Quantum fields
with classical perturbations

Jan Dereziński
Dept. of Math. Methods in Phys.,
Faculty of Physics, University of Warsaw
Hoza 74, 00-682 Warszawa, Poland
email Jan.Derezinski@fuw.edu.pl

February 21, 2014

Abstract

The main purpose of these notes is a review of various models of Quantum Field Theory involving quadratic Lagrangians. We discuss scalar and vector bosons, spin $\frac{1}{2}$ fermions, both neutral and charged. Beside free theories, we study their interactions with classical perturbations, called, depending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT.

Contents

0 Introduction 6

1 Basic concepts 10
 1.1 Minkowski space 10
 1.1.1 Coordinates in Minkowski space 10
 1.1.2 Causal structure 11
 1.1.3 Fourier transform 12
 1.1.4 Poincaré group 12
 1.1.5 Double covering of the Poincaré group 13
 1.2 General concepts of quantum field theory 14
 1.2.1 Quantum mechanics 14
 1.2.2 Relativistic quantum mechanics 14
 1.2.3 Haag-Kastler axioms for observable algebras 15
 1.2.4 Haag-Kastler axioms for field algebras 16
 1.2.5 Quantum fields 17
 1.2.6 Wightman axioms for neutral fields 18
 1.2.7 Global symmetries 19
2.3.2 Lagrangian and Hamiltonian formalism 58
2.3.3 Dynamics in the interaction picture 58
2.3.4 Quantization 59
2.3.5 Quantum Hamiltonian 60
2.3.6 Path integral formulation 61
2.3.7 Feynman rules 61
2.3.8 Vacuum energy 63
2.3.9 Pauli-Villars renormalization 64
2.3.10 Method of dispersion relations 66
2.3.11 Wick rotation 66
2.3.12 Dimensional renormalization 68
2.3.13 Renormalization of the scattering operator 69
2.3.14 Energy shift 70

3 Massive photons 71
3.1 Free massive photons 72
3.1.1 Space of solutions 72
3.1.2 Classical potentials 72
3.1.3 Poisson brackets 73
3.1.4 Smeread potentials 74
3.1.5 Lagrangian formalism and stress-energy tensor 74
3.1.6 Diagonalization of the equations of motion 75
3.1.7 Plane waves 78
3.1.8 Positive frequency space 79
3.1.9 Spin averaging 79
3.1.10 Quantization 80
3.2 Massive photons with an external current 81
3.2.1 Classical potentials 81
3.2.2 Lagrangian and Hamiltonian formalism 82
3.2.3 Quantization 83
3.2.4 Causal propagators 85
3.2.5 Feynman rules 86
3.2.6 Path integral formulation 86
3.2.7 Energy shift 88
3.3 Alternative approaches 89
3.3.1 Classical potentials without the Lorentz condition 89
3.3.2 The Lorentz condition 90
3.3.3 Diagonalization of the equations of motion 90
3.3.4 Positive frequency space 92
3.3.5 “First quantize, then reduce” 93
3.3.6 Quantization without reduction on a positive definite Hilbert space 94
3.3.7 The Gupta-Bleuler approach 95
4 Massless photons

4.1 Free massless photons
 4.1.1 Space of solutions and the gauge invariance
 4.1.2 Classical potentials
 4.1.3 Smeared potentials
 4.1.4 Lagrangian formalism and the stress-energy tensor
 4.1.5 Diagonalization of the equations of motion
 4.1.6 Positive frequency space
 4.1.7 Spin averaging
 4.1.8 Quantization
 4.1.9 Quantization in terms of C^*-algebras

4.2 Massless photons with an external current
 4.2.1 Classical fields
 4.2.2 Lagrangian and Hamiltonian formalism
 4.2.3 Quantization
 4.2.4 Causal propagators
 4.2.5 Path integral formulation
 4.2.6 The $m \to 0$ limit
 4.2.7 Current produced by a travelling particle
 4.2.8 Energy shift

4.3 Alternative approaches
 4.3.1 Manifestly Lorentz covariant formalism
 4.3.2 The Lorentz condition
 4.3.3 Positive frequency space
 4.3.4 “First quantize, then reduce”
 4.3.5 Quantization with a subsidiary condition
 4.3.6 The Gupta-Bleuler approach

5 Charged scalar bosons

5.1 Free charged scalar bosons
 5.1.1 Classical fields
 5.1.2 Smeared fields
 5.1.3 Lagrangian formalism
 5.1.4 Classical current
 5.1.5 Stress-energy tensor
 5.1.6 Diagonalization of the equations of motion
 5.1.7 Plane waves
 5.1.8 Positive and negative frequency subspace
 5.1.9 Quantization
 5.1.10 Quantum current
 5.1.11 Quantization in terms of smeared fields

5.2 Charged scalar bosons in an external potential
 5.2.1 Classical fields
 5.2.2 Lagrangian and Hamiltonian formalism
 5.2.3 Classical current
 5.2.4 Classical discrete symmetries

5.2.5 Quantization .. 132
5.2.6 Quantum Hamiltonian 133
5.2.7 Quantized discrete symmetries 133
5.2.8 2N-point Green’s functions 135
5.2.9 Path integral formulation 136
5.2.10 Feynman rules 136
5.2.11 Vacuum energy 138
5.2.12 Pauli-Villars renormalization 139
5.2.13 Method of dispersion relations 142
5.2.14 Dimensional renormalization 143
5.2.15 Abstract gauge covariance 144
5.2.16 Ward identities 145
5.2.17 Energy shift ... 147

6 Dirac fermions ... 147
6.1 Free Dirac fermions 148
 6.1.1 Dirac spinors 148
 6.1.2 Special solutions and Green’s functions 149
 6.1.3 Space of solutions 150
 6.1.4 Classical fields 151
 6.1.5 Smeared fields 152
 6.1.6 Diagonalization of the equations of motion ... 152
 6.1.7 Plane wave functionals 154
 6.1.8 Positive and negative frequency subspaces ... 154
 6.1.9 Spin averaging 155
 6.1.10 Quantization 155
 6.1.11 Quantization in terms of smeared fields ... 157
 6.1.12 Dirac sea quantization 157
 6.1.13 Fermionic Hamiltonian formalism 159
 6.1.14 Fermionic Lagrangian formalism 159
 6.1.15 Classical current 161
 6.1.16 Quantum current 162
6.2 Dirac fermions in an external potential 164
 6.2.1 Dirac equation in an external potential 164
 6.2.2 Lagrangian and Hamiltonian formalism 164
 6.2.3 Classical discrete symmetries 165
 6.2.4 Quantization 166
 6.2.5 Quantum Hamiltonian 167
 6.2.6 Quantized discrete symmetries 167
 6.2.7 2N-point Green’s functions 169
 6.2.8 Path integral formulation 170
 6.2.9 Feynman rules 170
 6.2.10 Vacuum energy 171
 6.2.11 Pauli-Villars renormalization 172
 6.2.12 Method of dispersion relations 173
 6.2.13 Dimensional renormalization 174
0 Introduction

In these notes we discuss various models of Quantum Field Theory in 1+3 dimensions involving quadratic Lagrangians or, equivalently, quadratic Hamiltonians.

First of all, we describe basic types of free fields:

1) neutral scalar bosons,
2) neutral massive vector bosons ("massive photons"),
3) neutral massless vector bosons ("massless photons"),
4) charged scalar bosons,
5) (charged) Dirac fermions,
6) (neutral) Majorana fermions.

We also consider free fields perturbed by a linear or quadratic perturbation involving a classical (c-number) function.

1) neutral scalar bosons interacting with a linear source,
(2) neutral scalar bosons interacting with a \textit{mass-like perturbation},
(3) massive photons interacting with a \textit{classical current},
(4) massless photons interacting with a \textit{classical current},
(5) charged scalar bosons interacting with an \textit{electromagnetic potential},
(6) Dirac fermions interacting with an \textit{electromagnetic potential}.

All the above models are (or at least can be) well understood in the non-perturbative sense. Perturbation theory is not necessary to compute their \textit{scattering operators} and \textit{Green's functions}, which is not the case (at least so far) of truly interacting models.

Quantum fields interacting with classical perturbations is a topic with many important applications to realistic physical systems. Therefore, the formalism developed in our text is well motivated physically.

Clearly, many important issues of quantum field theory are outside of the scope of free fields interacting with classical perturbations. However, surprisingly many difficult topics can be discussed already on this level. Therefore, we believe that our text has pedagogical value, as a kind of an introduction to full quantum field theory.

In our text we stress the deductive character of quantum field theory. Models that we discuss are quite rigid and built according to strict principles. Among these principles let us mention the \textit{Poincaré covariance}, the \textit{Einstein causality} and the \textit{boundedness of the Hamiltonian from below}. Some of these principles are encoded in the \textit{Haag-Kastler} and \textit{Wightman axioms}. Even if these axioms are often too restrictive, they provide useful guidelines.

The only known models for Haag-Kastler or Wightman axioms in 1+3 dimensions are free theories. Their scattering theory is trivial. To obtain interesting physical information one needs \textit{interacting theories}. Unfortunately, interacting theories are known only perturbatively.

Free theories are the quantizations of covariant 2nd order linear hyperbolic equations on the Minkowski space. These equations can be perturbed by 0th or 1st order terms involving an arbitrary space-time functions called, depending on the context, a classical (=external) linear source, mass-like term, current or electromagnetic potential. We can consider the quantization of the perturbed equation. Such a theory is still essentially exactly solvable, since the Hamiltonian is quadratic. It has no Poincaré covariance. However, it still gives rise to a net of observable algebras satisfying the Einstein causality.

In our discussion we always start from the study of the \textit{classical theory} of a covariant 2nd order linear hyperbolic equation. In particular, we discuss this equation from the Hamiltonian and Lagrangian point of view. Then we discuss its quantization. Even though in all these cases the Hamiltonian is quadratic, its quantization often has various subtle points. In some cases, especially for vector fields, there are several natural approaches to quantization, which in the end lead to the same physical results. We try to discuss various possible approaches. In our opinion, the existence of seemingly different formalisms
for the same physical system constitutes one of the most confusing aspects of quantum field theory.

Classical perturbations that we consider are usually described by smooth space-time functions that decay fast both in space and time. In particular, their dynamics is typically described by time-dependent Hamiltonians. This is a certain minor difficulty, which is often ignored in the literature. We discuss how to modify the usual formalism in order to deal with this problem.

The models that we discuss illustrate many problems of interacting theories, such as the ultraviolet problem, the infrared problem and the gauge invariance.

The ultraviolet problem means that when we try to define a theory in a naive way some integrals are divergent for large momenta. In the context of our paper this is never due to classical perturbations, which we always assume to be smooth – the source of ultraviolet divergences is the behavior of propagators.

The ultraviolet problem is already visible when we consider neutral fields with a masslike perturbation or charged fields with a classical electromagnetic potential. In these systems classical dynamics exists under rather weak assumptions. However there are problems with the quantum dynamics.

In some cases the quantum dynamics cannot be implemented on a Hilbert space. This is the case of charged particles (bosons or fermions) in the presence of variable spatial components of the electromagnetic potential. If the electromagnetic potential goes to zero in the past and future, then the object that exists under rather weak assumptions is the scattering operator.

Even if we are able to implement the classical dynamics or the classical scattering operator, we encounter another unpleasant surprise. The only quantity that is not fixed by the classical considerations is the phase factor of the scattering operator, written as $e^{-i\mathcal{E}/\hbar}$, where \mathcal{E} is usually called the vacuum energy. Computed naively, it often turns out to be divergent. In order to make this phase factor finite it is necessary to renormalize the naive expression. This divergence appears in low order vacuum energy diagrams. It was first successfully studied by Heisenberg and Euler in the 30’s. A quantity closely related to this phase factor is the effective action, which for a constant field was computed exactly by Schwinger.

The infrared problem means that in a naive theory some integrals are divergent for small momenta. This problem appears already in non-relativistic quantum mechanics – in scattering theory with Coulomb forces. These forces are long-range, which makes the usual definition of the scattering operator impossible [10]. Its another manifestation is the appearance of inequivalent representations of canonical commutation relations when we consider scattering of photons against a classical current that has a different direction in the past and in the future [9, 11]. Thus, even in these toy non-relativistic situations the usual scattering operator is ill-defined. Therefore, it is not surprising that (much bigger) problems are present eg. in the full QED. One can cope with the infra-red problem by approximating massless photons with massive ones and restricting computations only to inclusive cross-sections justified by an imperfect resolution of the measuring device [47, 22, 45].

The expression gauge invariance has in the context of quantum field theory
several meanings.

(1) The most common meaning, discussed already in the context of classical electrodynamics, is the fact that if a total derivative is added to a 4-potential solving the Maxwell equation, then it still solves the Maxwell equations. Of course, this no longer holds for the Proca equations – the massive generalization of the Maxwell equations. Therefore, it is often stressed that gauge invariance implies that the photons are massless.

(2) There exists another meaning of gauge invariance: we can multiply charged fields by a space-time dependent phase factor and compensate it by changing the external potentials.

1. and 2. go together in the full QED, which is invariant with respect to these two gauge transformations applied simultaneously.

(3) One often uses the term “gauge invariance” in yet another meaning: To compute the scattering operator we can use various (free) photon propagators. Equivalently, we have the freedom of choosing a Lagrangian in the path integral formalism. This meaning applies both to massive and massless photons. Some of these propagators are distinguished, such as the propagator in the Feynman or the Coulomb gauge. (Note, however, that time-ordered N-point Green’s functions depend on the choice of the propagator).

All these three meanings of gauge invariance can be illustrated with models that we consider.

Our paper is most of the time rigorous mathematically. In the places where it is not, we believe that many readers can quite easily make it rigorous. We try to make the presentation of various models parallel by applying, if possible, coherent notation and formalism. This makes our text sometimes repetitious – we believe that this helps the reader to understand small but often confusing differences between distinct models.

Mathematical language that we use is most of the time elementary. Sometimes we use some mathematical concepts and facts that are, perhaps, less commonly known, such as C^*-algebras, von Neumann algebras, the Schwartz Kernel Theorem. The readers unfamiliar with them should not be discouraged – their role in the article is minor.

Most of the material of this work has been considered in one way or another in the literature. Let us give a brief and incomplete review of references.

On the formal level examples of quantum fields with classical perturbations are discussed in most textbooks on quantum field theory, see eg. [21, 22, 36, 40, 45, 44, 5].

Linear hyperbolic equations is a well established domain of partial differential equations, see eg [3].

Axioms of quantum field theory are discussed in [42, 18, 17].

A necessary and sufficient condition for the implementability of Bogoliubov transformation was given by Shale for bosons [38] and by Shale and Stinespring for fermions [39], see also [11]
Problems with implementability of the dynamics of charged particles in external potentials was apparently first noticed on a heuristic level in [35]. It was studied rigorously by various authors. In particular, charged bosons were studied in [37, 27, 28, 29, 20, 1] and charged fermions in [32, 25, 24, 33, 8].

The renormalization of the vacuum energy goes back to pioneering work of [19]. In the mathematically rigorous literature it leads to the concept of a causal phase discussed in [34].

The infrared problem goes back to [6, 23], see also [9].

The Gupta-Bleuler method of quantization of photon fields goes back to [15, 16]. The C^*-algebraic formulation of the subsidiary condition method is discussed in [43].

Rigorous study of vacuum energy for Dirac fermions in a stationary potential is given in [14].

Acknowledgements The origins of these notes go back to a lecture course on QED in Munich, which I prepared at the request of H.Siedentop. The course, with some modifications, was then repeated in Paris at the request of M.Lewin, in Copenhagen at the request of J.P.Solovej, in Warsaw, and in Montreal at the request of V.Jaksic and R.Seiringer. I am grateful to the colleagues who invited me to give these courses for their support and advice. Remarks of participants of my courses, among them of P.Majewski, E.Stockmeier, P.Pickl, D.-A.Deckert and P.Duch, are also appreciated.

I am grateful to the experts in quantum field theory, K.Pachucki, I.B.Bialynicki-Birula, K.Meissner, V.Shabaev, who answered my various questions.

Last but not least, I profited greatly from my long term collaboration with C.Gérard.

My research was supported in part by the National Science Center (NCN) grant No. 2011/01/B/ST1/04929.

1 Basic concepts

1.1 Minkowski space

1.1.1 Coordinates in Minkowski space

The coordinates of the Minkowski space $\mathbb{R}^{1,3}$ will be typically denoted by x^μ, $\mu = 0, 1, 2, 3$. By definition, the Minkowski space is the vector space \mathbb{R}^4 equipped with the canonical pseudo-euclidean form of signature $(-+++)$

$$g_{\mu\nu} x^\mu x^\nu = -(x^0)^2 + \sum_{i=1}^{3} (x^i)^2.$$

(Throughout these notes the velocity of light c has the value 1 and we use the Einstein summation convention). We use metric tensor $[g_{\mu\nu}]$ to lower the indices and its inverse $[g^{\mu\nu}]$ to raise the indices:

$$x_\mu = g_{\mu\nu} x^\nu, \quad x^\mu = g^{\mu\nu} x_\nu.$$
For a function $\mathbb{R}^{1,3} \ni x \mapsto f(x)$, we will sometimes use various kind of notation for partial derivatives:

$$\frac{\partial f(x)}{\partial x^\mu} = \partial_{x^\mu} f(x) = \partial_\mu f(x) = f_\mu(x).$$

Writing \mathbb{R}^3 we will typically denote the spatial part of the Minkowski space obtained by setting $x^0 = 0$. If $x \in \mathbb{R}^{1,3}$, then \vec{x} will denote the projection of x onto \mathbb{R}^3. Latin letters i,j,k will sometimes denote the spatial indices of a vector. Note that $x_i = x^i$.

e_{ijk}$ denotes the 3-dimensional Levi-Civita tensor (the fully antisymmetric tensor satisfying $e^{123} = 1$).

For a vector field $\mathbb{R}^3 \ni \vec{x} \mapsto \vec{A}(\vec{x})$ we define its divergence and rotation in the standard way:

$$\text{div} \vec{A} = \partial_i A^i, \quad (\text{rot} \vec{A})^i = e^{ijk}\partial_j A_k.$$

We write $\vec{\partial} \vec{A}$ as the shorthand for the tensor $\partial_i A_j$, moreover,

$$(\vec{\partial} \vec{A})^2 := \sum_0 (\partial_i A_j)^2.$$

On $\mathbb{R}^{1,3}$ we have the standard Lebesgue measure denoted dx. The notation $d\vec{x}$ will be used for the Lebesgue measure on $\mathbb{R}^3 \subset \mathbb{R}^{1,3}$.

We will often write t for $x^0 = -x_0$. The time derivative will be often denoted by a dot:

$$\dot{f}(t) = \frac{\partial f(t)}{\partial t} = \partial_t f(t) = \frac{\partial f(x^0)}{\partial x^0} = \partial_0 f(x^0) = f_0(x^0).$$

$\theta(t)$ will denote the Heaviside function. We set $|t|_+ := \theta(t)|t|$.

1.1.2 Causal structure

A nonzero vector $x \in \mathbb{R}^{1,3}$ is called

- **timelike** if $x_\mu x^\mu < 0$,
- **causal** if $x_\mu x^\mu \leq 0$,
- **lightlike** if $x_\mu x^\mu = 0$,
- **spacelike** if $x_\mu x^\mu > 0$.

A causal vector x is called

- **future oriented** if $x^0 > 0$,
- **past oriented** if $x^0 < 0$.

The set of future/past oriented causal vectors is called the future/past light cone and denoted J^\pm. We set $J := J^+ \cup J^-$.

11
If $O \subset \mathbb{R}^{1,3}$, its causal shadow is defined as $J(O) := O + J$. We also define its future/past shadow $J^\pm(O) := O + J^\pm$.

Let $O_i \subset \mathbb{R}^{1,3}$, $i = 1, 2$. We will write $O_1 \times O_2$ iff $J(O_1) \cap O_2 = \emptyset$, or equivalently, $O_1 \cap J(O_2) = \emptyset$. We then say that O_1 and O_2 are spatially separated.

A function on $\mathbb{R}^{1,3}$ is called space-compact iff there exists a compact $K \subset \mathbb{R}^{1,3}$ such that $\text{supp} f \subset J(K)$. It is called future/past space-compact iff there exists a compact $K \subset \mathbb{R}^{1,3}$ such that $\text{supp} f \subset J^\pm(K)$.

The set of space-compact smooth functions will be denoted $C^\infty_{sc}(\mathbb{R}^{1,3})$. The set of future/past space-compact smooth functions will be denoted $C^\infty_{\pm sc}(\mathbb{R}^{1,3})$.

1.1.3 Fourier transform

We will use the standard definition for the Fourier transform: If $\mathbb{R}^3 \ni \vec{x} \mapsto f(\vec{x})$ is a function, then

$$\mathcal{F} f(\vec{k}) := \int e^{-i\vec{k} \cdot \vec{x}} f(\vec{x}) d\vec{x}.$$

Often, we will drop \mathcal{F} writing $f(\vec{k})$ for $\mathcal{F} f(\vec{k})$. The name of the variable should suffice to indicate whether we use the position or momentum representation.

For the time variable (typically t) we reverse the sign in the Fourier transform

$$f(\varepsilon) = \int e^{i\varepsilon t} f(t) dt.$$

1.1.4 Poincaré group

The pseudo-Euclidean group $O(1,3)$ is called the Lorentz group. Its connected component of unity is denoted $SO^\uparrow(1,3)$. The affine extension of the Lorentz group $\mathbb{R}^{1,3} \rtimes O(1,3)$ is called the Poincaré group.

The Lorentz group contains special elements: the time reversal T and the space inversion (the parity) P and the space-time inversion $X := PT$:

$$T(x^0, \vec{x}) = (-x^0, \vec{x}), \quad P(x^0, \vec{x}) = (x^0, -\vec{x}), \quad Xx = -x.$$

It consists of four connected components

$$SO^\uparrow(1,3), \quad T \cdot SO^\uparrow(1,3), \quad P \cdot SO^\uparrow(1,3), \quad X \cdot SO^\uparrow(1,3).$$

$O(1,3)$ has three subgroups of index two: the special Lorentz group (preserving the spacetime orientation), the orthochronous Lorentz group (preserving the forward light cone) and the chiral Lorentz group (preserving the spatial parity):

$$SO(1,3) = SO^\uparrow(1,3) \cup X \cdot SO^\uparrow(1,3),$$
$$O^\uparrow(1,3) = SO^\uparrow(1,3) \cup P \cdot SO^\uparrow(1,3),$$
$$O^{\text{chir}}(1,3) = SO^\uparrow(1,3) \cup T \cdot SO^\uparrow(1,3).$$
1.1.5 Double covering of the Poincaré group

The group $SO^\uparrow(1,3)$ has a connected double covering called $Spin^\uparrow(1,3)$, which happens to be isomorphic to $Sl(2,\mathbb{C})$. This defines $Spin^\uparrow(1,3)$ uniquely, up to isomorphism. We have the short exact sequence

$$1 \rightarrow \mathbb{Z}_2 \rightarrow Spin^\uparrow(1,3) \rightarrow SO^\uparrow(1,3) \rightarrow 1.$$

The group $O(1,3)$ has 8 non-isomorphic double coverings ([41] Sect. 3.10). Among them one can distinguish the groups $Pin_{\pm}(1,3)$. They are generated by $Spin^\uparrow(1,3)$ and elements \tilde{P}_{\pm} and \tilde{T}_{\pm} that cover P and T and satisfy

$$\tilde{T}_{\pm}^2 = \pm \mathbb{I}, \quad \tilde{P}_{\pm}^2 = \pm \mathbb{I}, \quad \tilde{T}_{\pm}\tilde{P}_{\pm} + \tilde{P}_{\pm}\tilde{T}_{\pm} = 0.$$

We have the short exact sequence

$$1 \rightarrow \mathbb{Z}_2 \rightarrow Pin_{\pm}(1,3) \rightarrow O(1,3) \rightarrow 1.$$

Each group (1.1), (1.2) and (1.3) has two non-isomorphic double coverings. In particular, we have

$$1 \rightarrow \mathbb{Z}_2 \rightarrow Spin(1,3) \rightarrow SO(1,3) \rightarrow 1.$$

The group $Spin(1,3)$ is contained in both $Pin_{\pm}(1,3)$ and $Pin_{-(1,3)}$. It is obtained from $Spin^\uparrow(1,3)$ by adjoining \tilde{X} satisfying $\tilde{X}^2 = -\mathbb{I}$. (The other covering, obtained by adjoining \tilde{X} satisfying $\tilde{X}^2 = \mathbb{I}$ will not play a role in our considerations).

We also have two pairs of double coverings contained in $Pin_{\pm}(1,3)$:

$$1 \rightarrow \mathbb{Z}_2 \rightarrow Pin_{\pm}^\uparrow(1,3) \rightarrow O^\uparrow(1,3) \rightarrow 1.$$

obtained by adjoining \tilde{P} satisfying $\tilde{P}^2 = \pm \mathbb{I}$,

$$1 \rightarrow \mathbb{Z}_2 \rightarrow Pin_{\pm}^{\text{chir}}(1,3) \rightarrow O^{\text{chir}}(1,3) \rightarrow 1.$$

obtained by adjoining \tilde{T} satisfying $\tilde{T}^2 = \pm \mathbb{I}$.

Clearly, $\mathbb{R}^{1,3} \rtimes Pin(1,3)$ is a double covering of the Poincaré group. Its elements will be often written as (a, Λ) and then the corresponding element of $\mathbb{R}^{1,3} \rtimes O(1,3)$ will be denoted by (a, Λ).

Obviously, all the groups discussed in this subsection can be complexified. In particular, we have the group $Pin(4,\mathbb{C})$, which is the complexification of both $Pin_{-(1,3)}$ and $Pin_{+(1,3)}$.

It will be also useful to introduce the group $Pin_{\text{ext}}(1,3)$, which is a subgroup of $Pin(4,\mathbb{C})$ and is generated by $Pin_{-(1,3)}$ and $i\mathbb{I}$, and also by $Pin_{+(1,3)}$ and $i\mathbb{I}$.
1.2 General concepts of quantum field theory

1.2.1 Quantum mechanics

Quantum states are described by normalized vectors in a Hilbert space. In typical situations the dynamics is generated by a bounded from below self-adjoint operator called the *Hamiltonian*. It does not affect any physical predictions if we subtract from the Hamiltonian the infimum of its spectrum. The Hamiltonian has often a ground state. The ground state is typically nondegenerate.

It will be convenient to formalize these properties. We will say that \((\mathcal{H}, H, \Omega)\) satisfy the *standard requirements of quantum mechanics* if

1. \(\mathcal{H}\) is a Hilbert space;
2. \(H\) is a positive self-adjoint operator on \(\mathcal{H}\) (called the Hamiltonian);
3. \(\Omega\) is a normalized eigenvector of \(H\) with eigenvalue 0.
4. \(\Omega\) is nondegenerate as an eigenvector of \(H\).

When discussing quantization of various relativistic equations we will often invoke the requirements (1)-(3). (In our discussion we will not need to invoke (4), because it will follow anyway). For shortness, we will just say that \((\mathcal{H}, H, \Omega)\) satisfy the standard requirements of QM (1)-(3).

1.2.2 Relativistic quantum mechanics

The relativistic covariance is expressed by choosing a strongly continuous unitary representation of the double cover of the Poincaré group

\[\mathbb{R}^{1,3} \rtimes Spin^+(1,3) \ni (x, \tilde{\Lambda}) \mapsto U(x, \tilde{\Lambda}) \in U(\mathcal{H}). \]

We will denote the self-adjoint generator of space-time translations by \(P = (P^0, \vec{P})\). \(P^0 = H\) is the *Hamiltonian*. \(\vec{P}\) is called the *momentum*. Thus

\[U((t, \vec{x}), \mathbb{1}) = e^{-itH + i\vec{x}\vec{P}}. \]

(We assume that the Planck constant \(\hbar\) equals 1).

Representations of \(Spin^+(1,3)\) can be divided into two categories. Integer spin representations induce a representation of \(SO^+(1,3)\), and half-integer representations do not. The projections

\[\frac{1}{2}(\mathbb{1} + U(0, -\mathbb{1})), \text{ resp. } \frac{1}{2}(\mathbb{1} - U(0, -\mathbb{1})) \]

project onto the spaces of representations of integer, resp. half-integer spin. We will write

\[I := U(0, -\mathbb{1}). \]

Anticipating the connection of spin and statistics we will call \(I\) the *fermionic parity*.

The following conditions will be called the *basic requirements of relativistic quantum mechanics*:
(1) **Existence of a Poincaré invariant vacuum**: There exists a (normalized) vector Ω invariant with respect to $\mathbb{R}^{1,3} \rtimes \text{Spin}^+(1,3)$.

(2) **Spectral condition**: The joint spectrum of the energy-momentum operator is contained in the forward light cone, that is, $\text{sp}(P) \subset J^+$.

(3) **Uniqueness of the vacuum**: The vector Ω is unique up to a phase factor.

(4) **Integer and half-integer spin states live in separate superselection sectors**: Observables commute with I.

Note that conditions (1)-(3) imply the standard requirements of quantum mechanics.

More precisely, (2) implies $H \geq 0$. Conversely, the Poincaré invariance and the boundedness from below of H implies (2).

(2) implies also that Ω is the ground state of H. (3) implies that this ground state is unique.

Obviously, $PI = IP$ and $I\Omega = \Omega$.

We still need some postulates that express the idea of causality. In the mathematical physics literature one can find two basic sets of axioms that try to formalize this concept: the Haag-Kastler and the Wightman axioms. Even though the Wightman axioms were formulated earlier, it is more natural to start with the Haag-Kastler axioms.

Note that we keep the basic requirements of relativistic quantum mechanics as a part of both sets of axioms.

Remark 1.1 Sometimes the expression relativistic quantum mechanics is used to denote the theory of relativistic linear hyperbolic equations, such as the Klein-Gordon and Dirac equation. For the Klein-Gordon equation this is certainly incorrect. This is a classical equation – in particular, it does not have a natural interpretation in terms of a unitary dynamics on a Hilbert space. In our terminology Dirac equation is also a classical equation – its unitary dynamics is non-physical because the Hamiltonian is unbounded from below.

1.2.3 Haag-Kastler axioms for observable algebras

To each open bounded set $O \subset \mathbb{R}^{1,3}$ we associate a von Neumann algebra $\mathfrak{A}(O) \subset B(H)$. Self-adjoint elements of the algebras $\mathfrak{A}(O)$ are supposed to describe observables in O. This means that in principle an observer contained in O can perturb the dynamics by a self-adjoint operator from $\mathfrak{A}(O)$, and only from $\mathfrak{A}(O)$.

We will say that the family $\mathfrak{A}(O)$, O open in $\mathbb{R}^{1,3}$, is a net of observable algebras satisfying the **Haag-Kastler axioms** if the following conditions hold:

1. **Isotony**: $O_1 \subset O_2$ implies $\mathfrak{A}(O_1) \subset \mathfrak{A}(O_2)$.
2. **Poincaré covariance**: for $(a, \Lambda) \in \mathbb{R}^{1,3} \times \text{Spin}^+(1,3)$, we have
 $$U(a, \Lambda)\mathfrak{A}(O)U(a, \Lambda)^* = \mathfrak{A}((a, \Lambda)O).$$
(3) **Einstein causality:** Let $O_1 \times O_2$. Then

$$A_i \in \mathcal{A}(O_i), \quad i = 1, 2, \text{ implies } A_1 A_2 = A_2 A_1.$$

(4) **Irreducibility:** \(\left(\bigcup_{O} \mathcal{A}(O) \right)' = \text{Span}\{I, \mathbb{1}\} \).

(5) **Local bosonic/fermionic superselection rule:** \(I \text{ commutes with } \mathcal{A}(O) \), for all \(O \).

(3) means that measurements in spatially separated regions are independent.

The least obvious axiom is that of irreducibility and is often relaxed. Note that in this axiom the inclusion \(\supset \) follows from Axiom (5).

Remark 1.2 One can ask why von Neumann algebras are used in the Haag-Kastler axioms to describe sets of observables. We would like to argue that it is a natural choice.

Suppose we weaken the Haag-Kaster axioms as follows: We replace the family of von Neumann algebras \(\mathcal{A}(O) \) by arbitrary sets \(\mathcal{B}(O) \) of self-adjoint elements of \(B(\mathcal{H}) \), and otherwise we keep the axioms unchanged. Then, if we set \(\mathcal{A}(O) := \mathcal{B}(O)'' \) (which obviously contain \(\mathcal{B}(O) \)), we obtain a family of von Neumann algebras satisfying the usual Haag-Kastler axioms. In particular, to see that the Einstein causality still holds, we use the following easy fact:

Let \(B_1, B_2 \) be two *-invariant subsets of \(B(\mathcal{H}) \) such that

$$A_1 \in B_1, \quad A_2 \in B_2 \quad \text{implies } \quad A_1 A_2 = A_2 A_1.$$

Set \(\mathcal{A}_1 := B_1'', \quad \mathcal{A}_1 := B_2'' \). Then

$$A_1 \in \mathcal{A}_1, \quad A_2 \in \mathcal{A}_2 \quad \text{implies } \quad A_1 A_2 = A_2 A_1.$$

1.2.4 Haag-Kastler axioms for field algebras

It is often natural to consider nets of algebras containing not only observables, but also other operators that can be useful to construct observables. They are called field algebras and satisfy a slightly modified version of Haag-Kastler axioms.

We say that a family of von Neumann algebras \(\mathcal{F}(O) \subset B(\mathcal{H}) \) associated to bounded open subsets \(O \) of \(\mathbb{R}^{1,3} \) is a net of field algebras in the sense of Haag-Kastler axioms if the following conditions hold:

(1)' **Isotony:** \(O_1 \subset O_2 \) implies \(\mathcal{A}(O_1) \subset \mathcal{A}(O_2) \).

(2)' **Poincaré covariance:** for \((a, \hat{\Lambda}) \in \mathbb{R}^{1,3} \times \text{Spin}^+(1, 3) \), we have

$$U(a, \hat{\Lambda}) \mathcal{A}(O) U(a, \hat{\Lambda})^* = \mathcal{A}((a, \Lambda)O).$$

(3)' **Twisted Einstein causality.** Let \(O_1 \times O_2 \). Then

$$A_i \in \mathcal{F}(O_i), \quad A_i = (-1)^j I A_i I, \quad i = 1, 2, \quad \text{implies } \quad A_1 A_2 = (-1)^{j_1 j_2} A_2 A_1.$$
Irreducibility: \(\left(\bigcup O \right)' = \mathbb{C}I. \)

Local bosonic/fermionic superselection rule: \(I\mathcal{A}(O)I = \mathcal{A}(O), \) for all \(O. \)

The main reason for introducing the twisted Einstein causality is the need to use anticommuting fermionic fields. Clearly, if the net \(\mathfrak{H}(O), \ O \subset \mathbb{R}^{1,3} \) satisfies the Haag-Kastler axioms for field algebras, then the net of their fermionic even subalgebras
\[
\mathfrak{H}_0(O) := \{ B \in \mathfrak{H}(O) : IBI = B, \ O \subset \mathbb{R}^{1,3}\},
\]
satisfies the Haag-Kastler axioms for observable algebras.

Another situation where we need field algebras is the case of global symmetries (in the old literature called sometimes gauge symmetries of the first kind). Suppose that a group \(G \) acts on the algebras \(\mathfrak{H}(O) \) by \(*\)-automorphisms
\[(1.4) \quad G \ni g \mapsto \alpha_g \in \text{Aut}(\mathfrak{H}(O)). \]

We assume that (1.4) are compatible for various \(O \) and commute with the fermionic parity \(B \mapsto IBI. \) We define the gauge invariant subalgebras
\[
\mathfrak{H}_{gi}(O) = \{ B \in \mathfrak{H}_0(O) : \alpha_g(B) = B, \ g \in G\}.
\]
Clearly, the net \(O \mapsto \mathfrak{H}_{gi}(O) \) satisfies then the Haag-Kastler axioms for observable algebras except, possibly, for Axiom (4) (the irreducibility).

Note that in our formulation the decomposition \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \) given by the operator \(I \) plays a double role.

1. It describes the decomposition of the Hilbert space into integer and half-integer spin representations.

2. In the Einstein causality axiom, block-diagonal operators have the bosonic character and block-off-diagonal operators have the fermionic character.

A priori it is not obvious that these two properties should give the same decomposition. However, one can show that it is natural to assume from the beginning that this is the case. This is the content the theorem about the connection of the spin and statistics, described eg. in [42].

1.2.5 Quantum fields

In practical computations of quantum field theory the information is encoded in quantum fields \(\mathbb{R}^{1,3} \ni x \mapsto \hat{\phi}_a(x), \) where \(a = 1, \ldots, n \) enumerates the “internal degrees of freedom”, eg. the species of particles and the value of their spin projected on a distinguished axis. These functions can be viewed as “operator valued distributions”, which become (possibly unbounded) operators when smeared out with test functions in \(C_c^\infty(\mathbb{R}^{1,3}) \). Some of the fields are bosonic, some are fermionic. They commute or anticommute for spatially separated points, which is expressed by the commutation/anticommuation relations
\[
[\hat{\phi}_a(x), \hat{\phi}_b(y)]_{\pm} = 0, \quad (x - y)^2 > 0.
\]
We can organize the internal degrees of freedom into a finite dimensional vector space $V = \mathbb{R}^n$. At first we restrict ourselves to real smearing functions. Thus for any $f = (f_a) \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{R}^n)$ we obtain a *smeared out quantum field*, which is the operator

$$\hat{\phi}[f] := \sum_a \int f_a(x) \hat{\phi}_a(x) dx. \quad (1.5)$$

From the mathematical point of view it is natural to treat $\hat{\phi}[f]$ as the basic objects.

1.2.6 Wightman axioms for neutral fields

We assume that V is a finite dimensional real vector space equipped with a representation

$$Spin^+(1,3) \ni \tilde{\Lambda} \mapsto S(\tilde{\Lambda}). \quad (1.6)$$

We can decompose uniquely this space as $V = V_0 \oplus V_1$, where V_0, resp. V_1 is the space of integer spin, resp. half-integer spin.

We assume that the basic requirements of relativistic quantum mechanics are satisfied.

We suppose that D is a dense subspace of H containing Ω and we have a map

$$C^\infty_c(\mathbb{R}^{1,3}, V) \ni f \mapsto \hat{\phi}[f] \quad (1.7)$$

into linear operators on D satisfying the following conditions:

1. **Continuity:** For any $\Phi, \Psi \in D$,

$$C^\infty_c(\mathbb{R}^{1,3}, V) \ni f \mapsto (\Phi | \hat{\phi}[f]\Psi) \quad (1.8)$$

is continuous.

2. **Poincaré covariance:** for $(x, \tilde{\Lambda}) \in \mathbb{R}^{1,3} \times Spin^+(1,3)$ we have

$$U(x, \tilde{\Lambda}) \hat{\phi}[f] U(x, \tilde{\Lambda})^* = \hat{\phi} \left[S(\tilde{\Lambda}) f \circ (x, \Lambda)^{-1} \right].$$

3. **Einstein causality:** $O_1 \times O_2$ and $f_i \in C^\infty_c(O_i, V_j)$, $i = 1, 2$, imply

$$\hat{\phi}[f_1] \hat{\phi}[f_2] = (-1)^{j_1 j_2} \hat{\phi}[f_2] \hat{\phi}[f_1].$$

4. **Cyclicity of the vacuum:**

$$\{ \hat{\phi}[f_n] \cdots \hat{\phi}[f_1] \Omega : f_1, \ldots, f_n \in C^\infty_c(\mathbb{R}^{1,3}), \ n = 0, 1, 2, \ldots \}$$

is dense in H.

5. **Hermiticity:** $\hat{\phi}[f]^* = \hat{\phi}[f]$.

6. **Compatibility of I and $V = V_0 \oplus V_1$:** If $f \in \mathfrak{A}(O, V_j)$, then

$$\hat{\phi}[f] = (-1)^j I \hat{\phi}[f] I.$$

In what follows a map (1.7) satisfying Axiom (1) will be called an *operator valued distribution*. By saying that it is cyclic we will mean that it satisfies Axiom (4).
1.2.7 | Global symmetries

In the formalism of Wightman axioms we can easily encode global symmetries. Let \(G \) be a group acting on the space \(V \) preserving the decomposition \(V = V_0 \oplus V_1 \). Then, for \(g \in G \), \(\sigma_g(\hat{\phi}[f]) := \hat{\phi}[gf] \) extends to a \(\ast \)-automorphism of each algebra \(\mathfrak{f}\text{alg}(\mathcal{O}) \) and \(\mathfrak{f}_0\text{alg}(\mathcal{O}) \). We set \(\mathfrak{f}_0\text{alg}(\mathcal{O}) \) to be the subalgebra of fixed points of this action on \(\mathfrak{f}_0\text{alg}(\mathcal{O}) \). One could argue that this \(\ast \)-algebra should describe observables in \(\mathcal{O} \).

Note that what we described is a global symmetry and not a local gauge invariance (in the older literature sometimes called the gauge invariance of the second kind). Satisfactory treatment of local gauge invariance, even Abelian, in the framework of Wightman axioms seems to be problematic. In fact, a convenient description of gauge fields apparently requires a space with an indefinite scalar product. This goes beyond the usual Wightman axioms and poses serious technical problems [46].

Haag-Kastler axioms seem to provide a satisfactory general framework for quantum field theory on a flat spacetime. Their weakness is the abstractness and great generality. For instance, we do not see how to recognize that a given family of algebras satisfying Haag-Kastler axioms corresponds to a theory with local gauge invariance. (There exists, however, a beautiful theory developed by Doplicher-Haag-Roberts that allows us to recognize the global symmetries.)

Wightman axioms seem more concrete. However, they have flaws. As we mentioned earlier, they seem to be incompatible with the local gauge invariance.

In any case, both Haag-Kastler and Wightman axioms are useful as guiding principles for quantum field theory.

1.2.8 | Relationship between Haag-Kastler and Wightman axioms

“Morally”, Wightman axioms are stronger than the Haag-Kastler axioms. In fact, let \(\mathfrak{f}\text{alg}(\mathcal{O}) \) be the \(\ast \)-algebra in \(L(\mathcal{D}) \) (linear operators on \(\mathcal{D} \)) generated by \(\hat{\phi}[f] \) with \(\text{supp} f \subset \mathcal{O} \). Then the family of \(\ast \)-algebras \(\mathcal{O} \mapsto \mathfrak{f}\text{alg}(\mathcal{O}) \) is almost a net of field algebras and \(\mathcal{O} \mapsto \mathfrak{f}_0\text{alg}(\mathcal{O}) \) is almost a net of observable algebras in the sense of the Haag-Kastler axioms. Unfortunately, elements of \(\mathfrak{f}\text{alg}(\mathcal{O}) \) are defined only on \(\mathcal{D} \) and not on the whole \(\mathcal{H} \), and often do not extend to bounded operators on \(\mathcal{H} \).

We know that the fields \(\hat{\phi}[f] \) are hermitian on \(\mathcal{D} \). Suppose they are essentially self-adjoint. Then their closures are self-adjoint operators on \(\mathcal{H} \) and we could consider the von Neumann algebra \(\mathfrak{h}(\mathcal{O}) \) generated by bounded functions of \(\hat{\phi}[f] \), \(\text{supp} f \subset \mathcal{O} \). Then there is still no guarantee that the family \(\mathcal{O} \mapsto \mathfrak{h}(\mathcal{O}) \) satisfies the Haag-Kastler axioms: we are not sure whether the Einstein causality holds.

To see this we recall that there are serious problems with commutation of unbounded operators [?]. One says that two self-adjoint operators commute (or strongly commute) if all their spectral projections commute. There exist however examples of pairs of two self-adjoint operators \(A \), \(B \) and a subspace \(\mathcal{D} \subset \text{Dom} A \cap \text{Dom} B \) with the following property:

1. \(A \) and \(B \) preserve \(\mathcal{D} \) and are essentially self-adjoint on \(\mathcal{D} \).
(2) A and B commute on D.
(3) A and B do not commute strongly.
(4) D is dense.

More about what is known about the relationship between the Haag-Kastler and Wightman axioms the reader can find in [2], Sect. 4.9.

1.2.9 Charged fields

In the version of Wightman axioms we gave in Subsect. 1.2.6 we assumed that smeared fields are Hermitian and smearing functions are real. This formalism is used mostly for neutral fields. Charged fields are described by a pair of operator valued distributions Hermitian conjugate to one another

$$R \ni x \mapsto \hat{\psi}_a(x), \hat{\psi}_a^*(x), \quad a = 1, \ldots, m.$$

After smearing with complex test functions

$$\hat{\psi}[h] := \sum_a \int h_a(x) \hat{\psi}_a(x) dx,$$

$$\hat{\psi}^*[h] := \sum_a \int h_a(x) \hat{\psi}_a^*(x) dx,$$

we obtain linear operators on D such that $\hat{\psi}[h]^*$ is an extension of $\hat{\psi}^*[h]$.

Clearly, for any charged field, by setting

$$\hat{\phi}_{a,R}(x) := \frac{1}{\sqrt{2}}(\hat{\psi}_a(x) + \hat{\psi}_a^*(x)),$$

$$\hat{\phi}_{a,I}(x) := \frac{1}{i\sqrt{2}}(\hat{\psi}_a(x) - \hat{\psi}_a^*(x))$$

we obtain a pair of neutral fields.

One usually organizes the space describing the species of fields into two finite dimensional spaces: a real space V_n describing neutral fields equipped with a real representation

$$Spin^\uparrow(1, 3) \ni \Lambda \mapsto S^n(\Lambda)$$ (1.9)

and a complex space V_c describing charged fields equipped with a complex representation

$$Spin^\uparrow(1, 3) \ni \Lambda \mapsto S^c(\Lambda)$$ (1.10)

The axiom about the Poincaré covariance has then the following form:

$$U(x, \Lambda) \hat{\phi}[f] U(x, \Lambda)^* = \hat{\phi} \left[S^n(\Lambda) f \circ (x, \Lambda)^{-1} \right], \quad f \in C_\infty^c(\mathbb{R}^{1,3}, V^n);$$

$$U(x, \Lambda) \hat{\psi}[h] U(x, \Lambda)^* = \hat{\psi} \left[S^c(\Lambda) h \circ (x, \Lambda)^{-1} \right], \quad h \in C_\infty^c(\mathbb{R}^{1,3}, V^c).$$
It will be convenient to reformulate this axiom in terms of the unsmeared fields:

\[U(a, \tilde{\Lambda}) \phi_a(x) U(a, \tilde{\Lambda})^* = \sum_b S^{-1}_{ab}(\tilde{\Lambda}) \phi_b(\Lambda x + a), \]

\[U(a, \tilde{\Lambda}) \psi_a(x) U(a, \tilde{\Lambda})^* = \sum_b S^{-1}_{ab}(\tilde{\Lambda}) \psi_b(\Lambda x + a), \]

1.2.10 \(U(1) \) symmetry and charge conjugation

Consider the group \(U(1) = \mathbb{R}/2\pi \mathbb{Z} \). A global \(U(1) \) symmetry is usually encoded by dividing fields into neutral \(\phi \) and complex \(\psi \) and demanding that

\[\sigma_\theta(\hat{\phi}_a(x)) = \hat{\phi}_a(x), \]

\[\sigma_\theta(\hat{\psi}_a(x)) = e^{-i\theta} \hat{\psi}_a(x). \]

This obviously implies

\[\sigma_\theta(\hat{\psi}_a^*(x)) = e^{i\theta} \hat{\psi}_a^*(x). \]

We extend \(U(1) \ni \theta \mapsto \sigma_\theta \) to an action on all polynomials in fields. We say that a unitary operator \(C \) is a charge conjugation if it satisfies

\[C \Omega = \Omega, \]

\[C \phi_a(x) C^* = \sum_b \kappa_a^{-1} \phi_b(x), \]

\[C \psi_a(x) C^* = \sum_b \kappa_c^{-1} \psi_b^*(x), \]

where \(\kappa^n \) and \(\kappa^c \) are some linear transformations on \(V^n \) and \(V^c \). One usually also assumes that

\[\kappa^n \kappa^n = \pm \mathbb{1}, \quad \kappa^c \kappa^c = \pm \mathbb{1}, \]

so that the automorphism, given by \(C \) is involutive or anti-involutive. We have

\[C\sigma_\theta(A) C^* = \sigma_{-\theta}(A), \]

which justifies the name charge conjugation.

Note that \(C \) is linear, even though it acts on fields antilinearly.

1.2.11 Parity invariance

Recall that in the basic requirements of relativistic quantum mechanics we have a representation

\[\mathbb{R}^{1,3} \rtimes Spin^\uparrow(1,3) \ni (a, \tilde{\Lambda}) \mapsto U(a, \tilde{\Lambda}). \]

We can try to extend this group to a larger subgroup of \(\mathbb{R}^{1,3} \rtimes Pin(1,3) \).

Suppose that we have a representation

\[\mathbb{R}^{1,3} \rtimes Pin^\uparrow_{\pm}(1,3) \ni (a, \tilde{\Lambda}) \mapsto U(a, \tilde{\Lambda}). \]
In particular, the space inversion \tilde{P} is represented in the Hilbert space by a unitary operator $U(\tilde{P})$, denoted often P. Then we say that the theory is P-invariant.

We can easily adapt the Wightman axioms with the representation (1.17) extended to (1.18). Obviously, we need to demand that the representations (1.9) and (1.10), as well as relations (1.11) and (1.12) are extended to the group $Pin^\uparrow(1, 3)$.

In particular, we have the action of the parity $P := U(\tilde{P})$:

$$P \phi_a(x^0, \vec{x}) P^* = \sum_b S_{ab}^{\tilde{P}}(\tilde{P}) \phi_b(x^0, -\vec{x}),$$

$$P \psi_a(x^0, \vec{x}) P^* = \sum_b S_{ab}^{\tilde{P}}(\tilde{P}) \psi_b(x^0, -\vec{x}).$$

Obviously, P is linear and acts on fields linearly.

Note that P satisfies $P^2 = \mathbb{1}$ or $P^2 = -\mathbb{1}$. By multiplying P with i we can switch between these two possibilities.

1.2.12 Time reversal invariance

Suppose now for a moment that we have a unitary representation of

$$\mathbb{R}^{1,3} \rtimes Pin^\text{chir}_{\uparrow}(1, 3) \ni (a, \tilde{\Lambda}) \mapsto U(a, \tilde{\Lambda}).$$

Then $U(\tilde{T})$, called the Racah time reversal, satisfies

$$U(\tilde{T}) U(a) U(\tilde{T})^* = U(-a).$$

Therefore,

$$U(\tilde{T}) H U(\tilde{T})^* = -H.$$

If $H \geq 0$, then this implies $H = 0$. Therefore, the basic requirements of relativistic quantum mechanics are incompatible with the invariance wrt a Racah time reversal.

Instead, let us assume that the values of the representation (1.19) are antiunitary for $\tilde{\Lambda} \in \tilde{T} \rtimes Spin^\uparrow(1, 3)$. Then the antiunitary operator $U(\tilde{T})$, called the Wigner time reversal satisfies

$$U(\tilde{T}) U(a) U(\tilde{T})^* = U(-a),$$

which implies

$$U(\tilde{T}) H U(\tilde{T})^* = H.$$

This is compatible with the positivity of H.

We can easily adapt the Wightman axioms with the representation (1.17) extended to (1.18). Obviously, the representations (1.9) and (1.10) should be
extended to include $\tilde{T}\cdot Spin^\dagger(1,3)$, where one has to demand that (1.10) is antilinear. Similarly one needs to extend the relations (1.11) and (1.12), in the latter case they need a slight modification:

$$U(a, \Lambda)\psi_a(x)U(a, \Lambda)^* = \sum_b S_{ab}^{\nu-1}(\Lambda)\psi_b^*(\Lambda x + a), \quad \Lambda \in \tilde{T}\cdot Spin^\dagger(1,3).$$

In particular, the Wigner time reversal $T := U(\tilde{T})$ acts on the fields as follows

$$T\phi_a(x^0, \vec{x})T^* = \sum_b S_{ab}^{\nu-1}(\tilde{T})\phi_b(-x^0, \vec{x}),$$

$$T\psi_a(x^0, \vec{x})T^* = \sum_b S_{ab}^{c-1}(\tilde{T})\psi_b^*(x^0, -\vec{x}).$$

Note that T is antilinear and acts on fields antilinearly.

1.2.13 CPT invariance

Suppose that we have a theory satisfying the Wightman axioms. Recall that these axioms involve the covariance wrt the group $Spin^\dagger(1,3)$. In particular, this group acts on $\mathcal{V}^n \oplus \mathcal{V}^c$ with finite dimensional representations (1.9) and (1.10). We would like to argue that these representations possess natural extensions to a the larger group $Spin(1,3)$.

$Spin(1,3)$, which is disconnected, can be embedded in the complex connected group $Spin(4, \mathbb{C})$. Every finite dimensional representation of $Spin^\dagger(1,3)$ extends uniquely by holomorphic continuation to a representation of $Spin(4, \mathbb{C})$. We can restrict it to a representation of $Spin(1,3)$.

A deep theorem, called the CPT Theorem, says that we can extend the representation (1.17) to a representation of $Spin(1,3)$ such that $U(a, \Lambda)$ are anti-unitary on $\tilde{T}\cdot Spin^\dagger(1,3)$, moreover, (1.11) and (1.12) hold on the whole $Spin(1,3)$. In particular, if we set $X := U(\tilde{X})$, then

$$X\phi_a(x)X^* = \sum_b S_{ab}^{\nu-1}(\tilde{X})\phi_b(-x),$$

$$X\psi_a(x)X^* = \sum_b S_{ab}^{c-1}(\tilde{X})\psi_b^*(-x).$$

Note that X is antilinear but acts on the fields linearly.

Suppose now that a theory is $Pin_\nu^\dagger(1,3)$ and $Pin^{chir}_\nu(1,3)$ invariant, or $Pin_\nu^\dagger(1,3)$ and $Pin^{chir}_\nu(1,3)$ invariant. (If the theory is $Pin_\nu^\dagger(1,3)$ and $Pin^{chir}_\nu(1,3)$ invariant, or $Pin_\nu^\dagger(1,3)$ and $Pin^{chir}_\nu(1,3)$ invariant, we multiply P by the imaginary unit and get the same signs). By the CPT Theorem the theory is also $Spin(1,3)$ invariant. Note that we do not assume that together they form a representation of the whole $\mathbb{R}^{1,3} \rtimes Pin_\pm(1,3)$.

23
In particular, we have the operators given by $S(\tilde{X})$, $S(\tilde{T}^{-1})$ and $S(\tilde{P}^{-1})$. We assume that each pair of these operators either commutes or anticommutes. We also have the operators X, T and P. Define

$$\kappa^n := S^n(\tilde{X})S^n(\tilde{T}^{-1})S^n(\tilde{P}^{-1}),$$
$$\kappa^c := S^c(\tilde{X})S^c(\tilde{T}^{-1})S^c(\tilde{P}^{-1}),$$
$$C := XT^{-1}P^{-1}.$$

Then κ^n and κ^c satisfy (1.16). Besides, C is unitary and satisfies (1.13), (1.14), (1.15). Thus C is an example of a charge conjugation.

Obviously, $X = CPT$. This explains the name of the CPT Theorem. (Note, however, that the theorem holds also if the theory is not P and T invariant, so that we cannot write $X = CPT$).

1.2.14 N-point Wightman and Green’s functions

Wightman axioms allow us to define a multilinear map

$$C_c(\mathbb{R}^{1,3}, \mathcal{V}) \times \cdots \times C_c(\mathbb{R}^{1,3}, \mathcal{V})$$

$$\ni (f_N, \ldots, f_1) \mapsto (\Omega|\hat{\phi}[f_N] \cdots \hat{\phi}[f_1]|\Omega) \in \mathbb{C}, \quad (1.20)$$

which is separately continuous in its arguments. By the Schwartz Kernel Theorem [12], (1.20) can be extended to a linear map

$$C_c((\mathbb{R}^{1,3})^N, \mathcal{V}^\otimes N) \ni F \mapsto \int W(x_N, \ldots, x_1)F(x_N, \ldots, x_1)dx_N \cdots dx_1,$$

where $\mathbb{R}^{(1,3)}^N \ni (x_N, \ldots, x_1) \mapsto W(x_N, \ldots, x_1)$ is a distribution on $\mathbb{R}^{(1,3)}^N$ with values in the space dual to $\mathcal{V}^\otimes N$, called the N-point Wightman function, so that (1.20) equals

$$\int W(x_N, \ldots, x_1)f_N(x_1) \cdots f_1(x_1)dx_N \cdots dx_1.$$
Definition is as follows:

\[
G(x_N,\ldots,x_1) := \sum_{\sigma \in S_N} \text{sgn}_{\text{a}}(\sigma) \theta \left(x_{\sigma(N)}^0 - x_{\sigma(N-1)}^0 \right) \cdots \theta \left(x_{\sigma(2)}^0 - x_{\sigma(1)}^0 \right) W(x_{\sigma(N)},\ldots,x_{\sigma(1)}),
\]

where \(\text{sgn}_{\text{a}}(\sigma)\) is the sign of the permutation of the fermionic elements among \(N,\ldots,1\).

Note that we multiply a distribution with a discontinuous function in (1.21), which strictly speaking is illegal. Disregarding this problem, Green’s functions are covariant due to the commutativity/anticommutativity of fields at spacelike separations.

1.3 Time-dependent Hamiltonians

1.3.1 Time ordered exponential

We will often use the formalism of time-dependent Hamiltonians. In this subsection we describe the main concepts of this formalism.

Assume that \(I\) is a unitary involution. (In applications, \(I\) will be the fermionic parity operator). We call an operator \(B\) even, resp. odd, if \(B = \pm IBI\). Such operators will be called of pure parity.

Let \(t \mapsto B_k(t),\ldots,B_1(t)\) be time dependent operators of pure parity. Let \(t_n,\ldots,t_1\) be pairwise distinct. We define the time-ordered product of \(B_n(t_n),\ldots,B_1(t_1)\) by

\[
T(B_n(t_n)\cdots B_1(t_1)) := \text{sgn}_{\text{a}}(\sigma)B_{\sigma_n}(t_{\sigma_n})\cdots B_{\sigma_1}(t_{\sigma_1}),
\]

where \((\sigma_1,\ldots,\sigma_n)\) is the permutation such that \(t_{\sigma_n} \geq \cdots \geq t_{\sigma_1}\), and \(\text{sgn}_{\text{a}}(\sigma)\) is the sign of this permutation restricted to the odd elements among \(B_i\).

Let \(t_+ > t_-\). Consider a family of self-adjoint Hamiltonians \([t_-,t_+] \ni t \mapsto H(t)\). We will assume that \(H(t)\) are even. We define the time-ordered exponential

\[
\text{Texp} \left(-i \int_{t_-}^{t_+} H(t) dt \right) := \sum_{n=0}^{\infty} (-i)^n \int_{t_+}^{t_-} \cdots \int_{t_+}^{t_-} H(t_n) \cdots H(t_1) dt_n \cdots dt_1
\]

\[
= \sum_{n=0}^{\infty} (-i)^n \int_{t_-}^{t_+} \cdots \int_{t_-}^{t_+} \frac{1}{n!} T(H(t_n)\cdots H(t_1)) dt_n \cdots dt_1.
\]

For brevity, we will write

\[
U(t_+,t_-) := \text{Texp} \left(-i \int_{t_-}^{t_+} H(t) dt \right).
\]
We call (1.22) the *dynamics generated by* \(t \mapsto H(t) \). (Of course, if \(H(t) \) are unbounded, the above definition should be viewed only as a heuristic indication how to define the family of unitary operators \(U(t_+, t_-) \).)

Clearly, if \(H(t) = H \), then \(U(t_+, t_-) = e^{-i(t_+-t_-)H} \).

1.3.2 Time-dependent perturbations

Our time-dependent Hamiltonians will usually have the form

\[
H(t) := H_0 + V(t),
\]

where \(H_0 \) is a self-adjoint operator and \(\mathbb{R} \ni t \mapsto V(t) \) is a family of self-adjoint operators.

Let \(\mathbb{R} \ni t \mapsto A(t) \) be an operator-valued function. The *interaction Hamiltonian* is defined as

\[
H_{\text{Int}}(t) := e^{iH_0} V(t) e^{-iH_0}.
\]

We define the *scattering operator* by

\[
S := \lim_{t_+, t_- \to \infty} e^{itH_0} U(t_+, t_-) e^{iH_0} = \text{Texp} \left(-i \int_{-\infty}^\infty H_{\text{Int}}(t) \, dt \right).
\]

We also introduce the *Møller operators*

\[
S^- := \lim_{t \to \infty} U(0, -t) e^{itH_0}
= \text{Texp} \left(-i \int_{-\infty}^0 H_{\text{Int}}(t) \, dt \right),
\]

\[
S^+ := \lim_{t \to \infty} U(t, 0) e^{-itH_0}
= \text{Texp} \left(-i \int_0^\infty H_{\text{Int}}(t) \, dt \right).
\]

Clearly, \(S = S^+ S^- \).

Let \(A \) be an operator. We have its evolution in the Heisenberg picture wrt. the *free dynamics*

\[
A_0(t) := e^{iH_0} A e^{-iH_0}.
\]

Equivalently, \(A(t) \) is the solution of

\[
\frac{d}{dt} A(t) = i [H_0, A(t)],
\]

\[
A(0) = A.
\]

We also have the Heisenberg picture wrt. the *full dynamics*:

\[
A(t) := U(0, t) A(t) U(t, 0).
\]
Equivalently, $A(t)$ is the solution of
\[
\begin{align*}
\frac{d}{dt} A(t) &= i [H_{\text{HP}}(t), A(t)], \\
A(0) &= A,
\end{align*}
\]
where the *time-dependent Hamiltonian in the Heisenberg picture* is defined as
\[H_{\text{HP}}(t) := U(0,t) H(t) U(t,0).\]
Thus the dynamics can be described by two time-dependent Hamiltonians: $t \rightarrow H(t)$ and $t \rightarrow H_{\text{HP}}(t)$.

1.3.3 Time ordered Green’s functions

Assume that H_{fr} and $V(t)$ are even. Let Φ_{fr} be a fixed even vector with $H_{\text{fr}} \Phi_{\text{fr}} = 0$. (In our applications, Φ_{fr} will be always the ground state of H_{fr}.) Let A_k, \ldots, A_1 be operators of fixed parity. The *free time-ordered Green’s functions* are defined as
\[
G_{\text{fr}}(A_k, t_k, \ldots, A_1, t_1) := (\Phi_{\text{fr}} | T(A_k, t_k) \cdots A_1, t_1) \Phi_{\text{fr}}).
\]
(1.23)

Suppose that there exist
\[
\Phi^\pm := \lim_{t \rightarrow \pm \infty} U(0, t) \Phi_{\text{fr}}.
\]
(1.24)
The *interacting time-ordered Green’s functions* are defined as
\[
G(A_k, t_k, \ldots, A_1, t_1) := (\Phi^+ | T(A_k, t_k) \cdots A_1, t_1) \Phi^-).
\]
(1.25)

We can express interacting Green’s functions by the free ones:
\[
\begin{aligned}
G(A_k, t_k, \ldots, A_1, t_1) &= \sum_{n=0}^{\infty} \frac{(-i\lambda)^n}{n!} \int_{-\infty}^{\infty} ds_n \cdots \int_{-\infty}^{\infty} ds_1 \\
&\times G_{\text{fr}} (V(s_n), s_n, \ldots, V(s_1), s_1, A_k, t_k, \cdots, A_1, t_1).
\end{aligned}
\]
(1.26)

1.3.4 Adiabatic switching

Let V be a (time-independent) self-adjoint perturbation. It is often convenient to extract information about $H_{fr} + \lambda V$ from the time-dependent formalism. This can be done by introducing the so called *adiabatical switching* invented by Gell-Mann and Low.

Let $\epsilon > 0$. We define $V_\epsilon(t) := e^{-\epsilon |t|} V$. We will write
\[
H_\epsilon(t) := H_{\text{fr}} + \lambda V_\epsilon.
\]
for the corresponding time-dependent Hamiltonian. We also introduce the corresponding scattering operator S_ϵ.

Assume that Φ_{fr} is an eigenvector of H_{fr} with $H_{fr}\Phi_{fr} = E_{fr}\Phi_{fr}$. Let E be the eigenvalue of $H + \lambda V$ close to E_{fr}.

The so called Sucher formula, which we give below, is often used in practical calculations as the definition of the energy shift. For its derivation see [31].

$$E - E_{fr} = \lim_{\epsilon \searrow 0} \frac{i\epsilon \lambda}{2} \partial_\lambda \log(\Phi_{fr}|S_\epsilon \Phi_{fr}).$$ \hspace{1cm} (1.27)

Note that the right hand side of the Sucher formula may have a nonzero imaginary part. In this case we expect that it describes the resonance close to E_{fr}.

2 Neutral scalar bosons

In this section we consider the Klein-Gordon equation

$$(-\Box + m^2)\phi(x) = 0 \hspace{1cm} (2.1)$$

and we quantize the space of its real solutions. We study two kinds of interactions: an external linear source

$$(-\Box + m^2)\phi(x) = -j(x), \hspace{1cm} (2.2)$$

and a mass-like perturbation

$$(-\Box + m^2)\phi(x) = -\kappa(x)\phi(x). \hspace{1cm} (2.3)$$

2.1 Free neutral scalar bosons

2.1.1 Special solutions and Green’s functions

Every function ζ that solves the (homogeneous) Klein-Gordon equation

$$(-\Box + m^2)\zeta(x) = 0 \hspace{1cm} (2.4)$$

can be written as

$$\zeta(x) = \frac{1}{(2\pi)^3} \int e^{-ikx} g(k) \delta(k^2 + m^2)dk$$

$$= \frac{1}{(2\pi)^3} \sum_{\pm} \int \frac{d\vec{k}}{\sqrt{\vec{k}^2 + m^2}} g\left(\pm \sqrt{\vec{k}^2 + m^2}, \vec{k}\right)e^{\pm ix^0\sqrt{\vec{k}^2 + m^2} - i\vec{x}\vec{k}},$$

where g is a function on the two-sheeted hyperboloid $k^2 + m^2 = 0$. A special role is played by the following 3 special solutions of the homogeneous Klein-Gordon equation.
(1) The positive frequency or Wightman, resp. negative frequency or anti-Wightman solution:

\[D(\pm)(x) = \pm \frac{i}{(2\pi)^3} \int e^{-ikx} \theta(\mp k^0) \delta(k^2 + m^2) dk \]

\[= \pm \frac{i}{(2\pi)^3} \int \frac{dk}{2\sqrt{k^2 + m^2}} e^{\mp ikx} \sqrt{k^2 + m^2 - i\epsilon} \]

\[= \frac{1}{4\pi} \text{sgn} x^0 \delta(x^2) \]

\[\pm \frac{m\theta(-x^2)}{8\pi \sqrt{-x^2}} H^\pm_{1} (\sqrt{m}(m^2 - x^2)) \pm \frac{mi\theta(x^2)}{4\pi \sqrt{x^2}} K_1 (m\sqrt{x^2}). \]

where \(H^\pm \) are the Hankel functions and \(K_1 \) is the MacDonald function of the 1st order.

(2) The Pauli-Jordan or the commutator function:

\[D(x) = \frac{i}{(2\pi)^3} \int e^{-ikx} \text{sgn}(k^0) \delta(k^2 + m^2) dk \]

\[= \frac{1}{(2\pi)^3} \int \frac{dk}{\sqrt{k^2 + m^2}} e^{-ikx} \sin \left(x^0 \sqrt{k^2 + m^2} \right) \]

\[= \frac{1}{2\pi} \text{sgn} x^0 \delta(x^2) - \frac{m\theta(-x^2)}{4\pi \sqrt{x^2}} J_1 (m\sqrt{x^2}), \]

where \(J_1 \) is the Bessel function of the 1st order. \(D(x) \) is the unique solution of the Klein-Gordon equation satisfying

\[D(0, \bar{x}) = 0, \quad \dot{D}(0, \bar{x}) = \delta(\bar{x}). \]

We have, \(\text{supp} D \subset J \).

Solutions of

\[(-\Box + m^2)\zeta(x) = \delta(x), \]

are called Green’s functions or fundamental solutions of the Klein-Gordon equation. In particular, let us introduce the following 3 Green’s functions.

(1) The retarded, resp. advanced Green’s function:

\[D^\pm(x) = \frac{1}{(2\pi)^3} \int \frac{e^{-ikx}}{k^2 + m^2 + i0\text{sgn} x^0} dk \]

\[= \frac{1}{2\pi} \theta(\pm x^0) \delta(x^2) - \frac{m\theta(-x^2)\theta(\pm x^0)}{4\pi \sqrt{-x^2}} J_1 (m\sqrt{-x^2}). \]

We have \(\text{supp} D^\pm \subset J^\pm \). In the literature, \(D^+(x) \) is usually denoted \(D^{\text{ret}}(x) \) and \(D^-(x) \) is usually denoted \(D^{\text{adv}}(x) \).
(2) The causal or Feynman(-Stueckelberg) Green’s function:

\[
D^c(x) = \frac{1}{(2\pi)^4} \int \frac{e^{-ikx}}{k^2 + m^2 - i0} dk
\]

\[
= \frac{1}{4\pi} \delta(x^2) - \frac{m\theta(-x^2)}{8\pi \sqrt{-x^2}} H_1^-(m\sqrt{-x^2}) + \frac{\pi i \theta(x^2)}{4\pi^2 \sqrt{x^2}} K_1(m\sqrt{x^2}).
\]

The special solutions and Green’s functions introduced above are often called

propagators. They satisfy the following relations

\[
\begin{align*}
\overline{D(x)} &= D(x) = -D(-x) = D^{(+)}(x) + D^{(-)}(x) \\
\overline{D^{(+)}(x)} &= D^{(-)}(x) = -D^{(-)}(-x), \\
\overline{D^{(-)}(x)} &= D^{(+)}(x) = \theta(x^0)D(x), \\
\overline{D^{+}(x)} &= D^{\prime}(-x) = \theta(-x^0)D(x), \\
D^c(x) &= D^{c}(-x) = \theta(x^0)D^{(+)}(x) - \theta(-x^0)D^{(-)}(x).
\end{align*}
\]

Let us prove the last identity.

\[
D^c(x) = \frac{1}{(2\pi)^4} \int \frac{e^{-ikx}}{k^2 + m^2 - i0} dk
\]

\[
= \frac{1}{(2\pi)^4} \int \frac{e^{ik\theta x^0 - ik\bar{x}}}{2\sqrt{k^2 + m^2} \left(\sqrt{k^2 + m^2} + \theta^0 \right)} dk
\]

\[
+ \frac{1}{(2\pi)^4} \int \frac{e^{ik\bar{x}^0 - ik\bar{\bar{x}}}}{2\sqrt{k^2 + m^2} \left(\sqrt{k^2 + m^2} + \bar{\theta}^0 \right)} dk
\]

\[
= \frac{1}{(2\pi)^4} \int \frac{e^{ik\theta x^0 - ik\bar{x}}}{2\sqrt{k^2 + m^2} \left(\sqrt{k^2 + m^2} - \theta^0 - i0 \right)} dk
\]

\[
+ \frac{1}{(2\pi)^4} \int \frac{e^{-ik\bar{x}^0 - ik\bar{\bar{x}}}}{2\sqrt{k^2 + m^2} \left(\sqrt{k^2 + m^2} - \bar{\theta}^0 - i0 \right)} dk, \tag{2.6}
\]

where in the last step we cut the integration w.r.t. \(k_0\) into a piece on the positive

and negative half-line and swapped the parts on the negative half-line.

(2.6) equals

\[
\begin{align*}
&= \frac{i}{(2\pi)^3} \theta(x^0) \int \frac{e^{-i\sqrt{k^2 + m^2}x^0 - ik\bar{x}}}{2\sqrt{k^2 + m^2}} dk + \frac{i}{(2\pi)^3} \theta(-x^0) \int \frac{e^{i\sqrt{k^2 + m^2}x^0 - ik\bar{x}}}{2\sqrt{k^2 + m^2}} dk \\
&= \theta(x^0)D^{(+)}(x) + \theta(-x^0)D^{(+)}(-x),
\end{align*}
\]

where we used the identity

\[
\int \frac{e^{isa}}{a - s - i0} ds = 2\pi i e^{its} \theta(-t).
\]
Let us now prove that $\text{supp}D^+ \subset J^+$. By the Lorentz covariance it suffices to prove that D^+ is zero on the lower half-plane. We write

\[
D^+(x) = \frac{1}{(2\pi)^4} \int \frac{e^{-ikx}}{k^2 + m^2 + i0 \text{sgn} k^0} dk
\]

\[
= \frac{1}{(2\pi)^4} \int \frac{e^{ik^0 x^0 - i\vec{k} \cdot \vec{x}}}{k^2 + m^2 - (k^0 - i0)^2} dk^0 d\vec{k}.
\]

Next we push the integration wrt k^0 by $k^0 - iR$, where $R \to \infty$, and note that the denominator is safe and $e^{ix^0(k^0 - iR)}$ goes to zero (remember that $x^0 < 0$).

2.1.2 Space of solutions

A space-like subspace S of codimension 1 will be called a Cauchy subspace. Solutions of the Cauchy problem are uniquely parametrized by their Cauchy data (the value and the normal derivative on a Cauchy surface). They can be expressed by the Cauchy data with help of the Pauli-Jordan function.

Theorem 2.1 Let $\varsigma, \vartheta \in C^\infty_c(\mathbb{R}^3)$. Then there exists a unique $\zeta \in C^\infty_c(\mathbb{R}^{1,3})$ that solves

\[
(-\Box + m^2)\zeta = 0 \quad (2.7)
\]

with initial conditions $\zeta(0, \vec{x}) = \varsigma(\vec{x}), \quad \zeta_t(0, \vec{x}) = \vartheta(\vec{x})$. It satisfies $\text{supp} \zeta \subset J(\text{supp} \varsigma \cup \text{supp} \vartheta)$ and is given by

\[
\zeta(t, \vec{x}) = \int_{\mathbb{R}^3} \hat{D}(t, \vec{x} - \vec{y}) \varsigma(\vec{y}) d\vec{y} + \int_{\mathbb{R}^3} D(t, \vec{x} - \vec{y}) \vartheta(\vec{y}) d\vec{y}. \quad (2.8)
\]

Let \mathcal{Y}_{KG}, resp. $\mathbb{C} \mathcal{Y}_{\text{KG}}$ denote the space of real, resp. complex, space-compact solutions of the Klein Gordon equation.

For $\zeta_1, \zeta_2 \in C^\infty(\mathbb{R}^{1,3})$ we define

\[
\jmath^\mu(x) = \jmath^\mu(\zeta_1, \zeta_2, x) := -\partial^\mu \zeta_1(x) \zeta_2(x) + \zeta_1(x) \partial^\mu \zeta_2(x). \quad (2.9)
\]

We easily check that

\[
\partial_\mu \jmath^\mu(x) = (-\Box + m^2) \zeta_1(x) \zeta_2(x) - \zeta_1(x)(-\Box + m^2) \zeta_2(x),
\]

Therefore, if $\zeta_1, \zeta_2 \in \mathbb{C} \mathcal{Y}_{\text{KG}}$, then

\[
\partial_\mu \jmath^\mu(x) = 0.
\]

One says that $\jmath^\mu(x)$ is a conserved current.

The flux of \jmath^μ across any Cauchy subspace does not depend on its choice. It defines a symplectic form on \mathcal{Y}_{KG}

\[
\zeta_1 \omega \zeta_2 = \int_S \jmath^\mu(\zeta_1, \zeta_2, x) ds_\mu(x)
\]

\[
= \int \left(-\dot{\zeta}_1(t, \vec{x}) \zeta_2(t, \vec{x}) + \zeta_1(t, \vec{x}) \dot{\zeta}_2(t, \vec{x})\right) d\vec{x}. \quad (2.10)
\]
Clearly, the form (2.10) is well defined also if only \(\zeta_2 \in \mathcal{Y}_{KG} \), and \(\zeta_1 \) is a distributional solution of the Klein-Gordon equation.

The Poincaré group \(\mathbb{R}^{1,3} \rtimes O(1,3) \) acts on \(\mathcal{Y}_{KG} \) and \(\mathcal{C} \mathcal{Y}_{KG} \) by

\[
r_{(a,\Lambda)}(x) := \zeta((a,\Lambda)^{-1}x).
\]

\(r_{(a,\Lambda)} \) are symplectic (preserve the symplectic form) for \(\Lambda \in O^+(1,3) \), otherwise they are antisymplectic (change the sign in front of the symplectic form). For brevity, we will write \(r_a \) for \(r_{(a,1)} \), where \(a \in \mathbb{R}^{1,3} \), and \(r_\Lambda \) for \(r_{0,\Lambda} \), where \(\Lambda \in O(1,3) \).

The Pauli-Jordan function \(D \) can be used to construct solutions of the Klein-Gordon equation parametrized by space-time functions, which are especially useful in the axiomatic formulation of QFT.

Theorem 2.2

1. For any \(f \in C^\infty_c(\mathbb{R}^{1,3},\mathbb{R}) \), \(D \ast f \in \mathcal{Y}_{KG} \), where

\[
D \ast f(x) := \int D(x-y)f(y)dy.
\]

2. Every element of \(\mathcal{Y}_{KG} \) is of this form.

3. \(-(D \ast f_1)\omega(D \ast f_2) = \int f_1(x)D(x-y)f_2(y)dx dy. \) \hspace{1cm} (2.11)

4. If \(\text{supp} f_1 \times \text{supp} f_2 \), then

\[
(D \ast f_1)\omega(D \ast f_2) = 0.
\]

The right hand side of (2.11) is sometimes called the *Peterls bracket* of \(f_1 \) and \(f_2 \).

Let us prove (2.11). Choose time \(t \) later than \(\text{supp} f_i, \ i = 1,2 \). Then we have \(D \ast f_i = D^+ \ast f_i \). Now

\[
-(D \ast f_1)\omega(D \ast f_2)
= \int \left((D^+ \ast f_1)(t,\vec{x})(D^+ \ast f_2)(t,\vec{x}) - (D^+ \ast f_1)(t,\vec{x})(D^+ \ast f_2)(t,\vec{x}) \right) d\vec{x}
\]

\[
= \int_{x^0 < t} \left(\left(- (\Box - m^2)(D^+ \ast f_1)(x)(D^+ \ast f_2)(x) + (D^+ \ast f_1)(x)(\Box - m^2)(D^+ \ast f_2)(x) \right) dx
\]

\[
= \int (f_1(x)(D^+ \ast f_2)(x) - (D^+ \ast f_1)(x)f_2(x)) dx
\]

\[
= \int (f_1(x)(D^+ \ast f_2)(x) - f_1(x)(D^\ast \ast f_2)(x)) dx = \int f_1(x)(D \ast f_2)(x)dx.
\]
2.1.3 Classical fields

We will also consider the space dual to \mathcal{Y}_{KG}. More precisely, we can endow the space \mathcal{Y}_{KG} with the standard topology of $C_c^\infty(\mathbb{R}^3) \oplus C_c^\infty(\mathbb{R}^3)$ given by the initial conditions. The space of real, resp. complex continuous functionals on \mathcal{Y}_{KG} will be denoted by \mathcal{Y}_{KG}^\prime, resp. by $\mathbb{C}\mathcal{Y}_{KG}^\prime$. The action of $T \in \mathbb{C}\mathcal{Y}_{KG}^\prime$ on $\zeta \in \mathcal{Y}_{KG}$ will be denoted by $\langle T|\zeta \rangle$, and sometimes simply by $T\zeta$.

Let us stress that the space \mathcal{Y}_{KG} is real, which reflects the fact that in this section we consider neutral fields. In the section devoted to charged fields the main role will be played by the complexification of \mathcal{Y}_{KG}, that is $\mathcal{W}_{KG} := \mathbb{C}\mathcal{Y}_{KG}^\prime$.

Anticipating the charged formalism, let us introduce some notation concerning the space dual to \mathcal{W}_{KG}. If T is a complex linear functional on \mathcal{W}_{KG}, then we have two kinds of natural complex conjugations of T:

- $\langle T|\zeta \rangle := \overline{\langle T|\zeta \rangle}$,
- $\langle T^*|\zeta \rangle := \langle T|\zeta \rangle$.

Note that T is (complex) linear and T^* is antilinear. Both maps $T \mapsto T^*$ are antilinear. When restricted to the real subspace \mathcal{Y}_{KG}, the functionals T and T^* coincide.

Note also that in this context the star does not denote the Hermitian conjugation (which in our text is the standard meaning of the star).

For $x \in \mathbb{R}^{1,3}$, $\phi(x)$, $\pi(x)$ will denote the functionals on \mathcal{Y}_{KG} given by

$$\langle \phi(x)|\zeta \rangle := \zeta(x), \quad \langle \pi(x)|\zeta \rangle := \dot{\zeta}(x).$$

They are called classical fields. Clearly, for any $\zeta \in \mathcal{Y}_{KG}$ we have

$$(-\Box + m^2)\langle \phi(x)|\zeta \rangle = 0.$$ \hspace{1cm} (2.12)

Thus the equation

$$(-\Box + m^2)\phi(x) = 0$$

is a tautology.

On \mathcal{Y}_{KG}^\prime we have the action of the Poincaré group $(a, \Lambda) \mapsto r_{(a, \Lambda)}$. Note that

$$r_{(a, \Lambda)}\phi(x) = \phi(\Lambda x + a).$$

Clearly, $\dot{\phi}(x) = \pi(x)$ and, by (2.8),

$$\phi(t, \vec{x}) = \int \hat{D}(t, \vec{x} - \vec{y})\phi(0, \vec{y})d\vec{y} + \int D(t, \vec{x} - \vec{y})\pi(0, \vec{y})d\vec{y}. $$ \hspace{1cm} (2.13)

By (2.10), the symplectic form can be written as

$$\zeta_1 \omega \zeta_2 = \int (-\langle \pi(t, \vec{x})|\zeta_1 \rangle\langle \phi(t, \vec{x})|\zeta_2 \rangle + \langle \phi(t, \vec{x})|\zeta_1 \rangle\langle \pi(t, \vec{x})|\zeta_2 \rangle) d\vec{x},$$

or more simply,

$$\omega = \int \phi(t, \vec{x}) \wedge \pi(t, \vec{x}) d\vec{x}.$$

The conserved current can be written as

$$j_\mu(x) = \phi(x) \wedge \partial_\mu \phi(x).$$
2.1.4 Poisson brackets

The symplectic structure on the space Y_{KG} leads to a Poisson bracket on functions on Y_{KG}:

$$\{\phi(t, \vec{x}),\phi(t, \vec{y})\} = \{\pi(t, \vec{x}),\pi(t, \vec{y})\} = 0,$$

$$\{\phi(t, \vec{x}),\pi(t, \vec{y})\} = \delta(\vec{x} - \vec{y}).$$ \hspace{1cm} (2.14)

The relations (2.14) can be viewed as mnemonic identities that yield the correct Poisson bracket for more regular functions, e.g. the smeared out fields in (2.16) or (2.18) described below. Note that formally $\phi(t, \vec{x})$ and $\pi(t, \vec{x})$ generate all functions on Y_{KG}.

Using (2.13) we obtain

$$\{\phi(x),\phi(y)\} = D(x - y).$$

Therefore, the Pauli-Jordan solution is often called the commutator function.

2.1.5 Smeared fields

There are two basic methods to introduce smeared fields.

One way to smear them out is to use the pairing given by the symplectic form. It is convenient to allow complex smearing functions paired antilinearly. More precisely, for $\zeta \in \mathbb{C}Y_{KG}$ we introduce the functional on Y_{KG} given by

$$\langle \phi(\zeta) \mid \rho \rangle := \bar{\zeta} \omega \rho, \quad \rho \in Y_{KG}.$$

Note in passing that ω can be treated as a linear map from Y_{KG} to Y_{KG}^\ast, which satisfies

$$-(\omega \bar{\zeta}) \rho = \bar{\zeta} \omega \rho.$$

Therefore, a possible alternative notation for $\phi(\zeta)$ is $-\omega \bar{\zeta}$.

Clearly,

$$\phi(\zeta) = \int \left(-\bar{\zeta}(t, \vec{x}) \phi(t, \vec{x}) + \bar{\zeta}(t, \vec{x}) \pi(t, \vec{x}) \right) d\vec{x}. \hspace{1cm} (2.15)$$

Note that

$$\{\phi(\zeta_1),\phi(\zeta_2)\} = \bar{\zeta}_1 \omega \bar{\zeta}_2.$$ \hspace{1cm} (2.16)

We can also smear fields with space-time functions. For $f \in C_c^\infty(\mathbb{R}^{1,3}, \mathbb{R})$, we set

$$\phi[f] := \int f(x) \phi(x) dx.$$

We have

$$\phi[f] = \phi((-D \ast f)),$$

$$\{\phi[f_1],\phi[f_2]\} = \int \int f_1(x) D(x - y) f_2(y) dx dy. \hspace{1cm} (2.17)$$
To see (2.17), write an element of \(Y_{\text{KG}} \) as \(Dg \) for some \(g \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{R}) \):

\[
\langle \phi((−D*f)|D*g) \rangle = (D*f)\omega(D*g) = \int f(x)D(x−y)g(y)dxdy
\]

\[
= \int f(x)\langle \phi(x)|D*g \rangle dx = \langle \phi|f|D*g \rangle.
\]

2.1.6 Lagrangian formalism

In classical mechanics we have the **Hamiltonian formalism**, where the basic object is the phase space equipped with a symplectic form, and the **Lagrangian formalism**, where we start from the configuration space. In the context of classical field theory we also can use both formalism. In this context, the Hamiltonian approach is often called the *on-shell formalism*. This means that the field \(\phi(x) \) acts on the space of solutions of the equations of motion. In other words, the field \(\phi(x) \) that we use in the Hamiltonian formalism satisfies the equation (2.12) – one says that it is *on-shell*.

In the Lagrangian formalism one also uses a classical field, which we will denote by \(\phi(x) \), as before. But now, this field is *off-shell*. This means, we do not enforce any equation on \(\phi(x) \). One can interpret \(\phi(x) \) as the functional on, say, \(C^\infty_c(\mathbb{R}^{1,3}) \) such that

\[
\langle \phi(x)|f \rangle := f(x).
\]

Using \(\phi(x) \) in the off-shell formalism, introduce the *Lagrangian density* \(L(x) = \frac{1}{2}\partial_\mu \phi(x)\partial^\mu \phi(x) - \frac{1}{2}m^2\phi(x)^2 \). (2.19)

The **Euler-Lagrange equation**

\[
\partial_\mu L - \partial_\mu \frac{\partial L}{\partial \phi_\mu} = 0
\]

yields the Klein-Gordon equation.

When we go from the Lagrangian to Hamiltonian formalism, we enforce the *on-shell* condition, that is, the Euler-Lagrange equation, and we introduce the variable conjugate to \(\phi(x) \):

\[
\pi(x) := \frac{\partial L}{\partial \phi_\mu(x)} = \phi_\mu(x).
\]

Then we express everything in terms of \(\phi(x) \) and \(\pi(x) \).

2.1.7 Stress-energy tensor

We can also introduce the *stress-energy tensor*

\[
T^{\mu\nu}(x) := -\frac{\partial L(x)}{\partial \phi_\mu(x)} \phi^{\nu}(x) + g^{\mu\nu}L(x)
\]

\[
= \partial^\mu \phi(x)\partial^\nu \phi(x) - g^{\mu\nu}\frac{1}{2} \left(\partial_\alpha \phi(x)\partial^\alpha \phi(x) + m^2\phi(x)^2 \right).
\]
We check that the stress-energy tensor is conserved for a solution of the Klein-Gordon equation (on shell)
\[\partial_\mu T^{\mu\nu}(x) = 0. \]
We express the stress-energy tensor in terms of \(\phi(x) \) and \(\pi(x) \). Its components with the first temporal coordinate are called the Hamiltonian density and momentum density:
\[
\mathcal{H}(x) := T^{00}(x) = \frac{1}{2} \left(\pi(x)^2 + (\partial_\phi(x))^2 + m^2 \phi(x)^2 \right),
\]
\[
\mathcal{P}^i(x) := T^{0i}(x) = -\pi(x) \partial^i \phi(x).
\]
They are examples of quadratic functionals on \(\mathcal{Y}_{KG} \):
\[
\langle \mathcal{H}(x)|\zeta \rangle = \frac{1}{2} \left(\dot{\zeta}(x)^2 + (\partial_\zeta(x))^2 + m^2 \zeta(x)^2 \right),
\]
\[
\langle \mathcal{P}^i(x)|\zeta \rangle = -\dot{\zeta}(x) \partial^i \zeta(x).
\]
We introduce the (total) Hamiltonian and momentum:
\[
H := \int_S T^{\mu 0}(x)ds_\mu(x) = \int H(t, \vec{x})d\vec{x},
\]
\[
\mathcal{P}^i := \int_S T^{\mu i}(x)ds_\mu(x) = \int \mathcal{P}^i(t, \vec{x})d\vec{x}. \tag{2.22}
\]
where \(S \) is any Cauchy subspace.
\(H \) and \(\mathcal{P} \) are the generators of the time and space translations:
\[
\dot{\phi}(x) = \{ H, \phi(x) \}, \quad \dot{\pi}(x) = \{ H, \pi(x) \},
\]
\[
\partial_\phi(x) = -\{ \mathcal{P}, \phi(x) \}, \quad \partial_\pi(x) = -\{ \mathcal{P}, \pi(x) \}.
\]
The observables \(H, P^1, P^2 \) and \(P^3 \) are in involution. (This means that the Poisson bracket of every pair among these observables vanishes).

2.1.8 Diagonalization of the equations of motion

For \(\vec{k} \in \mathbb{R}^3 \), set \(\varepsilon = \varepsilon(\vec{k}) := \sqrt{\vec{k}^2 + m^2} \) and \(k := (\varepsilon(\vec{k}), \vec{k}) \). \(k \in \mathbb{R}^{1,3} \) of this form will be called on shell. Define
\[
\phi_t(\vec{k}) := \int \phi(t, \vec{x})e^{-i\vec{k}\vec{x}}d\vec{x},
\]
\[
\pi_t(\vec{k}) := \int \pi(t, \vec{x})e^{-i\vec{k}\vec{x}}d\vec{x}.
\]
Clearly,
\[
\phi_t^*(\vec{k}) = \phi_t(-\vec{k}),
\]
\[
\pi_t^*(\vec{k}) = \pi_t(-\vec{k}),
\]
\[
\{ \phi_t^*(\vec{k}), \phi_t(\vec{k}') \} = \{ \pi_t^*(\vec{k}), \pi_t(\vec{k}') \} = 0,
\]
\[
\{ \phi_t^*(\vec{k}), \pi_t(\vec{k}') \} = (2\pi)^3 \delta(\vec{k} - \vec{k}').
\]
The equations of motion are
\[
\dot{\phi}_t(\vec{k}) = \pi_t(\vec{k}),
\]
\[
\dot{\pi}_t(\vec{k}) = -\varepsilon(\vec{k})\phi_t(\vec{k}).
\]

For \(k \) on shell we set
\[
a_t(k) = (2\pi)^{-\frac{3}{2}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \phi_t(\vec{k}) + \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \pi_t(\vec{k}) \right),
\]
\[
a^*_t(k) = (2\pi)^{-\frac{3}{2}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \phi^*_t(\vec{k}) - \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \pi^*_t(\vec{k}) \right).
\]

We have the equations of motion
\[
\dot{a}_t(k) = -i\varepsilon(\vec{k})a_t(k),
\]
\[
\dot{a}^*_t(k) = i\varepsilon(\vec{k})a^*_t(k).
\]

We will usually write \(a(k), a^*(k) \) instead of \(a_0(k), a^*_0(k) \), so that
\[
a(k) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} e^{-i\vec{k}\vec{x}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \phi(0,\vec{x}) + \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \pi(0,\vec{x}) \right),
\]
\[
a^*(k) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} e^{i\vec{k}\vec{x}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \phi(0,\vec{x}) - \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \pi(0,\vec{x}) \right).
\]

Thus
\[
a_t(k) = e^{-i\varepsilon(\vec{k})}a(k),
\]
\[
a^*_t(k) = e^{i\varepsilon(\vec{k})}a^*(k).
\]

and the Poisson brackets are
\[
\{a(k), a(k')\} = \{a^*(k), a^*(k')\} = 0,
\]
\[
\{a(k), a^*(k')\} = -i\delta(\vec{k} - \vec{k}').
\]

The fields can be written as
\[
\phi(x) = (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{2\varepsilon(\vec{k})} \left(e^{i\vec{k}\vec{x}} a(k) + e^{-i\vec{k}\vec{x}} a^*(k) \right),
\]
\[
\pi(x) = (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k} \varepsilon(\vec{k})}{i\sqrt{2}} \left(e^{i\vec{k}\vec{x}} a(k) - e^{-i\vec{k}\vec{x}} a^*(k) \right).
\]
Thus every $\zeta \in \mathcal{Y}_{KG}$ can be written as

$$\zeta(x) = (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(e^{i\vec{k} \cdot \vec{x}} \langle a(k)|\zeta \rangle + e^{-i\vec{k} \cdot \vec{x}} \langle a^*(k)|\zeta \rangle \right).$$ \hfill (2.25)

$a(k), a^*(k)$ diagonalize simultaneously the Hamiltonian, momentum and symplectic form:

$$H = \int d\vec{k} \varepsilon(\vec{k}) a^*(k)a(k),$$

$$\vec{P} = \int d\vec{k} \vec{k} a^*(k)a(k),$$

$$i\omega = \int d\vec{k} a^*(k) \wedge a(k).$$

With $\zeta_1, \zeta_2 \in \mathcal{Y}_{KG}$, the last identity is the shorthand for

$$i\zeta_1 \omega \zeta_2 = \int \left(\langle a(k)|\zeta_1 \rangle \langle a(k)|\zeta_2 \rangle - \langle a(k)|\zeta_1 \rangle \langle a(k)|\zeta_2 \rangle \right) d\vec{k}.$$

2.1.9 Plane waves

Let $k \in \mathbb{R}^{1,3}$ satisfy $k^2 + m^2 = 0$, that is $k^0 = \pm \varepsilon(\vec{k})$. A plane wave $|k\rangle$ is defined as

$$(x|k) = \frac{1}{(2\pi)^{3/2}\sqrt{2\varepsilon(\vec{k})}} e^{i\vec{k} \cdot \vec{x}}.$$

(2.26)

Following Dirac, we denote plane waves using the “ket notation” $|k\rangle$ when they appear on the right of a bilinear form. If they appear on the left, we employ the “bra notation”, which implies an additional complex conjugation:

$$(k|x) = (x|k) = (x|-k) = \frac{1}{(2\pi)^{3/2}\sqrt{2\varepsilon(\vec{k})}} e^{-i\vec{k} \cdot \vec{x}}.$$

Note that we can distinguish between positive frequency plane waves, corresponding to $k^0 > 0$, and negative frequency plane waves, with $k^0 < 0$. If $|k\rangle$ is a positive frequency plane wave, then $|-k\rangle = |\bar{k}\rangle$ is a negative frequency plane wave. In the neutral case, as a rule we restrict ourselves to positive frequency plane waves.

Let $\vec{k} = (\varepsilon(\vec{k}), \vec{k})$. We have

$$i(-k|\omega|k') = i(k|\omega| - k') = 0,$$

$$-i(-k|\omega| - k') = i(k|\omega|k') = \delta(\vec{k} - \vec{k'}).$$

38
a(k) and a*(k), defined in (2.23) and (2.24) will be called plane wave functionals. They can be expressed as

\[
a(k) = iφ(∥k∥) = \int (\partial_t(k|0, \bar{x})φ(0, \bar{x}) - (k|0, \bar{x})\pi(0, \bar{x}))d\bar{x},
\]

\[
a^*(k) = -iφ((|-k|)) = \int (\partial_t(-k|0, \bar{x})φ(0, \bar{x}) - (-k|0, \bar{x})\pi(0, \bar{x}))d\bar{x}.
\]

The fields can be written in terms of plane waves functionals as

\[
φ(x) = \int (x|k)a(k) + (x|k)a^*(k))d\vec{k}.
\]

Every ζ ∈ C¥KG satisfies

\[
\langle a(k)|ζ \rangle = i(k|ωζ), \quad (2.27)
\]

\[
\langle a^*(k)|ζ \rangle = -i(-k|ωζ). \quad (2.28)
\]

2.1.10 Positive frequency space

W^{(±)} KG will denote the subspace of C¥KG consisting of positive, resp. negative frequency solutions, that is,

\[
W^{(+)} KG := \{g ∈ C¥KG : (k|ωg = 0, k^0 < 0}\},
\]

\[
W^{(-)} KG := W^{(+)} KG = \{g ∈ C¥KG : (k|ωg = 0, k^0 > 0}\}.
\]

In other words, W^{(+)} KG is a subspace of C¥KG that consists of functions of the form

\[
g(x) = (2π)^{-\frac{3}{2}} \int \frac{dk}{\sqrt{2\epsilon(k)}} e^{ikx} \langle a(k)|g \rangle d\vec{k}.
\]

For g₁, g₂ ∈ W^{(+)} KG we define the scalar product

\[
\langle g_1|g_2 \rangle := i\bar{g}_1ωg_2 = \int \langle a(k)|g_1 \rangle \langle a(k)|g_2 \rangle d\vec{k}
\]

The Hilbert space of positive energy solutions is denoted Z_{KG}; and is the completion of W^{(±)} KG in this scalar product.

Note that

\[
\langle a(k)|g \rangle = (k|g), \quad g ∈ Z_{KG}.
\]

\[\mathbb{R}^{1,3} × O^+(1,3)\] leaves Z_{KG} invariant.
We have a natural identification of Y_{KG} with $W_{\text{KG}}^{(+)_}$. Indeed, if $\zeta \in Y_{\text{KG}}$ is given by (2.25), then we can project it onto $W_{\text{KG}}^{(+)_}$ obtaining

$$
\zeta^{(+)_}(x) = (2\pi)^{-\frac{d}{2}} \int \frac{d\vec{k}}{\sqrt{2\pi(k)}} e^{ikx} \langle a(k)|\zeta \rangle.
$$

(2.29)

This identification allows us to define a real scalar product on Y_{KG}:

$$
\langle \zeta_1|\zeta_2 \rangle_{Y_{\text{KG}}} := \text{Re}(\zeta_1^{(+)_}|\zeta_2^{(+)_}).
$$

We can compute explicitly this scalar product:

$$
\langle \zeta_1|\zeta_2 \rangle_{Y_{\text{KG}}} = \int \int \zeta_1(0,\vec{x})(-i)D^{(+)_}(0,\vec{x} - \vec{y})\zeta_2(0,\vec{y})d\vec{x}d\vec{y} + \int \int \zeta_1(0,\vec{x})(-\Delta + m^2)(-i)D^{(+)_}(0,\vec{x} - \vec{y})\zeta_2(0,\vec{y})d\vec{x}d\vec{y}.
$$

(2.30)

2.1.11 Quantization

Let us describe the quantization of the Klein-Gordon equation. We will use the “hat” to denote the quantized objects.

We will use the formalism of quantization of neutral bosonic systems [11].

We want to construct a Hilbert space, a self-adjoint operator and normalized vector $(\mathcal{H}, \hat{H}, \Omega)$ satisfying the standard requirements (1)-(3) (see Subsubsect. 1.2.1) and a self-adjoint operator valued distribution

$$
\mathbb{R}^{1,3} \ni x \mapsto \hat{\phi}(x),
$$

(2.31)

such that, with $\hat{\pi}(x) := \hat{\phi}(x)$,

1. $(-\Box + m^2)\hat{\phi}(x) = 0,$

2. $[\hat{\phi}(0,\vec{x}), \hat{\phi}(0,\vec{y})] = [\hat{\pi}(0,\vec{x}), \hat{\pi}(0,\vec{y})] = 0,$

3. $e^{it\hat{H}}\hat{\phi}(x^0,\vec{x})e^{-it\hat{H}} = \hat{\phi}(x^0 + t,\vec{x}).$

4. Ω is cyclic for $\hat{\phi}(x)$.

The above problem has a solution, which is unique up to a unitary equivalence. Let us describe this solution.

For the Hilbert space we should take the bosonic Fock space $\mathcal{H} = \Gamma_{\text{s}}(\mathcal{Z}_{\text{KG}})$ and for Ω the Fock vacuum. Introduce the operator valued distribution $\hat{a}(k)$ defined on the mass shell by

$$
\hat{a}^*(k) := \hat{a}^*(|k\rangle),
$$

(2.32)

or equivalently

$$
\int \langle k|g\rangle \hat{a}^*(k)d\vec{k} = \hat{a}^*(g), \quad g \in \mathcal{Z}_{\text{KG}}.
$$

(2.33)
Note that in (2.32) and (2.33) “mathematician’s notation” for creation operators is used on the right.

We set
\[
\hat{\phi}(x) := (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(e^{ikx} \hat{a}(k) + e^{-ikx} \hat{a}^*(k) \right).
\]

The Hamiltonian and the momentum are
\[
\hat{H} := \int \hat{a}^*(k)\hat{a}(k)\varepsilon(\vec{k})d\vec{k},
\]
\[
\vec{P} := \int \hat{a}^*(k)\hat{a}(k)\vec{k}d\vec{k}.
\]

Note that the whole \(R^{1,3} \times O^+(1, 3) \) is unitarily implemented on \(\mathcal{H} \) by \(U(a, \Lambda) := \Gamma(r(a, \Lambda) |_{Z_{KG}}) \):
\[
U(a, \Lambda)\hat{\phi}(x)U(a, \Lambda)^* = \hat{\phi}((a, \Lambda)x).
\]

This is true even though we only required that time translations are implemented.

The operator \(\hat{H} \) is automatically positive and
\[
[\hat{\phi}(x), \hat{\phi}(y)] = -iD(x - y).
\]

For \(f \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{R}) \) set
\[
\hat{\phi}[f] := \int f(x)\hat{\phi}(x)dx.
\]

(2.34) satisfy the Wightman axioms with \(D := \Gamma_R^n(Z_{KG}) \).

For an open set \(O \subset \mathbb{R}^d \) we set
\[
\mathfrak{A}(O) := \{ \exp(i\hat{\phi}[f]) : f \in C^\infty_c(O, \mathbb{R}) \}''.
\]

The algebras \(\mathfrak{A}(O) \) satisfy the Haag-Kastler axioms.

2.1.12 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program, which uses smeared fields instead of point fields, which may better appeal to some people.

Again, we want to construct \((\mathcal{H}, \hat{H}, \Omega) \) satisfying the standard requirements.

Instead of (2.31) we look for a linear function
\[
\mathcal{Y}_{KG} \ni \zeta \mapsto \hat{\phi}(\zeta)
\]

with values in self-adjoint operators such that
\[[\hat{\phi}(\zeta_1), \hat{\phi}(\zeta_2)] = i\zeta_1 \omega \zeta_2. \] (2.35)

\[\hat{\phi}(r(t, \vec{x})\zeta) = e^{it\hat{H}}\hat{\phi}(\zeta)e^{-it\hat{H}}. \]

(3) \(\Omega \) is cyclic for the algebra generated by \(\hat{\phi}(\zeta) \).

One can pass between these two versions of the quantization by
\[\hat{\phi}(\zeta) = \int \left(-\dot{\zeta}(t, \vec{x})\hat{\phi}(t, \vec{x}) + \zeta(t, \vec{x})\hat{\pi}(t, \vec{x}) \right) d\vec{x}. \] (2.36)

2.1.13 Quantization in terms of \(C^* \)-algebras

Let us mention yet another equivalent approach to quantization, using the language of \(C^* \)-algebras.

Let \(CCR(\mathcal{Y}_{KG}) \) denote the \((\text{Weyl}) \) \(C^* \)-algebra of the CCR over \(\mathcal{Y}_{KG} \). By definition, it is generated by \(W(\zeta), \zeta \in \mathcal{Y}_{KG} \), such that
\[W(\zeta_1)W(\zeta_2) = e^{-i\frac{\omega}{2}(\zeta_1 + \zeta_2)}, \quad W(\zeta) = W(-\zeta). \]

\(\mathbb{R}^{1,3} \rtimes O^+(1,3) \) acts on \(CCR(\mathcal{Y}_{KG}) \) by \(*\)-automorphisms defined by
\[\hat{r}(a, \Lambda)(W(\zeta)) := W(r(a, \Lambda)(\zeta)). \]

We are looking for a cyclic representation of this algebra with the time evolution generated by a positive Hamiltonian.

The solution is provided by the state on \(CCR(\mathcal{Y}_{KG}) \) defined by
\[\psi(W(\zeta)) = \exp \left(-\frac{1}{2} \langle \zeta | \zeta \rangle_{\mathcal{Y}} \right). \]

Let \((\mathcal{H}_\psi, \pi_\psi, \Omega_\psi) \) be the GNS representation generated by the state \(\psi \). Then this representation has the required properties. \(\mathcal{H}_\psi \) can be identified with \(\Gamma_x(Z_{KG}) \) and the fields are related to the Weyl operators by
\[\pi_\psi(W(\zeta)) = e^{i\phi(\zeta)}. \]

2.1.14 Two-point functions

Note the identities
\[(\Omega|\hat{\phi}(x)\hat{\phi}(y)\Omega) = -iD^+(x - y), \] (2.37)
\[(\Omega|T(\hat{\phi}(x)\hat{\phi}(y))\Omega) = -iD^c(x - y). \] (2.38)
In fact,

\[
(\Omega | \hat{\phi}(x) \hat{\phi}(y) \Omega) = (2\pi)^{-3} \int \int \frac{d\vec{k} d\vec{k}'}{\sqrt{2\varepsilon} \sqrt{2\varepsilon'}} e^{i\vec{k}x - i\vec{k}'y} (\Omega | \hat{a}(k) \hat{a}^*(k') \Omega)
\]

\[
= (2\pi)^{-3} \int \frac{d\vec{k}}{2\varepsilon(k)} e^{i\vec{k}(x-y)}
\]

\[
= -iD^{(+)}(x-y);
\]

\[
(\Omega | T(\hat{\phi}(x) \hat{\phi}(y)) \Omega) = \theta(x^0 - y^0)(\Omega | \hat{\phi}(x) \hat{\phi}(y) \Omega) + \theta(y^0 - x^0)(\Omega | \hat{\phi}(y) \hat{\phi}(x) \Omega)
\]

\[
= -i\theta(x^0 - y^0)D^{(+)}(x-y) - i\theta(y^0 - x^0)D^{(+)}(y-x)
\]

\[
= -iD^{c}(x-y).
\]

For the smeared fields and Weyl operators we have

\[
(\Omega | \hat{\phi}([f]) \Omega) = -i \int \int f(x)D^{(+)}(x-y)f(y)dx dy,
\]

\[
\text{(2.39)}
\]

\[
(\Omega | e^{i\hat{\phi}([f])} \Omega) = \exp \left(\frac{i}{2} \int \int f(x)D^{(+)}(x-y)f(y)dx dy \right),
\]

\[
\text{(2.40)}
\]

\[
(\Omega | \hat{\phi}([\zeta])^2 \Omega) = -i \int \int \zeta(0,\vec{x})D^{(+)}(0,\vec{x} - \vec{y})\zeta(0,\vec{y})d\vec{x}d\vec{y}
\]

\[
- i \int \int \zeta(0,\vec{x})(-\Delta + m^2)D^{(+)}(0,\vec{x} - \vec{y})\zeta(0,\vec{y})d\vec{x}d\vec{y}
\]

\[
= \langle \zeta | \zeta \rangle_{\mathcal{Y}},
\]

\[
(\Omega | e^{i\hat{\phi}([\zeta])} \Omega) = \exp \left(-\frac{1}{2} \langle \zeta | \zeta \rangle_{\mathcal{Y}} \right).
\]

\[
\text{(2.41)}
\]

\[
\text{(2.42)}
\]

(Recall that the scalar product on \(\mathcal{Y}_{KG}\) was introduced in (2.30)).

(2.39) follows immediately from (2.37), which implies (2.40).

From (2.37), we obtain

\[
(\Omega | \hat{\phi}(0,\vec{x}) \hat{\phi}(0,\vec{y}) \Omega) = -iD^{(+)}(0,\vec{x} - \vec{y}),
\]

\[
\text{(2.43)}
\]

\[
(\Omega | \hat{\phi}(0,\vec{x}) \hat{\pi}(0,\vec{y}) \Omega) = 0,
\]

\[
\text{(2.44)}
\]

\[
(\Omega | \hat{\pi}(0,\vec{x}) \hat{\pi}(0,\vec{y}) \Omega) = i\partial_0^2D^{(+)}(0,\vec{x} - \vec{y})
\]

\[
= -i(-\Delta + m^2)D^{(+)}(0,\vec{x} - \vec{y}).
\]

\[
\text{(2.45)}
\]

(2.43), (2.44) and (2.45) are real symmetric kernels. Hence we obtain (2.41), which implies (2.42).

2.2 Neutral scalar bosons with a linear source

2.2.1 Classical fields

We go back to the classical theory. The fields studied in the previous subsection will be called free fields. We change slightly the notation: free classical fields
will be now denoted by $\phi_{fr}(x)$, $\pi_{fr}(x)$. Clearly, they satisfy
\begin{align}
(-\Box + m^2)\phi_{fr}(x) &= 0, \\
\pi_{fr}(x) &= \dot{\phi}_{fr}(x).
\end{align}

(2.46)

Fix a function
\begin{equation}
\mathbb{R}^{1,3} \ni x \mapsto j(x) \in \mathbb{R},
\end{equation}
which will be called the *(external) linear source*. In most of this subsection we will assume that (2.47) is Schwartz. The *interacting fields* satisfy the equation
\begin{align}
(-\Box + m^2)\phi(x) &= -j(x), \\
\pi(x) &= \dot{\phi}(x).
\end{align}

(2.48)

(2.49)

We would like to have the same equal-time Poisson-brackets as for free fields:
\begin{align}
\{\phi(t,\vec{x}),\phi(t,\vec{y})\} &= \{\pi(t,\vec{x}),\pi(t,\vec{y})\} = 0, \\
\{\phi(t,\vec{x}),\pi(t,\vec{y})\} &= \delta(\vec{x} - \vec{y}).
\end{align}

(2.50)

There are several, usually equivalent, ways to introduce interacting fields.

One way is to treat them as functionals on the space of solutions to the free Klein-Gordon equation, \mathcal{Y}_{KG}. We can demand in addition that
\begin{align}
\phi_{fr}(0,\vec{x}) &= \phi(0,\vec{x}), & \pi_{fr}(0,\vec{x}) &= \pi(0,\vec{x}).
\end{align}

This condition determines the field $\phi(x)$ uniquely:
\begin{align}
\phi(x) &= \phi_{fr}(x) \\
&\quad + \int \left(D^+(x-y)\theta(y^0) + D^-(x-y)\theta(-y^0) \right) j(y)dy.
\end{align}

Let us mention some alternative ways to define the interacting fields $\phi(x)$.

First of all, there is nothing special about the time $t = 0$ in (2.51) – we can replace it with any $t = t_0$. Alternatively, we can demand
\begin{align}
\lim_{t \to \infty} (\phi_{fr}(t,\vec{x}) - \phi(t,\vec{x})) &= 0, & \lim_{t \to -\infty} (\phi_{fr}(t,\vec{x}) - \phi(t,\vec{x})) &= 0, \\
\quad \text{or} \\
\lim_{t \to \infty} (\pi_{fr}(t,\vec{x}) - \pi(t,\vec{x})) &= 0, & \lim_{t \to -\infty} (\pi_{fr}(t,\vec{x}) - \pi(t,\vec{x})) &= 0.
\end{align}

Another possibility is to introduce $\mathcal{Y}_{KG}(j)$, the space of smooth real space-compact solutions of
\begin{equation}
(-\Box + m^2)\zeta(x) = -j(x),
\end{equation}
and define $\phi(x)$ by
\begin{equation}
\langle \phi(x)|\zeta \rangle := \zeta(x), \quad \zeta \in \mathcal{Y}_{KG}(j).
\end{equation}
2.2.2 Lagrangian and Hamiltonian formalism

We can obtain the equations (2.48) as the Euler-Lagrange equations for the Lagrangian density

\[L(x) = -\frac{1}{2} \partial_\mu \phi(x) \partial^\mu \phi(x) - \frac{1}{2} m^2 \phi(x)^2 - j(x) \phi(x). \]

(2.53)

The conjugate variable is

\[\pi(x) := \frac{\partial L}{\partial \phi(x)} = \partial_0 \phi(x), \]
just as in the free case.

The Legendre transformation leads to the Hamiltonian density

\[H(x) := \frac{1}{2} \left(\pi(x)^2 + (\partial_\phi(x))^2 \right) + m^2 \phi(x)^2 + j(x) \phi(x). \]

and the (time-dependent) Hamiltonian

\[H(t) = \int H(t, \vec{x}) d\vec{x}. \]

The Hamiltonian generates the dynamics:

\[\dot{\phi}(t, \vec{x}) = \{ H(t), \phi(t, \vec{x}) \}, \quad \dot{\pi}(t, \vec{x}) = \{ H(t), \pi(t, \vec{x}) \}. \]

2.2.3 Quantization

We will use the notation \(\hat{\phi}_{fr}(x) \) for the free quantum fields studied in the previous section. We are now looking for interacting quantum fields \(\hat{\phi}(x) \) satisfying

\[(-\Box + m^2) \hat{\phi}(x) = -j(x). \]

(2.54)

We also set

\[\hat{\pi}(x) := \dot{\hat{\phi}}(x) \]

(2.55)

and require the equal time commutation relations

\[\{ \hat{\phi}(t, \vec{x}), \hat{\phi}(t, \vec{y}) \} = [\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})] = 0, \]
\[\{ \hat{\phi}(t, \vec{x}), \hat{\pi}(t, \vec{y}) \} = i \delta(\vec{x} - \vec{y}). \]

(2.56)

We would like to solve (2.54) and (2.56) in terms of free fields. That means, we are looking for \(\hat{\phi}(x) \) on the Hilbert space of the free Klein-Gordon fields, \(\Gamma_s(\mathcal{Z}_{KG}) \). We will in addition demand that

\[\hat{\phi}_{fr}(0, \vec{x}) = \hat{\phi}(0, \vec{x}), \quad \hat{\pi}_{fr}(0, \vec{x}) = \hat{\pi}(0, \vec{x}). \]

(2.57)

Clearly, the unique solution is

\[\hat{\phi}(x) := \hat{\phi}_{fr}(x) + \int D^+(x - y) \theta(y^0) j(y) dy + \int D^-(x - y) \theta(-y^0) j(y) dy. \]

(2.58)
It can be written as
\[
\hat{\phi}(t, \vec{x}) = \text{Exp} \left(-i \int_0^t \hat{H}(s) \text{d}s \right) \hat{\phi}(0, \vec{x}) \text{Exp} \left(-i \int_0^t \hat{H}(s) \text{d}s \right),
\] (2.59)
where the Hamiltonian in the Schrödinger picture equals
\[
\hat{H}(t) := \int d\vec{x} \left(\frac{1}{2} \hat{\pi}(t, \vec{x})^2 + \frac{1}{2} \partial_i \hat{\phi}(t, \vec{x}) \partial_i \hat{\phi}(t, \vec{x}) + \frac{m^2}{2} \hat{\phi}^2(t, \vec{x}) + j(t, \vec{x}) \hat{\phi}(t, \vec{x}) \right). \tag{2.60}
\]
(Note that we use the “double dots” to denote the Wick quantization, see Subsect. A.1.3.) In \(\hat{H}(t) \), the fields are at time zero:
\[
\hat{\phi}(\vec{x}) = \hat{\phi}(0, \vec{x}) = \hat{\phi}_{fr}(0, \vec{x}),
\hat{\pi}(\vec{x}) = \hat{\pi}(0, \vec{x}) = \hat{\pi}_{fr}(0, \vec{x}).
\]
In principle, one could replace \(\hat{H}(t) \) by \(\hat{H}(t) + C(t) \) for an arbitrary real function \(t \mapsto C(t) \). The choice that we made satisfies
\[(\Omega | \hat{H}(t) \Omega) = 0, \quad t \in \mathbb{R}.
\]
One can also use the Hamiltonian in the Heisenberg picture
\[
\hat{H}_{HP}(t) = \int d\vec{x} \left(\frac{1}{2} \hat{\pi}^2(t, \vec{x}) + \frac{1}{2} \partial_i \hat{\phi}(t, \vec{x}) \partial_i \hat{\phi}(t, \vec{x}) + \frac{m^2}{2} \hat{\phi}^2(t, \vec{x}) + j(t, \vec{x}) \hat{\phi}(t, \vec{x}) \right): \tag{2.61}
\]
which appears in the equations
\[
\partial_t \hat{\phi}(t, \vec{x}) = i[\hat{H}_{HP}(t), \hat{\phi}(t, \vec{x})],
\partial_t \hat{\pi}(t, \vec{x}) = i[\hat{H}_{HP}(t), \hat{\pi}(t, \vec{x})]. \tag{2.62}
\]
We also have the Hamiltonian in the interaction picture
\[
\hat{H}_{Int}(t) = \int j(t, \vec{x}) \hat{\phi}_{fr}(t, \vec{x}) d\vec{x}. \tag{2.63}
\]

2.2.4 Operator valued source

So far we assumed that \(j(x) \) is a c-number. Most of the formalism works, at least formally, for \textit{operator valued sources}. The main additional difficulty is the need to distinguish between the source in various pictures.

Let us start with the Schrödinger picture. Let \(\mathbb{R}^{1,3} \ni x \mapsto \hat{j}(x) \) be an operator-valued function (or distribution) that commutes with time zero fields:
\[
[\hat{\phi}(\vec{x}), \hat{j}(t, \vec{y})] = [\hat{\pi}(\vec{x}), \hat{j}(t, \vec{y})] = 0, \quad \vec{x}, \vec{y} \in \mathbb{R}^{3}, \quad t \in \mathbb{R}.
\]
Define the \textit{Hamiltonian in the Schrödinger picture} \(\hat{H}(t) \) by (2.60), where \(j(x) \) is replaced by \(\hat{j}(x) \).
Then we define the fields in the Heisenberg picture \(\hat{\phi}(x) \), \(\hat{\pi}(x) \), as in (2.59). We also have the source in the Heisenberg picture

\[
\hat{j}_{\text{HP}}(t, \vec{x}) := \text{Tem}(\exp(-i \int_{t}^{0} \hat{H}(s)ds) \hat{j}(t, \vec{x}) \text{Tem}(\exp(-i \int_{0}^{t} \hat{H}(s)ds))}
\]

having the commutation relations

\[
[\hat{\phi}(t, \vec{x}), \hat{j}_{\text{HP}}(t, \vec{y})] = [\hat{\pi}(t, \vec{x}), \hat{j}_{\text{HP}}(t, \vec{y})] = 0.
\]

The Klein-Gordon equation (2.54) and the relation (2.58) generalize:

\[
(-\Box + m^2)\hat{\phi}(x) = -\hat{j}_{\text{HP}}(x), \quad \hat{\phi}(x) := \hat{\phi}_{H}(x)
\]

\[
+ \int D^+(x - y)\theta(\mathbf{y})\hat{j}_{\text{HP}}(y)dy + \int D^-(x - y)\theta(-\mathbf{y})\hat{j}_{\text{HP}}(y)dy.
\]

We can also introduce the Hamiltonian in the Heisenberg picture, by repeating (2.61) with \(\hat{j}(t, \vec{x}) \) replaced with \(\hat{j}_{\text{HP}}(t, \vec{x}) \). The usual equations of motion (2.62) are satisfied.

We can also introduce the source in the interaction picture

\[
\hat{j}_{\text{Int}}(t, \vec{x}) := e^{it\hat{H}_{\text{fr}}(t, \vec{x})} \hat{j}(t, \vec{x}) e^{-it\hat{H}_{\text{fr}}},
\]

satisfying the commutation relations

\[
[\hat{\phi}_{H}(t, \vec{x}), \hat{j}_{\text{Int}}(t, \vec{y})] = [\hat{\pi}_{H}(t, \vec{x}), \hat{j}_{\text{Int}}(t, \vec{y})] = 0, \quad \vec{x}, \vec{y} \in \mathbb{R}^3, \quad t \in \mathbb{R}.
\]

Finally, we have the Hamiltonian in the interaction picture

\[
\hat{H}_{\text{Int}}(t) = \int \hat{j}_{\text{Int}}(t, \vec{x})\hat{\phi}_{H}(t, \vec{x})d\vec{x},
\]

which is obtained from (2.63) by replacing \(\hat{j}(t, \vec{x}) \) with \(\hat{j}_{\text{Int}}(t, \vec{x}) \).

2.2.5 Scattering operator

We go back to a \(c \)-number source \(j(x) \). The Hamiltonian in the interaction picture written in terms of creation and annihilation operators equals

\[
\hat{H}_{\text{Int}}(t) = (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{2\vec{\epsilon}(\vec{k})} \left(e^{-i\epsilon(\vec{k})\hat{j}(t, \vec{k})\hat{a}(k)} + e^{i\epsilon(\vec{k})\hat{j}(t, \vec{k})\hat{a}^{\ast}(k)} \right).
\]

An application of the time-dependent BCH formula gives the scattering operator

\[
\hat{S} = \exp \left(\frac{i}{2(2\pi)^{2}} \int \frac{|j(k)|^{2}}{\vec{k}^{2} + m^{2} - i0} dk \right)
\]

\[
\times \exp \left(-\frac{i}{(2\pi)^{2}} \int j(\epsilon(\vec{k}), \vec{k})d\vec{k} \hat{a}^{\ast}(k)dk \right) \exp \left(-\frac{i}{(2\pi)^{2}} \int \hat{j}(\epsilon(\vec{k}), \vec{k})d\vec{k} \hat{a}(k)dk \right).
\]

47
On the level of creation and annihilation operators it acts as

\[Sa^*(k)S = a^*(k) - i \frac{j(\varepsilon(\vec{k}^*), \vec{k})}{2(\pi)^{3/2} \sqrt{2\varepsilon(\vec{k})}}, \quad (2.66) \]

\[Sa(k)S = a(k) + i \frac{j(\varepsilon(k), \vec{k})}{2(\pi)^{3/2} \sqrt{2\varepsilon(\vec{k})}}. \quad (2.67) \]

For distinct \(k_1, \ldots, k_n \) on shell, set

\[|k_n, \ldots, k_1 := a^*(k_n) \cdots a^*(k_1)\Omega. \]

Matrix elements of the scattering operator between such vectors are called scattering amplitudes:

\[\left(k_1^+, \ldots, k_n^+ | \hat{S} | k_n^-, \ldots, k_1^- \right) = \exp \left(\frac{i}{2(2\pi)^2} \int \frac{|j(k)|^2}{k^2 + m^2 - i0} dk \right) \frac{i^{-n^+ + n^-}}{(2\pi)^{3(n^+ + n^-)}} \]

\[\times \frac{j(\varepsilon(k_1^+), \vec{k}_1^+)}{\sqrt{2\varepsilon(k_1^+)}} \ldots \frac{j(\varepsilon(\vec{k}_n^+), \vec{k}_n^+)}{\sqrt{2\varepsilon(\vec{k}_n^+)}} \frac{j(\varepsilon(k_1^-), \vec{k}_1^-)}{\sqrt{2\varepsilon(k_1^-)}} \ldots \frac{j(\varepsilon(\vec{k}_n^-), \vec{k}_n^-)}{\sqrt{2\varepsilon(\vec{k}_n^-)}}. \quad (2.68) \]

2.2.6 Green’s functions

Recall that the \(N \)-point Green’s function is defined for \(x_N, \ldots, x_1 \) as follows:

\[G(x_N, \ldots, x_1) := \left(\Omega^+ | \mathcal{T} (\hat{\phi}(x_N) \cdots \hat{\phi}(x_1)) \Omega^- \right), \quad (2.69) \]

where

\[\Omega^\pm := \lim_{t \to \pm \infty} \text{Exp} \left(-i \int_0^t \hat{H}(s) ds \right) \Omega \]

\[= \text{Exp} \left(-i \int_{-\infty}^{\pm \infty} \hat{H}_{\text{int}}(s) ds \right) \Omega. \]

One can organize Green’s functions in terms of the generating function:

\[Z(f) = \sum_{N=0}^\infty \int \cdots \int \frac{(-i)^N}{N!} G(x_N, \ldots, x_1) f(x_N) \cdots f(x_1) dx_N \cdots dx_1 \]

\[= \left(\Omega^+ \right| \text{Exp} \left(-i \int_{-\infty}^{\infty} \left(\hat{H}(t) + \int f(t, \vec{x}) \hat{\phi}(\vec{x}) d\vec{x} \right) dt \right) \Omega^- \right) \]

\[= \left(\Omega \right| \text{Exp} \left(-i \int_{-\infty}^{\infty} \hat{H}_{\text{int}}(t) dt - i \int f(x) \hat{\phi}_{\text{tr}}(x) dx \right) \Omega \right) \]

\[= \exp \left(\frac{i}{2(2\pi)^2} \int \frac{|j(k) + f(k)|^2}{k^2 + m^2 - i0} dk \right). \quad (2.70) \]
One can retrieve Green’s functions from the generating function:

\[G(x_N, \ldots, x_1) = i^N \frac{\partial^N}{\partial f(x_N) \cdots \partial f(x_1)} Z(f) \bigg|_{f=0}. \]

(2.71)

We introduce also *amputated Green’s functions*:

\[G^{\text{amp}}(k_n, \ldots, k_1) = (k^2_n + m^2) \cdots (k^2_1 + m^2) G(k_n, \ldots, k_1). \]

(2.72)

Amputated Green’s functions can be used to compute scattering amplitudes:

\[\left(k^+_1, \ldots, k^+_n \right) | S \left| \left(k^-_{n-1}, \ldots, k^-_1 \right) \right. \]

(2.73)

\[= \frac{G^{\text{amp}} (k^+_1, \ldots, k^+_n, -k^-_{n-1}, \ldots, -k^-_1)}{(2\pi)^{2(n+n-)} \sqrt{2\varepsilon(k^+_1)} \cdots \sqrt{2\varepsilon(k^+_n)} \sqrt{2\varepsilon(k^-_{n-1})} \cdots \sqrt{2\varepsilon(k^-_1)}}, \]

where all \(k^\pm_i \) are on shell.

2.2.7 Path integral formulation

Recall that the generating function equals

\[Z(f) = \exp \left(\frac{i}{2} \int (j(x) + f(x)) D^c(x-y)(j(x) + f(x)) dx \right) \]

(2.74)

\[= \exp \left(\frac{i}{2(2\pi)^4} \int (j(k) + f(k))(k^2 + m^2 - i0)^{-1}(j(k) + f(k)) dk \right) \]

We have the following expressions for the *action integral*:

\[\int \mathcal{L}_I(x) dx = - \int \frac{1}{2} \phi(x)(-\Box + m^2) \phi(x) dx, \]

\[\int (\mathcal{L}(x) - \phi(x)f(x)) dx = \int \mathcal{L}_I(x) dx - \int \phi(x)(j(x) + f(x)) dx. \]

Consider heuristically the space of all (off-shell) configurations with the Lebesgue measure \(\int x d\phi(x) \). Physicists like to rewrite (2.74) as

\[Z(f) = \frac{\int x d\phi(x) \exp \left(i \int (\mathcal{L}(x) - f(x)\phi(x)) dx \right)}{\int x d\phi(x) \exp \left(i \int \mathcal{L}_I(x) dx \right)}, \]

(2.75)

which follows by basic rules of Gaussian integrals. Note that strictly speaking (2.75) is ambiguous, since \(D^c \), the causal propagator, is only one of many inverses (Green’s functions) of \(-\Box + m^2\). The choice of the causal propagator is an additional convention that is not explicitly contained in the expression (2.75).
2.2.8 Feynman rules

Perturbative expansions can be organized in terms of Feynman diagrams. The prescriptions how to draw Feynman diagrams and to evaluate them are called Feynman rules. We restrict ourselves to Feynman rules in the momentum space.

We have 1 kind of lines and 1 kind of vertices. At each vertex just one line ends. Vertices are denoted by solid dots. Lines have no distinguished orientation. However, when we fix the orientation of a line, we can associate to it a momentum \(k \).

Diagrams for Green’s functions, in addition to internal lines have external lines ending with insertion vertices, which will be denoted by small circles. To compute Green’s functions we do as follows:

1. We draw all possible Feynman diagrams. More precisely, we put \(N \) dots for insertion vertices, labelled 1, \ldots, \(N \). We put \(n \) dots, labelled 1, \ldots, \(n \), for interaction vertices. Then we connect them in all possible allowed ways. The expression for the diagram is then divided by \(n! \).

2. To each vertex we associate the factor \(-ij(k)\), where \(k \) is the momentum flowing towards this vertex.

3. To each line we associate the propagator
\[
-iD_{\mu}(k) = \frac{-i}{k^2 + m^2 - i0}.
\]

4. For internal lines we integrate over the variables with the measure \(\frac{d^4k}{(2\pi)^4} \).

![Diagram for Green’s function.](image)

Diagrams used to compute scattering amplitudes with \(N^- \) incoming and \(N^+ \) outgoing particles are similar to diagrams for \(N^- + N^+ \)-point Green’s functions, except that instead of insertion vertices we have incoming and outgoing particles. For the incoming lines, \(-k\) are on-shell, for the outgoing lines, \(k \) is on-shell. The rules are changed only concerning the external lines:

1. To each incoming external line we associate
\[
\frac{1}{\sqrt{(2\pi)^32\pi(k)}}.
\]
(ii) To each outgoing external line we associate \(\frac{1}{\sqrt{(2\pi)^2 \varepsilon(k)}} \).

2.2.9 Vacuum energy

Let \(D \) denote the value of the (unique) connected diagram with no external lines. We have

\[
\log(\Omega | \hat{S} \Omega) = \frac{i}{2(2\pi)^4} \int \frac{|j(k)|^2}{k^2 + m^2 - i0} \, dk = \frac{D}{2}.
\]

![Figure 3: Diagram for vacuum energy.](image)

We can derive it diagrammatically as follows. At the order \(2m \) there are \(\left(\begin{array}{c} 2m \\ m \end{array} \right) \) pairings. Hence

\[
(\Omega | \hat{S} \Omega) = \sum_{m=0}^{\infty} \frac{1}{(2m)! 2^m} D^m = \exp(D/2).
\]

2.2.10 Problems with the scattering operator

\(\hat{S} \) can be ill defined.
First of all,

\[
\text{Re} \frac{1}{2(2\pi)^4} \int \frac{|j(k)|^2 dk}{k^2 + m^2 - i\varepsilon} = \frac{1}{2(2\pi)^4} \int \frac{|j(k)|^2 dk}{k^2 + m^2} \quad (2.76)
\]

can be infinite. This is not a very serious problem. (2.76) is responsible only for the phase of the scattering amplitude and does not influence scattering cross-sections.

We can try to remedy the problem by an appropriate renormalization of the phase. In particular, in the case of a stationary source or, more generally, a source travelling with a constant velocity, we can use the adiabatic switching and the Gell-Mann and Low construction to obtain a meaningful scattering operator. We will describe this construction in the next subsubsection.

The problem with \(\hat{S} \) is more serious if

\[
\text{Im} \frac{1}{2(2\pi)^4} \int \frac{|j(k)|^2 dk}{k^2 + m^2 - i\varepsilon} = \frac{1}{2(2\pi)^4} \int \frac{|j(\varepsilon(\vec{k}), \vec{k})|^2 d\vec{k}}{\varepsilon(\vec{k})}
\]

is infinite. Then no unitary operator \(S \) satisfies the relations (2.66) and (2.67), see (??). The scattering operator is ill defined. However, as we describe in Subsect. 2.2.13, also in this situation there is a pragmatic solution – we can define \textit{inclusive cross-sections}.

This may happen for \(m = 0 \) because of the infrared problem, which means that the divergence comes from \(k \approx 0 \).

2.2.11 Travelling source

To illustrate the Gell-Mann and Low construction, consider a source of a profile given by a function \(q \in C_\infty^c(\mathbb{R}^3) \) travelling with velocity \(\vec{v} \). That means

\[
j(t, \vec{x}) = q(\vec{x} - t\vec{v}). \quad (2.77)
\]

We note that the Fourier transform of (2.77) in the spatial variables equals

\[
j(t, \vec{k}) = q(\vec{k}) e^{-i\vec{v}\vec{k}}.
\]

The interaction Hamiltonian becomes

\[
\hat{H}_{\epsilon, \text{int}}(t) = (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(e^{-i(\varepsilon(\vec{k}) - \vec{v}\vec{k})} q(\vec{k})\hat{a}(k) + e^{i(\varepsilon(\vec{k}) - \vec{v}\vec{k})} q(\vec{k})\hat{a}^*(k) \right).
\]

This is precisely interaction Hamiltonian for a time-independent perturbation where we replaced the 1-particle energy \(\varepsilon(k) \) with \(\varepsilon(k) - \vec{v}\vec{k} \).

We use the Gell-Mann and Low type adiabatic switching, so that we replace \(j \) with

\[
j_{\epsilon}(t, \vec{x}) := e^{-i\varepsilon(\vec{k})} j(t, \vec{x}).
\]
Let \(\hat{S}_\pm \) denote the Møller operators for the Gell-Mann and Low adiabatic Hamiltonian. The renormalized Møller operators are defined as

\[
\hat{S}\pm_{GL} = \lim_{\epsilon \to 0} \frac{|\Omega \hat{S}_\pm \Omega|}{|\Omega|} \hat{S}_\pm,
\]

\[
= \exp \left(-\frac{1}{2(2\pi)^3} \int \frac{q(k)}{\sqrt{2\epsilon(k)(\epsilon(k) - \vec{v}k)}} \hat{a}^*(k) d\vec{k} \right) \times \exp \left(\frac{1}{2(2\pi)^3} \int \frac{q(k)}{\sqrt{2\epsilon(k)(\epsilon(k) - \vec{v}k)}} \hat{a}(k) d\vec{k} \right) \times \exp \left(-\frac{1}{2(2\pi)^3} \int \frac{|q(k)|^2}{2\epsilon(k)(\epsilon(k) - \vec{v}k)^2} d\vec{k} \right).
\]

(GL stands for the Gell-Mann–Low).

Note that if \(|v| < 1\) (if the source is slower than light) and \(m > 0\), then \(\hat{S}_\pm_{GL}\) are well defined unitary operators. We have \(S_{GL}^+ = S_{GL}^-\) and \(S_{GL}^+ H_{fr} = H S_{GL}^-\).

If \(m = 0\) and \(\int f(\vec{x})d\vec{x} \neq 0\), then the infrared problem shows up: \(\hat{S}_{GL}^\pm\) are ill defined.

It is interesting to assume that the source has a different asymptotics in the future and in the past. For simplicity, suppose that the change occurs sharply at time \(t = 0\) and consider

\[
j(t, \vec{x}) = \begin{cases}
q_- (\vec{x} - t\vec{v}_-), & t < 0, \\
q_+ (\vec{x} - t\vec{v}_+), & t > 0.
\end{cases}
\]

The following operator can be used as a scattering operator:

\[
\hat{S}_{GL}^+ \hat{S}_{GL}^- = \exp \left(\frac{1}{(2\pi)^3} \int \frac{1}{\sqrt{2\epsilon(k)}} \left(\frac{q_+(\vec{k})}{(\epsilon(k) - \vec{v}_+ k)} - \frac{q_- (\vec{k})}{(\epsilon(k) - \vec{v}_- k)} \right) \hat{a}^*(k) d\vec{k} \right) \times \exp \left(\frac{1}{2(2\pi)^3} \int \frac{1}{\sqrt{2\epsilon(k)}} \left(-\frac{q_+(\vec{k})}{(\epsilon(k) - \vec{v}_+ k)} + \frac{q_- (\vec{k})}{(\epsilon(k) - \vec{v}_- k)} \right) \hat{a}(k) d\vec{k} \right) \times \exp \left(-\frac{1}{2(2\pi)^3} \int \frac{|q_+(\vec{k})|^2}{2\epsilon(k)(\epsilon(k) - \vec{v}_+ k)^2} + \frac{|q_- (\vec{k})|^2}{2\epsilon(k)(\epsilon(k) - \vec{v}_- k)^2} - \frac{2q_+(\vec{k})q_- (\vec{k})}{(\epsilon(k) - \vec{v}_+ k)(\epsilon(k) - \vec{v}_- k)} \right) d\vec{k}.
\]

Let \(m = 0\). Then (2.78) is ill defined if
(1) \(\int q_+(x)d\bar{x} \neq \int q_-(x)d\bar{x}, \)

or

(2) \(\int q_+(x)d\bar{x} = \int q_-(x)d\bar{x} \neq 0 \) and \(v_+ \neq v_- \).

Alternatively, we can introduce first the scattering operator \(\hat{S}_\epsilon \) with the adiabatically switched interaction. Then we can define the Gell-Mann and Low scattering operator by taking \(\epsilon \searrow 0 \) and renormalizing the phase:

\[
S_{\text{GL}} := \lim_{\epsilon \searrow 0} \frac{|\langle \Omega | \hat{S}_\epsilon | \Omega \rangle|}{\langle \Omega | \hat{S}_\epsilon | \Omega \rangle} \hat{S}_\epsilon
\]

\((2.79) \)

Note that (2.78) and (2.79) differ only by a phase. (2.79) is given by (2.65) where we replace

\[
\int \frac{|j(k)|^2}{k^2 + m^2 - i0} dk
\]

with

\[
\text{Im} \int \frac{|j(k)|^2}{k^2 + m^2 - i0} dk = \pi \int \frac{|j(\epsilon(\vec{k}), \vec{k})|^2}{2\epsilon(\vec{k})} d\vec{k}.
\]

Here, \(j(k) \) is the Fourier transform of the source (2.77):

\[
j(k) = \int j(t, \vec{x}) e^{-i\vec{k}\vec{x} + ik^0 t} dt d\vec{x}
\]

\[
= -\frac{iq_+(\vec{k})}{\vec{k}v_+ - k^0 - i0} + \frac{iq_-(\vec{k})}{\vec{k}v_- - k^0 + i0}.
\]

If we do not like the adiabatic switching approach we can directly define the Møller operators by removing the (possibly infinite) phase shift from (2.65).

2.2.12 Scattering cross-sections

We consider again an arbitrary source term \(j \). Given on-shell momenta of incoming particles \(k^-_1, \ldots, k^-_n \) and outgoing particles \(k^+_1, \ldots, k^+_n \), we can compute the scattering cross-section for the corresponding process, or actually its density w.r.t. the Lebesgue measure \(dk_1^+ \cdots dk_n^+ \):
\[
\sigma \left(k_1^+, \ldots, k_n^+; k_{n}^-, \ldots, k_1^- \right) \\
= \left| \left(k_1^+, \ldots, k_n^+ | \hat{S} | k_{n}^-, \ldots, k_1^- \right) \right|^2 \\
= (2\pi)^{-\left(n^+ + n^\prime\right)/2} \exp \left(- \int \frac{|j(\varepsilon(\vec{k}), \vec{k})|^2}{(2\pi)^3 2\varepsilon(\vec{k})} d\vec{k} \right) \\
\times \frac{|j(\varepsilon(\vec{k}^+_1), \vec{k}^+_1)|^2}{2\varepsilon(\vec{k}^+_1)} \ldots \frac{|j(\varepsilon(\vec{k}^+_n), \vec{k}^+_n)|^2}{2\varepsilon(\vec{k}^+_n)} \frac{|j(\varepsilon(\vec{k}^-_n), \vec{k}^-_n)|^2}{2\varepsilon(\vec{k}^-_n)} \ldots \frac{|j(\varepsilon(\vec{k}^-_1), \vec{k}^-_1)|^2}{2\varepsilon(\vec{k}^-_1)}.
\]

2.2.13 Inclusive cross-section

Let \(\delta > 0 \). The 1-particle Hilbert space can be split as \(Z = Z_{<\delta} \oplus Z_{>\delta} \) corresponding to the soft momenta \(|\vec{k}| < \delta \) and hard momenta \(|\vec{k}| > \delta \). Clearly,

\[
\Gamma_\delta(Z) \simeq \Gamma(Z_{<\delta}) \otimes \Gamma(Z_{>\delta}).
\]

Assume first that \(m > 0 \) and the scattering operator is computed as above. Clearly, the scattering operator and scattering cross-sections factorize:

\[
\hat{S} \simeq \hat{S}_{<\delta} \otimes \hat{S}_{>\delta}, \quad \sigma = \sigma_{<\delta} \sigma_{>\delta}.
\]

More precisely, let

\[
|q^+_1|, \ldots, |q^+_m|, |\vec{q}_1^-|, \ldots, |\vec{q}_m^-| < \delta.
\]

Then we have soft scattering cross-sections

\[
\sigma_{<\delta} \left(q^+_1, \ldots, q^+_m; q^-_m, \ldots, q^-_1 \right) \\
= \left| \left(q^+_1, \ldots, q^+_m | \hat{S}_{>\delta} | q^-_m, \ldots, q^-_1 \right) \right|^2 \\
= (2\pi)^{-\left(m^+ + m^-\right)/2} \exp \left(- \int_{|\vec{q}| < \delta} \frac{|j(\varepsilon(\vec{q}), \vec{q})|^2}{(2\pi)^3 2\varepsilon(\vec{q})} d\vec{q} \right) \\
\times \frac{|j(\varepsilon(\vec{q}^+_1), \vec{q}^+_1)|^2}{2\varepsilon(\vec{q}^+_1)} \ldots \frac{|j(\varepsilon(\vec{q}^+_m), \vec{q}^+_m)|^2}{2\varepsilon(\vec{q}^+_m)} \frac{|j(\varepsilon(\vec{q}^-_m), \vec{q}^-_m)|^2}{2\varepsilon(\vec{q}^-_m)} \ldots \frac{|j(\varepsilon(\vec{q}^-_1), \vec{q}^-_1)|^2}{2\varepsilon(\vec{q}^-_1)}.
\]

Likewise, let

\[
|\vec{k}^+_1|, \ldots, |\vec{k}^+_n|, |\vec{k}^-_1|, \ldots, |\vec{k}^-_n| > \delta.
\]

The corresponding hard scattering cross-section are

\[
\sigma_{>\delta} \left(k^+_1, \ldots, k^+_n; k^-_n, \ldots, k^-_1 \right) \\
= \left| \left(k^+_1, \ldots, k^+_n | \hat{S}_{>\delta} | k^-_n, \ldots, k^-_1 \right) \right|^2 \\
= (2\pi)^{-\left(n^+ + n^-\right)/2} \exp \left(- \int_{|\vec{k}| > \delta} \frac{|j(\varepsilon(\vec{k}), \vec{k})|^2}{(2\pi)^3 2\varepsilon(\vec{k})} d\vec{k} \right) \\
\times \frac{|j(\varepsilon(\vec{k}^+_1), \vec{k}^+_1)|^2}{2\varepsilon(\vec{k}^+_1)} \ldots \frac{|j(\varepsilon(\vec{k}^+_n), \vec{k}^+_n)|^2}{2\varepsilon(\vec{k}^+_n)} \frac{|j(\varepsilon(\vec{k}^-_n), \vec{k}^-_n)|^2}{2\varepsilon(\vec{k}^-_n)} \ldots \frac{|j(\varepsilon(\vec{k}^-_1), \vec{k}^-_1)|^2}{2\varepsilon(\vec{k}^-_1)}.
\]
We have

\[\sigma>\delta (k_1^+, \ldots, k_n^+, k_n^-, k_1^-) = \sigma (k_1^+, \ldots, k_n^+, k_n^-, k_1^-) \]

\[+ \sum_{j=1}^{\infty} \int_{|\vec{q}_1|<\delta} \cdots \int_{|\vec{q}_j|<\delta} \sigma (k_1^+, \ldots, k_n^+, q_1, \ldots, q_m, k_n^-, \ldots, k_1^-) d\vec{q}_1 \cdots d\vec{q}_j.\]

\(\sigma>\delta\) can be interpreted to describe the experiment which does not measure outgoing particles of momentum less than \(\delta\) and in the incoming state we there are no particles of momentum less than \(\delta\). Actually, we would have obtained the same scattering cross-section if the part of the incoming state below the momentum \(\delta\) was arbitrary. This is an example of an inclusive cross-section – a cross-section which involves summing over many unobserved final states.

If \(m \searrow 0\), the soft scattering operator \(\hat{S}_{<\delta}\) has no limit. All \(\sigma_{<\delta}\) go to zero. In fact, they are proportional to

\[\sigma_{<\delta} = \exp \left(- \int_{|\vec{q}|<\delta} \frac{|j(\vec{q}, \vec{q})|^2}{(2\pi)^3 \epsilon(\vec{q})^2} d\vec{q} \right).\]

The hard scattering operator \(\hat{S}_{<\delta}\) and \(\sigma_{<\delta}\) have well defined limits. Therefore, they can have a physical meaning.

One can imagine various experimental scenarios that lead to different inclusive cross-sections. For example, imagine that our apparatus does not detect soft particles of total energy less than \(\delta\). This leads to the following inclusive cross-section:

\[\sigma_{>\delta}^\text{emp} (k_1^+, \ldots, k_n^+, k_n^-, \ldots, k_1^-) := \sigma (k_1^+, \ldots, k_n^+, k_n^-, \ldots, k_1^-) \]

\[+ \sum_{j=1}^{\infty} \int_{\epsilon(\vec{q}_1)+\cdots+\epsilon(\vec{q}_j)<\delta} \sigma (k_1^+, \ldots, k_n^+, q_1, \ldots, q_j, k_n^-, \ldots, k_1^-) d\vec{q}_1 \cdots d\vec{q}_j.\]

Note that both \(\sigma_{>\delta}\) and \(\sigma_{>\delta}^\text{emp}\) are proportional to one another:

\[\frac{\sigma_{>\delta}^\text{emp} (k_1^+, \ldots, k_n^+, k_n^-, \ldots, k_1^-)}{\sigma_{>\delta} (k_1^+, \ldots, k_n^+, k_n^-, \ldots, k_1^-)} := \Omega_{<\delta} |\hat{S}_{<\delta}^* 1_{[0,\delta]} (\hat{H}_{fr}) \hat{S}_{<\delta} \Omega_{<\delta} | = \sigma_{<\delta} (\cdot) \]

\[+ \sum_{j=1}^{\infty} \int_{\epsilon(\vec{q}_1)+\cdots+\epsilon(\vec{q}_j)<\delta} \sigma_{<\delta} (q_1, \ldots, q_j) d\vec{q}_1 \cdots d\vec{q}_j.\]

This ratio is in practice not very interesting – it contributes a common numerical factor to all scattering cross-sections for hard particles.
2.2.14 Energy shift

Suppose now that the source does not depend on time and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto j(\vec{x}) \). Then we have the time-independent Hamiltonian

\[
\hat{H} = \int \left(\frac{1}{2} \hat{\pi}(\vec{x})^2 + \frac{1}{2} \left(\hat{\phi}'(\vec{x}) \right)^2 + j(\vec{x})\hat{\phi}(\vec{x}) \right) \, d\vec{x}.
\]

By the method of completing the square (A.8) we compute the infinum of \(\hat{H} \):

\[
E = -\frac{1}{2} \int j(\vec{x}) e^{-m|\vec{x} - \vec{y}|} \frac{1}{4\pi |\vec{x} - \vec{y}|} j(\vec{y}) d\vec{x} d\vec{y}.
\]

The incoming and outgoing Møller operators coincide and are equal to

\[
\hat{S}^{\pm}_{\text{GL}} = \exp \left(-\frac{1}{(2\pi)^{\frac{3}{2}}} \int \frac{j(\vec{k})}{\sqrt{2\varepsilon(\vec{k})^3}} a^*(k) d\vec{k} \right) \times \exp \left(\frac{1}{(2\pi)^{\frac{3}{2}}} \int \frac{j(\vec{k})}{\sqrt{2\varepsilon(\vec{k})^3}} a(k) d\vec{k} \right) \times \exp \left(-\frac{1}{2(2\pi)^{\frac{3}{2}}} \int \frac{|j(\vec{k})|^2}{2\varepsilon(\vec{k})^3} d\vec{k} \right).
\]

If \(m > 0 \) or if \(\int j(\vec{x}) d\vec{x} = 0 \), then \(\hat{H} \) has a ground state and the operators \(\hat{S}^{\pm}_{\text{GL}} \) are well defined.

If \(m = 0 \) and \(\int j(\vec{x}) d\vec{x} \neq 0 \), then \(\hat{H} \) has no ground state (even though it is bounded from below) and the operators \(\hat{S}^{\pm}_{\text{GL}} \) are ill defined.

2.3 Neutral scalar bosons with a mass-like perturbation

2.3.1 Classical fields

A scalar field can be also perturbed by a mass-like perturbation. Classically, this is expressed by the equation

\[
(-\Box + m^2)\phi(x) = -\kappa(x)\phi(x),
\]

where \(\mathbb{R}^{1,3} \ni x \mapsto \kappa(x) \) is a given function. In most of this subsection we will assume that \(\kappa \) is Schwartz and \(m > 0 \).

Let us define the corresponding retarded and advanced propagators as the unique distributional solutions of

\[
(-\Box_x + m^2 + \kappa(x))D^{\pm}(x, y) = \delta(x - y),
\]

satisfying

\[
\text{supp}D^{\pm} \subset \{ x, y : x \in J^{\pm}(y) \}.
\]
We also generalize the Pauli-Jordan function:

\[D(x, y) := D^+(x, y) - D^-(x, y). \]

Note that

\[\text{supp} D \subset \{ x, y : x \in J(y) \}. \]

The function \(D \) can be used to solve the initial value problem of (2.84):

\[
\phi(t, \vec{x}) = -\int \partial_s D(t, \vec{x}, s, \vec{y}) \bigg|_{s=0} \phi(0, \vec{y}) d\vec{y} + \int D(t, \vec{x}, 0, \vec{y}) \dot{\phi}(0, \vec{y}) d\vec{y}. \quad (2.86)
\]

We would like to interpret the classical field \(\phi(x) \) satisfying (2.84) as a functional on the space \(Y_{KG} \). Together with the conjugate field defined as in (2.49) we demand that they coincide at time \(t = 0 \), as in (2.57). This allows us to express uniquely the field \(\phi \) in terms of the free field:

\[
\phi(t, \vec{x}) = -\int \partial_s D(t, \vec{x}, s, \vec{y}) \bigg|_{s=0} \phi_{fr}(0, \vec{y}) d\vec{y} + \int D(t, \vec{x}, 0, \vec{y}) \pi_{fr}(0, \vec{y}) d\vec{y}. \quad (2.87)
\]

2.3.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

\[
\mathcal{L}(x) = -\frac{1}{2} \partial_\mu \phi(x) \partial^n \phi(x) - \frac{1}{2} (m^2 + \kappa(x)) \phi^2(x).
\]

As in Subsubsect. 2.2.2, the variable conjugate to \(\phi(x) \) is \(\pi(x) \). We easily obtain the Hamiltonian density

\[
\mathcal{H}(x) = \frac{1}{2} \pi^2(x) + \frac{1}{2} \left(\partial \phi(x) \right)^2 + \frac{1}{2} (m^2 + \kappa(x)) \phi^2(x),
\]

so that the full Hamiltonian generating the dynamics is

\[
H(t) = \int \mathcal{H}(t, \vec{x}) d\vec{x}.
\]

2.3.3 Dynamics in the interaction picture

We can also consider the classical Hamiltonian in the interaction picture. It can be expressed in terms of plane wave functionals:

\[
H_{int}(t) = \frac{1}{2} \int \kappa(t, \vec{x}) \phi^2_{fr}(t, \vec{x}) d\vec{x} \quad (2.88)
\]

\[
= \frac{1}{(2\pi)^3} \int \frac{d\vec{k}_1 d\vec{k}_2 \kappa(t, \vec{k}_1 + \vec{k}_2)}{\sqrt{2\varepsilon(\vec{k}_1)} \sqrt{2\varepsilon(\vec{k}_2)}} \left(e^{-it\varepsilon(\vec{k}_1)} - it\varepsilon(\vec{k}_2) a(-k_1) a(-k_2) + 2e^{it\varepsilon(\vec{k}_1)} a^*(k_1) a(-k_2) + e^{it\varepsilon(\vec{k}_2)} a^*(k_2) a^*(k_1) \right). \]
Consider the equations of motion in the interaction picture:

\[
\dot{a}_i^* (k) = \{ H_{\text{int}} (t), a_i^* (k) \}
\]

\[
= \frac{i}{(2\pi)^3} \int \frac{d\tilde{k}_1 \kappa (t, -\tilde{k} + \tilde{k}_1)}{\sqrt{2\varepsilon (k)} \sqrt{2\varepsilon (\tilde{k}_1)}} \times \left(e^{-i\varepsilon (k)t} a_t (-k_1) + e^{-i\varepsilon (\tilde{k}_1)t} a_t^* (k_1) \right).
\]

\[
a_0^* (k) = a^* (k).
\]

The solution of these equations can be expressed in terms of a matrix of the form

\[
\begin{pmatrix}
p_{t_+ , t_-} & q_{t_+ , t_-} \\
q_{t_+ , t_-} & p_{t_+ , t_-}
\end{pmatrix}
\]

in the following way:

\[
\begin{pmatrix}
a_{t_+}^* (k) \\
a_{t_-}^* (k)
\end{pmatrix} = \int d\tilde{k}_1 \begin{pmatrix}
p_{t_+ , t_-} (k, k_1) & q_{t_+ , t_-} (k, k_1) \\
q_{t_+ , t_-} (k, k_1) & p_{t_+ , t_-} (k, k_1)
\end{pmatrix} \begin{pmatrix}
a_{t_-}^* (k_1) \\
a_{t_-}^* (k_1)
\end{pmatrix}
\]

(2.89) has a limit as \(t_+, -t_- \to \infty \), which can be called the classical scattering operator.

One can try to solve the equations of motion by iterations. The first iteration is often (at least in the quantum context) called the Born approximation, and it gives the following formula for the elements of (2.89):

\[
p_{t_+ , t_-}^{\text{Born}} (k, k_1) = \delta (\tilde{k} - \tilde{k}_1) + \frac{i}{(2\pi)^3} \int_{t_-}^{t_+} ds \frac{\kappa (s, -\tilde{k} + \tilde{k}_1)}{\sqrt{2\varepsilon (k)} \sqrt{2\varepsilon (\tilde{k}_1)}} e^{-i\varepsilon (k)s} e^{i\varepsilon (\tilde{k}_1)s},
\]

\[
q_{t_+ , t_-}^{\text{ Born}} (k, k_1) = \frac{i}{(2\pi)^3} \int_{t_-}^{t_+} ds \frac{\kappa (s, -\tilde{k} + \tilde{k}_1)}{\sqrt{2\varepsilon (k)} \sqrt{2\varepsilon (\tilde{k}_1)}} e^{-i\varepsilon (k)s} e^{-i\varepsilon (\tilde{k}_1)s}.
\]

2.3.4 Quantization

Again, we are looking for quantum fields \(\mathbb{R}^{1,3} \to \hat{\phi} (x) \) satisfying

\[
(-\Box + m^2) \hat{\phi} (x) = -\kappa (x) \hat{\phi} (x),
\]

and with the conjugate field given by (2.55), having the equal time commutators (2.56). With the usual identification of zero time fields, the solution is given by putting “hats” onto (2.87).

We would like to check whether the classical scattering operator and the classical dynamics are implementable in the Fock space for nonzero \(\kappa \). To this end we need to check the Shale condition, that is, whether the off-diagonal elements of (2.89) are square integrable. For simplicity, we will restrict ourselves to the Born approximation; the higher order terms do not change the conclusion.
The verification of the Shale condition is easier for the scattering operator. Consider

\[q_{\infty, -\infty}^{\text{Born}}(k, k_1) = \frac{i}{(2\pi)^3} \int_{-\infty}^{\infty} ds \frac{\kappa(s, -\vec{k} + \vec{k}_1)}{\sqrt{2\varepsilon(\vec{k})\sqrt{2\varepsilon(\vec{k}_1)}}} e^{-i\varepsilon(\vec{k}) - i\varepsilon(\vec{k}_1)}. \]

(2.91)

Recall that \(\kappa \) is a Schwartz function. Therefore, we can integrate by parts as many times as we want:

\[q_{\infty, -\infty}^{\text{Born}}(k, k_1) = \frac{i^{n+1}}{(2\pi)^3} \int_{-\infty}^{\infty} ds \frac{\partial^n s \kappa(s, -\vec{k} + \vec{k}_1)}{\sqrt{2\varepsilon(\vec{k})\sqrt{2\varepsilon(\vec{k}_1)}}} e^{-i\varepsilon(\vec{k}) + i\varepsilon(\vec{k}_1))}. \]

(2.92)

This decays in \(\vec{k} \) and \(\vec{k}_1 \) as any inverse power, and hence is square integrable on \(\mathbb{R}^3 \times \mathbb{R}^3 \). Therefore the classical scattering operator is implementable.

Next let us check the implementability of the dynamics, believing again that it is sufficient to check the Born approximation. We integrate by parts once:

\[q_{t_+, t_-}(k, k_1) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} ds \frac{\partial_s \kappa(s, -\vec{k} + \vec{k}_1)}{\sqrt{2\varepsilon(\vec{k})\sqrt{2\varepsilon(\vec{k}_1)}}} e^{-i\varepsilon(\vec{k}) + i\varepsilon(\vec{k}_1))}. \]

(2.93)

Using that \(\kappa(s, \vec{k} + \vec{k}_1) \) decays fast in the second variable, we see that (2.93) can be estimated by

\[C \left(\varepsilon(\vec{k}) + \varepsilon(\vec{k}_1) \right)^2, \]

which is square integrable. Therefore, the dynamics is implementable for any \(t_-, t_+ \).

By a similar computation we check that if we freeze \(t_0 \in \mathbb{R} \), the dynamics generated by the momentary Hamiltonian \(H_{\text{int}}(t_0) \) is implementable.

2.3.5 Quantum Hamiltonian

We may try to write the quantum Hamiltonian as

\[\hat{H}(t) := \int \left(\frac{1}{2} \hat{\bar{\phi}}^2(\vec{x}) + \frac{1}{2} (\hat{\bar{\phi}}(\vec{x}))^2 + \frac{1}{2} (m^2 + \kappa(t, \vec{x})) \hat{\bar{\phi}}^2(\vec{x}) \right) d\vec{x} + C(t), \]

so that (2.59) is true. It may seem natural to put \(C(t) = 0 \) and use Wick-ordered momentary quantum Hamiltonians. When deriving the Feynman rules we will in fact assume that \(C(t) = 0 \). However, this will lead to divergent diagrams.

It is actually possible to introduce correctly defined Hamiltonians \(\hat{H}(t) \). They are bounded from below, however the vacuum is not contained in their
form domain. Therefore, the condition \(\Omega | \hat{H}(t) \Omega \rangle = 0 \) for all \(t \), which is equivalent to the Wick ordering, cannot be imposed. Formally, these Hamiltonians will have an infinite constant \(C(t) \).

The Hamiltonian in the interaction picture is

\[
\hat{H}_{\text{Int}}(t) = \frac{1}{2} \int \kappa(t, \vec{x}) \phi_0^2(t, \vec{x}) d\vec{x} + C(t)
\]

(2.94)

\[
= \frac{1}{(2\pi)^3} \iint \kappa(t, \vec{k}_1 + \vec{k}_2) \left(e^{-i \epsilon \vec{k}_1 - i \epsilon \vec{k}_2} \hat{a}(-k_1) \hat{a}(-k_2) + 2 e^{i \epsilon \vec{k}_1 - i \epsilon \vec{k}_2} \hat{a}^*(k_1) \hat{a}^*(k_2) + e^{i \epsilon \vec{k}_1 + i \epsilon \vec{k}_2} \hat{a}^*(k_1) \hat{a}^*(k_2) \right) + C(t).
\]

As in the case of linear sources, we define the scattering operator, scattering amplitudes, Green’s functions, amputated Green’s functions and the generating function, see (2.68) – (2.73).

2.3.6 Path integral formulation

The generating function (and hence all the other quantities introduced above) can be computed exactly. It equals

\[
Z(f) = \left(\det \left(\left(- \Box + m^2 \right) \left(- \Box + m^2 + \kappa - i0 \right)^{-1} \exp \left(\frac{1}{- \Box + m^2 - i0} \right) \right) \right)^{\frac{1}{2}} \\
\times \exp \left(\frac{1}{2} \int \left. L(x) - f(x) \phi(x) \right| d\phi(x) \right)
\]

(2.95)

Here, the determinant is understood (at least formally) as the Fredholm determinant on the space \(L^2(\mathbb{R}^{1,3}) \). The term \(\exp \left(\frac{1}{2} \kappa D_{\text{fr}}^c \right) \) is responsible for the Wick ordering.

Physicists often try to express (2.95) in terms of path integrals, similarly as in (2.75):

\[
C \int \Pi_x d\phi(x) \exp \left(i \int (\mathcal{L}(x) - f(x)\phi(x)) dx \right).
\]

(2.96)

Here, \(C \) is a normalization constant, which does not depend on \(f \). Again, the formula (2.96) is only symbolic, the full information is contained in (2.95).

2.3.7 Feynman rules

Feynman rules are similar as in the case of a linear source. The difference is that now vertices have 2-legs. The rule (2) for calculating Green’s functions
changes: for each vertex with incoming momenta k_1, k_2 we insert the number $-i\kappa(k_1 + k_2)$, where k_1 and k_2 are the momenta of lines entering the vertex. Another difference is that we do not allow a line to begin and end at the same vertex – this is because we use the Wick ordered $\hat{H}(t)$.

Diagrams for Green’s functions can be decomposed in connected components of two kinds:

1. lines ending at insertion vertices (for Green’s functions) or on-shell particles (for scattering amplitudes) with $0, 1, 2, \ldots$ interaction vertices;

2. loops with $2, 3, \ldots$ interaction vertices.
Note that loops with 1 interaction vertex do not appear because of the Wick ordering.

Diagrams only without loops (both for Green’s functions and scattering amplitudes) are finite, because the external momenta are fixed and on interaction vertices we have the fast decaying function \(\kappa \).

Consider a loop with 4-momenta \(k_1, \ldots, k_n \) flowing around it. On vertices we have the function \(\kappa \), which essentially identifies \(k_i \) with \(k_{i+1} \). The propagators give the power \(|k_i|^{-2} \). Thus we are left with 4 degrees of freedom and the integrand that behaves as \(|k|^{-2n} \). This is integrable if \(n > 2 \), but divergent for \(n = 2 \), the 2-vertex loop. We will see that only the imaginary part of this diagram is divergent.

2.3.8 Vacuum energy

The classical scattering operator is well defined. The quantum scattering operator, if computed naively (that is, using the Wick ordered Hamiltonian) is ill defined. Its problem comes from the overall phase, which is not fixed by the classical transformation.

One can say that this phase has no physical meaning, since it does not appear in scattering cross-sections. However, it may be relevant for a more complete theory. We will see that there is a natural choice of this phase, which leads to a renormalized scattering operator \(\hat{S}_{\text{ren}}(\kappa) \). We will also see that there is a natural renormalized Hamiltonian \(\hat{H}_{\text{ren}}(t) \).

![Figure 6: Vacuum energy](image)

The logarithm of the vacuum-to-vacuum scattering amplitude times the imaginary unit will be called the vacuum energy. It can be computed exactly:

\[
\mathcal{E} := i \log(\Omega|\hat{S}\Omega) = i \log Z(0)
\]

\[
= \frac{i}{2} \text{Tr} \left(\log(-\Box + m^2 - i0) - \log(-\Box + m^2 + \kappa - i0) + \kappa(-\Box + m^2 - i0)^{-1} \right)
\]

\[
= \frac{i}{2} \text{Tr} \left(\log(1 + \kappa D_{fr}^\dagger) + \kappa D_{fr}^\dagger \right)
\]

\[
= i \sum_{n=2}^{\infty} \frac{(-1)^n}{2n} \text{Tr}(\kappa D_{fr}^\dagger)^n =: \sum_{n=2}^{\infty} \mathcal{E}_n. \tag{2.97}
\]
Here, \(\text{Tr} \) is understood (at least formally) as the usual trace of operators on \(L^2(\mathbb{R}^{1,3}) \). Besides, \(\mathcal{E}_n := i \frac{(-1)^n}{2^n} \text{Tr}(\kappa D_{v_n}^c)^n \) is the \(n \)th order contribution to the vacuum energy. Note that for \(n = 1 \) there is no contribution because of the Wick ordering and for \(n = 2 \) it is divergent.

We have \(\mathcal{E}_n = i \frac{D_n}{2^n} \), where \(D_n \) is the value of the loop with \(n \) vertices. This is a special case of a more general rule saying that to compute \(\log(\Omega|\tilde{S}_\Omega) \) we need to sum over all connected diagrams with no external lines divided by the symmetry factor (the order of the group of the symmetries of the diagram). In the case of a loop with \(n \) vertices its group of symmetries is the \(n \)th dihedral group, hence the symmetry factor is \(2^n \).

2.3.9 Pauli-Villars renormalization

The lowest contribution to the vacuum energy is of the second order and comes from the loop with two vertices. Formally, it can be written as

\[
\mathcal{E}_2 = \int \kappa(-k)\kappa(k)\pi(k) \frac{dk}{(2\pi)^4} = \int |\kappa(k)|^2 \pi(k) \frac{dk}{(2\pi)^4},
\]

where the right hand side defines the \emph{vacuum energy function} \(\pi(k) \). Unfortunately, computed naively, \(\pi(k) \) is divergent.

The renormalization of a mass-like perturbation is not very difficult and can be done in many ways. We will describe 3 methods of renormalization. All of them will lead to the same \emph{renormalized vacuum energy function} \(\pi^{\text{ren}}(k) \).

We start with the \emph{Pauli-Villars method}. In the context of a mass-like perturbation, the Pauli-Villars regularization consists in introducing an additional fictitious field that has a (large) mass \(M \) and appears only in loops. (Thus we ignore diagrams involving external lines of the fictitious particle). In addition, each loop of the fictitious field has a (nonphysical) coefficient \(-1\). We organize our computations by setting where \(m_0 = m \), \(C_0 = 1 \), \(m_1 = M \), and \(C_1 = -1 \). The \emph{Pauli-Villars regularized vacuum energy function} is the sum of the loop of the physical particle and of the fictitious one:
\[
4\pi_M(k^2) = i \int \frac{d^4q}{(2\pi)^4} \sum_i C_i \frac{1}{((q + \frac{i}{2}k)^2 + m_i^2 - i0)((q - \frac{i}{2}k)^2 + m_i^2 - i0)} \\
= -i \int \frac{d^4q}{(2\pi)^4} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \sum_i C_i \exp \left(-i(\alpha_1 + \alpha_2) \left(q^2 + \frac{1}{4}k^2 + m_i^2 \right) - i(\alpha_1 - \alpha_2)qk \right) \\
= -\frac{1}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \sum_i C_i \frac{1}{(\alpha_1 + \alpha_2)^2} \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2}k^2 \right) \\
= -\frac{1}{(4\pi)^2} \int_0^1 dv \int_0^\infty \frac{d\rho}{\rho} \sum_i C_i \exp \left(-i\rho \left(m_i^2 + \frac{k^2(1-v^2)}{4} - i0 \right) \right) \\
= \frac{1}{(4\pi)^2} \int_0^1 dv \sum_i C_i \log \left(m_i^2 + \frac{k^2(1-v^2)}{4} - i0 \right) + \log m_i^2).
\]

We used the identities (A.14) and (A.16). We inserted

\[
1 = \int_0^\infty d\rho \delta(\rho - \alpha_1 - \alpha_2),
\]

and then changed the variables as \(\alpha_1 = \rho(1-v^2), \alpha_2 = \rho(1+v^2),\) so that \(d\alpha_1 d\alpha_2 = \frac{1}{2}\rho d\rho dv.\) We also used the symmetry \(v \mapsto -v\) to restrict the integration from \([-1, 1]\) to \([0, 1].\) At the end we use the identity (A.17).

We define the renormalized vacuum energy function as

\[
\pi^{\text{ren}}(k^2) := \lim_{M \to \infty} \left(\pi_M(k^2) - \pi_M(0) \right) \\
= \frac{1}{4(4\pi)^2} \int_0^1 \frac{d\rho}{\rho} \sum_i C_i \log \left(1 + \frac{k^2(1-v^2)}{4m_i^2} - i0 \right) dv.
\]

Note that \(\pi^{\text{ren}}(0) = 0.\) Using (A.18) we obtain

\[
\pi^{\text{ren}}(k^2) = \frac{1}{4(4\pi)^2} \left(\frac{\sqrt{k^2 + 4m_i^2}}{\sqrt{k^2}} \log \frac{\sqrt{k^2 + 4m_i^2} + \sqrt{k^2}}{\sqrt{k^2 + 4m_i^2} - \sqrt{k^2} - 2} \right), \quad 0 < k^2.
\]

Using the analyticity and \(\log \frac{x+iy}{x-iy} = 2i \arctan \frac{y}{x}\) we can extend this formula for
\(k^2 < 0: \)

\[
\pi_{\text{ren}}(k^2) = \frac{1}{4(4\pi)^2} \left(\frac{\sqrt{k^2 + 4m^2}}{\sqrt{-k^2}} 2 \arctan \frac{\sqrt{-k^2}}{\sqrt{k^2 + 4m^2}} - 2 \right), \quad -4m^2 < k^2 < 0; \\
= \frac{1}{4(4\pi)^2} \left(\frac{\sqrt{-k^2 - 4m^2}}{\sqrt{-k^2}} \left(\log \frac{\sqrt{-k^2 - 4m^2} + \sqrt{-k^2}}{\sqrt{-k^2 - 4m^2} - \sqrt{-k^2}} - 2i\pi \right) - 2 \right), \quad k^2 < -4m^2.
\]

2.3.10 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum energy. We start with computing the imaginary part of \(\pi(k) \) without a regularization, which gives a finite result:

\[
\text{Im} \pi_{\text{ren}}(k^2) = \text{Im} \int \frac{d^4q}{4(2\pi)^4} \frac{1}{((q + \frac{1}{2}k)^2 + m^2 - i0)((q - \frac{1}{2}k)^2 + m^2 - i0)}
= \text{Im} \frac{1}{4(4\pi)^2} \int_0^1 dv \left(\log \left(1 + \frac{(1 - v^2)k^2}{4m^2 - i0} \right) + \log m^2 \right).
\]

Using \(\log(t - i0) = \log |t| - i\pi \theta(-t) \), we see that the imaginary part of the logarithm is very simple. Hence

\[
\text{Im} \pi_{\text{ren}}(k^2) = -\frac{\pi}{4(4\pi)^2} \int_0^1 \theta \left(1 - \frac{(1 - v^2)k^2}{4m^2} \right) dv
= -\frac{\pi}{4(4\pi)^2} \sqrt{-k^2} \sqrt{-k^2 - 4m^2}^+.
\]

We can obtain the real part by using the fact that \(\pi_{\text{ren}}(0) = 0 \) and the once subtracted dispersion relations for the lower complex halfplane:

\[
\text{Re} \pi_{\text{ren}}(k^2) = -\frac{1}{\pi} \int_{-\infty}^{-4m^2} ds \text{Im} \pi_{\text{ren}}(s) \left(\frac{1}{s - k^2} - \frac{1}{s} \right). \quad (2.98)
\]

2.3.11 Wick rotation

The causal propagator \(D^c \) can be interpreted as a boundary value of a holomorphic function

\[
(C \setminus (-\infty, -m] \cup [m, \infty)) \times \mathbb{R}^3 \ni (p^0, \vec{p}) \quad \mapsto \quad D^c(p) = \frac{1}{-(p^0)^2 + \vec{p}^2 + m^2} = \frac{1}{p^2 + m^2}.
\]
Its physical region lies at the boundary: at $]0, \infty[\times \mathbb{R}^3$ from above and on $]-\infty, 0[\times \mathbb{R}^3$ from below:

$$
\mathbb{R} \times \mathbb{R}^3 \ni (p^0, \vec{p}) \mapsto D_c(p^0, \vec{p}) = \lim_{\phi \searrow 0} \frac{1}{(e^{i\phi}p^0)^2 + \vec{p}^2 + m^2} = \frac{1}{-(p^0)^2 + \vec{p}^2 + m^2 - i0}.
$$

Inside the Euclidean region $i\mathbb{R} \times \mathbb{R}^3$, we have a particularly nice expression for the propagator:

$$
D^e(i p^0, \vec{p}) = \frac{1}{(p^0)^2 + \vec{p}^2 + m^2}.
$$

The Euclidean region can be reached from the physical region by a continuous transformation inside the holomorphy domain called the Wick rotation:

$$
[0, \pi/2] \ni \phi \mapsto D^e(e^{i\phi}p^0, \vec{p}).
$$

Define the Euclidean scalar product as

$$
\langle p | q \rangle_E := p^0 q^0 + \vec{p} \cdot \vec{q},
$$

and the Euclidean propagator

$$
\left(\mathbb{C} \setminus \{0, -i\in\mathbb{R} \cup \{i\in\mathbb{R}\}\} \right) \times \mathbb{R}^3 \ni (p^0, \vec{p}) \mapsto D^e(p^0, \vec{p}) := \frac{1}{(p^0)^2 + \vec{p}^2 + m^2} = \frac{1}{\langle p | p \rangle_E + m^2}.
$$

Clearly, we can express the causal propagator in terms of the Euclidean propagator:

$$
D^c(p^0, \vec{p}) = \lim_{\phi \nearrow \pi/2} D^e(e^{-i\phi}p^0, \vec{p}).
$$

Suppose now that a physical quantity is given by an integral

$$
\mathbb{R}^{1,3} \ni p \mapsto F(p) := \int \frac{d^4q}{(2\pi)^4} \frac{G(p^2, pq, q^2)}{(ap^2 + 2bpq + cq^2 + m^2 - i0)^n},
$$

where G is holomorphic and the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ is positive definite. Then instead of F we can consider the holomorphic function

$$
\left(\mathbb{C} \setminus \{0, i\in\mathbb{R} \cup \{-i\in\mathbb{R}\}\} \right) \times \mathbb{R}^3 \ni (p^0, \vec{p}) \mapsto F(p) := \int \frac{d^4q}{(2\pi)^4} \frac{G(p^2, pq, q^2)}{(ap^2 + 2bpq + cq^2 + m^2)^n},
$$

where there is no need to put $i0$, because the denominator is automatically invertible. The physical function (2.101) is the boundary value of (2.102):

$$
\lim_{\phi \searrow 0} F(e^{i\phi}p^0, \vec{p}).
$$
We can also introduce the Euclidean version of F given by

$$F^E(p) = F^E(p^0, \vec{p}) := F(p^0, \vec{p}) = \int \frac{id^4q}{(2\pi)^4} \frac{G(\langle p|p \rangle_E^2, \langle p|q \rangle_E, \langle q|q \rangle_E^2)}{(a(p|p \rangle_E^2 + 2b(p|q \rangle_E + c(q|q \rangle_E^2 + m^2)^2)},$$

where in the integral we substituted (iq^0, \vec{q}) for (q^0, \vec{q}). This substitution can be reached from the original variables inside the holomorphy domain by the Wick rotation, hence it does not affect the integral. F^E is holomorphic on the domain of (2.100). We can retrieve the physical values of F from F^E by

$$F(p^0, \vec{p}) = \lim_{\phi \to \pi/2} F^E(e^{-i\phi}p^0, \vec{p}).$$

In what follows, whenever we use Euclidean functions such as F^E, we will use the Euclidean scalar product $\langle p|q \rangle_E$. We will denote this scalar product simply by pq, since its use will be obvious from the context.

2.3.12 Dimensional renormalization

Let us renormalize the vacuum energy by yet another method – the method of dimensional regularization. We will use the Euclidean quantities.

Let us first compute formally the 2-vertex loop:

$$4\pi E(k^2) = -\int \frac{d^4q}{(2\pi)^4} \frac{1}{((q + \frac{1}{2}k)^2 + m^2)((q - \frac{1}{2}k)^2 + m^2)}$$

$$= -\frac{1}{2} \int_{-1}^1 dv \int \frac{d^4q}{(2\pi)^4} \frac{1}{(q^2 + \frac{k^2}{4} + m^2 + vqk)^2}$$

$$= -\int_0^1 dv \int \frac{d^4q}{(2\pi)^4} \frac{1}{(q^2 + \frac{k^2}{4}(1 - v^2) + m^2)^2},$$

(2.103)

where we used the Feynman identity (A.20), replaced $q + \frac{vq}{2}$ with q, used the symmetry $v \to -v$ to replace $\frac{1}{2} \int_{-1}^1 dv$ with $\int_0^1 dv$. After this preparation, we use the dimensional regularization:

$$\int \frac{d^d q}{(2\pi)^d}$$

is replaced by $\frac{\mu^{d-4}\Omega_d}{(2\pi)^d} \int_0^\infty |q|^{d-1} d|q|$, (2.104)

where Ω_d is the “area of the unit sphere in d dimension”, see (A.22). Thus instead of (2.103) we consider its dimensionally regularized version:

$$4\pi^{E,d}(k^2) = -\frac{\mu^{4-d}\Omega_d}{(2\pi)^d} \int_0^1 dv \int_0^\infty |q|^{d-1} \frac{1}{(q^2 + \frac{k^2}{4}(1 - v^2) + m^2)^2} d|q|$$

$$\approx -\frac{1}{(4\pi)^2} \int_0^1 dv \left(-\gamma + \log(\mu^2 4\pi) - \log \left(\frac{k^2}{4}(1 - v^2) + m^2 \right) \right)$$

$$-\frac{1}{(4\pi)^2(2 - d/2)}$$

(2.105)
To renormalize we demand that $\pi^{E,\text{ren}}(0) = 0$. Thus

$$\pi^{E,\text{ren}}(k^2) = \lim_{d \to 4} \left(\pi^{E,d}(k^2) - \pi^{E,d}(0) \right) = \frac{1}{4(4\pi)^2} \int_0^1 dv \log \left(1 + \frac{k^2}{4m^2} (1 - v^2) \right),$$

which coincides with the Wick rotated result obtained by the Pauli-Villars method. Thus the renormalization of (2.105) amounts to choosing

$$\log \frac{\mu^2}{4m^2} = \gamma - \log 4\pi, \quad (2.106)$$
dropping the pole term and setting $d = 4$.

2.3.13 Renormalization of the scattering operator

We are now ready to define the renormalized scattering operator. It is enough to define its vacuum expectation value:

$$(\Omega | \hat{S}_{\text{ren}} \Omega) = e^{-iE_{\text{ren}}^\infty} \prod_{n=3}^\infty e^{-i\xi_n}.$$

Let us use, for instance, the Pulci-Villars method.

$$S_{\text{ren}}^\infty \equiv -\frac{1}{(2\pi)^2} \int \pi^{\text{ren}}(k) |\kappa(k)|^2 dk = -\lim_{M \to \infty} \int |\kappa(k)|^2 (\pi_M(k) - \pi_M(0)) dk = -\lim_{M \to \infty} \left(\frac{1}{(2\pi)^4} \int |\kappa(k)|^2 \pi_M(k) dk - i\pi_M(0) \int |\kappa(x)|^2 d\vec{x} \right).$$

We can formally write $\pi^\infty(k) := \lim_{M \to \infty} \pi_M(k)$ (which is typically infinite) and

$$\hat{S}_{\text{ren}} = e^{i\pi^\infty(0) \int |\kappa(x)|^2 d\vec{x}} S, \quad (2.107)$$

$$\hat{H}_{\text{ren}}(t) = H(t) - \pi^\infty(0) \int |\kappa(t, \vec{x})|^2 d\vec{x}. \quad (2.108)$$

Note that $\hat{H}_{\text{ren}}(t)$ is a well defined self-adjoint operator. $\hat{H}(t)$ is its Wick ordered expression.

The counterterm has an infinite coefficient $\pi^\infty(0)$. Otherwise, it is quite well behaved – it depends locally on the interaction, and therefore the renormalization preserves the Einstein causality. This manifests itself in the identity

$$\hat{S}_{\text{ren}}(\kappa_2) \hat{S}_{\text{ren}}(\kappa_1) = \hat{S}_{\text{ren}}(\kappa_2 + \kappa_1),$$

whenever suppκ_2 is later than suppκ_1.

69
We also have a compact formula for the renormalized vacuum energy:

\[
E_{\text{ren}} = -\frac{1}{2} \text{Tr} \left(\log(1 + \kappa D_T^c) - \kappa D_T^c + \frac{(\kappa D_T^c)^2}{2} \right)
+ \int |\kappa(k)|^2 \pi^{\text{ren}}(k) \frac{dk}{(2\pi)^4}
\]

(2.109)

2.3.14 Energy shift

Suppose that the perturbation does not depend on time and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto \kappa(\vec{x}) \). The naive (Wick ordered) Hamiltonian is

\[
\hat{H} := \int \left(\frac{1}{2} \pi^2(\vec{x}) + \frac{1}{2} \left(\frac{\partial \phi(\vec{x})}{\partial \vec{k}} \right)^2 + \frac{1}{2} (m^2 + \kappa(\vec{x})) \phi^2(x) \right) d\vec{x}
\]

The infimum of a quadratic Wick ordered Hamiltonian can be computed exactly (A.13):

\[
E = \text{Tr} \left[\frac{1}{2} (-\Delta + m^2 + \kappa)^{1/2} - \frac{1}{2} (-\Delta + m^2)^{1/2} - \frac{1}{4} (-\Delta + m^2)^{-1/2} \kappa \right]
= \int \text{Tr} \left[\frac{-\Delta + m^2 + \kappa}{(-\Delta + m^2 + \kappa + \tau^2)} - \frac{-\Delta + m^2}{(-\Delta + m^2 + \tau^2)} - \frac{\tau^2}{((-\Delta + m^2 + \tau^2)^2)} \kappa \right] \frac{d\tau}{2\pi}
= \int \text{Tr} \left[\frac{-\Delta + m^2 + \tau^2}{(-\Delta + m^2 + \tau^2)} - \frac{-\Delta + m^2 + \kappa + \tau^2}{(-\Delta + m^2 + \tau^2)^2} \kappa \right] \frac{d\tau}{2\pi}
= -\int \text{Tr} \left[\frac{1}{(-\Delta + m^2 + \tau^2)^2} \kappa \right] \frac{d\tau}{2\pi}
= \sum_{n=2}^{\infty} (-1)^{n-1} \int \text{Tr} \left[\frac{1}{(-\Delta + m^2 + \tau^2)^2} \kappa \right] \frac{d\tau}{2\pi}
= \sum_{n=2}^{\infty} (-1)^{n-1} \int \frac{d\tau}{2\pi}
\]

Above, we rewrote the square root by using the identities (A.27) and (A.28), expanded the denominator in the Neumann series and at the end we used the identity (A.29). Note that the \(n \)th term of the above expansion corresponds to the loop with \(n \) vertices. They are all well defined except for \(n = 2 \), which needs renormalization. We can guess that the renormalized energy shift is

\[
E_{\text{ren}}^{\pi} = \int \pi^{\text{ren}}(0, \vec{k}) |\kappa(\vec{k})|^2 \frac{d\vec{k}}{(2\pi)^3} + \int \text{Tr} \left[\frac{1}{(-\Delta + m^2 + \tau^2)^2} \kappa \right] \frac{d\tau}{2\pi}
\]

(2.110)

\[
\times \frac{1}{(-\Delta + m^2 + \tau^2)^2} \kappa \frac{1}{(-\Delta + m^2 + \kappa + \tau^2)^2} \kappa \frac{1}{(-\Delta + m^2 + \tau^2)^2} \frac{d\tau}{2\pi}
\]

where we rewrote the sum of terms with \(n \geq 3 \) in a compact form, and \(\pi^{\text{ren}} \) was introduced in (2.98).
Another way to derive the expression for E_{ren} is to use Sucher's formula. We introduce the adiabatically switched perturbation $e^{-\epsilon |t|} \kappa(\vec{x})$ multiplied by a coupling constant λ, which will be put to 1 at the end. The Fourier transform of the switching factor $e^{-\epsilon |t|}$ is $\frac{2i\epsilon}{\epsilon^2 + k^2}$. Therefore,

$$E_{\text{ren}} = i \log(\Omega |\hat{S}_{\text{ren}}^\epsilon \Omega)$$

$$= \lambda^2 \int_{\pi} \pi_{\text{ren}}(\tau, \vec{k}) \frac{4\epsilon^2}{(\epsilon^2 + \tau^2)^2} |\kappa(\vec{k})|^2 d\tau d\vec{k} + O(\lambda^3).$$

By Sucher’s formula,

$$E_{\text{ren}} = \lim_{\epsilon \downarrow 0} \frac{i \epsilon \lambda}{2} \partial_\lambda \log(\Omega |\hat{S}_{\text{ren}}^\epsilon \Omega)$$

$$= \lim_{\epsilon \downarrow 0} \lambda^2 \int_{\pi} \pi_{\text{ren}}(\tau, \vec{k}) \frac{4\epsilon^3}{(\epsilon^2 + \tau^2)^2} |\kappa(\vec{k})|^2 d\tau d\vec{k} + O(\lambda^3)$$

$$= \lambda^2 \int_{\pi} \pi_{\text{ren}}(0, \vec{k}) |\kappa(\vec{k})|^2 \frac{d\vec{k}}{(2\pi)^3} + O(\lambda^3),$$

where we used $\int \frac{4\epsilon^3}{(\epsilon^2 + \tau^2)^2} d\tau = 2\pi$. Eventually, we put $\lambda = 1$ and we obtain (2.110).

3 Massive photons

Let $m > 0$. In this section we discuss the quantization of the Proca equation

$$-\partial_\mu F^{\mu\nu}(x) + m^2 A^\nu(x) = 0,$$ \hspace{1cm} (3.1)

where

$$F^{\mu\nu} := \partial^\mu A^\nu - \partial^\nu A^\mu.$$ \hspace{1cm} (3.2)

Beside the free equation, we will also consider the Proca equation interacting with a given vector function J^μ, called an external current:

$$-\partial_\mu F^{\mu\nu}(x) + m^2 A^\nu(x) = -J^\nu(x).$$ \hspace{1cm} (3.3)

We will assume that the current is conserved, that is

$$\partial_\mu J^\nu(x) = 0.$$ \hspace{1cm} (3.4)

There are several possible approaches to the Proca equation on the classical and, especially, quantum level. In particular, one can use from the beginning the reduced phase space, both for the classical description and quantization. This is the approach that we will treat as the standard one. Alternative approaches will be discussed later.
3.1 Free massive photons

3.1.1 Space of solutions

Let \(\mathcal{Y}_{Pr} \), resp. \(\mathbb{C}\mathcal{Y}_{Pr} \), denote the set of real, resp. complex smooth space-compact solutions of the Proca equation

\[
-\partial^\mu (\partial_\mu \zeta_\nu - \partial_\nu \zeta_\mu) + m^2 \zeta_\nu(x) = 0.
\]

(3.5)

It is easy to see that for \(\zeta_1, \zeta_2 \in \mathbb{C}\mathcal{Y}_{Pr} \) the following expression defines a conserved current:

\[
j_{Pr}^\mu(\zeta_1, \zeta_2, x) := (\partial^\mu \zeta_1(x) - \partial_\nu \zeta_1^\nu(x)) \zeta_2^\nu(x) - \zeta_1(x)(\partial^\mu \zeta_2^\nu(x) - \partial_\nu \zeta_2^\mu(x)).
\]

(3.6)

\(\mathcal{Y}_{Pr} \) is a symplectic space with the symplectic form

\[
\zeta_1 \omega_{Pr} \zeta_2 = \int_S j_{Pr}^\mu(\zeta_1, \zeta_2, x)\, ds_\mu(x)
\]

(3.7)

where \(S \) is any Cauchy surface.

The Poincaré group \(\mathbb{R}^{1,3} \rtimes O(1,3) \) acts on \(\mathcal{Y}_{Pr} \) by

\[
r_{(a, \Lambda)}(\zeta_\mu(x)) := \Lambda^\nu_\mu \zeta_\nu((a, \Lambda)^{-1}x).
\]

\(r_{(a, \Lambda)} \) are symplectic for \(\Lambda \in O^+(1,3) \), otherwise they are antisymplectic.

3.1.2 Classical potentials

We introduce the functionals \(A_\mu(x) \) called potentials. They act on \(\zeta \in \mathcal{Y}_{Pr} \) giving

\[
\langle A_\mu(x) | \zeta \rangle := \zeta_\mu(x).
\]

On \(\mathcal{Y}_{Pr}^* \), we have the action of the Poincaré group \((a, \Lambda) \mapsto r_{(a, \Lambda)}^{-1} \). Note that

\[
r_{(a, \Lambda)}^{-1} A_\mu(x) = (\Lambda^{-1})^\nu_\mu A_\nu(\Lambda x + a).
\]

We also introduce the field tensor and the electric field vector:

\[
F_{\mu\nu}(x) := \partial_\mu A_\nu(x) - \partial_\nu A_\mu(x),
E_i(x) := F_{0i}(x) = A_i - \partial_i A_0.
\]

Clearly, the free Proca equation (3.1) is satisfied. Equivalently, we have

\[
(-\Box + m^2) A_\mu(x) = 0,
\]

(3.8)

\[
\partial^\nu A_\nu(x) = 0.
\]

(3.9)
Yet another equivalent system of equations convenient for further analysis is

\[
(-\Delta + m^2)A_0 + \text{div}\dot{\vec{A}} = 0, \quad (3.10)
\]
\[
(-\Box + m^2)\vec{A} = 0. \quad (3.11)
\]

(3.9) can be rewritten as

\[
\dot{A}_0 = \text{div}\vec{A}. \quad (3.12)
\]

Thus only \(\vec{A}\) is dynamical – \(A_0\) can be computed from \(\vec{A}\). Taking the divergence of the definition of the electric field \(\vec{E} = \vec{A} - \partial_t A_0\), then using (3.12) and (3.11), we can express \(A_0\) in terms of \(\vec{E}\):

\[
m^2 A_0 = -\text{div}\vec{E}. \quad (3.13)
\]

Finally, we have the following version of the evolution equations in terms of \(\vec{E}\), \(\vec{A}\) with only first order derivatives:

\[
\dot{\vec{A}} = \vec{E} - \frac{1}{m^2} \partial_t \text{div}\vec{E}, \quad (3.14)
\]
\[
\dot{\vec{E}} = -(\Delta + m^2)\vec{A} - \partial_t \text{div}\vec{A}. \quad (3.15)
\]

3.1.3 Poisson brackets

The symplectic form on \(\mathcal{Y}_{Pr}\) (3.7) can be written as

\[
\omega_{Pr} = \int \vec{A}(t, \vec{x}) \wedge \vec{E}(t, \vec{x}) d\vec{x}.
\]

It leads to a *Poisson bracket* on functions on \(\mathcal{Y}_{Pr}\):

\[
\{ A_i(t, \vec{x}), A_j(t, \vec{y}) \} = \{ E_i(t, \vec{x}), E_j(t, \vec{y}) \} = 0,
\]
\[
\{ A_i(t, \vec{x}), E_j(t, \vec{y}) \} = \delta_{ij} \delta(\vec{x} - \vec{y}). \quad (3.16)
\]

We have

\[
\{ A_\mu(x), A_\nu(y) \} = \left(g_{\mu\nu} - \frac{\partial_\mu \partial_\nu}{m^2} \right) D(x - y),
\]

where \(D(x - y)\) is the Pauli-Jordan function.

Indeed, this follows after we insert (3.14), (3.13) and (3.12) into

\[
\vec{A}(t, \vec{x}) = \int \left(D(t, \vec{x} - \vec{y}) \dot{\vec{A}}(0, \vec{y}) + \dot{D}(t, \vec{x} - \vec{y}) \vec{A}(0, \vec{y}) \right) d\vec{y},
\]
\[
A_0(t, \vec{x}) = \int \left(D(t, \vec{x} - \vec{y}) \dot{A}_0(0, \vec{y}) + \dot{D}(t, \vec{x} - \vec{y}) A_0(0, \vec{y}) \right) d\vec{y},
\]

and then we commute it with \(A_0(0, \vec{x})\) and \(\vec{A}(0, \vec{x})\).
3.1.4 Smeared potentials

We can use the symplectic form to pair distributions and solutions. For \(\zeta \in \mathcal{Y}_{\text{Fr}} \), the corresponding \textit{spatially smeared potential} is the functional on \(\mathcal{Y}_{\text{Fr}} \) given by

\[
\langle A(\zeta) \mid \rho \rangle := \zeta \omega \rho.
\]

Note that

\[
\{A(\zeta_1), A(\zeta_2)\} = \zeta_1 \omega \zeta_2.
\]

Another way of smearing the potentials is also useful. For a space-time vector valued functions \(f \in C^\infty_c(\mathbb{R}_{1,3}, \mathbb{R}^{1,3}) \) the corresponding \textit{space-time smeared potential} is

\[
A[f] := \int f(x) A^\mu(x) dx.
\]

Note that \(A[f] = A(\zeta) \), where

\[
\zeta^\mu = -D^* f + \frac{\partial^\mu \partial^\nu}{m^2} D^* f^\nu.
\]

Adding to \(f^\mu \) a derivative \(\partial^\mu \chi \) for \(\chi \in C^\infty_c(\mathbb{R}_{1,3}) \) does not change (3.18).

3.1.5 Lagrangian formalism and stress-energy tensor

Consider the Lagrangian density in the off-shell formalism

\[
\mathcal{L} := -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A^\mu A^\mu.
\]

The resulting Euler-Lagrange equations

\[
\frac{\partial \mathcal{L}}{\partial A^\alpha} = \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (A^\alpha)_\mu} \right)
\]

coincide with the Proca equation.

The \textit{canonical stress-energy tensor}, which follows directly from the Noether Theorem, equals

\[
\mathcal{T}^\mu_{\text{can}} = \mathcal{L} \quad A^\mu_{\alpha,\mu} - \frac{m^2}{2} A^\mu A^\mu.
\]

One usually prefers to replace it with the \textit{Belinfante-Rosenfeld stress-energy tensor}. It is defined as

\[
\mathcal{T}^{\mu\nu} = \mathcal{T}^\mu_{\text{can}} + \partial_\alpha \Sigma^{\mu\alpha
\nu} = -\frac{m^2}{2} A^\mu A^\nu + F^{\mu\alpha} F_{\alpha}^\nu.
\]
\[\Sigma^\mu_\alpha = -\Sigma^\alpha_\mu := F^\mu_\alpha A^\nu. \]

(3.19)

On solutions of the Euler-Lagrange equations we have
\[\partial_\mu T^\mu_\nu = \partial_\mu T^\mu_\nu = 0. \]

In addition, \(T^\mu_\nu \) is symmetric.

As discussed before, the variables \(A_0(x) \) are not dynamical. To pass to the Hamiltonian formalism, we introduce the variable conjugate to \(A_i(x) \)
\[\partial \dot{A}_i(x) L(x) = E_i(x). \]

Both the canonical and the Belinfante-Rosen stress-energy tensor lead to the same Hamiltonian and momentum density:
\[H(x) := T^{00}(x) = \frac{1}{2} \dot{E}_i^2(x) + \frac{1}{2m^2} (\text{div} \vec{E})^2(x) + (\text{rot} \vec{A})^2(x) + \frac{m^2}{2} \vec{A}_i^2(x), \]
\[P^j(x) := T^{0j}(x) = m^2 A_0^0(x) A^j(x) + E^i(x) F^{ji}(x). \]

They give the Hamiltonian and momentum
\[H := \int H(t, \vec{x})d\vec{x} = \int T^{00}_{\text{can}}(t, \vec{x})d\vec{x}, \]
\[P^j := \int P^j(t, \vec{x})d\vec{x} = \int T^{0j}_{\text{can}}(t, \vec{x})d\vec{x}. \]

Using (3.14) and (3.15) we check that \(H \) generates the equations of motion and \(\vec{P} \) the translations.

It is also natural to introduce
\[S(x) := E_i(x) \epsilon^{ijk} \partial_k A_j(x), \]
and its spatial integral
\[S := \int S(t, \vec{x})d\vec{x}. \]

(3.20)

(3.21)

We are not aware of an established name of these quantities. We will call (3.20) the polarization density and (3.21) the polarization.

The observables \(H, \vec{P}, S \) are in involution.

3.1.6 Diagonalization of the equations of motion

For \(\vec{k} \in \mathbb{R}^3, \vec{k} \neq \vec{0} \) fix two spatial vectors \(\vec{e}_1(\vec{k}), \vec{e}_2(\vec{k}) \) that form an oriented orthonormal basis of the plane orthogonal to \(\vec{k} \). Define
\[\vec{e}(\vec{k}, \pm 1) := \frac{1}{\sqrt{2}} \left(\vec{e}_1(\vec{k}) \pm i \vec{e}_2(\vec{k}) \right). \]
Note that
\[
\vec{k} \times \vec{e}(\vec{k}, \pm 1) = \pm i |\vec{k}| \vec{e}_\pm(\vec{k}),
\]
\[
\vec{e}(\vec{k}, \sigma) \cdot \vec{k} = 0,
\]
\[
e_i(\vec{k}, \sigma) e_i(\vec{k}, \sigma') = \delta_{\sigma, \sigma'},
\]
\[
\sum_{\sigma=\pm 1} e_i(\vec{k}, \sigma) e_j(\vec{k}, \sigma) = \delta_{ij} - \frac{k_i k_j}{\vec{k}^2}.
\]

Let \(k \in \mathbb{R}^{1,3} \) with \(k^0 = \varepsilon(\vec{k}) = \sqrt{\vec{k}^2 + m^2} \). Introduce
\[
u(k, 0) := \left(\frac{|\vec{k}|}{m}, \frac{\varepsilon(\vec{k}) \vec{k}}{m |\vec{k}|} \right), \tag{3.22}
\]
\[
u(k, \pm 1) := \left(0, \vec{e}(\vec{k}, \pm 1) \right). \tag{3.23}
\]

Note that
\[
u_{\mu}(k, \sigma) k^\mu = 0,
\]
\[
u_{\mu}(k, \sigma) u^\mu(k, \sigma') = \delta_{\sigma, \sigma'},
\]
\[
\sum_{\sigma=0, \pm 1} \nu_{\mu}(k, \sigma) u_{\nu}(k, \sigma) = g_{\mu\nu} + \frac{k_{\mu} k_{\nu}}{m^2}.
\]

Set
\[
\tilde{A}_i(\vec{k}) = (2\pi)^{-\frac{3}{2}} \int \tilde{A}(t, \vec{\bar{x}}) e^{-i \vec{k} \cdot \vec{\bar{x}}} d\vec{\bar{x}},
\]
\[
\tilde{E}_i(\vec{k}) = (2\pi)^{-\frac{3}{2}} \int \tilde{E}(t, \vec{\bar{x}}) e^{-i \vec{k} \cdot \vec{\bar{x}}} d\vec{\bar{x}}.
\]

We have the equations of motion
\[
\dot{\tilde{A}}_i(\vec{k}) = \tilde{E}_i(\vec{k}) + \frac{\vec{k}}{m^2} \vec{k} \cdot \vec{\bar{x}} \tilde{E}_i(\vec{k}),
\]
\[
\dot{\tilde{E}}_i(\vec{k}) = - (\vec{k}^2 + m^2) \tilde{A}_i(\vec{k}) + \vec{k} \vec{k} \cdot \vec{\bar{x}} \tilde{A}_i(\vec{k}),
\]
the relations
\[
A^*_i(\vec{k}) = A_i(-\vec{k}), \quad E^*_i(\vec{k}) = E_i(-\vec{k}),
\]
and the Poisson brackets
\[
\{ A^*_i(\vec{k}), A_{ij}(\vec{k'}) \} = \{ E^*_i(\vec{k}), E_{ij}(\vec{k'}) \} = 0,
\]
\[
\{ A^*_i(\vec{k}), E_{ij}(\vec{k'}) \} = \delta_{ij} \delta(\vec{k} - \vec{k'}). \]
Set

\[A_t(\vec{k}, \pm 1) := \sqrt{2(\vec{k}, \pm 1)} \cdot \vec{A}_t(\vec{k}), \]
\[E_t(\vec{k}, \pm 1) := \sqrt{2(\vec{k}, \pm 1)} \cdot \vec{E}_t(\vec{k}), \]
\[A_t(\vec{k}, 0) := \frac{m \vec{k}}{\varepsilon(\vec{k})} \cdot \vec{A}_t(\vec{k}), \]
\[E_t(\vec{k}, 0) := \frac{\varepsilon(\vec{k}) \vec{k}}{m} \cdot \vec{E}_t(\vec{k}). \]

We have the equations of motion

\[\dot{A}_t(\vec{k}, \sigma) = E_t(\vec{k}, \sigma), \]
\[\dot{E}_t(\vec{k}, \sigma) = -\varepsilon(\vec{k})^2 A_t(\vec{k}, \sigma). \]

We set

\[a_t(k, \sigma) := \sqrt{\frac{\varepsilon(\vec{k})}{2}} A_t(\vec{k}, \sigma) + \frac{i}{\sqrt{2\varepsilon(\vec{k})}} E_t(\vec{k}, \sigma), \]
\[a_t^*(k, \sigma) := \sqrt{\frac{\varepsilon(\vec{k})}{2}} A_t^*(\vec{k}, \sigma) - \frac{i}{\sqrt{2\varepsilon(\vec{k})}} E_t^*(\vec{k}, \sigma). \]

We have the equations of motion

\[\dot{a}_t(k, \sigma) = -i \varepsilon(\vec{k}) a_t(k, \sigma), \]
\[\dot{a}_t^*(k, \sigma) = i \varepsilon(\vec{k}) a_t^*(k, \sigma). \]

We will usually write \(a(k, \sigma), a^*(k, \sigma) \) for \(a_0(k, \sigma), a_0^*(k, \sigma) \), so that

\[a_t(k, \sigma) = e^{-i\sigma(\vec{k})} a(k, \sigma), \]
\[a_t^*(k, \sigma) = e^{i\sigma(\vec{k})} a^*(k, \sigma). \]

The direct definitions of \(a(k, \sigma), a^*(k, \sigma) \) are

\[a(k, \pm 1) = (2\pi)^{-\frac{1}{2}} \int d\vec{x} e^{-i\vec{k} \cdot \vec{x}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \overline{\varepsilon(\vec{k}, \pm 1) A(0, \vec{x})} + \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \overline{\varepsilon(\vec{k}, \pm 1) E(0, \vec{x})} \right), \]
\[a^*(k, \pm 1) = (2\pi)^{-\frac{1}{2}} \int d\vec{x} e^{i\vec{k} \cdot \vec{x}} \left(\sqrt{\frac{\varepsilon(\vec{k})}{2}} \overline{\varepsilon(\vec{k}, \pm 1) A(0, \vec{x})} - \frac{i}{\sqrt{2\varepsilon(\vec{k})}} \overline{\varepsilon(\vec{k}, \pm 1) E(0, \vec{x})} \right). \]
\[a(k, 0) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} e^{-i\vec{k}\cdot\vec{x}} \left(\frac{m}{\sqrt{2\varepsilon(\vec{k})}} \frac{\vec{k}}{|\vec{k}|} \vec{A}(0, \vec{x}) + i \frac{\varepsilon(\vec{k})}{m} \frac{\vec{k}}{2|\vec{k}|} \vec{E}(0, \vec{x}) \right), \]

\[a^*(k, 0) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} e^{-i\vec{k}\cdot\vec{x}} \left(\frac{m}{\sqrt{2\varepsilon(\vec{k})}} \frac{\vec{k}}{|\vec{k}|} \vec{A}(0, \vec{x}) - i \frac{\varepsilon(\vec{k})}{m} \frac{\vec{k}}{2|\vec{k}|} \vec{E}(0, \vec{x}) \right). \]

Their Poisson brackets are

\[\{a(\vec{k}, \sigma), a(\vec{k}', \sigma')\} = \{a^*(\vec{k}, \sigma), a^*(\vec{k}', \sigma')\} = 0, \]

\[\{a(\vec{k}, \sigma), a^*(\vec{k}', \sigma')\} = -i\delta(\vec{k} - \vec{k}')\delta_{\sigma, \sigma'}. \]

The potentials can be written as

\[A_\mu(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma = 0, \pm 1} \int \frac{d\vec{k}}{2\varepsilon(\vec{k})} \left(u_\mu(k, \sigma) e^{ikx} a(k, \sigma) + u_\mu(k, \sigma) e^{-ikx} a^*(k, \sigma) \right). \]

We have accomplished the diagonalization of the Hamiltonian, momentum, polarization and symplectic form:

\[H = \sum_{\sigma = 0, \pm 1} \int d\vec{k} \varepsilon(\vec{k}) a^*(k, \sigma) a(k, \sigma), \]

\[\vec{P} = \sum_{\sigma = 0, \pm 1} \int d\vec{k} \vec{a}^*(k, \sigma) a(k, \sigma), \]

\[S = \sum_{\sigma = 0, \pm 1} \int d\vec{k} \sigma |\vec{k}| a^*(k, \sigma) a(k, \sigma), \]

\[i\omega = \sum_{\sigma = 0, \pm 1} \int a^*(k, \sigma) \wedge a(k, \sigma) d\vec{k}. \]

3.1.7 Plane waves

A plane wave is defined as

\[|k, \sigma\rangle = \frac{1}{(2\pi)^{3/2}\sqrt{2\varepsilon(\vec{k})}} u_\mu(k, \sigma) e^{ikx}, \]

with \(k^0 = \pm \varepsilon(\vec{k}) = \pm \sqrt{k^2 + m^2} \). We have

\[i\langle k, \sigma | \omega | k', \sigma' \rangle = i(k, \sigma | \omega | k', \sigma') = 0, \]

\[i\langle k, \sigma | \omega | k', \sigma' \rangle = -i(k, \sigma | \omega | k', \sigma') = \delta(\vec{k} - \vec{k}')\delta_{\sigma, \sigma'}. \]
a(k, \sigma) can be called plane wave functionals:
\begin{align*}
a(k, \sigma) &= -iA ([|k, \sigma|]) \\
&= -\int \left((\partial_t (k, \sigma |x|_i) - \partial_i (k, \sigma |x|_0) A_i (0, x) - (k, \sigma |x|_0) E_i (0, x) \right) d\vec{x} \nonumber \\
a^*(k, \sigma) &= iA ([| - k, \sigma|]) \\
&= \int \left((\partial_t (k, \sigma |x|_i) - \partial_i (k, \sigma |x|_0) A_i (0, x) - (k, \sigma |x|_0) E_i (0, x) \right) d\vec{x}.
\end{align*}

3.1.8 Positive frequency space

$W^{(\pm)}_{Pr}$ will denote the subspace of $\mathbb{C} Y_{Pr}$ consisting of positive frequency solutions:
\[W^{(\pm)}_{Pr} := \{ g \in \mathbb{C} Y_{Pr} : (-k, \sigma |\omega g = 0, k^0 = \varepsilon (\vec{k}), \sigma = \pm, 0 \}. \]

Every $g \in W^{(\pm)}_{Pr}$ can be written as
\begin{equation}
g_{\mu} (x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma = 0, \pm 1} \int \frac{d\vec{k}}{\sqrt{2\varepsilon (\vec{k})}} e^{ikx} u_{\mu} (k, \sigma) (a(k, \sigma)|g).
\end{equation}

For $g_1, g_2 \in W^{(\pm)}_{Pr}$ we define the scalar product
\[(g_1 | g_2) := i\bar{g}_1 \omega g_2 = \sum_{\sigma = 0, \pm 1} \int \bar{a}(k, \sigma) |g_1 \rangle \langle a(k, \sigma) |g_2 \rangle d\vec{k}. \]

We set Z_{Pr} to be the completion of $W^{(\pm)}_{Pr}$ in this scalar product. $\mathbb{R}^{1,3} \ltimes O^+(1,3)$ leaves Z_{Pr} invariant.

3.1.9 Spin averaging

For a given $k \in \mathbb{R}^{1,3}$ with $k^2 = m^2$, let M, N be vectors with
\[M^\mu k_\mu = N^\nu k_\nu = 0. \]

The following identity allows us to average over spin and is useful in computations of scattering cross-sections:
\begin{equation}
\sum_{\sigma = 0, \pm 1} M^\mu u_{\mu} (k, \sigma) u_{\nu} (k, \sigma) N^\nu = M^\mu N^\nu. \tag{3.25}
\end{equation}

In fact,
\[\sum_{\sigma = 0, \pm 1} u_{\mu} (k, \sigma) u_{\nu} (k, \sigma) = g_{\mu \nu} + \frac{k_\mu k_\nu}{m^2}. \]

Therefore, the left hand side of (3.25) equals
\begin{equation}
M^\mu g_{\mu \nu} N^\nu + \frac{(M \cdot k)(N \cdot k)}{m^2}.
\end{equation}

But
\[k \cdot M = k \cdot N = 0. \]
3.1.10 Quantization

We want to construct \((\mathcal{H}, \hat{H}, \Omega)\) satisfying the standard requirements and a self-adjoint operator-valued distribution \(\mathbb{R}^{1,3} \ni x \mapsto \hat{A}_\mu(x)\) such that, setting \(\vec{E} = \vec{A} - \partial \hat{A}_0\), we have

1. \(-\partial^\mu (\partial_\mu \hat{A}_\nu - \partial_\nu \hat{A}_\mu') + m^2 \hat{A}_\nu(x) = 0\)
2. \([\hat{A}_i(0, \vec{x}), \hat{A}_j(0, \vec{y})] = [\hat{E}_i(0, \vec{x}), \hat{E}_j(0, \vec{y})] = 0\)
3. \(\partial_\mu (\partial_\nu \hat{A}_\nu - \partial_\nu \hat{A}_\mu) + m^2 \hat{A}_\nu = 0\)
4. \(\Omega\) is cyclic for \(\hat{A}_\mu(x)\).

The above problem has a solution, which is unique up to a unitary equivalence, which we describe below.

For the Hilbert space we should take the bosonic Fock space \(\mathcal{H} = \Gamma(Z_{\Pr})\) and for \(\Omega\) the Fock vacuum. Set

\[
\hat{a}^*(k, \sigma) := \hat{a}^*(|k, \sigma\rangle),
\]
or equivalently,

\[
\int (k, \sigma|g)\hat{a}^*(k, \sigma)dg = \hat{a}^*(g), \quad g \in Z_{\Pr},
\]

where “mathematician’s notation” is used on the right. Note that

\[
[\hat{a}(k, \sigma), \hat{a}(k', \sigma')] = [\hat{a}^*(k, \sigma), \hat{a}^*(k', \sigma')] = 0, \quad [\hat{a}(k, \sigma), \hat{a}^*(k', \sigma')] = \delta(k - k')\delta_{\sigma, \sigma'}.
\]

Therefore

\[
\hat{A}_\mu(x) = \sum_{\sigma = 0, \pm 1} \left(u_{\mu}(k, \sigma) e^{ikx} \hat{a}(k, \sigma) + \bar{u}_{\mu}(k, \sigma) e^{-ikx} \hat{a}^*(k, \sigma) \right)
\]
satisfy the required commutation relations.

The quantum Hamiltonian, momentum and polarization are

\[
\hat{H} = \sum_{\sigma = 0, \pm 1} \int \epsilon(k) \hat{a}^*(k, \sigma)\hat{a}(k, \sigma)dk,
\]

\[
\hat{P} = \sum_{\sigma = 0, \pm 1} \int \vec{k} \hat{a}^*(k, \sigma)\hat{a}(k, \sigma)dk,
\]

\[
\hat{S} = \sum_{\sigma = 0, \pm 1} \int \sigma |\vec{k}| \hat{a}^*(k, \sigma)\hat{a}(k, \sigma)dk.
\]

The group \(\mathbb{R}^{1,3} \rtimes O^\uparrow(1, 3)\) is unitarily implemented on \(\mathcal{H}\) by \(U(a, \Lambda) := \Gamma(r(a, \Lambda)|Z_{\Pr})\). We have

\[
U(a, \Lambda) \hat{A}_\mu(x) U(a, \Lambda)^* = \Lambda^\mu_{\nu} \hat{A}_\nu((a, \Lambda)x).
\]
Moreover,

\[[\hat{A}_\mu(x), \hat{A}_\nu(y)] = -i \left(g_{\mu\nu} - \frac{\partial_\mu \partial_\nu}{m^2} \right) D(x - y). \]

Note the identities

\[(\Omega | \hat{A}_\mu(x) \hat{A}_\mu(y) \Omega) = -i \left(g_{\mu\nu} - \frac{\partial_\mu \partial_\nu}{m^2} \right) D^+(x - y), \]

\[(\Omega | T(\hat{A}_\mu(x) \hat{A}_\mu(y)) \Omega) = -i \left(g_{\mu\nu} - \frac{\partial_\mu \partial_\nu}{m^2} \right) D^c(x - y). \]

For \(f \in C_\infty^\infty(\mathbb{R}^{1,3}, \mathbb{R}^{1,3}) \) set

\[\hat{A}[f] := \int f^\mu(x) \hat{A}_\mu(x) dx. \]

We obtain a family that satisfies the Wightman axioms with \(D := \Gamma^{\text{fin}}(\mathcal{Z}_{Pc}). \)

For an open set \(\mathcal{O} \subset \mathbb{R}^{d} \) we set

\[\mathfrak{A}(\mathcal{O}) := \left\{ \exp[i\hat{A}[f]] : f \in C_\infty^\infty(\mathcal{O}, \mathbb{R}^{1,3}) \right\}. \]

The algebras \(\mathfrak{A}(\mathcal{O}) \) satisfy the Haag-Kastler axioms.

3.2 Massive photons with an external current

3.2.1 Classical potentials

We return to the classical Proca equation. We assume that

\[\mathbb{R}^{1,3} \ni x \mapsto J(x) = [J^\mu(x)] \in \mathbb{R}^{1,3} \] \hspace{1cm} (3.27)

is a given function called an *external current*, which satisfies

\[\partial_\nu J^\nu(x) = 0. \] \hspace{1cm} (3.28)

In most of this subsection we will assume that (3.27) is Schwartz.

In its presence the Proca equation takes the form

\[-\partial^\mu (\partial_\mu A^\nu - \partial^\nu A_\mu) + m^2 A^\nu(x) = -J^\nu(x). \] \hspace{1cm} (3.29)

Note that (3.29) and (3.28) imply the *Lorentz condition*

\[\partial_\nu A^\nu(x) = 0. \] \hspace{1cm} (3.30)

We have therefore

\[(-\Box + m^2) A^\mu(x) = -J^\mu(x). \] \hspace{1cm} (3.31)
As usual, we can interpret the interacting fields as functionals on $\mathcal{Y}_{\mathcal{F}}$, and express them in terms of free fields as

$$A_{\mu}(x) := A_{\mathcal{F}_\mu}(x) - \int \left(D^+(x - y)\theta(y^0) + D^-(x - y)\theta(-y^0) \right) J_\mu(y) dy. \quad (3.32)$$

The temporal component of (3.29) has no time derivative:

$$-\Delta A_0 + \partial_0 \text{div} \vec{A} + m^2 A_0 = -J_0. \quad (3.33)$$

Therefore, we can compute A_0 in terms of \vec{A} at the same time:

$$A_0 = -(-\Delta + m^2)^{-1}(\partial_0 \text{div} \vec{A} + J_0). \quad (3.34)$$

The only dynamical variables are the spatial components, satisfying the equation

$$(-\partial_0^2 - \Delta + m^2) \vec{A} = -\vec{J}. \quad (3.35)$$

3.2.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

$$\mathcal{L} := -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A_\mu A^\mu - J_\mu A^\mu$$

$$= -\frac{1}{2} \partial_\mu A_\nu \partial^\nu A^\mu - \frac{1}{2} \partial_\mu A_\nu \partial^\nu A^\mu - \frac{m^2}{2} A_\mu A^\mu - J_\mu A^\mu$$

$$= -\frac{1}{2} \text{rot} \vec{A}^2 + \frac{1}{2} (\partial_\mu A_\nu)^2 + \frac{1}{2} (\partial_\nu A_\mu)^2 - \frac{1}{2} \vec{A} \partial \vec{A} + \frac{m^2}{2} A_0^2 - \frac{m^2}{2} \vec{A}^2 - \vec{J} \vec{A} + J_0 A_0. \quad (3.36)$$

As noted before, only spatial components $\vec{A}(x)$ are dynamical and the conjugate variable is $\vec{E}(x) = \vec{A}(x) - \partial_0 A_0(x)$. In terms of \vec{E}, we have

$$A_0 = -\frac{1}{m^2} (J_0 + \text{div} \vec{E}). \quad (3.37)$$

The canonical Hamiltonian density is

$$\mathcal{H}^\text{can}(x) = -\mathcal{L}(x) + \frac{\partial \mathcal{L}(x)}{\partial A_i(x)} A_i(x)$$

$$= \frac{1}{2} \text{rot} \vec{A}^2(x) - \frac{1}{2} (\partial_\mu A_0^2(x) - \frac{1}{2} (\vec{A})^2(x)$$

$$- \frac{m^2}{2} A_0^2(x) + \frac{m^2}{2} \vec{A}^2(x) + J_0(x) \vec{A}(x) - J_0(x) A_0(x).$$

We add to it a spatial divergence $\text{div}(\vec{E}(x) A_0(x))$ and express it in terms of \vec{A}, \vec{E}, obtaining the usual Hamiltonian density

$$\mathcal{H}(x) := \frac{1}{2} \vec{E}^2(x) + \frac{1}{2} \text{rot} \vec{A}^2(x)$$

$$+ \frac{m^2}{2} A_0^2(x) + \frac{m^2}{2} \vec{A}^2(x) + J_0(x) \vec{A}(x).$$
The Hamiltonian

\[H(t) = \int \mathcal{H}(t, \vec{x}) d\vec{x} = \int \mathcal{H}^{\text{can}}(t, \vec{x}) d\vec{x} \] (3.37)

generates the equations of motion. Using the splitting of \(\vec{A} \) and \(\vec{E} \) into the transversal and longitudinal part, as in (A.33), we can rewrite \(H(t) \) as

\[
H(t) = \int d\vec{x} \left(\frac{1}{2} E_{tr}^2(t, \vec{x}) + \frac{1}{2} \vec{A}_{tr}(t, \vec{x})(-\Delta + m^2) \vec{A}_{tr}(t, \vec{x}) + J(t) \vec{A}_{tr}(x) \right) \\
+ \int d\vec{x} \left(\frac{1}{2} (-\Delta)^{-1/2} \text{div} \vec{E}(t, \vec{x}) \right)^2 + \frac{1}{2m^2} (J^0(t, \vec{x}) - \text{div} \vec{E}(t, \vec{x}))^2 \\
+ \frac{m^2}{2} (-\Delta)^{-1/2} \text{div} \vec{A}(t, \vec{x})^2. \] (3.38)

3.2.3 Quantization

We are looking for operator valued distributions \(\mathbb{R}^{1,3} \ni x \rightarrow \hat{A}_\mu(x) \) satisfying

\[-\partial_\mu (\partial^\nu \hat{A}^\nu(x)) - \partial^\nu \hat{A}_\mu(x) + m^2 \hat{A}^\nu(x) = -j^\nu(x).\]

coinciding with free quantum fields at \(t = 0 \):

\[\hat{A}_\mu(0, \vec{x}) = \hat{A}_{tr}^\mu(0, \vec{x}) =: \hat{A}^\mu(\vec{x}). \]

To obtain them we decorate (3.32) with “hats”. They are equal to

\[\hat{A}_\mu(t, \vec{x}) := T \exp \left(-i \int_t^0 \hat{H}(s) ds \right) \hat{A}_\mu(x) T \exp \left(-i \int_0^t \hat{H}(s) ds \right), \]

where the Hamiltonian \(\hat{H}(t) \), and the corresponding Hamiltonian in the interaction picture are

\[
\hat{H}(t) = \int d\vec{x} \left(\frac{1}{2} \hat{E}_{tr}^2(\vec{x}) + \frac{1}{2m^2} (J_0^0(t, \vec{x}) - \text{div} \hat{\vec{E}}(\vec{x}))^2 \\
+ \frac{1}{2} (\text{rot} \hat{\vec{A}})^2(\vec{x}) + \frac{m^2}{2} \hat{\vec{A}}^2(\vec{x}) + \hat{J}(t, \vec{x}) \hat{\vec{A}}(\vec{x}) \right) \\
\hat{H}_{\text{int}}(t) = \int d\vec{x} \left(-\frac{1}{m^2} J_0^0(t, \vec{x}) \text{div} \hat{\vec{E}}_{tr}(t, \vec{x}) + \hat{J}(t, \vec{x}) \hat{\vec{A}}_{tr}(t, \vec{x}) + \frac{1}{2m^2} J_0^0(t, \vec{x})^2 \right).
\]

Using (3.26) and \(\text{div} \hat{\vec{E}}_{tr} = -(-\Delta + m^2)^{-1} \text{div} \hat{\vec{A}}_{tr} \), we express the interaction Hamiltonian in terms of creation/annihilation operators:

\[
\hat{H}_{\text{int}}(t) = (2\pi)^{-3} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(e^{it\varepsilon(\vec{k})} J_\mu(t, \vec{k}) \overline{u^\mu(\vec{k}, \sigma)} \hat{a}^*(k, \sigma) \\
+ e^{-it\varepsilon(\vec{k})} J_\mu(t, \vec{k}) u^\mu(\vec{k}, \sigma) \hat{a}(k, \sigma) \right) + \int d\vec{k} \left| J_0^0(t, \vec{k}) \right|^2 \frac{(2\pi)^3}{(2\pi)^3 2m^2}. \]

83
We can compute the scattering operator
\[
\hat{S} = \exp \left(-\frac{i}{2(2\pi)^4} \int \frac{d^4k}{k^0} D^{0\nu}_{\mu\nu}(k) J^\nu(k) \right)
\times \exp \left(-i \sum_{\sigma=0,\pm 1} \int d^3k a^\ast(k,\sigma) \frac{u_\mu(k,\sigma)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\times \exp \left(-i \sum_{\sigma=0,\pm 1} \int d^3k a(k,\sigma) \frac{u_\mu(k,\sigma)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right),
\]
where
\[
D^{0\nu}_{\mu\nu}(k) = \frac{1}{m^2 + k^2 - i0} \left(g_{\mu\nu} + \frac{k_\mu k_\nu}{m^2} \right).
\] (3.39)
(The superscript 0 over \(D^{0\nu}_{\mu\nu} \) will be explained later on).

For \(x_N, \ldots, x_1 \), the \(N \)-point Green’s function is defined as follows:
\[
G(\hat{A}_{\mu N}(x_N) \ldots \hat{A}_{\mu_1}(x_1)) := \left(\Omega^+ | T(\hat{A}_{\mu N}(x_N), \ldots, \hat{A}_{\mu_1}(x_1)) \Omega^- \right).
\]

Green functions can be organized into the generating function
\[
\sum_{n=0}^\infty \int \cdots\int G(\hat{A}_{\mu N}(x_N), \ldots, \hat{A}_{\mu_1}(x_1))(-i)^N f^\mu N(x_N) \cdots f^\mu_1(x_1) dx_N \cdots dx_1
= \left(\Omega | \text{Exp} \left(-i \int_{-\infty}^\infty \hat{H}_{\text{int}}(s) ds - i \int f^\mu(x) \hat{A}_{\mu}(x) dx \right) \Omega \right) := Z(f).
\]

The \textit{amputated} \(N \)-point Green’s functions are
\[
G^{\text{amp}}(\hat{A}_{\mu N}(k_N) \ldots \hat{A}_{\mu_1}(k_1)) := (k_N^2 + m^2) \cdots (k_1^2 + m^2) G(\hat{A}_{\mu N}(k_N) \ldots \hat{A}_{\mu_1}(k_1)).
\]

For \(k_1, \ldots, k_N \) on shell, set
\[
| k_N, \sigma_N; \ldots; k_1, \sigma_1 \rangle := a^\ast(k_N, \sigma_N) \cdots a^\ast(k_1, \sigma_1) \Omega.
\]
As usual, matrix elements of the scattering operator between such vectors are called \textit{scattering amplitudes}. Amputated Green’s functions can be used to compute scattering amplitudes:
\[
\left(k_1^+, \sigma_1^+; \ldots; k_n^+, \sigma_n^+ | \hat{S} | k_n^-, \sigma_n^-; \ldots; k_1^-, \sigma_1^- \right)
= \frac{u^\mu_1(k_1^+, \sigma_1^+)}{(2\pi)^{n+\frac{1}{2}} \sqrt{2\varepsilon(k_1^+)}} \cdots \frac{u^\mu_n(k_n^+, \sigma_n^+)}{(2\pi)^{n+\frac{1}{2}} \sqrt{2\varepsilon(k_n^+)}} \frac{u^\mu_n(k_n^-, \sigma_n^-)}{(2\pi)^{n+\frac{1}{2}} \sqrt{2\varepsilon(k_n^-)}} \cdots \frac{u^\mu_1(k_1^-, \sigma_1^-)}{(2\pi)^{n+\frac{1}{2}} \sqrt{2\varepsilon(k_1^-)}} \times G^{\text{amp}}(A_{\mu_1}^+(k_1^+), \ldots, A_{\mu_n}^+(k_n^+), A_{\mu_n}^-(k_n^-), \ldots, A_{\mu_1}^-(k_1^-)).
\]
3.2.4 Causal propagators

The causal propagator used to compute Green’s functions and scattering amplitudes that follows directly from the interaction Hamiltonian is $D_{\mu\nu}$, see (3.39). If we compute scattering amplitudes, we can pass from this propagator to another by adding $k_{\mu}f_{\nu}(k) + f_{\mu}(k)k_{\nu}$ for an arbitrary function $f_{\mu}(k)$.

To see this note that after adding $k_{\mu}f_{\nu}(k) + f_{\mu}(k)k_{\nu}$ the contribution of each line changes by $J_{\mu}(k)(k_{\mu}f_{\nu}(k) + f_{\mu}(k)k_{\nu})J_{\nu}(k)$, which is zero, because $k_{\mu}J_{\mu}(k) = 0$. For scattering amplitudes, external lines do not involve the propagator. Therefore, scattering amplitudes do not change.

Below we will list a number of useful causal propagators. (In principle, they should be decorated by the superscript c, for causal, which we however suppress).

For any $\alpha \in \mathbb{R}$, we can pass to the following propagators

$$D^{\alpha}_{\mu\nu} = \frac{1}{m^2 + k^2 - i0} \left(g_{\mu\nu} + \frac{\alpha - \alpha k_{\mu}k_{\nu}}{\alpha k^2 + m^2} \right).$$

The above propagator for $\alpha = 0$ was obtained in the Hamiltonian approach. For $\alpha = 1$ we obtain the so-called propagator in the Feynman gauge, that is

$$D_{\mu\nu}^{\text{Feyn}}(k) = \frac{1}{m^2 + k^2 - i0}.$$

$\alpha = \infty$ corresponds to the propagator in the Landau or Lorentz gauge:

$$D_{\mu\nu}^{\text{Lan}} = \frac{1}{m^2 + k^2 - i0} \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right).$$

We can introduce the propagator in the Yukawa gauge:

$$D_{00}^{\text{Yuk}} = -\frac{1}{m^2 + k^2}, \quad D_{0j}^{\text{Yuk}} = 0, \quad D_{ij}^{\text{Yuk}} = \frac{1}{m^2 + k^2 - i0} \left(\delta_{ij} - \frac{k_{i}k_{j}}{m^2 + k^2} \right),$$

We have $D_{\mu\nu}^{\text{Yuk}} = D_{\mu\nu}^{\text{Feyn}} + k_{\mu}f^{\text{Yuk}}_{\nu}(k) + f^{\text{Yuk}}_{\mu}(k)k_{\nu}$, where

$$f^{\text{Yuk}}_{0}(k) = \frac{k_{0}}{(k^2 + m^2 - i0)2(m^2 + k^2)}, \quad f^{\text{Yuk}}_{i}(k) = -\frac{k_{i}}{(k^2 + m^2 - i0)2(m^2 + k^2)}.$$

(The propagator in the Yukawa gauge is the massive analog of the propagator in the Coulomb gauge.)

The propagator in the temporal gauge is

$$D_{00}^{\text{tem}} = 0, \quad D_{0j}^{\text{tem}} = 0, \quad D_{ij}^{\text{tem}} = \frac{1}{k^2 + m^2 - i0} \left(\delta_{ij} - \frac{k_{i}k_{j}}{k^2} \right).$$

We have $D_{\mu\nu}^{\text{tem}} = D_{\mu\nu}^{\text{Feyn}} + k_{\mu}f^{\text{tem}}_{\nu}(k) + f^{\text{tem}}_{\mu}(k)k_{\nu}$, where

$$f^{\text{tem}}_{0}(k) = \frac{1}{(m^2 + k^2 - i0)2k_{0}}, \quad f^{\text{tem}}_{i}(k) = -\frac{k_{i}}{(m^2 + k^2 - i0)2k_{0}^2}.$$
3.2.5 Feynman rules

Perturbation expansion can be organized with help of Feynman diagrams, which are very similar to diagrams for neutral fields interacting with a linear source. We have 1 kind of lines and 1 kind of vertices. At each vertex just one line ends.

To compute Green’s functions we do as follows:

1. In the nth order we draw all possible Feynman diagrams with n vertices and external lines.
2. To each vertex we associate the factor $-iJ^\mu(k)$.
3. To each line we associate the propagator $-iD^\mu\nu(k) = \frac{i}{m^2 + k^2 - i0} (g^\mu\nu + \frac{k_\mu k_\nu}{m^2})$.
4. For internal lines we integrate over the variables with the measure $\frac{1}{(2\pi)^4} d^4k$.

To compute scattering amplitudes with N^- incoming and N^+ outgoing particles we draw the same diagrams as for N^-N^+-point Green’s functions. The rules are changed only concerning the external lines.

(i) With each incoming external line we associate $\frac{1}{\sqrt{(2\pi)^3}} \frac{1}{2} \epsilon(k) u(k,\sigma)$.
(ii) With each outgoing external line we associate $\frac{1}{\sqrt{(2\pi)^3}} \frac{1}{2} \epsilon(k) u(k,\sigma)$.

If we prefer, we can use a different causal propagator instead of $D^\mu\nu$. Green’s functions change, because of external lines, however scattering amplitudes will not.

3.2.6 Path integral formulation

We can compute exactly the generating function:

$$Z(f) = \exp \left(\frac{i}{2} \int J_\mu(k) + f_\mu(k) \left(\frac{g^{\mu\nu} + m^{-2}k^\mu k^\nu}{k^2 + m^2 - i0} \right) (J_\nu(k) + f_\nu(k))dk \right).$$ (3.40)

Let us now describe massive vector fields in the path integral formalism. Recall that

$$\int L_\phi(x)dx = -\int \frac{1}{2} \left(\partial_\mu A_\nu(x) \partial^\mu A^\nu(x) - \partial_\mu A_\nu(x) \partial^\nu A^\mu(x) + m^2 A_\mu(x) A^\mu(x) \right) dx$$

$$= -\int \frac{1}{2} A_\mu(x) \left(g^{\mu\nu} (-\Box + m^2) + \partial^\mu \partial^\nu \right) A_\nu(x) dx,$$

$$\int (L(x) - f_\mu(x) A^\mu(x))dx = \int L_\phi(x)dx - \int (J_\mu + f_\mu(x)) A^\mu(x) dx.$$

Note that $D^\mu_{\mu\nu}(k) = \frac{g_{\mu\nu} + m^{-2}k_\mu k_\nu}{k^2 + m^2 - i0}$, or in the position representation $D^\mu_{\mu\nu} = (g_{\mu\nu} - m^{-2} \partial_\mu \partial_\nu) D^\nu$ is one of the inverses of $g^{\mu\nu} (-\Box + m^2) + \partial^\mu \partial^\nu$. Therefore,
(3.40) is often formally rewritten as
\[Z(f) = \frac{\int \Pi \Pi \, dA^\mu(x) \exp \left(i \int (L(x) - J_\mu(x)) A^\mu(x) dx \right)}{\int \Pi \Pi \, dA^\mu(x) \exp \left(i \int L(x) dx \right)}. \]

Let \(D^\bullet_{\mu\nu} \) be one of the propagators considered in Subsubect. 3.2.4. Let \(B^\bullet_{\mu\nu} \) be its inverse. We have the corresponding “free action”\[T^\bullet_{\text{fr}} = -\frac{1}{2} \int A_\mu(x) B^\bullet_{\mu\nu}(x - y) A_\nu(y) dx dy. \]

We define the corresponding generating function as\[Z^\bullet(f) := \exp \left(\frac{i}{2} \int (J_\mu(k) + f_\mu(k)) D^\bullet_{\mu\nu}(k) (J_\nu(k) + f_\nu(k)) dk \right) \]
\[= \exp \left(\frac{i}{2} \int (J_\mu(x) + f_\mu(x)) D^\bullet_{\mu\nu}(x - y) (J_\nu(y) + f_\nu(y)) dx dy \right) \]
\[= \frac{\int \Pi \Pi \, dA^\mu(x) \exp \left(iT^\bullet_{\text{fr}} + i \int (J_\mu(x) + f_\mu(x)) A^\mu(x) dx \right)}{\int \Pi \Pi \, dA^\mu(x) \exp \left(iT^\bullet_{\text{fr}} \right)}. \]

In general, \(Z^\bullet(f) \) differs for various propagators \(D^\bullet_{\mu\nu} \), unless \(f \) satisfies the Lorentz condition. However, all \(Z^\bullet(f) \) can be used to compute the same scattering operator.

Likewise, the Euler-Lagrange equations obtained from those various action integrals differ from the Proca equation. However, \(Y_{\text{Pr}} \) belong always to their solutions.

If we take the Lagrangian
\[-\frac{1}{2} \left(\partial_\mu A^\nu(x) \partial^\mu A_\nu(x) + m^2 A^\nu(x) A_\nu(x) \right) + (\alpha - 1) \partial_\mu A^\mu(x) \partial_\nu A^\nu(x), \]
then we obtain the propagator \(D^\alpha_{\mu\nu} \). Indeed,
\[g^{\mu\nu}(k^2 + m^2) + (\alpha - 1) k^\mu k^\nu \]

is the inverse of \(D^\alpha_{\mu\nu}(k) \).

If we restrict the integration by the Lorentz condition
\[\partial_\mu A^\mu(x) = 0. \]

and take the Lagrangian (3.42) (they now coincide for all \(\alpha \)), then we obtain the propagator in the Landau/Lorentz gauge.
If we take the Lagrangian
\begin{align*}
-\frac{1}{2} \left(\partial_\mu A_i(x) \partial_\mu A_i(x) + m^2 A_i(x) A_i(x) \right) \\
+ \frac{1}{m^2} \partial_\mu \partial_i A_i(x) \partial_\mu \partial_j A_j(x) + \partial_i A_i(x) \partial_j A_j(x) \\
- \partial_i A_0(x) \partial_i A_0(x) - m^2 A_0(x)^2 \right),
\end{align*}
we obtain \(D_{\mu \nu}^{\text{Yuk}} \). Indeed,
\begin{align*}
\left(k^2 + m^2 \right) \left(\delta_{ij} + \frac{k_i k_j}{m^2} \right) - \delta_{\mu 0} \delta_{\nu 0} (k^2 + m^2)
\end{align*}
is the inverse of \(D_{\mu \nu}^{\text{Yuk}}(k) \).
If we take the action
\begin{align*}
-\frac{1}{2} \int \left(\partial_\mu A_i(x) \partial_\mu A_i(x) + m^2 A_i(x) A_i(x) \right) \, dx \\
-\frac{1}{2} \int \left(\partial_\mu \partial_i A_i(x)(-\Box)^{-1}(x-y) \partial_\mu \partial_j A_j(y) \\
+ \partial_i A_i(x)(-\Box)^{-1}(x-y) \partial_j A_j(y) \right) \, dx \, dy,
\end{align*}
(which is nonlocal and does not involve \(A_0 \)), we obtain \(D_{\mu \nu}^{\text{tem}} \). Indeed,
\begin{align*}
\left(k^2 + m^2 \right) \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right)
\end{align*}
is the inverse of \(D_{ij}^{\text{tem}}(k) \).

3.2.7 Energy shift

Suppose that the current is stationary and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto J_\mu(\vec{x}) \). Note that \(\text{div} \vec{J}(\vec{x}) = 0 \).

Using the quantum version of (3.38), we can write the Hamiltonian as
\begin{align*}
\hat{H} &= \int \, d\vec{x} : \left(\frac{1}{2} \vec{E}_{\text{tr}}^2(\vec{x}) + \frac{1}{2} \vec{A}_{\text{tr}}(\vec{x})(-\Delta + m^2) \vec{A}_{\text{tr}}(\vec{x}) + \vec{J}(\vec{x}) \vec{A}_{\text{tr}}(\vec{x}) \right) : \\
&+ \int \, d\vec{x} : \left(\frac{1}{2} \left((-\Delta)^{-1/2} \text{div} \vec{E}(\vec{x}) \right)^2 + \frac{1}{2m^2} \left(J_0(\vec{x}) - \text{div} \vec{E}(\vec{x}) \right)^2 \\
&+ \frac{m^2}{2} \left((-\Delta)^{-1/2} \text{div} \vec{A}(\vec{x}) \right)^2 \right) :.
\end{align*}
By (A.8), the infimum of \(\hat{H} \) is
\begin{align*}
E &= -\frac{1}{2} \int \int \, d\vec{x} d\vec{y} \vec{J}(\vec{x}) \frac{e^{-m |\vec{x} - \vec{y}|}}{4\pi |\vec{x} - \vec{y}|} \vec{J}(\vec{y}) \\
&+ \frac{1}{2} \int \int \, d\vec{x} d\vec{y} J_0(\vec{x}) \frac{e^{-m |\vec{x} - \vec{y}|}}{4\pi |\vec{x} - \vec{y}|} J_0(\vec{y}).
\end{align*}
3.3 Alternative approaches

3.3.1 Classical potentials without the Lorentz condition

So far our treatment of massive photons was based on the Proca equation (3.1). As we remember, the Proca equation is equivalent to the Klein-Gordon equation for vector fields (3.8) together with the Lorentz condition (3.9). This suggests an alternative approach to the massive photons.

In this approach one considers first the Klein-Gordon equation on functions with values in $\mathbb{R}^{1,3}$:

\[(-\Box + m^2) \zeta_\mu (x) = 0. \quad (3.44) \]

The space of smooth real space-compact solutions of (3.44) will be denoted by \mathcal{Y}_{vec}. The following current

\[j_{\text{vec}}^\mu (\zeta_1, \zeta_2, x) := \partial_\mu \zeta_1 (x) \zeta_2 (x) - \zeta_1 (x) \partial_\mu \zeta_2 (x) \]

is conserved, that is

\[\partial_\mu j_{\text{vec}}^\mu (x) = 0. \]

It defines in the usual way a symplectic form on \mathcal{Y}_{vec}

\[\zeta_1 \omega_{\text{vec}} \zeta_2 = \int_S j_{\text{vec}}^\mu (\zeta_1, \zeta_2, x) ds_\mu (x) \]

\[= \int \left(-\dot{\zeta}_1 (t, \vec{x}) \zeta_2 (t, \vec{x}) + \zeta_1 (t, \vec{x}) \dot{\zeta}_2 (t, \vec{x}) \right) d\vec{x}, \]

where S is any Cauchy surface.

As usual, one introduces the potentials $A^\mu (x)$ as the functionals on \mathcal{Y}_{vec} defined by

\[(A^\mu (x) | \zeta) := \zeta^\mu (x). \]

We clearly have

\[(-\Box + m^2) A_\mu (x) = 0. \quad (3.45) \]

We can use the Lagrangian

\[\mathcal{L}(x) := -\frac{1}{2} A_{\mu,\nu} (x) A^{\mu,\nu} (x) - \frac{m^2}{2} A_\mu (x) A^\mu (x). \]

The conjugate variable is

\[\Pi_\mu (x) := \frac{\partial}{\partial A^\mu (x)} \mathcal{L}(x) = \dot{A}_\mu (x). \]

The Poisson structure is given by the equal time brackets

\[\{ A_\mu (t, \vec{x}), A_\nu (t, \vec{y}) \} = \{ \Pi_\mu (t, \vec{x}), \Pi_\nu (t, \vec{y}) \} = 0, \]

\[\{ A_\mu (t, \vec{x}), \Pi_\nu (t, \vec{y}) \} = g_{\mu \nu} \delta (\vec{x} - \vec{y}). \]

89
The stress-energy tensor is
\[T_{\mu\nu} = -\frac{\partial L}{\partial A_{\alpha,\mu}} A_{\alpha,\nu} + \frac{1}{2} g_{\mu\nu} (A_{\alpha,\beta} A^{\alpha,\beta} + m^2 A_{\alpha} A^{\alpha}). \]

The Hamiltonian and momentum density are
\[H(x) = T^{00}(x) = \frac{1}{2} \Pi_\mu(x) \Pi^\mu(x) + \frac{1}{2} A_{\mu,i}(x) A^{\mu,i}(x) + \frac{m^2}{2} A_\mu(x) A^\mu(x), \]
\[P^i(x) = T^{0i}(x) = -\Pi_\mu(x) A^{\mu,i}(x). \]

As usual, we can define the Hamiltonian and momentum
\[H = \int H(t,\vec{x}) d\vec{x}, \quad (3.46) \]
\[P^j = \int P^j(t,\vec{x}) d\vec{x}. \]

The Hamiltonian (3.46) is unbounded from below.

3.3.2 The Lorentz condition

Introduce two subspaces of \(Y_{\text{vec}} \)
\[Y_{\text{Lor}} := \{ \zeta \in Y_{\text{vec}} : \partial_\mu \zeta^\mu = 0 \}, \]
\[Y_{\text{sc}} := \{ \zeta \in Y_{\text{vec}} : \zeta^\mu = \partial^\mu \chi, \chi \in Y_{\text{KG}} \}. \]

Note that \(Y_{\text{vec}} = Y_{\text{Lor}} \oplus Y_{\text{sc}} \) is a decomposition into symplectically orthogonal subspaces each preserved by the Poincaré group. If \(\zeta \in Y_{\text{vec}}, \) then its projection onto \(Y_{\text{sc}} \) is
\[\zeta^\mu_{\text{sc}} := \frac{1}{m^2} \partial^\mu \zeta^\nu. \]

Elements of \(Y_{\text{Lor}} \) satisfy the Proca equation, so that we can make the identification
\[Y_{\text{Lor}} = Y_{\text{Pr}}. \]

On \(Y_{\text{Lor}} \) the forms \(\omega_{\text{vec}} \) and \(\omega_{\text{Pr}} \) coincide.

Clearly, we are back with the theory that was used in most of this section. In particular, the Hamiltonian (3.46) restricted to \(Y_{\text{Lor}} \) is now positive.

3.3.3 Diagonalization of the equations of motion

In order to diagonalize the Hamiltonian, besides the vectors \(u(k,\sigma) \) with \(\sigma = 0, \pm 1 \) introduced in (3.22), we will need the vectors for the scalar plane waves
\[u(k,\text{sc}) := \frac{1}{m}(\varepsilon(\vec{k}),\vec{k}). \]
Note that
\[u_\mu(k, \sigma) u^\mu(k, \sigma') = \delta_{\sigma, \sigma'}, \]
\[\sum_\sigma u_\mu(k, \sigma) u_\nu(k, \sigma) = g_{\mu\nu}. \]

Set
\[\tilde{A}_t(\vec{k}) = (2\pi)^{-\frac{3}{2}} \int \tilde{A}(t, \vec{x}) e^{-i\vec{k} \vec{x}} d\vec{x}, \]
\[\tilde{\Pi}_t(\vec{k}) = (2\pi)^{-\frac{3}{2}} \int \tilde{\Pi}(t, \vec{x}) e^{-i\vec{k} \vec{x}} d\vec{x}. \]

We have the equations of motion
\[\dot{A}_t(\vec{k}) = \Pi_t(\vec{k}), \]
\[\dot{\Pi}_t(\vec{k}) = -\varepsilon(\vec{k})^2 A_t(\vec{k}). \]

the relations
\[A^*_t(\vec{k}) = A_t(-\vec{k}), \quad \Pi^*_t(\vec{k}) = \Pi_t(-\vec{k}), \]

and the Poisson brackets
\[\{ A^*_t(\vec{k}), A_t(\vec{k}') \} = \{ \Pi^*_t(\vec{k}), \Pi_t(\vec{k}') \} = 0, \]
\[\{ A^*_t(\vec{k}), \Pi_t(\vec{k}') \} = g_{\mu\nu} \delta(\vec{k} - \vec{k}'). \]

Set
\[A_t(\vec{k}, \sigma) := \overline{u_\mu(\vec{k}, \sigma)} A^*_\mu(\vec{k}), \]
\[\Pi_t(\vec{k}, \sigma) := u_\mu(\vec{k}, \sigma) \Pi^*_\mu(\vec{k}). \]

We have the equations of motion
\[\dot{A}_t(\vec{k}, \sigma) = \Pi_t(\vec{k}, \sigma), \]
\[\dot{\Pi}_t(\vec{k}, \sigma) = -\varepsilon(\vec{k})^2 A_t(\vec{k}, \sigma), \]

the relations
\[A^*_t(\vec{k}, \sigma) = A_t(-\vec{k}, -\sigma), \quad \Pi^*_t(\vec{k}, \sigma) = \Pi_t(-\vec{k}, -\sigma), \]

and the Poisson brackets
\[\{ A^*_t(\vec{k}, \sigma), A_t(\vec{k}', \sigma') \} = \{ \Pi^*_t(\vec{k}, \sigma), \Pi_t(\vec{k}', \sigma') \} = 0, \]
\[\{ A^*_t(\vec{k}, \sigma), \Pi_t(\vec{k}', \sigma') \} = \kappa_{\sigma\sigma'} \delta(\vec{k} - \vec{k}'). \]
where $\kappa_{\sigma, \sigma'} = 1$ for $\sigma = \sigma' = \pm 1, 0$ and $\kappa_{sc, sc} = -1$. We set
\[a_t(k, \sigma) := \sqrt{\varepsilon(k)} A_t(k, \sigma) - \frac{i}{\sqrt{2\varepsilon(k)}} \Pi_t(k, \sigma), \]
\[a^*_t(k, \sigma) := \sqrt{\varepsilon(k)} A^*_t(k, \sigma) + \frac{i}{\sqrt{2\varepsilon(k)}} \Pi^*_t(k, \sigma). \]

We have the equations of motion
\[\dot{a}_t(k, \sigma) = -i\varepsilon(k) a_t(k, \sigma), \]
\[\dot{a}^*_t(k, \sigma) = i\varepsilon(k) a^*_t(k, \sigma). \]

and the Poisson brackets
\[\{a(k, \sigma), a(k', \sigma')\} = \{a^*(k, \sigma), a^*(k', \sigma')\} = 0, \]
\[\{a(k, \sigma), a^*(k', \sigma')\} = -i\kappa_{\sigma, \sigma'} \delta(k - k'). \]

We diagonalize the Hamiltonian and momentum:
\[H = \sum_{\sigma = 0, \pm 1} \int \tilde{k} \varepsilon(k) a^*(k, \sigma) a(k, \sigma) - \int \tilde{k} \varepsilon(k) a^*(k, sc) a(k, sc), \]
\[\vec{P} = \sum_{\sigma = 0, \pm 1} \int \tilde{k} a^*(k, \sigma) a(k, \sigma) - \int \tilde{k} a^*(k, sc) a(k, sc). \]

The potentials can be decomposed as
\[A_{\mu}(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma} \int \frac{\tilde{k}}{2\varepsilon(k)} \left(u_{\mu}(k, \sigma) e^{ikx} a(k, \sigma) + u_{\mu}(k, \sigma) e^{-ikx} a^*(k, \sigma) \right). \]

Clearly, the restriction to \mathcal{Y}_{Lor} amounts to dropping all scalar components.

3.3.4 Positive frequency space

$\mathcal{W}_\text{vec}^{(+)}$ will denote the subspace of $\mathbb{C}\mathcal{Y}_\text{vec}$ consisting of positive frequency solutions:
\[\mathcal{W}_\text{vec}^{(+)} := \{ g \in \mathbb{C}\mathcal{Y}_{\mathcal{Y}} : (-k, \sigma | \omega g = 0, \ k^0 = \varepsilon(k), \ \sigma = \pm, 0, \text{sc} \}. \]

Every $g \in \mathcal{W}_\text{vec}^{(+)}$ can be written as
\[g_{\mu}(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma = 0, \pm 1, \text{sc}} \int \frac{\tilde{k}}{2\varepsilon(k)} e^{ikx} u_{\mu}(k, \sigma) (a(k, \sigma) | g). \]
For \(g_1, g_2 \in \mathcal{W}_{\text{vec}}^{(+)} \) we have a natural scalar product
\[
(g_1|g_2) := i\bar{g}_1 \omega g_2 = \sum_{\sigma=0,\pm1} \int \langle a(k,\sigma)|g_1 \rangle \langle a(k,\sigma)|g_2 \rangle d\vec{k}
- \int \langle a(k,sc)|g_1 \rangle \langle a(k,sc)|g_2 \rangle d\vec{k}
= \int g^{\mu\nu} \langle a_{\mu}(k)|g_1 \rangle \langle a_{\nu}(k)|g_2 \rangle d\vec{k}.
\] (3.50)

Unfortunately, the above definition gives an indefinite scalar product. We can also introduce a positive definite scalar product, which unfortunately is not covariant:
\[
(g_1|g_2)_+ := \sum_{\mu} \int \langle a_{\mu}(k)|g_1 \rangle \langle a_{\mu}(k)|g_2 \rangle d\vec{k}.
\]

The positive frequency space \(\mathcal{W}_{\text{vec}}^{(+)} \) equipped with the scalar product (3.50) can be completed in the norm given by \((|\cdot|)_+ \). It will be called \(\mathcal{Z}_{\text{vec}} \). It is an example of the so-called Krein space, which is a space with an indefinite scalar product and has a topology given by a positive scalar product.

Using the projection (3.47), \(\mathcal{W}_{\text{vec}}^{(+)} \) can be decomposed into the direct sum of orthogonal subspaces \(\mathcal{W}_{\text{Lor}}^{(+)} \) and \(\mathcal{W}_{\text{sc}}^{(+)} \). On \(\mathcal{W}_{\text{Lor}}^{(+)} \) the scalar product (3.50) is positive definite, on \(\mathcal{W}_{\text{sc}}^{(+)} \) it is negative definite. Their completions will be denoted \(\mathcal{Z}_{\text{Lor}} \) and \(\mathcal{Z}_{\text{sc}} \).

Every \(\zeta \in \mathcal{Y}_{\text{vec}} \) can be uniquely written as \(\zeta = \zeta^{(+)} + \zeta^{(-)} \), where \(\mathcal{W}_{\text{vec}}^{(+)} \). This allows us to define a real scalar product on \(\mathcal{Y}_{\text{vec}} \):
\[
\langle \zeta_1|\zeta_2 \rangle_{\mathcal{Y}} := \text{Re}(\zeta^{(+)}_1|\zeta^{(+)}_2)
= \int \int \zeta_{1\mu}(0,\vec{x})(-i)D^{(+)}(0,\vec{x} - \vec{y})\zeta^{\mu}_2(0,\vec{y})d\vec{x}d\vec{y}
+ \int \int \zeta_{1\mu}(0,\vec{x})(-\Delta_{\vec{x}} + m^2)(-i)D^{(+)}(0,\vec{x} - \vec{y})\zeta^{\mu}_2(0,\vec{y})d\vec{x}d\vec{y}.
\] (3.51)
Again, (3.51) is positive definite on \(\mathcal{Y}_{\text{Lor}} \) and negative definite on \(\mathcal{Y}_{\text{sc}} \).

3.3.5 “First quantize, then reduce”

The quantization described in Subsect. 3.1 will be called “first reduce, then quantize”. There exist alternative methods of quantization, which use the symplectic space \(\mathcal{Y}_{\text{vec}} \) introduced in (3.44) as the basis. There are two basic ways to implement this idea.

The first insists on using only positive definite Hilbert spaces. Unfortunately, the Hamiltonian turns out to be unbounded from below.

In the Gupta-Bleuler approach the potentials \(\hat{A}^\mu(x) \) evolve with positive frequencies. Unfortunately, it uses an indefinite scalar product.
3.3.6 Quantization without reduction on a positive definite Hilbert space

In this approach we use the Hilbert space

\[\Gamma_s(Z_{Lor} \oplus Z_{sc}) \] (3.52)

equipped with a positive definite scalar product. More explicitly, we replace \(a(k, \sigma) \) with \(\hat{a}(k, \sigma) \) for \(\sigma = 0, \pm 1 \). We replace \(a(k, sc) \) with \(\hat{b}^*(k, sc) \). They satisfy the standard commutation relations

\[
[\hat{a}(k, \sigma), \hat{a}^*(k', \sigma')] = \delta_{\sigma, \sigma'} \delta(\vec{k} - \vec{k}'),
\]

\[
[\hat{b}(k, sc), \hat{b}^*(k', sc)] = \delta(\vec{k} - \vec{k}').
\]

\(\hat{a}(k, \sigma) \), \(\hat{b}(k, sc) \) kill the vacuum:

\[\hat{a}(k, \sigma)\Omega = \hat{b}(k, sc)\Omega = 0. \]

The quantized potentials, Hamiltonian and momentum become

\[
\hat{A}_\mu(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma=0, \pm 1} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(u_\mu(k, \sigma)e^{ikx}\hat{a}(k, \sigma) + \overline{u_\mu(k, \sigma)e^{-ikx}\hat{a}^*(k, \sigma)} \right)
\]

\[+ (2\pi)^{-\frac{3}{2}} \sum_{\sigma=0, \pm 1} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(\vec{k})}} \left(u_\mu(k, sc)e^{ikx}\hat{b}^*(k, sc) + \overline{u_\mu(k, sc)e^{-ikx}\hat{b}(k, sc)} \right), \]

\[
\hat{H} = \sum_{\sigma=0, \pm 1} \int \frac{d\vec{k} \sqrt{\varepsilon(\vec{k})}}{\varepsilon(\vec{k})} \hat{a}^*(k, \sigma)\hat{a}(k, \sigma) - \int d\vec{k} \varepsilon(\vec{k})\hat{b}^*(k, sc)\hat{b}(k, sc),
\]

\[
\hat{P} = \sum_{\sigma=0, \pm 1} \int \frac{d\vec{k} \sqrt{\varepsilon(\vec{k})}}{\varepsilon(\vec{k})} \hat{a}^*(k, \sigma)\hat{a}(k, \sigma) - \int d\vec{k} \varepsilon(\vec{k})\hat{b}^*(k, sc)\hat{b}(k, sc). \]

The propagator in the position representation is given by

\[
\left(\Omega|T(\hat{A}_\mu(x)\hat{A}_\nu(y))\Omega \right) = -i \left(g_{\mu\nu} - \frac{2}{m^2} \partial_\mu \partial_\nu \right) D^c(x-y),
\]

and in the momentum representation

\[
\frac{-1}{\vec{k}^2 + m^2 - i0} \left(g_{\mu\nu} + \frac{2}{m^2} k_\mu k_\nu \right).
\]

It is an example of a propagator from the class considered in Subsubsect. 3.2.4. Note also that

\[
(\Omega|\hat{A}(\zeta)^2\Omega) = \langle \zeta|\zeta \rangle_Y + \frac{2}{m^2} (\partial_\mu \zeta^\mu |\partial_\nu \zeta^\nu)_Y, \]

(3.53)
which is the scalar product (3.51) corrected by a term given by the scalar product (2.30). Note that (3.53) is positive definite.

Vectors built by applying fields satisfying the Lorentz condition to the vacuum will be called \(\textit{physical}\). Equivalently, physical vectors are elements of the algebraic Fock space built on \(W^{(+)}_{\text{Lor}}\). After the completion the physical space coincides with \(\Gamma_s(Z_{\text{Lor}})\). Thus we obtain the same space as in the method “first reduce, then quantize”.

It will be convenient to describe this method in the \(C^*\)-algebraic language. Let \(\text{CCR}(\mathcal{Y}_{\text{vec}})\) denote the (Weyl) \(C^*\)-algebra of the CCR over \(\mathcal{Y}_{\text{vec}}\), that is, the \(C^*\)-algebra generated by \(W(\zeta), \zeta \in \mathcal{Y}_{\text{vec}}\), such that
\[
W(\zeta_1)W(\zeta_2) = e^{-i\frac{1}{2} (\zeta_1|\zeta_2)_{\mathcal{Y}} - \frac{1}{m^2} (\partial_\mu \zeta_1^\mu|\partial_\nu \zeta_2^\nu)_{\mathcal{Y}}}, \quad W(\zeta)^* = W(-\zeta).
\]
We have the obvious action of \(\mathbb{R}^{1,3} \rtimes O(1, 3)\) on \(\text{CCR}(\mathcal{Y}_{\text{vec}})\) by \(*\)-automorphisms:
\[
\hat{r}(a, \Lambda)(W(\zeta)) := W(r(a, \Lambda)(\zeta))
\]
Choose the state on \(\text{CCR}(\mathcal{Y}_{\text{vec}})\) defined by
\[
\psi(W(\zeta)) = \exp \left(-\frac{1}{2} (\zeta|\zeta)_{\mathcal{Y}} - \frac{1}{m^2} (\partial_\mu \zeta^\mu|\partial_\nu \zeta^\nu)_{\mathcal{Y}} \right)
\]
Let \((\mathcal{H}_\psi, \pi_\psi, \Omega_\psi)\) be the GNS representation generated by the state \(\psi\). Using (3.53) we see that \(\mathcal{H}_\psi\) can be identified with \(\Gamma_s(Z_{\text{Lor}} \oplus \overline{Z}_{\text{sc}})\) and the fields are related to the Weyl operators by
\[
\pi_\psi(W(\zeta)) = e^{i\hat{A}(\zeta)}.
\]

3.3.7 The Gupta-Bleuler approach

This approach also uses the symplectic space \(\mathcal{Y}_{\text{vec}}\) as the basic input. It follows almost verbatim the usual steps of quantization of the Klein-Gordon equation. We introduce the bosonic Fock space \(\Gamma_s(Z_{\text{vec}})\), which has an indefinite scalar product and can be viewed as a Krein space.

We replace \(a(k, \sigma)\) by \(\hat{a}(k, \sigma)\). The commutation relations have a wrong sign for the scalar component:
\[
[a(k, \sigma), a^*(k', \sigma')] = \kappa_{\sigma, \sigma'}(k - k').
\]
The annihilation operators kill the vacuum:
\[
\hat{a}(k, \sigma)\Omega = 0.
\]
The expressions for the Hamiltonian, momentum and potentials are the same as in the classical case:
\[
H = \sum_{\sigma = 0, \pm 1} \int d\vec{k} \varepsilon(\vec{k}) \hat{a}^*(k, \sigma) \hat{a}(k, \sigma) - \int d\vec{k} \varepsilon(\vec{k}) \hat{a}^*(k, sc) \hat{a}(k, sc),
\]
\[
\vec{P} = \sum_{\sigma = 0, \pm 1} \int d\vec{k} \vec{a}^*(k, \sigma) \hat{a}(k, \sigma) - \int d\vec{k} \vec{a}^*(k, sc) \hat{a}(k, sc).
\]

95
\[\hat{A}_\mu(x) = (2\pi)^{-\frac{3}{2}} \sum_\sigma \int \frac{d\vec{k}}{\sqrt{2\varepsilon(k)}} \left(u_\mu(k,\sigma)e^{i\vec{k}\cdot\hat{x}} \hat{a}(k,\sigma) + \overline{u_\mu(k,\sigma)e^{-i\vec{k}\cdot\hat{x}}} \right). \]

Note that all eigenvalues of \(\hat{H} \) are positive, however its expectation values (wrt the indefinite scalar product) can be negative. We have
\[
\begin{align*}
(\Omega | \hat{A}_\mu(x) \hat{A}_\nu(y) \Omega) &= -ig_{\mu\nu}D^{(+)}(x-y), \\
(\Omega | T(\hat{A}_\mu(x) \hat{A}_\nu(y)) \Omega) &= -ig_{\mu\nu}D^{c}(x-y).
\end{align*}
\]

In particular, the 2-point Green’s function is the propagator in the Feynman gauge. Smeared potentials \(\hat{A}(\{g\}) \) are well defined operators.

Similarly as in the previous method, vectors created by applying fields satisfying the Lorentz condition to the vacuum will be called physical. Again we obtain the algebraic Fock space built on \(\mathcal{W}^{(+)}_{\text{Lor}} \). This space is positive definite and after the completion coincides with \(\Gamma_s(\mathcal{Z}_{\text{Lor}}) \). Thus the physical space is the same as before.

4 Massless photons

In this section we discuss the quantization of the Maxwell equation
\[-\partial_\mu F^{\mu\nu}(x) = 0, \quad (4.1) \]
where, as in the previous section,
\[F^{\mu\nu} := \partial^\mu A^\nu - \partial^\nu A^\mu. \]

We will also consider an external conserved current, that is a vector function \(J^\nu(x) \) satisfying
\[\partial_\nu J^\nu(x) = 0. \quad (4.2) \]

The Maxwell equation in the presence of the current \(J \) reads
\[\partial_\mu F^{\mu\nu}(x) = J^\nu(x). \quad (4.3) \]

Similarly as in the massive case, there are several possible approaches to the Maxwell equation on the classical and, especially, quantum level. The approach based from the beginning on the reduced phase space, both for the classical description and quantization, will be treated as the standard one. The situation is however somewhat more complicated than in the massive case, since the Lorentz condition is not enough to fully reduce the phase space. Alternative approaches will be discussed later.

We try to make the discussion of massive and massless photons as parallel as possible. This is not entirely straightforward. In particular, the massless limit is quite subtle – to describe it one needs to fix the time coordinate. The covariant massive potential converges then in an appropriate sense to the massless noncovariant potential in the Coulomb gauge.
4.1 Free massless photons

4.1.1 Space of solutions and the gauge invariance

It is well known that the Maxwell equation

\[-\partial_\mu (\partial^\mu \zeta^\nu (x) - \partial^\nu \zeta^\mu (x)) = 0 \quad (4.4)\]

is invariant w.r.t. the replacement of \(\zeta^\mu\) with \(\zeta^\mu + \partial^\mu \chi\), where \(\chi\) is an arbitrary smooth function on the space-time. In particular, there is no uniqueness of the Cauchy problem for (4.4).

This property is called gauge invariance. It poses problems both for the classical and quantum theory. One could avoid the problem of gauge invariance by considering fields and not potentials as basic objects. However, when one quantizes the Maxwell equation with a current, it is more convenient to use potentials. Therefore, we will stick to potentials.

There exist several ways to cope with gauge invariance. The approach that we will use as the standard one can be called first reduce, then quantize. In this approach we start with the Maxwell equation in the form (4.4). Note that it coincides with the Proca equation with \(m = 0\). We will use objects defined in the context of the Proca equation, where we replace \(Pr\) with \(\tilde{\text{Max}}\) to indicate that the mass is zero.

Thus the space of smooth space compact solutions of (4.4) is denoted \(Y_{\tilde{\text{Max}}}\) and (3.6) defines a conserved current, which we now call \(j_{\tilde{\text{Max}}}\), that leads to the form defined as in (3.7):

\[
\zeta_1 \omega_{\tilde{\text{Max}}} \zeta_2 = \int \left(-\left(\tilde{\zeta}_1(t, \vec{x}) - \partial \tilde{\zeta}_1(t, \vec{x}) \right) \tilde{\zeta}_2(t, \vec{x}) + \tilde{\zeta}_1(t, \vec{x}) \left(\tilde{\zeta}_2(t, \vec{x}) - \partial \tilde{\zeta}_2(t, \vec{x}) \right) \right) d\vec{x}.
\]

Unfortunately, this form is only presymplectic, and not symplectic.

(4.5) does not depend on the gauge. To see this it is enough to note that if \(\zeta_2 = \partial \chi\), and \(\zeta_1\) is a solution of the Maxwell equation, then the integrand of (4.5) is a spatial divergence, so (4.5) is then zero.

We say that a solution \(\zeta\) of the Maxwell equation is in the Coulomb gauge if

\[
\zeta_0 = 0, \quad \text{div} \tilde{\zeta} = 0.
\]

A function in \(C^\infty(\mathbb{R}^3, \mathbb{R}^3)\) will be called transversal if its divergence vanishes.

Note that every \(\zeta \in Y_{\tilde{\text{Max}}}\) is gauge-equivalent to a unique solution of the Maxwell equation in the Coulomb gauge, denoted by \(\zeta_{\text{Coul}}\), where

\[
\chi(t, \vec{x}) = -(\Delta)^{-1}\text{div} \tilde{\zeta}(t, \vec{x}), \quad \zeta_{\mu}^{\text{Coul}} + \partial_\mu \chi = \zeta_\mu.
\]

Neither \(\chi\) nor \(\zeta_{\text{Coul}}\) have to be space-compact. The Stokes theorem yields however that \(\int \text{div} \tilde{\zeta}(t, \vec{x}) d\vec{x} = 0\), therefore \(\chi\) and \(\zeta_{\text{Coul}}\) behave like \(O(|\vec{x}|^{-2})\) because of (A.31).
The presymplectic form can be written as

\[
\zeta_1 \omega_{\text{Max}} \zeta_2 = \zeta_1^\text{Coul} \omega_{\text{Max}}^\text{Coul} \zeta_2^\text{Coul} = \int \left(-\tilde{\zeta}_1^\text{Coul}(t, \vec{x}) \tilde{\zeta}_2^\text{Coul}(t, \vec{x}) + \tilde{\zeta}_1^\text{Coul}(t, \vec{x}) \tilde{\zeta}_2^\text{Coul}(t, \vec{x}) \right) d\vec{x}.
\]

(4.7)

Note that the integrand of (4.7) behaves as \(O(|\vec{x}|^{-4})\), hence is integrable.

Proposition 4.1 Let \(\zeta \in \mathcal{Y}_{\text{Max}}\). We have the following equivalence:

1. \(\zeta \in \text{Ker} \omega_{\text{Max}}\).
2. \(\zeta^\text{Coul} = 0\).
3. \(\zeta = \partial \chi\).

Proof. (2) \(\Rightarrow\) (3) follows from (4.6).

The implication (3) \(\Rightarrow\) (1) follows from the gauge invariance of the form \(\omega_{\text{Max}}\).

Let us prove (1) \(\Rightarrow\) (2). Let \(\zeta^\text{Coul} \neq 0\). Then one of the transversal functions \(\vec{R} \ni \vec{x} \mapsto \tilde{\zeta}(0, \vec{x})\) is nonzero. Therefore we can find transversal functions \(\vec{u}, \vec{v}\) in \(C^\infty_c(\mathbb{R}^3, \mathbb{R}^3)\) such that

\[
\int \left(-\dot{\tilde{\zeta}}(0, \vec{x}) \tilde{\zeta}^\text{Coul}(0, \vec{x}) + \tilde{\zeta}(0, \vec{x}) \dot{\tilde{\zeta}}^\text{Coul}(0, \vec{x}) \right) d\vec{x} \neq 0.
\]

(4.8)

There exists a unique \(\xi \in C^\infty_{sc}(\mathbb{R}^4, \mathbb{R}^4)\) such that

\[
\dot{\xi}(0, \vec{x}) = (0, \vec{u}(\vec{x})), \quad \xi(0, \vec{x}) = (0, \vec{v}(\vec{x})), \quad \Box \xi = 0.
\]

\(\xi\) clearly belongs to \(\mathcal{Y}_{\text{Max}}\) and is in the Coulomb gauge. We have

\[
\xi \omega_{\text{Max}} \xi = \xi \omega_{\text{Max}} \xi^\text{Coul} = \int \left(-\dot{\xi}(0, \vec{x}) \xi^\text{Coul}(0, \vec{x}) + \xi(0, \vec{x}) \dot{\xi}^\text{Coul}(0, \vec{x}) \right) d\vec{x},
\]

which equals (4.8) and is nonzero. Hence \(\zeta \notin \text{Ker} \omega_{\text{Max}}\). \(\Box\)

Define

\[
\mathcal{Y}_{\text{Max}} := \mathcal{Y}_{\text{Max}} / \text{Ker} \omega_{\text{Max}}.
\]

In other words, \(\mathcal{Y}_{\text{Max}}\) is obtained by the symplectic reduction of the presymplectic space \(\mathcal{Y}_{\text{Max}}\). Clearly, \(\mathcal{Y}_{\text{Max}}\) is equipped with a natural symplectic form \(\omega_{\text{Max}}\).

\(\mathbb{R}^{1,3} \rtimes O^+(1,3)\) acts on \(\mathcal{Y}_{\text{Max}}\) by symplectic transformations.

By Prop. 4.1, \(\mathcal{Y}_{\text{Max}}\) consists of gauge equivalence classes of \(\mathcal{Y}_{\text{Max}}\).

Analogously we define the space \(\mathcal{C} \mathcal{Y}_{\text{Max}}\) of gauge classes of complex smooth space-compact solutions of (4.4).
4.1.2 Classical potentials

\(A^\mu(x) \) denotes the functional on \(Y_{\text{Max}} \) given by

\[
\langle A^\mu(x) | \zeta \rangle := \zeta^\mu(x).
\] (4.9)

Obviously, \(A^\mu(x) \) is not defined on \(Y_{\text{Max}} \).

We introduce also the functional \(A_0^{\text{Coul}}(x) \) on \(Y_{\text{Max}} \), called the classical potential in the Coulomb gauge,

\[
A_0^{\text{Coul}}(x) := 0, \quad A^{\text{Coul}}(x) := A_\nu(x) = A(x) - \delta \Delta^{-1} \text{div} A(x).
\]

Note that

\[
\langle A^{\text{Coul}}(x) | \zeta \rangle = \langle A(\mu(x)) | \zeta^{\text{Coul}} \rangle = \zeta^{\text{Coul}}(\mu(x)),
\]

where \(\zeta^{\text{Coul}} \) on the right hand side is the representative of the class \(\zeta \) in the Coulomb gauge. \(A^{\text{Coul}}(x) \) does not depend on the gauge, hence can be interpreted as a functional on \(Y_{\text{Max}} \). It is not, however, Lorentz covariant.

Moreover, we introduce the functionals \(F^{\mu\nu}(x) \) on \(Y_{\text{Max}} \), called the fields:

\[
\langle F^{\mu\nu}(x) | \zeta \rangle := \partial_\mu \zeta_\nu(x) - \partial_\nu \zeta_\mu(x).
\]

They also do not depend on the gauge, hence can be interpreted as functionals on \(Y_{\text{Max}} \). They are moreover Lorentz covariant.

We will write \(E_i(x) = F_{0i}(x) \). Clearly, \(\vec{E} = \partial_\nu A^{\text{Coul}} \) and

\[
\text{div} A^{\text{Coul}}(x) = 0, \quad \text{div} \vec{E}(x) = 0.
\] (4.10)

In what follows we will usually drop the subscript Coul from \(A^{\text{Coul}}(x) \). This introduces a possible ambiguity with \(A(x) \) defined in (4.9). However, when we speak about \(Y_{\text{Max}} \), then (4.9) is ill defined, only \(A^{\text{Coul}}(x) \) is well defined, so we think that the risk of confusion is small.

The symplectic structure on the space \(Y_{\text{Max}} \)

\[
\omega_{\text{Max}} = \int A^i(t, \vec{x}) \wedge E_i(t, \vec{x}) d\vec{x}
\]

together with the constraint (4.10) leads to a Poisson bracket on the level of functions on \(Y_{\text{Max}} \):

\[
\{ A_i(t, \vec{x}), A_j(t, \vec{y}) \} = \{ E_i(t, \vec{x}), E_j(t, \vec{y}) \} = 0,
\]

\[
\{ A_i(t, \vec{x}), E_j(t, \vec{y}) \} = \left(\delta_{ij} - \frac{\partial_j \partial_i}{\Delta} \right) \delta(\vec{x} - \vec{y}).
\]

From the above relations we deduce

\[
\{ A_i(x), A_j(y) \} = \left(\delta_{ij} - \frac{\partial_j \partial_i}{\Delta} \right) D(x - y).
\]
4.1.3 Smereed potentials

We can use the symplectic form to pair distributions and solutions. For \(\zeta \in \mathcal{Y}_{\text{Max}} \) we introduce the corresponding spatially smeared potentials, which is a functional on \(\mathcal{Y}_{\text{Max}} \) given by

\[
\langle A(\zeta) \vert \rho \rangle := \rho \omega \zeta, \quad \rho \in \mathbb{C} \mathcal{Y}_{\text{Max}}.
\]

Note that

\[
\{ A(\zeta_1), A(\zeta_2) \} = \zeta_1 \omega \zeta_2.
\]

\[A(\zeta) = \int \left(-\zeta_\mu(t, \vec{x}) A^\mu(t, \vec{x}) + \zeta_\mu(t, \vec{x}) E^\mu(t, \vec{x}) \right) d\vec{x}. \tag{4.11}
\]

Let us stress that \(A(\zeta) \) depends on \(\zeta \) only modulo gauge transformations and is Lorentz covariant.

We can also introduce space-time smeared potentials in the Coulomb gauge, which are functionals on \(\mathcal{Y}_{\text{Max}} \), for \(f \in C_c^\infty(\mathbb{R}^{1,3}, \mathbb{R}^{1,3}) \) given by

\[
A[f] := \int f^\mu(x) A_\mu(x) dx. \tag{4.12}
\]

Note that \(A[f] = A(\zeta) \), where

\[
\zeta_i = -D \ast \left(f_i - \frac{\partial f_j}{\Delta} \right), \quad \zeta_0 = 0.
\]

(4.12) is not Lorentz covariant. To see this it is enough to note that it does not depend on \(f^0 \). Replacing \([f^\mu] \) with \([f^\mu + \partial^\mu \chi] \) for \(\chi \in C_c^\infty(\mathbb{R}^{1,3}) \) does not change (4.12), because \(\partial_\mu A^\mu(x) = 0 \).

4.1.4 Lagrangian formalism and the stress-energy tensor

The Lagrangian formalism for the Maxwell equation is similar to the massive case. Consider the Lagrangian density

\[
\mathcal{L} := -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}.
\]

The Euler-Lagrange equations coincide with the Maxwell equation.

The canonical stress-energy tensor is

\[
\mathcal{T}^\mu_\nu_{\text{can}} = g^{\mu\nu} \mathcal{L} - \frac{\partial \mathcal{L}}{\partial A_\alpha, \mu} A_\alpha, \nu
\]

\[
= -g^{\mu\nu} \frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu\alpha} A_\alpha, \nu.
\]

One usually replaces it with the Belifante-Rosenfeld stress-energy tensor. It is defined as

\[
\mathcal{T}^\mu_\nu = \mathcal{T}^\mu_\nu_{\text{can}} + \partial_\nu \Sigma^\mu_\alpha
\]

\[
= -g^{\mu\nu} \frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} + F^{\mu\alpha} F_\alpha, \nu,
\]
where
\[\Sigma_{\mu\nu} = -\Sigma_{\alpha\beta} := F_{\mu\alpha}A_\nu. \] (4.13)

On solutions of the Euler-Lagrange equations we have
\[\partial^\mu T^\text{can}_{\mu\nu} = \partial^\mu T_{\mu\nu} = 0. \]

In addition, \(T_{\mu\nu} \) is symmetric.

To pass to the Hamiltonian formalism we first note that the dynamical variable is the transversal part of the potential \(\vec{A}_{\text{tr}} \) (=the spatial part of the potential in the Coulomb gauge). We will drop tr from the notation. The variable conjugate to \(A_i \) is
\[\partial A_i \mathcal{L} = E^i. \]

We introduce the Hamiltonian, momentum and polarization density
\[H(x) := T^{00}(x) = \frac{1}{2} \left(\vec{E}^2(x) + (\vec{\omega} \vec{A})^2(x) \right) \]
\[P^j(x) := T^{0j}(x) = E^i(x)F^{ji}(x), \]
\[S(x) = E_i(x)\epsilon^{ijk}\partial_k A_j(x). \]

They give the Hamiltonian, momentum and polarization as in (3.20) satisfying analogous properties.

4.1.5 Diagonalization of the equations of motion

As in the massive case, we would like to diagonalize simultaneously the Hamiltonian, momentum, polarization and symplectic form.

For \(\vec{k} \in \mathbb{R}^3 \) we set \(k = (\epsilon, \vec{k}) \), \(\epsilon(\vec{k}) := \sqrt{\vec{k}^2} \). The vectors \(u(k, \pm 1) \) are defined as in (3.23). \(u(k, 0) \) are not defined at all. For \(\sigma = \pm 1 \), define the following functionals on \(\mathcal{Y}_{\text{Max}} \), called plane wave functionals:
\[a(k, \sigma) \]
\[= (2\pi)^{-\frac{3}{2}} \int \left(\frac{\epsilon(\vec{k})}{2} e^{-i\vec{k}\cdot u_j(k, \sigma) A^j(0, \vec{x})} - \frac{i}{\sqrt{2\epsilon(\vec{k})}} e^{-i\vec{k}\cdot u_j(k, \sigma) E^j(0, \vec{x})} \right) d\vec{x}. \]

We have accomplished the promised diagonalization
\[H = \sum_{\sigma = \pm 1} \int d\vec{k} \epsilon(\vec{k}) a^*(k, \sigma) a(k, \sigma), \]
\[\vec{P} = \sum_{\sigma = \pm 1} \int d\vec{k} a^*(k, \sigma) a(k, \sigma), \]
\[S = \sum_{\sigma = \pm 1} \int d\vec{k} |\vec{k}| a^*(k, \sigma) a(k, \sigma), \]
\[i\omega = \sum_{\sigma = \pm 1} \int a^*(k, \sigma) \wedge a(k, \sigma) d\vec{k}. \]
The potentials can be written as

$$A_\mu(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma = \pm 1} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(k)}} \left(u_\mu(x, \sigma) e^{ikx} a(k, \sigma) + \overline{u_\mu(x, \sigma)} e^{-ikx} a^*(k, \sigma) \right).$$

Plane waves are defined as in the massive case, with $\sigma = \pm 1$. We have

$$a(k, \sigma) = i A((k, \sigma))$$

and

$$A_\mu(x) = \sum_{\sigma = \pm 1} \int (x|k, \sigma) a(k, \sigma) + (x|k, \sigma) a^*(k, \sigma) \right) d\vec{k}.$$

4.1.6 Positive frequency space

$W_{\text{Max}}^{(\pm)}$ will denote the subspace of $\mathbb{C}Y_{\text{Max}}$ consisting of classes of solutions that in the Coulomb gauge have positive, resp. negative frequencies.

Every $g \in W_{\text{Max}}^{(+)}$ can be written as

$$g(x) = (2\pi)^{-\frac{3}{2}} \sum_{\sigma = \pm 1} \int \frac{d\vec{k}}{\sqrt{2\varepsilon(k)}} e^{ikx} u(k, \sigma) \langle a(k, \sigma) | g \rangle.$$

For $g_1, g_2 \in W_{\text{Max}}^{(+)}$ we define the scalar product

$$\langle g_1 | g_2 \rangle := i g_1 \omega g_2 = \sum_{\sigma = \pm 1} \int \langle a(k, \sigma) | g_1 \rangle \langle a(k, \sigma) | g_2 \rangle d\vec{k}.$$

The definition of $W_{\text{Max}}^{(+)}$ depends on the choice of coordinates. It is however easy to see that the space $W_{\text{Max}}^{(+)}$ is invariant w.r.t. $\mathbb{R}^{1,3} \times O(1, 3)$.

We set Z_{Max} to be the completion of $W_{\text{Max}}^{(+)}$ in this scalar product.

We can identify Y_{Max} with $W_{\text{Max}}^{(+)}$ and transport the scalar product onto Y_{Max}, which for ζ_1, ζ_2 is given by

$$\langle \zeta_1 | \zeta_2 \rangle_Y := \text{Re} \langle \zeta_1^{(+)} | \zeta_2^{(+)} \rangle$$

$$= \int \int \langle \zeta_{1i}^{\text{Coul}}(0, \vec{x}) \left(-i \right) D^{(+)}(0, \vec{x} - \vec{y}) \zeta_{2i}^{\text{Coul}}(0, \vec{y}) \rangle d\vec{x} d\vec{y}$$

$$+ \int \int \zeta_{1i}^{\text{Coul}}(0, \vec{x}) \left(-\Delta \right) \left(-i \right) D^{(+)}(0, \vec{x} - \vec{y}) \zeta_{2i}^{\text{Coul}}(0, \vec{y}) \rangle d\vec{x} d\vec{y}.$$

4.1.7 Spin averaging

Let us describe the spin averaging identities useful in computations of scattering cross-sections. For a given $k \in \mathbb{R}^{1,3}$ with $k^2 = 0$, let M, N be vectors with

$$M^\mu k_\mu = N^\nu k_\nu = 0.$$
Then we have
\[\sum_{\sigma=\pm 1} M^\nu u_{\mu}(k, \sigma) u_{\nu}(k, \sigma) N^{\nu} = M^\nu N_{\nu}. \]
(4.14)

To see (4.14), note that
\[\sum_{\sigma=\pm 1} u_{\mu}(k, \sigma) u_{\nu}(k, \sigma) \equiv g_{\mu\nu} + \delta_{\mu 0} \delta_{\nu 0} - \frac{\vec{k}_\mu \vec{k}_\nu}{|k|^2}. \]

Therefore, the left hand side of (4.14) equals
\[M^\nu g_{\mu\nu} N_{\nu} + M^0 N^0 - \frac{(\vec{M} \vec{k})(\vec{N} \vec{k})}{|k|^2}. \]

But
\[M^0 = \frac{\vec{k} \vec{M}}{|k|}, \quad N^0 = \frac{\vec{k} \vec{N}}{|k|}. \]

4.1.8 Quantization

We would like to quantize the Maxwell equation starting from the symplectic space \(\mathcal{Y}_{\text{Max}} \). We will use the potentials in the Coulomb gauge (where, as usual, we drop the superscript Coul). The quantization is similar to the Proca equation based on \(\mathcal{Y}_{\text{Pr}} \) described in Subsubsect. 3.2.3, with Condition (1) replaced by
\[-\Box \hat{A}_i(x) = 0, \quad \partial_i \hat{A}_i(x) = 0, \quad \hat{A}_0(x) = 0, \]
and Condition (2) replaced by
\[[\hat{A}_i(0, \vec{x}), A_j(0, \vec{y})] = \left[\hat{E}_i(0, \vec{x}), \hat{E}_j(0, \vec{y}) \right] = 0, \]
\[[\hat{A}_i(0, \vec{x}), \hat{E}_j(0, \vec{y})] = i \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta} \right) \delta(\vec{x} - \vec{y}). \]

The above problem has a solution unique up to a unitary equivalence. We set \(\mathcal{H} := \Gamma_s(\mathcal{Z}_{\text{Max}}) \). The creation/annihilation operators will be denoted by \(\hat{a}^* \) and \(\hat{a} \). In particular, we set
\[\hat{a}^*(k, \sigma) := \hat{a}^*(|k, \sigma|). \]

\(\Omega \) will be the Fock vacuum. We set
\[\hat{A}_i(x) := (2\pi)^{-\frac{3}{2}} \int \frac{d\vec{k}}{2\pi} \sum_{\sigma=\pm 1} \left(u_i(k, \sigma) e^{ikx} \hat{a}(k, \sigma) + u_i(k, \sigma) e^{-ikx} \hat{a}^*(k, \sigma) \right). \]

The quantum Hamiltonian, momentum and polarization are
\[\hat{H} := \sum_{\sigma=\pm 1} \int \hat{a}^*(k, \sigma) \hat{a}(k, \sigma) \varepsilon(\vec{k}) d\vec{k}, \]
\[\hat{P} := \sum_{\sigma=\pm 1} \int \hat{a}^*(k, \sigma) \hat{a}(k, \sigma) \vec{k} d\vec{k}, \]
\[\hat{S} := \sum_{\sigma=\pm 1} \int d\vec{k} \vec{\varepsilon} \vec{k} |\hat{a}|^2 \hat{a}^*(k, \sigma) \hat{a}(k, \sigma). \]
The whole group $\mathbb{R}^{1,3} \ltimes O^T(1, 3)$ is unitarily implemented on \mathcal{H} by $U(a, \Lambda) := \Gamma\left(r_{(a, \Lambda)} \big| Z_{\text{Max}}\right)$. We have

$$U(a, \Lambda) \hat{F}_{\mu\nu}(x) U(a, \Lambda)^* = \Lambda_{\mu}^\nu \Lambda_{\nu}^\rho \hat{F}_{\rho\mu}(\,(a, \Lambda)x) \,. $$

Moreover,

$$[\hat{A}_j(x), \hat{A}_i(y)] = -i \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta} \right) D(x - y).$$

Note the identities

$$(\Omega | \hat{A}_i(x) \hat{A}_j(y) \Omega) = -i \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta} \right) D^{(+)}(x - y),$$

$$(\Omega | T(\hat{A}_i(x) \hat{A}_j(y)) \Omega) = -i \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta} \right) D^{c}(x - y).$$

The family

$$C_c^\infty(\mathbb{R}^{1,3}, \mathbb{R}^{1,3}) \ni f \mapsto \hat{A}[f] := \int f^\mu(x) \hat{A}_\mu(x) dx$$

with $D := \Gamma_s^{\text{fin}}(Z_{\text{Max}})$ does not satisfy the Wightman axioms because of two problems: the noncausality of the commutator and the absence of the Poincaré covariance.

If we replace \hat{A}_μ with $\hat{F}_{\mu\nu}$, we restore the causality and the Poincaré covariance.

For an open set $\mathcal{O} \subset \mathbb{R}^{1,3}$ we set

$$\mathfrak{A}(\mathcal{O}) := \{ \exp(i \hat{F}[f]) : f \in C_c^\infty(\mathcal{O}, \otimes^{3,3}_s \mathbb{R}^{1,3}) \}.$$

The algebras $\mathfrak{A}(\mathcal{O})$ satisfy the Haag-Kastler axioms.

4.1.9 Quantization in terms of C^*-algebras

Let $\text{CCR}(\mathcal{Y}_{\text{Max}})$ denote the (Weyl) C^*-algebra of canonical commutation relations over \mathcal{Y}_{Max}. By definition, it is generated by $W(\zeta)$, $\zeta \in \mathcal{Y}_{\text{Max}}$, such that

$$W(\zeta_1)W(\zeta_2) = e^{-\frac{1}{2}i\zeta_1 \cdot \zeta_2} W(\zeta_1 + \zeta_2), \quad W(\zeta)^* = W(-\zeta).$$

$\mathbb{R}^{1,3} \ltimes O^T(1, 3)$ acts on $\text{CCR}(\mathcal{Y}_{\text{Max}})$ by $*$-automorphisms defined by

$$\hat{r}_{(a, \Lambda)}(W(\zeta)) := W \left(r_{(a, \Lambda)}(\zeta) \right).$$

We are looking for a cyclic representation of this algebra with the time evolution generated by a positive Hamiltonian.

Consider the state on $\text{CCR}(\mathcal{Y}_{\text{Max}})$ defined for $\zeta \in \mathcal{Y}_{\text{Max}}$ by

$$\psi(W(\zeta)) = \exp \left(-\frac{1}{2} \langle \zeta | \zeta \rangle \right)$$
Note that the state is gauge and Poincare invariant. Let \((\mathcal{H}_\psi, \pi_\psi, \Omega_\psi)\) be the GNS representation. \(\mathcal{H}_\psi\) is naturally isomorphic to \(\Gamma_s(Z_{\text{Max}})\). \(\Omega_\psi\) can be identified with the vector \(\Omega\). \(\pi_\psi(W(\zeta))\) can be identified with \(e^{i\hat{A}(\zeta)}\). In particular, if \(\zeta_1\) and \(\zeta_2\) are gauge equivalent, then \(\hat{A}(\zeta_1) = \hat{A}(\zeta_2)\). However, \(\hat{A}(x)\) in the sense of (4.9) is not well defined.

4.2 Massless photons with an external current

4.2.1 Classical fields

We return to the classical Maxwell equation. We consider an external current given by function \(\mathbb{R}^{1,3} \ni x \mapsto J(x) = [J^\mu(x)] \in \mathbb{R}^{1,3}\) satisfying

\[
\partial_\nu J^\nu(x) = 0.
\]

In most of this subsection we assume that \(J\) is Schwartz. The Maxwell equation reads

\[
-\partial_\mu \partial^\mu A_\nu + \partial_\nu \partial_\mu A^\mu = -J_\nu.
\]

Let \(\zeta\) be a solution of

\[
-\partial_\mu \partial^\mu \zeta_\nu + \partial_\nu \partial_\mu \zeta^\mu = -J_\nu.
\]

We write separately the temporal and spatial equations:

\[
-\Delta \zeta_0 + \text{div} \zeta = -J_0,
\]

\[
(\partial_0^2 - \Delta) \zeta - \partial \zeta_0 + \partial \text{div} \zeta = -\vec{J}.
\]

We can compute \(\zeta_0\) in terms of \(\zeta\) at the same time:

\[
\zeta_0(x) = (-\Delta)^{-1}(J_0 + \partial_0 \text{div} \zeta)(x).
\]

We can insert this into spatial equations, using \(\vec{J}_0 = \text{div} \vec{J}\), obtaining

\[
\Box \zeta_{\text{tr}} = \vec{J}_{\text{tr}},
\]

where

\[
\zeta_{\text{tr}} := \zeta - \partial \Delta^{-1} \text{div} \zeta,
\]

\[
\vec{J}_{\text{tr}} := \vec{J} - \partial \Delta^{-1} \text{div} \vec{J}.
\]

Thus the only dynamical variables are the transversal spatial components. \(\text{div} \zeta =: \Theta\) is an arbitrary space-time function.

The simplest choice is \(\Theta = 0\), which corresponds to the Coulomb gauge:

\[
\zeta_0^{\text{Coul}} = -(-\Delta)^{-1} J_0,
\]

\[
\Box \zeta^{\text{Coul}} = \vec{J}_{\text{tr}},
\]

\[
\text{div} \zeta^{\text{Coul}} = 0.
\]
The Coulomb gauge seems to be the most natural gauge for the Hamiltonian approach. Let \(\zeta \) be a space compact solution of (4.17). Setting \(\zeta_{\text{Coul}}^{\mu} := \zeta^{\mu} + \partial_{\mu} \chi \), where \(\chi(t, \vec{x}) := (-\Delta)^{-1} \text{div} \zeta(t, \vec{x}) \), we obtain a solution of (4.17) in the Coulomb gauge. Note that \(\zeta_{\text{Coul}} \) is the unique solution of (4.17) gauge equivalent to \(\zeta \) that is in the Coulomb gauge. \(\zeta_{\text{Coul}} \) does not have to be space compact.

We would like to introduce the classical potential in the Coulomb gauge \(A_{\text{Coul}} \) satisfying

\[
\begin{align*}
A_{\text{Coul}}^{0} &= (-\Delta)^{-1} J_{0}, \\
\Box A_{\text{Coul}} &= \tilde{J}_{\text{tr}}, \\
\text{div} A_{\text{Coul}} &= 0.
\end{align*}
\]

We will interpret \(A_{\text{Coul}} \) as a functional on \(Y_{\text{Max}} \) by demanding that \(\vec{A}_{\text{Coul}}(x) \) and \(\vec{A}_{\text{fr}}(x) \), as well as their time derivatives coincide for \(x^{0} = 0 \). We can express the spatial part of the interacting potential in terms of the free potential (both in the Coulomb gauge):

\[
\vec{A}_{\text{Coul}}(x) := \vec{A}_{\text{fr}}(x) - \int \left(D^{+}(x - y)\theta(y^{0}) + D^{-}(x - y)\theta(-y^{0}) \right) \tilde{J}_{\text{tr}}(y) dy.
\]

\(A_{\text{Coul}}^{\mu}(x) \) does not depend on the gauge, hence it can be interpreted as a functional on \(Y_{\text{Max}} \).

Similarly as in the previous subsection, we will drop the superscript Coul in what follows.

4.2.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

\[
\mathcal{L} := -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - J_{\mu} A^{\mu} = -\frac{1}{2} (\text{rot} \vec{A})^{2} + \frac{1}{2} (\vec{\partial} A_{0})^{2} + \frac{1}{2} \left(\frac{D}{D^{0}} \right)^{2} \vec{A} \vec{\partial} A_{0} - \vec{A} \vec{\partial} A_{0} - \vec{J} \vec{A} + J_{0} A_{0}.
\]

The dynamic variables are \(\vec{A}(x) \). The corresponding conjugate variables are \(\vec{E}(x) = \vec{A}(x) - \vec{\partial} A_{0}(x) \).

The canonical Hamiltonian density is

\[
\mathcal{H}_{\text{can}}(x) = -\mathcal{L}(x) + \frac{\partial \mathcal{L}(x)}{\partial \dot{A}_{i}(x)} \dot{A}_{i}(x) = \frac{1}{2} (\text{rot} \vec{A})^{2}(x) - \frac{1}{2} (\vec{\partial} A_{0})^{2}(x) + \frac{1}{2} \left(\frac{D}{D^{0}} \right)^{2}(x) + \vec{J}(x) \vec{A}(x) - J_{0}(x) A_{0}(x).
\]
We add to it a spatial divergence $\text{div}(\vec{E}(x)A^0(x))$ and express it in terms of \vec{A}, \vec{E}. We obtain the usual Hamiltonian density

$$\mathcal{H}(x) = \frac{1}{2} \vec{E}^2(x) + \frac{1}{2} (\vec{\partial} \vec{A})^2(x) + \vec{J}(x) \vec{A}(x).$$

We impose the Coulomb gauge, so that $\vec{A} = \vec{A}_{tr}$. Using $\text{div} \vec{E} = J_0$, we express the Hamiltonian density in terms of transversal variables:

$$\mathcal{H}(x) = \frac{1}{2} \vec{E}_{tr}^2(x) + \frac{1}{2} (\vec{\partial} \vec{A})^2(x) + \vec{J}(x) \vec{A}(x) + \frac{1}{2} J_0(-\Delta)^{-1} J_0(x).$$

Now we can define the time-dependent Hamiltonian as in (3.37).

4.2.3 Quantization

To quantize the Maxwell equation in the presence of an external current we will use the Coulomb gauge, dropping as usual the subscript Coul. We are looking for quantum potentials $\mathbb{R}^{1,3} \ni x \mapsto \hat{A}_\mu(x)$, with $\vec{E}(x) = \hat{\dot{A}}(x) - \vec{\partial} \hat{A}_0(x)$, satisfying

$$\hat{A}_0^{\text{Coul}} = (-\Delta)^{-1} J_0, \quad \Box \hat{A}^{\text{Coul}} = \vec{J}_{tr}, \quad \text{div} \hat{A}^{\text{Coul}} = 0,$$

$$[\hat{A}_j(0,\vec{x}), \hat{E}_i(0,\vec{y})] = -i \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta} \right) \delta(\vec{x} - \vec{y}).$$

The above conditions fix \hat{A}_0. To fix \vec{A} and \vec{E} we assume that they coincide with their free quantum counterparts at $t = 0$:

$$\vec{A}(0,\vec{x}) = \vec{A}_f(0,\vec{x}) =: \vec{A}(\vec{x}), \quad \vec{E}(0,\vec{x}) = \vec{E}_f(0,\vec{x}) =: \vec{E}(\vec{x}).$$

The spatial components of the quantized potentials are obtained by putting hats on (4.20).

The Hamiltonian in the Schrödinger picture and the corresponding Hamiltonian in the interaction picture are

$$\hat{H}(t) = \int d\vec{x} \left(\frac{1}{2} \vec{E}^2(\vec{x}) + \frac{1}{2} (\vec{\partial} \vec{A})^2(\vec{x}) + \vec{J}(t,\vec{x}) \vec{A}(\vec{x}) \right): \quad + \frac{1}{2} \int d\vec{x} d\vec{y} J^0(t,\vec{x}) \frac{1}{4\pi|\vec{x} - \vec{y}|} J^0(t,\vec{y}),$$

$$\hat{H}_{\text{Int}}(t) = + \int d\vec{x} \vec{J}(t,\vec{x}) \vec{A}_f(t,\vec{x}) \quad + \frac{1}{2} \int d\vec{x} d\vec{y} J^0(t,\vec{x}) \frac{1}{4\pi|\vec{x} - \vec{y}|} J^0(t,\vec{y}).$$
The scattering operator can be computed exactly:

\[
\hat{S} = \exp \left(\frac{i}{2} \int \frac{dk}{2\pi^2} \mathcal{J}_\mu(k) D_{\mu\nu}^{\text{Coul}}(k) \mathcal{J}_\nu(k) \right) \times \exp \left(-i \sum_{\sigma = \pm 1} \int \frac{d\vec{k}}{2\pi} \hat{\sigma} \hat{a}^\dagger(k,\sigma) \frac{u_\mu(k,\sigma)}{\sqrt{2\varepsilon(k)}} J_\mu(k) \right) \times \exp \left(-i \sum_{\sigma = \pm 1} \int \frac{d\vec{k}}{2\pi} \hat{\sigma} \hat{a}(k,\sigma) \frac{u_\mu(k,\sigma)}{\sqrt{2\varepsilon(k)}} J_\mu(k) \right),
\]

where the propagator in the Coulomb gauge is defined as

\[
D_{00}^{\text{Coul}} = \frac{-\vec{k}}{k^2}, \quad D_{0j}^{\text{Coul}} = 0, \quad D_{ij}^{\text{Coul}} = \frac{1}{k^2 - i0} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right).
\]

We did not use the fact that \(J^\mu \) is conserved.

4.2.4 Causal propagators

If we compute scattering amplitudes, we can pass from the propagator in the Coulomb gauge to another by adding \(k_\mu f_\nu(k) + f_\mu(k) k_\nu \) for an arbitrary function \(f_\mu(k) \).

Let us list a number of useful propagators in other gauges. In particular, we distinguish the family of propagators

\[
\frac{1}{k^2 - i0} \left(g_{\mu\nu} + \left(1 - \frac{\alpha}{\alpha} \right) \frac{k_\mu k_\nu}{k^2} \right).
\]

Some of them have special names:

- \(D_{\mu\nu}^{\text{Lan}} := \frac{1}{k^2 - i0} \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{\vec{k}^2} \right) \) Landau or Lorentz gauge,
- \(D_{\mu\nu}^{\text{Feyn}} := \frac{1}{k^2 - i0} g_{\mu\nu} \) Feynman gauge,
- \(D_{\mu\nu}^{\text{FY}} := \frac{1}{k^2 - i0} \left(g_{\mu\nu} + 2 \frac{k_\mu k_\nu}{\vec{k}^2} \right) \) Fried and Yennie gauge.

We have \(D_{\mu\nu}^{\text{Coul}} = D_{\mu\nu}^{\text{Feyn}} + k_\mu f_\nu^{\text{Coul}}(k) + f_\mu^{\text{Coul}}(k) k_\nu \), where

\[
f_0^{\text{Coul}}(k) = \frac{k_0}{(k^2 - i0)2\vec{k}^2}, \quad f_1^{\text{Coul}}(k) = -\frac{k_0}{(k^2 - i0)2\vec{k}^2}.
\]

The propagator in the temporal gauge

\[
D_{00}^{\text{tem}} = 0, \quad D_{0j}^{\text{tem}} = 0, \quad D_{ij}^{\text{tem}} = \frac{1}{k^2 - i0} \left(\delta_{ij} - \frac{k_i k_j}{k_0^2} \right).
\]

We have \(D_{\mu\nu}^{\text{tem}} = D_{\mu\nu}^{\text{Feyn}} + k_\mu f_\nu^{\text{tem}}(k) + f_\mu^{\text{tem}}(k) k_\nu \), where

\[
f_0^{\text{tem}}(k) = \frac{1}{(k^2 - i0)2k_0}, \quad f_1^{\text{tem}}(k) = -\frac{k_i}{(k^2 - i0)2k_0^2}.
\]
4.2.5 Path integral formulation

Let $D_{\mu\nu}$ be one of the propagators considered in Sect. 3.2.4. Let $B_{\mu\nu}$ be its inverse. Then we can use the corresponding action to express the generating function by path integrals, as described in Sect. 3.2.6, where this approach for massive vector fields was considered.

The discussion of the propagators $D_{\mu\nu}^a$ and $D_{\mu\nu}^{tem}$ is an obvious generalization of the massive case.

To obtain the propagator in the Coulomb gauge $D_{\mu\nu}^{Coul}$, we take the Lagrangian

$$-\frac{1}{2} \left(\partial_\mu A_i(x) \partial^\mu A_i(x) - \partial_i A_0(x) \partial_i A_0(x) \right),$$

and restrict the integration by the condition

$$\text{div} \vec{A}(x) = 0.$$

4.2.6 The $m \to 0$ limit

Assume that J_μ is a conserved current. We can write the scattering operator for a positive mass, using the propagator in the Yukawa gauge as

$$\hat{S} = \exp \left(\frac{i}{2} \int dk \frac{1}{m^2 + k^2 - i0} \left(g_{ij} - \frac{k_i k_j}{m^2 + k^2} \right) J_i(k) \right)$$

$$- \frac{1}{2} \int dk \frac{1}{k^2 + m^2} |J^0(k)|^2 \right)$$

$$\times \exp \left(-i \sum_{\sigma = 0, \pm 1} \int dk \hat{a}^*(k, \sigma) \frac{u_{\mu}(k, \sigma)}{\sqrt{2\varepsilon(k)}} J_\mu(k) \right)$$

$$\times \exp \left(-i \sum_{\sigma = 0, \pm 1} \int dk \hat{a}(k, \sigma) \frac{u_{\mu}(k, \sigma)}{\sqrt{2\varepsilon(k)}} J_\mu(k) \right)$$

$$= \hat{S}_{tr} \otimes \hat{S}_{lg},$$
Here, the transversal scattering operator is
\[
\hat{S}_{\text{tr}} = \exp \left(\frac{i}{2} \int \frac{dk J_i(k)}{m^2 + k^2} \int \frac{1}{-i0} \left(g_{ij} - \frac{k_i k_j}{k^2} \right) J_j(k) \right)
- \frac{i}{2} \int \frac{dk}{\vec{k}^2 + m^2} |J^0(k)|^2 \right)
\times \exp \left(-i \sum_{\sigma = \pm 1} \int d\vec{k} \hat{a}(k, \sigma) \frac{u_{\mu}(k, \sigma)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\times \exp \left(-i \sum_{\sigma = \pm 1} \int d\vec{k} \hat{a}(k, \sigma) \frac{u_{\mu}(k, \sigma)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\times \exp \left(-i \sum_{\sigma = \pm 1} \int d\vec{k} \hat{a}(k, \sigma) \frac{u_{\mu}(k, \sigma)}{\sqrt{2\varepsilon(k)}} j^\mu(k) \right)
\]
and converges to the massless scattering operator in the Coulomb gauge as \(m \downarrow 0 \). The longitudinal scattering operator is
\[
\hat{S}_{\text{lg}} = \exp \left(\frac{i}{2} m^2 \int \frac{dk J_i(k)}{m^2 + k^2} \int \frac{1}{-i0} \left(g_{ij} - \frac{k_i k_j}{k^2} \right) J_j(k) \right)
- \frac{1}{2} \int \frac{dk}{\vec{k}^2 + m^2} |J^0(k)|^2 \right)
\times \exp \left(-i \int d\vec{k} \hat{a}(k, 0) \frac{u_{\mu}(k, 0)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\times \exp \left(-i \int d\vec{k} \hat{a}(k, 0) \frac{u_{\mu}(k, 0)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\times \exp \left(-i \int d\vec{k} \hat{a}(k, 0) \frac{u_{\mu}(k, 0)}{\sqrt{2\varepsilon(k)}} J^\mu(k) \right)
\]
This can be rewritten as
\[
\hat{S}_{\text{lg}} = \exp \left(\frac{i}{2} m^2 \int \frac{dk}{(m^2 + k^2)(m^2 + \vec{k}^2)} \right)
\times \exp \left(-\frac{1}{2} \int \frac{dk}{\vec{k}^2} \right)
\times \exp \left(\frac{1}{|\vec{k}|} \frac{m J^0(k)}{\sqrt{2\varepsilon(k)}} \right)
\times \exp \left(\frac{1}{|\vec{k}|} \frac{m J^0(k)}{\sqrt{2\varepsilon(k)}} \right)
\]
where the integral on the first line should be understood as the principal value. Thus \(\hat{S}_{\text{lg}} \), under rather general circumstances, converges to \(\mathbb{1} \).
4.2.7 Current produced by a travelling particle

Consider a classical particle travelling along the trajectory \(t \mapsto \vec{y}(t) \) with a constant profile \(q(\vec{x}) \). Then its current equals

\[
J(t, \vec{x}) = q(\vec{x} - \vec{y}(t)) \left(1, \frac{d\vec{y}(t)}{dt} \right).
\]

Assume that \(\vec{y}(t) = t\vec{v}^{\pm} \) for \(\pm t > 0 \). Then

\[
J^\mu(k) = \int \frac{d^4k}{(2\pi)^4} J^\mu(k) e^{-i\vec{k} \cdot \vec{x} + i{k^0}t} d\vec{x} dt
\]

\[
\left(-\frac{i(1, \vec{v}^{+})^\mu}{k\vec{v}^{+} - k^0 - i0} + \frac{i(1, \vec{v}^{-})^\mu}{k\vec{v}^{-} - k^0 + i0} \right) q(\vec{k})
\]

\[
\left(-\frac{ip^+_\mu}{kp^+ - i0} + \frac{ip^-_\mu}{kp^- + i0} \right) q(\vec{k}),
\]

where \(p^{\pm} = \frac{m}{\sqrt{1 - (\vec{v}^{\pm})^2}}(1, \vec{v}^{\pm}) \).

Consider photons of mass \(m \geq 0 \) coupled to the current \(J^\mu \). Similarly as in Subsubsect. 2.2.11, we define the scattering operator \(\hat{S}_{GL} \) by replacing

\[
\int dk J^\mu(k) D^\nu(k) J^\nu(k) dk
\]

in (4.21) with

\[
\text{Im} \int dk J^\mu(k) D^\nu(k) J^\nu(k) dk.
\]

(4.22) is infrared divergent if \(m = 0 \), \(\int q(\vec{x}) d\vec{x} \neq 0 \) and \(\vec{v}^{+} \neq \vec{v}^{-} \).

We could try to justify the use of \(\hat{S}_{GL} \) similarly as in Subsubsect. 2.2.11, by introducing the Gell-Mann–Low adiabatic switching. This justification is adopted by many physicists, eg. [26]. One could criticize this approach, since after multiplying by the switching function \(e^{-\epsilon|t|} \) the current is no longer conserved. Therefore, as indicated above, we prefer to define the scattering operator \(\hat{S}_{GL} \) simply by removing the (typically infinite) phase shift.

4.2.8 Energy shift

Suppose that the current is stationary and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto J_\mu(\vec{x}) \) with \(\text{div} \vec{J}(\vec{x}) = 0 \).

The Hamiltonian is given by

\[
\hat{H} = \int d\vec{x} \left(\frac{1}{2} \vec{E}^2(\vec{x}) + \frac{1}{2} (\vec{D} \cdot \vec{A}(\vec{x}))^2 + \vec{J}(\vec{x}) \cdot \vec{A}(\vec{x}) \right) + \frac{1}{2} \int \int d\vec{x} d\vec{y} J^0(\vec{x}) \frac{1}{4\pi |\vec{x} - \vec{y}|} J^0(\vec{y}).
\]
By (A.8), the infimum of \hat{H} is

$$E = -\frac{1}{2} \int \int d\vec{x} d\vec{y} \frac{1}{4\pi |\vec{x} - \vec{y}|} \hat{J}(\vec{x}) \hat{J}(\vec{y}) + \frac{1}{2} \int \int d\vec{x} d\vec{y} J^0(\vec{x}) \frac{1}{4\pi |\vec{x} - \vec{y}|} J^0(\vec{y}).$$

4.3 Alternative approaches

4.3.1 Manifestly Lorentz covariant formalism

So far, our treatment of the Maxwell equation was based on the Coulomb gauge, which depends on the choice of the temporal coordinate. One can ask whether massless vector fields can be studied in a manifestly covariant fashion.

Let Ξ be an arbitrary space-time function. The Maxwell equation allow us to impose a generalized Lorentz condition

$$\partial_\mu A^\mu = \Xi.$$ \hspace{1cm} (4.23)

The Maxwell equation together with (4.23) imply

$$-\Box A^\mu = -J^\mu + \partial^\mu \Xi.$$ \hspace{1cm} (4.24)

The function Ξ has no physical meaning. Therefore it is natural to adopt the simplest choice $\Xi = 0$, that is the usual Lorentz condition, for which (4.24) reads $-\Box A^\mu = -J^\mu$. We will discuss this approach in what follows. For simplicity, we will limit ourselves to free fields.

4.3.2 The Lorentz condition

Recall that the Proca equation is equivalent to the Klein-Gordon equation for vector fields together with the Lorentz condition. Therefore, one can first develop its theory on the symplectic space \mathcal{Y}_{vec}, and then reduce it to the subspace \mathcal{Y}_{Lor}, as described before.

One can follow a similar route for the Maxwell equation. However, there is a difference: the reduction by the Lorentz condition is insufficient, one has to make an additional reduction.

Anyway, let us start as described in Subsect. 3.3.1 by introducing the space \mathcal{Y}_{vec}, the form ω_{vec}, the subspace \mathcal{Y}_{Lor}, the potentials $A_\mu(x)$, $\Pi_\mu(x) := A_\mu(x)$, where now $m = 0$.

In the massive case \mathcal{Y}_{Lor} was symplectic (that means, the form ω_{vec} restricted to \mathcal{Y}_{Lor} was nondegenerate). This is no longer true in the massless case. Instead, the following is true.

Proposition 4.2 \mathcal{Y}_{Lor} is coisotropic. That means, if ζ is symplectically orthogonal to \mathcal{Y}_{Lor}, then $\zeta \in \mathcal{Y}_{Lor}$.
Proof. Using $-\Box \partial_\mu A^\mu(x) = 0$ we see that, for any fixed t, we can replace

$$\partial_\mu A^\mu(x) = 0$$

(4.25)

with

$$0 = \partial_\mu A^\mu(t, \vec{x}) = (-\Pi^0 + \partial_i A^i)(t, \vec{x}),$$

(4.26)

and

$$0 = \partial_\mu \Pi^\mu(t, \vec{x}) = (-\Delta A^0 + \partial_i \dot{A}^i)(t, \vec{x}),$$

(4.27)

as the defining conditions for Y_{Lor}. Y_{Lor} is coisotropic iff

$$\{ \partial_\mu A^\mu(t, \vec{x}), \partial_\nu A^\nu(t, \vec{y}) \} = 0,$$

(4.28)

$$\{ \partial_\mu \Pi^\mu(t, \vec{x}), \partial_\nu \Pi^\nu(t, \vec{y}) \} = 0,$$

(4.29)

$$\{ \partial_\mu A^\mu(t, \vec{x}), \partial_\nu \Pi^\nu(t, \vec{y}) \} = 0.$$

(4.30)

It is clear that (4.28) and (4.29) are true. To see (4.30) we compute:

$$\{ \partial_\mu A^\mu(t, \vec{x}), \partial_\nu \Pi^\nu(t, \vec{y}) \} = \Delta \delta(\vec{x} - \vec{y}) + \partial_\vec{x} \partial_\vec{y} \delta(\vec{x} - \vec{y}) = 0.$$

\[\square \]

Y_{Lor} is a subspace of Y_{Max} and on Y_{Lor} the forms ω_{Max} and ω_{vec} coincide.

Proposition 4.3 Any $\zeta \in Y_{\text{Max}}$ is gauge equivalent to an element of Y_{Lor}.

Proof. We can find smooth functions ξ_+ and ξ_- such that

$$\partial_\mu \zeta^\mu = \xi_+ + \xi_-,$$

ξ_- is past space compact and ξ_+ is future space compact. By using the advanced and retarded Green’s functions we can solve

$$-\Box \chi_- = \xi_-, \quad -\Box \chi_+ = \xi_+,$$

where χ_- is past space compact and χ_+ is future space compact. Then $\zeta_\mu + \partial_\mu \chi$ belongs to Y_{Lor}. \[\square \]

Therefore, the symplectically reduced Y_{Lor} coincides with the symplectically reduced Y_{Max}, that is, with Y_{Max}. This shows that both approaches to the Maxwell equation are equivalent on the classical level.

4.3.3 Positive frequency space

$W_{\text{Lor}}^{(\pm)}$ will denote the subspace of $\mathbb{C}Y_{\text{Lor}}$ consisting of solutions that have positive, resp. negative frequencies.

For $g_1, g_2 \in W_{\text{Lor}}^{(+)}$ we define the scalar product

$$\langle g_1 | g_2 \rangle := i \mathcal{F}_1^{\text{vec}} \omega_{\text{vec}} g_2$$

(4.31)
Note that the definition (4.31) does not depend on the choice of coordinates and is invariant wrt. the group $\mathbb{R}^{1,3} \rtimes O^+(1,3)$.

The scalar product is positive semidefinite, but not strictly positive definite. Let $\mathcal{W}_{\text{Lor},0}^{(+)}$ be the subspace of elements $\mathcal{W}_{\text{Lor}}^{(+)}$ with a zero norm. Using Prop. 4.1 we see that $\mathcal{W}_{\text{Lor},0}^{(+)}$ consists of pure gauges. The space $\mathcal{W}_{\text{Lor}}^{(+)}/\mathcal{W}_{\text{Lor},0}^{(+)}$ has a nondegenerate scalar product. Its completion is naturally isomorphic to the space \mathcal{Z}_{Max}, which we constructed in Subsubsect. 4.1.6.

We have a natural identification of \mathcal{Y}_{Lor} with $\mathcal{W}_{\text{Lor}}^{(+)}$ given by the obvious projection. For $\zeta \in \mathcal{Y}_{\text{Lor}}$ we will denote by $\zeta^{(+)}$ the corresponding element of $\mathcal{W}_{\text{Lor}}^{(+)}$. This identification allows us to define a positive semidefinite scalar product on \mathcal{Y}_{Lor}:

$$
\langle \zeta_1^{(+)} | \zeta_2^{(+)} \rangle := \operatorname{Re}(\zeta_1^{(+)} | \zeta_2^{(+)})
= \int \int \zeta_1^{\text{Con}}(0, \vec{x})(-i)D^{(+)}(0, \vec{x} - \vec{y})\zeta_2^{\text{Con}}(0, \vec{y})d\vec{x}d\vec{y}
+ \int \int \zeta_1^{\text{Con}}(0, \vec{x})(-\Delta \vec{x})(-i)D^{(+)}(0, \vec{x} - \vec{y})\zeta_2^{\text{Con}}(0, \vec{y})d\vec{x}d\vec{y}.
$$

4.3.4 "First quantize, then reduce"

One can try to use the symplectic space \mathcal{Y}_{vec} of real vector valued solutions of the Klein-Gordon equation as the basis for quantization. In the literature, this starting point is employed by two approaches.

The first, which we call the approach with a subsidiary condition has the advantage that it uses only positive definite Hilbert spaces. Unfortunately, in this approach there are problems with the potential $\hat{A}^\mu(x)$. Besides, the full Hilbert space turns out to be non-separable.

In the Gupta-Bleuler approach the potentials $\hat{A}^\mu(x)$ are well defined and covariant. Unfortunately it uses indefinite scalar product spaces.

4.3.5 Quantization with a subsidiary condition

The quantization of the Proca equation described in Subsubsec. 3.3.6 is problematic in the zero mass limit. If $m = 0$, we cannot use the Hilbert space (3.52) for the quantization, since it is not well defined.

However, the C^*-algebraic formulation survives the $m \downarrow 0$ limit. In particular, $\text{CCR}(\mathcal{Y}_{\text{vec}})$, the (Weyl) C^*-algebra of canonical commutation relations over \mathcal{Y}_{vec}, is well defined also for $m = 0$ and is invariant wrt the Poincaré group.

Strictly speaking, the spaces \mathcal{Y}_{vec} and hence the algebras $\text{CCR}(\mathcal{Y}_{\text{vec}})$ are different for various m. If we fix a Cauchy subspace we can identify them by using the initial conditions.

Recall that in the massive case

$$
(\Omega | \hat{A}((\zeta))^2 | \Omega) = \langle \zeta | \zeta \rangle_{\mathcal{Y}} + \frac{2}{m^2} \langle \partial_\mu \zeta^\mu | \partial_\nu \zeta^\nu \rangle_{\mathcal{Y}}.
$$

(4.32)
Recall that $\zeta \in \mathcal{Y}_{\text{Lor}}$ iff $\partial_\mu \zeta^\mu = 0$. Therefore, in the limit $m \searrow 0$,

\[
(\Omega|\hat{A}(\zeta)|^2\Omega) = \begin{cases}
\langle \zeta|\zeta \rangle_{\mathcal{Y}}, & \zeta \in \mathcal{Y}_{\text{Lor}}, \\
+\infty, & \zeta \notin \mathcal{Y}_{\text{Lor}}.
\end{cases}
\]

So, the following state on $\text{CCR}(\mathcal{Y}_{\text{vec}})$ is the limit of the state (3.54) for $m \searrow 0$:

\[
\psi(W(\zeta)) = \begin{cases}
\exp\left(-\frac{1}{2}\langle \zeta|\zeta \rangle_{\mathcal{Y}}\right), & \zeta \in \mathcal{Y}_{\text{Lor}}, \\
0, & \zeta \notin \mathcal{Y}_{\text{Lor}}.
\end{cases}
\]

Let $(\mathcal{H}_\psi, \pi_\psi, \Omega_\psi)$ denote the GNS representation for this state. We can identify $J : \mathcal{H}_\psi \to l^2(\mathcal{Y}_{\text{vec}}/\mathcal{Y}_{\text{Lor}}, \Gamma_s(Z_{\text{Max}}))$. (4.33)

To describe this identification, first note that $\mathcal{Y}_{\text{vec}}/\mathcal{Y}_{\text{Lor}}$ can be parametrized by smooth space-compact functions $\Xi = \partial_\mu \zeta^\mu$, which can be called the values of the Lorentz condition. For each Ξ choose $\zeta_{\Xi} \in \mathcal{Y}_{\text{vec}}$ such that $\partial_\mu \zeta_{\Xi}^\mu = \Xi$. We demand that

\[
(J\pi_\psi(W(\zeta_{\Xi}))\Omega_\psi)(\Xi) = \begin{cases}
\Omega, & \partial_\mu \zeta^\mu = \Xi, \\
0, & \partial_\mu \zeta^\mu \neq \Xi.
\end{cases}
\]

Then J is given by

\[
(J\pi_\psi(W(\zeta))\Omega_\psi)(\Xi) = \begin{cases}
eq e^{\frac{i}{2}\zeta_{\Xi}^\mu \zeta^\mu e^A(\zeta_{\Xi})} \Omega, & \partial_\mu \zeta^\mu = \Xi, \\
0, & \partial_\mu \zeta^\mu \neq \Xi.
\end{cases}
\]

Note that \mathcal{H}_ψ is non-separable – it is an uncountable direct sum of superselection sectors corresponding to various values of the Lorentz condition. All these superselection sectors are separable.

Special role is played by the (separable) subspace (superselection sector) corresponding to the Lorentz condition $\Xi = 0$. We can choose $\zeta_{\Xi} = 0$ and thus this subspace is naturally isomorphic to $\Gamma_s(Z_{\text{Max}})$ with the fields obtained by the usual quantization obtained by the method “first reduce, then quantize”.

Note that $\pi_\psi(W(\zeta))$ maps between various sectors of (4.33) if $\zeta \notin \mathcal{Y}_{\text{Lor}}$. The unitary group $\mathbb{R} \ni t \mapsto \pi_\psi(W(t\zeta))$ is strongly continuous if and only if $\zeta \in \mathcal{Y}_{\text{Lor}}$. If this is the case, we can write $\pi_\psi(W(\zeta)) = e^{iA(\zeta)}$. We have $\dot{A}(\zeta) = A(\zeta)$ if in addition ζ_1 differs from ζ_2 by a pure gauge. $\dot{A}(\zeta)$ is ill defined if $\zeta \notin \mathcal{Y}_{\text{Lor}}$.

To my knowledge, the approach that we described above, restricted to the 0th sector, was essentially one of the first approaches to the quantization of Maxwell equation. It is typical for older presentations, eg. [22]. However, without the language of C^*-algebras it is somewhat awkward to describe. One usually says that the Lorentz condition $\partial_\mu A^\mu(x) = 0$ is enforced on the Hilbert space of states and constitutes a subsidiary condition.
4.3.6 The Gupta-Bleuler approach

The Gupta-Bleuler approach follows the same lines as in the massive case until we arrive at the algebraic Fock space built on $\mathcal{W}^{(+)}_{\text{Lor}}$. As we know, the scalar product on $\mathcal{W}^{(+)}_{\text{Lor}}$ is only semidefinite. We factor $\mathcal{W}^{(+)}_{\text{Lor}}$ by the null space of its scalar product, obtaining $\mathcal{W}^{(+)}_{\text{Max}}$. We complete it, obtaining \mathcal{Z}_{Max} and we take the corresponding Fock space $\Gamma_s(\mathcal{Z}_{\text{Max}})$—this coincides with the usual quantization.

Equivalently, we can take the (algebraic) Fock space over $\mathcal{W}^{(+)}_{\text{Lor}}$. It has a natural semidefinite product. We divide by its null space and take the completion. Again, the resulting Hilbert space can be naturally identified with $\Gamma_s(\mathcal{Z}_{\text{Max}})$.

5 Charged scalar bosons

In this section we consider again the Klein-Gordon equation

$$(-\Box + m^2)\psi(x) = 0. \quad (5.1)$$

This time we will quantize the space of its complex solutions.

The formalism used in physics to describe complex fields, and especially to quantize them, is different from the real case, therefore we devote to it a separate section.

The advantage of complex fields, as compared with real fields, is the possibility to include an external electromagnetic potential $[A^\mu(x)]$ and to consider the equation

$$\left(- (\partial_\mu + iA_\mu(x)) (\partial^\mu + iA^\mu(x)) + m^2 \right) \psi(x) = 0. \quad (5.3)$$

5.1 Free charged scalar bosons

5.1.1 Classical fields

\mathcal{W}_{KG} will denote the space of smooth space-compact complex solutions of the Klein-Gordon equation

$$(-\Box + m^2)\zeta = 0. \quad (5.2)$$

(In the context of neutral fields, it was denoted $\mathbb{C}\mathcal{Y}_{\text{KG}}$, because it was an auxiliary object, the complexification of the phase space \mathcal{Y}_{KG}. Now it is the basic object, the phase space itself).

Clearly, the space \mathcal{W}_{KG} is equipped with a complex conjugation $\zeta \mapsto \bar{\zeta}$ and a $U(1)$ symmetry $\zeta \mapsto e^{i\theta} \zeta$, $\theta \in \mathbb{R}/2\pi\mathbb{Z} = U(1)$.

In the neutral case a crucial role was played by the conserved current $j_\mu(\zeta_1, \zeta_2)$, where $\zeta_1, \zeta_2 \in \mathcal{Y}_{\text{KG}}$; see (2.9). In the charged case we will use its sesquilinear version defined on \mathcal{W}_{KG}:

$$j_\mu(\bar{\zeta_1}, \zeta_2, x) := \overline{\partial_\mu \zeta_1(x) \zeta_2(x) - \bar{\zeta_1}(x) \partial_\mu \zeta_2(x)}. \quad (5.3)$$
If we decompose elements of \mathcal{W}_{KG} into their real and imaginary part $\zeta = \zeta_R + i\zeta_I$, then the real part of the current splits into a part depending on ζ_R and on ζ_I:

\[
\text{Re}j_\mu(\zeta_1, \zeta_2, x) = \partial_\mu \zeta_{R,1}(x)\zeta_{R,2}(x) - \zeta_{R,1}(x)\partial_\mu \zeta_{R,2}(x) + \partial_\mu \zeta_{I,1}(x)\zeta_{I,2}(x) - \zeta_{I,1}(x)\partial_\mu \zeta_{I,2}(x).
\]

Thus \mathcal{W}_{KG} can be viewed as the direct sum of two symplectic spaces with the form

\[
\text{Re} \zeta_1 \omega \zeta_2 = \zeta_{R,1} \omega \zeta_{R,2} + \zeta_{I,1} \omega \zeta_{I,2}.
\]

For $x \in \mathbb{R}^{1,3}$, one can introduce the fields $\psi_R(x)$, $\psi_I(x)$, $\eta_R(x)$, $\eta_I(x)$ as the real linear functionals on \mathcal{W}_{KG} given by

\[
\langle \psi_R(x) | \zeta \rangle := \text{Re} \zeta(x), \quad \langle \psi_I(x) | \zeta \rangle := \text{Im} \zeta(x), \quad \langle \eta_R(x) | \zeta \rangle := \text{Re} \dot{\zeta}(x), \quad \langle \eta_I(x) | \zeta \rangle := \text{Im} \dot{\zeta}(x).
\]

Clearly, we have the usual equal time Poisson brackets (we write only the non-vanishing ones):

\[
\{ \psi_R(t, \vec{x}), \eta_R(t, \vec{y}) \} = \{ \psi_I(t, \vec{x}), \eta_I(t, \vec{y}) \} = \delta(\vec{x} - \vec{y}). \quad (5.4)
\]

In practice, however, one prefers to organize the fields differently. One introduces

\[
\langle \psi(x) | \zeta \rangle := \frac{1}{\sqrt{2}} \zeta(x), \quad \langle \psi^*(x) | \zeta \rangle := \frac{1}{\sqrt{2}} \bar{\zeta}(x),
\]

\[
\langle \eta(x) | \zeta \rangle := \frac{1}{\sqrt{2}} \dot{\zeta}(x), \quad \langle \eta^*(x) | \zeta \rangle := \frac{1}{\sqrt{2}} \bar{\dot{\zeta}}(x),
\]

called \textit{(classical) complex fields}. Clearly,

\[
\psi(x) = \frac{1}{\sqrt{2}} (\psi_R(x) + i\psi_I(x)), \quad \psi^*(x) = \frac{1}{\sqrt{2}} (\psi_R(x) - i\psi_I(x)),
\]

\[
\eta(x) = \frac{1}{\sqrt{2}} (\eta_R(x) + i\eta_I(x)), \quad \eta^*(x) = \frac{1}{\sqrt{2}} (\eta_R(x) - i\eta_I(x)).
\]

Note that

\[
\psi(t, \vec{x}) = \int D(t, \vec{x} - \vec{y})\psi(0, \vec{y})d\vec{y} + \int D(t, \vec{x} - \vec{y})\eta(0, \vec{y})d\vec{y}. \quad (5.5)
\]

The only non-vanishing equal-time Poisson brackets are

\[
\{ \psi^*(t, \vec{x}), \eta^*(t, \vec{y}) \} = \{ \psi^*(t, \vec{x}), \eta(t, \vec{y}) \} = \delta(\vec{x} - \vec{y}). \quad (5.6)
\]

Using (5.5) we obtain

\[
\{ \psi(x), \psi(y) \} = \{ \psi^*(x), \psi^*(y) \} = 0,
\]

\[
\{ \psi(x), \psi^*(y) \} = D(x - y).
\]
5.1.2 Smeared fields

We can use the symplectic form to pair distributions and solutions. For $\zeta \in W_{KG}$ the corresponding \textit{spatially smeared fields} are the functionals on W_{KG} given by

$$\langle \psi (\zeta) | \rho \rangle := \frac{1}{\sqrt{2}} \zeta \omega \rho,$$

$$\langle \psi^* (\zeta) | \rho \rangle := \frac{1}{\sqrt{2}} \zeta^* \omega \bar{\rho}, \quad \rho \in W_{KG}.$$

Equivalently,

$$\psi (\zeta) = \int \left(-\dot{\zeta}(t, \vec{x}) \psi(t, \vec{x}) + \zeta(t, \vec{x}) \eta(t, \vec{x}) \right) d\vec{x},$$

$$\psi^* (\zeta) = \int \left(-\dot{\zeta}(t, \vec{x}) \psi^*(t, \vec{x}) + \zeta(t, \vec{x}) \eta^*(t, \vec{x}) \right) d\vec{x}.$$

Note that

$$\{ \psi (\zeta_1), \psi (\zeta_2) \} = \{ \psi^* (\zeta_1), \psi^* (\zeta_2) \} = 0,$$

$$\{ \psi (\zeta_1), \psi^* (\zeta_2) \} = \zeta_1 \omega \zeta_2.$$

We can also introduce \textit{space-time smeared fields}. To a space-time function $f \in C_0^\infty (\mathbb{R}^{1,3}, \mathbb{C})$ we associate

$$\psi[f] := \int f(x) \psi(x) dx,$$

$$\psi^*[f] := \int f(x) \psi^*(x) dx.$$

Clearly,

$$\{ \psi[f_1], \psi[f_2] \} = \{ \psi^*[f_1], \psi^*[f_2] \} = 0,$$

$$\{ \psi[f_1], \psi^*[f_2] \} = \int \int f_1(x) D(x - y) f_2(y) dy dx,$$

$$\psi[f] = -\psi((D * f)), \quad \psi^*[f] = -\psi^*((D * f)).$$

5.1.3 Lagrangian formalism

In the Lagrangian formalism we use the complex off-shell fields $\psi(x)$ and $\psi^*(x)$ as the basic variables. We introduce the Lagrangian density

$$\mathcal{L}(x) = -\partial_\mu \psi^*(x) \partial^\mu \psi(x) - m^2 \psi^*(x) \psi(x).$$

The Euler-Lagrange equations

$$\partial_{\psi^*} \mathcal{L} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \psi_{\mu}^*} = 0, \quad \partial_\psi \mathcal{L} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \psi_{\mu}} = 0 \quad (5.7)$$
yield (5.1). The variables conjugate to $\psi(x)$ and $\psi^*(x)$ are

\[
\eta^*(x) := \frac{\partial L}{\partial \psi^*_0(x)} = \partial_0 \psi^*(x), \\
\eta(x) := \frac{\partial L}{\partial \psi^*_0(x)} = \partial_0 \psi(x).
\]

5.1.4 Classical current

The Lagrangian is invariant w.r.t. the $U(1)$ symmetry $\psi \mapsto e^{-i\theta} \psi$. The Noether current associated to this symmetry is called simply the current, defined as

\[
J^\mu(x) := i \left(\psi^*(x) \frac{\partial L}{\partial \psi^*_\mu} - \frac{\partial L}{\partial \psi^*_0} \psi(x) \right) - i \left(\partial^\mu \psi^*(x) \psi(x) - \psi^*(x) \partial^\mu \psi(x) \right).
\]

It is conserved on shell and real:

\[
\partial_\mu J^\mu(x) = 0, \\
J^\mu(x)^* = J^\mu(x).
\]

Up to a coefficient, it coincides with (5.3) viewed as a quadratic form:

\[
\langle J^\mu(x) | \zeta \rangle = \frac{i}{2} J^\mu(x)^\zeta(x), \\
= \frac{1}{2} \left(\partial^\mu \zeta(x) \zeta(x) - \zeta(x) \partial^\mu \zeta(x) \right).
\]

The 0th component of the current is called the charge density

\[
Q(x) := J^0(x) = i(-\eta^*(x) \psi(x) + \psi^*(x) \eta(x)).
\]

We have the relations

\[
\{ Q(t, \vec{x}), \psi(t, \vec{y}) \} = i \psi(t, \vec{y}) \delta(\vec{x} - \vec{y}), \\
\{ Q(t, \vec{x}), \eta(t, \vec{y}) \} = i \eta(t, \vec{y}) \delta(\vec{x} - \vec{y}), \\
\{ Q(t, \vec{x}), Q(t, \vec{y}) \} = 0.
\]

The (total) charge

\[
Q := \int Q(t, \vec{x}) d\vec{x}
\]

is conserved (does not depend on time).

For $\chi \in C^\infty_c(\mathbb{R}^3, \mathbb{R})$, let α_χ denote the $*$-automorphism of the algebra of functions on \mathcal{W}_{KG} defined by

\[
\alpha_\chi(\psi(0, \vec{x})) := e^{-i\chi(\vec{x})} \psi(0, \vec{x}), \\
\alpha_\chi(\eta(0, \vec{x})) := e^{-i\chi(\vec{x})} \eta(0, \vec{x}).
\]
Obviously,
\[
\begin{align*}
\alpha_\chi(\psi^*(0, \vec{x})) &= e^{i\chi(\vec{x})}\psi^*(0, \vec{x}), \\
\alpha_\chi(\eta^*(0, \vec{x})) &= e^{i\chi(\vec{x})}\eta^*(0, \vec{x}).
\end{align*}
\] (5.10)

(5.9) is called the gauge transformation at time \(t = 0 \) corresponding to \(\chi \). Set
\[
Q(\chi) = \int \chi(\vec{x}) Q(0, \vec{x}) d\vec{x}.
\] (5.11)

\(Q(\chi) \) generates the one-parameter group of gauge transformations \(R \ni s \mapsto \alpha_s(\chi) \): By (5.8), for any classical observable \(B \) (a function on \(W_{KG} \)) we have
\[
\partial_s \alpha_s(\chi)(B) = -\{Q(\chi), \alpha_s(\chi)(B)\},
\]
\[
\alpha_0(\chi)(B) = B.
\]

5.1.5 Stress-energy tensor

The Lagrangian is invariant w.r.t. space-time translations. This leads to the stress-energy tensor
\[
T^{\mu\nu}(x) := -\frac{\partial L(x)}{\partial \psi^\mu(x)} \partial^\nu \psi(x) + \partial^\nu \psi^*(x) \frac{\partial L(x)}{\partial \psi^\mu(x)} + g^{\mu\nu} L(x)
\]
\[
= \partial^\mu \psi^*(x) \partial^\nu \psi(x) + \partial^\nu \psi^*(x) \partial^\mu \psi(x)
\] (5.12)
\[
= -g^{\mu\nu} \left(\partial_\alpha \psi^*(x) \partial^\alpha \psi(x) + m^2 \psi^*(x) \psi(x) \right).
\] (5.13)

It is conserved on shell
\[
\partial_\mu T^{\mu\nu}(x) = 0.
\]

The components of the stress-energy tensor with the first temporal coordinate are called the Hamiltonian density and momentum density. We express them on-shell in terms of \(\psi(x), \psi^*(x), \eta(x) \) and \(\eta^*(x) \):
\[
\mathcal{H}(x) := T^{00}(x) = \eta^*(x) \eta(x) + \bar{\partial} \psi^*(x) \bar{\partial} \psi(x) + m^2 \psi^*(x) \psi(x),
\]
\[
\mathcal{P}^i(x) := T^{0i}(x) = -\eta^*(x) \partial_i \psi(x) - \partial_i \psi^*(x) \eta(x).
\]

\(\mathcal{H}(x) \) and \(\mathcal{P}(x) \) acting on \(\zeta \in W_{KG} \) yield
\[
\langle \mathcal{H}(x)|\zeta \rangle = \frac{1}{2} |\zeta(x)|^2 + \frac{1}{2} |\bar{\partial} \zeta(x)|^2 + \frac{m^2}{2} |\zeta(x)|^2,
\]
\[
\langle \mathcal{P}(x)|\zeta \rangle = -\frac{1}{2} \bar{\zeta}(x) \bar{\partial} \zeta(x) - \frac{1}{2} \bar{\partial} \zeta(x) \zeta(x).
\]

We can define the Hamiltonian and momentum
\[
H = \int \mathcal{H}(t, \vec{x}) d\vec{x}, \quad \vec{P} = \int \mathcal{P}(t, \vec{x}) d\vec{x}.
\]

H and \(\vec{P} \) are the generators of the time and space translations. The observables \(H, P_1, P_2, P_3 \) and \(Q \) are in involution.
5.1.6 Diagonalization of the equations of motion

Recall that in the neutral case the generic notation for the energy-momentum was \(k \). The on-shell condition was \(k^2 + m^2 = 0, \ k^0 > 0 \). In other words, \(k^0 = \varepsilon(\vec{k}) := \sqrt{\vec{k}^2 + m^2} \).

In the charged case, following [13], it will be convenient to use different letters for the generic notation of the energy-momentum. In the charged case, the energy-momentum will be denoted generically by \(p \) with the on-shell condition \(p^2 + m^2 = 0, \ p^0 > 0 \). We will also use a different letter for the energy: \(E(\vec{p}) = \sqrt{\vec{p}^2 + m^2} \). In other words, for \(p \) on shell \(p = (E(\vec{p}), \vec{p}) \).

Define

\[
\psi_t(\vec{p}) := \int \psi(t, \vec{x}) e^{-i \vec{p} \cdot \vec{x}} d\vec{x},
\]

\[
\eta_t(\vec{p}) := \int \eta(t, \vec{x}) e^{-i \vec{p} \cdot \vec{x}} d\vec{x}.
\]

Clearly, the only nonvanishing Poisson brackets are

\[
\{\psi_t(\vec{p}), \eta^*_t(\vec{p}')\} = \{\psi^*_t(\vec{p}), \eta_t(\vec{p}')\} = (2\pi)^3 \delta(\vec{p} - \vec{p}').
\]

The equations of motion are

\[
\dot{\psi}_t(\vec{p}) = \eta_t(\vec{p}),
\]

\[
\dot{\eta}_t(\vec{p}) = -E^2(\vec{p}) \psi_t(\vec{p}).
\]

For on-shell \(p \in \mathbb{R}^{1,3} \) define

\[
a_t(p) = (2\pi)^{-\frac{3}{2}} \left(\frac{E(\vec{p})}{2} \psi(t, \vec{p}) + \frac{i}{\sqrt{2E(\vec{p})}} \eta(t, \vec{p}) \right),
\]

\[
a^*_t(p) = (2\pi)^{-\frac{3}{2}} \left(\frac{E(\vec{p})}{2} \psi^*(t, \vec{p}) - \frac{i}{\sqrt{2E(\vec{p})}} \eta^*(t, \vec{p}) \right),
\]

\[
b_t(p) = (2\pi)^{-\frac{3}{2}} \left(\frac{E(\vec{p})}{2} \psi(t, \vec{p}) - \frac{i}{\sqrt{2E(\vec{p})}} \eta(t, \vec{p}) \right),
\]

\[
b^*_t(p) = (2\pi)^{-\frac{3}{2}} \left(\frac{E(\vec{p})}{2} \psi^*(t, \vec{p}) + \frac{i}{\sqrt{2E(\vec{p})}} \eta^*(t, \vec{p}) \right).
\]

We have the equations of motion

\[
\dot{a}_t(p) = -iE(\vec{p})a_t(p), \quad \dot{b}_t(p) = -iE(\vec{p})b_t(p),
\]

\[
\dot{a}^*_t(p) = iE(\vec{p})a^*_t(p), \quad \dot{b}^*_t(p) = iE(\vec{p})b^*_t(p).
\]

We will usually write \(a(p), a^*(p), b(p), b^*(p) \) instead of \(a_0(p), a^*_0(p), b_0(p), b^*_0(p) \),
so that

\[a(p) = (2\pi)^{-\frac{1}{2}} \int \left(\sqrt{\frac{E(p)}{2}} \psi(0, x) + \frac{i}{\sqrt{2E(p)}} \eta(0, x) \right) e^{-i\sqrt{2\epsilon} d\bar{x}}, \]

\[a^*(p) = (2\pi)^{-\frac{1}{2}} \int \left(\sqrt{\frac{E(p)}{2}} \psi^*(0, x) - \frac{i}{\sqrt{2E(p)}} \eta^*(0, x) \right) e^{i\sqrt{2\epsilon} d\bar{x}}, \]

\[b(p) = (2\pi)^{-\frac{1}{2}} \int \left(\sqrt{\frac{E(p)}{2}} \psi^*(0, x) + \frac{i}{\sqrt{2E(p)}} \eta^*(0, x) \right) e^{-i\sqrt{2\epsilon} d\bar{x}}, \]

\[b^*(p) = (2\pi)^{-\frac{1}{2}} \int \left(\sqrt{\frac{E(p)}{2}} \psi(0, x) - \frac{i}{\sqrt{2E(p)}} \eta(0, x) \right) e^{i\sqrt{2\epsilon} d\bar{x}}, \]

The only non-vanishing Poisson bracket are

\[\{a(p), a^*(p')\} = \{b(p), b^*(p')\} = -i\delta(p - p'). \]

We have the following expressions for the fields:

\[\psi(x) = (2\pi)^{-\frac{1}{2}} \int \frac{dp}{\sqrt{2E(p)}} \left(e^{ipx} a(p) + e^{-ipx} b^*(p) \right), \]

\[\eta(x) = (2\pi)^{-\frac{1}{2}} \int \frac{dp}{\sqrt{2E(p)}} \left(e^{ipx} a(p) - e^{-ipx} b^*(p) \right). \]

Thus every \(\zeta \in \mathcal{W}_{KG} \) can be written as

\[\frac{\zeta(x)}{\sqrt{2}} = (2\pi)^{-\frac{1}{2}} \int \frac{dp}{\sqrt{2E(p)}} \left(e^{ipx} \langle a(p) | \zeta \rangle + e^{-ipx} \langle b^*(p) | \zeta \rangle \right). \quad (5.14) \]

We have accomplished the diagonalization of the basic observables:

\[H = \int dp E(p) \left(a^*(p) a(p) + b^*(p) b(p) \right), \]

\[\bar{P} = \int dp \bar{p} \left(a^*(p) a(p) + b^*(p) b(p) \right), \]

\[Q = \int dp \left(a^*(p) a(p) - b^*(p) b(p) \right). \]

Note that the plane wave functional \(a(k) \) of the neutral case is slightly different from its counterpart \(a(p) \) of the charged case: the former acts on the real space \(\mathcal{Y}_{KG} \) and the latter on the complex space \(\mathcal{W}_{KG} \). Besides, the latter is not simply the complexification of the former – compare (2.25) and (5.14) and notice the additional \(\frac{1}{\sqrt{2}} \).
5.1.7 Plane waves

We will use the same plane waves as those introduced in the neutral case in (2.26). There will be two differences: the generic notation for the energy-momentum is now p and plane waves with a negative frequency p^0 are now on the equal footing as those with a positive frequency. Thus

$$ (x|p) = \frac{1}{(2\pi)^{3/2}\sqrt{2E(p)}} e^{ipx}. \quad (5.15) $$

Let $p^0 > 0$. We have

$$ i(-p|\omega|p') = i(p|\omega| - p') = 0, $$
$$ -i(-p|\omega| - p') = i(p|\omega|p') = \delta(p - p'). $$

$a(p)$ and $b(p)$ can be called plane wave functionals:

$$ a(p) = i\psi(|p|), $$
$$ b^*(p) = -i\psi(|-p|). $$

Thus for every $\zeta \in \mathcal{W}_{KG}$ we have

$$ \langle a(p)|\zeta \rangle = \frac{i}{\sqrt{2}}(p|\omega\zeta, $$
$$ \langle b^*(p)|\zeta \rangle = -\frac{i}{\sqrt{2}}(-p|\omega\zeta. $$

5.1.8 Positive and negative frequency subspace

When we discussed neutral scalar fields we introduced spaces of positive/negative frequency solutions, denoted $\mathcal{W}_{KG}^{(\pm)}$. Recall that $\mathcal{W}_{KG}^{(\pm)}$ consists of wave packets made of $|p|$ with $\pm p^0 > 0$. Every $\zeta \in \mathcal{W}_{KG}$ can be uniquely decomposed as $\zeta = \zeta^{(+)} + \zeta^{(-)}$ with $\zeta^{(\pm)} \in \mathcal{W}_{KG}^{(\pm)}$.

We equip $\mathcal{W}_{KG}^{(+)}$ with the scalar product

$$ (\zeta_1^{(+)}|\zeta_2^{(+)} : = \frac{1}{2}\zeta_1^{(+)}\omega\zeta_2^{(+)} = \int \langle a(p)|\zeta_1^{(+)}\rangle\langle a(p)|\zeta_2^{(+)}\rangle dp. $$

We set $Z_{KG}^{(+)}$ to be the completion of $\mathcal{W}_{KG}^{(+)}$ in this scalar product.

Instead of $\mathcal{W}_{KG}^{(-)}$ for quantization we will use the corresponding complex conjugate space denoted $\mathcal{W}_{KG}^{(-)}$ and equipped with the scalar product

$$ (\zeta_1^{(-)}|\zeta_2^{(-)} := \frac{1}{2}\zeta_1^{(-)}\omega\zeta_2^{(-)} = \int \langle b(p)|\zeta_1^{(-)}\rangle\langle b(p)|\zeta_2^{(-)}\rangle dp.
We set $Z^{(-)}_{\text{KG}}$ to be the completion of $W^{(-)}_{\text{KG}}$ in this scalar product. Note that $W^{(-)}_{\text{KG}} = W^{(+)}_{\text{KG}}$, where we use the usual (internal) complex conjugation in W_{KG}. Therefore in principle we could identify $Z^{(-)}_{\text{KG}}$ and $Z^{(+)}_{\text{KG}}$. This identification will be important for the definition of the charge conjugation. Normally, however, we treat $Z^{(-)}_{\text{KG}}$ and $Z^{(+)}_{\text{KG}}$ as two separate Hilbert spaces.

$\mathbb{R}^{1,3} \times O^\uparrow(1, 3)$ acts on $Z^{(+)}_{\text{KG}}$ and $Z^{(-)}_{\text{KG}}$ in a natural way.

5.1.9 Quantization

In principle, we could quantize the complex Klein-Gordon equation as a pair of real Klein-Gordon fields. However, we will use the formalism of quantization of charged bosonic systems [11].

We want to construct $(\mathcal{H}, \hat{H}, \Omega)$ satisfying the usual requirements and an operator valued distribution
\[\mathbb{R}^{1,3} \ni x \mapsto \hat{\psi}(x) \] (5.16)
satisfying, with $\eta(x) := \dot{\psi}(x)$,

1. $(-\Box + m^2)\hat{\psi}(x) = 0$;
2. the only non-vanishing 0-time commutators are
\[[\hat{\psi}(0, \vec{x}), \hat{\eta}^* (0, \vec{y})] = i\delta(\vec{x} - \vec{y}), \quad [\hat{\psi}^* (0, \vec{x}), \hat{\eta} (0, \vec{y})] = i\delta(\vec{x} - \vec{y}); \] (5.17)
3. $e^{it\hat{H}}\hat{\psi}(x^0, \vec{x})e^{-it\hat{H}} = \hat{\psi}(x^0 + t, \vec{x})$;
4. Ω is cyclic for $\hat{\psi}(x), \hat{\psi}^*(x)$.

The above problem has a solution unique up to a unitary equivalence, which we describe below.

We set
\[\mathcal{H} := \Gamma_s (Z^{(+)}_{\text{KG}} \oplus Z^{(-)}_{\text{KG}}). \]

Creation/annihilation operators on $Z^{(+)}_{\text{KG}}$ will be denoted \hat{a}^*/\hat{a}. Introduce the operator valued distribution $\hat{a}^*(p)$ defined for p on the mass shell by
\[\hat{a}^*(p) := \hat{a}^*(|p|). \] (5.18)

Creation/annihilation operators on $Z^{(-)}_{\text{KG}}$ will be denoted \hat{b}^*/\hat{b}. Introduce the operator valued distribution $\hat{b}^*(p)$ defined for p on the mass shell by
\[\hat{b}^*(p) := \hat{b}^* (| - p|). \] (5.19)

Ω will be the Fock vacuum. We set
\[\hat{\psi}(x) := (2\pi)^{-\frac{3}{2}} \int \frac{dp}{\sqrt{2E(p)}} \left(e^{ipx} \hat{a}(p) + e^{-ipx} \hat{a}^*(p) \right), \]
\[\hat{\eta}(x) := (2\pi)^{-\frac{3}{2}} \int \frac{dp}{i\sqrt{2}} \frac{\sqrt{E(p)}}{\sqrt{2}} \left(e^{ipx} \hat{a}(p) - e^{-ipx} \hat{a}^*(p) \right). \]
The quantum Hamiltonian, momentum and charge are

\[
\hat{H} := \int \left(\hat{a}^*(p) \hat{a}(p) + \hat{b}^*(p) \hat{b}(p) \right) E(p)d\vec{p},
\]

\[
\hat{P} := \int \left(\hat{a}^*(p) \hat{a}(p) + \hat{b}^*(p) \hat{b}(p) \right) \vec{p}d\vec{p},
\]

\[
\hat{Q} := \int \left(\hat{a}^*(p) \hat{a}(p) - \hat{b}^*(p) \hat{b}(p) \right) d\vec{p}.
\]

Equivalently, for any \(t \)

\[
\hat{H} = \int \left(\hat{\eta}^*(t, \vec{x}) \hat{\eta}(t, \vec{x}) + \partial^\mu \hat{\psi}^*(t, \vec{x}) \partial_\mu \hat{\psi}(t, \vec{x}) + m^2 \hat{\psi}^*(t, \vec{x}) \hat{\psi}(t, \vec{x}) \right) d\vec{x},
\]

\[
\hat{P} = \int \left(\hat{\eta}^*(t, \vec{x}) \partial^\mu \hat{\psi}(t, \vec{x}) + \partial^\mu \hat{\psi}^*(t, \vec{x}) \hat{\eta}(t, \vec{x}) \right) d\vec{x},
\]

\[
\hat{Q} = i \int \left(-\hat{\eta}^*(t, \vec{x}) \hat{\psi}(t, \vec{x}) + \hat{\psi}^*(t, \vec{x}) \hat{\eta}(t, \vec{x}) \right) d\vec{x}.
\]

Thus all these operators are expressed in terms of the Wick quantization of their classical expressions.

Note that the whole group \(\mathbb{R}^{1,3} \rtimes O^1(1,3) \) acts unitarily on \(\mathcal{H} \) by \(U(a, \Lambda) := \Gamma \left(\left(\begin{array}{c} r(a, \Lambda) \\ \mathbb{Z}_{KG}^{(+)} \end{array} \right) \otimes \Gamma \left(\left(\begin{array}{c} r(a, \Lambda) \\ \mathbb{Z}_{KG}^{(-)} \end{array} \right) \right) \right), \) with

\[
U(a, \Lambda) \hat{\psi}(x) U(a, \Lambda)^* = \hat{\psi}((a, \Lambda)x).
\]

Moreover,

\[
[\hat{\psi}(x), \hat{\psi}^*(y)] = -iD(x-y), \quad [\hat{\psi}(x), \hat{\psi}(y)] = 0.
\]

Note the identities

\[
(\Omega | \hat{\psi}(x) \hat{\psi}^*(y) \Omega) = -iD^{(+)}(x-y),
\]

\[
(\Omega | \mathcal{T}(\hat{\psi}(x) \hat{\psi}^*(y)) \Omega) = -iD^{(-)}(x-y).
\]

For \(f \in C_c^\infty(\mathbb{R}^{1,3}, \mathbb{C}) \) we set

\[
\hat{\psi}[f] := \int \hat{\psi}(x)f(x)dx,
\]

\[
\hat{\psi}^*[f] := \int f(x)\hat{\psi}^*(x)dx.
\]

We obtain an operator valued distribution satisfying the Wightman axioms with \(\mathcal{D} := \Gamma_{\text{fin}}(\mathbb{Z}_{KG}^{(+)} \oplus \mathbb{Z}_{KG}^{(-)}). \)

For an open set \(\mathcal{O} \subset \mathbb{R}^{1,3} \) the field algebra is defined as

\[
\mathfrak{F}(\mathcal{O}) := \left\{ \exp \left(i\hat{\psi}^*[f] + i\hat{\psi}[f] \right) : f \in C_c^\infty(\mathcal{O}, \mathbb{C}) \right\}''.
\]

The observable algebra \(\mathfrak{A}(\mathcal{O}) \) is the subalgebra of \(\mathfrak{F}(\mathcal{O}) \) fixed by the automorphism

\[
B \mapsto e^{i\theta Q} Be^{-i\theta Q}.
\]

The algebras \(\mathfrak{F}(\mathcal{O}) \) and \(\mathfrak{A}(\mathcal{O}) \) satisfy the Haag-Kastler axioms.
5.1.10 Quantum current

Let us try to introduce the (quantum) current density by

\[
\hat{J}^\mu(x) = \frac{i}{2} \left(\partial^\mu \hat{\psi}^*(x) \hat{\psi}(x) + \hat{\psi}(x) \partial^\mu \hat{\psi}^*(x) - \hat{\psi}^*(x) \partial^\mu \hat{\psi}(x) - \partial^\mu \hat{\psi}^*(x) \hat{\psi}(x) \right).
\]

(5.20)

We check that the charge conjugation \(C \), which we introduce later on, satisfies \(C\Omega = \Omega, C\hat{J}^\mu(x)C^{-1} = -\hat{J}^\mu(x) \). Therefore,

\[
(\Omega|\hat{J}^\mu(x)|\Omega) = 0,
\]

and (5.20) can be replaced with the following equivalent definition:

\[
\hat{J}^\mu(x) = i \left(\partial^\mu \hat{\psi}^*(x) \hat{\psi}(x) - \hat{\psi}^*(x) \partial^\mu \hat{\psi}(x) \right).
\]

Formally, we can check the relations

\[
\partial^\mu \hat{J}_\mu(x) = 0,
\]

\[
\hat{J}^\mu(x)^* = \hat{J}^\mu(x).
\]

In particular, we have the (quantum) charge density

\[
\hat{Q}(x) := \hat{J}^0(x) = i \left(-\hat{\eta}^*(x) \hat{\psi}(x) + \hat{\psi}^*(x) \hat{\eta}(x) \right):
\]

with the relations

\[
[\hat{Q}(t, \vec{x}), \hat{\psi}(t, \vec{y})] = -\hat{\psi}(t, \vec{y})\delta(\vec{x} - \vec{y}),
\]

\[
[\hat{Q}(t, \vec{x}), \hat{\eta}(t, \vec{y})] = -\hat{\eta}(t, \vec{y})\delta(\vec{x} - \vec{y}),
\]

\[
[\hat{Q}(t, \vec{x}), \hat{Q}(t, \vec{y})] = 0.
\]

(5.21)

Similarly, as in the classical case, for \(\chi \in C^\infty_c(\mathbb{R}^3, \mathbb{R}) \), let \(\alpha_\chi \) denote the corresponding gauge transformation at time \(t = 0 \) corresponding to \(\chi \) defined as the \(* \)-automorphism of the algebra generated by the fields operators satisfying

\[
\alpha_\chi(\hat{\psi}(0, \vec{x})) := e^{-i\chi(\vec{x})}\hat{\psi}(0, \vec{x}),
\]

\[
\alpha_\chi(\hat{\eta}(0, \vec{x})) := e^{-i\chi(\vec{x})}\hat{\eta}(0, \vec{x}).
\]

(5.22)

Obviously,

\[
\alpha_\chi(\hat{\psi}^*(0, \vec{x})) = e^{i\chi(\vec{x})}\hat{\psi}^*(0, \vec{x}),
\]

\[
\alpha_\chi(\hat{\eta}^*(0, \vec{x})) = e^{i\chi(\vec{x})}\hat{\eta}^*(0, \vec{x}).
\]

(5.23)

Assume that \(\chi \neq 0 \). Let us check whether \(\alpha_\chi \) is unitarily implementable.

On the level of annihilation operators we have

\[
\alpha_\chi(\hat{a}(p)) = \int \int \left(\frac{\sqrt{E(p_1)}}{E(p)} \frac{\hat{a}(p_1)}{2(2\pi)^3} e^{i(p_1 - p)\vec{x} - i\chi(\vec{x})} \right) dp_1 d\vec{x} + \int \int \left(\frac{\sqrt{E(p_1)}}{E(p)} \frac{\hat{b}(p_1)}{2(2\pi)^3} e^{-i(p_1 + p)\vec{x} - i\chi(\vec{x})} \right) dp_1 d\vec{x}.
\]

126
Let \(q(\vec{p}, \vec{p}_1) \) denote the integral kernel on the second line above. We need to check whether it is square integrable. Now

\[
\left(\sqrt{\frac{E(\vec{p}_1)}{E(\vec{p})}} - \sqrt{\frac{E(\vec{p})}{E(\vec{p}_1)}} \right) = \frac{(|\vec{p}_1| - |\vec{p}|)(|\vec{p}_1| + |\vec{p}|)}{(E(\vec{p}) + E(\vec{p}_1))\sqrt{E(\vec{p})E(\vec{p}_1)}}.
\]

(5.24)

After integrating in \(\vec{x} \) we obtain fast decay in \(\vec{p} + \vec{p}_1 \), which in particular allows us to control the term \(|\vec{p}_1| - |\vec{p}|\). We obtain

\[
\int |q(\vec{p}, \vec{p}_1)|^2 d\vec{p} \sim \frac{C}{E(\vec{p}_1)^2},
\]

which is not integrable. Thus by the Shale criterion \(\alpha_\chi \) is not implementable.

Formally, if we set

\[
\hat{Q}(\chi) := \int \chi(\vec{x}) \hat{Q}(0, \vec{x}) d\vec{x},
\]

(5.25)

then \(e^{i\hat{Q}(\chi)} \) implements the gauge transformation:

\[
\alpha_\chi(\hat{B}) = e^{i\hat{Q}(\chi)} \hat{B} e^{-i\hat{Q}(\chi)}.
\]

But we know that \(\alpha_\chi \) is not implementable. Thus for nonzero \(\chi \) (5.25) cannot be defined as a closable operator.

However, the (quantum) charge

\[
\hat{Q} = \int \hat{Q}(t, \vec{x}) d\vec{x},
\]

as we have already seen, is a well defined operator.

For further reference let us express the charge density and the current in
terms of creation and annihilation operators:

\[\hat{Q}(x) = \int \frac{d\vec{p}_1 d\vec{p}_2}{2(2\pi)^3} \left(\sqrt{\frac{E(\vec{p}_1)}{E(\vec{p}_2)}} + \sqrt{\frac{E(\vec{p}_2)}{E(\vec{p}_1)}} \right) \times \left(e^{-ixp_1+ixp_2}\hat{a}^*(p_1)\hat{a}(p_2) - e^{ixp_1-ixp_2}\hat{b}^*(p_2)\hat{b}(p_1) \right) \]

\[\hat{J}(x) = \int \frac{d\vec{p}_1 d\vec{p}_2}{2(2\pi)^3} \sqrt{\frac{E(\vec{p}_1)E(\vec{p}_2)}{E(p_1)E(p_2)}} (\vec{p}_1 + \vec{p}_2) \times \left(e^{-ixp_1+ixp_2}\hat{a}^*(p_1)\hat{a}(p_2) + e^{ixp_1-ixp_2}\hat{b}^*(p_2)\hat{b}(p_1) \right) \]

\[\times \left(e^{-ixp_1-ixp_2}\hat{a}^*(p_1)\hat{a}(p_2) + e^{ixp_1+ixp_2}\hat{b}^*(p_2)\hat{b}(p_1) \right). \]

5.1.11 Quantization in terms of smeared fields

An alternative equivalent formulation of the quantization program uses smeared fields instead of point fields. Instead of (2.31) we look for an antilinear function

\[\mathcal{W}_{\text{KG}} \ni \zeta \mapsto \hat{\psi}(\zeta) \]

with values in closed operators such that

1. \[[\hat{\psi}(\zeta_1), \hat{\psi}^*(\zeta_2)] = i\overrightarrow{\zeta_1} \omega \zeta_2, \quad [\hat{\psi}(\zeta_1), \hat{\psi}(\zeta_2)] = 0. \]

2. \[\hat{\psi}(r_{(t,\theta)}\zeta) = e^{it\hat{H}}\hat{\psi}(\zeta)e^{-it\hat{H}}. \]

3. \(\Omega \) is cyclic for the algebra generated by \(\psi(\zeta), \psi^*(\zeta) \).

One can pass between these two versions of the quantization by

\[\hat{\psi}(\zeta) = \int \left(-\zeta(t,\vec{x}) \hat{\psi}(t,\vec{x}) + \overrightarrow{\zeta}(t,\vec{x}) \hat{\eta}(t,\vec{x}) \right) d\vec{x}. \] (5.26)

5.2 Charged scalar bosons in an external potential

5.2.1 Classical fields

Let us go back to the classical theory. Let

\[\mathbb{R}^{1,3} \ni x \mapsto A(x) = [A^\mu(x)] \in \mathbb{R}^{1,3} \] (5.27)

be a given function called the (external) electromagnetic potential. In most of this subsection we will assume that (5.27) is Schwartz. The (complex) Klein-Gordon equation in the external potential \(A \) is

\[(-\partial^\mu + i e A_\mu(x))(\partial^\mu + i e A^\mu(x)) + m^2 \psi(x) = 0. \] (5.28)
If \(\zeta \) satisfies (5.28) and \(R^{1,3} \ni x \mapsto \chi(x) \in \mathbb{R} \) is smooth, then \(e^{-i\chi(x)} \psi \) satisfies (5.28) with \(A \) replaced with \(A + \partial \chi \).

The retarded/advanced Green’s function is defined as the unique solution of

\[
(- (\partial^\mu + ieA_\mu(x)) (\partial^\mu + ieA^\mu(x)) + m^2) D^\pm(x, y) = \delta(x - y) \tag{5.29}
\]

satisfying

\[
\text{supp} D^\pm \subset \{ x, y : x \in J^\pm(y) \}.
\]

We generalize the Pauli-Jordan function:

\[
D(x, y) := D^+(x, y) - D^-(x, y).
\]

Clearly,

\[
\text{supp} D \subset \{ x, y : x \in J(y) \}.
\]

The Cauchy problem of (5.28) can be expressed with help of the function \(D \):

\[
\psi(t, \vec{x}) = - \int_{\mathbb{R}^3} \partial_s D(t, \vec{x}; s, \vec{y}) \big|_{s=0} \psi(0, \vec{y}) d\vec{y} \tag{5.30}
\]

\[
+ \int_{\mathbb{R}^3} D(t, \vec{x}; 0, \vec{y}) \dot{\psi}(0, \vec{y}) d\vec{y}.
\]

We would like to introduce a field \(R^{1,3} \ni x \mapsto \psi(x) \) satisfying (5.28). As we will see shortly, the conjugate field is

\[
\eta(x) := \partial_0 \psi(x) + ieA_0(x) \psi(x).
\]

For definiteness, we will assume that \(\psi(x), \eta(x) \) act on \(\mathcal{W}_{KG} \) and at time \(t = 0 \) coincide with free fields:

\[
\psi(0, \vec{x}) = \psi_{fr}(0, \vec{x}),
\]

\[
\eta(0, \vec{x}) = \eta_{fr}(0, \vec{x}).
\]

This determines the field \(\psi \) uniquely:

\[
\psi(t, \vec{x}) = - \int_{\mathbb{R}^3} \partial_s D(t, \vec{x}; s, \vec{y}) \big|_{s=0} \psi_{fr}(0, \vec{y}) d\vec{y} \tag{5.31}
\]

\[
+ \int_{\mathbb{R}^3} D(t, \vec{x}; 0, \vec{y}) (\eta_{fr}(0, \vec{y}) - ieA_0(0, \vec{y}) \psi_{fr}(0, \vec{y})) d\vec{y}.
\]

5.2.2 Lagrangian and Hamiltonian formalism

Consider the Lagrangian density

\[
\mathcal{L}(x) = - (\partial^\mu - ieA_\mu(x)) \psi^*(x) (\partial^\mu + ieA^\mu(x)) \psi(x) - m^2 \psi^*(x) \psi(x).
\]

The Euler-Lagrange equations (5.7) yield (5.28).
Let us introduce the *variable conjugate* to $\psi^*(x)$ and $\psi(x)$:

\[
\eta(x) := \frac{\partial L}{\partial \dot{\psi}^*(x)} = \partial_0 \psi(x) + ieA_0(x) \psi(x),
\]

\[
\eta^*(x) = \frac{\partial L}{\partial \dot{\psi}(x)} = \partial_0 \psi^*(x) - ieA_0(x) \psi^*(x).
\]

We introduce the Hamiltonian density

\[
\mathcal{H}(x) = \frac{\partial L(x)}{\partial \psi(x)} \dot{\psi}(x) + \frac{\partial L(x)}{\partial \dot{\psi}^*(x)} \dot{\psi}^*(x) - L(x)
\]

\[
= \eta^*(x) \eta(x) + ieA_0(x) (\psi^*(x) \eta(x) - \eta^*(x) \psi(x)) \\
+ (\partial_t - ieA_1(x)) \psi^*(x) \eta(x) + \partial_0 A_1(x) \psi(x) + m^2 \psi^*(x) \psi(x)
\]

\[
= \eta^*(x) \eta(x) + \partial_t \psi^*(x) \partial_0 \psi(x) \\
+ ieA_0(x) (\psi^*(x) \eta(x) - \eta^*(x) \psi(x)) - ieA_1(x) (\psi^*(x) \partial_0 \psi(x) - \partial_0 \psi^*(x) \psi(x)) \\
+ e^2 \tilde{A}(x)^2 \psi^*(x) \psi(x) + m^2 \psi^*(x) \psi(x).
\]

The Hamiltonian

\[
H(t) = \int \mathcal{H}(t, \vec{x}) d\vec{x}
\]

can be used to generate the dynamics

\[
\dot{\psi}(t, \vec{x}) = \{H(t), \psi(t, \vec{x})\}, \quad \dot{\eta}(t, \vec{x}) = \{H(t), \eta(t, \vec{x})\}.
\]

5.2.3 Classical current

The Lagrangian is gauge invariant. This leads to the *current density*

\[
\mathcal{J}^\mu(x) := i(\partial^\mu \psi^*(x) \psi(x) - \psi^*(x) \partial^\mu \psi(x) - 2ieA^\mu(x) \psi^*(x) \psi(x)),
\]

which is conserved and real:

\[
\partial_\mu \mathcal{J}^\mu = 0,
\]

\[
\mathcal{J}^\mu(x)^* = \mathcal{J}^\mu(x).
\]

We have the *charge density*

\[
Q(x) := \mathcal{J}^0(x) = i(\eta^*(x) \psi(x) + \psi^*(x) \eta(x)),
\]

and the *charge*

\[
Q := \int Q(t, \vec{x}) d\vec{x}.
\]

The Hamiltonian in the interaction picture can be partially expressed in terms of the current density:

\[
H_{\text{int}}(t) = \int d\vec{x} \left(eA_\mu(t, \vec{x}) \mathcal{J}^\mu(t, \vec{x}) + e^2 \tilde{A}(t, \vec{x}) \psi^*_\mu(t, \vec{x}) \psi_\mu(t, \vec{x}) \right)
\]

\[
= \int d\vec{x} \left(eA_0(t, \vec{x}) Q(t, \vec{x}) + e\tilde{A}(t, \vec{x}) \mathcal{J}_\mu(t, \vec{x}) + e^2 \tilde{A}(t, \vec{x}) \psi^*_\mu(t, \vec{x}) \psi_\mu(t, \vec{x}) \right)
\]

\[
= \int d\vec{x} \left(eA_0(t, \vec{x}) Q(t, \vec{x}) + e\tilde{A}(t, \vec{x}) \mathcal{J}_\mu(t, \vec{x}) + e^2 \tilde{A}(t, \vec{x}) \psi^*_\mu(t, \vec{x}) \psi_\mu(t, \vec{x}) \right)
\]

130
\[
= \frac{e}{(2\pi)^3} \int \frac{d\vec{p}_1 d\vec{p}_2}{2} \left(\sqrt{\frac{E(\vec{p}_1)}{E(\vec{p}_2)}} + \sqrt{\frac{E(\vec{p}_2)}{E(\vec{p}_1)}} \right) \\
\times \left(A_0(t, t_1 - t_2) e^{itE(\vec{p}_1) + itE(\vec{p}_2)} a^*(p_1) a(p_2) - A_0(t, t_1 + t_2) e^{-itE(\vec{p}_1) - itE(\vec{p}_2)} b(p_1) b^*(p_2) \right) \\
+ \frac{e}{(2\pi)^3} \int \frac{d\vec{p}_1 d\vec{p}_2}{2} \left(\sqrt{\frac{E(\vec{p}_1)}{E(\vec{p}_2)}} - \sqrt{\frac{E(\vec{p}_2)}{E(\vec{p}_1)}} \right) \\
\times \left(A_0(t, t_1 + t_2) e^{itE(\vec{p}_1) + itE(\vec{p}_2)} a^*(p_1) a(p_2) - A_0(t, t_1 - t_2) e^{-itE(\vec{p}_1) - itE(\vec{p}_2)} b(p_1) b^*(p_2) \right) \\
+ \frac{e^2}{(2\pi)^3} \int \frac{d\vec{p}_1 d\vec{p}_2}{2} \left(\frac{E(\vec{p}_1)}{E(\vec{p}_2)} \frac{E(\vec{p}_2)}{E(\vec{p}_1)} \right) \\
\times \left(\bar{A}(t, t_1 - t_2) e^{itE(\vec{p}_1) - itE(\vec{p}_2)} a^*(p_1) a(p_2) - \bar{A}(t, t_1 + t_2) e^{-itE(\vec{p}_1) + itE(\vec{p}_2)} b(p_1) b^*(p_2) \right) \\
+ \bar{A}^2(\vec{p}_1 + t_2) e^{itE(\vec{p}_1) + itE(\vec{p}_2)} a^*(p_1) b^*(p_2) + \bar{A}^2(\vec{p}_1 - t_2) e^{-itE(\vec{p}_1) - itE(\vec{p}_2)} b(p_1) a(p_2) \right).
\]

5.2.4 Classical discrete symmetries

Choose \(\xi_C \in \mathbb{C} \), \(|\xi_C| = 1 \). If \(\zeta \) solves the Klein-Gordon equation with the potential \(A \), then so does \(\xi_C \zeta \) with the potential \(-A \). Thus replacing

\[
\psi(x), \psi^*(x), A(x)
\]

with \(\xi_C \psi^*(x), \xi_C \psi(x), -A(x) \)

is a symmetry of the complex Klein-Gordon equation with an external potential (5.28). It is called charge conjugation.

Choose \(\xi_P \in \{1, -1\} \). Recall that \(P(x^0, \vec{x}) := (x^0, -\vec{x}) \) denotes the space inversion. Replacing

\[
\psi(x), \psi^*(x), (A_0(x), \bar{A}(x))
\]

with \(\xi_P \psi(Px), \xi_P \psi^*(Px), (A_0(Px), -\bar{A}(Px)) \)

is a symmetry of (5.28) called parity.

Choose \(\xi_T \in \mathbb{C} \), \(|\xi_T| = 1 \). Recall that \(T(x^0, \vec{x}) := (-x^0, \vec{x}) \) denotes the time reflection. Replacing

\[
\psi(x), \psi^*(x), (A_0(x), \bar{A}(x))
\]

with \(\xi_T \psi^*(Tx), \xi_T \psi(Tx), (A_0(Tx), -\bar{A}(Tx)) \)

131
is a symmetry of (5.28) called time reversal.

The composition of the above three symmetries is called the CPT symmetry. It has a particularly simple form, especially when we assume $\xi_C\xi_P\xi_T = 1$. It amounts to replacing

$$\psi(x), \psi^*(x), A(x)$$

with

$$\psi(-x), \psi^*(-x), -A(-x).$$

All these symmetries are involutive (their square is identity) and they commute with one another.

5.2.5 Quantization

We are looking for a quantum field satisfying

$$\left(-(\partial_\mu + ieA_\mu(x))(\partial^\mu + ieA^\mu(x)) + m^2 \right) \hat{\psi}(x) = 0. \quad (5.33)$$

We set

$$\hat{\eta}(x) := \partial_0 \hat{\psi}(x) + ieA_0(x)\hat{\psi}(x).$$

We will assume that $\hat{\psi}, \hat{\eta}$ act on the Hilbert space of free fields

$$\Gamma_s(Z^{(+)}_{KG} \oplus Z^{(-)}_{KG}),$$

at time $t = 0$ we have

$$\hat{\psi}(\vec{x}) := \hat{\psi}(0, \vec{x}) = \hat{\psi}_f(0, \vec{x}),$$

$$\hat{\eta}(\vec{x}) := \hat{\eta}(0, \vec{x}) = \hat{\eta}_f(0, \vec{x}).$$

The solution is unique and is obtained by decorating (5.31) with “hats”.

We would like to ask whether the quantum fields are implemented by a unitary dynamics. Equivalently, we want to check if the classical dynamics generated by $H_{\text{Int}}(t)$ satisfies the Shale criterion.

By following the discussion of Subsubsect. 2.3.4 we check that the classical scattering operator is unitarily implementable.

The Shale criterion is satisfied for the dynamics from t_- to t_+ iff the spatial part of the potential is the same at the initial and final time:

$$\vec{A}(t_+, \vec{x}) = \vec{A}(t_-, \vec{x}), \quad \vec{x} \in \mathbb{R}^3. \quad (5.34)$$

To see this note that $H_{\text{Int}}(t)$ consists of three terms described in (5.32).

The term $e^2 \vec{A}(t, \vec{x})^2 \hat{\psi}_f^*(t, \vec{x})\hat{\psi}_f(t, \vec{x})$ is very similar to the mass-like perturbation considered already in Subsubsect. 2.3.4, which did not cause problems with the Shale criterion for the dynamics for any t_+, t_-. The same is true for the term $eA_0^2(t, \vec{x})Q_f(t, \vec{x})$. Indeed, a similar term was discussed before in the context of gauge transformations, see in particular (5.24). Then there was a problem with the square integrability. But now we can integrate by parts, which improves the decay.

The term $e\vec{A}(t, \vec{x})J_f(t, \vec{x})$ is problematic – it has worse behavior for large momenta than the previous two terms. The integration by parts creates a boundary term that is not square integrable unless (5.34) holds, when it vanishes.
Formally, the fields undergo a unitary dynamics given by

$$\hat{\psi}(t, \vec{x}) := \text{Exp} \left(-i \int_0^t \hat{H}(s) ds\right) \hat{\psi}(0, \vec{x}) \text{Exp} \left(-i \int_0^t \hat{H}(s) ds\right),$$

where the Hamiltonian in the Schrödinger picture, the corresponding Hamiltonian in the Heisenberg picture and the Hamiltonian in the interaction picture are

$$\hat{H}(t) = \int d\vec{x} \left(\hat{\eta}^*(\vec{x}) \hat{\eta}(\vec{x}) + i e A_0(t, \vec{x}) :\left(\hat{\psi}^*(\vec{x}) \hat{\eta}(\vec{x}) - \hat{\eta}^*(\vec{x}) \hat{\psi}(\vec{x})\right)\right) + (\partial_t - i e A_i(t, \vec{x})) \hat{\psi}^*(\vec{x})(\partial_t + i e A_i(t, \vec{x})) \hat{\psi}(\vec{x}) + m^2 \hat{\psi}^*(\vec{x}) \hat{\psi}(\vec{x}) + C(t), \quad (5.35)$$

$$\hat{H}_{\text{HP}}(t) = \int d\vec{x} \left(\hat{\eta}^*(t, \vec{x}) \hat{\eta}(t, \vec{x}) + i e A_0(t, \vec{x}) :\left(\hat{\psi}^*(t, \vec{x}) \hat{\eta}(t, \vec{x}) - \hat{\eta}^*(t, \vec{x}) \hat{\psi}(t, \vec{x})\right)\right) + (\partial_t - i e A_i(t, \vec{x})) \hat{\psi}^*(t, \vec{x})(\partial_t + i e A_i(t, \vec{x})) \hat{\psi}(t, \vec{x}) + m^2 \hat{\psi}^*(t, \vec{x}) \hat{\psi}(t, \vec{x}) + C(t), \quad (5.36)$$

$$\hat{H}_{\text{Int}}(t) = \int d\vec{x} \left(e A_\mu(t, \vec{x}) \hat{J}_\mu^\mu(t, \vec{x}) + e^2 A(t, \vec{x})^2 \hat{\psi}_\mu^\mu(t, \vec{x}) \hat{\psi}_{\mu\mu}(t, \vec{x})\right) + C(t)$$

$$= \int d\vec{x} \left(e A_\mu(t, \vec{x}) \hat{J}_\mu^\mu(t, \vec{x}) + e^2 A(t, \vec{x})^2 \hat{\psi}_\mu^\mu(t, \vec{x}) \hat{\psi}_{\mu\mu}(t, \vec{x})\right) + C(t). \quad (5.37)$$

Note that the above Hamiltonians with $C(t) = 0$ are formally the Weyl quantizations of their corresponding classical expressions. This is perhaps not obvious the way they are written. To see this we should note that equal time ψ and ψ^* commute, the same is true for equal time η and η^*, finally the mixed term can be expressed by the current where the Wick and Weyl quantizations coincide, see Subsubsection 5.1.10.

In any case, the analysis of the previous subsubsection shows that the above Hamiltonians are often ill defined and should be understood as formal expressions, even when we try renormalize them with help of the constant $C(t)$. We will need them to develop perturbation expansion for the quantum scattering operator and to compute the energy shift.

5.2.7 Quantized discrete symmetries

The discrete symmetries considered in Subsubsection 5.2.4 remain true when we decorate the fields with “hats”. Thus on the level of quantum observables the discrete symmetries are the same as in the classical case.
A separate discussion is needed concerning the implementation of these symmetries by unitary or antiunitary operators on the Hilbert space \(\Gamma_s(\mathcal{Z}_{\text{KG}}^{(+)} \oplus \mathcal{Z}_{\text{KG}}^{(-)}) \). We will discuss this for free fields, that is, for \(A = 0 \). Free fields are used to compute the scattering operator for the potential \(A \), denoted by \(\hat{S}(A) \). Therefore, our analysis will lead to some identities for \(\hat{S}(A) \).

First consider the charge conjugation. As we have already pointed out in Subsect. 5.1.8, the spaces \(\mathcal{Z}_{\text{KG}}^{(+)} \) and \(\mathcal{Z}_{\text{KG}}^{(-)} \) can be naturally identified. Therefore, we can define a unitary operator on \(\mathcal{Z}_{\text{KG}}^{(+)} \oplus \mathcal{Z}_{\text{KG}}^{(-)} \)

\[
\chi(g_1, \bar{g}_2) := (\xi CG_2, \xi C g_1).
\]

Clearly,
\[
\chi(p) = \xi C |p\rangle, \quad \chi(-p) = \xi C |p\rangle.
\]

We set \(C := \Gamma(\chi) \). We have \(C^2 = 1, \ C \Omega = \Omega, \)
\[
C \hat{\psi}(x) C^{-1} = \xi C \hat{\psi}^*(x), \quad C \hat{\psi}^*(x) C^{-1} = \xi C \hat{\psi}(x),
\]
\[
C \hat{Q}(x) C^{-1} = -\hat{Q}(x), \quad C \hat{J}(x) C^{-1} = -\hat{J}(x),
\]
\[
C \hat{S}(A) C^{-1} = \hat{S}(-A).
\]

Note that whereas on the level of observables the charge conjugation is antilinear, on the level of the Hilbert space it is linear.

Define a unitary operator on \(\mathcal{Z}_{\text{KG}}^{(+)} \oplus \mathcal{Z}_{\text{KG}}^{(-)} \)
\[
\pi(g_1, \bar{g}_2) := (\xi P g_1 \circ P, \xi P \bar{g}_2 \circ \bar{P}).
\]

(The circle denotes the composition of two functions). Clearly,
\[
\pi(E, \bar{p}) = \xi P |E, -\bar{p}\rangle, \quad \pi(-E, -\bar{p}) = \xi P |-E, \bar{p}\rangle.
\]

We have a natural implementation of the parity \(P := \Gamma(\pi) \). It satisfies \(P^2 = 1, \ P \Omega = \Omega, \)
\[
P \hat{\psi}(x) P^{-1} = \xi P \hat{\psi}(P x), \quad P \hat{\psi}^*(x) P^{-1} = \xi P \hat{\psi}^*(P x),
\]
\[
P \hat{Q}(x) P^{-1} = \hat{Q}(P x), \quad P \hat{J}(x) P^{-1} = -\hat{J}(P x),
\]
\[
P \hat{S}(A), \tilde{A} P^{-1} = \hat{S}(A^0 \circ P, -\tilde{A} \circ P).
\]

Define the following antiunitary operator on \(\mathcal{Z}_{\text{KG}}^{(+)} \oplus \mathcal{Z}_{\text{KG}}^{(-)} \):
\[
\tau(g_1, \bar{g}_2) := (\xi T g_1 \circ T, \xi T \bar{g}_2 \circ \bar{T}).
\]

Clearly,
\[
\tau(E, \bar{p}) = \xi T |E, -\bar{p}\rangle, \quad \tau(-E, -\bar{p}) = \xi T |-E, \bar{p}\rangle.
\]

Set \(T := \Gamma(\tau) \). We have \(T^2 = 1, \ T \Omega = \Omega, \)
\[
T \hat{\psi}(x) T^{-1} = \xi T \hat{\psi}^*(T x), \quad T \hat{\psi}^*(x) T^{-1} = \xi T \hat{\psi}(T x),
\]
\[
T \hat{Q}(x) T^{-1} = \hat{Q}(T x), \quad T \hat{J}(x) T^{-1} = -\hat{J}(T x),
\]
\[
T \hat{S}(A^0, \tilde{A}) T^{-1} = \hat{S}(A^0 \circ T, -\tilde{A} \circ T).
\]

Note that time reversal is antilinear both on the level of observables and on the level of the Hilbert space.
5.2.8 2N-point Green’s functions

For \(y_N, \ldots, y_1, x_N, \ldots, x_1 \), the 2N point Green’s function are defined as follows:

\[
G(y_1, \ldots, y_N; x_N, \ldots, x_1) := \left(\Omega^+ | T \left(\hat{\psi}^*(y_1) \cdots \hat{\psi}^*(y_N) \hat{\psi}(x_N) \cdots \hat{\psi}(x_1) \right) \Omega^- \right).
\]

One can organize Green’s functions in terms of the generating function:

\[
Z(g, \overline{g}) := \sum_{n=0}^{\infty} \int \cdots \int \frac{(-1)^n}{(N!)^2} G(y_1, \ldots, y_N; x_N, \ldots, x_1) \\
\times g(y_1) \cdots g(y_N) \overline{g(x_N)} \cdots \overline{g(x_1)} dy_1 \cdots dy_N dx_N \cdots dx_1 \\
= \left(\Omega^+ | \text{Exp} \left(-i \int_{-\infty}^{\infty} H(t) dt - i \int g(x) \hat{\psi}^*_a(x) dx - i \int \overline{g(x)} \hat{\psi}_a(x) dx \right) \Omega^- \right).
\]

One can retrieve Green’s functions from the generating function:

\[
G(y_1, \ldots, y_N; x_N, \ldots, x_1) = (-1)^n \frac{\partial^{2N}}{\partial g(y_1) \cdots \partial g(y_N) \partial \overline{g(x_N)} \cdots \partial \overline{g(x_1)}} Z(g, \overline{g})|_{g=\overline{g}=0}.
\]

We introduce also the amputated Green’s function

\[
G^{\text{amp}}(p'_1, \ldots, p'_N; p_N, \ldots, p_1) := ((p'_1)^2 + m^2) \cdots ((p'_N)^2 + m^2) ((p_N)^2 + m^2) \cdots ((p_1)^2 + m^2) \\
\times G(p'_1, \ldots, p'_N; p_N, \ldots, p_1).
\]

Set

\[
| -p'_n, \ldots, -p'_1, p_n, \ldots, p_1 | := b^*(p'_n) \cdots b^*(p'_1) a^*(p_n) \cdots a^*(p_1) \Omega.
\]

Scattering amplitudes are the matrix elements of the scattering operator \(S \) between plane waves. One can compute scattering amplitudes from the amputated Green’s functions:

\[
\left(p_1^+, \cdots, p_{n+}^+, -p_{1}^{-}, \cdots, -p_{n+}^{-}, | S | -p_{n-}^{-}, \cdots, -p_1^{-}, p_n^-, \cdots, p_1^- \right) \\
= \frac{G^{\text{amp}}(p_1^+, \ldots, p_{n+}^+, -p_{1}^{-}, \cdots, -p_{n+}^{-}, p_1^+, \ldots, p_{n+}^+, -p_1^-, \cdots, -p_1^-)}{(2\pi)^{3(n+n'+n''+n'-n'-n)}} \sqrt{2E(p_{n+}^+)} \cdots \sqrt{2E(p_{n+}^+)} \sqrt{2E(p_{n+}^-)} \cdots \sqrt{2E(p_{n+}^-)} \cdots
\]

where all \(p_i^\pm, p_i^{\pm'} \) are on shell.
5.2.9 Path integral formulation

Since the Hamiltonian that we consider is quadratic, we can compute exactly the generating function in terms of the Fredholm determinant on $L^2(\mathbb{R}^{1,3})$:

$$Z(g, g) = \det \left(-\square + m^2 \right) \left(-\left(\partial_\mu + ieA_\mu(x) \right) \left(\partial^\mu + ieA^\mu(x) \right) + m^2 - i0 \right)^{-1} \times \exp \left(i \int \left(\left(\partial_\mu + ieA_\mu(x) \right) \left(\partial^\mu + ieA^\mu(x) \right) + m^2 - i0 \right)^{-1} g \right)$$

$$= \det \left(\mathbb{1} + \left(-ieA_\mu(x) \partial^\mu - ie\partial^\mu A_\mu(x) + e^2 A_\mu(x) A^\mu(x) \right) D_{fr} \right)^{-1} \times \exp \left(i \int \left(-ieA_\mu(x) \partial^\mu - ie\partial^\mu A_\mu(x) + e^2 A_\mu(x) A^\mu(x) \right) D_{fr} \right)^{-1} g \right).$$

Let us stress that the above formulas are based on the Weyl quantized formal expression for the Hamiltonian (5.37), in contrast to the analogous formula (2.97) for the mass-like perturbation, where we used the Wick ordering. The expression is to a large degree ill-defined.

Formally, it can be rewritten in terms of path integrals as

$$\int \Pi \Psi^*(x) \Pi \psi(y) \exp \left(i \int \left(\mathcal{L}(x) - g(x) \psi^*(x) \right) dx \right) \int \Pi \Psi^*(y) \Pi \psi(y') \exp \left(i \int \mathcal{L}_{fr}(x) dx \right).$$

5.2.10 Feynman rules

Let us describe the Feynman rules for the charged scalar field in an external electromagnetic potential. We have 1 kind of lines and 2 kinds of vertices. Each line has an arrow. At each vertex two lines meet, one with an arrow pointing towards, one with an arrow pointing away from the vertex. The 1-photon vertex is denoted by an attached “photon line” ending with a small cross. The 2-photon vertex has two “photon lines”, each ending with a cross. Note that the “photon lines” are in this context only decorations of the vertices – there are no photons in this theory. They are usually denoted by wavy, sometimes dashed lines. For typographical reasons we use dashed lines.

To compute Green’s functions we do as follows

1. We draw all possible Feynman diagrams.
2. (i) To each 1-photon vertex we associate the factor
 $$ie(p^\nu_\nu + p^\nu_\nu)A^\nu(p^+ - p^-).$$
 (ii) To each 2-photon vertex we associate the factor
 $$-ie^2 (A^\nu A_\nu)(p^+ - p^-).$$
(3) To each line we associate the propagator

\[-iD^c_{fr}(p) = \frac{-i}{p^2 + m^2 - i\epsilon}. \]

(4) We integrate over the variables of internal lines with the measure \(\frac{d^4p}{(2\pi)^4} \).

It is immediate to derive the Feynman rules for charged scalar bosons from the path integral formula (5.38).

The derivation of the Feynman rules within the Hamiltonian formalism using the Dyson expansion of the scattering operator is relatively complicated, since one has to use not only the two-point functions of “configuration space fields”, but also the of “momentum space fields”:

\[
\begin{align*}
(\Omega | T(\hat{\psi}_{fr}(x)\hat{\psi}^*_{fr}(y))\Omega) &= -iD^c_{fr}(x - y), \\
(\Omega | T(\hat{\eta}_{fr}(x)\hat{\psi}^*_{fr}(y))\Omega) &= -i\partial_{x\nu}D^c_{fr}(x - y), \\
(\Omega | T(\hat{\psi}_{fr}(x)\hat{\eta}^*_{fr}(y))\Omega) &= -i\partial_{y\nu}D^c_{fr}(x - y), \\
(\Omega | T(\hat{\eta}_{fr}(x)\hat{\eta}^*_{fr}(y))\Omega) &= -i\partial_{x\nu}\partial_{y\mu}D^c_{fr}(x - y) - i\delta(x - y).
\end{align*}
\]

![Figure 7: Diagram for Green’s function.](image)

To compute scattering amplitudes with \(N^- \) incoming and \(N^+ \) outgoing particles we draw similar diagrams as for \(N^- + N^+ \)-point Green’s functions, where as usual the incoming lines are drawn on the right and outgoing lines on the left. The rules are changed only concerning the external lines.

(i) With each incoming external line we associate

- charged boson: \(\frac{1}{\sqrt{(2\pi)^2E(\vec{p})}} \).
• charged anti-boson: \(\frac{1}{\sqrt{(2\pi)^3 2E(p')}} \).

(ii) With each outgoing external line we associate

• charged boson: \(\frac{1}{\sqrt{(2\pi)^3 2E(p)}} \).

• charged anti-boson: \(\frac{1}{\sqrt{(2\pi)^3 2E(p')}} \).

5.2.11 Vacuum energy

Formally, the vacuum energy can be computed exactly:

\[E := i \log(\Omega|\hat{\Sigma}\Omega) = i \log Z(0,0) \]

\[= i \text{Tr} \left(\log \left(-\square + m^2 - i0 \right) - \log \left(-\left(\partial_\mu + ieA_\mu(x) \right) \left(\partial^\mu + ieA^\mu(x) \right) + m^2 - i0 \right) \right) \]

\[= -i \text{Tr} \left(\log \left(\mathbb{I} + (-ieA_\mu(x)\partial^\mu - ie\partial^\mu A_\mu(x) + e^2 A_\mu(x)A^\mu(x))D_\ell \right) \right) \]

\[= i \sum_{n=1}^{\infty} \frac{D_\ell}{n_\ell}. \quad (5.39) \]

Here \(D_\ell \) is the value of the loop \(\ell \) and \(n_\ell \) is its symmetry factor. Any such a loop is described by a cyclic sequence \((\alpha_1, \ldots, \alpha_n) \), where \(\alpha_j = 1, 2 \) correspond to 1— and 2—photon vertices. The symmetry factor \(n_\ell \) is the order of the group of the automorphisms of this loop. The loop is oriented, hence this group is always a subgroup of rotations. In particular, if the loop has \(n \) identical vertices, the group is \(\mathbb{Z}_n \) and \(n_\ell = n \).
Actually, it is better to organize (5.39) not in terms of the number of vertices on a loop but in terms of the order wrt e. Using the unitary charge conjugation operator C and $C\Omega = \Omega$ we obtain

$$(\Omega|\hat{S}(A)|\Omega) = (\Omega|C\hat{S}(A)C^{-1}\Omega) = (\Omega|\hat{S}(-A)|\Omega)$$

Therefore, diagrams of an odd order in e vanish. This is the content of Furry’s theorem for charged bosons. Hence (5.39) can be written as

$$E = \sum_{n=1}^{\infty} e^{2n} E_n.$$

5.2.12 Pauli-Villars renormalization

The lowest nonzero loop diagrams are of the second order in e, and hence of the first order in $\alpha = \frac{e^2}{4\pi}$. There are two kinds of loops of this order: a loop with two 1-photon vertices with symmetry factor 2 and a loop with a 2-photon vertex with symmetry factor 1, see the Fig. 9. Their contribution has the form

$$E_1 = \int \frac{dp}{(2\pi)^4} A'^{-}(p) A^\nu(p) \Pi_{\mu\nu}(p).$$

(5.40) defines the vacuum energy tensor $\Pi_{\mu\nu}(p)$, which, unfortunately, is divergent if computed naively.

We will first compute $\Pi_{\mu\nu}$ using the Pauli-Villars regularization. The ultraviolet problem is more severe now than it was for the mass-like perturbation, where a single additional fictitious particle sufficed to make the expressions well defined. Now we need to choose several additional fields with masses m_1, \ldots and coefficients in front of the loops C_1, \ldots. The physical field has the mass $m_0 := m$ and the coefficient $C_0 := 1$. We choose the coefficients C_i so that the sums used in the following computations are integrable – 3 fictitious fields suffice for this purpose.

In the following formula we have a contribution of the loop with 2 single-photon vertices and twice the contribution of the loop with a single 2-photon vertex. It is convenient to write the latter as the sum of two terms, equal to one another.
\[2\Pi_{\mu\nu}(p) = i e^2 \int \frac{d^4q}{(2\pi)^4} \sum_i C_i \left(\frac{4q_{\mu}q_{\nu}}{((q + \frac{i}{2}p)^2 + m_i^2 - i0)((q - \frac{i}{2}p)^2 + m_i^2 - i0)} \right) \times \exp \left(-i(\alpha_1 + \alpha_2)(q^2 + \frac{1}{4}p^2 + m_i^2) - i(\alpha_1 - \alpha_2)qp + i2q \right) \bigg|_{z=0} \]

\[= -\frac{e^2}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \sum_i C_i \left(\frac{1}{(\alpha_1 + \alpha_2)^2} \left(4\partial_{z_{\nu}}\partial_{z_{\mu}} + 2g_{\mu\nu}(-\partial_z^2 + \frac{1}{4}p^2 + m_i^2) \right) \right) \times \exp \left(-i(\alpha_1 + \alpha_2)(\frac{1}{4}p^2 + m_i^2) + i\frac{1}{4(\alpha_1 + \alpha_2)}((\alpha_1 - \alpha_2)p - z)^2 \right) \bigg|_{z=0} \]

\[= -\frac{e^2}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \sum_i C_i \left(\frac{(\alpha_1 - \alpha_2)^2}{(\alpha_1 + \alpha_2)^2} \left(g_{\mu\nu}p^2 - p_{\mu}p_{\nu} \right) \right) \times \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2}p^2 \right) \]

\[= (-g_{\mu\nu}p^2 + p_{\mu}p_{\nu})2\Pi_{\mu\nu}^{\text{d}}(p^2) + 2\Pi_{\mu\nu}^{\text{d}}(p^2). \]

We used the identities (A.14), (A.15) and (A.16).
To compute the gauge invariant part we proceed similarly as in Subsubsec. 2.3.9:

The gauge dependent part of the vacuum energy tensor vanishes:

\[-\Pi^{\text{gd}}_{\mu\nu}(p^2) = \sum_i C_i \frac{e^2}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2} p^2 \right) \]

\[\times g_{\mu\nu} \left(\frac{\alpha_1\alpha_2 p^2}{(\alpha_1 + \alpha_2)^4} - \frac{1}{(\alpha_1 + \alpha_2)^3} + \frac{m_i^2}{(\alpha_1 + \alpha_2)^2} \right) \]

\[= \sum_i C_i \frac{e^2}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2} p^2 \right) \]

\[\times \left. g_{\mu\nu} \frac{\rho(\alpha_1 + \alpha_2)^3}{\rho(\alpha_1 + \alpha_2)^3} \right|_{\rho=1} \]

\[= \sum_i C_i \frac{e^2}{(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2} p^2 \right) \]

\[\times \left(\frac{1}{(\alpha_1 + \alpha_2)^3} \right) = 0. \]

To compute the gauge invariant part we proceed similarly as in Subsec. 2.3.9: we insert

\[1 = \int_0^\infty d\rho \delta(\rho - \alpha_1 - \alpha_2), \]

and then change the variables as \(\alpha_1 = \rho \frac{1-v}{2}, \alpha_2 = \rho \frac{1+v}{2}\), so that \(d\alpha_1 d\alpha_2 = \frac{1}{2} \rho d\rho d\rho\). We also use the symmetry \(v \mapsto -v\) to restrict the integration from \([-1, 1]\) to \([0, 1]\) and at the end we use the identity (A.17).

\[\Pi^{\text{g}}(p^2) = -\frac{e^2}{2(4\pi)^2} \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \sum_i C_i \frac{(\alpha_1 - \alpha_2)^2}{(\alpha_1 + \alpha_2)^4} \]

\[\times \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2} p^2 \right) \]

\[= -\frac{e^2}{2(4\pi)^2} \int_0^1 dv \int_0^\infty dp \sum_i C_i v^2 \exp \left(-i(\frac{m_i^2 + (1 - v^2)p^2}{4}) \right) \]

\[= \frac{e^2}{2(4\pi)^2} \int_0^1 dv \sum_i C_i v^2 \log \left(\frac{m_i^2 + (1 - v^2)p^2}{4} - i0\right) \]

\[= \frac{e^2}{2(4\pi)^2} \int_0^1 dv \sum_i C_i \left(v^2 \log \left(1 + \frac{(1 - v^2)p^2}{4m_i^2} - i0\right) + \frac{1}{3} \log m_i^2 \right). \]

We set \(M^2 := -\sum_i C_i m_i^2\). We define

\[\Pi^{\text{ren}}(p^2) := \lim_{M \to \infty} \left(\Pi^{\text{g}}(p^2) + \frac{e^2}{6 \cdot (4\pi)^2} \log \frac{M^2}{m^2} \right) \quad (5.41) \]

\[= \frac{e^2}{2(4\pi)^2} \int_0^1 dv v^2 \log \left(1 + \frac{(1 - v^2)p^2}{4m^2} - i0\right). \]

141
Using (A.19), and then analytic continuation, we obtain
\[
\Pi^{\text{ren}}(p^2) = e^2 2 \cdot 3(4\pi)^2 \left(\frac{(p^2 + 4m^2)^{3/2}}{(p^2)^{3/2}} \log \frac{\sqrt{p^2 + 4m^2} + \sqrt{p^2}}{\sqrt{p^2 + 4m^2} - \sqrt{p^2}} - \frac{2}{3} - 2 \left(\frac{4m^2}{p^2} + 1 \right) \right), \quad 0 < p^2;
\]
\[
= e^2 2 \cdot 3(4\pi)^2 \left(\frac{(p^2 + 4m^2)^{3/2}}{(p^2)^{3/2}} - 2 \arctan \frac{\sqrt{p^2}}{\sqrt{p^2 + 4m^2}} \frac{\sqrt{p^2}}{\sqrt{p^2} + 4m^2} - \frac{2}{3} - 2 \left(\frac{4m^2}{p^2} + 1 \right) \right), \quad -4m^2 < p^2 < 0;
\]
\[
= e^2 2 \cdot 3(4\pi)^2 \left(\frac{(-p^2 - 4m^2)^{3/2}}{(-p^2)^{3/2}} \log \frac{\sqrt{-p^2 - 4m^2} + \sqrt{-p^2}}{\sqrt{-p^2 - 4m^2} - \sqrt{-p^2}} - i\pi \right) - \frac{2}{3} - 2 \left(\frac{4m^2}{p^2} + 1 \right), \quad p^2 < -4m^2.
\]

Note that the Fourier transform of the electromagnetic field is
\[
F_{\mu\nu}(p) = p_\mu A_\nu(p) - p_\nu A_\mu(p).
\]
Hence
\[
-F_{\mu\nu}(p)F^{\mu\nu}(p) = -p^2 |A(p)|^2 + |pA(p)|^2.
\]
Thus the renormalized 1st order contribution to the vacuum energy is
\[
E_1^{\text{ren}} = -\int \frac{dp}{(2\pi)^4} \Pi^{\text{ren}}(p^2) F_{\mu\nu}(p) F^{\mu\nu}(p).
\]

5.2.13 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum energy. We start with computing just the imaginary part of \(\Pi^{\text{gi}}(p^2)\), which does not require a regularization, so that we obtain \(\text{Im}\Pi^{\text{ren}}(p^2)\) from the very beginning:
\[
\text{Im}\Pi^{\text{ren}}(p^2) = \frac{e^2}{2(4\pi)^2} \int_0^1 \! dv^2 (-\pi) \theta \left(-1 - \frac{(1 - v^2)p^2}{4m^2} \right)
\]
\[
= -\frac{e^2}{2 \cdot 3(4\pi)^2} \frac{\pi}{(-p^2)^{3/2}} \left| -p^2 - 4m^2 \right|^{3/2}.
\]

We can obtain the real part by using the fact that \(\Pi^{\text{ren}}(0) = 0\) and the once subtracted dispersion relations for the lower complex halfplane, as in (2.98):
\[
\Pi^{\text{ren}}(p^2) = \frac{1}{\pi} \int_{-\infty}^{-4m^2} \! ds \text{Im}\Pi^{\text{ren}}(s) \left(\frac{1}{s - p^2} - \frac{1}{s} \right).
\]
Note that \((5.45)\) is nonzero only for \(p^2 < -4m^2\), and then it is negative. For such \(p\) we can find a coordinate system with \(p = (p^0, \vec{0})\). Then

\[-g_{\mu\nu}p^2 + p_\mu p_\nu = p_0^2 (g_{\mu\nu} + \delta_\mu_0 \delta_\nu_0)\]

and

\[-F_{\mu\nu}(p^0, \vec{0})F^{\mu\nu}(p^0, \vec{0}) = p_0^2 |A(p^0, \vec{0})|^2. \quad (5.47)\]

Thus the imaginary part of \((5.44)\) is negative (and is responsible for the decay).

5.2.14 Dimensional renormalization

We present an alternative computation of \(\Pi_{\mu\nu}^{\text{ren}}\) based on the dimensional regularization. We use the Euclidean formalism.

\[
2\Pi_{\mu\nu}^E(p) = -e^2 \int \frac{d^4 q}{(2\pi)^4} \left(\frac{4q_\mu q_\nu}{((q + \frac{1}{2}p)^2 + m^2)((q - \frac{1}{2}p)^2 + m^2)} - \frac{2g_{\mu\nu}}{q^2 + m^2} \right)
\]

\[
= -e^2 \int \frac{d^4 q}{(2\pi)^4} \frac{4q_\mu q_\nu - 2g_{\mu\nu}(q^2 + \frac{1}{4}p^2 + m^2)}{((q + \frac{1}{2}p)^2 + m^2)((q - \frac{1}{2}p)^2 + m^2)}
\]

\[
= -e^2 \frac{1}{2} \int_{-1}^1 dv \int \frac{d^4 q}{(2\pi)^4} \frac{4q_\mu q_\nu - 2g_{\mu\nu}(q^2 + \frac{1}{4}p^2 + m^2)}{(q + \frac{v^2}{2} + m^2 + vqp + v^2 p_\mu p_\nu - g_{\mu\nu} \frac{v^2}{2})}
\]

\[
= -e^2 \frac{1}{2} \int_{-1}^1 dv \int \frac{d^4 q}{(2\pi)^4} \frac{4q_\mu q_\nu - 2g_{\mu\nu}(q^2 + \frac{1}{4}p^2 + m^2) + v^2 (p_\mu p_\nu - g_{\mu\nu} \frac{v^2}{2})}{(q + \frac{v^2}{2} + m^2 + vqp + v^2 p_\mu p_\nu - g_{\mu\nu} \frac{v^2}{2})}
\]

\[
\int \frac{d^4 q}{(2\pi)^4} \text{ is replaced by } \mu^{4-d} \frac{\Omega_d}{(2\pi)^d} \int_0^\infty |q|^{d-1} dq,
\]

\[
\int q_\mu q_\nu \frac{d^4 q}{(2\pi)^4} \text{ is replaced by } \mu^{4-d} \frac{\Omega_d}{d(2\pi)^d} g_{\mu\nu} \int_0^\infty |q|^{d+1} dq,
\]

Thus the imaginary part of \((5.44)\) is negative (and is responsible for the decay).
where Ω_d is given by (A.22). Thus (5.48) is replaced by

$$\Pi_{E,d}^{\mu\nu}(p^2) = -e^2 \mu^{4-d} \Omega_d \int_0^1 dv \int_0^\infty |q^{d-1}| dq \times \left(\frac{4}{4-d} g_{\mu\nu} q^2 - 2 g_{\mu\nu} \left(\frac{1}{4} p^2 + m^2 \right) + v^2 (p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{2}) \right) \left(q^2 + \frac{p^2}{2} (1 - v^2) + m^2 \right)^{2-d/2} \Gamma(2-d/2) \times \left(2 g_{\mu\nu} \left(\frac{p^2}{4} (1 - v^2) + m^2 \right) - 2 g_{\mu\nu} \left(\frac{1}{4} p^2 + m^2 \right) + v^2 (p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{2}) \right)$$

$$= -\frac{e^2}{(4\pi)^2} \int_0^1 dv \left(\frac{\mu^2 4\pi}{p^2} \right)^{2-d/2} \Gamma(2-d/2) \times \left(2 g_{\mu\nu} \left(\frac{p^2}{4} (1 - v^2) + m^2 \right) - 2 g_{\mu\nu} \left(\frac{1}{4} p^2 + m^2 \right) + v^2 (p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{2}) \right)$$

$$\simeq -\frac{e^2}{(4\pi)^2} \int_0^1 dv \left(-\gamma + \log \mu^2 4\pi - \log \left(\frac{p^2}{4} (1 - v^2) + m^2 \right) \right) v^2 (p_\mu p_\nu - g_{\mu\nu} p^2)$$

We can now renormalize (5.51):

$$\Pi_{E,\text{ren}}^{\mu\nu}(p^2)(p_\mu p_\nu - g_{\mu\nu} p^2)$$

$$= \lim_{d \to 4} \left(\Pi_{E,d}^{\mu\nu}(p^2) - \Pi_{E,d}^{\mu\nu}(0) \right)$$

$$= \frac{1}{2(4\pi)^2} \int_0^1 dv v^2 \log \left(1 + \frac{p^2}{4m^2} (1 - v^2) \right) (p_\mu p_\nu - g_{\mu\nu} p^2).$$

This coincides with the Wick rotated result obtained by the Pauli-Villars method.

5.2.15 Abstract gauge covariance

Let us adopt for a moment an abstract setting. Let $\mathbb{R} \ni t \mapsto \hat{H}(t)$ be a time-dependent Hamiltonian generating the dynamics

$$\hat{U}(t_+, t_-) := \text{Exp} \left(-i \int_{t_-}^{t_+} \hat{H}(s) ds \right).$$

Let $t \mapsto \hat{W}(t)$ be a family of unitary operators that have the interpretation of time dependent gauge transformations. We will assume that $\hat{W}(t)$ converges to identity as $t \to \pm \infty$ and is generated by a time dependent family of self-adjoint operators $t \mapsto \hat{R}(t)$, so that

$$\hat{W}(t) := \text{Exp} \left(-i \int_{-\infty}^t \hat{R}(s) ds \right).$$
Then
\[
\hat{W}(t_+)\hat{U}(t_+, t_-)\hat{W}^*(t_-) = \text{Te}xp\left(-i\int_{t_-}^{t_+} \hat{H}_R(s) ds\right),
\]
where the \textit{gauge-transformed Hamiltonian} is
\[
\hat{H}_R(t) := \hat{W}(t)\hat{H}(t)\hat{W}^*(t) + \hat{R}(t).
\]

5.2.16 Ward identities

Let us go back to the setting of quantized charged scalar fields. The gauge invariance implies strong conditions on the scattering operator and Green’s functions.

Let \(\hat{S}(A)\) denote the scattering operator for the external potential \(A\). Let \(\chi\) be a Schwartz function on \(\mathbb{R}^{1,3}\). It is easy to see that the scattering operator is gauge-invariant:
\[
\hat{S}(A) = \hat{S}(A + \partial\chi).
\] (5.53)

Differentiating this identity w.r.t. \(\chi\) and setting \(\chi = 0\) we obtain one of versions of the \textit{Ward(-Takahashi) identities for the scattering operator}:
\[
\partial_y \frac{\partial}{\partial A_\mu(y)} \hat{S}(A) = 0.
\]

In the momentum representation these identities read
\[
p_\mu \frac{\partial}{\partial A_\mu(p)} \hat{S}(A) = 0.
\]

We will write \(G(A; x'_1, \ldots, x'_N; x_N, \ldots, x_1)\) to express the dependence of Green’s functions on the external potential \(A\). We have
\[
G(A + \partial\chi; x'_1, \ldots, x'_N; x_N, \ldots, x_1) = G(A; x'_1, \ldots, x'_N; x_N, \ldots, x_1) e^{i\chi(x'_1) + \cdots + i\chi(x'_N) - i\chi(x_N) - \cdots - i\chi(x_1)}.
\] (5.54)

By differentiating with respect to \(\chi(y)\) and setting \(\chi = 0\) we obtain the \textit{Ward(-Takahashi) identities for Green’s functions} in the position representation:
\[
\partial_y \frac{\partial}{\partial A_\mu(y)} G(A; x'_1, \ldots, x'_N; x_N, \ldots, x_1)
= \left(i \sum_{j=1}^N \delta(y - x'_j) - i \sum_{j=1}^N \delta(y - x_j)\right) G(A; x'_1, \ldots, x'_N; x_N, \ldots, x_1).
\]

In the momentum representation these identities read
\[
q_\mu \frac{\partial}{\partial A_\mu(q)} G(A; p'_1, \ldots, p'_N; p_N, \ldots, p_1)
= \sum_{j=1}^N G(A; p'_1, \ldots, p'_j - q, \ldots, p'_N; p_N, \ldots, p_1) +
- \sum_{j=1}^N G(A; p'_1, \ldots, p'_j; p_N, \ldots, p_j + q, \ldots, p_1).
\]
(5.33) and (5.34) are essentially obvious if we use the path integral expressions. It is instructive to derive these statements also in the Hamiltonian formalism. This derivation is not fully rigorous, since transformations cannot be implemented, and in general the dynamics does not have a well defined Hamiltonian.

Formally, we define the gauge transformation as a unitary operator

\[\hat{W}(\chi, t) := \exp \left(-ie \int \chi(t, \vec{x}) \hat{Q}(\vec{x}) \right) \]

\[= \exp \left(-ie \int_{-\infty}^{t} ds \int d\vec{x} \chi(s, \vec{x}) \hat{Q}(\vec{x}) \right) \]

\[= \text{Texp} \left(-ie \int_{-\infty}^{t} ds \int d\vec{x} \chi(s, \vec{x}) \hat{Q}(\vec{x}) \right) . \]

(5.55)

To see the second identity it is enough to note that \([\hat{Q}(\vec{x}), \hat{Q}(\vec{y})] = 0 \), hence we can replace \(\text{Texp} \) with \(\exp \) in (5.55). Clearly,

\[\hat{W}(\chi, t) \hat{\psi}(\vec{x}) \hat{W}(\chi, t)^* = e^{i\chi(t, \vec{x})} \hat{\psi}(\vec{x}), \]

\[\hat{W}(\chi, t) \hat{\eta}(\vec{x}) \hat{W}(\chi, t)^* = e^{i\chi(t, \vec{x})} \hat{\eta}(\vec{x}). \]

Let \(\hat{H}(A, t) \) denote (5.35), that is the Hamiltonian in the Schrödinger picture. Let \(\hat{U}(A, t_+, t_-) \) be the corresponding dynamics.

\[\hat{W}(\chi, t) \hat{H}(t, A) \hat{W}(\chi, t)^* + e \int \chi(t, \vec{x}) \hat{Q}(\vec{x}) d\vec{x} \]

\[= \int d\vec{x} \left(\hat{\eta}^*(\vec{x}) \hat{\eta}(\vec{x}) - ie \left(A_0(t, \vec{x}) + \chi(t, \vec{x}) \right) (\hat{\psi}^*(\vec{x}) \hat{\eta}(\vec{x}) - \hat{\eta}^*(\vec{x}) \hat{\psi}(\vec{x})) \right) \]

\[+ \left(\partial_t - ie A_0(t, \vec{x}) \right) e^{ie \chi(t, \vec{x})} \hat{\psi}^*(\vec{x}) (\partial_t + ie A_0(t, \vec{x})) e^{-ie \chi(t, \vec{x})} \hat{\psi}(\vec{x}) \]

\[+ m^2 \hat{\psi}^*(\vec{x}) \hat{\psi}(\vec{x}) \right) + C(t) \]

\[= \hat{H}(t, A + \partial \chi). \]

Therefore, by (5.52), we have the following identity, which expresses the gauge covariance:

\[\hat{W}(\chi, t_+) \hat{U}(A, t_+, t_-) \hat{W}^*(\chi, t_-) = \hat{U}(A + \partial \chi, t_+, t_-). \]

(5.56)

Using that \(\lim_{t \to \pm \infty} \hat{W}(\chi, t) = \mathbb{I} \), we obtain

\[\hat{S}(A + \partial \chi) = \lim_{t_+, t_- \to \infty} e^{it_+ \hat{H}_0} \hat{U}(A + \partial \chi, t_+, t_-) e^{-it_- \hat{H}_0} \]

\[= \lim_{t_+, t_- \to \infty} e^{it_+ \hat{H}_0} \hat{W}(\chi, t_+) \hat{U}(A, t_+, t_-) \hat{W}^*(\chi, t_-) e^{-it_- \hat{H}_0} \]

\[= \hat{S}(A), \]

which implies (5.33). (5.34) is a consequence of (5.56).
5.2.17 Energy shift

Suppose that the potential does not depend on time and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto A(\vec{x}) = [A_\mu(\vec{x})] \). We assume that \(A_0^2 \leq m^2 \). The naive (Weyl ordered) Hamiltonian is

\[
\hat{H} = \int d\vec{x} \left(\hat{\eta}^*(\vec{x})\hat{\eta}(\vec{x}) + i e A_0(\vec{x})(\hat{\psi}^*(\vec{x})\hat{\eta}(\vec{x}) - \hat{\eta}^*(\vec{x})\hat{\psi}(\vec{x})) + m^2 \hat{\psi}^*(\vec{x})\hat{\psi}(\vec{x}) \right). \tag{5.57}
\]

It can be compared with the Weyl ordered free Hamiltonian

\[
\hat{H}_f = \int d\vec{x} \left(\hat{\eta}^*(\vec{x})\hat{\eta}(\vec{x}) + \partial_i \hat{\psi}^*(\vec{x})\partial_i \hat{\psi}(\vec{x}) + m^2 \hat{\psi}^*(\vec{x})\hat{\psi}(\vec{x}) \right).
\]

We can apply the formula (A.11) to compute the naive energy shift (the difference between the ground state energies of \(\hat{H} \) and \(\hat{H}_f \)):

\[
\text{Tr} \left(\sqrt{-(\partial + ieA)^2 + m^2} - \sqrt{-(\partial)^2 + m^2} \right) = \sum_{n=1}^{\infty} e^{2n} E_n(A).
\]

In the above sum all the terms with \(n \geq 2 \) are well defined. The term with \(n = 1 \) needs renormalization. The renormalized energy shift is

\[
E^{\text{ren}} = -e^2 \int \Pi^{\text{ren}}(\vec{p}) F_{\mu\nu}(\vec{p}) F^{\mu\nu}(\vec{p}) \frac{d\vec{p}}{(2\pi)^3} + \sum_{n=2}^{\infty} e^{2n} E_n(A),
\]

where \(\Pi^{\text{ren}} \) was introduced in (5.41).

6 Dirac fermions

In this section we study the Dirac equation

\[
(-i\gamma^\mu \partial_\mu + m)\psi(x) = 0
\]

and its quantization. Here, \(m \geq 0 \) and \(\gamma^\mu \) are Dirac matrices.

Note that the Dirac equation is complex, and therefore it describes charged particles. In particular, one can consider the Dirac equation in the presence of an external potential \([A^\mu(x)] \):

\[
(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) + m)\psi(x) = 0.
\]

The theory of Dirac fermions is in many ways parallel to the theory of charged scalar bosons described in Sect. 5.
6.1 Free Dirac fermions

6.1.1 Dirac spinors

We assume the following conventions for Dirac matrices γ^μ, $\mu = 0, \ldots, 3$:

\[
[\gamma^\mu, \gamma^\nu]_+ = -2g^{\mu\nu},
\gamma^0* = \gamma^0, \quad \gamma^i* = -\gamma^i, \quad i = 1, 2, 3.
\]

Sometimes we will also need

\[
\gamma^5 := -i\gamma^0\gamma^1\gamma^2\gamma^3.
\]

It satisfies

\[
[\gamma^5, \gamma^\mu]_+ = 0, \quad (\gamma^5)^2 = \mathbb{1}, \quad \gamma^5* = \gamma^5.
\]

All irreducible representations of Dirac matrices are equivalent and act on the space \mathbb{C}^4. One of the most common is the so-called Dirac representation

\[
\gamma^0 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \vec{\gamma} = \begin{bmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{bmatrix}, \quad \gamma^5 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

Here is the Majorana representation:

\[
\gamma^0 = i\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \gamma^1 = i\begin{bmatrix} 0 & \sigma_1 \\ \sigma_1 & 0 \end{bmatrix}, \quad \gamma^2 = i\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \gamma^3 = i\begin{bmatrix} 0 & \sigma_3 \\ \sigma_3 & 0 \end{bmatrix}, \quad \gamma^5 = -\begin{bmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{bmatrix},
\]

and the spinor representation:

\[
\gamma^0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \vec{\gamma} = \begin{bmatrix} 0 & -\vec{\sigma} \\ \vec{\sigma} & 0 \end{bmatrix}, \quad \gamma^5 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

Above we used Pauli matrices $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ defined by

\[
\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

and satisfying $\sigma_i \sigma_j = 2\epsilon_{ijk}\sigma_k$.

Note useful (representation independent) trace identities:

\[
\text{Tr} \mathbb{1} = 4, \\
\text{Tr}(a\gamma)(b\gamma) = -4ab, \\
\text{Tr}(a\gamma)(b\gamma)(c\gamma)(d\gamma) = 4(ab)(cd) - 4(ac)(bd) + 4(ad)(bc).
\]

148
We also introduce the spin operators

\[\sigma^{\mu\nu} := \frac{i}{2} \{ \gamma^\mu, \gamma^\nu \}. \]

In the Dirac representation

\[\sigma^0_i = \frac{1}{2} \begin{bmatrix} 0 & i\sigma^i \\ i\sigma^i & 0 \end{bmatrix}, \]

\[\sigma^{ij} = \epsilon^{ijk} \frac{1}{2} \begin{bmatrix} 0 & \sigma^k \\ \sigma^k & 0 \end{bmatrix}. \] (6.1)

The operators \(\sigma^{\mu\nu} \) form a representation of the Lie algebra \(so(1,3) \). It is the infinitesimal version of the representation \(\text{Spin}^+(1,3) \ni \tilde{\Lambda} \mapsto S(\tilde{\Lambda}). \)

6.1.2 Special solutions and Green’s functions

Note the identity

\[-(-2 + m^2)\zeta(x) = \delta(x). \]

Therefore, if

\[(-\Box + m^2)\zeta(x) = 0, \]

then \((i\gamma^\mu \partial_\mu + m)\zeta(x)\) is a solution of the homogeneous Dirac equation:

\[(-i\gamma^\mu \partial_\mu + m)(i\gamma^\mu \partial_\mu + m)\zeta(x) = 0. \]

In particular, we have special solutions of the homogeneous Dirac equation

\[S^{(\pm)}(x) = (i\gamma \partial + m)D^{(\pm)}(x), \]

\[S(x) = (i\gamma \partial + m)D(x), \]

where \(D^{(\pm)} \) and \(D \) are the special solutions of the Klein-Gordon equation introduced before. We have \(\text{supp} S \subset J. \)

If

\[(-\Box + m^2)\zeta(x) = \delta(x), \]

then \((i\gamma^\mu \partial_\mu + m)\zeta(x)\) is a Green’s function of the Dirac equation, that is

\[(-i\gamma \partial + m)(i\gamma \partial + m)\zeta(x) = \delta(x). \]

In particular, a special role is played by the Green functions

\[S^{\pm}(x) = (i\gamma \partial + m)D^{\pm}(x), \]

\[S^{c}(x) = (i\gamma \partial + m)D^{c}(x), \]

where \(D^{\pm} \) and \(D^{c} \) are the Green’s functions of the Klein-Gordon equation introduced before. We have \(\text{supp} S^{\pm} \subset J^{\pm}. \)
The fermionic propagators satisfy the identities

\[
S(x) = -S(-x) = S^+(x) + S^-(x)
\]
\[
= S^+(x) - S^-(x),
\]
\[
S^+(x) = S^-(x),
\]
\[
S^+(x) = S^-(x) = \theta(x^0)S(x),
\]
\[
S^-(x) = \theta(-x^0)S(x),
\]
\[
S^c(x) = S^c(-x) = \theta(x^0)S^c(x) - \theta(-x^0)S^c(x).
\]

Recall that the bosonic causal Green’s function in the momentum representation can be written as

\[
D^c(p) = \frac{1}{p^2 + m^2 - i0}.
\]

The fermionic causal Green’s function can be written in a similar way:

\[
S^c(p) = -\frac{\gamma p + m}{p^2 + m^2 - i0}
\]
\[
= \frac{1}{\gamma p + m - i\epsilon},
\]

where \(\epsilon\) is an infinitesimal number with \(\text{sgn} \epsilon = \text{sgn} p\gamma\).

6.1.3 Space of solutions

We set \(\alpha_i = \gamma^0\gamma^i, i = 1, \ldots, 3,\) and \(\beta := \gamma^0\). We obtain matrices satisfying

\[
\beta^2 = \mathbb{1}, \quad (\alpha_i)^2 = \mathbb{1}, \quad i = 1, \ldots, 3;
\]
\[
\beta \alpha_i + \alpha_i \beta = 0, \quad \alpha_i \alpha_j + \alpha_j \alpha_i = 0, \quad 1 \leq i < j \leq 3;
\]
\[
\beta^* = \beta, \quad \alpha_i^* = \alpha_i, \quad i = 1, \ldots, 3.
\]

In the Dirac representation we have

\[
\beta = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \bar{\alpha} = \begin{bmatrix} 0 & \bar{\sigma} \\ \bar{\sigma} & 0 \end{bmatrix}.
\]

Using \(\bar{\alpha}, \beta\) we can rewrite the Dirac equation in the form of an evolution equation:

\[
i\partial_t \zeta(t, \bar{x}) = D\zeta, \quad D := \bar{\alpha}p + m\beta.
\]

Note that \(D\) is essentially self-adjoint on \(C_c^\infty(\mathbb{R}^3, \mathbb{C}^4)\).

The following theorem describes the Cauchy problem for the Dirac equation:

Theorem 6.1 Let \(\vartheta \in C_c^\infty(\mathbb{R}^3, \mathbb{C}^4)\). Then there exists a unique \(\zeta \in C_c^\infty(\mathbb{R}^{1,3})\) that solves the Dirac equation with initial conditions \(\zeta(0, \bar{x}) = \vartheta(\bar{x})\). It satisfies \(\text{supp} \zeta \subset J(\text{supp} \vartheta)\) and is given by

\[
\zeta(t, \bar{x}) = -i \int_{\mathbb{R}^3} S(t, \bar{x} - \bar{y})\beta \vartheta(\bar{y})d\bar{y}.
\]

\[150\]
Let W_D be the space of space-compact solutions of the Dirac equation, that is $\zeta \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4)$ satisfying $(-i\gamma^\mu \partial_\mu + m)\zeta = 0$.

For $\zeta_1, \zeta_2 \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4)$ set

$$j^\mu(\zeta_1, \zeta_2, x) := \overline{\zeta_1(x)} \beta \gamma^\mu \zeta_2(x).$$

We easily check that

$$\partial_\mu j^\mu(x) = (-i\gamma^\partial + m)\zeta_1(x)\beta \zeta_2(x) - \zeta_1(x)\beta (-i\gamma^\partial + m)\zeta_2(x).$$

Therefore, if $\zeta_1, \zeta_2 \in W_D$, then j^μ is a conserved current:

$$\partial_\mu j^\mu(x) = 0.$$

For $\zeta_1, \zeta_2 \in W_D$, the flux of j^μ does not depend on the choice of a Cauchy hypersurface. It defines a scalar product on W_D

$$\overline{\zeta}_1 \cdot \zeta_2 = \int_S j^\mu(\zeta_1, \zeta_2, x) ds_\mu(x).$$

In terms of the Cauchy data this scalar product coincides with the natural scalar product on $L^2(\mathbb{R}^3, \mathbb{C}^4)$:

$$\overline{\zeta}_1 \cdot \zeta_2 = \int \overline{\zeta_1(t, \vec{x})}\zeta_2(t, \vec{x}) d\vec{x}. $$

The group $\mathbb{R}^{1,3} \rtimes Spin^+(1,3)$, acts unitarily on W_D by

$$r_{(a, \Lambda)}(\zeta)(x) := S(\bar{\Lambda})\zeta((a, \Lambda)^{-1}x).$$

We can also parametrize solutions of the Dirac equation by space-time functions. In fact, for any $f \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4)$, let us write

$$S * f(x) := \int S(x - y)f(y)dy.$$

Theorem 6.2

1. For any $f \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4)$, $S * f \in W_D$.
2. Every element of W_D is of this form.
3. $\overline{S * f_1} \cdot S * f_2 = \int \overline{f_1(x)}\beta S(x - y)f_2(y)dydx.$
4. If supp$f_2 \times$ suppf_2, then $\overline{S * f_1} \cdot S * f_2 = 0.$

6.1.4 Classical fields

We will also consider the space dual to W_D, denoted W_D^\ast. In particular, for $x \in \mathbb{R}^{1,3}$, $\bar{\psi}(x), \bar{\psi}^\ast(x)$ will denote the functionals on W_D with values in \mathbb{C}^4, called classical Dirac fields, given by

$$\langle \psi(x)|\zeta \rangle := \zeta(x), \quad \langle \psi^\ast(x)|\zeta \rangle := \overline{\zeta(x)}.$$
By (6.3),
\[\psi(t, \vec{x}) = -i \int S(t, \vec{x} - \vec{y}) \beta \psi(0, \vec{y}) d\vec{y}. \]

It is convenient to introduce the Dirac conjugate of the field \(\psi \):
\[\tilde{\psi}(x) := \beta \psi^*(x). \]

(In a large part of the physics literature, \(\tilde{\psi} \) is denoted \(\bar{\psi} \).)

On \(W^D_D \) we have the group action \(\mathbb{R}^{1,3} \times \text{Spin}^\uparrow(1,3) \ni (a, \Lambda) \mapsto r_{(a,\Lambda)}^{-1}: \)
\[r_{(a,\Lambda)}^{-1} \psi(x) = S(\Lambda^{-1}) \psi(\Lambda x + a). \]

6.1.5 Smearred fields

We can use the scalar product to pair solutions. For \(\zeta \in W_D \), the corresponding spatially smeared fields are the functionals on \(W_D \) given by
\[\langle \psi(\zeta) | \rho \rangle := \zeta \cdot \rho, \]
\[\langle \psi^*(\zeta) | \rho \rangle := \zeta \cdot \rho, \quad \rho \in W_D. \]

Clearly, for any \(t \)
\[\psi(\zeta) = \int \overline{\zeta(t, \vec{x})} \psi(t, \vec{x}) d\vec{x}, \]
\[\psi^*(\zeta) = \int \zeta(t, \vec{x}) \psi^*(t, \vec{x}) d\vec{x}. \]

For \(f \in C^\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4) \), the corresponding space-time smeared fields are given by
\[\psi[f] := \int \overline{f(x)} \psi(x) dx = \psi(\langle S f \rangle), \]
\[\psi^*[f] := \int f(x) \psi^*(x) dx = \psi^*(\langle S f \rangle). \]

6.1.6 Diagonalization of the equations of motion

Let us use the Dirac representation, denoting elements of \(\mathbb{C}^4 \) as \(\left[\begin{array}{c} \zeta_\uparrow \\ \zeta_\downarrow \end{array} \right] \), where \(\zeta_\uparrow, \zeta_\downarrow \in \mathbb{C}^2 \). After the space-time Fourier transformation the Dirac equation becomes
\[-p^0 \zeta_\uparrow + \vec{\sigma} \vec{p} \zeta_\downarrow + m \zeta_\uparrow = 0, \]
\[p^0 \zeta_\downarrow - \vec{\sigma} \vec{p} \zeta_\uparrow + m \zeta_\downarrow = 0. \]

This can be rewritten as
\[\zeta_\uparrow = -\frac{\vec{\sigma} \vec{p}}{p^0 + m} \zeta_\downarrow, \]
\[\zeta_\downarrow = \frac{\vec{\sigma} \vec{p}}{p^0 + m} \zeta_\uparrow. \]
Using $(\vec{\sigma}\vec{p})^2 = p^2$ we obtain

\[-(p^0)^2 + p^2 + m^2 = 0.\]

Set $E(\vec{p}) := |p^0| = \sqrt{\vec{p}^2 + m^2}$. Define

\[\chi_+ := \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \chi_- := \begin{bmatrix} 0 \\ 1 \end{bmatrix}.\]

Traditionally, one often introduces the following spinors:

\[u(p, \pm 1/2) = \frac{\sqrt{E + m}}{\sqrt{2E}} \begin{bmatrix} \chi_\pm \\ \mp \vec{\sigma}\vec{p}/E + m \chi_\pm \end{bmatrix}, \quad p^0 = E(\vec{p}) > 0;\]

\[u(p, \pm 1/2) = \frac{\sqrt{E + m}}{\sqrt{2E}} \begin{bmatrix} \mp \vec{\sigma}\vec{p}/E + m \chi_\pm \\ \chi_\pm \end{bmatrix}, \quad p^0 = -E(\vec{p}) < 0.\] (6.5)

Note that

\[(u(p, s)|u(p, s')) = \delta_{s, s'},\]

\[(u(p, s)|u(-p, s')) = 0.\]

The basic plane waves are defined as

\[|p, s) = (2\pi)^{-3/2} u(p, s)e^{ipx}.\]

By writing (p, s), as usual, we will imply the complex conjugation. We have

\[(p, s|p', s') = \delta(p - p')\delta_{s, s'}, \quad \text{sgn}(p^0 p') > 0,\]

\[(p, s|p', s') = 0, \quad \text{sgn}(p^0 p') < 0.\]

Note that plane waves diagonalize simultaneously the Dirac Hamiltonian \mathbb{D}, the momentum $\vec{p} = -i\partial$ and the scalar product:

\[\mathbb{D}|p, s) = p^0|p, s),\]

\[-i\partial \vec{p}|p, s) = \vec{p}|p, s).\]

\[\zeta_1 \cdot \zeta_2 = \sum_s \int ((p, s|\zeta_1)(p, s|\zeta_2) + (-p, -s|\zeta_1)(-p, -s|\zeta_2))d\vec{p}.\]

In addition, positive frequency plane waves diagonalize the “upper spin in the 3rd direction” and negative frequency plane waves diagonalize the “lower spin operator in the 3rd direction”:

\[\frac{1}{2} \begin{bmatrix} \sigma_3 & 0 \\ 0 & 0 \end{bmatrix} |p, s) = s|p, s), \quad \text{sgn}p^0 > 0,\]

\[\frac{1}{2} \begin{bmatrix} 0 & \sigma_3 \\ 0 & 0 \end{bmatrix} |p, s) = s|p, s), \quad \text{sgn}p^0 < 0.\]
6.1.7 Plane wave functionals

Plane wave functionals are the functionals defined by plane waves. One could doubt whether they deserve a special notation. In the bosonic case the situation was slightly less trivial, because the pairing was given by the symplectic form. For fermions the pairing is given by the scalar product, hence it is straightforward. Anyway, special notation for plane wave functionals is partly motivated as a preparation for quantization.

Let \(p \in \mathbb{R}^{1,3} \) with \(p^0 > 0 \). Anticipating the quantization, we will use different notation for positive and negative frequencies:

\[
a(p, s) := \psi([p, s]) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} \bar{u}(p, s) e^{-i\vec{p}\cdot\vec{x}} \psi(0, \vec{x}),
\]

\[
b^*(p, s) := \psi([-p, -s]) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} \bar{u}(-p, -s) e^{i\vec{p}\cdot\vec{x}} \psi(0, \vec{x}).
\]

We have

\[
\psi(x) = \sum_s (2\pi)^{-\frac{3}{2}} \int d\vec{p} \left(u(p, s)e^{ipx} a(p, s) + u(-p, -s)e^{-ipx} b^*(p, s) \right)
\]

\[
= \sum_s \int d\vec{p} \left(p^0 |a(p, s) + (-p, -s) b^*(p, s)\right).
\]

6.1.8 Positive and negative frequency subspaces

We define

\[
\mathcal{W}_D^{(+)} := \{ \zeta \in \mathcal{W}_D : (-p, -s) \zeta = 0, \quad p^0 = E(\vec{p}) \},
\]

\[
\mathcal{W}_D^{(-)} := \{ \zeta \in \mathcal{W}_D : (p, s) \zeta = 0, \quad p^0 = E(\vec{p}) \}.
\]

Every \(\zeta \in \mathcal{W}_D \) can be uniquely decomposed as \(\zeta = \zeta^{(+)} + \zeta^{(-)} \) with \(\zeta^{(\pm)} \in \mathcal{W}_D^{(\pm)} \).

On \(\mathcal{W}_D^{(+)} \) we keep the old scalar product:

\[
\langle \zeta^{(+)}_1 | \zeta^{(+)}_2 \rangle := \bar{\zeta}^{(+)}_1 \cdot \zeta^{(+)}_2 = \int \langle a(p) \zeta^{(+)}_1 | a(p) \zeta^{(+)}_2 \rangle d\vec{p}.
\]

We set \(\mathcal{Z}_D^{(+)} \) to be the completion of \(\mathcal{W}_D^{(+)} \) in this scalar product.

Instead of \(\mathcal{W}_D^{(-)} \) for quantization we will use the corresponding complex conjugate space denoted \(\overline{\mathcal{W}}_D^{(-)} \) and equipped with the scalar product

\[
\langle \zeta^{(-)}_1 | \zeta^{(-)}_2 \rangle := \bar{\zeta}^{(-)}_1 \cdot \zeta^{(-)}_2 = \int \langle b(p) \zeta^{(-)}_1 | b(p) \zeta^{(-)}_2 \rangle d\vec{p}.
\]

We set \(\mathcal{Z}_D^{(-)} \) to be the completion of \(\overline{\mathcal{W}}_D^{(-)} \) in this scalar product.

\(\mathbb{R}^{1,3} \rtimes \text{Pin}^+(1,3) \) group leaves \(\mathcal{Z}_D^{(+)} \) and \(\mathcal{Z}_D^{(-)} \) invariant.
We would like to describe the quantization of the Dirac equation. As usual, we

6.1.9 Spin averaging

\[\frac{1}{2m}(\mp p\gamma + m) \] are the projections onto the positive and negative energy states resp. With \(E = p^0 > 0 \), we have the identities

\[
\sum_s u(p, s) \tilde{u}(p, s) = \frac{1}{2E} \begin{bmatrix}
E + m & -\sigma \vec{p} \\
\sigma \vec{p} & -E + m
\end{bmatrix}
\]

\[
= \frac{-p\gamma + m}{2E} = \frac{m}{E} \Lambda_+,
\]

\[
\sum_s u(-p, -s) \tilde{u}(-p, -s) = \frac{1}{2E} \begin{bmatrix}
E - m & -\sigma \vec{p} \\
\sigma \vec{p} & -E - m
\end{bmatrix}
\]

\[
= \frac{-p\gamma - m}{2E} = -\frac{m}{E} \Lambda_-.
\]

In the following spin averaging identities due to H.B.C.Casimir, which are useful in computations of scattering cross-sections, the trace involves only the spin degrees of freedom:

\[
\sum_{s^+, s^-} \left| \tilde{u}(p^+, s^+) Bu(p^-, s^-) \right|^2 = \frac{\text{Tr} \tilde{B}(-p^+\gamma + m)B(-p^-\gamma + m)}{4E^+E^-},
\]

\[
\sum_{s^+, s^-} \left| \tilde{u}(-p^+, -s^+) Bu(-p^-, -s^-) \right|^2 = \frac{\text{Tr} \tilde{B}(-p^+\gamma - m)B(-p^-\gamma - m)}{4E^+E^-},
\]

\[
\sum_{s^+, s^-} \left| \tilde{u}(-p^+, -s^+) Bu(p^-, s^-) \right|^2 = \frac{\text{Tr} \tilde{B}(-p^+\gamma - m)B(-p^-\gamma + m)}{4E^+E^-},
\]

\[
\sum_{s^+, s^-} \left| \tilde{u}(p^+, s^+) Bu(-p^-, -s^-) \right|^2 = \frac{\text{Tr} \tilde{B}(-p^+\gamma + m)B(-p^-\gamma - m)}{4E^+E^-},
\]

where \(B \) is an arbitrary operator on the spinor space and \(\tilde{B} = \beta B^* \beta \) is its pseudo-hermitian conjugate.

If we specify \(B = \beta \), then

\[
\sum_{s^+, s^-} \left| u(p^+, s^+) u(p^-, s^-) \right|^2 = \sum_{s^+, s^-} \left| u(-p^+, -s^+) u(-p^-, -s^-) \right|^2
\]

\[
= \frac{E^+E^- + p^+p^- + m^2}{E^+E^-} = \frac{(E^+ + E^-)^2 - |p^+_+ p^-|^2}{2E^+E^-},
\]

\[
\sum_{s^+, s^-} \left| u(-p^+, -s^+) u(p^-, s^-) \right|^2 = \sum_{s^+, s^-} \left| u(p^+, s^+) u(-p^-, -s^-) \right|^2
\]

\[
= \frac{E^+E^- + p^+p^- - m^2}{E^+E^-} = \frac{-(E^+ - E^-)^2 + |p^+_+ p^-|^2}{2E^+E^-}.
\]

6.1.10 Quantization

We would like to describe the quantization of the Dirac equation. As usual, we will use the “hat” to denote quantized objects.
We will use the formalism of quantization of charged fermionic systems [11].

We want to construct \((H, \hat{H}, \Omega)\) satisfying the standard requirements and a distribution
\[
\mathbb{R}^{1,3} \ni x \mapsto \hat{\psi}(x),
\]
with values in \(\mathbb{C}^4 \otimes B(\mathcal{H})\) such that the following conditions are true:

1. \((-i\gamma \partial + m)\hat{\psi}(x) = 0;\)
2. \([\hat{\psi}_a(0, \vec{x}), \hat{\psi}_b^*(0, \vec{y})]_+ = \delta_{ab}\delta(\vec{x} - \vec{y}), [\hat{\psi}_a(0, \vec{x}), \hat{\psi}_b(0, \vec{y})]_+ = 0;\)
3. \(e^{i\hat{H}t}\hat{\psi}(x^0, \vec{x})e^{-i\hat{H}t} = \hat{\psi}(x^0 + t, \vec{x});\)
4. \(\Omega\) is cyclic for \(\hat{\psi}(x), \hat{\psi}^*(x).\)

The above problem has a solution unique up to a unitary equivalence, which we describe below.

We set
\[
\mathcal{H} := \Gamma_a(\mathcal{Z}_D^+ \oplus \mathcal{Z}_D^-).
\]

Creation/annihilation operators on \(\mathcal{Z}_D^+\) will be denoted \(\hat{a}^* / \hat{a}\). Introduce the operator valued distributions \(\hat{a}^*(p, s)\) defined for \(p\) on the mass shell, \(s = \pm 1/2\), by
\[
\hat{a}^*(p, s) := \hat{a}^*\left(|p, s\right)).
\]

Creation/annihilation operators on \(\mathcal{Z}_D^-\) will be denoted \(\hat{b}^* / \hat{b}\). Introduce the operator valued distributions \(\hat{b}^*(p, s)\) defined for \(-p\) on the mass shell, \(s = \pm 1/2\), by
\[
\hat{b}^*(p, s) := \hat{b}^*\left(|-p, -s\right)).
\]

\(\Omega\) will be the Fock vacuum. We set
\[
\hat{\psi}(x) := (2\pi)^{-\frac{3}{2}} \sum_s \int d\vec{p}\left(u(p, s)e^{ipx} \hat{a}(p, s) + u(-p, -s)e^{-ipx} \hat{b}^*(p, s)\right).
\]

The quantum Hamiltonian and momentum are
\[
\hat{H} = \int \sum_s \left(\hat{a}^*(p, s)\hat{a}(p, s) + \hat{b}^*(p, s)\hat{b}(p, s)\right) E(\vec{p})d\vec{p},
\]
\[
\vec{P} = \int \sum_s \left(\hat{a}^*(p, s)\hat{a}(p, s) + \hat{b}^*(p, s)\hat{b}(p, s)\right) \vec{p}d\vec{p}.
\]

We also have the charge operator
\[
\hat{Q} := \sum_s \int \left(\hat{a}^*(\vec{p}, s)\hat{a}(\vec{p}, s) - \hat{b}^*(\vec{p}, s)\hat{b}(\vec{p}, s)\right) d\vec{p}.
\]

The whole group \(\mathbb{R}^{1,3} \times Spin^+(1, 3)\) acts unitarily on \(\mathcal{H}\). Moreover, if we set \(\hat{\tilde{\psi}}(x) := \beta\hat{\psi}^*(x)\), then
\[
[\hat{\tilde{\psi}}_a(x), \hat{\psi}_b(y)]_+ = S_{ab}(x - y),
\]
\[
[\hat{\tilde{\psi}}_a(x), \hat{\psi}_b(y)]_+ = 0.
\]
We have
\[
\langle \Omega | \hat{\psi}_a(x) \hat{\psi}_b(y) \Omega \rangle = S^{(+)}_{ab}(x - y),
\]
\[
\langle \Omega | T(\hat{\psi}_a(x) \hat{\psi}_b(y)) \Omega \rangle = S^{(-)}_{ab}(x - y).
\]

For \(f \in C^\infty_c(\mathcal{O}, \mathbb{C}^4) \) we set
\[
\hat{\psi}\left[f \right] := \int f(x) \hat{\psi}(x) dx,
\]
\[
\hat{\psi}^*\left[f \right] := \int \overline{f(x)} \hat{\psi}^*(x) dx.
\]

We obtain an operator valued distribution satisfying the Wightman axioms with
\[
\mathcal{D} := \Gamma^\text{fin}_a (Z^{(+)}_D \oplus Z^{(-)}_D).
\]

For an open set \(\mathcal{O} \subset \mathbb{R}^{1,3} \) the field algebra is defined as
\[
\mathfrak{F}(\mathcal{O}) := \{ \hat{\psi}^*[f], \hat{\psi}[f] : f \in C^\infty_c(\mathcal{O}, \mathbb{C}^4) \}''.
\]

The observable algebra \(\mathfrak{A}(\mathcal{O}) \) is the subalgebra of \(\mathfrak{F}(\mathcal{O}) \) fixed by the automorphism
\[
B \mapsto e^{i\theta \hat{Q}} Be^{-i\theta \hat{Q}},
\]
where \(\hat{Q} \) will be defined in (6.13). The nets of algebras \(\mathfrak{F}(\mathcal{O}) \) and \(\mathfrak{A}(\mathcal{O}) \), \(\mathcal{O} \subset \mathbb{R}^{1,3} \), satisfy the Haag-Kastler axioms.

6.1.11 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program, which uses the smeared fields instead of point fields. Instead of (2.31) we look for an antilinear function

\[
\mathcal{W}_D \ni \zeta \mapsto \hat{\psi}(\zeta)
\]

with values in bounded operators such that

1. \([\hat{\psi}(\zeta_1), \hat{\psi}^*(\zeta_2)]_+ = \zeta_1 \cdot \zeta_2, \quad [\hat{\psi}(\zeta_1), \hat{\psi}(\zeta_2)]_+ = 0.\]
2. \(\hat{\psi}(r(t, \vec{x}) \zeta) = e^{it\hat{H}} \hat{\psi}(\zeta)e^{-it\hat{H}}.\)
3. \(\Omega\) is cyclic for \(\hat{\psi}(\zeta), \hat{\psi}^*(\zeta)\).

One can pass between these two versions of the quantization by

\[
\hat{\psi}(\zeta) = \int \overline{\zeta(t, \vec{x})} \hat{\psi}(t, \vec{x}) d\vec{x}.
\]

6.1.12 Dirac sea quantization

When we quantized a fermionic field we demanded that the quantum Hamiltonian \(\hat{H} \) is positive. In the bosonic case this condition can be dropped if we start from a positive classical Hamiltonian \(H \). Usually this suffices to guarantee the
positivity of \hat{H}. (If we start from a classical Hamiltonian that is not positive
definite, the bosonic quantum counterpart has no chances of being positive).

Suppose now that we drop the positivity requirement of \hat{H} in the fermionic
case. Then we have many possible quantizations. Among them one is distin-
guished – it is just the usual second quantization. It means that we consider the
antisymmetric Fock space $\Gamma_a(\mathcal{W}_D^{\text{cpl}})$, where $\mathcal{W}_D^{\text{cpl}}$ denotes the completion of \mathcal{W}_D
in its natural scalar product.

The Hilbert space $\mathcal{W}_D^{\text{cpl}}$ is equipped with commuting self-adjoint operators:
the Dirac operator D and the momentum operator $-i\vec{\partial}$. We can quantize them
using the operation $d\Gamma$ obtaining the operators on $\Gamma_a(\mathcal{W}_D^{\text{cpl}})$, the Hamiltonian
and the momentum

$$H = d\Gamma(\mathbb{D}),$$
$$\vec{P} = d\Gamma(-i\vec{\partial}).$$

The number operator describes the charge and is denoted

$$Q = d\Gamma(\mathbb{1}).$$

(Let us stress that we do not use “hats” in the above notation).

$\psi^*(x)/\psi(x)$ (without “hats”) will be reinterpreted as the creation/annihilation
operators on the space $\Gamma_a(\mathcal{W}_D^{\text{cpl}})$. The plane wave functionals $a(p, s)$, $a^*(p, s)$,
$b^*(p, s)$, $b(p, s)$ defined as in (6.6) and (6.7) in terms of $\psi(x)$, $\psi^*(x)$, can be used
to diagonalize the Hamiltonian, momentum and charge

$$H = \int \sum_s (a^*(p, s)a(p, s) - b(p, s)b^*(p, s)) E(\vec{p})d\vec{p},$$
$$\vec{P} = \int \sum_s (a^*(p, s)a(p, s) - b(p, s)b^*(p, s)) \vec{p}d\vec{p},$$
$$Q = \int \sum_s (a^*(p, s)a(p, s) + b(p, s)b^*(p, s)) \vec{p}d\vec{p}. $$

The vacuum of $\Gamma_a(\mathcal{W}_D^{\text{cpl}})$ is annihilated by $\psi(x)$, hence also by $a(p, s)$ and
$b^*(p, s)$. It is the state of the lowest charge possible. Therefore, it will be called
the bottom of the Dirac sea. We will call the above described procedure the
Dirac sea quantization.

The reader should compare the formulas for H (6.18), \vec{P} (6.19) and Q (6.20)
with \hat{H} (6.11), \hat{P} (6.12) and \hat{Q} (6.13). They only differ by the ordering of a
part of operators. So formally they are the same operators modulo an (infinite)
additive constant.

The usual quantization, called the positive energy quantization and the Dirac
sea quantization are just two inequivalent representations of canonical anticom-
mutation relations. If \mathcal{W}_D had a finite dimension (which can be accomplished
by applying both an infrared and ultraviolet cutoff), then the Dirac sea quanti-
zation would be unitarily equivalent with the positive energy quantization by
the procedure invented by Dirac and called often filling the Dirac sea. The Hamiltonians H and \hat{H}, and as we see later, the charges Q and \hat{Q} would differ by a finite constant. The momenta \vec{P} and $\hat{\vec{P}}$ would coincide.

6.1.13 Fermionic Hamiltonian formalism

Bosonic quantum fields can be interpreted as a quantization of a classical system. In the Hamiltonian (on-shell) formalism this system is described by an appropriate symplectic space. In the charged case, the symplectic space can be viewed as a complex space and instead of the symplectic structure it is natural to consider an appropriate hermitian form. The spaces Y_{KG} and W_{KG} were examples of such spaces. Symmetries are described by symplectic transformations. The dynamics is generated by a (classical) Hamiltonian – a function on the symplectic space.

An important element of the Hamiltonian formalism is the “algebra of classical observables” – the commutative algebra of functions on the symplectic space equipped with the Poisson bracket. One can ask whether there exists an analogous structure behind fermionic quantum fields.

Clearly, the space W_D, which is equipped with a scalar product, is the obvious fermionic analog of a (complex) symplectic space from the bosonic case. The fermionic analog of the “algebra of classical observables” considered in the literature is the \mathbb{Z}_2-graded algebra of operators on $\Gamma_a(W_{D\text{cpl}})$ equipped with the\textit{graded commutator}.

The space $\Gamma_a(W_{D\text{cpl}})$ is equipped with the \textit{fermionic parity} operator, which we denote by $I := (-1)^{\vec{P}}$. An operator A satisfying $IAI = \pm A$ will be called even/odd. Operators that are either even or odd will be called \textit{homogeneous}. If A is homogeneous we will write $|A| = 0$ if A is even and $|A| = 1$ if A is odd. The analog of the Poisson bracket is the graded commutator:

$$\{A, B\} := AB - (-1)^{|A||B|}BA.$$ \hspace{1cm} (6.21)

Note that $\psi(x)$, $\psi^*(x)$ are odd operators and for such operators $\{\cdot, \cdot\}$ coincides with the anticommutator. Setting $\psi(x) = \beta \psi^*(x)$, we have the following counterpart of (6.14):

$$\{\psi_a(x), \hat{\psi}_b(y)\} = S_{ab}(x - y), \quad \{\psi_a(x), \psi_b(y)\} = 0.$$ \hspace{1cm} (6.22)

Thus what is considered in the literature as the “classical” version of the Dirac theory has a quantum character. In particular, the “classical fermionic algebra” is an algebra of operators on a Hilbert space and symmetries are unitary. Nevertheless, one has a far reaching analogy with the usual commutative classical mechanics.

6.1.14 Fermionic Lagrangian formalism

The Lagrangian formalism in the bosonic case involves the commutative algebra of functions on the space-time (the “off-shell formalism”). In the literature one
can also find its fermionic analog. The fermionic Lagrangian formalism involves the Grassmann algebra generated by anticommuting functions on space-time. This algebra is generated by anticommuting fields $\mathbb{R}^{1,3} \ni x \mapsto \psi(x), \psi^*(x)$. (Thus, the anticommutators of the off-shell $\psi(x), \psi^*(y)$ are always zero, unlike in the on-shell formalism).

Note that every Grassmann algebra, besides multiplication, is equipped with the integral (called sometimes the Berezin integral), the left and the right derivative. We will use the left derivative as the standard one (see eg. [11]).

The Lagrangian density is an even element of this Grassmann algebra:

$$L(x) = -\frac{1}{2} \left(\bar{\psi}(x) \gamma^\mu (\gamma^\nu (\gamma^\rho \partial^\rho - i \partial^\rho) \psi(x) + i \partial^\rho \bar{\psi}(x) \gamma^\rho \psi(x)) \right) - m \bar{\psi}(x) \psi(x),$$

where as usual $\bar{\psi}(x) = \beta \psi^*(x)$. The Euler-Lagrange equations

$$\partial_\nu T_{\mu \nu}(x) = 0, \; \partial_\nu \gamma L - \partial_\nu \partial_\mu \gamma L = 0$$

yield the Dirac equation.

One can define the stress-energy tensor

$$T^\mu\nu(x) := -\frac{\partial L(x)}{\partial \psi^\dagger_\mu(x)} \partial^\nu \psi(x) - \frac{\partial L(x)}{\partial \psi^\dagger_\mu(x)} \partial^\nu \bar{\psi}(x) + g^{\mu\nu} L(x)$$

$$= \frac{1}{2} \left(\bar{\psi}(x) \gamma^\mu (\gamma^\nu (\gamma^\rho \partial^\rho - i \partial^\rho) \psi(x) + i \partial^\rho \bar{\psi}(x) \gamma^\rho \psi(x)) \right)$$

$$- g^{\mu\nu} \left(\frac{1}{2} (\bar{\psi}(x) \gamma (\gamma^\rho (\gamma^\nu (\gamma^\rho \partial^\rho + i \partial^\rho) \psi(x) + i \partial^\rho \bar{\psi}(x) \gamma \psi(x)) + m \bar{\psi}(x) \psi(x)) \right).$$

It is conserved on shell

$$\partial^\nu T_{\mu \nu}(x) = 0.$$

The components of the stress-energy tensor with the first temporal coordinate are called the Hamiltonian density and momentum density.

$$H(x) := T^{00}(x)$$

$$= \frac{1}{2} \left(\psi^*(x) \bar{\psi}(x) + i \bar{\psi}(x) \psi(x) \right) + m \psi^*(x) \beta \psi(x),$$

$$P^i(x) := T^{i0}(x)$$

$$= \frac{1}{2} \left(\psi^*(x) (-i \partial^i \psi(x) + i \bar{\psi}(x) \gamma^i \psi(x)) + m \psi^*(x) \beta \psi(x) \right).$$

Note that in (6.24) and (6.24) we put ψ^* on the left and ψ on the right. This is the Wick ordering for the Dirac sea quantization, which can be called the charge Wick ordering. The Hamiltonian and momentum defined from these densities coincide with the operators defined by the Dirac sea second quantization (6.16), (6.17):

$$H = \int \mathcal{H}(t, \vec{x}) d\vec{x},$$

$$\vec{P} = \int \vec{P}(t, \vec{x}) d\vec{x}.$$
6.1.15 Classical current

The Lagrangian is invariant w.r.t. the $U(1)$ symmetry $\psi \mapsto e^{-i\theta}\psi$. The Noether current associated to this symmetry is the current, defined as

$$\mathcal{J}^\mu(x) := i\left(\bar{\psi}(x) \frac{\partial L(x)}{\partial \psi^\mu} - \frac{\partial L(x)}{\partial \bar{\psi}_\mu} \psi(x)\right)$$

$$= \bar{\psi}(x)\gamma^\mu \psi(x).$$

It is conserved on shell and self-adjoint:

$$\partial_\mu \mathcal{J}^\mu(x) = 0,$$
$$\mathcal{J}^\mu(x)^* = \mathcal{J}^\mu(x).$$

The sesquilinear form given by \mathcal{J} coincides with (6.4):

$$\zeta_1 \mathcal{J}^\mu(x) \zeta_2 = j^\mu(\zeta_1, \zeta_2, x)$$

$$= \bar{\zeta}_1(x)\beta\gamma^\mu \zeta_2(x).$$

The spatial components of current can be expressed in terms of the α matrices:

$$\bar{\mathcal{J}}(x) = \psi^*(x)\bar{\alpha}\psi(x).$$

The 0th component of the current is called the charge density

$$\mathcal{Q}(x) := \mathcal{J}^0(x) = \psi^*(x)\psi(x).$$

The charge is

$$Q := \int \mathcal{Q}(t, \vec{x})d\vec{x}$$

$$= \sum_s \int \left(a^*(\vec{p}, s)a(\vec{p}, s) + b(\vec{p}, s)b^*(\vec{p}, s)\right)d\vec{p}.$$

$x \mapsto \mathcal{Q}(t, \vec{x})$ is a well defined distribution with values in operators on space $\Gamma_\alpha(\mathcal{W}_D^{(0)})$. We have the relations

$$\{ \mathcal{Q}(t, \vec{x}), \psi(t, \vec{y}) \} = -\psi(t, \vec{y})\delta(\vec{x} - \vec{y}),$$
$$\{ \mathcal{Q}(t, \vec{x}), \psi^*(t, \vec{y}) \} = \psi^*(t, \vec{y})\delta(\vec{x} - \vec{y}),$$
$$\{ \mathcal{Q}(t, \vec{x}), \mathcal{Q}(t, \vec{y}) \} = 0,$$

(6.24)

where the bracket coincides now with the commutator, since \mathcal{Q} is even.

For $\chi \in C^\infty_0(\mathbb{R}^3, \mathbb{R})$, let α_χ denote the $*$-automorphism of the algebra of operators on \mathcal{W}_D defined by

$$\alpha_\chi(\psi(0, \vec{x})) := e^{-i\chi(\vec{x})}\psi(0, \vec{x}).$$
Obviously,
\[\alpha_\chi(\psi^*(0, \vec{x})) = e^{i\chi(x)}\psi^*(0, \vec{x}). \]
\(\alpha_\chi\) is called the \textit{gauge transformation} at time \(t = 0\) corresponding to \(\chi\). Set
\[Q(\chi) = \int \chi(\vec{x})Q(0, \vec{x})d\vec{x}. \]
(6.25)
It can be used to implement the corresponding gauge transformation:
\[\alpha_\chi(B) = e^{iQ(\chi)}Be^{-iQ(\chi)}. \]

6.1.16 Quantum current

Let us try to introduce the \textit{quantum current density} as an operator valued dis-
tribution on \(\Gamma_\alpha(Z^+(\mathbb{D}) \oplus Z^-(\mathbb{D}))\) by the antisymmetric quantization of the classical
expression
\[J^\mu(x) := \frac{1}{2}(\hat{\psi}^*(x)\beta\gamma^\mu\hat{\psi}(x) - \psi(x)\overline{\beta\gamma^\mu}\psi^*(x)). \]
(6.26)
(Note that \((\beta\gamma^\mu)^* = \beta\gamma^\mu\), and hence \(\overline{\beta\gamma^\mu}\) is the transpose of \(\beta\gamma^\mu\)). The charge
conjugation \(C\), which we introduce later on in Subsubsect. 6.2.6, satisfies \(C\Omega = \Omega\) and
\(C\hat{J}^\mu(x)C^* = -\hat{J}^\mu(x)\). Therefore, \((\Omega|\hat{J}^\mu(x)|\Omega) = 0\). Hence
\[\hat{J}^\mu(x) = :\hat{\psi}(x)\gamma^\mu\hat{\psi}(x):. \]
Formally, we can check the quantum versions of the relations (6.24) the (6.24).
We have
\[\hat{J}(x) = :\psi^*(x)\alpha\hat{\psi}(x):, \]
and the 0th component of the current is called the \textit{charge density}
\[\hat{Q}(x) := \hat{J}_0(x) = :\psi^*(x)\hat{\psi}(x):. \]

Formally, the charge density satisfies
\[[\hat{Q}(t, \vec{x}), \psi(t, \vec{y})] = -\hat{\psi}(t, \vec{y})\delta(\vec{x} - \vec{y}), \]
\[[\hat{Q}(t, \vec{x}), \psi^*(t, \vec{y})] = \hat{\psi}^*(t, \vec{y})\delta(\vec{x} - \vec{y}), \]
\[[\hat{Q}(t, \vec{x}), \hat{Q}(t, \vec{y})] = 0. \]
(6.27)

For \(\chi \in C_\infty^c(\mathbb{R}^3)\) let \(\alpha_\chi\) denote the gauge transformation at time \(t = 0\)
defined as a *-automorphism of the algebra generated by fields satisfying (5.22),
and hence also (5.23). Assume that \(\chi \neq 0\). Let us check whether \(\alpha_\chi\) is unitarily
implementable.
On the level of annihilation operators we have
\[
\alpha_\chi(\hat{a}(p)) = \sum_{s_1} \int \int \frac{d\vec{x}d\vec{p}_1}{(2\pi)^3} u(p, s) u(p_1, s_1) e^{i(\vec{p}_1 - \vec{p})\vec{x} - i\chi(\vec{x})} \hat{a}(p_1)
\]
\[+ \sum_{s_1} \int \int \frac{d\vec{x}d\vec{p}_1}{(2\pi)^3} u(p, s) u(-p_1, -s_1) e^{-i(\vec{p}_1 + \vec{p})\vec{x} - i\chi(\vec{x})} \hat{b}^*(p_1). \]

Let \(q_\chi(p, s; \vec{p}_1, s_1)\) denote the integral kernel on the second line above. We need to check whether it is square integrable. Now
\[
\sum_{s, s_1} |u(p, s) u(-p_1, -s_1)|^2 = \frac{|\vec{p} + \vec{p}_1|^2 + (E(\vec{p}) - E(\vec{p}_1))^2}{2E(\vec{p})E(\vec{p}_1)}. \tag{6.28}
\]

After integrating in \(\vec{x}\) we obtain fast decay in \(\vec{p} + \vec{p}_1\), which allows us to control the numerator of (6.28). We obtain
\[
\int |q_\chi(\vec{p}, \vec{p}_1)|^2 d\vec{p} \sim \frac{C}{E(\vec{p}_1)^2},
\]
which is not integrable. Therefore, by the Shale-Stinespring criterion, \(\alpha_\chi\) is not implementable.

Formally, with
\[
\hat{Q}(\chi) := \int \chi(\vec{x}) \hat{Q}(0, \vec{x}) d\vec{x}, \tag{6.29}
\]
e\(e^{i\vec{x}\hat{Q}(\chi)}\) implements the gauge transformation:
\[
\alpha_\chi(B) = e^{i\vec{x}\hat{Q}(\chi)} B e^{-i\vec{x}\hat{Q}(\chi)}.
\]

But we know that nontrivial gauge transformations are not implementable. Thus for nonzero \(\chi\) (6.29) cannot be defined as a closable operator.

However, the (quantum) charge
\[
\hat{Q} := \int \hat{Q}(t, \vec{x}) d\vec{x} \tag{6.30}
\]
is a well defined self-adjoint operator, which we already discussed before.

For further reference let us express the charge density in terms of creation and annihilation operators:
\[
\hat{Q}(x) = \int \int \frac{d\vec{p}_1 d\vec{p}_2}{(2\pi)^3} u(p_1, s_1) u(p_2, s_2) e^{-i\vec{p}_1 + i\vec{p}_2 \hat{a}^*(p_1, s_1) \hat{a}(p_2, s_2)}
\]
\[- \int \int \frac{d\vec{p}_1 d\vec{p}_2}{(2\pi)^3} u(-p_1, -s_1) u(-p_2, -s_2) e^{i\vec{p}_1 - i\vec{p}_2 \hat{b}^*(p_1, s_1) \hat{b}(p_2, s_1)}
\]
\[+ \int \int \frac{d\vec{p}_1 d\vec{p}_2}{(2\pi)^3} u(p_1, s_1) u(-p_2, -s_2) e^{-i\vec{p}_1 - i\vec{p}_2 \hat{a}^*(p_1, s_1) \hat{a}(p_2, s_2)}
\]
\[+ \int \int \frac{d\vec{p}_1 d\vec{p}_2}{(2\pi)^3} u(-p_1, -s_1) u(p_2, s_2) e^{i\vec{p}_1 + i\vec{p}_2 \hat{b}^*(p_1, s_1) \hat{b}(p_2, s_2)}.
\]
To obtain \(\vec{J}(x)\) one inserts \(\hat{a}\) between \(u(\cdot, \cdot)\) and \(u(\cdot, \cdot)\).
6.2 Dirac fermions in an external potential

6.2.1 Dirac equation in an external potential

Let
\[A(x) = [A_\mu(x)] \in \mathbb{R}^{1,3} \]
be a given function. In most of this subsection we assume that (6.31) is Schwartz.

The Dirac equation in an external potential is
\[(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) + m)\psi(x) = 0 \]
(6.32)

If \(\psi \) satisfies (6.32) and \(\mathbb{R}^{1,3} \ni x \mapsto \chi(x) \in \mathbb{R} \) is an arbitrary smooth function, then \(e^{\chi(x)}\psi \) satisfies (6.32) with \(A \) replaced with \(A + \partial\chi \).

Note the identity
\[-\left(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) + m\right)\left(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) - m\right) = (\partial^\mu + ieA_\mu(x))(\partial^\mu + ieA^\mu(x)) + m^2 + \frac{e^2}{2} \sigma^{\mu\nu}F_{\mu\nu}(x). \]
(6.33)

Let \(S^\pm(x, y) \) denote the retarded/advanced Green’s function of (6.33). Then
\[S^\pm(x, y) := (\gamma^\mu(-i\partial_\mu + eA_\mu(x)) - m)D(x, y) \]
is the retarded/advanced Green’s function of (6.32), that is, the unique solution of
\[(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) + m)S^\pm(x, y) = \delta(x - y) \]
(6.34)
satisfying
\[\text{supp} S^\pm \subset \{ x, y : x \in J^\pm(y) \}. \]

We set
\[S(x, y) := S^+(x, y) - S^-(x, y). \]
Clearly,
\[\text{supp} S \subset \{ x, y : x \in J(y) \}. \]

We would like to introduce a field \(\mathbb{R}^{1,3} \ni x \mapsto \psi(x) \) satisfying (6.32). Let us assume that it acts on \(\mathcal{W}_D \) and coincides with the free field \(\psi_{fr}(x) \) at \(x^0 = 0 \).

Such a field is given by
\[\psi(t, \vec{x}) = -i \int_{\mathbb{R}^3} S(t, \vec{x}; 0, \vec{y})\beta\psi_{fr}(0, \vec{y})d\vec{y}. \]
(6.35)

6.2.2 Lagrangian and Hamiltonian formalism

(6.32) can be obtained as the Euler-Lagrange of a variational problem. The Lagrangian density can be taken as
\[\mathcal{L}(x) = \frac{1}{2} \left(\bar{\psi}(x)\gamma^\mu(-i\partial_\mu)\psi(x) + i\partial_\mu\bar{\psi}(x)\gamma^\mu\psi(x) \right) - \bar{\psi}(x)eA_\mu(x)\gamma^\mu\psi(x) - m\bar{\psi}(x)\psi(x). \]
The Euler-Lagrange equations (6.23) yield (6.32).

We can introduce the Hamiltonian density

\[H(x) = \psi(x) \frac{\partial L(x)}{\partial \psi(x)} + \psi^*(x) \frac{\partial L(x)}{\partial \psi^*(x)} - L(x) \]

\[= \frac{1}{2} (\psi^*(x) \bar{\alpha} (-i\bar{\partial}) \psi(x) + i \bar{\partial} \psi^*(x) \bar{\alpha} \psi(x)) \]

\[+ \psi^*(x) (e^\gamma \bar{A}(x) + m\beta + eA_0(x)) \psi(x). \]

The Hamiltonian

\[H(t) = \int H(t, \vec{x}) d\vec{x} \]

is interpreted as a self-adjoint operator on \(\Gamma_a(\mathcal{W}_{pl}^0) \) and generates the dynamics

\[\dot{\psi}(t, \vec{x}) = i \{ H(t), \psi(t, \vec{x}) \}, \]

where now \(\{ \cdot, \cdot \} \) has the meaning of the commutator.

6.2.3 Classical discrete symmetries

Let \(\kappa \) be a unitary \(4 \times 4 \) matrix satisfying

\[\kappa \kappa^* = 1, \quad \kappa \gamma^\mu \kappa^{-1} = -\gamma^\mu, \]

where the bar denotes the complex conjugation. In particular, \(\kappa \beta \kappa^{-1} = -\beta \).

Note also that

\[\kappa \kappa u = u, \quad u \in \mathbb{C}^4. \]

Choose \(\xi_C \in \mathbb{C}, |\xi_C| = 1 \). If \(\zeta \) solves the Dirac equation with the potential \(A \), then so does \(\xi_C \kappa \zeta \) with the potential \(-A \). Thus replacing

\[\psi(x), \psi^*(x), A(x) \]

with \(\xi_C \kappa \psi^*(x), \xi_C \kappa \psi(x), -A(x) \)

is a symmetry of the Dirac equation with external potentials (6.32). It is called charge conjugation and denoted \(\mathcal{C} \).

The matrix \(\kappa \) depends on a representation. In the Majorana representation it is the identity. In the Dirac and spinor representation it can be chosen to be \(\gamma^2 \) multiplied by an arbitrary phase factor. In fact, in these representations \(\gamma^\mu = \gamma^\mu \), except for \(\mu = 2 \) satisfying \(\gamma^2 = -\gamma^2 \). When we consider the Dirac representation, we will adopt the convention

\[\kappa := i\gamma^2. \]

Then \(\kappa = \kappa^* \). The spinor basis that we chose in (6.5) is compatible with \(\kappa \):

\[\kappa u(p, s) = u(-p, -s). \]
Choose $\xi_P \in \{1, -1\}$. Recall that P denotes the space inversion. Replacing
\[
\psi(x), \psi^*(x), (A_0(x), \vec{A}(x))
\]
with $\xi_P\gamma^0\psi(Px), \xi_P\gamma^0\psi^*(Px), (A_0(Px), -\vec{A}(Px))$
is a symmetry of (6.32) called \textit{parity} and denoted \mathcal{P}.

Choose $\xi_T \in \mathbb{C}, |\xi_C| = 1$. Recall that T denotes the time reflection. Replacing (in the Dirac representation)
\[
\psi(x), \psi^*(x), (A_0(x), \vec{A}(x))
\]
with $\xi_T\gamma^1\gamma^3\psi^*(Tx), \xi_T\gamma^1\gamma^3\psi(Tx), (A_0(Tx), -\vec{A}(Tx))$
is a symmetry of (6.32) called \textit{time reversal} and denoted \mathcal{T}.

The symmetry that is guaranteed by the CPT Theorem consists in replacing
\[
\psi(x), \psi^*(x), A(x)
\]
with $i\gamma^5\psi(-x), -i\gamma^5\psi^*(-x), -A(-x)$.

It is denoted \mathcal{X}. (Note that $i\gamma^5 = \gamma^0\gamma^1\gamma^2\gamma^3$).

Assume that $\xi_C\xi_P\xi_T = i$. Then
\[
\mathcal{X} = \mathcal{CPT}
\]
and we have the relations
\[
\mathcal{C}^2 = \mathcal{P}^2 = -\mathcal{T}^2 = -\mathcal{X}^2 = \mathbb{I},
\]
\[
\mathcal{CP} + \mathcal{PC} = \mathcal{CT} + \mathcal{TC} = 0,
\]
\[
\mathcal{X}\mathcal{P} + \mathcal{P}\mathcal{X} = \mathcal{X}\mathcal{T} + \mathcal{T}\mathcal{X} = 0,
\]
\[
\mathcal{CX} - \mathcal{XC} = \mathcal{P}\mathcal{T} - \mathcal{T}\mathcal{P} = 0.
\]

To understand better these relations, it is better to rewrite them in terms of $\mathcal{P}, \mathcal{GT}$ and \mathcal{X} anticommute and
\[
\mathcal{P}^2 = (\mathcal{GT})^2 = -\mathcal{X}^2 = \mathbb{I}.
\]

Thus together with $Spin^\uparrow(1, 3)$ they represent the group $Pin_+(1, 3)$.

Besides,
\[
(\mathcal{PT})^2 = -\mathbb{I}
\]
and \mathcal{PT} commutes with $\mathcal{P}, \mathcal{GT}, \mathcal{X}$. Thus it behaves as $i\mathbb{I}$.

Thus the group generated by $Spin^\uparrow(1, 3), \mathcal{C}, \mathcal{P}$ and \mathcal{T} is $Pin_{\text{ext}}(1, 3)$.

\textbf{6.2.4 Quantization}

We are looking for a quantum field satisfying
\[
(\gamma^\mu(-i\partial_\mu + eA_\mu(x)) + m)\hat{\psi}(x) = 0. \quad (6.37)
\]
coinciding with the free field for \(t = 0 \). Clearly the solution is obtained by decorating (6.35) with hats.

As in the bosonic case, we ask whether the fields are implemented by a unitary dynamics. Equivalently, we want to check if the classical dynamics generated by \(H_{\text{Int}}(t) \) satisfies the Shale-Stinespring criterion.

Arguments parallel to those of Subsubsect. 2.3.4 show that the classical scattering operator is unitarily implementable.

An analysis similar to that of Subsect. 5.2.5 shows that the dynamics from \(t_- \) to \(t_+ \) is implementable on the Fock space iff the spatial part of the potential is the same at the initial and final time:

\[
\vec{A}(t_+, \vec{x}) = \vec{A}(t_-, \vec{x}), \quad \vec{x} \in \mathbb{R}^3.
\] (6.38)

6.2.5 Quantum Hamiltonian

Formally, we can also obtain this field from a unitary dynamics:

\[
\hat{\psi}(t, \vec{x}) := \text{Texp} \left(-i \int_0^t \hat{H}(s)ds \right) \hat{\psi}(0, \vec{x}) \text{Texp} \left(-i \int_0^t \hat{H}(s)ds \right),
\]

where the Hamiltonian in the Schrödinger picture \(\hat{H}(t) \), and the corresponding Hamiltonian in the interaction picture are

\[
\begin{align*}
\hat{H}(t) &= \int d\vec{x}(\hat{\psi}^* \vec{x}(\vec{x})(-i\vec{\partial} + e\vec{A}(t, \vec{x})) + m\beta + eA_0(t, \vec{x}))\hat{\psi}(\vec{x}) + C(t), \\
\hat{H}_{\text{Int}}(t) &= \int d\vec{x} eA_\mu(t, \vec{x})\vec{\partial}_\mu \hat{\psi}(t, \vec{x}) + C(t).
\end{align*}
\]

Note that unlike in the case of charged bosons we use the Wick ordering. This is because the perturbation is automatically Wick ordered.

6.2.6 Quantized discrete symmetries

The discrete symmetries considered in Subsubsect. 6.2.3 remain true when we decorate the fields with “hats”. Thus on the level of quantum observables the discrete symmetries are the same as in the classical case.

Let us now discuss the implementation of these symmetries by unitary or antiunitary operators on the Hilbert space \(\Gamma_a(\mathbb{Z}_D(+) \oplus \mathbb{Z}_D(-)) \). We will discuss this for free fields, that is, for \(A = 0 \). As in the bosonic case, this will imply some properties of the scattering operator \(\hat{S}(A) \).

First consider the charge conjugation. We define the following unitary operator on \(\mathbb{Z}_D(+) \oplus \mathbb{Z}_D(-) \)

\[
\chi(g_1, g_2) := (\xi_C \bar{\kappa} g_2, \bar{\xi}_C \kappa g_1).
\]

We check that

\[
\begin{align*}
\chi(p, s) &= \xi_C |p, -s\rangle, \quad \chi(-p, -s) = \bar{\xi}_C |p, s\rangle.
\end{align*}
\]
We set $C := \Gamma(\chi)$. We have $C^2 = 1$,
\[
C \hat{\psi}(x) C^{-1} = \xi C \hat{\psi}^*(x), \quad C \hat{\psi}^*(x) C^{-1} = \xi \pi \hat{\psi}(x),
\]
\[
C \hat{Q}(x) C^{-1} = -\hat{Q}(x), \quad C \hat{J}(x) C^{-1} = -\hat{J}(x),
\]
\[
C \hat{S}(A) C^{-1} = \hat{S}(-A).
\]
As in the bosonic case, on the level of observables charge conjugation is antilinear but on the level of the Hilbert space it is linear.

Define the following unitary operator on $Z^D_+ \oplus Z^D_-$:
\[
\pi(g_1, g_2) := (\xi P \gamma^0 g_1 \circ P, \xi P \gamma^0 g_2 \circ P).
\]
We check that
\[
\pi|E, \bar{p}, s) = \xi P|E, -\bar{p}, s), \quad \pi|-E, \bar{p}, s) = \xi P|-E, \bar{p}, s).
\]
Set $P := \Gamma(\pi)$. We have $P^2 = 1$,
\[
P \hat{\psi}(x) P^{-1} = \xi P \gamma^0 \hat{\psi}(Px), \quad P \hat{\psi}^*(x) P^{-1} = \xi P \gamma^0 \hat{\psi}^*(Px),
\]
\[
P \hat{Q}(x) P^{-1} = \hat{Q}(Px), \quad P \hat{J}(x) P^{-1} = -\hat{J}(Px),
\]
\[
P \hat{S}(A_0, \bar{A}) P^{-1} = \hat{S}(A_0 \circ P, -\bar{A} \circ P).
\]
Define (in the Dirac representation) the following antunitary operator on $Z^D_+ \oplus Z^D_-:
\[
\tau(g_1, g_2) := (\xi T \gamma^1 \gamma^3 g_1 \circ T, \xi T \gamma^1 \gamma^3 g_2 \circ T).
\]
We check that
\[
\tau|E, \bar{p}, s) = \xi T|E, -\bar{p}, -s), \quad \tau|-E, \bar{p}, s) = \xi T|-E, \bar{p}, -s).
\]
Set $T := \Gamma(\tau)$. We have $T^2 = -1$,
\[
T \hat{\psi}(x) T^{-1} = \xi T \gamma^1 \gamma^3 \hat{\psi}^*(Tx), \quad T \hat{\psi}^*(x) T^{-1} = \xi T \gamma^1 \gamma^3 \hat{\psi}(Tx),
\]
\[
T \hat{Q}(x) T^{-1} = \hat{Q}(Tx), \quad T \hat{J}(x) T^{-1} = -\hat{J}(Tx),
\]
\[
T \hat{S}(A_0, \bar{A}) T^{-1} = \hat{S}(A_0 \circ T, -\bar{A} \circ T).
\]
Again, time reversal is antilinear both on the level of observables and on the level of the Hilbert space.
6.2.7 \(2N \)-point Green’s functions

We consider again a Dirac field in an external electromagnetic potential \([A^\mu(x)]\).

For \(y_N, \ldots, y_1, x_N, \ldots, x_1 \), the \(2N \) point Green’s function are defined as follows:

\[
G(y_1, \ldots, y_N; x_N, \ldots, x_1) := \left(\Omega^+ \left[\hat{T} \left(\hat{\psi}(y_1) \cdots \hat{\psi}(y_N) \hat{\psi}(x_N) \cdots \hat{\psi}(x_1) \right) \right] \Omega^- \right)
\]

One can organize Green’s functions in terms of the generating function:

\[
Z(g, \bar{g}) := \sum_{n=0}^{\infty} \int \cdots \int \frac{(-1)^N}{(N!)^2} G(y_1, \ldots, y_N; x_N, \ldots, x_1) \times g(y_1) \cdots g(y_N) \bar{g}(x_N) \cdots \bar{g}(x_1) \, dy_1 \cdots dy_N \, dx_N \cdots dx_1
\]

\[
= \left(\Omega^+ \right| \text{exp} \left(-i \int_{-\infty}^{\infty} H_\text{Int}(t) \, dt - i \int g(x) \hat{\psi}_\text{fr}(x) \, dx - i \int \bar{g}(x) \hat{\psi}_\text{fr}(x) \, dx \right) \Omega^- \right),
\]

where \(\mathbb{R}^{1,3} \ni x \mapsto g(x), \bar{g}(x) \in \mathbb{C}^4 \) are Grassmann variables anticommuting with \(\hat{\psi}(x), \bar{\psi}(x) \).

One can retrieve Green’s functions from the generating function:

\[
G(y_1, \ldots, y_N; x_N, \ldots, x_1) = \left(-1 \right)^N \frac{\partial^{2N}}{\partial g(y_1) \cdots \partial g(y_N) \partial \bar{g}(x_N) \cdots \partial \bar{g}(x_1)} Z(g, \bar{g}) \bigg|_{g=\bar{g}=0}.
\]

We introduce also the amputated Green’s function

\[
G^\text{amp}(p_1', \ldots, p_N'; p_N, \ldots, p_1) := (\gamma p_1' + m) \cdots (\gamma p_N' + m) (\gamma p_N + m) \cdots (\gamma p_1 + m) \times G(p_1', \ldots, p_N'; p_N, \ldots, p_1).
\]

Introduce many particle plane waves

\[
\left[\begin{array}{c} -p_N', -s_N'; \ldots; -p_1', -s_1' \end{array} \right| \begin{array}{c} p_N; s_N; \ldots; p_1; s_1 \end{array} \] := b^*(p_N', s_N') \cdots b^*(p_1', s_1') a^*(p_N, s_N) \cdots a^*(p_1, s_1) \Omega,
\]

where all \(p_i^\pm, p_i'^\pm \) are on shell. Scattering amplitudes are the matrix elements of the scattering operator \(S \) between plane waves. One can compute scattering amplitudes from the amputated Green’s functions:

\[
\left(\begin{array}{c} \cdots; p_{n+}, s_{n+}; \cdots; -p_{n+}', -s_{n+}' \end{array} \right| \hat{S} \left| -p_{n-}, -s_{n-}' \right. \cdots; p_{n-}, s_{n-}; \cdots \right) \]

\[
= \left(\begin{array}{c} \cdots; p_{n+}, s_{n+}; \cdots; -p_{n+}', -s_{n+}' \end{array} \right) \hat{u}(p_{n+}', -s_{n+}'); \cdots \hat{u}(p_{n+}', -s_{n+}') \hat{u}(p_{n-}, s_{n-}); \cdots \right) \frac{(2\pi)^{-\frac{1}{2}(n_++n_+')} \left| \begin{array}{c} n_++n_+'; n_++n_+ \end{array} \right|}{(2\pi)^{-\frac{1}{2}(n_++n_+')} \left| \begin{array}{c} n_++n_+'; n_++n_+ \end{array} \right|}
\]

\[
\times G^\text{amp} \left(\begin{array}{c} \cdots; p_{n+}, s_{n+}; \cdots; -p_{n+}', -s_{n+}' \end{array} \right| \begin{array}{c} p_{n-}, s_{n-}' \ldots; p_{n-}, s_{n-}; \cdots \right).\]

The scattering operator and Green’s functions satisfy the Ward identities analogous to those satisfied by charged bosons.
6.2.8 Path integral formulation

We have the following formula for the generating function:

\[Z(g, \tilde{g}) = \det \left(\gamma^\mu \left(-i \partial_\mu + e A_\mu(x) + m - i \epsilon \right)^{-1} \right) \times \exp \left(i \tilde{g} \left(\gamma^\mu \left(-i \partial_\mu + e A_\mu(x) + m - i \epsilon \right)^{-1} \right) g \right) \]

\[= \det \left(\mathbb{1} + \gamma_\mu e A_\mu S_{\mathrm{fr}}^c \right) \times \exp \left(i \tilde{g} S_{\mathrm{fr}}^c \left(\mathbb{1} + \gamma_\mu e A_\mu S_{\mathrm{fr}}^c \right)^{-1} g \right), \]

where \(\epsilon \) has the same meaning as in (6.2).

In terms of path integrals this can be formally written as

\[
\frac{\int \prod_y d\tilde{\psi}(y) \prod_y d\psi(y) \exp \left(i \int (L(x) - g(x) \tilde{\psi}(x) - \tilde{g}(x) \psi(x)) dx \right)}{\int \prod_y d\tilde{\psi}(y) \prod_y d\psi(y) \exp \left(i \int L_{\mathrm{fr}}(x) dx \right)}.
\]

6.2.9 Feynman rules

The Feynman rules are very similar as for charged bosons, except that there are no two-photon vertices. Here are the Feynman rules for Green’s functions.

1. In the \(n \)th order we draw all possible topologically distinct Feynman diagrams with \(n \) vertices and external lines. All the charged lines have a natural arrow.

2. To each vertex we associate the factor \(-ie \gamma^\mu A_\mu(p^+ - p^-) \).

3. To each line we associate the propagator \(-i S_{\mathrm{fr}}^c(p) = -i \frac{-p^2 + m^2}{i p + m^2 - i \epsilon} \).

4. For internal lines we integrate over the variables with the measure \(\frac{d^4 p}{(2\pi)^4} \).

5. If two graphs differ only by an exchange of two fermionic lines, there is an additional factor \((-1)\) for one of them. This implies, in particular, that loops have an additional factor \((-1)\).

To compute scattering amplitudes with \(N^- \) incoming and \(N^+ \) outgoing particles we draw the same diagrams as for \(N^+ + N^- \)-point Green’s functions. The rules are changed only concerning the external lines.

(i) With each incoming external line we associate

- fermion: \((2\pi)^{-3/2} u(p, s)\).
- anti-fermion: \((2\pi)^{-3/2} \tilde{u}(-p, -s)\).

(ii) With each outgoing external line we associate

- fermion: \((2\pi)^{-3/2} \tilde{u}(p, s)\).

170
• anti-fermion: \((2\pi)^{-3/2}u(-p,-s)\).

Each incoming and outgoing antifermion has an additional factor \((-1)\).
(This follows from the rule (5) above).

6.2.10 Vacuum energy

Formally, the vacuum energy can be computed exactly:

\[
\mathcal{E} := i \log(\Omega^\dagger \hat{\Omega}) = i \log Z(0,0)
\]

\[
= i \text{Tr} \left(\log \left(\gamma^\mu (-i \partial_\mu + e A_\mu(x)) + m - i\epsilon \right) - \log \left(-i \gamma^\mu \partial_\mu + m - i\epsilon \right) \right)
\]

\[
= i \text{Tr} \log (\mathbb{1} + \gamma^\mu e A_\mu S_\Gamma)
\]

\[
= i \sum_{n=1}^\infty \frac{D_n}{n}.
\] (6.40)

Here \(D_n\) is the value of the loop with \(n\) vertices (which for \(n = 2\) is divergent).

Note that \(n\) in the denominator is the order of the group of the automorphisms of a loop with \(n\) vertices, which is \(\mathbb{Z}_n\).

Furry’s theorem, proven as in the bosonic case, says that diagrams for charged fermions of the odd order in \(e\) vanish. Hence (6.40) can be written as

\[
\mathcal{E} = \sum_{n=1}^\infty e^{2n} \mathcal{E}_n,
\]

where \(e^{2n} \mathcal{E}_n = i \frac{D_{2n}}{2n}\).

There exists a close relationship between the fermionic and bosonic vacuum energy. To see it, note that using \(\gamma^5 \gamma_\mu (\gamma^5)^{-1} = -\gamma_\mu\), we obtain

\[
\mathcal{E} = i \text{Tr} \left(\log \left(- \gamma^\mu \left(-i \partial_\mu + e A_\mu(x) \right) + m - i\epsilon \right) \right.
\]

\[
\left. - \log \left(i\gamma^\mu \partial_\mu + m - i\epsilon \right) \right).
\] (6.41)

We add up \(\frac{1}{2}(6.40)\) and \(\frac{1}{2}(6.41)\) and use identity (6.33). We obtain

\[
\mathcal{E} = \frac{1}{2} \text{Tr} \left(\log \left(- \partial_\mu + e A_\mu(x) \right) \left(\partial^\mu + e A^\mu(x) \right) + m^2 + \frac{e}{2} \sigma^{\mu\nu} F_{\mu\nu}(x) - i0 \right)
\]

\[
+ \log \left(- \Box + m^2 - i0 \right)
\]

\[
= \frac{1}{2} \text{Tr} \log \left(1 + \left(i e \partial_\mu A^\mu(x) + i e A^\mu(x) \partial_\mu + e^2 A_\mu(x) A^\mu(x) \right)
\]

\[
+ \frac{e}{2} \sigma^{\mu\nu} F_{\mu\nu}(x) \right) D_\Gamma^c
\]

(6.42)

We can compare (6.42) with a similar expression in the bosonic case (5.39).
6.2.11 Pauli-Villars renormalization

A single electron loop with two vertices coming from a potential A^μ leads to a contribution of the form

$$E_1 = \int \frac{dp}{(2\pi)^4} A^\mu(-p)A^\nu(p)\Pi_{\mu\nu}(p).$$

Unfortunately, computed naively, $\Pi_{\mu\nu}(p)$ is divergent.

We will compute it using the Pauli-Villars regularization. Similarly as for C_1, \ldots, C_∞, we choose $m_0 := m, C_0 := 1$. We choose m_1, \ldots, m_∞ so that the sums used in the following computations are integrable:

$$2\Pi_{\mu\nu}(p) = -\sum_i C_i e^2 \int\frac{d^4q}{(2\pi)^4} \left[\text{Tr} 2\left((q + \frac{i}{2}p)\gamma_\mu + m_i \right) (q + \frac{i}{2}p)\gamma_\nu + m_i \right]$$

$$= -\sum_i C_i e^2 \int\frac{d^4q}{(2\pi)^4} \int_0^\infty d\alpha \int_0^\infty d\alpha \left(-2q_\mu q_\nu + \frac{1}{2}p_\mu p_\nu + g_{\mu\nu}\left(q^2 - \frac{1}{4} p^2 + m_i^2 \right) \right)$$

$$\times \exp \left(-i(\alpha_1 + \alpha_2)\left(q^2 + \frac{1}{4} p^2 + m_i^2 \right) - i(\alpha_1 - \alpha_2)q - i(\alpha_1 + \alpha_2)q + i(\alpha_1 - \alpha_2)q \right)$$

$$= \sum_i C_i e^2 \int\frac{d^4q}{(2\pi)^4} \int_0^\infty d\alpha \int_0^\infty d\alpha \left(2\partial_{z_\mu} \partial_{z_\nu} + \frac{1}{2}p_\mu p_\nu + g_{\mu\nu}\left(-\partial_z^2 - \frac{1}{4} p^2 + m_i^2 \right) \right)$$

$$\times \exp \left(-i(\alpha_1 + \alpha_2)\left(q^2 + \frac{1}{4} p^2 + m_i^2 \right) - i(\alpha_1 - \alpha_2)q - i(\alpha_1 + \alpha_2)q + i(\alpha_1 - \alpha_2)q \right)$$

$$= \sum_i C_i e^2 \int\frac{d^4q}{(2\pi)^4} \int_0^\infty d\alpha \int_0^\infty d\alpha \left(8\alpha_1 \alpha_2 (p_\mu p_\nu - g_{\mu\nu}p^2) \right)$$

$$\times \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2} p^2 \right)$$

$$= (-g_{\mu\nu}p^2 + p_\mu p_\nu)2\Pi_0(p^2) + 2\Pi^{\mu\nu}(p).$$

We used the identities (A.14), (A.15) and (A.16).
The gauge dependent part of the vacuum energy tensor up to a coefficient is the same as for charged bosons and vanishes. We apply the same substitutions and use the same identities as in the charged boson case:

\[
\Pi_{\text{gi}}(p^2) = -\frac{e^2}{(4\pi)^2} \sum_i C_i \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2 \frac{4\alpha_1\alpha_2}{(\alpha_1 + \alpha_2)^4} \\
\times \exp \left(-i(\alpha_1 + \alpha_2)m_i^2 - i\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2} p^2 \right)
\]

\[
= -\frac{e^2}{(4\pi)^2} \sum_i C_i \int_0^1 dv \int_0^\infty d\rho \frac{(1 - v^2)}{\rho} (1 - v^2) \\
\times \exp \left(-i\rho \left(m_i^2 + \frac{(1 - v^2)p^2}{4} \right) \right)
\]

\[
= \frac{e^2}{(4\pi)^2} \sum_i C_i \int_0^1 dv (1 - v^2) \log \left(m_i^2 + \frac{(1 - v^2)p^2}{4} - i0 \right)
\]

\[
= \frac{e^2}{(4\pi)^2} \sum_i C_i \left(\int_0^1 dv (1 - v^2) \log \left(1 + \frac{(1 - v^2)p^2}{4m_i^2} - i0 \right) + \frac{1}{3} \log m_i^2 \right).
\]

Set \(\log M^2 := -\sum_i C_i \log m_i^2\). Define

\[
\Pi_{\text{ren}}(p^2) := \lim_{M \to \infty} \left(\Pi_{\text{gi}}(p^2) + \frac{e^2}{3(4\pi)^2} \log \frac{M^2}{m^2} \right)
\]

(6.43)

\[
= \frac{e^2}{(4\pi)^2} \int_0^1 dv (1 - v^2) \log \left(1 + \frac{(1 - v^2)p^2}{4m_i^2} - i0 \right).
\]

Recall that the vacuum energy function for neutral bosons \(\pi_{\text{ren}}\) was introduced in (2.98). Let \(\Pi_{\text{ren}}^b\) denote the vacuum energy function for charged bosons (5.41) and \(\Pi_{\text{ren}}^f\) for charged fermions (6.43). Let us note the following identity:

\[
2\Pi_{\text{ren}}^b(p^2) + \Pi_{\text{ren}}^f(p^2) = 4e^2\pi_{\text{ren}}(p^2).
\]

(6.44)

This identity can be also derived from (6.42), (5.39) and (2.97).

6.2.12 Method of dispersion relations

The imaginary part of the propagation tensor can be computed without regularization.

\[
\text{Im}\Pi_{\text{ren}}(p^2) = \text{Im} \frac{e^2}{(4\pi)^2} \int_0^1 dv (1 - v^2) \log \left(m^2 + \frac{(1 - v^2)p^2}{4} - i0 \right)
\]

\[
= \frac{e^2}{(4\pi)^2} \int_0^1 dv (1 - v^2)(-\pi)\theta \left(-\frac{(1 - v^2)p^2}{4} - m^2 \right)
\]

\[
= -\frac{4e^2\pi}{3(4\pi)^2} \left(-\frac{p^2 + 2m^2}{(-p^2)^{3/2}} \right) \left| -p^2 - 4m^2 \right|^{1/2}, \quad p^2 \in \mathbb{R}.
\]

The full vacuum energy tensor can be obtained by using the once subtracted dispersion relations, as in (5.46).
6.2.13 Dimensional renormalization

We can also use dimensional regularization to compute $\Pi_{\mu\nu}^{\text{ren}}$. We use the Euclidean formalism.

Thus (6.45) is replaced by

$$
2\Pi_{\mu\nu}^{E}(p) = e^2 \text{Tr} \frac{d^d q}{(2\pi)^d} 2\eta_{\mu\nu} - \frac{1}{2} p_\mu p_\nu - g_{\mu\nu}(q^2 - \frac{1}{4} p^2 + m^2)
= e^2 \text{Tr} \int_{-1}^{1} dv \int \frac{d^d q}{(2\pi)^d} \frac{2\eta_{\mu\nu} - \frac{1}{2} p_\mu p_\nu - g_{\mu\nu}(q^2 - \frac{1}{4} p^2 + m^2)}{(q^2 + \frac{p^2}{4} + m^2 + v q p)^2}
= e^2 \text{Tr} \int_{0}^{1} dv \int \frac{d^d q}{(2\pi)^d} \times \frac{2\eta_{\mu\nu} - \frac{1}{2} p_\mu p_\nu - g_{\mu\nu}(q^2 - \frac{1}{4} p^2 + m^2) + v^2(\frac{1}{2} p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{4})}{(q^2 + \frac{p^2}{4}(1 - v^2) + m^2)^2}.
$$

(6.45)

Then we use the dimensional regularization. Besides the rules (5.49) and (5.50) we have a new rule:

$$
\text{Tr} \frac{d}{d} \pi \text{ is replaced by } 2^{d/2}.
$$

(6.46)

Thus (6.45) is replaced by

$$
\Pi_{\mu\nu}^{E,d}(p) = e^{2} \frac{2^{d/2} \mu^{4-d} \Omega_d}{(2\pi)^d} \int_{0}^{1} dv \int_{0}^{\infty} |q|^{d-1} d|q|
\times \left(\frac{(2/d - 1)\eta_{\mu\nu} q^2 - \frac{1}{2} p_\mu p_\nu - g_{\mu\nu}(-\frac{1}{4} p^2 + m^2) + v^2(\frac{1}{2} p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{4})}{(q^2 + \frac{p^2}{4}(1 - v^2) + m^2)^2} \right)
= \frac{4e^2}{(4\pi)^2} \int_{0}^{1} dv \left(\frac{\mu^2 2\pi}{p^2 (1 - v^2) + m^2} \right)^{2-d/2} \Gamma(2 - d/2)
\times \left(\frac{g_{\mu\nu}(\frac{p^2}{4}(1 - v^2) + m^2) - \frac{1}{2} p_\mu p_\nu - g_{\mu\nu}(-\frac{1}{4} p^2 + m^2) + v^2(\frac{1}{2} p_\mu p_\nu - g_{\mu\nu} \frac{p^2}{4})}{(q^2 + \frac{p^2}{4}(1 - v^2) + m^2)^2} \right)
= \frac{2^{d/2}}{(4\pi)^2} \int_{0}^{1} dv \left(\frac{\mu^2 2\pi}{p^2 (1 - v^2) + m^2} \right)^{2-d/2} \Gamma(2 - d/2)(v^2 - 1)(p_\mu p_\nu - g_{\mu\nu} p^2)
\simeq \frac{2^{d/2}}{(4\pi)^2} \int_{0}^{1} dv \left(- \gamma + \log(\mu^2 2\pi) - \log \left(\frac{p^2}{4}(1 - v^2) + m^2\right) (v^2 - 1)(p_\mu p_\nu - g_{\mu\nu} p^2)\right)
= \frac{4e^2}{3(4\pi)^2(2 - d/2)} (p_\mu p_\nu - g_{\mu\nu} p^2)
$$

(6.47)

We can now renormalize (6.47):

$$
\Pi_{\mu\nu}^{E,\text{ren}}(p^2)(p_\mu p_\nu - g_{\mu\nu} p^2)
= \lim_{d \to 4} \left(\Pi_{\mu\nu}^{E,d}(p^2) - \Pi_{\mu\nu}^{E,d}(0)\right)
= \frac{1}{(4\pi)^2} \int_{0}^{1} dv (1 - v^2) \log \left(1 + \frac{p^2}{4m^2}(1 - v^2)\right) (p_\mu p_\nu - g_{\mu\nu} p^2).
$$

174
Again, this coincides with the Wick rotated result obtained by the Pauli-Villars method.

Remark 6.3 In the above computations we first try to eliminate gamma matrices. The only remnant of gamma matrices is \(\text{tr} \mathbb{1} \), where \(\mathbb{1} \) is the identity on the space of Dirac spinors, to which we apply the rule (6.46). However, we would have obtained the same final result if we used eg. the rule \(\text{Tr} \mathbb{1} = 4 \), since at the end we use the normalization condition \(\Pi^\text{ren}_{\mu\nu}(0) = 0 \). We use the condition (6.46) to be consistent with the literature.

Note, however, that in more complicated situations the dimensional renormalization can be problematic for fermions, especially in the presence of \(\gamma^5 \).

6.2.14 Energy shift

Suppose that the potential does not depend on time and is given by a Schwartz function \(\mathbb{R}^3 \ni \vec{x} \mapsto A_\mu(\vec{x}) \).

The free Hamiltonian is

\[
\hat{H}_\text{fr} = \int d\vec{x} \psi^\dagger(\vec{x})(\hat{\alpha}(-i\partial) + m\beta)\psi(\vec{x}).
\]

The naive interacting Hamiltonian is

\[
\hat{H} = \int d\vec{x} \psi^\dagger(\vec{x})(\hat{\alpha}(-i\partial + e\vec{A}(\vec{x})) + m\beta + eA_0(\vec{x}))\psi(\vec{x}).
\]

We apply (A.13) to compute the difference between the ground state energies of \(\hat{H} \) and \(\hat{H}_\text{fr} \) is

\[
\text{Tr} \left(-|\alpha(-i\partial + e\vec{A}(\vec{x})) + m\beta + eA_0(\vec{x})| + |\alpha(-i\partial) + m\beta)| \right)
\]

\[
= \sum_{n=1}^{\infty} e^{2n} E_n(A).
\]

Note that in the case of charged fermions we could have assumed that \(\hat{H}_\text{fr} \) and \(\hat{H} \) are given by the antisymmetric quantization, and then used the formula (A.11). Indeed, formally, \(\hat{H}_\text{fr} \) and \(\hat{H} \) differ by the same (infinite) constant (which was not true in the bosonic case).

All the terms with \(n \geq 2 \) are well defined. The term with \(n = 1 \) needs renormalization. The renormalized energy shift is

\[
E^\text{ren} = -e^2 \int \Pi^\text{ren}(\vec{p}^2)F_{\mu\nu}(\vec{p})F^{\mu\nu}(\vec{p}) \frac{d\vec{p}}{(2\pi)^3} + \sum_{n=2}^{\infty} e^{2n} E_n(A),
\]

where \(\Pi^\text{ren} \) was introduced in (6.43).
7 Majorana fermions

In this section we consider again the Dirac equation

\[-i\gamma^\mu \partial_\mu + m\phi(x) = 0.\]

We will quantize the space of its solutions satisfying the Majorana condition. We obtain a formalism that describes neutral fermions.

In the bosonic case we first treated the neutral case and only then the charged case. In the fermionic case it is convenient to reverse the order.

We will discuss only free Majorana fermions.

7.1 Free Majorana fermions

7.1.1 Charge conjugation

Consider a representation of Dirac matrices \(\gamma^\mu\). Let \(\kappa\) be a unitary \(4 \times 4\) matrix described in Subsubsect. 6.2.3. We say that \(u \in \mathbb{C}^4\) is neutral or satisfies the Majorana condition if \(u = \kappa u\).

Recall that in the Majorana representation \(\kappa\) can be taken to be the identity. In the Dirac and spinor representation \(\kappa := i\gamma_2\).

7.1.2 Space of solutions

If a function \(\zeta\) satisfies the Dirac equation

\[(-i\gamma^\mu \partial_\mu + m)\zeta(x) = 0,\]

then \(\kappa \zeta\) also satisfies the Dirac equation. Therefore, we can restrict the Dirac equation to functions \(\zeta\) satisfying the Majorana condition

\[\kappa \zeta = \zeta.\] \hfill (7.1)

The space of smooth space compact solutions of the Dirac equation satisfying (7.1) will be denoted \(Y_D\). Note that it is a real vector space equipped with a nondegenerate scalar product

\[\zeta_1 \cdot \zeta_2 = \int \zeta_1(t,\vec{x})\zeta_2(t,\vec{x})d\vec{x}.\]

In the Majorana representation the space \(Y_D\) consists simply of real functions. However, we will most often use the Dirac representation, where the Majorana condition is less trivial.

Let \(\phi(x)\) be the linear functional on \(Y_D\) defined by

\[\langle \phi(x)|\zeta \rangle = \zeta(x).\]

The complexification of \(Y_D\), that is \(\mathbb{C}Y_D\), can be identified with \(W_D\). We can extend \(\phi(x)\) to \(\mathbb{C}Y_D\) by complex linearity. The subspace \(Y_D\) is then determined by the condition

\[\kappa \phi^*(x) = \phi(x).\]
7.1.3 Smeared fields

Smeared fields are defined very similarly as for Dirac fields. Note that in spite of the similarity of the formulas, the objects are different: they act on the real space Y_D, and not on the complex space W_D.

For $\zeta \in W_D$, the corresponding spatially smeared field is the functional on Y_D given by

$$\langle \phi(\zeta) | \rho \rangle := \zeta \cdot \rho, \quad \rho \in Y_D.$$

Clearly, for any t

$$\phi(\zeta) = \int \zeta(t, \vec{x}) \phi(t, \vec{x}) d\vec{x}.$$

For $f \in C_\infty(\mathbb{R}^{1,3}, \mathbb{C}^4)$ such that $\kappa f = f$, the corresponding space-time smeared field is given by

$$\phi[f] := \int f(x) \phi(x) dx = \phi((S \ast f)).$$

7.1.4 Plane waves

Since we consider neutral fields, the generic name for the momentum variable is again k, instead of p.

Recall that in the Dirac representation we defined the plane waves $u(k, s)$ given by (6.5). These plane waves are compatible with the Majorana condition in the following sense:

$$\kappa u(k, s) = u(-k, -s). \quad (7.2)$$

We can introduce the plane wave functionals, where $k^0 > 0$,

$$a(k, s) := \phi(|k, s\rangle) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} u(k, s) e^{-ik \vec{x}} \phi(0, \vec{x}).$$

Note that

$$a^*(k, s) := \phi(|-k, -s\rangle) = (2\pi)^{-\frac{3}{2}} \int d\vec{x} u(-k, -s) e^{ik \vec{x}} \phi(0, \vec{x}).$$

We have

$$\phi(x) = \sum_s (2\pi)^{-\frac{3}{2}} \int d\vec{k} \left(u(k, s) e^{ikx} a(k, s) + u(-k, -s) e^{-ikx} a^*(k, s) \right)$$

$$= \sum_s \int d\vec{k} \left((k, s | a(k, s) + (-k, -s | a^*(k, s) \right).$$
7.1.5 Quantization

To quantize the Dirac equation with the Majorana condition we use the formalism of quantization of neutral fermionic systems [11].

We want to construct \((H, \hat{H}, \Omega)\) satisfying the standard requirements and a distribution

\[\mathbb{R}^{1,3} \ni x \mapsto \hat{\phi}(x), \]

(7.3)

with values in \(\mathbb{C}^4 \otimes B(\mathcal{H})\) such that the following conditions are true:

1. \((-i\gamma \partial + m)\hat{\phi}(x) = 0, \quad \kappa \hat{\phi}^*(x) = \hat{\phi}(x);\)
2. \([\phi_a(0, \vec{x}), \phi_b^*(0, \vec{y})]_+ = 2\delta_{ab}\delta(\vec{x} - \vec{y});\)
3. \(e^{it\hat{H}} \hat{\phi}(x, \vec{x})e^{-it\hat{H}} = \hat{\phi}(x^0 + t, \vec{x});\)
4. \(\Omega\) is cyclic for \(\hat{\phi}(x)\).

The above problem has a solution unique up to a unitary equivalence, which we describe below.

Let \(Z_D\) denote the fermionic positive frequency Hilbert space \(Z_D\) was defined in Subsubsect. 6.1.8. We set

\[\mathcal{H} := \Gamma_a(Z_D). \]

Creation/annihilation operators on \(Z_D\) will be denoted \(\hat{a}^+/\hat{a}\). Introduce the operator valued distribution \(a^*(k, s)\) defined for \(k\) on mass shell by

\[\hat{a}^*(k, s) := \hat{a}^*\{k, s\}, \]

(7.4)

or equivalently

\[\sum_s \int (k, s|g)\hat{a}^*(k)d\vec{k} = \hat{a}^*(g), \quad g \in Z_D. \]

(7.5)

We set

\[\hat{\phi}(x) := (2\pi)^{-\frac{3}{2}} \sum_s \int d\vec{k} \left(u(k, s)e^{ikx}\hat{a}(k, s) + u(-k, -s)e^{-ikx}\hat{a}^*(k, s) \right). \]

The quantum Hamiltonian and momentum are

\[\hat{H} := \int \sum_s \hat{a}^*(k, s)\hat{a}(k, s)\epsilon(\vec{k})d\vec{k}, \]

\[\vec{\hat{P}} := \int \sum_s \hat{a}^*(k, s)\hat{a}(k, s)d\vec{k}. \]

The whole \(\mathbb{R}^{1,3} \rtimes Spin^+(1,3)\) acts unitarily on \(\mathcal{H}\). Moreover, if we set \(\tilde{\phi}(x) := \beta\hat{\phi}^*(x)\), then

\[[\tilde{\phi}_a(x), \tilde{\phi}_b(y)]_+ = 2S_{ab}(x - y). \]

(7.6)
We have
\[
(\Omega|\hat{\phi}_a(x)\hat{\phi}_b(y)\Omega) = 2S_{ab}^{(+)}(x-y),
\]
\[
(\Omega|T(\hat{\phi}_a(x)\hat{\phi}_b(y))\Omega) = 2S_{ab}(x-y).
\]

For \(f \in C_\infty_c(\mathbb{R}^{1,3}, \mathbb{C}^4) \) such that \(\kappa f = f \), we set
\[
\hat{\phi}[f] := \int f(x)\hat{\phi}(x)dx.
\]

If we use the Majorana representation, so that \(\kappa = 1 \), we obtain an operator valued distribution satisfying the Wightman axioms with \(D := \Gamma_a^a(Z_D) \).

For an open set \(O \subset \mathbb{R}^{1,3} \) the field algebra is defined as
\[
\mathcal{F}(O) := \{ \hat{\phi}[f] : f \in C_\infty_c(O, \mathbb{C}^4), \kappa f = f \}''.
\]
The observable algebra \(\mathfrak{A}(O) \) is the even subalgebra of \(\mathcal{F}(O) \). The nets of algebras \(\mathcal{F}(O) \) and \(\mathfrak{A}(O), O \subset \mathbb{R}^{1,3} \), satisfy the Haag-Kastler axioms.

7.1.6 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program, which uses the smeared fields instead of point fields. We look for a linear function
\[
\mathcal{Y}_D \ni \zeta \mapsto \hat{\phi}(\zeta)
\]
with values in bounded self-adjoint operators such that
1. \([\hat{\phi}(\zeta_1), \hat{\phi}(\zeta_2)]_+ = 2\zeta_1 \cdot \zeta_2 \);
2. \(\hat{\phi}(r(t,\vec{0})\zeta) = e^{itH}\hat{\phi}(\zeta)e^{-itH} \);
3. \(\Omega \) is cyclic for \(\hat{\phi}(\zeta) \).

One can pass between these two versions of the quantization by
\[
\hat{\phi}(\zeta) = \int \overline{\zeta(t,\vec{x})}\hat{\phi}(t,\vec{x})d\vec{x}.
\]

A Appendix

A.1 Second quantization

A.1.1 Fock spaces

Let \(Z \) be a Hilbert space. Let \(S_n \) denote the permutation group of \(n \) elements and \(\sigma \in S_n \). \(\Theta(\sigma) \) is defined as the unique operator in \(B(\otimes^n Z) \) such that
\[
\Theta(\sigma)g_1 \otimes \cdots \otimes g_n = g_{\sigma^{-1}(1)} \otimes \cdots \otimes g_{\sigma^{-1}(n)}, \quad g_1, \ldots, g_n \in Z.
\]
Θ(σ) is unitary. We define the symmetrization/antisymmetrization projections

$$\Theta^n_s := \frac{1}{n!} \sum_{\sigma \in S_n} \Theta(\sigma), \quad \Theta^n_a := \frac{1}{n!} \sum_{\sigma \in S_n} \text{sgn}\sigma \Theta(\sigma).$$

In what follows we will consider in parallel the symmetric/antisymmetric, or bosonic/fermionic case. To facilitate notation we will write s/a for either s or a. $\Theta^n_{s/a}$ are orthogonal projections. The n-particle bosonic/fermionic space is defined as

$$\otimes^n_{s/a} \mathcal{Z} := \Theta^n_{s/a} \otimes^n \mathcal{Z}.$$

The bosonic/fermionic Fock space is

$$\Gamma_{s/a}(\mathcal{Z}) := \bigoplus_{n=0}^{\infty} \otimes^n_{s/a} \mathcal{Z}.$$

The vacuum vector is $\Omega := 1 \in \otimes^0_{s/a} \mathcal{Z} = \mathbb{C}$. Note that Fock spaces are Hilbert spaces, so that the tensor products and direct sums used in their definition are completed in their natural topology. Sometimes we may want a similar construction without the completion (in particular, if \mathcal{Z} is not a Hilbert space). Then we will speak about algebraic Fock spaces.

A.1.2 Creation/annihilation operators

For $g \in \mathcal{Z}$ we define the creation operator

$$\hat{a}^*(g) \Psi := \Theta^{n+1}_{s/a} \sqrt{n + 1} g \otimes \Psi, \quad \Psi \in \otimes^n_{s/a} \mathcal{Z},$$

and the annihilation operator $\hat{a}(g) := (\hat{a}^*(g))^*$. Above we used a compact notation for creation/annihilation operators popular among mathematicians. Physicists commonly prefer another notation, which is longer and less canonical, but often more flexible. In order to introduce it, we need to fix an identification of \mathcal{Z} with L^2 of some measure space. For instance, let $\mathcal{Z} = L^2(\mathbb{R}^d)$ with the variable called ξ. Every $g \in \mathcal{Z}$ can be represented as a function $\mathbb{R}^d \ni \xi \mapsto g(\xi)$. Then

$$\hat{a}^*(g) = \int g(\xi) \hat{a}^*(\xi) d\xi, \quad \hat{a}(g) = \int \overline{g(\xi)} \hat{a}(\xi) d\xi. \quad (A.1)$$

We will call the notation on the left of (A.1) “mathematician’s notation” and on the right “physicist’s notation”.

Let $[\cdot, \cdot]_-$, resp. $[\cdot, \cdot]_+$ denote the commutator, resp. anticommutator. Creation and annihilation operators satisfy canonical commutation/anticommutation
relations, which in “mathematician’s notation” read

\[[a^*(f), a^*(g)]_\pm = [a(f), a(g)]_\pm = 0, \]
\[[a(f), a^*(g)]_\pm = (f | g), \]

and in “physicist’s notation” have the form

\[[a^*(\xi), a^*(\xi')]_\pm = [a(\xi), a(\xi')]_\pm = 0, \]
\[[a(\xi), a^*(\xi')]_\pm = \delta(\xi - \xi'). \]

A.1.3 Weyl/antisymmetric and Wick quantization

Let

\((\xi_1, \ldots, \xi_m, \xi'_n, \ldots, \xi'_1) \mapsto b(\xi_1, \ldots, \xi_m, \xi'_n, \ldots, \xi'_1) \) \hspace{1cm} (A.2)

be a complex function, symmetric/antisymmetric separately wrt the first \(m \) and the last \(n \) arguments. Let us introduce the following expression:

\[
\int \cdots \int b(\xi_1, \ldots, \xi_m, \xi'_n, \ldots, \xi'_1)
\times a^*(\xi_1) \cdots a^*(\xi_m)a(\xi'_n) \cdots a(\xi'_1)\,d\xi_1 \cdots d\xi_m\,d\xi'_n \cdots d\xi'_1, \tag{A.3}
\]

where \(a(\xi) \) and \(a^*(\xi) \) are commuting/anticommuting symbols. In the symmetric case this can be interpreted as a polynomial on \(\mathbb{Z} \oplus \mathbb{Z} \). Indeed, if we interpret the symbols \(a(\xi) \) as the evaluations of \(g \in \mathbb{Z} = L^2(\mathbb{R}^d) \):

\[
(a(\xi)|g) := g(\xi), \quad (a^*(\xi)|g) := \overline{g(\xi)},
\]

then (A.3) has the meaning of a polynomial function.

It is common to use the name a polynomial also in the antisymmetric case.

The Wick quantization of (A.3) is the operator on the Fock space given by the same expression, except that we put the “hats” on \(a \) and \(a^* \). Note that the creation operators are on the left and annihilation operators are on the right:

\[
\int b(\xi_1, \ldots, \xi_m, \xi'_n, \ldots, \xi'_1)
\times \hat{a}^*(\xi_1) \cdots \hat{a}^*(\xi_m)\hat{a}(\xi'_n) \cdots \hat{a}(\xi'_1)\,d\xi_1 \cdots d\xi_m\,d\xi'_n \cdots d\xi'_1.
\]

In practice we often have some fields, say \(\varphi_1(\xi), \varphi_2(\xi) \), that can be written as linear combinations of \(a(\xi) \) and \(a^*(\xi) \), eg.

\[
\varphi_i(\xi) = \int A_i(\xi)a(\xi) + \int B_i(\xi)a^*(\xi).
\]

Their quantizations are denoted by “hats”:

\[
\hat{\varphi}_i(\xi) = \int A_i(\xi)\hat{a}(\xi) + \int B_i(\xi)\hat{a}^*(\xi).
\]
Suppose we have a polynomial
\[\sum_{i_1, \ldots, i_m} \int \cdots \int c_{i_1, \ldots, i_m}(\xi_1, \ldots, \xi_m) \hat{\varphi}_{i_1}(\xi_1) \cdots \hat{\varphi}_{i_m}(\xi_m) d\xi_1 \cdots d\xi_m. \] (A.4)

We assume that the coefficients \(c_{i_1, \ldots, i_m}(\xi_1, \ldots, \xi_m) \) are symmetric/antisymmetric. The most natural quantization of (A.4) is the operator on the Fock space given by the same expression, where we just put “hats” on the fields. It is called the \textit{Weyl quantization} in the bosonic case. In the fermionic case this quantization seems to have no established name, although it would be tempting to call it the \textit{fermionic Weyl quantization}. Following [11], we will call it the \textit{antisymmetric quantization}.

By inserting (A.4), we obtain a polynomial expressed in terms of \(a(\xi) \) and \(a^*(\xi) \). Its Wick quantization has the traditional notation where the expression decorated with hats is put between double dots:
\[: \sum_{i_1, \ldots, i_m} \int \cdots \int c_{i_1, \ldots, i_m}(\xi_1, \ldots, \xi_m) \hat{\varphi}_{i_1}(\xi_1) \cdots \hat{\varphi}_{i_m}(\xi_m) d\xi_1 \cdots d\xi_m :. \]

We will often use Wick quantizations of second degree polynomials. For instance, let \(c(\xi, \xi') \) be a symmetric/antisymmetric function. Then the Wick and Weyl/antisymmetric quantizations differ by the vacuum expectation value:
\[: \int c(\xi, \xi') \hat{\varphi}(\xi) \hat{\varphi}(\xi') d\xi d\xi' : = \int c(\xi, \xi') \hat{\varphi}(\xi) \hat{\varphi}(\xi') d\xi d\xi' - \int \int c(\xi, \xi') \hat{\varphi}(\xi) \hat{\varphi}(\xi') (\Omega | \hat{\varphi}(\xi') \hat{\varphi}(\xi') \Omega) d\xi d\xi'. \]

For 1st order polynomials their Wick quantization coincides with their Weyl/antisymmetric quantization:
\[: \int f(\xi) \hat{\varphi}(\xi) d\xi : = \int f(\xi) \hat{\varphi}(\xi) d\xi. \]

\section*{A.1.4 Second quantization of operators}

For a contraction \(q \) on \(Z \) we define the operator \(\Gamma(q) \) on \(\Gamma_{s/a}(Z) \) by
\[\Gamma(q) \big|_{\otimes^s_{s/a} Z} = q \otimes \cdots \otimes q \big|_{\otimes^s_{s/a} Z} . \]

\(\Gamma(q) \) is called the \textit{second quantization of} \(q \).

Similarly, for an operator \(h \) we define the operator \(d\Gamma(h) \) by
\[d\Gamma(h) \big|_{\otimes^s_{s/a} Z} = h \otimes 1^{(n-1)\otimes} + \cdots + 1^{(n-1)\otimes} \otimes h \big|_{\otimes^s_{s/a} Z} . \]
\(d\Gamma(h)\) is called the \textit{(infinitesimal) second quantization} of \(h\).

If \(h\) is the multiplication operator by \(h(\xi)\), then using physicist’s notation we have
\[
d\Gamma(h) = \int h(\xi) \hat{a}^*(\xi) \hat{a}(\xi) d\xi.
\]

Note the identity \(\Gamma(e^{ith}) = e^{ith}d\Gamma(h)\).

A.1.5 Implementability of Bogoliubov translations

Consider bosonic creation/annihilation operators. Let \(\xi \mapsto f(\xi)\) be a complex function. Set
\[
\begin{align*}
 a^*_1(\xi) &= a^*(\xi) + \overline{f(\xi)}, \\
 a_1(\xi) &= a(\xi) + f(\xi).
\end{align*}
\]

Then there exists a unitary operator \(U\) on the Fock space such that
\[
\begin{align*}
 Ua^*(\xi)U^* &= a^*_1(\xi), \\
 Ua(\xi)U^* &= a_1(\xi),
\end{align*}
\]
iff
\[
\int |f(\xi)| d\xi < \infty.
\]

A.1.6 Implementability of Bogoliubov rotations

We will treat simultaneously the bosonic and fermionic case. The upper signs will always correspond to the bosonic case and lower to the fermionic case.

For an operator \(p\) with an integral kernel \(p(\xi,\xi')\) we will write \(p^*\) for its Hermitian conjugate, \(p^\#\) for its transpose of \(p\) and \(\overline{p}\) for its complex conjugate. Clearly
\[
p^*(\xi,\xi') = \overline{p(\xi',\xi)}, \quad p^\#(\xi,\xi') = p(\xi',\xi), \quad \overline{p}(\xi,\xi') = \overline{p(\xi,\xi')}.
\]

Let \(q\) be an operator with the integral kernel \(p(\xi,\xi), q(\xi,\xi')\). We assume that \(p = \pm p^\#\). Set
\[
\begin{align*}
 a^*_1(\xi) &= \int (p(\xi,\xi') a^*(\xi) + q(\xi,\xi') a(\xi')) d\xi', \quad (A.5) \\
 a_1(\xi) &= \int (\overline{q(\xi',\xi)} a^*(\xi') + \overline{p(\xi',\xi)} a(\xi)) d\xi'. \quad (A.6)
\end{align*}
\]

Assume that
\[
\begin{align*}
 p^* p + q^\# q &= 1, & p^* q + q^\# p &= 0, \\
 pp^* + qq^* &= 1, & pq^\# + qp^* &= 0,
\end{align*}
\]
which guarantees that \(a^*_1, a_1\) satisfy the same commutation/anticommutation relations as \(a^*, a\).
Theorem A.1 There exists a unitary U on the Fock space such that

$$Ua^*(\xi)U^* = a_1^*(\xi), \quad Ua(\xi)U^* = a_1(\xi),$$

iff q is Hilbert-Schmidt, that means,

$$\int \int |q(\xi,\xi')|^2 d\xi d\xi' < \infty.$$

The above theorem is called the *Shale criterion* in the bosonic and the *Shale-Stinespring criterion* in the fermionic case. It is proven eg. in [11].

A.1.7 Infimum of a van Hove Hamiltonian

Consider a bosonic Hamiltonian of the form

$$H := \int \varepsilon(\xi) \hat{a}^*(\xi) \hat{a}(\xi) d\xi + \int v(\xi) \hat{a}^*(\xi) d\xi + \int \overline{v(\xi)} \hat{a}(\xi) d\xi. \quad (A.7)$$

Such Hamiltonians are sometimes called van Hove Hamiltonians [11]. Assume that ε is positive. We would like to compute the infimum of the spectrum of H, denoted $\inf H$.

By completing the square we can rewrite (A.7) as

$$\int \varepsilon(\xi) \left(\hat{a}^*(\xi) + \frac{v(\xi)}{\varepsilon(\xi)} \right) \left(\hat{a}(\xi) + \frac{\overline{v(\xi)}}{\varepsilon(\xi)} \right) d\xi - \int \frac{|v(\xi)|^2}{\varepsilon(\xi)} d\xi. \quad (A.8)$$

It is easy to see that the infimum of the first term in (A.8) is zero. Hence

$$\inf H = -\int \frac{|v(\xi)|^2}{\varepsilon(\xi)} d\xi. \quad (A.9)$$

A.1.8 Infimum of a Bogoliubov Hamiltonian

Consider a bosonic or fermionic Hamiltonian:

$$H := \int h(\xi,\xi') (\hat{a}^*(\xi) \hat{a}(\xi') \pm \hat{a}(\xi) \hat{a}^*(\xi')) d\xi d\xi'$$

$$+ \int (g(\xi,\xi') \hat{a}^*(\xi) \hat{a}^*(\xi') \pm \overline{g(\xi,\xi')} \hat{a}(\xi) \hat{a}(\xi)) d\xi d\xi'. \quad (A.10)$$

We assume that $\overline{h(\xi,\xi')} = h(\xi',\xi)$, $g(\xi,\xi') = \pm g(\xi'\xi)$. We will call (A.10) Bogoliubov Hamiltonians. Note that (A.10) is the Weyl/antisymmetric quantization of the corresponding classical quadratic Hamiltonian. In the case of an infinite number of degrees of freedom it is often ill defined, but even then it is useful to consider such formal expressions.

We have the following formula for the infimum of H [11]:

$$\inf H = \pm \frac{1}{2} \text{Tr} \left[\begin{array}{cc} \varepsilon - gg^* & \mp h \pm gh' \\ g^* \mp h' & \mp h^2 + g^2 \end{array} \right]^{\frac{1}{2}}. \quad (A.11)$$
Here, we write h for the operator with the integral kernel $h(\xi, \xi')$ and g for the operator with the integral kernel $g(\xi, \xi')$.

Consider the Wick ordered version of (A.10):

\[
\hat{H} := 2 \int h(\xi, \xi') \hat{a}^* (\xi) \hat{a}(\xi') d\xi d\xi' \\
+ \int (g(\xi, \xi') \hat{a}^* (\xi) \hat{a}(\xi') \pm g(\xi, \xi') \hat{a}(\xi) \hat{a}(\xi')) d\xi d\xi'.
\]

(A.12)

\hat{H} has a better chance to be well defined. The formula for the infimum of \hat{H} is more complicated, but is more likely to lead to a finite expression [11]:

\[
\inf \hat{H} := \frac{1}{2} \text{Tr} \left(\pm \begin{bmatrix} h^2 + gg^* & \mp hg \pm gh^* \\ g^* h - h^# g^* & h^#^2 \mp g^* g \end{bmatrix}^{\frac{1}{2}} \mp \begin{bmatrix} h & 0 \\ 0 & h^# \end{bmatrix} \right).
\]

(A.13)

A.2 Miscellaneous

A.2.1 Identities

\[
\frac{1}{A - i0} = i \int_0^\infty \! d\alpha \exp(-i\alpha A),
\]

(A.14)

\[
p_\mu = i \partial_\mu \exp(-ipz) \bigg|_{z=0},
\]

(A.15)

\[
\int \! \frac{dp}{(2\pi)^{4d}} \exp(-i(ap^2 + bp)) = \frac{\text{sgn}(a)}{(4\pi)^2 a^2} \exp(ib^2/4a).
\]

(A.16)

If $\sum C_i = 0$, then

\[
\int_0^\infty \! \sum_i C_i \frac{dp}{p} e^{-ipA_i} = -\sum_i C_i \log(A_i - i0),
\]

(A.17)

\[
\int \! \log(A^2 - w^2)dw = w \log(A^2 - w^2) - 2w \\
+ A \log \frac{A + w}{A - w}, \quad 0 < w < A;
\]

(A.18)

\[
\int \! w^2 \log(A^2 - w^2)dw = \frac{w^3}{3} \log(A^2 - w^2) - \frac{2w^3}{9} - \frac{2A^2 w}{3} \\
+ \frac{A^3}{3} \log \frac{A + w}{A - w}, \quad 0 < w < A.
\]

(A.19)

A.2.2 Identities for the dimensional regularization

The *Feynman identity*:

\[
\frac{1}{AB} = \frac{1}{2} \int_{-1}^1 \frac{dv}{\left(\frac{1}{2}(A + B) + \frac{1}{2}(A - B)v\right)^2}.
\]

(A.20)
The behavior of Γ around 0:

$$\Gamma(2 - d/2) \simeq \frac{1}{2 - d/2} - \gamma. \quad (A.21)$$

The area of the unit $d - 1$-dimensional sphere:

$$\Omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}. \quad (A.22)$$

Integrals, which can be reduced to special cases of the Euler integral:

$$\int_0^\infty \frac{t^{d-1}}{(t^2 + A^2)^2} \, dt = \frac{1}{2} (A^2)^{-2+d/2} \Gamma(d/2) \Gamma(2 - d/2), \quad (A.23)$$

$$\int_0^\infty \frac{t^{d+1}}{(t^2 + A^2)^2} \, dt = \frac{1}{2} (A^2)^{-1+d/2} \Gamma(1 + d/2) \Gamma(1 - d/2)$$

$$= \frac{1}{2} (A^2)^{-1+d/2} \Gamma(2 - d/2) \Gamma(2 - d/2)(-1 + 2/d)^{-1}. \quad (A.24)$$

Typical integrals:

$$\mu^{4-d} \Omega_d \int_0^\infty |q|^{d-1} \frac{d|q|}{(q^2 + A^2)^2} = \frac{1}{(4\pi)^2} \left(\frac{\mu^2 4\pi}{A^2} \right)^{2-d/2} \Gamma(2 - d/2)$$

$$\approx \frac{1}{(4\pi)^2} \left(1 + (2 - d/2) \log \frac{\mu^2 4\pi}{A^2} \right) \left(\frac{1}{2 - d/2} - \gamma \right)$$

$$\approx \frac{1}{(4\pi)^2} \left(-\gamma + \log \frac{\mu^2 4\pi}{A^2} + \frac{1}{(2 - d/2)} \right). \quad (A.25)$$

$$\mu^{4-d} \Omega_d \int_0^\infty (-1 + 2/d) \frac{|q|^{d+1}}{(q^2 + A^2)^2} \, d|q| = \frac{A^2}{(4\pi)^2} \left(\frac{\mu^2 4\pi}{A^2} \right)^{2-d/2} \Gamma(2 - d/2)$$

$$\approx \frac{A^2}{(4\pi)^2} \left(1 + (2 - d/2) \log \frac{\mu^2 4\pi}{A^2} \right) \left(\frac{1}{2 - d/2} - \gamma \right)$$

$$\approx \frac{A^2}{(4\pi)^2} \left(-\gamma + \log \frac{\mu^2 4\pi}{A^2} + \frac{1}{(2 - d/2)} \right). \quad (A.26)$$
A.2.3 Operator identities

If A is a positive self-adjoint operator, then
\[A^{1/2} = \int \frac{A}{(A + \tau^2)^2} d\tau \] (A.27)
\[A^{-1/2} = \int \frac{1}{(A + \tau^2)^2} d\tau \]
\[= -2 \int \frac{1}{(A + \tau^2)^2} \tau^2 d\tau \] (A.28)

In the following identity κ is a certain operator. It is useful when studying nth order loop diagrams:
\[\int \text{Tr} \left(\frac{1}{(A + \tau^2)^2} \kappa \right) \left(\frac{1}{(A + \tau^2)^\kappa} \right)^{n-1} \tau^2 d\tau \]
\[= -\frac{1}{2n} \int \text{Tr} \left(\frac{1}{(A + \tau^2)^\kappa} \right)^n d\tau \] (A.29)

A.2.4 Coulomb and Yukawa potential

If $\rho \in C_c(\mathbb{R}^3)$, then
\[\rho = -\Delta f \]
has a unique solution in functions that decay at infinity given by
\[f(\vec{x}) = (-\Delta)^{-1} \rho(\vec{x}) = \int \frac{1}{4\pi |\vec{x} - \vec{y}|} \rho(\vec{y}) d\vec{y}. \] (A.30)

For large $|\vec{x}|$, (A.30) has the asymptotics
\[\frac{1}{4\pi |\vec{x}|} \int \rho(\vec{y}) d\vec{y} + O \left(\frac{1}{|\vec{x}|^2} \right). \] (A.31)

More generally
\[(m^2 - \Delta)^{-1} \rho(\vec{x}) = \int \frac{e^{-m|\vec{x} - \vec{y}|}}{4\pi |\vec{x} - \vec{y}|} \rho(\vec{y}) d\vec{y}. \] (A.32)

A.2.5 Vector fields

Consider a vector field $\mathbb{R}^3 \ni \vec{x} \mapsto \vec{A}(\vec{x}) \in \mathbb{R}^3$. We say that it is transversal if
\[\text{div} \vec{A}(\vec{x}) = 0. \]

If it is not necessarily transversal but sufficiently nice, its transversal part is defined as
\[\vec{A}_\text{tr}(\vec{x}) := \vec{A}(\vec{x}) + (-\Delta)^{-1} \partial \text{div} \vec{A}(\vec{x}). \] (A.33)
We have the identities
\[
\int \vec{A}(\vec{x})^2 d\vec{x} = \int \vec{A}_{tt}(\vec{x})^2 d\vec{x} + \int ((-\Delta)^{-1/2} \operatorname{div}\vec{A}(\vec{x}))^2 d\vec{x},
\]
\[
\int (\vec{\partial} \vec{A}(\vec{x}))^2 d\vec{x} = \int (\vec{\partial} \vec{A}_{tt}(\vec{x}))^2 d\vec{x} + \int (\operatorname{div}\vec{A}(\vec{x}))^2 d\vec{x}, \quad (A.34)
\]
\[
\int (\vec{\partial} \vec{A}_{tt}(\vec{x}))^2 d\vec{x} = \frac{1}{2} \int (\operatorname{rot}\vec{A}(\vec{x}))^2 d\vec{x}. \quad (A.35)
\]

References

189

