2 + τ2)2
κ

)
dτ

2π

=

∫
Tr

(
τ2

(−∆ +m2 + τ2)
− τ2

(−∆ +m2 + κ+ τ2)
− τ2

(−∆ +m2 + τ2)2
κ

)
dτ

2π

= −
∫

Tr
1

(−∆ +m2 + τ2)2
κ

1

(−∆ +m2 + κ+ τ2)
κτ2 dτ

2π

=

∞∑
n=2

(−1)n−1

∫
Tr

1

(−∆ +m2 + τ2)2
κ
( 1

(−∆ +m2 + τ2)
κ
)n−1

τ2 dτ

2π

=

∞∑
n=2

(−1)n

2n

∫
Tr
( 1

(−∆ +m2 + τ2)
κ
)n dτ

2π
.

Above, we rewrote the square root by using the identities (A.27) and (A.28),
expanded the denominator in the Neumann series and at the end we used the
identity (A.29). Note that the nth term of the above expansion corresponds to
the loop with n vertices. They are all well defined except for n = 2, which needs
renormalization. We can guess that the renormalized energy shift is

Eren =

∫
πren(0,~k)|κ(~k)|2 d~k

(2π)3
+

∫
Tr

1

(−∆ +m2 + τ2)
κ (2.110)

× 1

(−∆ +m2 + τ2)
κ

1

(−∆ +m2 + κ+ τ2)
κ

1

(−∆ +m2 + τ2)
τ2 dτ

2π
,

where we rewrote the sum of terms with n ≥ 3 in a compact form, and πren was
introduced in (2.98).
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Another way to derive the expression for Eren is to use Sucher’s formula.
We introduce the adiabatically switched perturbation e−ε|t|κ(~x) multiplied by a
coupling constant λ, which will be put to 1 at the end. The Fourier transform
of the switching factor e−ε|t| is 2iε

ε2+~k2
Therefore,

Eren
ε = i log(Ω|Ŝren

ε Ω)

= λ2

∫
πren(τ,~k)

4ε2

(ε2 + τ2)2
|κ(~k)|2 dτd~k

(2π)4
+O(λ3).

By Sucher’s formula,

Eren = lim
ε↘0

iελ

2
∂λ log(Ω|Ŝren

ε Ω)

= lim
ε↘0

λ2

∫
πren(τ,~k)

4ε3

(ε2 + τ2)2
|κ(~k)|2 dτd~k

(2π)4
+O(λ3)

= λ2

∫
πren(0,~k)|κ(~k)|2 d~k

(2π)3
+O(λ3),

where we used
∫

4ε3

(ε2+τ2)2 dτ = 2π. Eventually, we put λ = 1 and we obtain

(2.110).

3 Massive photons

Let m > 0. In this section we discuss the quantization of the Proca equation

−∂µFµν(x) +m2Aν(x) = 0, (3.1)

where
Fµν := ∂µAν − ∂νAµ. (3.2)

Beside the free equation, we will also consider the Proca equation interacting
with a given vector function Jµ, called an external current:

−∂µFµν(x) +m2Aν(x) = −Jν(x). (3.3)

We will assume that the current is conserved, that is

∂νJ
ν(x) = 0. (3.4)

There are several possible approaches to the Proca equation on the classical
and, especially, quantum level. In particular, one can use from the beginning the
reduced phase space, both for the classical description and quantization. This
is the approach that we will treat as the standard one. Alternative approaches
will be discussed later.
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3.1 Free massive photons

3.1.1 Space of solutions

Let YPr, resp. CYPr denote the set of real, resp. complex smooth space-compact
solutions of the Proca equation

−∂µ(∂µζν − ∂νζµ) +m2ζν(x) = 0. (3.5)

It is easy to see that for ζ1, ζ2 ∈ CYPr the following expression defines a
conserved current:

jµPr(ζ1, ζ2, x) (3.6)

:=
(
∂µζ1ν(x)− ∂νζµ1 (x)

)
ζν2 (x)− ζ1ν(x)

(
∂µζν2 (x)− ∂νζµ2 (x)

)
.

YPr is a symplectic space with the symplectic form

ζ1ωPrζ2 =

∫
S
jµPr(ζ1, ζ2, x)dsµ(x) (3.7)

=

∫ (
−
(
~̇ζ1(t, ~x)− ~∂ζ10(t, ~x)

)
~ζ2(t, ~x) + ~ζ1(t, ~x)

(
~̇ζ2(t, ~x)− ~∂ζ10(t, ~x)

))
d~x,

where S is any Cauchy surface.
The Poincaré group R1,3 oO(1, 3) acts on YPr by

r(a,Λ)ζµ(x) := Λνµζν
(
(a,Λ)−1x

)
.

r(a,Λ) are symplectic for Λ ∈ O↑(1, 3), otherwise they are antisymplectic.

3.1.2 Classical potentials

We introduce the functionals Aµ(x) called potentials. They act on ζ ∈ YPr

giving

〈Aµ(x)|ζ〉 := ζµ(x).

On Y#

Pr we have the action of the Poincaré group (a,Λ) 7→ r#−1
(a,Λ). Note that

r#−1
(a,Λ)Aµ(x) = (Λ−1)νµAν(Λx+ a).

We also introduce the field tensor and the electric field vector:

Fµν(x) := ∂µAν(x)− ∂νAµ(x),

Ei(x) := F0i(x) = Ȧi − ∂iA0.

Clearly, the free Proca equation (3.1) is satisfied. Equivalently, we have

(−2 +m2)Aµ(x) = 0, (3.8)

∂νAν(x) = 0. (3.9)
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Yet another equivalent system of equations convenient for further analysis is

(−∆ +m2)A0 + div ~̇A = 0, (3.10)

(−2 +m2) ~A = 0. (3.11)

(3.9) can be rewritten as

Ȧ0 = div ~A. (3.12)

Thus only ~A is dynamical – A0 can be computed from ~A. Taking the divergence

of the definition of the electric field ~E = ~̇A− ~∂A0, then using (3.12) and (3.11),

we can express A0 in terms of ~E:

m2A0 = −div ~E. (3.13)

Finally, we have the following version of the evolution equations in terms of ~E,
~A with only first order derivatives:

~̇A = ~E − 1

m2
~∂div ~E, (3.14)

~̇E = −(−∆ +m2) ~A− ~∂div ~A. (3.15)

3.1.3 Poisson brackets

The symplectic form on YPr (3.7) can be written as

ωPr =

∫
~A(t, ~x) ∧ ~E(t, ~x)d~x.

It leads to a Poisson bracket on functions on YPr:

{Ai(t, ~x), Aj(t, ~y)} = {Ei(t, ~x), Ej(t, ~y)} = 0,

{Ai(t, ~x), Ej(t, ~y)} = δijδ(~x− ~y). (3.16)

We have

{Aµ(x), Aν(y)} =

(
gµν −

∂µ∂ν
m2

)
D(x− y),

whre D(x− y) is the Pauli-Jordan function.
Indeed, this follows after we insert (3.14), (3.13) and (3.12) into

~A(t, ~x) =

∫ (
D(t, ~x− ~y) ~̇A(0, ~y) + Ḋ(t, ~x− ~y) ~A(0, ~y)

)
d~y,

A0(t, ~x) =

∫ (
D(t, ~x− ~y)Ȧ0(0, ~y) + Ḋ(t, ~x− ~y)A0(0, ~y)

)
d~y,

and then we commute it with A0(0, ~x) and ~A(0, ~x).
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3.1.4 Smeared potentials

We can use the symplectic form to pair distributions and solutions. For ζ ∈ YPr,
the corresonding spatially smeared potential is the functional on YPr given by

〈A((ζ))|ρ〉 := ζωρ.

Note that
{A((ζ1)), A((ζ2))} = ζ1ωζ2.

A((ζ)) =

∫ (
−(~̇ζ(t, ~x)− ∂ζ0(t, ~x)) ~A(t, ~x) + ~ζ(t, ~x) ~E(t, ~x)

)
d~x. (3.17)

Another way of smearing the potentials is also useful. For a space-time vec-
tor valued functions f ∈ C∞c (R1,3,R1,3) the corresponding space-time smeared
potential is

A[f ] :=

∫
fµ(x)Aµ(x)dx. (3.18)

Note that A[f ] = A((ζ)), where

ζµ = −D ∗ fµ +
∂µ∂

ν

m2
D ∗ fν .

Adding to fµ a derivative ∂µχ for χ ∈ C∞c (R1,3) does not change (3.18).

3.1.5 Lagrangian formalism and stress-energy tensor

Consider the Lagrangian density in the off-shell formalism

L := −1

4
FµνF

µν − m2

2
AµA

µ.

The resulting Euler-Lagrange equations

∂L
∂Aα

= ∂µ

(
∂L

∂Aα,µ

)
coincide with the Proca equation.

The canonical stress-energy tensor, which follows directly from the Noether
Theorem, equals

T µνcan = gµνL − ∂L
∂Aα,µ

A ,ν
α

= −gµν
(1

4
FαβF

αβ +
m2

2
AαA

α
)

+ FµαA,να .

One usually prefers to replace it with the Belifante-Rosenfeld stress-energy ten-
sor. It is defined as

T µν = T µνcan + ∂αΣµνα

= −gµν
(1

4
FαβF

αβ +
m2

2
AαA

α
)

+m2AµAν + FµαF να,
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where
Σµνα = −Σανµ := FµαAν . (3.19)

On solutions of the Euler-Lagrange equations we have

∂µT µνcan = ∂µT µν = 0.

In addition, T µν is symmetric.
As discussed before, the variables A0(x) are not dynamical. To pass to the

Hamiltonian formalism, we introduce the variable conjugate to Ai(x)

∂Ȧi(x)L(x) = Ei(x).

Both the canonical and the Belifante-Rosen stress-energy tensor lead to the
same Hamiltonian and momentum density:

H(x) := T 00(x) =
1

2
~E2(x) +

1

2m2
(div ~E)2(x) + ( ~rot ~A)2(x) +

m2

2
~A2(x),

Pj(x) := T 0j(x) = m2A0(x)Aj(x) + Ei(x)F ji(x).

They give the Hamiltonian and momentum

H :=

∫
H(t, ~x)d~x =

∫
T 00

can(t, ~x)d~x,

P j :=

∫
Pj(t, ~x)d~x =

∫
T 0j

can(t, ~x)d~x.

Using (3.14) and (3.15) we check that H generates the equations of motion and
~P the translations.

It is also natural to introduce

S(x) := Ei(x)εijk∂kAj(x), (3.20)

and its spatial integral

S :=

∫
S(t, ~x)d~x. (3.21)

We are not aware of an established name of these quantities. We will call (3.20)
the polarization density and (3.21) the polarization.

The observables H, ~P , S are in involution.

3.1.6 Diagonalization of the equations of motion

For ~k ∈ R3, ~k 6= ~0 fix two spatial vectors ~e1(~k), ~e2(~k) that form an oriented

orthonormal basis of the plane orthogonal to ~k. Define

~e(~k,±1) :=
1√
2

(
~e1(~k)± i~e2(~k)

)
.
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Note that

~k × ~e(~k,±1) = ±i|~k|~e±(~k),

~e(~k, σ) · ~k = 0,

ei(~k, σ)ei(~k, σ
′) = δσ,σ′ ,∑

σ=±1

ei(~k, σ)ej(~k, σ) = δij −
kikj
~k2

.

Let k ∈ R1,3 with k0 = ε(~k) =
√
~k2 +m2. Introduce

u(k, 0) :=
( |~k|
m
,
ε(~k)~k

m|~k|

)
, (3.22)

u(k,±1) :=
(

0, ~e(~k,±1)
)
. (3.23)

Note that

uµ(k, σ)kµ = 0,

uµ(k, σ)uµ(k, σ′) = δσ,σ′ ,∑
σ=0,±1

uµ(k, σ)uν(k, σ) = gµν +
kµkν
m2

.

Set

~At(~k) = (2π)−
3
2

∫
~A(t, ~x)e−i~k~xd~x,

~Et(~k) = (2π)−
3
2

∫
~E(t, ~x)e−i~k~xd~x.

We have the equations of motion

~̇At(~k) = ~Et(~k) +
~k

m2
~k· ~Et(~k),

~̇Et(~k) = −(~k2 +m2) ~At(~k) + ~k ~k· ~At(~k),

the relations
A∗i (

~k) = Ai(−~k), E∗i (~k) = Ei(−~k),

and the Poisson brackets

{A∗ti(~k), Atj(~k
′)} = {E∗ti(~k), Etj(~k

′)} = 0,

{A∗ti(~k), Etj(~k
′)} = δijδ(~k − ~k′).
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Set

At(~k,±1) := ~e(~k,±1)· ~At(~k),

Et(~k,±1) := ~e(~k,±1)· ~Et(~k),

At(~k, 0) :=
m

ε(~k)

~k

|~k|
· ~At(~k),

Et(~k, 0) :=
ε(~k)

m

~k

|~k|
· ~Et(~k).

We have the equations of motion

Ȧt(~k, σ) = Et(~k, σ),

Ėt(~k, σ) = −ε(~k)2At(~k, σ).

the relations

A∗t (
~k, σ) = At(−~k,−σ), E∗t (~k, σ) = Et(−~k,−σ),

and the Poisson brackets

{A∗t (~k, σ), At(~k
′, σ′)} = {E∗t (~k, σ), Et(~k

′, σ′)} = 0,

{A∗t (~k, σ), Et(~k
′, σ′)} = δσσ′δ(~k − ~k′).

We set

at(k, σ) :=

√
ε(~k)

2
At(~k, σ) +

i√
2ε(~k)

Et(~k, σ),

a∗t (k, σ) :=

√
ε(~k)

2
A∗t (

~k, σ)− i√
2ε(~k)

E∗t (~k, σ).

We have the equations of motion

ȧt(k, σ) = −iε(~k)at(k, σ),

ȧ∗t (k, σ) = iε(~k)a∗t (k, σ).

We will usually write a(k, σ), a∗(k, σ) for a0(k, σ), a∗0(k, σ), so that

at(k, σ) = e−itε(~k)a(k, σ),

a∗t (k, σ) = eitε(~k)a∗(k, σ).

The direct definitions of a(k, σ), a∗(k, σ) are

a(k,±1) = (2π)−
3
2

∫
d~xe−i~k~x

(√
ε(~k)

2
~e(~k,±1) ~A(0, ~x) +

i√
2ε(~k)

~e(~k,±1) ~E(0, ~x)

)
,

a∗(k,±1) = (2π)−
3
2

∫
d~xei~k~x

(√
ε(~k)

2
~e(~k,±1) ~A(0, ~x)− i√

2ε(~k)
~e(~k,±1) ~E(0, ~x)

)
,
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a(k, 0) = (2π)−
3
2

∫
d~xe−i~k~x

(
m√
2ε(~k)

~k

|~k|
~A(0, ~x) +

i

m

√
ε(~k)

2

~k

|~k|
~E(0, ~x)

)
,

a∗(k, 0) = (2π)−
3
2

∫
d~xe−i~k~x

(
m√
2ε(~k)

~k

|~k|
~A(0, ~x)− i

m

√
ε(~k)

2

~k

|~k|
~E(0, ~x)

)
.

Their Poisson brackets are

{a(~k, σ), a(~k′, σ′)} = {a∗(~k, σ), a∗(~k′, σ′)} = 0,

{a(~k, σ), a∗(~k′, σ′)} = −iδ(~k − ~k′)δσ,σ′ .

The potentials can be written as

Aµ(x) = (2π)−
3
2

∑
σ=0,±1

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxa(k, σ) + uµ(k, σ)e−ikxa∗(k, σ)

)
.

We have accomplished the diagonalization of the Hamiltonian, momentum,
polarization and symplectic form:

H =
∑

σ=0,±1

∫
d~kε(~k)a∗(k, σ)a(k, σ),

~P =
∑

σ=0,±1

∫
d~k~ka∗(k, σ)a(k, σ),

S =
∑

σ=0,±1

∫
d~kσ|~k|a∗(k, σ)a(k, σ),

iω =
∑

σ=0,±1

∫
a∗(k, σ) ∧ a(k, σ)d~k.

3.1.7 Plane waves

A plane wave is defined as

|k, σ) =
1

(2π)3/2

√
2ε(~k)

uµ(k, σ)eikx, (3.24)

with k0 = ±ε(~k) = ±
√
~k2 +m2. We have

i(k, σ|ω|k′, σ′) = i(k, σ|ω|k′, σ′) = 0,

i(k, σ|ω|k′, σ′) = −i(k, σ|ω|k′, σ′) = δ(~k − ~k′)δσ,σ′ .
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a(k, σ) can be called plane wave functionals:

a(k, σ) = −iA((|k, σ)))

= −i

∫ ((
∂t(k, σ|x)i − ∂i(k, σ|x)0

)
Ai(0, ~x)− (k, σ|x)iEi(0, ~x)

)
d~x

a∗(k, σ) = iA((| − k, σ)))

= i

∫ ((
∂t(k, σ|x)i − ∂i(k, σ|x)0

)
Ai(0, ~x)− (k, σ|x)iEi(0, ~x)

)
d~x.

3.1.8 Positive frequency space

W(+)
Pr will denote the subspace of CYPr consisting of positive frequency solutions:

W(+)
Pr := {g ∈ CYPr : (−k, σ|ωg = 0, k0 = ε(~k), σ = ±, 0}.

Every g ∈ W(+)
Pr can be written as

gµ(x) = (2π)−
3
2

∑
σ=0,±1

∫
d~k√
2ε(~k)

eikxuµ(k, σ)〈a(k, σ)|g〉.

For g1, g2 ∈ W(+)
Pr we define the scalar product

(g1|g2) := ig1ωg2 =
∑

σ=0,±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k

We set ZPr to be the completion of W(+)
Pr in this scalar product. R1,3 o

O↑(1, 3) leaves ZPr invariant.

3.1.9 Spin averaging

For a given k ∈ R1,3 with k2 = m2, let M,N be vectors with

Mµkµ = Nνkν = 0.

The following identity allows us to average over spin and is useful in computa-
tions of scattering cross-sections:∑

σ=0,±1

Mµuµ(k, σ)uν(k, σ)Nν = MµNν . (3.25)

In fact, ∑
σ=0,±1

uµ(k, σ)uν(k, σ) = gµν +
kµkν
m2

.

Therefore, the left hand side of (3.25) equals

MµgµνN
ν +

(M · k)(N · k)

m2
.

But
k ·M = k ·N = 0.

79



3.1.10 Quantization

We want to construct (H, Ĥ,Ω) satisfying the standard requirements and a
self-adjoint operator-valued distribution R1,3 3 x 7→ Âµ(x) such that, setting

~̂
E =

~̇̂
A− ~∂Â0, we have

(1) −∂µ(∂µÂν − ∂νÂµ) +m2Âν(x) = 0

(2) [Âi(0, ~x), Âj(0, ~y)] = [Êi(0, ~x), Êj(0, ~y)] = 0,

[Âi(0, ~x), Êj(0, ~y)] = iδijδ(~x− ~y).

(3) eitĤÂµ(x0, ~x)e−itĤ = Âµ(x0 + t, ~x).

(4) Ω is cyclic for Âµ(x).

The above problem has a solution, which is unique up to a unitary equiva-
lence, which we describe below.

For the Hilbert space we should take the bosonic Fock space H = Γs(ZPr)
and for Ω the Fock vacuum. Set

â∗(k, σ) := â∗
(
|k, σ)

)
,

or equivalently, ∫
(k, σ|g)â∗(k, σ)d~k = â∗(g), g ∈ ZPr,

where “mathematician’s notation” is used on the right. Note that

[â(k, σ), â(k′, σ′)] = [â∗(k, σ), â∗(k′, σ′)] = 0,

[â(k, σ), â∗(k′, σ′)] = δ(~k − ~k′)δσ,σ′ .

Therefore

Âµ(x) (3.26)

=
∑

σ=0,±1

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)
satisfy the required commutation relations.

The quantum Hamiltonian, momentum and polarization are

Ĥ =
∑

σ=0,±1

∫
ε(~k)â∗(k, σ)â(k, σ)d~k,

~̂
P =

∑
σ=0,±1

∫
~kâ∗(k, σ)â(k, σ)d~k,

Ŝ =
∑

σ=0,±1

∫
σ|~k|â∗(k, σ)â(k, σ)d~k.

The group R1,3 o O↑(1, 3) is unitarily implemented on H by U(a,Λ) :=

Γ
(
r(a,Λ)

∣∣∣
ZPr

)
We have

U(a,Λ)Âµ(x)U(a,Λ)∗ = ΛνµÂν
(
(a,Λ)x

)
.
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Moreover,

[Âµ(x), Âν(y)] = −i

(
gµν −

∂µ∂ν
m2

)
D(x− y).

Note the identities

(Ω|Âµ(x)Âµ(y)Ω) = −i

(
gµν −

∂µ∂ν
m2

)
D(+)(x− y),

(Ω|T(Âµ(x)Âν(y))Ω) = −i

(
gµν −

∂µ∂ν
m2

)
Dc(x− y).

For f ∈ C∞c (R1,3,R1,3) set

Â[f ] :=

∫
fµ(x)Âµ(x)dx.

We obtain a family that satisfies the Wightman axioms with D := Γfin
s (ZPr).

For an open set O ⊂ Rd we set

A(O) :=
{

exp(iÂ[f ]) : f ∈ C∞c (O,R1,3)
}
.

The algebras A(O) satisfy the Haag-Kastler axioms.

3.2 Massive photons with an external current

3.2.1 Classical potentials

We return to the classical Proca equation. We assume that

R1,3 3 x 7→ J(x) = [Jµ(x)] ∈ R1,3 (3.27)

is a given function called an external current, which satisfies

∂νJ
ν(x) = 0. (3.28)

In most of this subsection we will assume that (3.27) is Schwartz.
In its presence the Proca equation takes the form

−∂µ(∂µA
ν − ∂νAµ) +m2Aν(x) = −Jν(x). (3.29)

Note that (3.29) and (3.28) imply the Lorentz condition

∂νA
ν(x) = 0. (3.30)

We have therefore
(−2 +m2)Aµ(x) = −Jµ(x). (3.31)
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As usual, we can interpret the interacting fields as functionals on YPr and
express them in terms of free fields as

Aµ(x) := Afrµ(x) (3.32)

−
∫ (

D+(x− y)θ(y0) +D−(x− y)θ(−y0)
)
Jµ(y)dy.

The temporal component of (3.29) has no time derivative:

−∆A0 + ∂0div ~A+m2A0 = −J0. (3.33)

Therefore, we can compute A0 in terms of ~A at the same time:

A0 = −(−∆ +m2)−1(∂0div ~A+ J0). (3.34)

The only dynamical variables are the spatial components, satisfying the equation

(∂2
0 −∆ +m2) ~A = − ~J. (3.35)

3.2.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

L := −1

4
FµνF

µν − m2

2
AµA

µ − JµAµ

= −1

2
∂µAν∂

µAν − 1

2
∂µAν∂

νAµ − m2

2
AµA

µ − JµAµ

= −1

2
(rot ~A)2 +

1

2
(~∂A0)2 +

1

2

(
~̇A
)2 − ~̇A~∂A0 +

m2

2
A2

0 −
m2

2
~A2 − ~J ~A+ J0A0.

As noted before, only spatial components ~A(x) are dynamical and the con-

jugate variable is ~E(x) = ~̇A(x)− ~∂A0(x). In terms of ~E, we have

A0 = − 1

m2
(J0 + div ~E). (3.36)

The canonical Hamiltonian density is

Hcan(x) = −L(x) +
∂L(x)

∂Ȧi(x)
Ȧi(x)

=
1

2
(rot ~A)2(x)− 1

2
(~∂A0)2(x)− 1

2

(
~̇A
)2

(x)

−m
2

2
A2

0(x) +
m2

2
~A2(x) + ~J(x) ~A(x)− J0(x)A0(x).

We add to it a spatial divergence div
(
~E(x)A0(x)

)
and express it in terms of ~A,

~E, obtaining the usual Hamiltonian density

H(x) :=
1

2
~E2(x) +

1

2
( ~rot ~A)2(x)

+
m2

2
A2

0(x) +
m2

2
~A2(x) + ~J(x) ~A(x).
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The Hamiltonian

H(t) =

∫
H(t, ~x)d~x =

∫
Hcan(t, ~x)d~x (3.37)

generates the equations of motion. Using the splitting of ~A and ~E into the
transversal and longitudinal part, as in (A.33), we can rewrite H(t) as

H(t) =

∫
d~x
(1

2
~E2

tr(t, ~x) +
1

2
~Atr(t, ~x)(−∆ +m2) ~Atr(t, ~x) + ~J(x) ~Atr(x)

)
+

∫
d~x
(1

2

(
(−∆)−1/2div ~E(t, ~x)

)2
+

1

2m2

(
J0(t, ~x)− div ~E(t, ~x)

)2
+
m2

2

(
(−∆)−1/2div ~A(t, ~x)

)2)
. (3.38)

3.2.3 Quantization

We are looking for operator valued distributions R1,3 3 x 7→ Âµ(x) satisfying

−∂µ(∂µÂν(x)− ∂νÂµ(x)) +m2Âν(x) = −Jν(x).

coinciding with free quantum fields at t = 0:

Âµ(0, ~x) = Âµfr(0, ~x) =: Âµ(~x).

To obtain them we decorate (3.32) with “hats”. They are equal to

Âµ(t, ~x) := Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
Âµ(~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
,

where the Hamiltonian Ĥ(t), and the corresponding Hamiltonian in the inter-
action picture are

Ĥ(t) =

∫
d~x :

(1

2
~̂
E2(~x) +

1

2m2
(J0(t, ~x)− div

~̂
E(~x))2

+
1

2
( ~rot

~̂
A)2(~x) +

m2

2
~̂
A2(~x) + ~J(t, ~x)

~̂
A(~x)

)
:

ĤInt(t) =

∫
d~x
(
− 1

m2
J0(t, ~x)div

~̂
Efr(t, ~x) + ~J(t, ~x)

~̂
Afr(t, ~x) +

1

2m2
J0(t, ~x)2

)
.

Using (3.26) and div
~̂
Efr = −(−∆ + m2)−1div

~̇̂
Afr, we express the interaction

Hamiltonian in terms of creation/annihilation operators:

ĤInt(t) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
eitε(~k)Jµ(t,~k)uµ(~k, σ)â∗(k, σ)

+e−itε(~k)Jµ(t,~k)uµ(~k, σ)â(k, σ)
)

+

∫
d~k
|J00(t,~k)|2

(2π)32m2
.

83



We can compute the scattering operator

Ŝ = exp

(
− i

2(2π)4

∫
dkJµ(k)D0

µν(k)Jν(k)

)

× exp

−i
∑

σ=0,±1

∫
d~ka∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑

σ=0,±1

∫
d~ka(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)

 ,

where

D0
µν(k) =

1

m2 + k2 − i0

(
gµν +

kµkν
m2

)
. (3.39)

(The superscript 0 over D0
µν will be explained later on).

For xN , . . . , x1, the N -point Green’s function is defined as follows:

G
(
ÂµN (xN ) . . . Âµ1

(x1)
)

:=
(

Ω+|T
(
ÂµN (xN ), . . . , Âµ1

(x1)
)
Ω−
)
.

Green functions can be organized into the generating function

∞∑
n=0

∫
· · ·
∫
G
(
ÂµN (xN ), . . . , Âµ1

(x1)
)
(−i)NfµN (xN ) · · · fµ1(x1)dxN · · · dx1

=

(
Ω
∣∣∣Texp

(
−i

∫ ∞
−∞

ĤInt(s)ds− i

∫
fµ(x)Âµ(x)dx

)
Ω

)
=: Z(f).

The amputated N -point Green’s functions are

Gamp(ÂµN (kN ) . . . Âµ1
(k1))

:= (k2
N +m2) · · · (k2

1 +m2)G(ÂµN (kN ) . . . Âµ1(k1)).

For k1, . . . , kN on shell, set

|kN , σN ; . . . ; k1, σ1) := a∗(kN , σN ) · · · a∗(k1, σ1)Ω.

As usual, matrix elements of the scattering operator between such vectors are
called scattering amplitudes. Amputated Green’s functions can be used to com-
pute scattering amplitudes:(

k+
1 , σ

+
1 ; . . . ; k+

n+ , σ
+
n+ | Ŝ |k−n− , σ

−
n− ; . . . ; k−1 , σ

−
1

)

=
uµ

+
1 (k+

1 , σ
+
1 ) · · ·uµ

+

n+ (k+
n+ , σ

+
n+)uµ

−
n− (k−n− , σ

−
n−) · · ·uµ

−
1 (k+

1 , σ
−
1 )

(2π)
n++n−

2

√
2ε(k+

1 ) · · ·
√

2ε(k+
n+)
√

2ε(k−n−) · · ·
√

2ε(k−1 )

×Gamp
(
A+
µ1

(k+
1 ), . . . , Aµ+

n+
(k+
n+), Aµ−

n−
(−k−n−), . . . , A−µ1

(−k−1 )
)
.
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3.2.4 Causal propagators

The causal propagator used to compute Green’s functions and scattering ampli-
tudes that follows directly from the interaction Hamiltonian is D0

µν , see (3.39). If
we compute scattering amplitudes, we can pass from this propagator to another
by adding kµfν(k) + fµ(k)kν for an arbitrary function fµ(k).

To see this note that after adding kµfν(k)+fµ(k)kν the contribution of each
line changes by

Jµ(k) (kµfν(k) + fµ(k)kν) Jν(k),

which is zero, because kµJ
µ(k) = 0. For scattering amplitudes, external lines

do not involve the propagator. Therefore, scattering amplitudes do not change.
Below we will list a number of useful causal propagators. (In principle,

they should be decorated by the superscript c, for causal, which we however
suppress).

For any α ∈ R, we can pass to the following propagators

Dα
µν =

1

m2 + k2 − i0

(
gµν + (1− α)

kµkν
αk2 +m2

)
.

The above propagator for α = 0 was obtained in the Hamiltonian approach.
For α = 1 we obtain the so-called propagator in the Feynman gauge, that is

DFeyn
µν (k) =

1

m2 + k2 − i0
.

α =∞ corresponds to the propagator in the Landau or Lorentz gauge:

DLan
µν =

1

m2 + k2 − i0

(
gµν −

kµkν
k2

)
.

We can introduce the propagator in the Yukawa gauge:

DYuk
00 = − 1

m2 + ~k2
, DYuk

0j = 0, DYuk
ij =

1

m2 + k2 − i0

(
δij −

kikj

m2 + ~k2

)
,

We have DYuk
µν = DFeyn

µν + kµf
Yuk
ν (k) + fYuk

µ (k)kν , where

fYuk
0 (k) =

k0

(k2 +m2 − i0)2(m2 + ~k2)
, fYuk

i (k) = − ki

(k2 +m2 − i0)2(m2 + ~k2)
.

(The propagator in the Yukawa gauge is the massive analog of the propagator
in the Coulomb gauge.)

The propagator in the temporal gauge is

Dtem
00 = 0, Dtem

0j = 0, Dtem
ij =

1

k2 +m2 − i0

(
δij −

kikj
k2

0

)
.

We have Dtem
µν = DFeyn

µν + kµf
tem
ν (k) + f tem

µ (k)kν , where

f tem
0 (k) =

1

(m2 + k2 − i0)2k0
, f tem

i (k) = − ki
(m2 + k2 − i0)2k2

0

.
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3.2.5 Feynman rules

Perturbation expansion can be organized with help of Feynman diagrams, which
are very similar to diagrams for neutral fields interacting with a linear source.
We have 1 kind of lines and 1 kind of vertices. At each vertex just one line ends.

To compute Green’s functions we do as follows:

(1) In the nth order we draw all possible Feynman diagrams with n vertices
and external lines.

(2) To each vertex we associate the factor −iJµ(k).

(3) To each line we associate the propagator−iD0
µν(k) = −i

m2+k2−i0

(
gµν +

kµkν
m2

)
.

(4) For internal lines we integrate over the variables with the measure d4k
(2π)4 .

To compute scattering amplitudes with N− incoming and N+ outgoing par-
ticles we draw the same diagrams as for N−+N+-point Green’s functions. The
rules are changed only concerning the external lines.

(i) With each incoming external line we associate 1√
(2π)32ε(~k)

u(k, σ).

(ii) With each outgoing external line we associate 1√
(2π)32ε(~k)

u(k, σ).

If we prefer, we can use a different causal propagator instead of D0
µν . Green’s

functions change, because of external lines, however scattering amplitudes will
not.

3.2.6 Path integral formulation

We can compute exactly the generating function:

Z(f) (3.40)

= exp

(
i

2

∫
Jµ(k) + fµ(k)

(gµν +m−2kµkν)

(k2 +m2 − i0)
(Jν(k) + fν(k))dk

)
.

Let us now describe massive vector fields in the path integral formalism.
Recall that ∫

Lfr(x)dx = −
∫

1

2

(
∂µAν(x)∂µAν(x)− ∂µAν(x)∂νAµ(x)

+m2Aµ(x)Aµ(x)
)

dx

= −
∫

1

2
Aµ(x)

(
gµν(−2 +m2) + ∂µ∂ν

)
Aν(x)dx,∫

(L(x)− fµ(x)Aµ)(x)dx =

∫
Lfr(x)dx−

∫
(Jµ + fµ(x))(x)Aµ(x)dx.

Note that D0
µν(k) =

gµν+m−2kµkν
k2+m2−i0 , or in the position representation D0

µν =

(gµν −m−2∂µ∂ν)Dc is one of the inverses of gµν(−2 +m2) + ∂µ∂ν . Therefore,
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(3.40) is often formally rewritten as

Z(f) =

∫
Π
µ

Π
x

dAµ(x) exp
(
i
∫ (
L(x)− (Jµ(x) + fµ(x))Aµ(x)

)
dx
)

∫
Π
µ

Π
x

dAµ(x) exp
(
i
∫
Lfr(x)dx

) .

Let D•µν be one of the propagators considered in Subsubect. 3.2.4. Let Bµν•
be its inverse. We have the corresponding “free action”

T•fr = −1

2

∫
Aµ(x)Bµν• (x− y)Aν(y)dxdy.

We define the corresponding generating function as

Z•(f) (3.41)

:= exp

(
i

2

∫
(Jµ(k) + fµ(k)Dµν

• (k)(Jν(k) + fν(k))dk

)
= exp

(
i

2

∫
(Jµ(x) + fµ(x))Dµν

• (x− y)(Jν(y) + fν(y))dxdy

)

=

∫
Π
µ

Π
x
dAµ(x) exp

(
iT•fr + i

∫
(Jµ(x) + fµ(x))Aµ(x)dx

)
∫

Π
µ

Π
x

dAµ(x) exp (iT•fr)
.

In general, Z•(f) differs for various propagators D•µν , unless f satisfies the
Lorentz condition. However, all Z•(f) can be used to compute the same scat-
tering operator.

Likewise, the Euler-Lagrange equations obtained from those various action
integrals differ from the Proca equation. However, YPr belong always to their
solutions.

If we take the Lagrangian

−1

2

(
∂µA

ν(x)∂µAν(x) +m2Aν(x)Aν(x)

+(α− 1)∂µA
µ(x)∂νA

ν(x)
)
, (3.42)

then we obtain the propagator Dα
µν . Indeed,

gµν(k2 +m2) + (α− 1)kµkν

is the inverse of Dα
µν(k).

If we restrict the integration by the Lorentz condition

∂µA
µ(x) = 0. (3.43)

and take the Lagrangian (3.42) (they now coincide for all α), then we obtain
the propagator in the Landau/Lorentz gauge.
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If we take the Lagrangian

−1

2

(
∂µAi(x)∂µAi(x) +m2Ai(x)Ai(x)

+
1

m2
∂µ∂iAi(x)∂µ∂jAj(x) + ∂iAi(x)∂jAj(x)

−∂iA0(x)∂iA0(x)−m2A0(x)2
)
,

we obtain DYuk
µν . Indeed,

(k2 +m2)

(
δij +

kikj
m2

)
− δµ0δ0ν(~k2 +m2)

is the inverse of DYuk
µν (k).

If we take the action

−1

2

∫ (
∂µAi(x)∂µAi(x) +m2Ai(x)Ai(x)

)
dx

−1

2

∫ (
∂µ∂iAi(x)(−2)−1(x− y)∂µ∂jAj(y)

+∂iAi(x)(−2)−1(x− y)∂jAj(y)
)

dxdy,

(which is nonlocal and does not involve A0), we obtain Dtem
µν . Indeed,

(k2 +m2)

(
δij −

kikj
k2

)
is the inverse of Dtem

ij (k).

3.2.7 Energy shift

Suppose that the current is stationary and is given by a Schwartz function
R3 3 ~x 7→ Jµ(~x). Note that div ~J(~x) = 0.

Using the quantum version of (3.38), we can write the Hamiltonian as

Ĥ =

∫
d~x :

(1

2
~̂
E2

tr(~x) +
1

2
~̂
Atr(~x)(−∆ +m2)

~̂
Atr(~x) + ~J(~x)

~̂
Atr(~x)

)
:

+

∫
d~x :

(1

2

(
(−∆)−1/2div

~̂
E(~x)

)2
+

1

2m2

(
J0(~x)− div

~̂
E(~x)

)2
+
m2

2

(
(−∆−1/2div

~̂
A(~x)

)2)
:.

By (A.8), the infimum of Ĥ is

E = −1

2

∫ ∫
d~xd~y ~J(~x)

e−m|~x−~y|

4π|~x− ~y|
~J(~y)

+
1

2

∫ ∫
d~xd~yJ0(~x)

e−m|~x−~y|

4π|~x− ~y|
J0(~y).
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3.3 Alternative approaches

3.3.1 Classical potentials without the Lorentz condition

So far our treatment of massive photons was based on the Proca equation (3.1).
As we remember, the Proca equation is equivalent to the Klein-Gordon equation
for vector fields (3.8) together with the Lorentz condition (3.9). This suggests
an alternative approach to the massive photons.

In this approach one considers first the Klein-Gordon equation on functions
with values in R1,3:

(−2 +m2)ζµ(x) = 0. (3.44)

The space of smooth real space-compact solutions of (3.44) will be denoted by
Yvec. The following current

jµvec(ζ1, ζ2, x) := ∂µζ1,ν(x)ζν2 (x)− ζ1,ν(x)∂µζν2 (x)

is conserved, that is
∂µj

µ
vec(x) = 0.

It defines in the usual way a symplectic form on Yvec

ζ1ωvecζ2 =

∫
S
jµvec(ζ1, ζ2, x)dsµ(x)

=

∫ (
−ζ̇1ν(t, ~x)ζν2 (t, ~x) + ζ1ν(t, ~x)ζ̇ν2 (t, ~x)

)
d~x,

where S is any Cauchy surface.
As usual, one introduces the potentials Aµ(x) as the functionals on Yvec

defined by
〈Aµ(x)|ζ〉 := ζµ(x).

We clearly have
(−2 +m2)Aµ(x) = 0. (3.45)

We can use the Lagrangian

L(x) := −1

2
Aµ,ν(x)Aµ,ν(x)− m2

2
Aµ(x)Aµ(x).

The conjugate variable is

Πµ(x) :=
∂

∂Ȧµ(x)
L(x) = Ȧµ(x).

The Poisson structure is given by the equal time brackets

{Aµ(t, ~x), Aν(t, ~y)} = {Πµ(t, ~x),Πν(t, ~y)} = 0,

{Aµ(t, ~x),Πν(t, ~y)} = gµνδ(~x− ~y).
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The stress-energy tensor is

T µν = − ∂L
∂Aα,µ

A ,ν
α + gµνL

= A ,µ
α Aα,ν − 1

2
gµν
(
Aα,βA

α,β +m2AαA
α
)
.

The Hamiltonian and momentum density are

H(x) = T 00(x) =
1

2
Πµ(x)Πµ(x) +

1

2
Aµ,i(x)Aµ,i(x) +

m2

2
Aµ(x)Aµ(x),

Pi(x) = T 0i(x) = −Πµ(x)Aµ,i(x).

As usual, we can define the Hamiltonian and momentum

H =

∫
H(t, ~x)d~x, (3.46)

P j =

∫
Pj(t, ~x)d~x.

The Hamiltonian (3.46) is unbounded from below.

3.3.2 The Lorentz condition

Introduce two subspaces of Yvec

YLor := {ζ ∈ Yvec : ∂µζ
µ = 0},

Ysc := {ζ ∈ Yvec : ζµ = ∂µχ, χ ∈ YKG}.

Note that Yvec = YLor ⊕ Ysc is a decomposition into symplectically orthogonal
subspaces each preserved by the Poincaré group. If ζ ∈ Yvec, then its projection
onto Ysc is

ζµsc :=
1

m2
∂µ∂νζ

ν . (3.47)

Elements of YLor satisfy the Proca equation, so that we can make the iden-
tification

YLor = YPr.

On YLor the forms ωvec and ωPr coincide.
Clearly, we are back with the theory that was used in most of this section.

In particular, the Hamiltonian (3.46) restricted to YLor is now positive.

3.3.3 Diagonalization of the equations of motion

In order to diagonalize the Hamiltonian, besides the vectors u(k, σ) with σ =
0,±1 introduced in (3.22), we will need the vectors for the scalar plane waves

u(k, sc) :=
1

m
(ε(~k),~k).
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Note that

uµ(k, σ)uµ(k, σ′) = δσ,σ′ ,∑
σ

uµ(k, σ)uν(k, σ) = gµν .

Set

~At(~k) = (2π)−
3
2

∫
~A(t, ~x)e−i~k~xdx,

~Πt(~k) = (2π)−
3
2

∫
~Π(t, ~x)e−i~k~xdx.

We have the equations of motion

Ȧt(~k) = Πt(~k),

Π̇t(~k) = −ε(~k)2At(~k),

the relations
A∗t (

~k) = At(−~k), Π∗t (
~k) = Πt(−~k),

and the Poisson brackets

{A∗tµ(~k), Atν(~k′)} = {Π∗tµ(~k),Πtν(~k′)} = 0,

{A∗tν(~k′),Πtµ(~k)} = gµνδ(~k − ~k′). (3.48)

Set

At(~k, σ) := uµ(~k, σ)Aµt (~k),

Πt(~k, σ) := uµ(~k, σ)Πµ
t (~k).

We have the equations of motion

Ȧt(~k, σ) = Πt(~k, σ),

Π̇t(~k, σ) = −ε(~k)2At(~k, σ),

the relations

A∗t (
~k, σ) = At(−~k,−σ), Π∗t (

~k, σ) = Πt(−~k,−σ),

and the Poisson brackets

{A∗t (~k, σ), At(~k
′, σ′)} = {Π∗t (~k, σ),Πt(~k

′, σ′)} = 0,

{A∗t (~k, σ),Πt(~k
′, σ′)} = κσσ′δ(~k − ~k′). (3.49)
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where κσ,σ′ = 1 for σ = σ′ = ±1, 0 and κsc,sc = −1. We set

at(k, σ) :=

√
ε(~k)

2
At(~k, σ)− i√

2ε(~k)
Πt(~k, σ),

a∗t (k, σ) :=

√
ε(~k)

2
A∗t (

~k, σ) +
i√

2ε(~k)
Π∗t (

~k, σ).

We have the equations of motion

ȧt(k, σ) = −iε(~k)at(k, σ),

ȧ∗t (k, σ) = iε(~k)a∗t (k, σ).

and the Poisson brackets

{a(k, σ), a(k′, σ′)} = {a∗(k, σ), a∗(k′, σ′)} = 0,

{a(k, σ), a∗(k′, σ′)} = −iκσ,σ′δ(~k − ~k′).

We diagonalize the Hamiltonian and momentum:

H =
∑

σ=0,±1

∫
d~kε(~k)a∗(k, σ)a(k, σ)−

∫
d~kε(~k)a∗(k, sc)a(k, sc),

~P =
∑

σ=0,±1

∫
d~k~ka∗(k, σ)a(k, σ)−

∫
d~k~ka∗(k, sc)a(k, sc).

The potentials can be decomposed as

Aµ(x) = (2π)−
3
2

∑
σ

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxa(k, σ) + uµ(k, σ)e−ikxa∗(k, σ)

)
.

Clearly, the restriction to YLor amounts to dropping all scalar components.

3.3.4 Positive frequency space

W(+)
vec will denote the subspace of CYvec consisting of positive frequency solutions:

W(+)
vec := {g ∈ CYPr : (−k, σ|ωg = 0, k0 = ε(~k), σ = ±, 0, sc}.

Every g ∈ W(+)
vec can be written as

gµ(x) = (2π)−
3
2

∑
σ=0,±1,sc

∫
d~k√
2ε(~k)

eikxuµ(k, σ)〈a(k, σ)|g〉.

92



For g1, g2 ∈ W(+)
vec we have a natural scalar product

(g1|g2) := ig1ωg2 =
∑

σ=0,±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k

−
∫
〈a(k, sc)|g1〉〈a(k, sc)|g2〉d~k

=

∫
gµν〈aµ(k)|g1〉〈aν(k)|g2〉d~k. (3.50)

Unfortunately, the above definition gives an indefinite scalar product. We can
also introduce a positive definite scalar product, which unfortunately is not
covariant:

(g1|g2)+ :=
∑
µ

∫
〈aµ(k)|g1〉〈aµ(k)|g2〉d~k.

The positive frequency spaceW(+)
vec equipped with the scalar product (3.50) can

be completed in the norm given by (·|·)+. It will be called Zvec. It is an example
of the so-called Krein space, which is a space with an indefinite scalar product
and has a topology given by a positive scalar product.

Using the projection (3.47), W(+)
vec can be decomposed into the direct sum

of orthogonal subspaces W(+)
Lor and W(+)

sc . On W(+)
Lor the scalar product (3.50)

is positive definite, on W(+)
sc it is negative definite. Their completions will be

denoted ZLor and Zsc.
Every ζ ∈ Yvec can be uniquely written as ζ = ζ(+) + ζ(+), where W(+)

vec .
This allows us to define a real scalar product on Yvec:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 ) (3.51)

=

∫ ∫
ζ̇1µ(0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇µ2 (0, ~y)d~xd~y

+

∫ ∫
ζ1µ(0, ~x)(−∆~x +m2)(−i)D(+)(0, ~x− ~y)ζµ2 (0, ~y)d~xd~y.

Again, (3.51) is positive definite on YLor and negative definite on Ysc.

3.3.5 “First quantize, then reduce”

The quantization described in Subsect. 3.1 will be called “first reduce, then
quantize”. There exist alternative methods of quantization, which use the sym-
plectic space Yvec introduced in (3.44) as the basis. There are two basic ways
to implement this idea.

The first insists on using only positive definite Hilbert spaces. Unfortunately,
the Hamiltonian turns out to be unbounded from below.

In the Gupta-Bleuler approach the potentials Âµ(x) evolve with positive
frequencies. Unfortunately, it uses an indefinite scalar product.
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3.3.6 Quantization without reduction on a positive definite Hilbert
space

In this approach we use the Hilbert space

Γs(ZLor ⊕Zsc) (3.52)

equipped with a positive definite scalar product. More explicitly, we replace
a(k, σ) with â(k, σ) for σ = 0,±1. We replace a(k, sc) with b̂∗(k, sc). They
satisfy the standard commutation relations

[â(k, σ), â∗(k′, σ′)] = δσ,σ′δ(~k − ~k′),
[b̂(k, sc), b̂∗(k′, sc)] = δ(~k − ~k′).

â(k, σ), b̂(k, sc) kill the vacuum:

â(k, σ)Ω = b̂(k, sc)Ω = 0.

The quantized potentials, Hamiltonian and momentum become

Âµ(x) = (2π)−
3
2

∑
σ=0,±1

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)

+(2π)−
3
2

∫
d~k√
2ε(~k)

(
uµ(k, sc)eikxb̂∗(k, sc) + uµ(k, sc)e−ikxb̂(k, sc)

)
,

Ĥ =
∑

σ=0,±1

∫
d~kε(~k)â∗(k, σ)â(k, σ)−

∫
d~kε(~k)b̂∗(k, sc)b̂(k, sc),

P̂ =
∑

σ=0,±1

∫
d~k~kâ∗(k, σ)â(k, σ)−

∫
d~k~kb̂∗(k, sc)b̂(k, sc).

The propagator in the position representation is given by(
Ω|T

(
Âµ(x)Âν(y)

)
Ω
)

= −i
(
gµν −

2

m2
∂µ∂ν

)
Dc(x− y),

and in the momentum representation

−i

k2 +m2 − i0

(
gµν + 2

kµkν
m2

)
.

It is an example of a propagator from the class considered in Subsubsect. 3.2.4.
Note also that

(Ω|Â((ζ))
2
Ω) = 〈ζ|ζ〉Y +

2

m2
〈∂µζµ|∂νζν〉Y , (3.53)
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which is the scalar product (3.51) corrected by a term given by the scalar product
(2.30). Note that (3.53) is positive definite.

Vectors built by applying fields satisfying the Lorentz condition to the vac-
uum will be called physical. Equivalently, physical vectors are elements of the

algebraic Fock space built on W(+)
Lor . After the completion the physical space

coincides with Γs(ZLor). Thus we obtain the same space as in the method “first
reduce, then quantize”.

It will be convenient to describe this method in the C∗-algebraic language.
Let CCR(Yvec) denote the (Weyl) C∗-algebra of the CCR over Yvec, that is, the
C∗-algebra generated by W (ζ), ζ ∈ Yvec, such that

W (ζ1)W (ζ2) = e−i
ζ1ωvecζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

We have the obvious action of R1,3oO↑(1, 3) on CCR(Yvec) by ∗-automorphisms:

r̂(a,Λ) (W (ζ)) := W
(
r(a,Λ)(ζ)

)
.

Choose the state on CCR(Yvec) defined by

ψ
(
W (ζ)

)
(3.54)

= exp
(
− 1

2
〈ζ|ζ〉Y −

1

m2
〈∂µζµ|∂νζν〉Y

)
Let (Hψ, πψ,Ωψ) be the GNS representation generated by the state ψ. Using
(3.53) we see that Hψ can be identified with Γs(ZLor ⊕ Zsc) and the fields are
related to the Weyl operators by

πψ(W (ζ)) = eiÂ((ζ)).

3.3.7 The Gupta-Bleuler approach

This approach also uses the symplectic space Yvec as the basic input. It follows
almost verbatim the usual steps of quantization of the Klein-Gordon equation.
We introduce the bosonic Fock space Γs(Zvec), which has an indefinite scalar
product and can be viewed as a Krein space.

We replace a(k, σ) by â(k, σ). The commutation relations have a wrong sign
for the scalar component:

[â(k, σ), â∗(k′, σ′)] = κσ,σ′δ(~k − ~k′).

The annihillation operators kill the vacuum:

â(k, σ)Ω = 0.

The expressions for the Hamiltonian, momentum and potentials are the same
as in the classical case:

Ĥ =
∑

σ=0,±1

∫
d~kε(~k)â∗(k, σ)â(k, σ)−

∫
d~kε(~k)â∗(k, sc)â(k, sc),

~̂
P =

∑
σ=0,±1

∫
d~k~kâ∗(k, σ)â(k, σ)−

∫
d~k~kâ∗(k, sc)â(k, sc).
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Âµ(x) = (2π)−
3
2

∑
σ

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)
.

Note that all eigenvalues of Ĥ are positive, however its expectation values (wrt
the indefinite scalar product) can be negative. We have

(Ω|Âµ(x)Âν(y)Ω) = −igµνD
(+)(x− y),

(Ω|T(Âµ(x)Âν(y))Ω) = −igµνD
c(x− y).

In particular, the 2-point Green’s function is the propagator in the Feynman
gauge. Smeared potentials Â((g)) are well defined operators.

Similarly as in the previous method, vectors created by applying fields sat-
isfying the Lorentz condition to the vacuum will be called physical. Again we

obtain the algebraic Fock space built on W(+)
Lor . This space is positive definite

and after the completion coincides with Γs(ZLor). Thus the physical space is
the same as before.

4 Massless photons

In this section we discuss the quantization of the Maxwell equation

−∂µFµν(x) = 0, (4.1)

where, as in the previous section,

Fµν := ∂µAν − ∂νAµ.

We will also consider an external conserved current, that is a vector function
Jν(x) satisfying

∂νJ
ν(x) = 0. (4.2)

The Maxwell equation in the presence of the current J reads

∂µF
µν(x) = Jν(x). (4.3)

Similarly as in the massive case, there are several possible approaches to the
Maxwell equation on the classical and, especially, quantum level. The approach
based from the beginning on the reduced phase space, both for the classical
description and quantization, will be treated as the standard one. The situation
is however somewhat more complicated than in the massive case, since the
Lorentz condition is not enough to fully reduce the phase space. Alternative
approaches will be discussed later.

We try to make the discussion of massive and massless photons as parallel as
possible. This is not entirely straightforward. In particular, the massless limit
is quite subtle – to describe it one needs to fix the time coordinate. The covari-
ant massive potential converges then in an appropriate sense to the massless
noncovariant potential in the Coulomb gauge.

96



4.1 Free massless photons

4.1.1 Space of solutions and the gauge invariance

It is well known that the Maxwell equation

−∂µ (∂µζν(x)− ∂νζµ(x)) = 0 (4.4)

is invariant w.r.t. the replacement of ζµ with ζµ + ∂µχ, where χ is an arbitrary
smooth function on the space-time. In particular, there is no uniqueness of the
Cauchy problem for (4.4).

This property is called gauge invariance. It poses problems both for the
classical and quantum theory. One could avoid the problem of gauge invariance
by considering fields and not potentials as basic objects. However, when one
quantizes the Maxwell equation with a current, it is more convenient to use
potentials. Therefore, we will stick to potentials.

There exist several ways to cope with gauge invariance. The approach that
we will use as the standard one can be called first reduce, then quantize. In this
approach we start with the Maxwell equation in the form (4.4). Note that it
coincides with the Proca equation with m = 0. We will use objects defined in
the context of the Proca equation, where we replace Pr with M̃ax to indicate
that the mass is zero.

Thus the space of smooth space compact solutions of (4.4) is denoted Y
M̃ax

and (3.6) defines a conserved current, which we now call j
M̃ax

, that leads to the
form defined as in (3.7):

ζ1ωM̃ax
ζ2 (4.5)

=

∫ (
−
(
~̇ζ1(t, ~x)− ~∂ζ10(t, ~x)

)
~ζ2(t, ~x) + ~ζ1(t, ~x)

(
~̇ζ2(t, ~x)− ~∂ζ10(t, ~x)

))
d~x.

Unfortunately, this form is only presymplectic, and not symplectic.
(4.5) does not depend on the gauge. To see this it is enough to note that

if ζ2 = ∂χ, and ζ1 is a solution of the Maxwell equation, then the integrand of
(4.5) is a spatial divergence, so (4.5) is then zero.

We say that a solution ζ of the Maxwell equation is in the Coulomb gauge if

ζ0 = 0, div~ζ = 0.

A functon in C∞(R3,R3) will be called transversal if its divergence vanishes.
Note that every ζ ∈ Y

M̃ax
is gauge-equivalent to a unique solution of the

Maxwell equation in the Coulomb gauge, denoted by ζCoul, where

χ(t, ~x) = −(−∆)−1div~ζ(t, ~x), ζCoul
µ + ∂µχ = ζµ. (4.6)

Neither χ nor ζCoul have to be space-compact. The Stokes theorem yields
however that

∫
div~ζ(t, ~x)d~x = 0, therefore χ and ζCoul behave like O(|~x|−2)

because of (A.31).
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The presymplectic form can be written as

ζ1ωM̃ax
ζ2 = ζCoul

1 ω
M̃ax

ζCoul
2 (4.7)

=

∫ (
−~̇ζCoul

1 (t, ~x)~ζCoul
2 (t, ~x) + ~ζCoul

1 (t, ~x)~̇ζCoul
2 (t, ~x)

)
d~x.

Note that the integrand of (4.7) behaves as O(|~x|−4), hence is integrable.

Proposition 4.1 Let ζ ∈ Y
M̃ax

. We have the following equivalence:

(1) ζ ∈ Kerω
M̃ax

.

(2) ζCoul = 0.

(3) ζ = ∂χ.

Proof. (2)⇒(3) follows from (4.6).
The implication (3)⇒(1) follows from the gauge invariance of the form ω

M̃ax

Let us prove (1)⇒(2). Let ζCoul 6= 0. Then one of the transversal functions

R3 3 ~x 7→ ~ζ(0, ~x), ~̇ζ(0, ~x) is nonzero. Therefore we can find transversal functions
~u, ~v in C∞c (R3,R3) such that∫ (

−~u(~x)~ζCoul(0, ~x) + v(~x)~̇ζCoul(0, ~x)
)

d~x 6= 0. (4.8)

There exists a unique ξ ∈ C∞sc (R4,R4) such that

ξ̇(0, ~x) =
(
0, ~u(~x)

)
, ξ(0, ~x) =

(
0, ~v(~x)

)
, 2ξ = 0.

ξ clearly belongs to Y
M̃ax

and is in the Coulomb gauge. We have

ξω
M̃ax

ζ = ξω
M̃ax

ζCoul

=

∫ (
−~̇ξ(0, ~x)~ζCoul(0, ~x) + ~ξ(0, ~x)~̇ζCoul(0, ~x)

)
d~x,

which equals (4.8) and is nonzero. Hence ζ 6∈ Kerω
M̃ax

. 2

Define
YMax := Y

M̃ax
/Kerω

M̃ax
.

In other words, YMax is obtained by the symplectic reduction of the presymplec-
tic space Y

M̃ax
. Clearly, YMax is equipped with a natural symplectic form ωMax.

R1,3 oO↑(1, 3) acts on YMax by symplectic transformations.
By Prop. 4.1, YMax consists of gauge equivalence classes of Y

M̃ax
.

Analogously we define the space CYMax of gauge classes of complex smooth
space-compact solutions of (4.4).
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4.1.2 Classical potentials

Aµ(x) denotes the functional on Y
M̃ax

given by

〈Aµ(x)|ζ〉 := ζµ(x). (4.9)

Obviously, Aµ(x) is not defined on YMax.
We introduce also the functional ACoul

µ (x) on Y
M̃ax

, called the the classical
potential in the Coulomb gauge,

ACoul
0 (x) := 0, ~ACoul(x) := ~Atr(x) = ~A(x)− ~∂∆−1div ~A(x).

Note that
〈ACoul

µ (x)|ζ〉 = 〈Aµ(x)|ζCoul〉 = ζCoul
µ (x),

where ζCoul on the right hand side is the representative of the class ζ in the
Coulomb gauge. ACoul(x) does not depend on the gauge, hence can be inter-
preted as a functional on YMax. It is not, however, Lorentz covariant.

Moreover, we introduce the functionals Fµν(x) on Y
M̃ax

, called the fields:

〈Fµν(x)|ζ〉 := ∂µζν(x)− ∂νζµ(x).

They also do not depend on the gauge, hence can be interpreted as functionals
on YMax. They are moreover Lorentz covariant.

We will write Ei(x) = F0i(x). Clearly, ~E = ∂t ~A
Coul and

div ~ACoul(x) = 0, div ~E(x) = 0. (4.10)

In what follows we will usually drop the subscript Coul from ACoul(x). This
introduces a possible ambiguity with A(x) defined in (4.9). However, when we
speak about YMax, then (4.9) is ill defined, only ACoul(x) is well defined, so we
think that the risk of confusion is small.

The symplectic structure on the space YMax

ωMax =

∫
Ai(t, ~x) ∧ Ei(t, ~x)d~x

together with the constraint (4.10) leads to a Poisson bracket on the level of
functions on YMax:

{A i(t, ~x), A j(t, ~y)} = {Ei(t, ~x), Ej(t, ~y)} = 0,

{A i(t, ~x), Ej(t, ~y)} =

(
δij −

∂i∂j
∆

)
δ(~x− ~y).

From the above relations we deduce

{A i(x), A j(y)} =

(
δij −

∂i∂j
∆

)
D(x− y).
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4.1.3 Smeared potentials

We can use the symplectic form to pair distributions and solutions. For ζ ∈
YMax we introduce the corresponding spatially smeared potentials, which is a
functional on YMax given by

〈A((ζ))|ρ〉 := ρωζ, ρ ∈ CYMax.

Note that
{A((ζ1)), A((ζ2))} = ζ1ωζ2.

A((ζ)) =

∫ (
−ζ̇µ(t, ~x)Aµ(t, ~x) + ζµ(t, ~x)Eµ(t, ~x)

)
d~x. (4.11)

Let us stress that A((ζ)) depends on ζ only modulo gauge transformations and
is Lorentz covariant.

We can also introduce space-time smeared potentials in the Coulomb gauge,
which are functionals on YMax, for f ∈ C∞c (R1,3,R1,3) given by

A[f ] :=

∫
fµ(x)Aµ(x)dx. (4.12)

Note that A[f ] = A((ζ)), where

ζi = −D ∗
(
fi −

∂i∂
j

∆
fj

)
, ζ0 = 0.

(4.12) is not Lorentz covariant. To see this it is enough to note that it does
not depend on f0. Replacing [fµ] with [fµ + ∂µχ] for χ ∈ C∞c (R1,3) does not
change (4.12), because ∂µA

µ(x) = 0.

4.1.4 Lagrangian formalism and the stress-energy tensor

The Lagrangian formalism for the Maxwell equation is similar to the massive
case. Consider the Lagrangian density

L := −1

4
FµνF

µν .

The Euler-Lagrange equations coincide with the Maxwell equation.
The canonical stress-energy tensor is

T µνcan = gµνL − ∂L
∂Aα,µ

A ,ν
α

= −gµν 1

4
FαβF

αβ − FµαA,να.

One usually replaces it with the Belifante-Rosenfeld stress-energy tensor. It is
defined as

T µν = T µνcan + ∂αΣµνα

= −gµν 1

4
FαβF

αβ + FµαF να,
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where
Σµνα = −Σανµ := FµαAν . (4.13)

On solutions of the Euler-Lagrange equations we have

∂µT can
µν = ∂µTµν = 0.

In addition, Tµν is symmetric.
To pass to the Hamiltonian formalism we first note that the dynamical vari-

able is the transversal part of the potential ~Atr (=the spatial part of the potential
in the Coulob gauge). We will drop tr from the notation. The variable conjugate
to Ai is

∂ȦiL = Ei.

We introduce the Hamiltonian, momentum and polarization density

H(x) := T 00(x) =
1

2

(
~E2(x) + ( ~rot ~A)2(x)

)
Pj(x) := T 0j(x) = Ei(x)F ji(x),

S(x) = Ei(x)εijk∂kAj(x).

They give the Hamiltonian, momentum and polarization as in (3.20) satis-
fying analogous properties.

4.1.5 Diagonalization of the equations of motion

As in the massive case, we would like to diagonalize simultaneously the Hamil-
tonian, momentum, polarizaton and symplectic form.

For ~k ∈ R3 we set k = (ε,~k), ε(~k) :=
√
~k2. The vectors u(k,±1) are defined

as in (3.23). u(k, 0) are not defined at all.
For σ = ±1, define the following functionals on YMax, called plane wave

functionals:

a(k, σ)

= (2π)−
3
2

∫ (√ε(~k)

2
e−i~x~kuj(k, σ)Aj(0, ~x)− i√

2ε(~k)
e−i~k~xuj(k, σ)Ej(0, ~x)

)
d~x.

We have accomplished the promised diagonalization

H =
∑
σ=±1

∫
d~kε(~k)a∗(k, σ)a(k, σ),

~P =
∑
σ=±1

∫
d~k~ka∗(k, σ)a(k, σ),

S =
∑
σ=±1

∫
d~kσ|~k|a∗(k, σ)a(k, σ),

iω =
∑
σ=±1

∫
a∗(k, σ) ∧ a(k, σ)d~k.
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The potentials can be written as

Aµ(x) = (2π)−
3
2

∑
σ=±1

∫
d~k√
2ε(~k)

(
uµ(x, σ)eikxa(k, σ) + uµ(x, σ)e−ikxa∗(k, σ)

)
.

Plane waves are defined as in the massive case, with σ = ±1. We have

a(k, σ) = iA((|k, σ)))

and

Aµ(x) =
∑
σ=±1

∫ (
(x|k, σ)a(k, σ) + (x|k, σ)a∗(k, σ)

)
d~k.

4.1.6 Positive frequency space

W(±)
Max will denote the subspace of CYMax consisting of classes of solutions that

in the Coulomb gauge have positive, resp. negative frequencies.

Every g ∈ W(+)
Max can be written as

g(x) = (2π)−
3
2

∑
σ=±1

∫
d~k√
2ε(~k)

eikxu(k, σ)〈a(k, σ)|g〉.

For g1, g2 ∈ W(+)
Max we define the scalar product

(g1|g2) := ig1ωg2 =
∑
σ=±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k.

The definition of W(+)
Max depends on the choice of coordinates. It is however

easy to see that the space W(+)
Max is invariant w.r.t. R1,3 oO↑(1, 3).

We set ZMax to be the completion of W(+)
Max in this scalar product.

We can identify YMax with W(+)
Max and transport the scalar product onto

YMax, which for ζ1, ζ2 is given by

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫ (
ζ̇Coul
1i (0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇Coul

2i (0, ~y)d~xd~y

+

∫ ∫
ζCoul
1i (0, ~x)(−∆~x)(−i)D(+)(0, ~x− ~y)ζCoul

2i (0, ~y)d~xd~y.

4.1.7 Spin averaging

Let us describe the spin averaging identities useful in computations of scattering
cross-sections. For a given k ∈ R1,3 with k2 = 0, let M,N be vectors with

Mµkµ = Nνkν = 0.
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Then we have ∑
σ=±1

Mµuµ(k, σ)uν(k, σ)Nν = MµNν . (4.14)

To see (4.14), note that∑
σ=±1

uµ(k, σ)uν(k, σ) = gµν + δµ0δν0 −
~kµ~kν

|~k|2
.

Therefore, the left hand side of (4.14) equals

MµgµνN
ν +M0N0 − ( ~M~k)( ~N~k)

|~k|2
.

But

M0 =
~k ~M

|~k|
, N0 =

~k ~N

|~k|
.

4.1.8 Quantization

We would like to quantize the Maxwell equation starting from the symplectic
space YMax. We will use the potentials in the Coulomb gauge (where, as usual,
we drop the superscript Coul). The quantization is similar to the Proca equation
based on YPr described in Subsubsect. 3.2.3, with Condition (1) replaced by

−2Âi(x) = 0, ∂iÂi(x) = 0, Â0(x) = 0,

and Condition (2) replaced by

[Â i(0, ~x), A j(0, ~y)] = [Êi(0, ~x), Êj(0, ~y)] = 0,

[Âi(0, ~x), Êj(0, ~y)] = i

(
δij −

∂i∂j
∆

)
δ(~x− ~y).

The above problem has a solution unique up to a unitary equivalence. We
set H := Γs(ZMax). The creation/annihilation operators will be denoted by â∗

and â. In particular, we set

â∗(k, σ) := â∗(|k, σ)).

Ω will be the Fock vacuum. We set

Â,i(x) := (2π)−
3
2

∫
d~k√
2ε

∑
σ=±1

(
ui(k, σ)eikxâ(k, σ) + ui(k, σ)e−ikxâ∗(k, σ)

)
,

The quantum Hamiltonian, momentum and polarization are

Ĥ :=
∑
σ=±1

∫
â∗(k, σ)â(k, σ)ε(~k)d~k,

~̂
P :=

∑
σ=±1

∫
â∗(k, σ)â(k, σ)~kd~k,

Ŝ :=
∑
σ=±1

∫
d~kσ|~k|â∗(k, σ)â(k, σ).
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The whole group R1,3oO↑(1, 3) is unitarily implemented on H by U(a,Λ) :=

Γ
(
r(a,Λ)

∣∣∣
ZMax

)
We have

U(a,Λ)F̂µν(x)U(a,Λ)∗ = Λµ
′

µ Λν
′

ν F̂µ′ν′
(
(a,Λ)x

)
.

Moreover,

[Âj(x), Âi(y)] = −i

(
δij −

∂i∂j
∆

)
D(x− y).

Note the identities

(Ω|Âi(x)Âj(y)Ω) = −i

(
δij −

∂i∂j
∆

)
D(+)(x− y),

(Ω|T(Âi(x)Âj(y))Ω) = −i

(
δij −

∂i∂j
∆

)
Dc(x− y).

The family

C∞c (R1,3,R1,3) 3 f 7→ Â[f ] :=

∫
fµ(x)Âµ(x)dx

with D := Γfin
s (ZMax) does not satisfy the Wightman axioms because of two

problems: the noncausality of the commutator and the absence of the Poincaré
covariance.

If we replace Âµ with F̂µν , we restore the causality and the Poincaré covari-
ance.

For an open set O ⊂ R1,3 we set

A(O) := {exp(iF̂ [f ]) : f ∈ C∞c (O,⊗2
aR1,3)}.

The algebras A(O) satisfy the Haag-Kastler axioms.

4.1.9 Quantization in terms of C∗-algebras

Let CCR(Y
M̃ax

) denote the (Weyl) C∗-algebra of canonical commutation rela-
tions over Y

M̃ax
. By definition, it is generated by W (ζ), ζ ∈ Y

M̃ax
, such that

W (ζ1)W (ζ2) = e−i
ζ1ωM̃ax

ζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

R1,3 oO↑(1, 3) acts on CCR(Y
M̃ax

) by ∗-automorphisms defined by

r̂(a,Λ) (W (ζ)) := W
(
r(a,Λ)(ζ)

)
.

We are looking for a cyclic representation of this algebra with the time evolution
generated by a positive Hamiltonian.

Consider the state on CCR(Y
M̃ax

) defined for ζ ∈ Y
M̃ax

by

ψ
(
W (ζ)

)
= exp

(
− 1

2
〈ζ|ζ〉Y

)
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Note that the state is gauge and Poincare invariant. Let (Hψ, πψ,Ωψ) be
the GNS representation. Hψ is naturally isomorphic to Γs(ZMax). Ωψ can

be identified with the vector Ω. πψ(W (ζ)) can be identified with eiÂ((ζ)). In

particular, if ζ1 and ζ2 are gauge equivalent, then Â((ζ1)) = Â((ζ2)). However,
Â(x) in the sense of (4.9) is not well defined.

4.2 Massless photons with an external current

4.2.1 Classical fields

We return to the classical Maxwell equation. We consider an external current
given by function R1,3 3 x 7→ J(x) = [Jµ(x)] ∈ R1,3 satisfying

∂νJ
ν(x) = 0. (4.15)

In most of this subsection we assume that J is Schwartz. The Maxwell equation
reads

−∂µ∂µAν + ∂ν∂µA
µ = −Jν . (4.16)

Let ζ be a solution of

−∂µ∂µζν + ∂ν∂µζ
µ = −Jν . (4.17)

We write separately the temporal and spatial equations:

−∆ζ0 + div~̇ζ = −J0,(
∂2

0 −∆
)
~ζ − ~∂ζ̇0 + ~∂div~ζ = − ~J.

We can compute ζ0 in terms of ~ζ at the same time:

ζ0(x) = (−∆)−1(J0 + ∂0div~ζ)(x). (4.18)

We can insert this into spatial equations, using J̇0 = div ~J , obtaining

2~ζtr = ~Jtr, (4.19)

where

~ζtr := ~ζ − ~∂∆−1div~ζ,
~Jtr := ~J − ~∂∆−1div ~J.

Thus the only dynamical variables are the transversal spatial components. div~ζ =:
Θ is an arbitrary space-time function.

The simplest choice is Θ = 0, which corresponds to the Coulomb gauge:

ζCoul
0 = −(−∆)−1J0,

2~ζCoul = ~Jtr,

div~ζCoul = 0.
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The Coulomb gauge seems to be the most natural gauge for the Hamiltonian
approach.

Let ζ be a space compact solution of (4.17). Setting

ζCoul
µ := ζµ + ∂µχ,

where χ(t, ~x) := (−∆)−1div~ζ(t, ~x), we obtain a solution of (4.17) in the Coulomb
gauge. Note that ζCoul is the unique solution of (4.17) gauge equivalent to ζ
that is in the Coulomb gauge. ζCoul does not have to be space compact.

We would like to introduce the classical potential in the Coulomb gauge ACoul

satisfying

ACoul
0 = −(−∆)−1J0,

2 ~ACoul = ~Jtr,

div ~ACoul = 0.

We will interpret ACoul as a functional on Y
M̃ax

by demanding that ~ACoul(x) and
~ACoul

fr (x), as well as their time derivatives coincide for x0 = 0. We can express
the spatial part of the interacting potential in terms of the free potential (both
in the Coulomb gauge):

~ACoul(x) := ~ACoul
fr (x) (4.20)

−
∫ (

D+(x− y)θ(y0) +D−(x− y)θ(−y0)
)
~Jtr(y)dy.

ACoul
µ (x) does not depend on the gauge, hence it can be interpreted as a func-

tional on YMax.
Similarly as in the previous subsection, we will drop the superscript Coul in

what follows.

4.2.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

L := −1

4
FµνF

µν − JµAµ

= −1

2
(rot ~A)2 +

1

2
(~∂A0)2 +

1

2

(
~̇A
)2 − ~̇A~∂A0 − ~J ~A+ J0A0.

The dynamic variables are ~A(x). The corresponding conjugate variables are

~E(x) = ~̇A(x)− ~∂A0(x).
The canonical Hamiltonian density is

Hcan(x) = −L(x) +
∂L(x)

∂Ȧi(x)
Ȧi(x)

=
1

2
(rot ~A)2(x)− 1

2
(~∂A0)2(x) +

1

2

(
~̇A
)2

(x)

+ ~J(x) ~A(x)− J0(x)A0(x).
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We add to it a spatial divergence div
(
~E(x)A0(x)

)
and express it in terms of ~A,

~E. We obtain the usual Hamiltonian density

H(x) =
1

2
~E2(x) +

1

2
( ~rot ~A)2(x) + ~J(x) ~A(x).

We impose the Coulomb gauge, so that ~A = ~Atr. Using div ~E = J0, we
express the Hamiltonian density in terms of transversal variables:

H(x) =
1

2
~E2

tr(x) +
1

2
(~∂ ~A)2(x) + ~J(x) ~A(x) +

1

2
J0(−∆)−1J0(x).

Now we can define the time-dependent Hamiltonian as in (3.37).

4.2.3 Quantization

To quantize the Maxwell equation in the presence of an external current we will
use the Coulomb gauge, dropping as usual the subscript Coul.

We are looking for quantum potentials R1,3 3 x 7→ Âµ(x), with ~E(x) =

~̇̂
A(x)− ~∂Â0(x), satisfying

ÂCoul
0 = −(−∆)−1J0,

2
~̂
ACoul = ~Jtr,

div
~̂
ACoul = 0,

[Âj(0, ~x), Êi(0, ~y)] = −i

(
δij −

∂i∂j
∆

)
δ(~x− ~y).

The above conditions fix Â0. To fix
~̂
A and

~̂
E we assume that they coincide with

their free quantum counterparts at t = 0:

~̂
A(0, ~x) =

~̂
Afr(0, ~x) =:

~̂
A(~x),

~̂
E(0, ~x) =

~̂
Efr(0, ~x) =:

~̂
E(~x).

The spatial components of the quantized potentials are obtained by putting
hats on (4.20).

The Hamiltonian in the Schrödinger picture and the corresponding Hamil-
tonian in the interaction picture are

Ĥ(t) =

∫
d~x :

(1

2
~̂
E2(~x) +

1

2
(~∂
~̂
A)2(~x) + ~J(t, ~x)

~̂
A(~x)

)
:

+
1

2

∫ ∫
d~xd~yJ0(t, ~x)

1

4π|~x− ~y|
J0(t, ~y),

ĤInt(t) = +

∫
d~x ~J(t, ~x)

~̂
Afr(t, ~x)

+
1

2

∫ ∫
d~xd~yJ0(t, ~x)

1

4π|~x− ~y|
J0(t, ~y).
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The scattering operator can be computed exactly:

Ŝ = exp

(
i

2

∫
dkJ

µ
(k)DCoul

µν (k)Jν(k)dk

)

× exp

−i
∑
σ=±1

∫
d~kâ∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑
σ=±1

∫
d~kâ(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)

 , (4.21)

where the propagator in the Coulomb gauge is defined as

DCoul
00 = − 1

~k2
, DCoul

0j = 0, DCoul
ij =

1

k2 − i0

(
δij −

kikj
~k2

)
.

We did not use the fact that Jµ is conserved.

4.2.4 Causal propagators

If we compute scattering amplitudes, we can pass from the propagator in the
Coulomb gauge to another by adding kµfν(k)+fµ(k)kν for an arbitrary function
fµ(k).

Let us list a number of useful propagators in other gauges. In particular, we
distinguish the family of propagators

1

k2 − i0

(
gµν +

(
1

α
− 1

)
kµkν
k2

)
.

Some of them have special names:

DLan
µν := 1

k2−i0

(
gµν − kµkν

k2

)
Landau or Lorentz gauge,

DFeyn
µν := 1

k2−i0gµν Feynman gauge,

DFY
µν := 1

k2−i0

(
gµν + 2

kµkν
k2

)
Fried and Yennie gauge.

We have DCoul
µν = DFeyn

µν + kµf
Coul
ν (k) + fCoul

µ (k)kν , where

fCoul
0 (k) =

k0

(k2 − i0)2~k2
, fCoul

i (k) = − ki

(k2 − i0)2~k2
.

The propagator in the temporal gauge

Dtem
00 = 0, Dtem

0j = 0, Dtem
ij =

1

k2 − i0

(
δij −

kikj
k2

0

)
.

We have Dtem
µν = DFeyn

µν + kµf
tem
ν (k) + f tem

µ (k)kν , where

f tem
0 (k) =

1

(k2 − i0)2k0
, f tem

i (k) = − ki
(k2 − i0)2k2

0

.
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4.2.5 Path integral formulation

Let D•µν be one of the propagators considered in Sect. 3.2.4. Let Bµν• be its
inverse. Then we can use the corresponding action to express the generating
function by path integrals, as described in Sect. 3.2.6, where this approach for
massive vector fields was considered.

The discussion of the propagators Dα
µν and Dtem

µν is an obvious generalization
of the massive case.

To obtain the propagator in the Coulomb gauge DCoul
µν , we take the La-

grangian

−1

2

(
∂µAi(x)∂µAi(x)− ∂iA0(x)∂iA0(x)

)
,

and restrict the integration by the condition

div ~A(x) = 0.

4.2.6 The m→ 0 limit

Assume that Jµ is a conserved current. We can write the scattering operator
for a positive mass, using the propagator in the Yukawa gauge as

Ŝ = exp

(
i

2

∫
dkJi(k)

1

m2 + k2 − i0

(
gij −

kikj

m2 + ~k2

)
Ji(k)

− i

2

∫
dk

1

~k2 +m2
|J0(k)|2

)

× exp

−i
∑

σ=0,±1

∫
d~kâ∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑

σ=0,±1

∫
d~kâ(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


= Ŝtr ⊗ Ŝlg,
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Here, the transversal scattering operator is

Ŝtr = exp

(
i

2

∫
dkJi(k)

1

m2 + k2 − i0

(
gij −

kikj
k2

)
Jj(k)

− i

2

∫
dk

1

~k2 +m2
|J0(k)|2

)

× exp

−i
∑
σ=±1

∫
d~kâ∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑
σ=±1

∫
d~kâ(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


and converges to the massless scattering operator in the Coulomb gauge as
m↘ 0. The longitudinal scattering operator is

Ŝlg = exp

(
i

2
m2

∫
dkJi(k)

1

m2 + k2 − i0

kikj

(m2 + ~k2)~k2
Jj(k)

)

× exp

−i

∫
d~kâ∗(k, 0)

uµ(k, 0)√
2ε(~k)

Jµ(k)


× exp

−i

∫
d~kâ(k, 0)

uµ(k, 0)√
2ε(~k)

Jµ(k)

 .

This can be rewritten as

Ŝlg = exp

(
i

2
m2

∫
dk

| ~J · ~k|2

(m2 + k2)(m2 + ~k2)~k2

)

× exp

(
−1

2

∫
d~k
m2|J0(k)|2

2ε(~k)~k2

)

× exp

i

∫
d~kâ∗(k, 0)

mJ0(k)

|~k|
√

2ε(~k)


× exp

i

∫
d~kâ(k, 0)

mJ0(k)

|~k|
√

2ε(~k)

 ,

where the integral on the first line should be understood as the principal value.
Thus Ŝlg, under rather general circumstances, converges to 1l.
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4.2.7 Current produced by a travelling particle

Consider a classical particle travelling along the trajectory t 7→ ~y(t) with a
constant profile q(~x). Then its current equals

J(t, ~x) = q(~x− ~y(t))
(

1,
d~y(t)

dt

)
.

Assume that ~y(t) = t~v± for ±t > 0. Then

Jµ(k) =

∫
Jµ(t, ~x)e−i~k~x+ik0tdxdt

=

(
− i(1, ~v+)µ

~k~v+ − k0 − i0
+

i(1, ~v−)µ

~k~v− − k0 + i0

)
q(~k)

=

(
−

ipµ+
kp+ − i0

+
ipµ−

kp− + i0

)
q(~k),

where p± = m√
1−(~v±)2

(1, ~v±).

Consider photons of mass m ≥ 0 coupled to the current Jµ. Similarly as in
Subsubsect. 2.2.11, we define the scattering operator ŜGL by replacing∫

dkJµ(k)Dµν(k)Jν(k)dk

in (4.21) with

Im

∫
dkJµ(k)Dµν(k)Jν(k)dk. (4.22)

(4.22) is infrared divergent if m = 0,
∫
q(~x)d~x 6= 0 and ~v+ 6= ~v−.

We could try to justify the use of ŜGL similarly as in Subsubsect. 2.2.11,
by introducing the Gell-Mann–Low adiabatic switching. This justification is
adopted by many physicists, eg. [26]. One could criticize this approach, since
after multiplying by the switching function e−ε|t| the current is no longer con-
served. Therefore, as indicated above, we prefer to define the scattering operator
ŜGL simply by removing the (typically infinite) phase shift.

4.2.8 Energy shift

Suppose that the current is stationary and is given by a Schwartz function
R3 3 ~x 7→ Jµ(~x) with div ~J(~x) = 0.

The Hamiltonian is given by

Ĥ =

∫
d~x :

(1

2
~̂
E2

tr(~x) +
1

2

(
~∂
~̂
A(~x)

)2
+ ~J(~x)

~̂
A(~x)

)
:

+
1

2

∫ ∫
d~xd~yJ0(~x)

1

4π|~x− ~y|
J0(~y).
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By (A.8), the infimum of Ĥ is

E = −1

2

∫ ∫
d~xd~y ~J(~x)

1

4π|~x− ~y|
~J(~y)

+
1

2

∫ ∫
d~xd~yJ0(~x)

1

4π|~x− ~y|
J0(~y).

4.3 Alternative approaches

4.3.1 Manifestly Lorentz covariant formalism

So far, our treatment of the Maxwell equation was based on the Coulomb gauge,
which depends on the choice of the temporal coordinate. One can ask whether
massless vector fields can be studied in a manifestly covariant fashion.

Let Ξ be an arbitrary space-time function. The Maxwell equation allow us
to impose a generalized Lorentz condition

∂µA
µ = Ξ. (4.23)

The Maxwell equation together with (4.23) imply

−2Aµ = −Jµ + ∂µΞ. (4.24)

The function Ξ has no physical meaning. Therefore it is natural to adopt the
simplest choice Ξ = 0, that is the usual Lorentz condition, for which (4.24) reads
−2Aµ = −Jµ. We will discuss this approach in what follows. For simplicity,
we will limit ourselves to free fields.

4.3.2 The Lorentz condition

Recall that the Proca equation is equivalent to the Klein-Gordon equation for
vector fields together with the Lorentz condition. Therefore, one can first de-
velop its theory on the symplectic space Yvec, and then reduce it to the subpace
YLor, as described before.

One can follow a similar route for the Maxwell equation. However, there is
a difference: the reduction by the Lorentz condition is insufficient, one has to
make an additional reduction.

Anyway, let us start as described in Subsubsect. 3.3.1 by introducing the
space Yvec, the form ωvec, the subspace YLor, the potentials Aµ(x), Πµ(x) :=

Ȧµ(x), where now m = 0.
In the massive case YLor was symplectic (that means, the form ωvec restricted

to YLor was nondegenerate). This is no longer true in the massless case. Instead,
the following is true.

Proposition 4.2 YLor is coisotropic. That means, if ζ is symplectically orthog-
onal to YLor, then ζ ∈ YLor.
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Proof. Using −2∂µAµ(x) = 0 we see that, for any fixed t, we can replace

∂µA
µ(x) = 0 (4.25)

with

0 = ∂µA
µ(t, ~x) = (−Π0 + ∂iA

i)(t, ~x), (4.26)

0 = ∂µΠµ(t, ~x) = (−∆A0 + ∂iȦ
i)(t, ~x) (4.27)

as the defining conditions for YLor. YLor is coisotropic iff

{∂µAµ(t, ~x), ∂µA
µ(t, ~y)} = 0, (4.28)

{∂µΠµ(t, ~x), ∂µΠµ(t, ~y)} = 0, (4.29)

{∂µAµ(t, ~x), ∂µΠµ(t, ~y)} = 0. (4.30)

It is clear that (4.28) and (4.29 are true. To see (4.30) we compute:

{∂µAµ(t, ~x), ∂νΠν(t, ~y)}
= ∆~yδ(~x− ~y) + ∂~xi∂~yiδ(~x− ~y) = 0.

2

YLor is a subspace of Y
M̃ax

and on YLor the forms ω
M̃ax

and ωvec coincide.

Proposition 4.3 Any ζ ∈ Y
M̃ax

is gauge equivalent to an element of YLor.

Proof. We can find smooth functions ξ+ and ξ− such that

∂µζ
µ = ξ+ + ξ−,

ξ− is past space compact and ξ+ is future space compact. By using the advanced
and retarded Green’s functions we can solve

−2χ− = ξ−, −2χ+ = ξ+,

where χ− is past space compact and χ+ is future space compact. Then ζµ+∂µχ
belongs to YLor. 2

Therefore, the symplectically reduced YLor coincides with the symplectically
reduced Y

M̃ax
, that is, with YMax. This shows that both approaches to the

Maxwell equation are equivalent on the classical level.

4.3.3 Positive frequency space

W(±)
Lor will denote the subspace of CYLor consisting of solutions that have posi-

tive, resp. negative frequencies.

For g1, g2 ∈ W(+)
Lor we define the scalar product

(g1|g2) := ig1ωvecg2

= igCoul
1 ωvecg

Coul
2 . (4.31)
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Note that the definition (4.31) does not depend on the choice of coordinates and
is invariant wrt. the group R1,3 oO↑(1, 3).

The scalar product is positive semidefinite, but not strictly positive definite.

Let W(+)
Lor,0 be the subspace of elements W(+)

Lor with a zero norm. Using Prop.

4.1 we see that W(+)
Lor,0 consists of pure gauges. The space W(+)

Lor /W
(+)
Lor,0 has

a nondegenerate scalar product. Its completion is naturally isomorphic to the
space ZMax, which we constructed in Subsubsect. 4.1.6.

We have a natural identification of YLor with W(+)
Lor given by the obvious

projection. For ζ ∈ YLor we will denote by ζ(+) the corresponding element

of W(+)
Lor . This identification allows us to define a positive semidefinite scalar

product on YLor:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫
ζ̇Coul
1i (0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇Coul

2i (0, ~y)d~xd~y

+

∫ ∫
ζCoul
1i (0, ~x)(−∆~x)(−i)D(+)(0, ~x− ~y)ζCoul

2i (0, ~y)d~xd~y.

4.3.4 “First quantize, then reduce”

One can try to use the symplectic space Yvec of real vector valued solutions of
the Klein-Gordon equation as the basis for quantization. In the literature, this
starting point is employed by two approaches.

The first, which we call the approach with a subsidiary condition has the
advantage that it uses only positive definite Hilbert spaces. Unfortunately, in
this approach there are problems with the potential Âµ(x). Besides, the full
Hilbert space turns out to be non-separable.

In the Gupta-Bleuler approach the potentials Âµ(x) are well defined and
covariant. Unfortunately it uses indefinite scalar product spaces.

4.3.5 Quantization with a subsidiary condition

The quantization of the Proca equation described in Subsubsec. 3.3.6 is prob-
lematic in the zero mass limit. If m = 0, we cannot use the Hilbert space (3.52)
for the quantization, since it is not well defined.

However, the C∗-algebraic formulation survives the m ↘ 0 limit. In par-
ticular, CCR(Yvec), the (Weyl) C∗-algebra of canonical commutation relations
over Yvec, is well defined also for m = 0 and is invariant wrt the Poincaré group.

Strictly speaking, the spaces Yvec and hence the algebras CCR(Yvec) are
different for various m. If we fix a Cauchy subspace we can identify them by
using the initial conditions.

Recall that in the massive case

(Ω|Â((ζ))
2
Ω) = 〈ζ|ζ〉Y +

2

m2
〈∂µζµ|∂νζν〉Y . (4.32)
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Recall that ζ ∈ YLor iff ∂µζ
µ = 0. Therefore, in the limit m↘ 0,

(Ω|Â((ζ))
2
Ω) =

{
〈ζ|ζ〉Y , ζ ∈ YLor,
+∞, ζ 6∈ YLor.

So, the following state on CCR(Yvec) is the limit of the state (3.54) for m↘ 0:

ψ
(
W (ζ)

)
=

{
exp

(
− 1

2 〈ζ|ζ〉Y
)
, ζ ∈ YLor,

0, ζ 6∈ YLor.

Let (Hψ, πψ,Ωψ) denote the GNS representation for this state. We can
identify

J : Hψ → l2 (Yvec/YLor,Γs(ZMax)) . (4.33)

To describe this identification, first note that Yvec/YLor can be parametrized by
smooth space-compact functions

Ξ = ∂µζ
µ,

which can be called the values of the Lorentz condition. For each Ξ choose
ζΞ ∈ Yvec such that ∂µζ

µ
Ξ = Ξ. We demand that

(
Jπψ

(
W (ζΞ)

)
Ωψ

)
(Ξ) =

{
Ω, ∂µζ

µ = Ξ,

0, ∂µζ
µ 6= Ξ.

Then J is given by

(
Jπψ

(
W (ζ)

)
Ωψ
)

(Ξ) =

{
e

i
2 ζωvecζΞeiÂ((ζ−ζΞ))Ω, ∂µζ

µ = Ξ,

0, ∂µζ
µ 6= Ξ.

Note thatHψ is non-separable – it is an uncountable direct sum of superselection
sectors corresponding to various values of the Lorentz condition. All these
superselection sectors are separable.

Special role is played by the (separable) subspace (superselection sector)
corresponding to the Lorentz condition Ξ = 0. We can choose ζΞ = 0 and thus
this subspace is naturally isomorphic to Γs(ZMax) with the fields obtained by
the usual quantization obtained by the method “first reduce, then quantize”.

Note that πψ(W (ζ)) maps between various sectors of (4.33) if ζ 6∈ YLor. The
unitary group R 3 t 7→ πψ (W (tζ)) is strongly continuous if and only if ζ ∈ YLor.

If this is the case, we can write πψ(W (ζ)) = eiÂ((ζ)). We have Â((ζ1)) = Â((ζ2))

if in addition ζ1 differs from ζ2 by a pure gauge. Â((ζ)) is ill defined if ζ 6∈ YLor.
To my knowledge, the approach that we described above, restricted to the

0th sector, was essentially one of the first approaches to the quantization of
Maxwell equation. It is typical for older presentations, eg. [22]. However,
without the language of C∗-algebras it is somewhat awkward to describe. One
usually says that the Lorentz condition ∂µÂ

µ(x) = 0 is enforced on the Hilbert
space of states and constitutes a subsidiary condition.
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4.3.6 The Gupta-Bleuler approach

The Gupta-Bleuler approach follows the same lines as in the massive case until

we arrive at the algebraic Fock space built on W(+)
Lor . As we know, the scalar

product on W(+)
Lor is only semidefinite. We factor W(+)

Lor by the null space of

its scalar product, obtaining W(+)
Max. We complete it, obtaining ZMax and we

take the corresponding Fock space Γs(ZMax) – this coincides with the usual
quantization.

Equivalently, we can take the (algebraic) Fock space overW(+)
Lor . It has a nat-

ural semidefinite product. We divide by its null space and take the completion.
Again, the resulting Hilbert space can be naturally identified with Γs(ZMax).

5 Charged scalar bosons

In this section we consider again the Klein-Gordon equation

(−2 +m2)ψ(x) = 0. (5.1)

This time we will quantize the space of its complex solutions.
The formalism used in physics to describe complex fields, and especially to

quantize them, is different from the real case, therefore we devote to it a separate
section.

The advantage of complex fields, as compared with real fields, is the possi-
bility to include an external electromagnetic potential [Aµ(x)] and to consider
the equation (

− (∂µ + iAµ(x)) (∂µ + iAµ(x)) +m2
)
ψ(x) = 0.

5.1 Free charged scalar bosons

5.1.1 Classical fields

WKG will denote the space of smooth space-compact complex solutions of the
Klein-Gordon equation

(−2 +m2)ζ = 0. (5.2)

(In the context of neutral fields, it was denoted CYKG, because it was an aux-
iliary object, the complexification of the phase space YKG. Now it is the basic
object, the phase space itself).

Clearly, the space WKG is equipped with a complex conjugation ζ 7→ ζ and
a U(1) symmetry ζ 7→ eiθζ, θ ∈ R/2πZ = U(1).

In the neutral case a crucial role was played by the conserved current jµ(ζ1, ζ2),
where ζ1, ζ2 ∈ YKG; see (2.9). In the charged case we will use its sesquilinear
version defined on WKG:

jµ(ζ1, ζ2, x) := ∂µζ1(x)ζ2(x)− ζ1(x)∂µζ2(x). (5.3)
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If we decompose elements ofWKG into their real and imaginary part ζ = ζR+iζI,
then the real part of the current splits into a part depending on ζR and on ζI:

Rejµ(ζ1, ζ2, x)

= ∂µζR,1(x)ζR,2(x)− ζR,1(x)∂µζR,2(x)

+∂µζI,1(x)ζI,2(x)− ζI,1(x)∂µζI,2(x).

Thus WKG can be viewed as the direct sum of two symplectic spaces with the
form

Reζ1ωζ2 = ζR,1ωζR,2 + ζI,1ωζI,2.

For x ∈ R1,3, one can introduce the fields ψR(x), ψI(x), ηR(x), ηI(x) as the
real linear functionals on WKG given by

〈ψR(x)|ζ〉 := Reζ(x), 〈ψI(x)|ζ〉 := Imζ(x),

〈ηR(x)|ζ〉 := Reζ̇(x), 〈ηI(x)|ζ〉 := Imζ̇(x).

Clearly, we have the usual equal time Poisson brackets (we write only the non-
vanishing ones):

{ψR(t, ~x), ηR(t, ~y)} = {ψI(t, ~x), ηI(t, ~y)} = δ(~x− ~y). (5.4)

In practice, however, one prefers to organize the fields differently. One in-
troduces

〈ψ(x)|ζ〉 :=
1√
2
ζ(x), 〈ψ∗(x)|ζ〉 :=

1√
2
ζ(x),

〈η(x)|ζ〉 :=
1√
2
ζ̇(x), 〈η∗(x)|ζ〉 :=

1√
2
ζ̇(x),

called (classical) complex fields. Clearly,

ψ(x) =
1√
2

(
ψR(x) + iψI(x)

)
, ψ∗(x) =

1√
2

(
ψR(x)− iψI(x)

)
,

η(x) =
1√
2

(
ηR(x) + iηI(x)

)
, η∗(x) =

1√
2

(
ηR(x)− iηI(x)

)
.

Note that

ψ(t, ~x) =

∫
Ḋ(t, ~x− ~y)ψ(0, ~y)d~y +

∫
D(t, ~x− ~y)η(0, ~y)d~y. (5.5)

The only non-vanishing equal-time Poisson brackets are

{ψ(t, ~x), η∗(t, ~y)} = {ψ∗(t, ~x), η(t, ~y)} = δ(~x− ~y). (5.6)

Using (5.5) we obtain

{ψ(x), ψ(y)} = {ψ∗(x), ψ∗(y)} = 0,

{ψ(x), ψ∗(y)} = D(x− y).
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5.1.2 Smeared fields

We can use the symplectic form to pair distributions and solutions. For ζ ∈ WKG

the corresponding spatially smeared fields are the functionals on WKG given by

〈ψ((ζ))|ρ〉 :=
1√
2
ζωρ,

〈ψ∗((ζ))|ρ〉 :=
1√
2
ζωρ, ρ ∈ WKG.

Equivalently,

ψ((ζ)) =

∫ (
−ζ̇(t, ~x)ψ(t, ~x) + ζ(t, ~x)η(t, ~x)

)
d~x,

ψ∗((ζ)) =

∫ (
−ζ̇(t, ~x)ψ∗(t, ~x) + ζ(t, ~x)η∗(t, ~x)

)
d~x.

Note that

{ψ((ζ1)), ψ((ζ2))} = {ψ∗((ζ1)), ψ∗((ζ2))} = 0,

{ψ((ζ1)), ψ∗((ζ2))} = ζ1ωζ2.

We can also introduce space-time smeared fields. To a space-time function
f ∈ C∞c (R1,3,C) we associate

ψ[f ] :=

∫
f(x)ψ(x)dx,

ψ∗[f ] :=

∫
f(x)ψ∗(x)dx.

Clearly,

{ψ[f1], ψ[f2]} = {ψ∗[f1], ψ∗[f2]} = 0,

{ψ[f1], ψ∗[f2]} =

∫ ∫
f1(x)D(x− y)f2(y)dxdy,

ψ[f ] = −ψ((D ∗ f)), ψ∗[f ] = −ψ∗((D ∗ f)).

5.1.3 Lagrangian formalism

In the Lagrangian formalism we use the complex off-shell fields ψ(x) and ψ∗(x)
as the basic variables. We introduce the Lagrangian density

L(x) = −∂µψ∗(x)∂µψ(x)−m2ψ∗(x)ψ(x).

The Euler-Lagrange equations

∂ψ∗L − ∂µ
∂L
∂ψ∗,µ

= 0, ∂ψL − ∂µ
∂L
∂ψ,µ

= 0 (5.7)
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yield (5.1). The variables conjugate to ψ(x) and ψ∗(x) are

η∗(x) :=
∂L

∂ψ,0(x)
= ∂0ψ

∗(x),

η(x) :=
∂L

∂ψ∗,0(x)
= ∂0ψ(x).

5.1.4 Classical current

The Lagrangian is invariant w.r.t. the U(1) symmetry ψ 7→ e−iθψ. The Noether
current associated to this symmetry is called simply the current, defined as

J µ(x) := i
(
ψ∗(x)

∂L(x)

∂ψ∗,µ
− ∂L(x)

∂ψ,µ
ψ(x)

)
= i

(
∂µψ∗(x)ψ(x)− ψ∗(x)∂µψ(x)

)
.

It is conserved on shell and real:

∂µJ µ(x) = 0,

J µ(x)∗ = J µ(x).

Up to a coefficient, it coincides with (5.3) viewed as a quadratic form:

〈J µ(x)|ζ〉 =
i

2
jµ(ζ, ζ, x)

= − i

2

(
∂µζ(x)ζ(x)− ζ(x)∂µζ(x)

)
.

The 0th component of the current is called the charge density

Q(x) := J 0(x) = i
(
−η∗(x)ψ(x) + ψ∗(x)η(x)

)
.

We have the relations

{Q(t, ~x), ψ(t, ~y)} = iψ(t, ~y)δ(~x− ~y),

{Q(t, ~x), η(t, ~y)} = iη(t, ~y)δ(~x− ~y),

{Q(t, ~x),Q(t, ~y)} = 0. (5.8)

The (total) charge

Q :=

∫
Q(t, ~x)d~x

is conserved (does not depend on time).
For χ ∈ C∞c (R3,R), let αχ denote the ∗-automorphism of the algebra of

functions on WKG defined by

αχ(ψ(0, ~x)) := e−iχ(~x)ψ(0, ~x),

αχ(η(0, ~x)) := e−iχ(~x)η(0, ~x). (5.9)

119



Obviously,

αχ(ψ∗(0, ~x)) = eiχ(~x)ψ∗(0, ~x),

αχ(η∗(0, ~x)) = eiχ(~x)η∗(0, ~x). (5.10)

(5.9) is called the gauge transformation at time t = 0 corresponding to χ. Set

Q(χ) =

∫
χ(~x)Q(0, ~x)d~x. (5.11)

Q(χ) generates the one-parameter group of gauge transformations R 3 s 7→ αsχ
(5.9): By (5.8), for any classical observable B (a function on WKG)) we have

∂sαsχ(B) = −
{
Q(χ), αsχ(B)

}
,

α0χ(B) = B.

5.1.5 Stress-energy tensor

The Lagrangian is invariant w.r.t. space-time translations. This leads to the
stress-energy tensor

T µν(x) := − ∂L(x)

∂ψ,µ(x)
∂νψ(x)− ∂νψ∗(x)

∂L(x)

∂ψ∗,µ(x)
+ gµνL(x)

= ∂µψ∗(x)∂νψ(x) + ∂νψ∗(x)∂µψ(x) (5.12)

−gµν
(
∂αψ

∗(x)∂αψ(x) +m2ψ∗(x)ψ(x)
)
. (5.13)

It is conserved on shell
∂µT µν(x) = 0.

The components of the stress-energy tensor with the first temporal coordinate
are called the Hamiltonian density and momentum density. We express them
on-shell in terms of ψ(x), ψ∗(x), η(x) and η∗(x):

H(x) := T 00(x) = η∗(x)η(x) + ~∂ψ∗(x)~∂ψ(x) +m2ψ∗(x)ψ(x),

Pi(x) := T 0i(x) = −η∗(x)∂iψ(x)− ∂iψ∗(x)η(x).

H(x) and ~P(x) acting on ζ ∈ WKG yield

〈H(x)|ζ〉 =
1

2
|ζ̇(x)|2 +

1

2
|~∂ζ(x)|2 +

m2

2
|ζ(x)|2,

〈~P(x)|ζ〉 = −1

2
ζ̇(x)~∂ζ(x)− 1

2
~∂ζ(x)ζ̇(x).

We can define the Hamiltonian and momentum

H =

∫
H(t, ~x)d~x, ~P =

∫
~P(t, ~x)d~x.

H and ~P are the generators of the time and space translations. The observables
H, P1, P2, P3 and Q are in involution.
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5.1.6 Diagonalization of the equations of motion

Recall that in the neutral case the generic notation for the energy-momentum
was k. The on-shell condition was k2 + m2 = 0, k0 > 0. In other words,

k0 = ε(~k) :=
√
~k2 +m2.

In the charged case, following [13], it will be convenient to use different letters
for the generic notation of the energy-momentum. In the charged case, the
energy-momentum will be denoted generically by p with the on-shell condition
p2 +m2 = 0, p0 > 0. We will also use a different letter for the energy: E(~p) =√
~p2 +m2. In other words, for p on shell p = (E(~p), ~p).
Define

ψt(~p) :=

∫
ψ(t, ~x)e−i~p~xd~x,

ηt(~p) :=

∫
η(t, ~x)e−i~p~xd~x.

Clearly, the only nonvanishing Poisson brackets are

{ψt(~p), η∗t (~p′)} = {ψ∗t (~p), ηt(~p
′)} = (2π)3δ(~p− ~p′).

The equations of motion are

ψ̇t(~p) = ηt(~p),

η̇t(~p) = −E2(~p)ψt(~p).

For on-shell p ∈ R1,3 define

at(p) = (2π)−
3
2

(√E(~p)

2
ψ(t, ~p) +

i√
2E(~p)

η(t, ~p)
)
,

a∗t (p) = (2π)−
3
2

(√E(~p)

2
ψ∗(t, ~p)− i√

2E(~p)
η∗(t, ~p)

)
,

bt(p) = (2π)−
3
2

(√E(~p)

2
ψ∗(t, ~p) +

i√
2E(~p)

η∗(t, ~p)
)
,

b∗t (p) = (2π)−
3
2

(√E(~p)

2
ψ(t, ~p)− i√

2E(~p)
η(t, ~p)

)
.

We have the equations of motion

ȧt(p) = −iE(~p)at(p), ḃt(p) = −iE(~p)bt(p),

ȧ∗t (p) = iE(~p)a∗t (p), ḃ∗t (p) = iE(~p)b∗t (p).

We will usually write a(p), a∗(p), b(p), b∗(p) instead of a0(p), a∗0(p), b0(p), b∗0(p),
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so that

a(p) = (2π)−
3
2

∫ (√E(~p)

2
ψ(0, ~x) +

i√
2E(~p)

η(0, ~x)
)

e−i~p~xd~x,

a∗(p) = (2π)−
3
2

∫ (√E(~p)

2
ψ∗(0, ~x)− i√

2E(~p)
η∗(0, ~x)

)
ei~p~xd~x,

b(p) = (2π)−
3
2

∫ (√E(~p)

2
ψ∗(0, ~x) +

i√
2E(~p)

η∗(0, ~x)
)

e−i~p~xd~x,

b∗(p) = (2π)−
3
2

∫ (√E(~p)

2
ψ(0, ~x)− i√

2E(~p)
η(0, ~x)

)
ei~p~xd~x,

at(p) = e−itE(~p)a(p), bt(p) = e−itE(~p)b(p),

a∗t (p) = eitE(~p)a∗(p), b∗t (p) = eitE(~p)b∗(p).

The only non-vanishing Poisson bracket are

{a(p), a∗(p′)} = {b(p), b∗(p′)} = −iδ(~p− ~p′).

We have the following expressions for the fields:

ψ(x) = (2π)−
3
2

∫
d~p√
2E(~p)

(
eipxa(p) + e−ipxb∗(p)

)
,

η(x) = (2π)−
3
2

∫
d~p
√
E(~p)

i
√

2

(
eipxa(p)− e−ipxb∗(p)

)
.

Thus every ζ ∈ WKG can be written as

ζ(x)√
2

= (2π)−
3
2

∫
d~p√
2E(~p)

(
eipx〈a(p)|ζ〉+ e−ipx〈b∗(p)|ζ〉

)
. (5.14)

We have accomplished the diagonalization of the basic observables:

H =

∫
d~pE(~p)

(
a∗(p)a(p) + b∗(p)b(p)

)
,

~P =

∫
d~p~p
(
a∗(p)a(p) + b∗(p)b(p)

)
,

Q =

∫
d~p
(
a∗(p)a(p)− b∗(p)b(p)

)
.

Note that the plane wave functional a(k) of the neutral case is slightly dif-
ferent from its counterpart a(p) of the charged case: the former acts on the real
space YKG and the latter on the complex space WKG. Besides, the latter is
not simply the complexification of the former – compare (2.25) and (5.14) and
notice the additional 1√

2
.
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5.1.7 Plane waves

We will use the same plane waves as those introduced in the neutral case in
(2.26). There will be two differences: the generic notation for the energy-
momentum is now p and plane waves with a negative frequency p0 are now
on the equal footing as those with a positive frequency. Thus

(x|p) =
1

(2π)3/2
√

2E(~p)
eipx. (5.15)

Let p0 > 0. We have

i(−p|ω|p′) = i(p|ω| − p′) = 0,

−i(−p|ω| − p′) = i(p|ω|p′) = δ(~p− ~p′).

a(p) and b(p) can be called plane wave functionals:

a(p) = iψ((|p))),
b∗(p) = −iψ((| − p))).

Thus for every ζ ∈ WKG we have

〈a(p)|ζ〉 =
i√
2

(p|ωζ,

〈b∗(p)|ζ〉 = − i√
2

(−p|ωζ.

,

5.1.8 Positive and negative frequency subspace

When we discussed neutral scalar fields we introduced spaces of positive/negative

frequency solutions, denoted W(±)
KG . Recall that W(±)

KG consists of wave packets
made of |p) with ±p0 > 0. Every ζ ∈ WKG can be uniquely decomposed as

ζ = ζ(+) + ζ(−) with ζ(±) ∈ W(±)
KG .

We equip W(+)
KG with the scalar product

(ζ
(+)
1 |ζ(+)

2 ) :=
i

2
ζ

(+)
1 ωζ

(+)
2 =

∫
〈a(p)|ζ(+)

1 〉〈a(p)|ζ(+)
2 〉d~p.

We set Z(+)
KG to be the completion of W(+)

KG in this scalar product.

Instead of W(−)
KG for quantization we will use the corresponding complex

conjugate space denoted W(−)
KG and equipped with the scalar product

(ζ
(−)

1 |ζ
(−)

2 ) := − i

2
ζ

(−)
1 ωζ

(−)
2 =

∫
〈b(p)|ζ(−)

1 〉〈b(p)|ζ(−)
2 〉d~p.
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We set Z(−)
KG to be the completion of W(−)

KG in this scalar product. Note that

W(−)
KG =W(+)

KG , where we use the usual (internal) complex conjugation in WKG.

Therefore in principle we could identify Z(−)
KG and Z(+)

KG . This identification will
be important for the definition of the charge conjugation. Normally, however,

we treat Z(−)
KG and Z(+)

KG as two separate Hilbert spaces.

R1,3 oO↑(1, 3) acts on Z(+)
KG and Z(−)

KG in a natural way.

5.1.9 Quantization

In principle, we could quantize the complex Klein-Gordon equation as a pair of
real Klein-Gordon fields. However, we will use the formalism of quantization of
charged bosonic systems [11].

We want to construct (H, Ĥ,Ω) satisfying the usual requirements and an
operator valued distribution

R1,3 3 x 7→ ψ̂(x) (5.16)

satisfying, with η(x) := ψ̇(x),

(1) (−2 +m2)ψ̂(x) = 0;

(2) the only non-vanishing 0-time commutators are

[ψ̂(0, ~x), η̂∗(0, ~y)] = iδ(~x− ~y), [ψ̂∗(0, ~x), η̂(0, ~y)] = iδ(~x− ~y); (5.17)

(3) eitĤ ψ̂(x0, ~x)e−itĤ = ψ̂(x0 + t, ~x);

(4) Ω is cyclic for ψ̂(x), ψ̂∗(x).

The above problem has a solution unique up to a unitary equivalence, which
we describe below.

We set
H := Γs(Z(+)

KG ⊕Z
(−)
KG ).

Creation/annihilation operators on Z(+)
KG will be denoted â∗/â. Introduce

the operator valued distribution â∗(p) defined for p on the mass shell by

â∗(p) := â∗
(
|p)
)
. (5.18)

Creation/annihilation operators on Z(−)
KG will be denoted b̂∗/b̂. Introduce the

operator valued distribution b̂∗(p) defined for p on the mass shell by

b̂∗(p) := b̂∗
(
| − p)

)
. (5.19)

Ω will be the Fock vacuum. We set

ψ̂(x) := (2π)−
3
2

∫
d~p√
2E(~p)

(
eipxâ(p) + e−ipxb̂∗(p)

)
,

η̂(x) := (2π)−
3
2

∫
d~p
√
E(~p)

i
√

2

(
eipxâ(p)− e−ipxb̂∗(p)

)
.
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The quantum Hamiltonian, momentum and charge are

Ĥ :=

∫ (
â∗(p)â(p) + b̂∗(p)b̂(p)

)
E(~p)d~p,

~̂
P :=

∫ (
â∗(p)â(p) + b̂∗(p)b̂(p)

)
~pd~p,

Q̂ :=

∫ (
â∗(p)â(p)− b̂∗(p)b̂(p)

)
d~p.

Equivalently, for any t

Ĥ =

∫
:
(
η̂∗(t, ~x)η̂(t, ~x) + ~∂ψ̂∗(t, ~x)~∂ψ̂(t, ~x) +m2ψ̂∗(t, ~x)ψ̂(t, ~x)

)
:d~x,

~̂
P =

∫
:
(
η̂∗(t, ~x)~∂ψ̂(t, ~x) + ~∂ψ̂∗(t, ~x)η̂(t, ~x)

)
:d~x,

Q̂ = i

∫
:
(
−η̂∗(t, ~x)ψ̂(t, ~x) + ψ̂∗(t, ~x)η̂(t, ~x)

)
:d~x.

Thus all these operators are expressed in terms of the Wick quantization of their
classical expressions.

Note that the whole group R1,3 oO↑(1, 3) acts unitarily on H by U(a,Λ) :=

Γ
(
r(a,Λ)

∣∣∣
Z(+)

KG

)
⊗ Γ

(
r(a,Λ)

∣∣∣
Z(−)

KG

)
, with

U(a,Λ)ψ̂(x)U(a,Λ)∗ = ψ̂
(
(a,Λ)x

)
.

Moreover,
[ψ̂(x), ψ̂∗(y)] = −iD(x− y), [ψ̂(x), ψ̂(y)] = 0.

Note the identities

(Ω|ψ̂(x)ψ̂∗(y)Ω) = −iD(+)(x− y),

(Ω|T(ψ̂(x)ψ̂∗(y))Ω) = −iDc(x− y).

For f ∈ C∞c (R1,3,C) we set

ψ̂[f ] :=

∫
f(x)ψ̂(x)dx,

ψ̂∗[f ] :=

∫
f(x)ψ̂∗(x)dx.

We obtain an operator valued distribution satisfying the Wightman axioms with

D := Γfin
s (Z(+)

KG ⊕Z
(−)
KG ).

For an open set O ⊂ R1,3 the field algebra is defined as

F(O) :=
{

exp
(

iψ̂∗[f ] + iψ̂[f ]
)

: f ∈ C∞c (O,C)
}′′

.

The observable algebra A(O) is the subalgebra of F(O) fixed by the automor-
phism

B 7→ eiθQ̂Be−iθQ̂.

The algebras F(O) and A(O) satisfy the Haag-Kastler axioms.

125



5.1.10 Quantum current

Let us try to introduce the (quantum) current density by

Ĵ µ(x) =
i

2

(
∂µψ̂∗(x)ψ̂(x) + ψ̂(x)∂µψ̂∗(x)

−ψ̂∗(x)∂µψ̂(x)− ∂µψ̂(x)ψ̂∗(x)
)
. (5.20)

We check that the charge conjugation C, which we introduce later on, satisfies
CΩ = Ω, CĴ µ(x)C−1 = −Ĵ µ(x). Therefore,

(Ω|Ĵ µ(x)Ω) = 0,

and (5.20) can be replaced with the following equivalent definition:

Ĵ µ(x) = i:
(
∂µψ̂∗(x)ψ̂(x)− ψ̂∗(x)∂µψ̂(x)

)
:.

Formally, we can check the relations

∂µĴµ(x) = 0,

Ĵ µ(x)∗ = Ĵ µ(x).

In particular, we have the (quantum) charge density

Q̂(x) := Ĵ 0(x) = i:
(
−η̂∗(x)ψ̂(x) + ψ̂∗(x)η̂(x)

)
:

with the relations

[Q̂(t, ~x), ψ̂(t, ~y)] = −ψ̂(t, ~y)δ(~x− ~y),

[Q̂(t, ~x), η̂(t, ~y)] = −η̂(t, ~y)δ(~x− ~y),

[Q̂(t, ~x), Q̂(t, ~y)] = 0. (5.21)

Similarly, as in the classical case, for χ ∈ C∞c (R3,R), let αχ denote the
corresponding gauge transformation at time t = 0 corresponding to χ defined as
the ∗-automorphism of the algebra generated by the fields operators satisfying

αχ(ψ̂(0, ~x)) := e−iχ(~x)ψ̂(0, ~x),

αχ(η̂(0, ~x)) := e−iχ(~x)η̂(0, ~x). (5.22)

Obviously,

αχ(ψ̂∗(0, ~x)) = eiχ(~x)ψ̂∗(0, ~x),

αχ(η̂∗(0, ~x)) = eiχ(~x)η̂∗(0, ~x). (5.23)

Assume that χ 6= 0. Let us check whether αχ is unitarily implementable.
On the level of annihilation operators we have

αχ(â(p)) =

∫ ∫ (√
E(~p1)

E(~p)
+

√
E(~p)

E(~p1)

)
d~xd~p1

2(2π)3
ei(~p1−~p)~x−ieχ(~x)â(p1)

+

∫ ∫ (√
E(~p1)

E(~p)
−

√
E(~p)

E(~p1)

)
d~xd~p1

2(2π)3
e−i(~p1+~p)~x−ieχ(~x)b̂∗(p1).
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Let qχ(~p, ~p1) denote the integral kernel on the second line above. We need to
check whether it is square integrable. Now(√

E(~p1)

E(~p)
−

√
E(~p)

E(~p1)

)
(5.24)

=
(|~p1| − |~p|)(|~p1|+ |~p|)(

E(~p) + E(~p1)
)√

E(~p)E(~p1)

After integrating in ~x we obtain fast decay in ~p+ ~p1, which in particular allows
us to control the term |~p1| − |~p|. We obtain∫

|q(~p, ~p1)|2d~p ∼ C

E(~p1)2
,

which is not integrable. Thus by the Shale criterion αχ is not implementable.
Formally, if we set

Q̂(χ) :=

∫
χ(~x)Q̂(0, ~x)d~x, (5.25)

then eieQ̂(χ) implements the gauge transformation:

αχ(B̂) = eieQ̂(χ)B̂e−ieQ̂(χ).

But we know that αχ is not implementable. Thus for nonzero χ (5.25) cannot
be defined as a closable operator.

However, the (quantum) charge

Q̂ =

∫
Q̂(t, ~x)d~x,

as we have already seen, is a well defined operator.
For further reference let us express the charge density and the current in
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terms of creation and annihillation operators:

Q̂(x) =

∫ ∫
d~p1d~p2

2(2π)3

(√
E(~p1)

E(~p2)
+

√
E(~p2)

E(~p1)

)
×
(

e−ixp1+ixp2 â∗(p1)â(p2)− eixp1−ixp2 b̂∗(p2)b̂(p1)
)

+

∫ ∫
d~p1d~p2

2(2π)3

(√
E(~p1)

E(~p2)
−

√
E(~p2)

E(~p1)

)
×
(
−e−ixp1−ixp2 â∗(p1)b̂∗(p2) + eixp1+ixp2 b̂(p1)â(p2)

)
,

~̂J (x) =

∫ ∫
d~p1d~p2

2(2π)3
√
E(~p1)E(~p2)

(~p1 + ~p2)

×
(
−e−ixp1+ixp2 â∗(p1)â(p2) + eixp1−ixp2 b̂∗(p2)b̂(p1)

)
+

∫ ∫
d~p1d~p2

2(2π)3
√
E(~p1)E(~p2)

(~p1 − ~p2)

×
(
−e−ixp1−ixp2 â∗(p1)b̂∗(p2) + eixp1+ixp2 b̂(p1)â(p2)

)
.

5.1.11 Quantization in terms of smeared fields

An alternative equivalent formulation of the quantization program uses smeared
fields instead of point fields. Instead of (2.31) we look for an antilinear function

WKG 3 ζ 7→ ψ̂((ζ))

with values in closed operators such that

(1) [ψ̂((ζ1)), ψ̂∗((ζ2))] = iζ1ωζ2, [ψ̂((ζ1)), ψ̂((ζ2))] = 0.

(2) ψ̂((r(t,~0)ζ)) = eitĤ ψ̂((ζ))e−itĤ .

(3) Ω is cyclic for the algebra generated by ψ((ζ)), ψ∗((ζ)).

One can pass between these two versions of the quantization by

ψ̂((ζ)) =

∫ (
−ζ̇(t, ~x)ψ̂(t, ~x) + ζ(t, ~x)η̂(t, ~x)

)
d~x. (5.26)

5.2 Charged scalar bosons in an external potential

5.2.1 Classical fields

Let us go back to the classical theory. Let

R1,3 3 x 7→ A(x) = [Aµ(x)] ∈ R1,3 (5.27)

be a given function called the (external) electromagnetic potential. In most of
this subsection we will assume that (5.27) is Schwartz. The (complex) Klein-
Gordon equation in the external potential A is(

−(∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2
)
ψ(x) = 0. (5.28)
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If ζ satisfies (5.28) and R1,3 3 x 7→ χ(x) ∈ R is smooth, then e−ieχψ satisfies
(5.28) with A replaced with A+ ∂χ.

The retarded/advanced Green’s function is defined as the unique solution of(
−(∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2

)
D±(x, y) = δ(x− y) (5.29)

satisfying
suppD± ⊂ {x, y : x ∈ J±(y)}.

We generalize the Pauli-Jordan function:

D(x, y) := D+(x, y)−D−(x, y).

Clearly,
suppD ⊂ {x, y : x ∈ J(y)}.

The Cauchy problem of (5.28) can be expressed with help of the function D:

ψ(t, ~x) = −
∫
R3

∂sD(t, ~x; s, ~y)
∣∣
s=0

ψ(0, ~y)d~y (5.30)

+

∫
R3

D(t, ~x; 0, ~y)ψ̇(0, ~y)d~y.

We would like to introduce a field R1,3 3 x 7→ ψ(x) satisfying (5.28). As we
will see shortly, the conjugate field is

η(x) := ∂0ψ(x) + ieA0(x)ψ(x).

For definiteness, we will assume that ψ(x), η(x) act on WKG and at time t = 0
coincide with free fields:

ψ(0, ~x) = ψfr(0, ~x),

η(0, ~x) = ηfr(0, ~x).

This determines the field ψ uniquely:

ψ(t, ~x) = −
∫
R3

∂sD(t, ~x; s, ~y)
∣∣
s=0

ψfr(0, ~y)d~y (5.31)

+

∫
R3

D(t, ~x; 0, ~y)
(
ηfr(0, ~y)− ieA0(0, ~y)ψfr(0, ~y)

)
d~y.

5.2.2 Lagrangian and Hamiltonian formalism

Consider the Lagrangian density

L(x) = −
(
∂µ − ieAµ(x)

)
ψ∗(x)

(
∂µ + ieAµ(x)

)
ψ(x)−m2ψ∗(x)ψ(x).

The Euler-Lagrange equations (5.7) yield (5.28).
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Let us introduce the variable conjugate to ψ∗(x) and ψ(x):

η(x) :=
∂L

∂0ψ∗(x)
= ∂0ψ(x) + ieA0(x)ψ(x),

η∗(x) =
∂L

∂0ψ(x)
= ∂0ψ

∗(x)− ieA0(x)ψ∗(x).

We introduce the Hamiltonian density

H(x) =
∂L(x)

∂ψ̇(x)
ψ̇(x) +

∂L(x)

∂ψ̇∗(x)
ψ̇∗(x)− L(x)

= η∗(x)η(x) + ieA0(x) (ψ∗(x)η(x)− η∗(x)ψ(x))

+(∂i − ieAi(x))ψ∗(x)(∂i + ieAi(x))ψ(x) +m2ψ∗(x)ψ(x)

= η∗(x)η(x) + ∂iψ
∗(x)∂iψ(x)

+ieA0(x) (ψ∗(x)η(x)− η∗(x)ψ(x))− ieAi(x) (ψ∗(x)∂iψ(x)− ∂iψ∗(x)ψ(x))

+e2 ~A(x)2ψ∗(x)ψ(x) +m2ψ∗(x)ψ(x).

The Hamiltonian

H(t) =

∫
H(t, ~x)d~x

can be used to generate the dynamics

ψ̇(t, ~x) = {H(t), ψ(t, ~x)}, η̇(t, ~x) = {H(t), η(t, ~x)}.

5.2.3 Classical current

The Lagrangian is gauge invariant. This leads to the current density

J µ(x) := i
(
∂µψ∗(x)ψ(x)− ψ∗(x)∂µψ(x)− 2ieAµ(x)ψ∗(x)ψ(x)

)
,

which is conserved and real:

∂µJ µ(x) = 0,

J µ(x)∗ = J µ(x).

We have the charge density

Q(x) := J 0(x) = i
(
− η∗(x)ψ(x) + ψ∗(x)η(x)

)
,

and the charge

Q :=

∫
Q(t, ~x)d~x.

The Hamiltonian in the interaction picture can be partially expressed in
terms of the current density:

HInt(t) =

∫
d~x
(
eAµ(t, ~x)J µfr (t, ~x) + e2 ~A(t, ~x)2ψ∗fr(t, ~x)ψfr(t, ~x)

)
=

∫
d~x
(
eA0(t, ~x)Qfr(t, ~x) (5.32)

+e ~A(t, ~x) ~Jfr(t, ~x) + e2 ~A(t, ~x)2ψ∗fr(t, ~x)ψfr(t, ~x)
)
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=
e

(2π)3

∫ ∫
d~p1d~p2

2

(√
E(~p1)

E(~p2)
+

√
E(~p2)

E(~p1)

)
×
(
A0(t, ~p1 − ~p2)eitE(~p1)−itE(~p2)a∗(p1)a(p2)−A0(t,−~p1 + ~p2)e−itE(~p1)+itE(~p2)b(p1)b∗(p2)

)
+

e

(2π)3

∫ ∫
d~p1d~p2

2

(√
E(~p1)

E(~p2)
−

√
E(~p2)

E(~p1)

)
×
(
A0(t, ~p1 + ~p2)eitE(~p1)+itE(~p2)a∗(p1)b∗(p2)−A0(t,−~p1 − ~p2)e−itE(~p1)−itE(~p2)b(p1)a(p2)

)
+

e

(2π)3

∫ ∫
d~p1d~p2

2
√
E(~p1)E(~p2)

(~p1 + ~p2)

×
(
− ~A(t, ~p1 − ~p2)eitE(~p1)−itE(~p2)a∗(p1)a(p2) + ~A(t,−~p1 + ~p2)e−itE(~p1)+itE(~p2)b(p1)b∗(p2)

)
+

e

(2π)3

∫ ∫
d~p1d~p2

2
√
E(~p1)E(~p2)

(~p1 − ~p2)

×
(
− ~A(t, ~p1 + ~p2)eitE(~p1)+itE(~p2)a∗(p1)b∗(p2) + ~A(t,−~p1 − ~p2)e−itE(~p1)−itE(~p2)b(p1)a(p2)

)
+

e2

(2π)3

∫ ∫
d~p1d~p2

2
√
E(~p1)

√
E(~p2)

×
(
~A2(~p1 − ~p2)eitE(~p1)−itE(~p2)a∗(p1)a(p2) + ~A2(−~p1 + ~p2)e−itE(~p1)+itE(~p2)b(p1)b∗(p2)

+ ~A2(~p1 + ~p2)eitE(~p1)+itE(~p2)a∗(p1)b∗(p2) + ~A2(−~p1 − ~p2)e−itE(~p1)−itE(~p2)b(p1)a(p2)
)
.

5.2.4 Classical discrete symmetries

Choose ξC ∈ C, |ξC | = 1. If ζ solves the Klein-Gordon equation with the
potential A, then so does ξCζ with the potential −A. Thus replacing

ψ(x), ψ∗(x), A(x)

with ξCψ
∗(x), ξCψ(x),−A(x)

is a symmetry of the complex Klein-Gordon equation with an external potential
(5.28). It is called charge conjugation.

Choose ξP ∈ {1,−1}. Recall that P(x0, ~x) := (x0,−~x) denotes the space
inversion. Replacing

ψ(x), ψ∗(x),
(
A0(x), ~A(x)

)
with ξPψ(Px), ξPψ

∗(Px),
(
A0(Px),− ~A(Px)

)
is a symmetry of (5.28) called parity.

Choose ξT ∈ C, |ξT | = 1. Recall that T(x0, ~x) := (−x0, ~x) denotes the time
reflection. Replacing

ψ(x), ψ∗(x),
(
A0(x), ~A(x)

)
with ξTψ

∗(Tx), ξTψ(Tx),
(
A0(Tx),− ~A(Tx)

)
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is a symmetry of (5.28) called time reversal.
The composition of the above three symmetries is called the CPT symetry.

It has a particularly simple form, especially when we assume ξCξP ξT = 1. It
amounts to replacing

ψ(x), ψ∗(x), A(x)

with ψ(−x), ψ∗(−x),−A(−x).

All these symmetries are involutive (their square is identity) and they com-
mute with one another.

5.2.5 Quantization

We are looking for a quantum field satisfying(
−(∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2

)
ψ̂(x) = 0. (5.33)

We set
η̂(x) := ∂0ψ̂(x) + ieA0(x)ψ̂(x).

We will assume that ψ̂, η̂ act on the Hilbert space of free fields

Γs(Z(+)
KG ⊕Z

(−)
KG ),

at time t = 0 we have

ψ̂(~x) := ψ̂(0, ~x) = ψ̂fr(0, ~x),

η̂(~x) := η̂(0, ~x) = η̂fr(0, ~x).

The solution is unique and is obtained by decorating (5.31) with “hats”.
We would like to ask whether the quantum fields are implemented by a

unitary dynamics. Equivalently, we want to check if the classical dynamics
generated by HInt(t) satisfies the Shale criterion.

By following the discussion of Subsubsect. 2.3.4 we check that the classical
scattering operator is unitarily implementable.

The Shale criterion is satisfied for the dynamics from t− to t+ iff the spatial
part of the potential is the same at the initial and final time:

~A(t+, ~x) = ~A(t−, ~x), ~x ∈ R3. (5.34)

To see this note that HInt(t) consists of three terms described in (5.32).

The term e2 ~A(t, ~x)2ψ∗fr(t, ~x)ψfr(t, ~x) is very similar to the mass-like pertur-
bation considered already in Subsubsect. 2.3.4, which did not cause problems
with the Shale criterion for the dynamics for any t+, t−.

The same is true for the term eA0(t, ~x)Qfr(t, ~x). Indeed, a similar term
was discussed before in the context of gauge transformations, see in particular
(5.24). Then there was a problem with the square integrability. But now we
can integrate by parts, which improves the decay.

The term e ~A(t, ~x) ~Jfr(t, ~x) is problematic – it has worse behavior for large mo-
menta then the previous two terms. The integration by parts creates a boundary
term that is not square integrable unless (5.34) holds, when it vanishes.
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5.2.6 Quantum Hamiltonian

Formally, the fields undergo a unitary dynamics given by

ψ̂(t, ~x) := Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
ψ̂(0, ~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
,

where the Hamiltonian in the Schrödinger picture, the corresponding Hamilto-
nian in the Heisenberg picture and the Hamiltonian in the interaction picture
are

Ĥ(t) =

∫
d~x
(
η̂∗(~x)η̂(~x) + ieA0(t, ~x):

(
ψ̂∗(~x)η̂(~x)− η̂∗(~x)ψ̂(~x)

)
:

+(∂i − ieAi(t, ~x))ψ̂∗(~x)(∂i + ieAi(t, ~x))ψ̂(~x)

+m2ψ̂∗(~x)ψ̂(~x)
)

+ C(t), (5.35)

ĤHP(t) =

∫
d~x
(
η̂∗(t, ~x)η̂(t, ~x) + ieA0(t, ~x):

(
ψ̂∗(t, ~x)η̂(t, ~x)− η̂∗(t, ~x)ψ̂(t, ~x)

)
:

+(∂i − ieAi(t, ~x))ψ̂∗(t, ~x)(∂i + ieAi(t, ~x))ψ̂(t, ~x)

+
m2

2
ψ̂∗(t, ~x)ψ̂(t, ~x)

)
+ C(t), (5.36)

ĤInt(t) =

∫
d~x
(
eAµ(t, ~x)Ĵ µfr (t, ~x) + e2 ~A(t, ~x)2ψ̂∗fr(t, ~x)ψ̂fr(t, ~x)

)
+ C(t)

=

∫
d~x
(
eAµ(t, ~x)Ĵ µfr (t, ~x) + e2A(t, ~x)2ψ̂∗fr(t, ~x)ψ̂fr(t, ~x)

+e2A0(t, ~x)2ψ̂∗fr(t, ~x)ψ̂fr(t, ~x)
)

+ C(t). (5.37)

Note that the above Hamiltonians with C(t) = 0 are formally the Weyl quanti-
zations of their corresponding classical expressions. This is perhaps not obvious
the way they are written. To see this we should note that equal time ψ and ψ∗

commute, the same is true for equal time η and η∗, finally the mixed term can
be expressed by the current where the Wick and Weyl quantizations coincide,
see Subsubsect. 5.1.10.

In any case, the analysis of the previous subsubsection shows that the above
Hamiltonians are often ill defined and should be understood as formal expres-
sions, even when we try renormalize them with help of the constant C(t). We
will need them to develop perturbation expansion for the quantum scattering
operator and to compute the energy shift.

5.2.7 Quantized discrete symmetries

The discrete symmetries considered in Subsubsect. 5.2.4 remain true when we
decorate the fields with “hats”. Thus on the level of quantum observables the
discrete symmetries are the same as in the classical case.
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A separate discussion is needed concerning the implementation of these sym-

metries by unitary or antiunitary operators on the Hilbert space Γs(Z(+)
KG⊕Z

(−)
KG ).

We will discuss this for free fields, that is, for A = 0. Free fields are used to com-
pute the scattering operator for the potential A, denoted by Ŝ(A). Therefore,
our analysis will lead to some identities for Ŝ(A).

First consider the charge conjugation. As we have already pointed out in

Subsubsect. 5.1.8, the spaces Z(+)
KG and Z(−)

KG can be naturally identified. There-

fore, we can define a unitary operator on Z(+)
KG ⊕Z

(−)
KG

χ(g1, g2) := (ξCg2, ξCg1).

Clearly,
χ|p) = ξC | − p), χ| − p) = ξC |p).

We set C := Γ(χ). We have C2 = 1l, CΩ = Ω,

Cψ̂(x)C−1 = ξC ψ̂
∗(x), Cψ̂∗(x)C−1 = ξC ψ̂(x),

CQ̂(x)C−1 = −Q̂(x), C
~̂J (x)C−1 = − ~̂J (x),

CŜ(A)C−1 = Ŝ(−A).

Note that whereas on the level of observables the charge conjugation is antilin-
ear, on the level of the Hilbert space it is linear.

Define a unitary operator on Z(+)
KG ⊕Z

(−)
KG

π(g1, g2) :=
(
ξP g1 ◦ P, ξP g2 ◦ P

)
.

(The circle denotes the composition of two functions). Clearly,

π|E, ~p) = ξP |E,−~p), π|−E,−~p) = ξP |−E, ~p).

We have a natural implementation of the parity P := Γ(π). It satisfies P 2 = 1l,
PΩ = Ω,

Pψ̂(x)P−1 = ξP ψ̂(Px), P ψ̂∗(x)P−1 = ξP ψ̂
∗(Px),

P Q̂(x)P−1 = Q̂(Px), P
~̂J (x)P−1 = − ~̂J (Px),

P Ŝ(A0, ~A)P−1 = Ŝ(A0 ◦ P,− ~A ◦ P).

Define the following antiunitary operator on Z(+)
KG ⊕Z

(−)
KG :

τ(g1, g2) :=
(
ξT g1 ◦ T, ξT g2 ◦ T

)
.

Clearly,
τ |E, ~p) = ξT |E,−~p), τ |−E,−~p) = ξT |−E, ~p).

Set T := Γ(τ). We have T 2 = 1l, TΩ = Ω,

T ψ̂(x)T−1 = ξT ψ̂
∗(Tx), T ψ̂∗(x)T−1 = ξT ψ̂(Tx),

T Q̂(x)T−1 = Q̂(Tx), T
~̂J (x)T−1 = − ~̂J (Tx),

T Ŝ(A0, ~A)T−1 = Ŝ(A0 ◦ T,− ~A ◦ T).

Note that time reversal is antilinear both on the level of observables and on the
level of the Hilbert space.
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5.2.8 2N-point Green’s functions

For yN , . . . y1, xN , . . . , x1, the 2N point Green’s function are defined as follows:

G (y1, . . . , yN ;xN , · · · , x1)

:=
(

Ω+|T
(
ψ̂∗(y1) · · · ψ̂∗(yN )ψ̂(xN ) · · · ψ̂(x1)

)
Ω−
)
.

One can organize Green’s functions in terms of the generating function:

Z(g, g)

:=

∞∑
n=0

∫
· · ·
∫

(−1)N

(N !)2
G(y1, . . . , yN ;xN , . . . , x1)

×g(y1) · · · g(yN )g(xN ) · · · g(x1)dy1 · · · dyNdxN · · · dx1

=

(
Ω
∣∣∣Texp

(
−i

∫ ∞
−∞

ĤInt(t)dt− i

∫
g(x)ψ̂∗fr(x)dx− i

∫
g(x)ψ̂fr(x)dx

)
Ω

)
.

One can retrieve Green’s functions from the generating function:

G(y1, . . . , yN ;xN , . . . , x1)

= (−1)N
∂2N

∂g(y1) · · · ∂g(yN )∂g(xN ) · · · ∂g(x1)
Z(g, g)

∣∣∣
g=g=0

.

We introduce also the amputated Green’s function

Gamp(p′1, . . . , p
′
N ; pN , . . . , p1)

:=
(
(p′1)2 +m2

)
· · ·
(
(p′N )2 +m2

)(
(pN )2 +m2

)
· · ·
(
(p1)2 +m2

)
×G(p′1, . . . , p

′
N ; pN , . . . , p1).

Set

|−p′n′ , . . . ,−p′1, pn, . . . , p1) := b∗(p′n′) · · · b∗(p′1)a∗(pn) · · · a∗(p1)Ω.

Scattering amplitudes are the matrix elements of the scattering operator S be-
tween plane waves. One can compute scattering amplitudes from the amputated
Green’s functions:(

p+
1 , · · · , p

+
n+ ,−p+′

1 , · · · ,−p+′
n+′ | Ŝ |−p−′n−′ , · · · ,−p

−′
1 , p−n− , · · · , p

−
1

)
=

Gamp
(
p+

1 , . . . , p
+
n+ ,−p−′n−′ , . . . ,−p

′
1; p+′

1 , . . . , p+′
n+′ ,−p−n− , . . . , ,−p

−
1

)
(2π)

3
2 (n++n+′+n−′+n−) · · ·

√
2E(p+

n+) · · ·
√

2E(p+′
n+′)

√
2E(p−′n−′) · · ·

√
2E(p−n−) · · ·

,

where all p±i , p±′i are on shell.
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5.2.9 Path integral formulation

Since the Hamiltonian that we consider is quadratic, we can compute exactly
the generating function in terms of the Fredholm determinant on L2(R1,3):

Z(g, g) (5.38)

= det
(
−2 +m2

)(
− (∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2 − i0

)−1

× exp
(

ig
(
(∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2 − i0

)−1
g
)

= det
(

1l +
(
−ieAµ(x)∂µ − ie∂µAµ(x) + e2Aµ(x)Aµ(x)

)
Dc

fr

)−1

× exp

(
igDc

fr

(
1l +

(
−ieAµ(x)∂µ − ie∂µAµ(x) + e2Aµ(x)Aµ(x)

)
Dc

fr

)−1

g

)
.

Let us stress that the above formulas are based on thed Weyl quantized formal
expression for the Hamiltonian (5.37), in contrast to the analogous formula
(2.97) for the mass-like perturbation, whiere we used the Wick ordering. The
expression is to a large degree ill-defined.

Formally, it can be rewritten in terms of path integrals as∫
Π
y

dψ∗(x) Π
y′

dψ(y) exp
(

i
∫ (
L(x)− g(x)ψ∗(x)− g(x)ψ(x)

)
dx
)

∫
Π
y

dψ∗(y) Π
y′

dψ(y′) exp
(
i
∫
Lfr(x)dx

) .

5.2.10 Feynman rules

Let us describe the Feynman rules for the charged scalar field in an external
electromagnetic potential. We have 1 kind of lines and 2 kinds of vertices. Each
line has an arrow. At each vertex two lines meet, one with an arrow pointing
towards, one with an arrow pointing away from the vertex. The 1-photon vertex
is denoted by an attached “photon line” ending with a small cross. The 2-photon
vertex has two “photon lines”, each ending with a cross. Note that the “photon
lines” are in this context only decorations of the vertices – there are no photons
in this theory. They are usually denoted by wavy, sometimes dashed lines. For
typographical reasons we use dashed lines.

To compute Green’s functions we do as follows

(1) We draw all possible Feynman diagrams.

(2) (i) To each 1-photon vertex we associate the factor

ie(p+
ν + p−ν )Aν(p+ − p−).

(ii) To each 2-photon vertex we associate the factor

−ie2(AνAν)(p+ − p−).
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(3) To each line we associate the propagator

−iDc
fr(p) =

−i

p2 +m2 − i0
.

(4) We integrate over the variables of internal lines with the measure d4p
(2π)4 .

It is immediate to derive the Feynman rules for charged scalar bosons from
the path integral formula (5.38).

The derivation of the Feynman rules within the Hamiltonian formalism using
the Dyson expansion of the scattering operator is relatively complicated, since
one has to use not only the two-point functions of “configuration space fields”,
but also the of “momentum space fields”:

(Ω|T(ψ̂fr(x)ψ̂∗fr(y))Ω) = −iDc
fr(x− y),

(Ω|T(η̂fr(x)ψ̂∗fr(y))Ω) = −i∂x0
Dc

fr(x− y),

(Ω|T(ψ̂fr(x)η̂∗fr(y))Ω) = −i∂y0D
c
fr(x− y),

(Ω|T(η̂fr(x)η̂∗fr(y))Ω) = −i∂x0∂y0D
c
fr(x− y)− iδ(x− y).

Figure 7: Diagram for Green’s function.

To compute scattering amplitudes with N− incoming and N+ outgoing par-
ticles we draw similar diagrams as for N−+N+-point Green’s functions, where
as usual the incoming lines are drawn on the right and outgoing lines on the
left. The rules are changed only concerning the external lines.

(i) With each incoming external line we associate

• charged boson: 1√
(2π)32E(~p)

.

137



Figure 8: Diagram for scattering amplitudes.

• charged anti-boson: 1√
(2π)32E(~p′)

.

(ii) With each outgoing external line we associate

• charged boson: 1√
(2π)32E(~p)

.

• charged anti-boson: 1√
(2π)32E(~p′)

.

5.2.11 Vacuum energy

Formally, the vacuum energy can be computed exactly:

E := i log(Ω|ŜΩ) = i logZ(0, 0)

= iTr
(

log
(
−2+m2−i0

)
− log

(
−(∂µ+ieAµ(x))(∂µ+ieAµ(x))+m2−i0

))
= −iTr

(
log
(

1l +
(
−ieAµ(x)∂µ−ie∂µAµ(x) + e2Aµ(x)Aµ(x)

)
Dc

fr

))
= i

∞∑
n=1

D`

n`
. (5.39)

Here D` is the value of the loop ` and n` is its symmetry factor. Any such a
loop is described by a cyclic sequence (α1, . . . , αn), where αj = 1, 2 correspond
to 1− and 2−photon vertices. The symmery factor n` is the order of the group
of the authomorphisms of this loop. The loop is oriented, hence this group is
always a subgroup of rotations. In particular, if the loop has n identical vertices,
the group is Zn and n` = n.
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Figure 9: Divergent diagrams for vacuum energy.

Actually, it is better to organize (5.39) not in terms of the number of vertices
on a loop but in terms of the order wrt e. Using the unitary charge conjugation
operator C and CΩ = Ω we obtain

(Ω|Ŝ(A)Ω) = (Ω|CŜ(A)C−1Ω) = (Ω|Ŝ(−A)Ω)

Therefore, diagrams of an odd order in e vanish. This is the content of Furry’s
theorem for charged bosons. Hence (5.39) can be written as

E =

∞∑
n=1

e2nEn.

5.2.12 Pauli-Villars renormalization

The lowest nonzero loop diagrams are of the second order in e, and hence of

the first order in α = e2

4π . There are two kinds of loops of this order: a loop
with two 1-photon vertices with symmetry factor 2 and a loop with a 2-photon
vertex with symmetry factor 1, see the Fig. 9. Their contribution has the form

E1 =

∫
dp

(2π)4
Aµ(−p)Aν(p)Πµν(p). (5.40)

(5.40) defines the vacuum energy tensor Πµν(p), which, unfortunately, is diver-
gent if computed naively.

We will first compute Πµν using the Pauli-Villars regularization. The ultra-
violet problem is more severe now than it was for the mass-like perturbation,
where a single additional fictitious particle sufficed to make the expressions well
defined. Now we need to choose several additional fields with masses m1, . . .
and coefficients in front of the loops C1, . . . . The physical field has the mass
m0 := m and the coefficient C0 := 1. We choose the coefficients Ci so that
the sums used in the following computations are integrable – 3 fictitious fields
suffice for this purpose.

In the following formula we have a contribution of the loop with 2 single-
photon vertices and twice the contribution of the loop with a single 2-photon
vertex. It is convenient to write the latter as the sum of two terms, equal to
one another.
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2Πµν(p) = ie2

∫
d4q

(2π)4

∑
i

Ci

( 4qµqν(
(q + 1

2p)
2 +m2

i − i0
)(

(q − 1
2p)

2 +m2
i − i0

)
− gµν(

(q + 1
2p)

2 +m2
i − i0

) − gµν(
(q − 1

2p)
2 +m2

i − i0
))

= ie2

∫
d4q

(2π)4

∑
i

Ci
4qµqν − 2gµν(q2 + 1

4p
2 +m2

i )(
(q + 1

2p)
2 +m2

i − i0
)(

(q − 1
2p)

2 +m2
i − i0

)
= ie2

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci

(
−4qµqν + 2gµν

(
q2 +

1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(
q2 +

1

4
p2 +m2

i

)
− i(α1 − α2)qp

)
= ie2

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci

(
4∂zµ∂zν + 2gµν

(
− ∂2

z +
1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(
q2 +

1

4
p2 +m2

i

)
− i(α1 − α2)qp+ izq

) ∣∣∣
z=0

= − e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci
1

(α1 + α2)2

(
4∂zµ∂zν + 2gµν

(
− ∂2

z +
1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(1

4
p2 +m2

i

)
+ i

1

4(α1 + α2)

(
(α1 − α2)p− z

)2
) ∣∣∣

z=0

= − e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci

(
(α1 − α2)2

(α1 + α2)4
(gµνp

2 − pµpν)

+2gµν

(
α1α2

(α1 + α2)4
p2 − i

(α1 + α2)3
+

m2
i

(α1 + α2)2

))

× exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
p2

)
=: (−gµνp2 + pµpν)2Πgi(p2) + 2Πgd

µν(p2).

We used the identities (A.14), (A.15) and (A.16).
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The gauge dependent part of the vacuum energy tensor vanishes:

−Πgd
µν(p2) =

∑
i

Ci
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2 exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
p2

)
×gµν

(
α1α2p

2

(α1 + α2)4
− i

(α1 + α2)3
+

m2
i

(α1 + α2)2

)
=

∑
i

Ci
e2

(4π)2
ρ∂ρ

∫ ∞
0

dα1

∫ ∞
0

dα2 exp

(
−iρ

(
(α1 + α2)m2

i +
α1α2

α1 + α2
p2

))
× igµν
ρ(α1 + α2)3

∣∣∣
ρ=1

=
∑
i

Ci
e2

(4π)2
ρ∂ρ

∫ ∞
0

dα1

∫ ∞
0

dα2 exp

(
−i

(
(α1 + α2)m2

i +
α1α2

α1 + α2
p2

))
× igµν

(α1 + α2)3
= 0.

To compute the gauge invariant part we proceed similarly as in Subsubsec. 2.3.9:
we insert

1 =

∫ ∞
0

dρδ(ρ− α1 − α2),

and then change the variables as α1 = ρ (1−v)
2 , α2 = ρ (1+v)

2 , so that dα1dα2 =
1
2ρdvdρ. We also use the symmetry v 7→ −v to restrict the integration from
[−1, 1] to [0, 1] and at the end we use the identity (A.17).

Πgi(p2) = − e2

2(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

∑
i

Ci
(α1 − α2)2

(α1 + α2)4

× exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
p2

)
= − e2

2(4π)2

∫ 1

0

dv

∫ ∞
0

dρ

ρ

∑
i

Civ
2 exp

(
−iρ

(
m2
i +

(1− v2)p2

4

))
=

e2

2(4π)2

∫ 1

0

dv
∑
i

Civ
2 log

(
m2
i +

(1− v2)p2

4
− i0

)
=

e2

2(4π)2

∫ 1

0

dv
∑
i

Ci

(
v2 log

(
1 +

(1− v2)p2

4m2
i

− i0

)
+

1

3
logm2

i

)
.

We set logM2 := −
∑
i

Ci logm2
i . We define

Πren(p2) := lim
M→∞

(
Πgi(p2) +

e2

6 · (4π)2
log

M2

m2

)
(5.41)

=
e2

2(4π)2

∫ 1

0

dvv2 log

(
1 +

(1− v2)p2

4m2
− i0

)
.
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Using (A.19), and then analytic continuation, we obtain

Πren(p2)

=
e2

2 · 3(4π)2

(
(p2 + 4m2)3/2

(p2)3/2
log

√
p2 + 4m2 +

√
p2√

p2 + 4m2 −
√
p2

−2

3
− 2
(4m2

p2
+ 1
))

, 0 < p2;

=
e2

2 · 3(4π)2

(
(p2 + 4m2)3/2

(−p2)3/2
2 arctan

√
−p2√

p2 + 4m2

−2

3
− 2
(4m2

p2
+ 1
))

, −4m2 < p2 < 0;

=
e2

2 · 3(4π)2

(
(−p2 − 4m2)3/2

(−p2)3/2

(
log

√
−p2 − 4m2 +

√
−p2√

−p2 − 4m2 −
√
−p2

− iπ
)

−2

3
− 2
(4m2

p2
+ 1
))

, p2 < −4m2.

Note that the Fourier tranform of the electromagnetic field is

Fµν(p) = pµAν(p)− pνAµ(p). (5.42)

Hence
−Fµν(p)Fµν(p) = −p2|A(p)|2 + |pA(p)|2. (5.43)

Thus the renormalized 1st order contribution to the vacuum energy is

Eren
1 = −

∫
dp

(2π)4
Πren(p2)Fµν(p)Fµν(p). (5.44)

5.2.13 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum
energy. We start with computing just the imaginary part of Πgi(p2), which
does not require a regularization, so that we obtain ImΠren(p2) from the very
beginning:

ImΠren(p2) =
e2

2(4π)2

∫ 1

0

dvv2(−π)θ

(
−1− (1− v2)p2

4m2

)
= − e2

2 · 3(4π)2

π

(−p2)3/2

∣∣−p2 − 4m2
∣∣ 3

2

+
. (5.45)

We can obtain the real part by using the fact that Πren(0) = 0 and the once
subtracted dispersion relations for the lower complex halfplane, as in (2.98):

Πren(p2) =
1

π

∫ −4m2

−∞
dsImΠren(s)

(
1

s− p2
− 1

s

)
. (5.46)
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Note that (5.45) is nonzero only for p2 < −4m2, and then it is negative. For
such p we can find a coordinate system with p = (p0,~0). Then

−gµνp2 + pµpν = p2
0(gµν + δµ0δ0ν)

and
−Fµν(p0,~0)Fµν(p0,~0) = p2

0| ~A(p0,~0)|2. (5.47)

Thus the imaginary part of (5.44) is negative (and is responsible for the decay).

5.2.14 Dimensional renormalization

We present an alternative computation of Πren
µν based on the dimensional regu-

larization. We use the Euclidean formalism.

2ΠE
µν(p) = −e2

∫
d4q

(2π)4

( 4qµqν

((q + 1
2p)

2 +m2)((q − 1
2p)

2 +m2)

− 2gµν
q2 +m2

)
= −e2

∫
d4q

(2π)4

4qµqν − 2gµν(q2 + 1
4p

2 +m2)

((q + 1
2p)

2 +m2)((q − 1
2p)

2 +m2)

= −e
2

2

∫ 1

−1

dv

∫
d4q

(2π)4

4qµqν − 2gµν(q2 + 1
4p

2 +m2)

(q2 + p2

4 +m2 + vqp)2

= −e2

∫ 1

0

dv

∫
d4q

(2π)4

4qµqν − 2gµν(q2 + 1
4p

2 +m2) + v2(pµpν − gµν p
2

2 )

(q2 + p2

4 (1− v2) +m2)2
, (5.48)

where we used the Feynman identity (A.20), replaced q + vp
2 with q, used the

symmetry v → −v to remove
∫ 1

−1
dvv and replace 1

2

∫ 1

−1
dv with

∫ 1

0
dv. After

this preparation, we use the dimensional regularization:∫
d4q

(2π)4
is replaced by

µ4−dΩd
(2π)d

∫ ∞
0

|q|d−1d|q|, (5.49)∫
qµqνd4q

(2π)4
is replaced by

µ4−dΩd
d(2π)d

gµν

∫ ∞
0

|q|d+1d|q|, (5.50)
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where Ωd is given by (A.22). Thus (5.48) is replaced by

ΠE,d
µν (p) = −e2µ

4−dΩd
(2π)d

∫ 1

0

dv

∫ ∞
0

|q|d−1d|q|

×
(
(4/d− 2)gµνq

2 − 2gµν( 1
4p

2 +m2) + v2(pµpν − gµν p
2

2

)(
q2 + p2

4 (1− v2) +m2
)2

= − e2

(4π)2

∫ 1

0

dv
( µ24π
p2

4 (1− v2) +m2

)2−d/2
Γ(2− d/2)

×

(
2gµν

(p2

4
(1− v2) +m2

)
− 2gµν

(1

4
p2 +m2

)
+ v2

(
pµpν − gµν

p2

2

))

= − e2

(4π)2

∫ 1

0

dv
( µ24π
p2

4 (1− v2) +m2

)2−d/2
Γ(2− d/2)v2(pµpν − gµνp2)

' − e2

(4π)2

∫ 1

0

dv
(
− γ + logµ24π − log

(p2

4
(1− v2) +m2

))
v2(pµpν − gµνp2)

− e2

3(4π)2(2− d/2)
(pµpν − gµνp2) (5.51)

We can now renormalize (5.51):

ΠE,ren(p2)(pµpν − gµνp2)

= lim
d→4

(
ΠE,d
µν (p2)−ΠE,d

µν (0)
)

=
1

2(4π)2

∫ 1

0

dvv2 log
(

1 +
p2

4m2
(1− v2)

)
(pµpν − gµνp2).

This coincides with the Wick rotated result obtained by the Pauli-Villars method.

5.2.15 Abstract gauge covariance

Let us adopt for a moment an abstract setting. Let R 3 t 7→ Ĥ(t) be a time-
dependent Hamiltonian generating the dynamics

Û(t+, t−) := Texp
(
− i

∫ t+

t−

Ĥ(s)ds
)
.

Let t 7→ Ŵ (t) be a family of unitary operators that have the interpretation of
time dependent gauge transformations. We will assume that Ŵ (t) converges to
identity as t→ ±∞ and is generated by a time dependent family of self-adjoint
operators t 7→ R̂(t), so that

Ŵ (t) := Texp
(
− i

∫ t

−∞
R̂(s)ds

)
.
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Then

Ŵ (t+)Û(t+, t−)Ŵ ∗(t−) = Texp
(
− i

∫ t+

t−

ĤR(s)ds
)
,

where the gauge-transformed Hamiltonian is

ĤR(t) := Ŵ (t)Ĥ(t)Ŵ ∗(t) + R̂(t). (5.52)

5.2.16 Ward identities

Let us go back to the setting of quantized charged scalar fields. The gauge invari-
ance implies strong conditions on the scattering operator and Green’s functions.

Let Ŝ(A) denote the scattering operator for the external potential A. Let χ
be a Schwartz function on R1,3. It is easy to see that the scattering operator is
gauge-invariant:

Ŝ(A) = Ŝ(A+ ∂χ). (5.53)

Differentiating this identity w.r.t. χ and setting χ = 0 we obtain one of versions
of the Ward(-Takahashi) identities for the scattering operator:

∂yµ
∂

∂Aµ(y)
Ŝ(A) = 0.

In the momentum representation these identities read

pµ
∂

∂Aµ(p)
Ŝ(A) = 0.

We will write G (A;x′1, . . . , x
′
N , xN , . . . , x1) to express the dependence of

Green’s functions on the external potential A. We have

G (A+ ∂χ;x′1, . . . , x
′
N ;xN , . . . , x1) (5.54)

= G (A;x′1, . . . , x
′
N ;xN , . . . , x1) eieχ(x′1)+···+ieχ(x′N )−ieχ(xN )−···−ieχ(x1).

By differentiating with respect to χ(y) and setting χ = 0 we obtain the Ward(-
Takahashi) identities for Green’s functions in the position representation:

∂yµ
∂

∂Aµ(y)
G (A;x′1, · · · , x′N ;xN , . . . , x1)

=

(
i

N∑
j=1

δ(y − x′j)− i

N∑
j=1

δ(y − xj)

)
G (A;x′1, . . . , x

′
N ;xN , . . . , x1) .

In the momentum representation these identities read

qµ
∂

∂Aµ(q)
G (A; p′1, . . . , p

′
N ; pN , . . . , p1)

=

N∑
j=1

G
(
A; p′1, . . . , p

′
j − q, . . . , p′N ; pN , . . . , p1

)
+

−
N∑
j=1

G (A; p′1, . . . , p
′
N ; pN , . . . , pj + q, . . . , p1) .
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(5.53) and (5.54) are essentially obvious if we use the path integral expres-
sions. It is instructive to derive these statements also in the Hamiltonian for-
malism. This derivation is not fully rigorous, since transformations cannot be
implemented, and in general the dynamics does not have a well defined Hamil-
tonian.

Formally, we define the gauge transformation as a unitary operator

Ŵ (χ, t) := exp

(
−ie

∫
d~x χ(t, ~x)Q̂(~x)

)
= exp

(
−ie

∫ t

−∞
ds

∫
d~x χ̇(s, ~x)Q̂(~x)

)
(5.55)

= Texp

(
−ie

∫ t

−∞
ds

∫
d~x χ̇(s, ~x)Q̂(~x)

)
.

To see the second identity it is enough to note that [Q̂(~x), Q̂(~y)] = 0, hence
we can replace Texp with exp in (5.55). Clearly,

Ŵ (χ, t)ψ̂(~x)Ŵ (χ, t)∗ = eiχ(t,~x)ψ̂(~x),

Ŵ (χ, t)η̂(~x)Ŵ (χ, t)∗ = eiχ(t,~x)η̂(~x).

Let Ĥ(A, t) denote (5.35), that is the Hamiltonian in the Schrödinger picture.
Let Û(A, t+, t−) be the corresponding dynamics.

Ŵ (χ, t)Ĥ(t, A)Ŵ (χ, t)∗ + e

∫
χ̇(t, ~x)Q̂(~x)d~x

=

∫
d~x
(
η̂∗(~x)η̂(~x)− ie

(
A0(t, ~x) + χ̇(t, ~x)

)
:
(
ψ̂∗(~x)η̂(~x)− η̂∗(~x)ψ̂(~x)

)
:

+(∂i − ieAi(t, ~x))eieχ(t,~x)ψ̂∗(~x)(∂i + ieAi(t, ~x))e−ieχ(t,~x)ψ̂(~x)

+m2ψ̂∗(~x)ψ̂(~x)
)

+ C(t)

= Ĥ(t, A+ ∂χ).

Therefore, by (5.52), we have the following identity, which expresses the gauge
covariance:

Ŵ (χ, t+)Û(A, t+, t−)Ŵ ∗(χ, t−) = Û(A+ ∂χ, t+, t−). (5.56)

Using that lim
t→±∞

Ŵ (χ, t) = 1l, we obtain

Ŝ(A+ ∂χ) = lim
t+,−t−→∞

eit+Ĥ0Û(A+ ∂χ, t+, t−)e−it−Ĥ0

= lim
t+,−t−→∞

eit+Ĥ0Ŵ (χ, t+)Û(A, t+, t−)Ŵ (χ, t−)∗e−it−Ĥ0

= Ŝ(A),

which implies (5.53). (5.54) is a consequence of (5.56).
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5.2.17 Energy shift

Suppose that the potential does not depend on time and is given by a Schwartz
function R3 3 ~x 7→ A(~x) = [Aµ(~x)]. We assume that A2

0 ≤ m2. The naive
(Weyl ordered) Hamiltonian is

Ĥ =

∫
d~x
(
η̂∗(~x)η̂(~x) + ieA0(~x):

(
ψ̂∗(~x)η̂(~x)− η̂∗(~x)ψ̂(~x)

)
:

+(∂i − ieAi(~x))ψ̂∗(~x)(∂i + ieAi(~x))ψ̂(~x)

+m2ψ̂∗(~x)ψ̂(~x)
)
. (5.57)

It can be compared with the Weyl ordered free Hamiltonian

Ĥfr =

∫
d~x
(
η̂∗(~x)η̂(~x) + ∂iψ̂

∗(~x)∂iψ̂(~x) +m2ψ̂∗(~x)ψ̂(~x)
)
.

We can apply the formula (A.11) to compute the naive energy shift (the differ-
ence between the ground state energies of Ĥ and Ĥfr):

Tr
(√
−
(
~∂ + ie ~A)2 +m2 − e2A2

0 −
√
−~∂2 +m2

)
=:

∞∑
n=1

e2nEn(A).

In the above sum all the terms with n ≥ 2 are well defined. The term with
n = 1 needs renormalization. The renormalized energy shift is

Eren = −e2

∫
Πren(~p2)Fµν(~p)Fµν(~p)

d~p

(2π)3
+

∞∑
n=2

e2nEn(A),

where Πren was introduced in (5.41).

6 Dirac fermions

In this section we study the Dirac equation

(−iγµ∂µ +m)ψ(x) = 0

and its quantization. Here, m ≥ 0 and γµ are Dirac matrices.
Note that the Dirac equation is complex, and therefore it describes charged

particles. In particular, one can consider the Dirac equation in the presence of
an external potential [Aµ(x)]:(

γµ(−i∂µ + eAµ(x)) +m
)
ψ(x) = 0.

The theory of Dirac fermions is in many ways parallel to the theory of
charged scalar bosons described in Sect. 5.
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6.1 Free Dirac fermions

6.1.1 Dirac spinors

We assume the following conventions for Dirac matrices γµ, µ = 0, . . . , 3,:

[γµ, γν ]+ = −2gµν ,

γ0∗ = γ0, γi∗ = −γi, i = 1, 2, 3.

Sometimes we will also need

γ5 := −iγ0γ1γ2γ3.

It satisfies
[γ5, γµ]+ = 0, (γ5)2 = 1l, γ5∗ = γ5.

All irreducible representations of Dirac matrices are equivalent and act on
the space C4. One of the most common is the so-called Dirac representation

γ0 =

[
1 0
0 −1

]
, ~γ =

[
0 ~σ
−~σ 0

]
,

γ5 =

[
0 1
1 0

]
.

Here is the Majorana representation:

γ0 = i

[
0 −1
1 0

]
, γ1 = i

[
0 σ1

σ1 0

]
, γ2 = i

[
−1 0
0 1

]
, γ3 = i

[
0 σ3

σ3 0

]
,

γ5 = −
[

0 σ2

σ2 0

]
,

and the spinor representation:

γ0 =

[
0 1
1 0

]
, ~γ =

[
0 −~σ
~σ 0

]
,

γ5 =

[
1 0
0 −1

]
,

Above we used Pauli matrices ~σ = (σ1, σ2, σ3) defined by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

and satisfying σiσj = 2εijkσk.
Note useful (representation independent) trace identities:

Tr1l = 4,

Tr(aγ)(bγ) = −4ab,

Tr(aγ)(bγ)(cγ)(dγ) = 4(ab)(cd)− 4(ac)(bd) + 4(ad)(bc).
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We also introduce the spin operators

σµν :=
i

2
[γµ, γν ].

In the Dirac representation

σ0i =

[
0 iσi

iσi 0

]
,

σij = εijk
[
σk 0
0 σk

]
. (6.1)

The operators σµν form a representation of the Lie algebra so(1, 3). It is the
infinitesimal version of the representation

Spin↑(1, 3) 3 Λ̃ 7→ S(Λ̃).

6.1.2 Special solutions and Green’s functions

Note the identity

−(−iγ∂ +m)(−iγ∂ −m) = −2 +m2.

Therefore, if
(−2 +m2)ζ(x) = 0,

then (iγµ∂µ +m)ζ(x) is a solution of the homogeneous Dirac equation:

(−iγµ∂µ +m)(iγµ∂µ +m)ζ(x) = 0.

In particular, we have special solutions of the homogeneous Dirac equation

S(±)(x) = (iγ∂ +m)D(±)(x),

S(x) = (iγ∂ +m)D(x),

where D(±) and D are the special solutions of the Klein-Gordon equation intro-
duced before. We have suppS ⊂ J .

If
(−2 +m2)ζ(x) = δ(x),

then (iγµ∂µ +m)ζ(x) is a Green’s function of the Dirac equation, that is

(−iγ∂ +m)(iγ∂ +m)ζ(x) = δ(x).

In particular, a special role is played by the Green functions

S±(x) = (iγ∂ +m)D±(x),

Sc(x) = (iγ∂ +m)Dc(x),

where D± and Dc are the Green’s functions of the Klein-Gordon equation in-
troduced before. We have suppS± ⊂ J±.
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The fermionic propagators satisfy the identities

S(x) = −S(−x) = S(+)(x) + S(−)(x)

= S+(x)− S−(x),

S(+)(x) = S(−)(−x),

S+(x) = S−(−x) = θ(x0)S(x),

S−(x) = θ(−x0)S(x),

Sc(x) = Sc(−x) = θ(x0)S(−)(x)− θ(−x0)S(+)(x).

Recall that the bosonic causal Green’s function in the momentum represen-
tation can be written as

Dc(p) =
1

p2 +m2 − i0
.

The fermionic causal Green’s function can be written in a similar way:

Sc(p) =
−γp+m

p2 +m2 − i0

=
1

γp+m− iε
, (6.2)

where ε is an infinitesimal number with sgnε = sgnpγ.

6.1.3 Space of solutions

We set αi = γ0γi, i = 1, . . . , 3, and β := γ0. We obtain matrices satisfying

β2 = 1l, (αi)
2 = 1l, i = 1, . . . , 3;

βαi + αiβ = 0, αiαj + αjαi = 0, 1 ≤ i < j ≤ 3;

β∗ = β, α∗i = αi, i = 1, . . . , 3.

In the Dirac representation we have

β =

[
1 0
0 −1

]
, ~α =

[
0 ~σ
~σ 0

]
.

Using ~α, β we can rewrite the Dirac equation in the form of an evolution
equation:

i∂tζ(t, ~x) = Dζ, D := ~α~p+mβ.

Note that D is essentially self-adjoint on C∞c (R3,C4).
The following theorem describes the Cauchy problem for the Dirac equation:

Theorem 6.1 Let ϑ ∈ C∞c (R3,C4). Then there exists a unique ζ ∈ C∞sc (R1,3)
that solves the Dirac equation with initial conditions ζ(0, ~x) = ϑ(~x). It satisfies
suppζ ⊂ J(suppϑ) and is given by

ζ(t, ~x) = −i

∫
R3

S(t, ~x− ~y)βϑ(~y)d~y. (6.3)
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Let WD be the space of space-compact solutions of the Dirac equation, that
is ζ ∈ C∞sc (R1,3,C4) satisfying (−iγµ∂µ +m)ζ = 0.

For ζ1, ζ2 ∈ C∞(R1,3,C4) set

jµ(ζ1, ζ2, x) := ζ1(x)βγµζ2(x). (6.4)

We easily check that

∂µj
µ(x) = (−iγ∂ +m)ζ1(x)βζ2(x)− ζ1(x)β(−iγ∂ +m)ζ2(x).

Therefore, if ζ1, ζ2 ∈ WD, then jµ is a conserved current:

∂µj
µ(x) = 0.

For ζ1, ζ2 ∈ WD, the flux of jµ does not depend on the choice of a Cauchy
hypersurface. It defines a scalar product on WD

ζ1 · ζ2 =

∫
S
jµ(ζ1, ζ2, x)dsµ(x).

In terms of the Cauchy data this scalar product coincides with the natural scalar
product on L2(R3,C4):

ζ1 · ζ2 =

∫
ζ1(t, ~x)ζ2(t, ~x)d~x.

The group R1,3 o Spin↑(1, 3), acts unitarily on WD by

r(a,Λ)ζ(x) := S(Λ̃)ζ
(
(a,Λ)−1x

)
.

We can also parametrize solutions of the Dirac equation by space-time func-
tions. In fact, for any f ∈ C∞c (R1,3,C4), let us write

S ∗ f(x) :=

∫
S(x− y)f(y)dx.

Theorem 6.2 (1) For any f ∈ C∞c (R1,3,C4), S ∗ f ∈ WD.

(2) Every element of WD is of this form.

(3) S ∗ f1 · S ∗ f2 =
∫ ∫

f1(x)βS(x− y)f2(y)dxdy.

(4) If suppf2 × suppf2, then

S ∗ f1 · S ∗ f2 = 0.

6.1.4 Classical fields

We will also consider the space dual to WD, denoted W#

D. In particular, for
x ∈ R1,3, ψ(x), ψ∗(x) will denote the functionals on WD with values in C4,
called classical Dirac fields, given by

〈ψ(x)|ζ〉 := ζ(x), 〈ψ∗(x)|ζ〉 := ζ(x).
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By (6.3),

ψ(t, ~x) = −i

∫
S(t, ~x− ~y)βψ(0, ~y)d~y.

It is convenient to introduce the Dirac conjugate of the field ψ:

ψ̃(x) := βψ∗(x).

(In a large part of the physics literature, ψ̃ is denoted ψ.)
On W#

D we have the group action R1,3 o Spin↑(1, 3) 3 (a, Λ̃) 7→ r#−1

(a,Λ̃)
:

r#−1

(a,Λ̃)
ψ(x) = S(Λ̃−1)ψ(Λx+ a).

6.1.5 Smeared fields

We can use the scalar product to pair solutions. For ζ ∈ WD, the corresponding
spatially smeared fields are the functionals on WD given by

〈ψ((ζ))|ρ〉 := ζ · ρ,
〈ψ∗((ζ))|ρ〉 := ζ · ρ, ρ ∈ WD.

Clearly, for any t

ψ((ζ)) =

∫
ζ(t, ~x)ψ(t, ~x)d~x,

ψ∗((ζ)) =

∫
ζ(t, ~x)ψ∗(t, ~x)d~x.

For f ∈ C∞c (R1,3,C4), the corresponding space-time smeared fields are given
by

ψ[f ] :=

∫
f(x)ψ(x)dx = ψ((S ∗ f)),

ψ∗[f ] :=

∫
f(x)ψ∗(x)dx = ψ∗((S ∗ f)).

6.1.6 Diagonalization of the equations of motion

Let us use the Dirac representation, denoting elements of C4 as

[
ζ↑
ζ↓

]
, where

ζ↑, ζ↓ ∈ C2. Ater the space-time Fourier transformation the Dirac equation
becomes

−p0ζ↑ + ~σ~pζ↓ +mζ↑ = 0,

p0ζ↓ − ~σ~pζ↑ +mζ↓ = 0.

This can be rewritten as

ζ↑ = − ~σ~p

−p0 +m
ζ↓,

ζ↓ =
~σ~p

p0 +m
ζ↑.
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Using (~σ~p)2 = ~p2 we obtain

−(p0)2 + ~p2 +m2 = 0.

Set E(~p) := |p0| =
√
~p2 +m2. Define

χ+ :=

[
1
0

]
, χ− :=

[
0
1

]
.

Traditionally, one often introduces the following spinors:

u(p,±1/2) =

√
E +m√

2E

[
χ±
~σ~p
E+mχ±

]
, p0 = E(~p) > 0;

u(p,±1/2) =

√
E +m√

2E

[ ∓~σ~p
E+mχ±
±χ±

]
, p0 = −E(~p) < 0. (6.5)

Note that

(u(p, s)|u(p, s′)) = δs,s′ ,

(u(p, s)|u(−p, s′)) = 0.

The basic plane waves are defined as

|p, s) = (2π)−3/2u(p, s)eipx.

By writing (p, s|, as usual, we will imply the complex conjugation. We have

(p, s|p′, s′) = δ(~p− ~p′)δs,s′ , sgn(p0p
′0) > 0,

(p, s|p′, s′) = 0, sgn(p0p
′0) < 0.

Note that plane waves diagonalize simultaneously the Dirac Hamiltonian D,
the momentum ~p = −i~∂ and the scalar product:

D|p, s) = p0|p, s),
−i~∂|p, s) = ~p|p, s),

ζ1 · ζ2 =
∑
s

∫ (
(p, s|ζ1)(p, s|ζ2) + (−p,−s|ζ1)(−p,−s|ζ2)

)
d~p.

In addition, positive frequency plane waves diagonalize the “upper spin in the
3rd direction” and negative frequency plane waves diagonalize the “lower spin
operator in the 3rd direction”:

1

2

[
σ3 0
0 0

]
|p, s) = s|p, s), sgnp0 > 0,

1

2

[
0 0
0 σ3

]
|p, s) = s|p, s), sgnp0 < 0.
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6.1.7 Plane wave functionals

Plane wave functionals are the functionals defined by plane waves. One could
doubt whether they deserve a special notation. In the bosonic case the situation
was slightly less trivial, because the pairing was given by the symplectic form.
For fermions the pairing is given by the scalar product, hence it is straightfor-
ward. Anyway, special notation for plane wave functionals is partly motivated
as a preparation for quantization.

Let p ∈ R1,3 with p0 > 0. Anticipating the quantization, we will use different
notation for positive and negative frequencies:

a(p, s) := ψ((|p, s))) (6.6)

= (2π)−
3
2

∫
d~xu(p, s)e−i~p~xψ(0, ~x),

b∗(p, s) := ψ((| − p,−s))) (6.7)

= (2π)−
3
2

∫
d~xu(−p,−s)ei~p~xψ(0, ~x).

We have

ψ(x) =
∑
s

(2π)−
3
2

∫
d~p
(
u(p, s)eipxa(p, s) + u(−p,−s)e−ipxb∗(p, s)

)
=

∑
s

∫
d~p
(
(p, s|a(p, s) + (−p,−s|b∗(p, s)

)
.

6.1.8 Positive and negative frequency subspaces

We define

W(+)
D := {ζ ∈ WD : (−p,−s|ζ = 0, p0 = E(~p)},

W(−)
D := {ζ ∈ WD : (p, s|ζ = 0, p0 = E(~p)}.

Every ζ ∈ WD can be uniquely decomposed as ζ = ζ(+)+ζ(−) with ζ(±) ∈ W(±)
D .

On W(+)
D we keep the old scalar product:

(ζ
(+)
1 |ζ(+)

2 ) := ζ
(+)
1 · ζ(+)

2 =

∫
〈a(p)|ζ(+)

1 〉〈a(p)|ζ(+)
2 〉d~p.

We set Z(+)
D to be the completion of W(+)

D in this scalar product.

Instead of W(−)
D for quantization we will use the corresponding complex

conjugate space denoted W(−)

D and equipped with the scalar product

(ζ
(−)

1 |ζ
(−)

2 ) := ζ
(−)
1 · ζ(−)

2 =

∫
〈b(p)|ζ(−)

1 〉〈b(p)|ζ(−)
2 〉d~p.

We set Z(−)
D to be the completion of W(−)

D in this scalar product.

R1,3 o Pin↑(1, 3) group leaves Z(+)
D and Z(−)

D invariant.
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6.1.9 Spin averaging

1
2m (∓pγ + m) are the projections onto the positive and negative energy states
resp. With E = p0 > 0, we have the identities∑

s

u(p, s)ũ(p, s) =
1

2E

[
E +m −~σ~p
~σ~p −E +m

]
=
−pγ +m

2E
=

m

E
Λ+,∑

s

u(−p,−s)ũ(−p,−s) =
1

2E

[
E −m −~σ~p
~σ~p −E −m

]
=
−pγ −m

2E
= −m

E
Λ−.

In the following spin averaging identities due to H.B.C.Casimir, which are
useful in computations of scattering cross-sections, the trace involves only the
spin degrees of freedom:∑

s+,s−

∣∣ũ(p+, s+)Bu(p−, s−)
∣∣2 =

TrB̃(−p+γ +m)B(−p−γ +m)

4E+E−
,

∑
s+,s−

∣∣ũ(−p+,−s+)Bu(−p−,−s−)
∣∣2 =

TrB̃(−p+γ −m)B(−p−γ −m)

4E+E−
,

∑
s+,s−

∣∣ũ(−p+,−s+)Bu(p−, s−)
∣∣2 =

TrB̃(−p+γ −m)B(−p−γ +m)

4E+E−
,

∑
s+,s−

∣∣ũ(p+, s+)Bu(−p−,−s−)
∣∣2 =

TrB̃(−p+γ +m)B(−p−γ −m)

4E+E−
,

where B is an arbitrary operator on the spinor space and B̃ = βB∗β is its
pseudo-hermitian conjugate.

If we specify B = β, then∑
s+,s−

∣∣∣u(p+, s+)u(p−, s−)
∣∣∣2 =

∑
s+,s−

∣∣∣u(−p+,−s+)u(−p−,−s−)
∣∣∣2

=
E+E− + ~p+ ~p− +m2

E+E−
=

(E+ + E−)2 − | ~p+ − ~p−|2

2E+E−
,∑

s+,s−

∣∣∣u(−p+,−s+)u(p−, s−)
∣∣∣2 =

∑
s+,s−

∣∣∣u(p+, s+)u(−p−,−s−)
∣∣∣2

=
E+E− + ~p+ ~p− −m2

E+E−
=
−(E+ − E−)2 + | ~p+ + ~p−|2

2E+E−
.

6.1.10 Quantization

We would like to describe the quantization of the Dirac equation. As usual, we
will use the “hat” to denote quantized objects.
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We will use the formalism of quantization of charged fermionic systems [11].
We want to construct (H, Ĥ,Ω) satisfying the standard requirements and a

distribution
R1,3 3 x 7→ ψ̂(x), (6.8)

with values in C4 ⊗B(H) such that the following conditions are true:

(1) (−iγ∂ +m)ψ̂(x) = 0;

(2) [ψ̂a(0, ~x), ψ̂∗b (0, ~y)]+ = δabδ(~x− ~y), [ψ̂a(0, ~x), ψ̂b(0, ~y)]+ = 0;

(3) eitĤ ψ̂(x0, ~x)e−itĤ = ψ̂(x0 + t, ~x);

(4) Ω is cyclic for ψ̂(x), ψ̂∗(x).

The above problem has a solution unique up to a unitary equivalence, which
we describe below.

We set
H := Γa(Z(+)

D ⊕Z(−)
D ).

Creation/annihilation operators on Z(+)
D will be denoted â∗/â. Introduce the

operator valued distributions â∗(p, s) defined for p on the mass shell, s = ±1/2,
by

â∗(p, s) := â∗
(
|p, s)

)
. (6.9)

Creation/annihilation operators on Z(−)
D will be denoted b̂∗/b̂. Introduce the

operator valued distributions b̂∗(p, s) defined for −p on the mass shell, s = ±1/2,
by

b̂∗(p, s) := b̂∗
(
| − p,−s)

)
. (6.10)

Ω will be the Fock vacuum. We set

ψ̂(x) := (2π)−
3
2

∑
s

∫
d~p
(
u(p, s)eipxâ(p, s) + u(−p,−s)e−ipxb̂∗(p, s)

)
.

The quantum Hamiltonian and momentum are

Ĥ =

∫ ∑
s

(
â∗(p, s)â(p, s) + b̂∗(p, s)b̂(p, s)

)
E(~p)d~p, (6.11)

~̂
P =

∫ ∑
s

(
â∗(p, s)â(p, s) + b̂∗(p, s)b̂(p, s)

)
~pd~p. (6.12)

We also have the charge operator

Q̂ :=
∑
s

∫ (
â∗(~p, s)â(~p, s)− b̂∗(~p, s)b̂(~p, s)

)
d~p (6.13)

The whole group R1,3 oSpin↑(1, 3) acts unitarily on H. Moreover, if we set
˜̂
ψ(x) := βψ̂∗(x), then

[ψ̂a(x),
˜̂
ψb(y)]+ = Sab(x− y), [ψ̂a(x), ψ̂b(y)]+ = 0. (6.14)

156



We have

(Ω|ψ̂a(x)
˜̂
ψb(y)Ω) = S

(+)
ab (x− y),

(Ω|T(ψ̂a(x)
˜̂
ψb(y))Ω) = Sc

ab(x− y).

For f ∈ C∞c (O,C4) we set

ψ̂[f ] :=

∫
f(x)ψ̂(x)dx,

ψ̂∗[f ] :=

∫
f(x)ψ̂∗(x)dx.

We obtain an operator valued distribution satisfying the Wightman axioms with

D := Γfin
a (Z(+)

D ⊕Z(−)
D ).

For an open set O ⊂ R1,3 the field algebra is defined as

F(O) := {ψ̂∗[f ], ψ̂[f ] : f ∈ C∞c (O,C4)}′′.

The observable algebra A(O) is the subalgebra of F(O) fixed by the automor-
phism

B 7→ eiθQ̂Be−iθQ̂,

where Q̂ will be defined in (6.13). The nets of algebras F(O) and A(O), O ⊂
R1,3, satisfy the Haag-Kastler axioms.

6.1.11 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses the smeared fields instead of point fields. Instead of (2.31) we look
for an antilinear function

WD 3 ζ 7→ ψ̂((ζ))

with values in bounded operators such that

(1) [ψ̂((ζ1)), ψ̂∗((ζ2))]+ = ζ1 · ζ2, [ψ̂((ζ1)), ψ̂((ζ2))]+ = 0.

(2) ψ̂((r(t,~0)ζ)) = eitĤ ψ̂((ζ))e−itĤ .

(3) Ω is cyclic for ψ̂((ζ)), ψ̂∗((ζ)).

One can pass between these two versions of the quantization by

ψ̂((ζ)) =

∫
ζ(t, ~x)ψ̂(t, ~x)d~x. (6.15)

6.1.12 Dirac sea quantization

When we quantized a fermionic field we demanded that the quantum Hamilto-
nian Ĥ is positive. In the bosonic case this condition can be dropped if we start
from a positive classical Hamiltonian H. Usually this suffices to guarantee the
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positivity of Ĥ. (If we start from a classical Hamiltonian that is not positive
definite, the bosonic quantum counterpart has no chances of being positive).

Suppose now that we drop the positivity requirement of Ĥ in the fermionic
case. Then we have many possible quantizations. Among them one is distin-
guished – it is just the usual second quantization. It means that we consider the
antisymmetric Fock space Γa(Wcpl

D ), where Wcpl
D denotes the completion of WD

in its natural scalar product.
The Hilbert space Wcpl

D is equipped with commuting self-adjoint operators:

the Dirac operator D and the momentum operator −i~∂. We can quantize them
using the operation dΓ obtaining the operators on Γa(Wcpl

D ), the Hamiltonian
and the momentum

H = dΓ(D), (6.16)

~P = dΓ(−i~∂). (6.17)

The number operator describes the charge and is denoted

Q = dΓ(1l).

(Let us stress that we do not use “hats” in the above notation).
ψ∗(x)/ψ(x) (without “hats”) will be reinterpreted as the creation/annihilation

operators on the space Γa(Wcpl
D ). The plane wave functionals a(p, s), a∗(p, s),

b∗(p, s), b(p, s) defined as in (6.6) and (6.7) in terms of ψ(x), ψ∗(x), can be used
to diagonalize the Hamiltonian, momentum and charge

H =

∫ ∑
s

(a∗(p, s)a(p, s)− b(p, s)b∗(p, s))E(~p)d~p, (6.18)

~P =

∫ ∑
s

(a∗(p, s)a(p, s)− b(p, s)b∗(p, s)) ~pd~p, (6.19)

Q =

∫ ∑
s

(a∗(p, s)a(p, s) + b(p, s)b∗(p, s)) ~pd~p. (6.20)

The vacuum of Γa(Wcpl
D ) is annihilated by ψ(x), hence also by a(p, s) and

b∗(p, s). It is the state of the lowest charge possible. Therefore, it will be called
the bottom of the Dirac sea. We will call the above described procedure the
Dirac sea quantization.

The reader should compare the formulas for H (6.18), ~P (6.19) and Q (6.20)

with Ĥ (6.11),
~̂
P (6.12) and Q̂ (6.13). They only differ by the ordering of a

part of operators. So formally they are the same operators modulo an (infinite)
additive constant.

The usual quantization, called the positive energy quantization and the Dirac
sea quantization are just two inequivalent representations of canonical anticom-
mutation relations. If WD had a finite dimension (which can be accomplished
by applying both an infrared and ultraviolet cutoff), then the Dirac sea quan-
tization would be unitarily equivalent with the positive energy quantization by
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the procedure invented by Dirac and called often filling the Dirac sea. The
Hamiltonians H and Ĥ, and as we see later, the charges Q and Q̂ would differ

by a finite constant. The momenta ~P and
~̂
P would coincide.

6.1.13 Fermionic Hamiltonian formalism

Bosonic quantum fields can be interpreted as a quantization of a classical sys-
tem. In the Hamiltonian (on-shell) formalism this system is described by an
appropriate symplectic space. In the charged case, the symplectic space can be
viewed as a complex space and instead of the symplectic structure it is natural
to consider an appropriate hermitian form. The spaces YKG and WKG were
examples of such spaces. Symmetries are described by symplectic transforma-
tions. The dynamics is generated by a (classical) Hamiltonian – a function on
the symplectic space.

An important element of the Hamiltonian formalism is the “algebra of clas-
sical observables” – the commutative algebra of functions on the symplectic
space equipped with the Poisson bracket. One can ask whether there exists an
analogous structure behind fermionic quantum fields.

Clearly, the space WD, which is equipped with a scalar product, is the ob-
vious fermionic analog of a (complex) symplectic space from the bosonic case.
The fermionic analog of the “algebra of classical observables” considered in the
literature is the Z2-graded algebra of operators on Γa(Wcpl

D ) equipped with the
graded commutator.

The space Γa(Wcpl
D ) is equipped with the fermionic parity operator, which

we denote by I := (−1l)Q. An operator A satisfying IAI = ±A will be called
even/odd. Operators that are either even or odd will be called homogeneous. If
A is homogeneous we will write |A| = 0 if A is even and |A| = 1 if A is odd.
The analog of the Poisson bracket is the graded commutator:

{A,B} := AB − (−1)|A| |B|BA. (6.21)

Note that ψ(x), ψ∗(x) are odd operators and for such operators {·, ·} coin-
cides with the anticommutator. Setting ψ̃(x) = βψ∗(x), we have the following
counterpart of (6.14):

{ψa(x), ψ̃b(y)} = Sab(x− y), {ψa(x), ψb(y)} = 0. (6.22)

Thus what is considered in the literature as the “classical” version of the
Dirac theory has a quantum character. In particular, the “classical fermionic
algebra” is an algebra of operators on a Hilbert space and symmetries are uni-
tary. Nevertheless, one has a far reaching analogy with the usual commutative
classical mechanics.

6.1.14 Fermionic Lagrangian formalism

The Lagrangian formalism in the bosonic case involves the commutative algebra
of functions on the space-time (the “off-shell formalism”). In the literature one
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can also find its fermionic analog. The fermionic Lagrangian formalism involves
the Grassmann algebra generated by anticommuting functions on space-time.
This algebra is generated by anticommuting fields R1,3 3 x 7→ ψ(x), ψ∗(x).
(Thus, the anticommutators of the off-shell ψ(x), ψ∗(y) are always zero, unlike
in the on-shell formalism).

Note that every Grassmann algebra, besides multiplication, is equipped with
the integral (called sometimes the Berezin integral), the left and the right deriva-
tive. We will use the left derivative as the standard one (see eg. [11]).

The Lagrangian density is an even element of this Grassmann algebra:

L(x) = −1

2

(
ψ̃(x)γµ(−i∂µ)ψ(x) + i∂µψ̃(x) γµψ(x)

)
−mψ̃(x)ψ(x),

where as usual ψ̃(x) = βψ∗(x). The Euler-Lagrange equations

∂ψ̃L − ∂µ
∂L
∂ψ̃,µ

= 0, ∂ψL − ∂µ
∂L
∂ψ,µ

= 0 (6.23)

yield the Dirac equation.
One can define the stress-energy tensor

T µν(x) := − ∂L(x)

∂ψ,µ(x)
∂νψ(x)− ∂L(x)

∂ψ̃,µ(x)
∂νψ̃(x) + gµνL(x)

=
1

2

(
ψ̃(x)γµ(−i∂ν)ψ(x) + i∂νψ̃(x)γµψ(x)

)
−gµν

(1

2

(
ψ̃(x)γ(−i∂)ψ(x) + i∂ψ̃(x)γψ(x)

)
+mψ̃(x)ψ(x)

)
.

It is conserved on shell
∂µTµν(x) = 0.

The components of the stress-energy tensor with the first temporal coordinate
are called the Hamiltonian density and momentum density.

H(x) := T 00(x)

=
1

2

(
ψ∗(x)~α(−i~∂)ψ(x) + i~∂ψ∗(x)~αψ(x)

)
+mψ∗(x)βψ(x),

Pi(x) := T 0i(x)

= −1

2

(
ψ∗(x)(−i∂i)ψ(x) + i∂iψ∗(x)ψ(x)

)
.

Note that in (6.24) and (6.24) we put ψ∗ on the left and ψ on the right.
This is the Wick ordering for the Dirac sea quantization, which can be called
the charge Wick ordering. The Hamiltonian and momentum defined from these
densities coincide with the operators defined by the Dirac sea second quantiza-
tion (6.16), (6.17):

H =

∫
H(t, ~x)d~x,

~P =

∫
~P(t, ~x)d~x.
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6.1.15 Classical current

The Lagrangian is invariant w.r.t. the U(1) symmetry ψ 7→ e−iθψ. The Noether
current associated to this symmetry is the current, defined as

J µ(x) := i
(
ψ̃(x)

∂L(x)

∂ψ̃,µ
− ∂L(x)

∂ψ,µ
ψ(x)

)
= ψ̃(x)γµψ(x).

It is conserved on shell and self-adjoint:

∂µJ µ(x) = 0,

J µ(x)∗ = J µ(x).

The sesquilinear form given by J coincides with (6.4):

ζ1J µ(x)ζ2 = jµ(ζ1, ζ2, x)

= ζ1(x)βγµζ2(x).

The spatial components of current can be expressed in terms of the α ma-
trices:

~J (x) = ψ∗(x)~αψ(x).

The 0th component of the current is called the charge density

Q(x) := J 0(x) = ψ∗(x)ψ(x).

The charge is

Q :=

∫
Q(t, ~x)d~x

=
∑
s

∫ (
a∗(~p, s)a(~p, s) + b(~p, s)b∗(~p, s)

)
d~p.

x 7→ Q(t, ~x) is a well defined distribution with values in operators on space

Γa(Wcpl
D ). We have the relations

{Q(t, ~x), ψ(t, ~y)} = −ψ(t, ~y)δ(~x− ~y),

{Q(t, ~x), ψ∗(t, ~y)} = ψ∗(t, ~y)δ(~x− ~y),

{Q(t, ~x),Q(t, ~y)} = 0, (6.24)

where the bracket coincides now with the commutator, since Q is even.
For χ ∈ C∞c (R3,R), let αχ denote the ∗-automorphism of the algebra of

operators on WD defined by

αχ(ψ(0, ~x)) := e−iχ(~x)ψ(0, ~x).
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Obviously,

αχ(ψ∗(0, ~x)) = eiχ(~x)ψ∗(0, ~x).

αχ is called the gauge transformation at time t = 0 corresponding to χ. Set

Q(χ) =

∫
χ(~x)Q(0, ~x)d~x. (6.25)

It can be used to implement the corresponding gauge transformation:

αχ(B) = eiQ(χ)Be−iQ(χ).

6.1.16 Quantum current

Let us try to introduce the quantum current density as an operator valued dis-

tribution on Γa(Z(+)
D ⊕Z(−)

D ) by the antisymmetric quantization of the classical
expression

J µ(x) :=
1

2

(
ψ̂∗(x)βγµψ̂(x)− ψ(x)βγµψ∗(x)

)
. (6.26)

(Note that (βγµ)∗ = βγµ, and hence βγµ is the transpose ofβγµ). The charge
conjugation C, which we introduce later on in Subsubsect. 6.2.6, satisfies CΩ =
Ω and CĴ µ(x)C∗ = −J µ(x). Therefore, (Ω|J µ(x)Ω) = 0. Hence

Ĵ µ(x) = :
˜̂
ψ(x)γµψ̂(x):.

Formally, we can check the quantum versions of the relations (6.24) the (6.24).
We have

~̂J (x) = :ψ̂∗(x)~αψ̂(x):,

and the 0th component of the current is called the charge density

Q̂(x) := Ĵ0(x) = :ψ̂∗(x)ψ̂(x):.

Formally, the charge density satisfies

[Q̂(t, ~x), ψ̂(t, ~y)] = −ψ̂(t, ~y)δ(~x− ~y),

[Q̂(t, ~x), ψ̂∗(t, ~y)] = ψ̂∗(t, ~y)δ(~x− ~y),

[Q̂(t, ~x), Q̂(t, ~y)] = 0. (6.27)

For χ ∈ C∞c (R3) let αχ denote the gauge transformation at time t = 0
defined as a ∗-automorphism of the algebra generated by fields satisfying (5.22),
and hence also (5.23). Assume that χ 6= 0. Let us check whether αχ is unitarily
implementable.
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On the level of annihilation operators we have

αχ(â(p)) =
∑
s1

∫ ∫
d~xd~p1

(2π)3
u(p, s)u(p1, s1)ei(~p1−~p)~x−ieχ(~x)â(p1)

+
∑
s1

∫ ∫
d~xd~p1

(2π)3
u(p, s)u(−p1,−s1)e−i(~p1+~p)~x−ieχ(~x)b̂∗(p1).

Let qχ(~p, s; ~p1, s1) denote the integral kernel on the second line above. We need
to check whether it is square integrable. Now∑

s,s1

|u(p, s)u(−p1,−s1)|2 =
|~p+ ~p1|2 +

(
E(~p)− E(~p1)

)2
2E(~p)E(~p1)

. (6.28)

After integrating in ~x we obtain fast decay in ~p+ ~p1, which allows us to control
the numerator of (6.28). We obtain∫

|qχ(~p, ~p1)|2d~p ∼ C

E(~p1)2
,

which is not integrable. Therefore, by the Shale-Stinespring criterion, αχ is not
implementable.

Formally, with

Q̂(χ) :=

∫
χ(~x)Q̂(0, ~x)d~x, (6.29)

eieQ̂(χ) implements the gauge transformation:

αχ(B) = eieQ̂(χ)Be−ieQ̂(χ).

But we know that nontrivial gauge transformations are not implementable.
Thus for nonzero χ (6.29) cannot be defined as a closable operator.

However, the (quantum) charge

Q̂ :=

∫
Q̂(t, ~x)d~x (6.30)

is a well defined self-adjoint operator, which we already discussed before.
For further reference let us express the charge density in terms of creation

and annihillation operators:

Q̂(x) =

∫ ∫
d~p1d~p2

(2π)3
u(p1, s1)u(p2, s2)e−ixp1+ixp2 â∗(p1, s1)â(p2, s2)

−
∫ ∫

d~p1d~p2

(2π)3
u(−p1,−s1)u(−p2,−s2)eixp1−ixp2 b̂∗(p2, s2)b̂(p1, s1)

+

∫ ∫
d~p1d~p2

(2π)3
u(p1, s1)u(−p2,−s2)e−ixp1−ixp2 â∗(p1, s1)b̂∗(p2, s2)

+

∫ ∫
d~p1d~p2

(2π)3
u(−p1,−s1)u(p2, s2)eixp1+ixp2 b̂(p1, s1)â(p2, s2).

To obtain
~̂J (x) one inserts ~α between u(·, ·) and u(·, ·).
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6.2 Dirac fermions in an external potential

6.2.1 Dirac equation in an external potential

Let
R1,3 3 x 7→ A(x) = [Aµ(x)] ∈ R1,3 (6.31)

be a given function. In most of this subsection we assume that (6.31) is Schwartz.
The Dirac equation in an external potential A is(

γµ(−i∂µ + eAµ(x)) +m
)
ψ(x) = 0 (6.32)

If ψ satisfies (6.32) and R1,3 3 x 7→ χ(x) ∈ R is an arbitrary smooth function,
then eieχψ satisfies (6.32) with A replaced with A+ ∂χ.

Note the identity

−
(
γµ(−i∂µ + eAµ(x)) +m

)(
γµ(−i∂µ + eAµ(x))−m

)
= −(∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2 +

e

2
σµνFµν(x). (6.33)

Let D±(x, y) denote the retarded/advanced Green’s function of (6.33). Then

S±(x, y) :=
(
γµ(−i∂xµ + eAµ(x))−m

)
D(x, y)

is the retarded/advanced Green’s function of (6.32), that is, the unique solution
of (

γµ(−i∂µ + eAµ(x)) +m
)
S±(x, y) = δ(x− y) (6.34)

satisfying
suppS± ⊂ {x, y : x ∈ J±(y)}.

We set
S(x, y) := S+(x, y)− S−(x, y).

Clearly,
suppS ⊂ {x, y : x ∈ J(y)}.

We would like to introduce a field R1,3 3 x 7→ ψ(x) satisfying (6.32). Let us
assume that it acts on WD and coincides with the free field ψfr(x) at x0 = 0.

Such a field is given by

ψ(t, ~x) = −i

∫
R3

S(t, ~x; 0, ~y)βψfr(0, ~y)d~y. (6.35)

6.2.2 Lagrangian and Hamiltonian formalism

(6.32) can be obtained as the Euler-Lagrange of a variational problem. The
Lagrangian density can be taken as

L(x) = −1

2

(
ψ̃(x)γµ(−i∂µ)ψ(x) + i∂µψ̃(x)γµψ(x)

)
−ψ̃(x)eAµ(x)γµψ(x)−mψ̃(x)ψ(x).

164



The Euler-Lagrange equations (6.23) yield (6.32).
We can introduce the Hamiltonian density

H(x) = ψ̇(x)
∂L(x)

∂ψ̇(x)
+ ψ̇∗(x)

∂L(x)

∂ψ̇∗(x)
− L(x)

=
1

2

(
ψ∗(x)~α(−i~∂)ψ(x) + i~∂ψ∗(x)~αψ(x)

)
+ψ∗(x)

(
e~γ ~A(x) +mβ + eA0(x)

)
ψ(x).

The Hamiltonian

H(t) =

∫
H(t, ~x)d~x

is interpreted as a self-adjoint operator on Γa(Wcpl
D ) and generates the dynamics

ψ̇(t, ~x) = i{H(t), ψ(t, ~x)},

where now {·, ·} has the meaning of the commutator.

6.2.3 Classical discrete symmetries

Let κ be a unitary 4× 4 matrix satisfying

κκ = 1l, κγµκ−1 = −γµ,

where the bar denotes the complex conjugation. In particular, κβκ−1 = −β.
Note also that

κκu = u, u ∈ C4.

Choose ξC ∈ C, |ξC | = 1. If ζ solves the Dirac equation with the potential
A, then so does ξCκζ with the potential −A. Thus replacing

ψ(x), ψ∗(x), A(x)

with ξCκψ
∗(x), ξCκψ(x),−A(x)

is a symmetry of the Dirac equation with external potentials (6.32). It is called
charge conjugation and denoted C.

The matrix κ depends on a representation. In the Majorana representation
it is the identity. In the Dirac and spinor representation it can be chosen to
be γ2 multiplied by an arbitrary phase factor. In fact, in these representations
γµ = γµ, except for µ = 2 satisfying γ2 = −γ2. When we consider the Dirac
representation, we will adopt the convention

κ := iγ2.

Then κ = κ = κ∗. The spinor basis that we chose in (6.5) is compatible with κ:

κu(p, s) = u(−p,−s). (6.36)
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Choose ξP ∈ {1,−1}. Recall that P denotes the space inversion. Replacing

ψ(x), ψ∗(x),
(
A0(x), ~A(x)

)
with ξP γ

0ψ(Px), ξP γ
0ψ∗(Px),

(
A0(Px),− ~A(Px)

)
is a symmetry of (6.32) called parity and denoted P.

Choose ξT ∈ C, |ξC | = 1. Recall that T denotes the time reflection. Replac-
ing (in the Dirac representation)

ψ(x), ψ∗(x),
(
A0(x), ~A(x)

)
with ξT γ

1γ3ψ∗(Tx), ξT γ
1γ3ψ(Tx),

(
A0(Tx),− ~A(Tx)

)
is a symmetry of (6.32) called time reversal and denoted T .

The symmetry that is guaranteed by the CPT Theorem consists in replacing

ψ(x), ψ∗(x), A(x)

with iγ5ψ(−x), −iγ5ψ∗(−x), −A(−x).

It is denoted X . (Note that iγ5 = γ0γ1γ2γ3).
Assume that ξCξP ξT = i. Then

X = CPT

and we have the relations

C2 = P2 = −T 2 = −X 2 = 1l,

CP + PC = CT + T C = 0,

XP + PX = XT + T X = 0,

CX − XC = PT − T P = 0.

To understand better these relations, it is better to rewrite them in terms
of P, CT and X anticommute and

P2 = (CT )2 = −X 2 = 1l.

Thus together with Spin↑(1, 3) they represent the group Pin+(1, 3).
Besides,

(PT )2 = −1l

and PT commutes with P, CT , X . Thus it behaves as i1l.
Thus the group generated by Spin↑(1, 3), C, P and T is Pinext(1, 3).

6.2.4 Quantization

We are looking for a quantum field satisfying(
γµ(−i∂µ + eAµ(x)) +m

)
ψ̂(x) = 0. (6.37)

166



coinciding with the free field for t = 0. Clearly the solution is obtained by
decorating (6.35) with hats.

As in the bosonic case, we ask whether the fields are implemented by a
a unitary dynamics. Equivalently, we want to check if the classical dynamics
generated by HInt(t) satisfies the Shale-Stinespring criterion.

Arguments parallel to those of Subsubsect. 2.3.4 show that the classical
scattering operator is unitarily implementable.

An analysis similar to that of Subsect. 5.2.5 shows that the dynamics from
t− to t+ is implementable on the Fock space iff the spatial part of the potential
is the same at the initial and final time:

~A(t+, ~x) = ~A(t−, ~x), ~x ∈ R3. (6.38)

6.2.5 Quantum Hamiltonian

Formally, we can also obtain this field from a unitary dynamics:

ψ̂(t, ~x) := Texp

(
−i

∫ 0

t

Ĥ(s)ds

)
ψ̂(0, ~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
,

where the Hamiltonian in the Schrödinger picture Ĥ(t), and the corresponding
Hamiltonian in the interaction picture are

Ĥ(t) =

∫
d~x:
(
ψ̂∗(~x)(~α(−i~∂ + e ~A(t, ~x)) +mβ + eA0(t, ~x))ψ̂(~x)

)
: + C(t),

ĤInt(t) =

∫
d~xeAµ(t, ~x)Ĵ µfr (t, ~x) + C(t).

Note that unlike in the case of charged bosons we use the Wick ordering.
This is because the perturbation is automatically Wick ordered.

6.2.6 Quantized discrete symmetries

The discrete symmetries considered in Subsubsect. 6.2.3 remain true when we
decorate the fields with “hats”. Thus on the level of quantum observables the
discrete symmetries are the same as in the classical case.

Let us now discuss the implementation of these symmetries by unitary or

antiunitary operators on the Hilbert space Γa(Z(+)
D ⊕ Z(−)

D ). We will discuss
this for free fields, that is, for A = 0. As in the bosonic case, ths will imply
some properties of the scattering operator Ŝ(A).

First consider the charge conjugation. We define the following unitary op-

erator on Z(+)
D ⊕Z(−)

D

χ(g1, g2) := (ξCκg2, ξCκg1).

We check that

χ|p, s) = ξC | − p,−s), χ| − p,−s) = ξC |p, s).
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We set C := Γ(χ). We have C2 = 1l,

Cψ̂(x)C−1 = ξCκψ̂
∗(x), Cψ̂∗(x)C−1 = ξCκψ̂(x),

CQ̂(x)C−1 = −Q̂(x), C
~̂J (x)C−1 = − ~̂J (x),

CŜ(A)C−1 = Ŝ(−A).

As in the bosonic case, on the level of observables charge conjugation is antilinear
but on the level of the Hilbert space it is linear.

Define the following unitary operator on Z(+)
D ⊕Z(−)

D :

π
(
g1, g2

)
:=
(
ξP γ

0g1 ◦ P, ξP γ
0g2 ◦ P

)
.

We check that

π|E, ~p, s) = ξP |E,−~p, s), π|−E,−~p, s) = ξP |−E, ~p, s).

Set P := Γ(π). We have P 2 = 1l,

Pψ̂(x)P−1 = ξP γ
0ψ̂(Px), P ψ̂∗(x)P−1 = ξP γ

0ψ̂∗(Px),

P Q̂(x)P−1 = Q̂(Px), P
~̂J (x)P−1 = − ~̂J (Px),

P Ŝ(A0, ~A)P−1 = Ŝ(A0 ◦ P,− ~A ◦ P).

Define (in the Dirac representation) the following antiunitary operator on

Z(+)
D ⊕Z(−)

D :
τ(g1, g2) :=

(
ξT γ

1γ3g1 ◦ T, ξT γ
1γ3g2 ◦ T

)
.

We check that

τ |E, ~p, s) = ξT |E,−~p,−s), τ |−E,−~p, s) = ξT |−E, ~p,−s).

Set T := Γ(τ). We have T 2 = −1l,

T ψ̂(x)T−1 = ξT γ
1γ3ψ̂∗(Tx), T ψ̂∗(x)T−1 = ξT γ

1γ3ψ̂(Tx),

T Q̂(x)T−1 = Q̂(Tx), T
~̂J (x)T−1 = − ~̂J (Tx),

T Ŝ(A0, ~A)T−1 = Ŝ(A0 ◦ T,− ~A ◦ T).

Again, time reversal is antilinear both on the level of observables and on the
level of the Hilbert space.
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6.2.7 2N-point Green’s functions

We consider again a Dirac field in an external electromagnetic potential [Aµ(x)].
For yN , . . . y1, xN , . . . , x1, the 2N point Green’s function are defined as follows:

G (y1, . . . , yN ;xN , · · · , x1)

:=
(

Ω+|T
(

˜̂
ψ(y1) · · · ˜̂

ψ(yN )ψ̂(xN ) · · · ψ̂(x1)
)

Ω−
)
.

One can organize Green’s functions in terms of the generating function:

Z(g, g̃)

:=

∞∑
n=0

∫
· · ·
∫

(−1)N

(N !)2
G(y1, . . . , yN ;xN , . . . , x1)

×g(y1) · · · g(yN )g̃(xN ) · · · g̃(x1)dy1 · · · dyNdxN · · · dx1

=

(
Ω
∣∣∣Texp

(
−i

∫ ∞
−∞

ĤInt(t)dt− i

∫
g(x)

˜̂
ψfr(x)dx− i

∫
g̃(x)ψ̂fr(x)dx

)
Ω

)
,

where R1,3 3 x 7→ g(x), g̃(x) ∈ C4 are Grassmann variables anticommuting with

ψ̂(x),
˜̂
ψ(x).

One can retrieve Green’s functions from the generating function:

G(y1, . . . , yN ;xN , . . . , x1)

= (−1)N
∂2N

∂g(y1) · · · ∂g(yN )∂g̃(xN ) · · · ∂g̃(x1)
Z(g, g̃)

∣∣∣
g=g̃=0

.

We introduce also the amputated Green’s function

Gamp(p′1, . . . , p
′
N ; pN , . . . , p1)

:=
(
γp′1 +m

)
· · ·
(
γp′N +m

)(
γpN +m

)
· · ·
(
γp1 +m

)
×G(p′1, . . . , p

′
N ; pN , . . . , p1).

Introduce many particle plane waves

|−p′N ′ ,−s′N ′ ; . . . ;−p′1,−s′1; pN , sN ; . . . ; p1, s1)

:= b∗(p′N ′ , s
′
N ′) · · · b∗(p′1, s′1)a∗(pN , sN ) · · · a∗(p1, s1)Ω,

where all p±i , p±′i are on shell. Scattering amplitudes are the matrix elements
of the scattering operator S between plane waves. One can compute scattering
amplitudes from the amputated Green’s functions:(

. . . ; p+
n+ , s

+
n+ ; . . . ;−p+′

n+′ ,−s+′
n+′ | Ŝ |−p−′n−′ ,−s

−′
n−′ ; . . . ; p

−
n− , s

−
n− ; . . .

)

=
· · · ũ(p+

n+ , s
+
n+)ũ(−p−′n−′ ,−s

−′
n−′) · · ·u(−p+′

n+′ ,−s+′
n+′)u(p−n− , s

−
n−) · · ·

(2π)−
3
2 (n++n+′+n−′+n−)

×Gamp
(
. . . ; p+

n+ , s
+
n+ ;−p−′n−′ ,−s

−′
n−′ ; . . . ; . . . ; p

+′
n+′ , s

+′
n+′ ;−p−n− ,−s

−
n− ; . . .

)
.

The scattering operator and Green’s functions satisfy the Ward identities
analogous to those satisfied by charged bosons.
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6.2.8 Path integral formulation

We have the following formula for the generating function:

Z(g, g̃) (6.39)

= det
(
γµ(−i∂µ + eAµ(x)) +m

)(
− iγµ∂µ +m− iε

)−1

× exp
(

ig̃
(
γµ(−i∂µ + eAµ(x)) +m− iε

)−1
g
)

= det (1l + γµeA
µSc

fr)

× exp

(
ig̃Sc

fr

(
1l + γµeA

µSc
fr

)−1

g

)
,

where ε has the same meaning as in (6.2).
In terms of path integrals this can be formally written as∫

Π
y

dψ̃(x) Π
y′

dψ(y) exp
(

i
∫ (
L(x)− g(x)ψ̃(x)− g̃(x)ψ(x)

)
dx
)

∫
Π
y

dψ̃(y) Π
y′

dψ(y′) exp
(
i
∫
Lfr(x)dx

) .

6.2.9 Feynman rules

The Feynman rules are very similar as for charged bosons, except that there are
no two-photon vertices. Here are the Feynman rules for Green’s functions.

(1) In the nth order we draw all possible topologically distinct Feynman di-
agrams with n vertices and external lines. All the charged lines have a
natural arrow.

(2) To each vertex we associate the factor −ieγµAµ(p+ − p−).

(3) To each line we associate the propagator −iSc
fr(p) = −i −pγ+m

p2+m2−i0

(4) For internal lines we integrate over the variables with the measure d4p
(2π)4 .

(5) If two graphs differ only by an exchange of two fermionic lines, there is an
additional factor (−1) for one of them. This implies, in particular, that
loops have an additional factor (−1).

To compute scattering amplitudes with N− incoming and N+ outgoing par-
ticles we draw the same diagrams as for N−+N+-point Green’s functions. The
rules are changed only concerning the external lines.

(i) With each incoming external line we associate

• fermion: (2π)−3/2u(p, s).

• anti-fermion: (2π)−3/2ũ(−p,−s).

(ii) With each outgoing external line we associate

• fermion: (2π)−3/2ũ(p, s).
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• anti-fermion: (2π)−3/2u(−p,−s).

Each incoming and outgoing antifermion has an additional factor (−1).
(This follows from the rule (5) above).

6.2.10 Vacuum energy

Formally, the vacuum energy can be computed exactly:

E := i log(Ω|ŜΩ) = i logZ(0, 0)

= iTr
(

log
(
γµ(−i∂µ+eAµ(x)) +m− iε

)
− log

(
−iγµ∂µ +m− iε

))
= iTr log (1l + γµeAµS

c
fr)

= i

∞∑
n=1

Dn

n
. (6.40)

HereDn is the value of the loop with n vertices (which for n = 2 is divergent).
Note that n in the denominator is the order of the group of the authomorpsms
of a loop with n vertices, which is Zn.

Furry’s theorem, proven as in the bosonic case, says that diagrams for
charged fermions of the odd order in e vanish. Hence (6.40) can be written
as

E =

∞∑
n=1

e2nEn,

where e2nEn = iD2n

2n .
There exists a close relationship between the fermionic and bosonic vacuum

energy. To see it, note that using γ5γµ(γ5)−1 = −γµ, we obtain

E = iTr
(

log
(
− γµ(−i∂µ + eAµ(x)) +m− iε

)
− log

(
iγµ∂µ +m− iε

))
. (6.41)

We add up 1
2 (6.40) and 1

2 (6.41) and use identity (6.33). We obtain

E =
i

2
Tr
(
− log

(
− (∂µ + ieAµ(x))(∂µ + ieAµ(x)) +m2 +

e

2
σµνFµν(x)− i0

)
+ log

(
−2 +m2 − i0

))
=

i

2
Tr log

(
1l +

(
ie∂µA

µ(x) + ieAµ(x)∂µ + e2Aµ(x)Aµ(x)

+
e

2
σµνFµν(x)

)
Dc

fr

)
(6.42)

We can compare (6.42) with a similar expression in the bosonic case (5.39).
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6.2.11 Pauli-Villars renormalization

A single electron loop with two vertices coming from a potential Aµ leads to a
contribution of the form

E1 =

∫
dp

(2π)4
Aµ(−p)Aν(p)Πµν(p).

Unfortunately, computed naively, Πµν(p) is divergent.
We will compute it using the Pauli-Villars regularization. Similarly as for

bosons, it consists in repeating the contribution of each loop with the coefficient
Ci and the propagator of mass mi. We set m0 := m, C0 := 1. We choose m1, . . .
and C1, . . . so that the sums used in the following computations are integrable:

2Πµν(p) = −
∑
i

Ciie
2

∫
d4q

(2π)4

Trγµ
(
(q + 1

2p)γ +mi

)
γν
(
(q − 1

2p)γ +mi

)(
(q + 1

2p)
2 +m2

i − i0
) (

(q − 1
2p)

2 +m2
i − i0

)
= −

∑
i

Ciie
2

∫
4d4q

(2π)4

2qµqν − 1
2pµpν − gµν(q2 − 1

4p
2 +m2

i )

((q + 1
2p)

2 +m2
i − i0)((q − 1

2p)
2 +m2

i − i0)

= −
∑
i

Ciie
2

∫
4d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

(
−2qµqν +

1

2
pµpν + gµν

(
q2 − 1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(
q2 +

1

4
p2 +m2

i

)
− i(α1 − α2)qp

)
= −

∑
i

Ciie
2

∫
4d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

(
2∂zµ∂zν +

1

2
pµpν + gµν

(
− ∂2

z −
1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(
q2 +

1

4
p2 +m2

i

)
− i(α1 − α2)qp+ izq

) ∣∣∣
z=0

=
∑
i

Ci
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2
4

(α1 + α2)2

(
2∂zµ∂zν +

1

2
pµpν + gµν

(
− ∂2

z −
1

4
p2 +m2

i

))
× exp

(
−i(α1 + α2)

(1

4
p2 +m2

i

)
+ i

1

4(α1 + α2)

(
(α1 − α2)p− z

)2
) ∣∣∣

z=0

=
∑
i

Ci
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

(
8α1α2

(α1 + α2)4
(pµpν − gµνp2)

+4gµν

(
α1α2

(α1 + α2)4
p2 +

i

(α1 + α2)3
+

m2
i

(α1 + α2)2

))

× exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
p2

)
=: (−gµνp2 + pµpν)2Πgi(p2) + 2Πgd

µν(p).

We used the identities (A.14), (A.15) and (A.16).
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The gauge dependent part of the vacuum energy tensor up to a coefficient is
the same as for charged bosons and vanishes. We apply the same substitutions
and use the same identities as in the charged boson case:

Πgi(p2) = − e2

(4π)2

∑
i

Ci

∫ ∞
0

dα1

∫ ∞
0

dα2
4α1α2

(α1 + α2)4

× exp

(
−i(α1 + α2)m2

i − i
α1α2

α1 + α2
p2

)
= − e2

(4π)2

∑
i

Ci

∫ 1

0

dv

∫ ∞
0

dρ

ρ
(1− v2)

× exp

(
−iρ

(
m2
i +

(1− v2)p2

4

))
=

e2

(4π)2

∑
i

Ci

∫ 1

0

dv(1− v2) log

(
m2
i +

(1− v2)p2

4
− i0

)
=

e2

(4π)2

∑
i

Ci

(∫ 1

0

dv(1− v2) log

(
1 +

(1− v2)p2

4m2
i

− i0

)
+

1

3
logm2

i

)
.

Set logM2 := −
∑
i

Ci logm2
i . Define

Πren(p2) := lim
M→∞

(
Πgi(p2) +

e2

3(4π)2
log

M2

m2

)
(6.43)

=
e2

(4π)2

∫ 1

0

dv(1− v2) log

(
1 +

(1− v2)p2

4m2
− i0

)
.

Recall that the vacuum energy function for neutral bosons πren was intro-
duced in (2.98). Let Πren

b denote the vacuum energy function for charged bosons
(5.41) and Πren

f for charged fermions (6.43). Let us note the following identity:

2Πren
b (p2) + Πren

f (p2) = 4e2πren(p2). (6.44)

This identity can be also derived from (6.42), (5.39) and (2.97).

6.2.12 Method of dispersion relations

The imaginary part of the propagation tensor can be computed without regu-
larization.

ImΠren(p2) = Im
e2

(4π)2

∫ 1

0

dv(1− v2) log

(
m2 +

(1− v2)p2

4
− i0

)
=

e2

(4π)2

∫ 1

0

dv(1− v2)(−π)θ

(
− (1− v2)p2

4
−m2

)
= − 4e2π

3(4π)2

(−p2 + 2m2)

(−p2)3/2

∣∣−p2 − 4m2
∣∣ 1

2

+
, p2 ∈ R.

The full vacuum energy tensor can be obtained by using the once subtracted
dispersion relations, as in (5.46).
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6.2.13 Dimensional renormalization

We can also use dimensional regularization to compute Πren
µν . We use the Eu-

clidean formalism.

2ΠE
µν(p) = e2Tr1l

∫
d4q

(2π)4

2qµqν − 1
2pµpν − gµν(q2 − 1

4p
2 +m2)

((q + 1
2p)

2 +m2)((q − 1
2p)

2 +m2)

= e2Tr1l

∫ 1

−1

dv

∫
d4q

(2π)4

2qµqν − 1
2pµpν − gµν(q2 − 1

4p
2 +m2)

(q2 + p2

4 +m2 + vqp)2

= e2Tr1l

∫ 1

0

dv

∫
d4q

(2π)4

×
2qµqν − 1

2pµpν − gµν(q2 − 1
4p

2 +m2) + v2( 1
2pµpν − gµν

p2

4 )

(q2 + p2

4 (1− v2) +m2)2
. (6.45)

Then we use the dimensional regularization. Besides the rules (5.49) and (5.50)
we have a new rule:

Tr1l is replaced by 2d/2. (6.46)

Thus (6.45) is replaced by

ΠE,d
µν (p) = e2 2d/2µ4−dΩd

(2π)d

∫ 1

0

dv

∫ ∞
0

|q|d−1d|q|

×
(
(2/d− 1)gµνq

2 − 1
2pµpν − gµν(− 1

4p
2 +m2) + v2( 1

2pµpν − gµν
p2

4 )(
q2 + p2

4 (1− v2) +m2
)2

=
4e2

(4π)2

∫ 1

0

dv
( µ22π
p2

4 (1− v2) +m2

)2−d/2
Γ(2− d/2)

×

(
gµν

(p2

4
(1− v2) +m2

)
− 1

2
pµpν − gµν

(
− 1

4
p2 +m2

)
+ v2

(1

2
pµpν − gµν

p2

4

))

=
2e2

(4π)2

∫ 1

0

dv
( µ22π
p2

4 (1− v2) +m2

)2−d/2
Γ(2− d/2)(v2 − 1)(pµpν − gµνp2)

' 2e2

(4π)2

∫ 1

0

dv
(
− γ + log(µ22π)− log

(p2

4
(1− v2) +m2

))
(v2 − 1)(pµpν − gµνp2)

+
4e2

3(4π)2(2− d/2)
(pµpν − gµνp2) (6.47)

We can now renormalize (6.47):

ΠE,ren(p2)(pµpν − gµνp2)

= lim
d→4

(
ΠE,d
µν (p2)−ΠE,d

µν (0)
)

=
1

(4π)2

∫ 1

0

dv(1− v2) log
(

1 +
p2

4m2
(1− v2)

)
(pµpν − gµνp2).
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Again, this coincides with the Wick rotated result obtained by the Pauli-Villars
method.

Remark 6.3 In the above computations we first try to eliminate gamma matri-
ces. The only remnant of gamma matrices is tr1l, where 1l is the identity on the
space of Dirac spinors, to which we apply the rule (6.46). However, we would
have obtained the same final result if we used eg. the rule Tr1l = 4, since at
the end we use the normalization condition Πren

µν (0) = 0. We use the condition
(6.46) to be consistent with the literature.

Note, however, that in more complicated situations the dimensional renor-
malization can be problematic for fermions, especially in the presence of γ5.

6.2.14 Energy shift

Suppose that the potential does not depend on time and is given by a Schwartz
function R3 3 ~x 7→ Aµ(~x).

The free Hamiltonian is

Ĥfr =

∫
d~x:ψ̂∗(~x)

(
~α(−i~∂) +mβ

)
ψ̂(~x):.

The naive interacting Hamiltonian is

Ĥ =

∫
d~x:ψ̂∗(~x)

(
~α(−i~∂ + e ~A(~x)) +mβ + eA0(~x)

)
ψ̂(~x):.

We apply (A.13) to compute the difference between the ground state energies
of Ĥ and Ĥfr) is

Tr
(
−
∣∣~α(−i~∂ + e ~A(~x)) +mβ + eA0(~x)

∣∣+
∣∣~α(−i~∂) +mβ)

∣∣)
=

∞∑
n=1

e2nEn(A).

Note that in the case of charged fermions we could have assumed that Ĥfr

and Ĥ are given by the antisymmetric quantization, and then used the formula
(A.11). Indeed, formally, Ĥfr and Ĥ differ by the same (infinite) constant (which
was not true in the bosonic case).

All the terms with n ≥ 2 are well defined. The term with n = 1 needs
renormalization. The renormalized energy shift is

Eren = −e2

∫
Πren(~p2)Fµν(~p)Fµν(~p)

d~p

(2π)3
+

∞∑
n=2

e2nEn(A),

where Πren was introduced in (6.43).
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7 Majorana fermions

In this section we consider again the Dirac equation

(−iγµ∂µ +m)φ(x) = 0.

We will quantize the space of its solutions satisfying the Majorana condition.
We obtain a formalism that describes neutral fermions.

In the bosonic case we first treated the neutral case and only then the charged
case. In the fermionic case it is convenient to reverse the order.

We will discuss only free Majorana fermions.

7.1 Free Majorana fermions

7.1.1 Charge conjugation

Consider a representation of Dirac matrices γµ. Let κ be a unitary 4×4 matrix
described in Subsubsect. 6.2.3. We say that u ∈ C4 is neutral or satisfies the
Majorana condition if u = κu.

Recall that in the Majorana representation κ can be taken to be the identity.
In the Dirac and spinor representation κ := iγ2.

7.1.2 Space of solutions

If a function ζ satisfies the Dirac equation

(−iγµ∂µ +m)ζ(x) = 0,

then κζ also satisfies the Dirac equation. Therefore, we can restrict the Dirac
equation to functions ζ satisfying the Majorana condition

κζ = ζ. (7.1)

The space of smooth space compact solutions of the Dirac equation satisfying
(7.1) will be denoted YD. Note that it is a real vector space equipped with a
nondegenerate scalar product

ζ1 · ζ2 =

∫
ζ1(t, ~x)ζ2(t, ~x)d~x.

In the Majorana representation the space YD consists simply of real func-
tions. However, we will most often use the Dirac representation, where the
Majorana condition is less trivial.

Let φ(x) be the linear functional on YD defined by

〈φ(x)|ζ〉 = ζ(x).

The complexification of YD, that is CYD, can be identified with WD. We can
extend φ(x) to CYD by complex linearity. The subspace YD is then determined
by the condition

κφ∗(x) = φ(x).

176



7.1.3 Smeared fields

Smeared fields are defined very similarly as for Dirac fields. Note that in spite
of the similarity of the formulas, the objects are different: they act on the real
space YD, and not on the complex space WD.

For ζ ∈ WD, the corresponding spatially smeared field is the functional on
YD given by

〈φ((ζ))|ρ〉 := ζ · ρ, ρ ∈ YD.

Clearly, for any t

φ((ζ)) =

∫
ζ(t, ~x)φ(t, ~x)d~x.

For f ∈ C∞c (R1,3,C4) such that κf = f , the corresponding space-time
smeared field is given by

φ[f ] :=

∫
f(x)φ(x)dx = φ((S ∗ f)).

7.1.4 Plane waves

Since we consider neutral fields, the generic name for the momentum variable
is again k, instead of p.

Recall that in the Dirac representation we defined the plane waves u(k, s)
given by (6.5). These plane waves are compatible with the Majorana condition
in the following sense:

κu(k, s) = u(−k,−s). (7.2)

We can introduce the plane wave functionals, where k0 > 0,

a(k, s) := φ((|k, s)))

= (2π)−
3
2

∫
d~xu(k, s)e−i~k~xφ(0, ~x).

Note that

a∗(k, s) := φ((| − k,−s)))

= (2π)−
3
2

∫
d~xu(−k,−s)ei~k~xφ(0, ~x).

We have

φ(x) =
∑
s

(2π)−
3
2

∫
d~k
(
u(k, s)eikxa(k, s) + u(−k,−s)e−ikxa∗(k, s)

)
=

∑
s

∫
d~k
(
(k, s|a(k, s) + (−k,−s|a∗(k, s)

)
.
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7.1.5 Quantization

To quantize the Dirac equation with the Majorana condition we use the formal-
ism of quantization of neutral fermionic systems [11].

We want to construct (H, Ĥ,Ω) satisfying the standard requirements and a
distribution

R1,3 3 x 7→ φ̂(x), (7.3)

with values in C4 ⊗B(H) such that the following conditions are true:

(1) (−iγ∂ +m)φ̂(x) = 0, κφ̂∗(x) = φ̂(x);

(2) [φa(0, ~x), φ∗b(0, ~y)]+ = 2δabδ(~x− ~y);

(3) eitĤ φ̂(x0, ~x)e−itĤ = φ̂(x0 + t, ~x);

(4) Ω is cyclic for φ̂(x).

The above problem has a solution unique up to a unitary equivalence, which
we describe below.

Let ZD demote the fermionic positive frequency Hilbert space ZD was defined
in Subsubsect. 6.1.8. We set

H := Γa(ZD).

Creation/annihilation operators on ZD will be denoted â∗/â. Introduce the
operator valued distribution a∗(k, s) defined for k on mass shell by

â∗(k, s) := â∗
(
|k, s)

)
, (7.4)

or equivalently ∑
s

∫
(k, s|g)â∗(k)d~k = â∗(g), g ∈ ZD. (7.5)

We set

φ̂(x) := (2π)−
3
2

∑
s

∫
d~k
(
u(k, s)eikxâ(k, s) + u(−k,−s)e−ikxâ∗(k, s)

)
.

The quantum Hamiltonian and momentum are

Ĥ :=

∫ ∑
s

â∗(k, s)â(k, s)ε(~k)d~k,

~̂
P :=

∫ ∑
s

â∗(k, s)â(k, s)~kd~k.

The whole R1,3 o Spin↑(1, 3) acts unitarily on H. Moreover, if we set
˜̂
φ(x) :=

βφ̂∗(x), then

[φ̂a(x),
˜̂
φb(y)]+ = 2Sab(x− y). (7.6)
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We have

(Ω|φ̂a(x)
˜̂
φb(y)Ω) = 2S

(+)
ab (x− y),

(Ω|T(φ̂a(x)
˜̂
φb(y))Ω) = 2Sc

ab(x− y).

For f ∈ C∞c (R1,3,C4) such that κf = f , we set

φ̂[f ] :=

∫
f(x)φ̂(x)dx.

If we use the Majorana representation, so that κ = 1l, we obtain an operator
valued distribution satisfying the Wightman axioms with D := Γfin

a (ZD).
For an open set O ⊂ R1,3 the field algebra is defined as

F(O) := {φ̂[f ] : f ∈ C∞c (O,C4), κf = f}′′.

The observable algebra A(O) is the even subalgebra of F(O). The nets of alge-
bras F(O) and A(O), O ⊂ R1,3, satisfy the Haag-Kastler axioms.

7.1.6 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses the smeared fields instead of point fields. We look for a linear function

YD 3 ζ 7→ φ̂((ζ))

with values in bounded self-adjoint operators such that

(1) [φ̂((ζ1)), φ̂((ζ2))]+ = 2ζ1 · ζ2;

(2) φ̂((r(t,~0)ζ)) = eitĤ φ̂((ζ))e−itĤ ;

(3) Ω is cyclic for φ̂((ζ)).

One can pass between these two versions of the quantization by

φ̂((ζ)) =

∫
ζ(t, ~x)φ̂(t, ~x)d~x. (7.7)

A Appendix

A.1 Second quantization

A.1.1 Fock spaces

Let Z be a Hilbert space. Let Sn denote the permutation group of n elements
and σ ∈ Sn. Θ(σ) is defined as the unique operator in B(⊗nZ) such that

Θ(σ)g1 ⊗ · · · ⊗ gn = gσ−1(1) ⊗ · · · ⊗ gσ−1(n), g1, . . . , gn ∈ Z.
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Θ(σ) is unitary. We define the symmetrization/antisymmetrization projections

Θn
s :=

1

n!

∑
σ∈Sn

Θ(σ), Θn
a :=

1

n!

∑
σ∈Sn

sgnσΘ(σ).

In what follows we will consider in parallel the symmetric/antisymmetric, or
bosonic/fermionic case. To facilitate notation we will write s/a for either s or
a.

Θn
s/a are orthogonal projections. The n-particle bosonic/fermionic space is

defined as
⊗ns/aZ := Θn

s/a⊗
nZ.

The bosonic/fermionic Fock space is

Γs/a(Z) :=
∞
⊕
n=0
⊗ns/aZ.

The vacuum vector is Ω := 1 ∈ ⊗0
s/aZ = C.

Note that Fock spaces are Hilbert spaces, so that the tensor products and
direct sums used in their definition are completed in their natural topology.
Sometimes we may want a similar construction without the completion (in par-
ticular, if Z is not a Hilbert space). Then we will speak about algebraic Fock
spaces.

A.1.2 Creation/annihilation operators

For g ∈ Z we define the creation operator

â∗(g)Ψ := Θn+1
s/a

√
n+ 1g ⊗Ψ, Ψ ∈ ⊗ns/aZ,

and the annihilation operator â(g) := (â∗(g))
∗
.

Above we used a compact notation for creation/annihilation operators popu-
lar among mathematicians. Physicists commonly prefer another notation, which
is longer and less canonical, but often more flexible. In order to introduce it, we
need to fix an identification of Z with L2 of some measure space. For instance,
let Z = L2(Rd) with the variable called ξ. Every g ∈ Z can be represented as
a function Rd 3 ξ 7→ g(ξ). Then

â∗(g) =

∫
g(ξ)â∗(ξ)dξ,

â(g) =

∫
g(ξ)â(ξ)dξ. (A.1)

We will call the notation on the left of (A.1) “mathematician’s notation” and
on the right “physicist’s notation”.

Let [·, ·]−, resp. [·, ·]+ denote the commutator, resp. anticommutator. Cre-
ation and annihilation operators satisfy canonical commutation/anticommutation
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relations, which in “mathematician’s notation” read

[a∗(f), a∗(g)]± = [a(f), a(g)]± = 0,

[a(f), a∗(g)]± = (f |g),

and in “physicist’s notation” have the form

[a∗(ξ), a∗(ξ′)]± = [a(ξ), a(ξ′)]± = 0,

[a(ξ), a∗(ξ′)]± = δ(ξ − ξ′).

A.1.3 Weyl/antisymmetric and Wick quantization

Let
(ξ1, · · · ξm, ξ′n, · · · , ξ′1) 7→ b(ξ1, · · · ξm, ξ′n, · · · , ξ′1) (A.2)

be a complex function, symmetric/antisymmetric separately wrt the first m and
the last n arguments. Let us introduce the following expression:∫

· · ·
∫
b(ξ1, · · · ξm, ξ′n, · · · , ξ′1) (A.3)

×a∗(ξ1) · · · a∗(ξm)a(ξ′n) · · · a(ξ′1)dξ1 · · · dξmdξ′n · · · dξ′1,

where a(ξ) and a∗(ξ) are commuting/anticommuting symbols. In the symmetric
case this can be interpreted as a polynomial on Z ⊕ Z. Indeed, if we interpret
the symbols a(ξ) as the evaluations of g ∈ Z = L2(Rd):

〈a(ξ)|g〉 := g(ξ), 〈a∗(ξ)|g〉 := g(ξ),

then (A.3) has the meaning of a polynomial function.
It is common to use the name a polynomial also in the antisymmetric case.
The Wick quantization of (A.3) is the operator on the Fock space given by

the same expression, except that we put the “hats” on a and a∗. Note that the
creation operators are on the left and annihillation operators are on the right:∫

b(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

×â∗(ξ1) · · · â∗(ξm)â(ξ′n) · · · â(ξ′1)dξ1, · · · ξndξ′1 · · · dξ′m.

In practice we often have some fields, say ϕ1(ξ), ϕ2(ξ), that can be written
as linear combinations of a(ξ) and a∗(ξ), eg.

ϕi(ξ) =

∫
Ai(ξ)a(ξ) +

∫
Bi(ξ)a

∗(ξ).

Their quantizations are denoted by “hats”:

ϕ̂i(ξ) =

∫
Ai(ξ)â(ξ) +

∫
Bi(ξ)â

∗(ξ).
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Suppose we have a polynomial∑
i1,...,im

∫
· · ·
∫
ci1,...,im(ξ1, · · · ξm)ϕi1(ξ1) · · ·ϕim(ξm)dξ1 · · · dξm. (A.4)

We assume that the coefficients ci1,...,im(ξ1, · · · ξm) are symmetric/antisymmetric.
The most natural quantization of (A.4) is the operator on the Fock space given
by the same expression, where we just put “hats” on the fields. It is called the
Weyl quantization in the bosonic case. In the fermionic case this quantization
seems to have no established name, although it would be tempting to call it the
fermionic Weyl quantization. Following [11], we will call it the antisymmetric
quantization.

By inserting (A.4), we obtain a polynomial expressed in terms of a(ξ) and
a∗(ξ). Its Wick quantization has the traditional notation where the expression
decorated with hats is put between double dots:

:
∑

i1,...,im

∫
· · ·
∫
ci1,...,im(ξ1, · · · ξm)ϕ̂(ξ1) · · · ϕ̂(ξm)dξ1 · · · dξm:.

We will often use Wick quantizations of second degree polynomials. For
instance, let c(ξ, ξ′) be a symmetric/antisymmetric function. Then the Wick
and Weyl/antisymmetric quantizations differ by the vacuum expectation value:

:

∫ ∫
c(ξ, ξ′)ϕ̂(ξ)ϕ̂(ξ′)dξdξ′:

=

∫ ∫
c(ξ, ξ′)

(
A(ξ)A(ξ)â∗(ξ)â∗(ξ′) +A(ξ)B(ξ′)â∗(ξ)â(ξ′)

±B(ξ)A(ξ′)â∗(ξ′)â(ξ) +B(ξ)B(ξ′)â(ξ)â(ξ′)
)

dξdξ′

=

∫ ∫
c(ξ, ξ′)ϕ̂(ξ)ϕ̂(ξ′)dξdξ′ −

∫ ∫
c(ξ, ξ′)

(
Ω|ϕ̂(ξ)ϕ̂(ξ′)Ω

)
dξdξ′.

For 1st order polynomials their Wick quantization coincides with their Weyl/antisymmetric
quantization:

:

∫
f(ξ)ϕ̂(ξ)dξ: =

∫
f(ξ)ϕ̂(ξ)dξ.

A.1.4 Second quantization of operators

For a contraction q on Z we define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗n

s/a
Z

= q ⊗ · · · ⊗ q
∣∣∣
⊗n

s/a
Z
.

Γ(q) is called the second quantization of q.
Similarly, for an operator h we define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗n

s/a
Z

= h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h
∣∣∣
⊗n

s/a
Z
.
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dΓ(h) is called the (infinitesimal) second quantization of h.
If h is the multiplication operator by h(ξ), then using physicist’s notation

we have

dΓ(h) =

∫
h(ξ)â∗(ξ)â(ξ)dξ.

Note the identity Γ(eith) = eitdΓ(h).

A.1.5 Implementability of Bogoliubov translations

Consider bosonic creation/annihilation operators. Let ξ 7→ f(ξ) be a complex
function. Set

a∗1(ξ) = a∗(ξ) + f(ξ),

a1(ξ) = a(ξ) + f(ξ).

Then there exists a unitary operator U on the Fock space such that

Ua∗(ξ)U∗ = a∗1(ξ), Ua(ξ)U∗ = a1(ξ),

iff ∫
|f(ξ)|dξ <∞.

A.1.6 Implementability of Bogoliubov rotations

We will treat simultaneously the bosonic and fermionic case. The upper signs
will always correspond to the bosonic case and lower to the fermionic case.

For an operator p with an integral kernel p(ξ, ξ′) we will write p∗ for its
Hermitian conjugate, p# for its transpose of p and p for its complex conjugate.
Clearly

p∗(ξ, ξ′) = p(ξ′ξ), p#(ξ, ξ′) = p(ξ′, ξ), p(ξ, ξ′) = p(ξ, ξ′).

Let q be na operator with the integral kernel p(ξ, ξ), q(ξ, ξ′). We assume
that p = ±p#. Set

a∗1(ξ) =

∫ (
p(ξ, ξ′)a∗(ξ) + q(ξ, ξ′)a(ξ′)

)
dξ′, (A.5)

a1(ξ) =

∫ (
q(ξ, ξ′)a∗(ξ′) + p(ξ, ξ′)a(ξ)

)
dξ′. (A.6)

Assume that

p∗p∓ q#q = 1l, p∗q ∓ q#p = 0,

pp∗ ∓ qq∗ = 1l, pq# ∓ qp# = 0,

which guarantees tha a∗1, a1 satisfy the same commutation/anticommutation
relations as a∗, a.
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Theorem A.1 There exists a unitary U on the Fock space such that

Ua∗(ξ)U∗ = a∗1(ξ), Ua(ξ)U∗ = a1(ξ),

iff q is Hilbert-Schmidt, that means,∫ ∫
|q(ξ, ξ′)|2dξdξ′ <∞.

The above theorem is called the Shale criterion in the bosonic and the Shale-
Stinespring criterion in the fermionic case. It is proven eg. in [11].

A.1.7 Infimum of a van Hove Hamiltonian

Consider a bosonic Hamiltonian of the form

H :=

∫
ε(ξ)â∗(ξ)â(ξ)dξ +

∫
v(ξ)â∗(ξ)dξ +

∫
v(ξ)â(ξ)dξ. (A.7)

Such Hamiltonians are sometimes called van Hove Hamiltonians [11]. Assume
that ε is positive. We would like to compute the infimum of the spectrum of H,
denoted inf H.

By completing the square we can rewrite (A.7) as∫
ε(ξ)

(
â∗(ξ) +

v(ξ)

ε(ξ)

)(
â(ξ) +

v(ξ)

ε(ξ)

)
dξ −

∫
|v(ξ)|2

ε(ξ)
dξ. (A.8)

It is easy to see that the infimum of the first term in (A.8) is zero. Hence

inf H = −
∫
|v(ξ)|2

ε(ξ)
dξ. (A.9)

A.1.8 Infimum of a Bogoliubov Hamiltonian

Consider a bosonic or fermionic Hamiltonian:

H :=

∫
h(ξ, ξ′)

(
â∗(ξ)â(ξ′)± â(ξ)â∗(ξ′)

)
dξdξ′

+

∫ (
g(ξ, ξ′)â∗(ξ)â∗(ξ′)± g(ξ, ξ′)â(ξ)â(ξ)

)
dξdξ′. (A.10)

We assume that h(ξ, ξ′) = h(ξ′, ξ), g(ξ, ξ′) = ±g(ξ′ξ). We will call (A.10)
Bogoliubov Hamiltonians. Note that (A.10) is the Weyl/antisymmetric quanti-
zation of the corresponding classical quadratic Hamiltonian. In the case of an
infinite number of degrees of freedom it is often ill defined, but even then it is
useful to consider such formal expressions.

We have the following formula for the infimum of H [11]:

inf H = ±1

2
Tr

[
h2 ∓ gg∗ ∓hg ± gh#

g∗h− h#g∗ h#2 ∓ g∗g

] 1
2

. (A.11)
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Here, we write h for the operator with the integral kernel h(ξ, ξ′) and g for the
operator with the integral kernel g(ξ, ξ′).

Consider the Wick ordered version of (A.10):

:H: := 2

∫
h(ξ, ξ′)â∗(ξ)â(ξ′)dξdξ′

+

∫ (
g(ξ, ξ′)â∗(ξ)â∗(ξ′)± g(ξ, ξ′)â(ξ)â(ξ)

)
dξdξ′. (A.12)

:H: has a better chance to be well defined. The formula for the infimum of :H:
is more complicated, but is more likely to lead to a finite expression [11]:

inf :H: =
1

2
Tr

(
±
[

h2 ∓ gg∗ ∓hg ± gh#

g∗h− h#g∗ h#2 ∓ g∗g

] 1
2

∓
[
h 0
0 h#

])
. (A.13)

A.2 Miscellanea

A.2.1 Identities

1

A− i0
= i

∫ ∞
0

dα exp(−iαA), (A.14)

pµ = i∂zµ exp(−ipz)
∣∣∣
z=0

, (A.15)∫
dp

(2π)4
exp

(
−i(ap2 + bp)

)
= i

sgn(a)

(4π)2a2
exp

(
ib2/4a

)
. (A.16)

If
∑
Ci = 0, then∫ ∞

0

∑
i

Ci
dρ

ρ
e−iρAi = −

∑
i

Ci log(Ai − i0), (A.17)

∫
log(A2 − w2)dw = w log(A2 − w2)− 2w

+A log
(A+ w)

(A− w)
, 0 < w < A; (A.18)∫

w2 log(A2 − w2)dw =
w3

3
log(A2 − w2)− 2w3

9
− 2A2w

3

+
A3

3
log

(A+ w)

(A− w)
, 0 < w < A. (A.19)

A.2.2 Identities for the dimensional regularization

The Feynman identity:

1

AB
=

1

2

∫ 1

−1

dv(
1
2 (A+B) + 1

2 (A−B)v
)2 . (A.20)
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The behavior of Γ around 0:

Γ(2− d/2) ' 1

2− d/2
− γ. (A.21)

The area of the unit d− 1-dimensional sphere:

Ωd =
2πd/2

Γ(d/2)
. (A.22)

Integrals, which can be reduced to special cases of the Euler integral:∫ ∞
0

td−1

(t2 +A2)2
dt =

1

2
(A2)−2+d/2Γ(d/2)Γ(2− d/2), (A.23)∫ ∞

0

td+1

(t2 +A2)2
dt =

1

2
(A2)−1+d/2Γ(1 + d/2)Γ(1− d/2)

=
1

2
(A2)−1+d/2Γ(d/2)Γ(2− d/2)(−1 + 2/d)−1. (A.24)

Typical integrals:

µ4−dΩd
(2π)d

∫ ∞
0

|q|d−1(
q2 +A2

)2 d|q|

=
1

(4π)2

(µ24π

A2

)2−d/2
Γ(2− d/2)

≈ 1

(4π)2

(
1 + (2− d/2) log

µ24π

A2

)( 1

2− d/2
− γ
)

≈ 1

(4π)2

(
− γ + log

µ24π

A2
+

1

(2− d/2)

)
. (A.25)

µ4−dΩd
(2π)d

∫ ∞
0

(−1 + 2/d)
|q|d+1(
q2 +A2

)2 d|q|

=
A2

(4π)2

(µ24π

A2

)2−d/2
Γ(2− d/2)

≈ A2

(4π)2

(
1 + (2− d/2) log

µ24π

A2

)( 1

2− d/2
− γ
)

≈ A2

(4π)2

(
− γ + log

µ24π

A2
+

1

(2− d/2)

)
. (A.26)

186



A.2.3 Operator identities

If A is a positive self-adjoint operator, then

A1/2 =

∫
A

(A+ τ2)

dτ

2π
, (A.27)

A−1/2 =

∫
1

(A+ τ2)

dτ

2π

= −2

∫
1

(A+ τ2)2
τ2 dτ

2π
. (A.28)

In the following identity κ is a certain operator. It is useful when studying nth
order loop diagrams: ∫

Tr
1

(A+ τ2)2
κ
( 1

(A+ τ2)
κ
)n−1

τ2 dτ

2π

= − 1

2n

∫
Tr
( 1

(A+ τ2)
κ
)n dτ

2π
. (A.29)

A.2.4 Coulomb and Yukawa potential

If ρ ∈ Cc(R3), then
ρ = −∆f

has a unique solution in functions that decay at infinity given by

f(~x) = (−∆)−1ρ(~x) =

∫
1

4π|~x− ~y|
ρ(~y)d~y. (A.30)

For large |~x|, (A.30) has the asymptotics

1

4π|~x|

∫
ρ(~y)d~y +O

(
1

|~x|2

)
. (A.31)

More generally

(m2 −∆)−1ρ(~x) =

∫
e−m|~x−~y|

4π|~x− ~y|
ρ(~y)d~y. (A.32)

A.2.5 Vector fields

Consider a vector field R3 3 ~x 7→ ~A(~x) ∈ R3. We say that it is transversal if

div ~A(~x) = 0.

If it is not necessarily transversal but sufficiently nice, its transversal part is
defined as

~Atr(~x) := ~A(~x) + (−∆)−1~∂div ~A(~x). (A.33)
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We have the identities∫
~A(~x)2d~x =

∫
~Atr(~x)2d~x+

∫ (
(−∆)−1/2div ~A(~x)

)2
d~x,∫ (

~∂ ~A(~x)
)2

d~x =

∫ (
~∂ ~Atr(~x)

)2
d~x+

∫ (
div ~A(~x)

)2
d~x, (A.34)∫ (

~∂ ~Atr(~x)
)2

d~x =
1

2

∫ (
rot ~A(~x)

)2
d~x. (A.35)
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