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Abstract

The main purpose of these notes is a review of various models of Quan-
tum Field Theory involving quadratic Lagrangians. We discuss scalar and
vector bosons, spin % fermions, both neutral and charged. Beside free the-
ories, we study their interactions with classical perturbations, called, de-
pending on the context, an external linear source, mass-like term, current
or electromagnetic potential. The notes may serve as a first introduction

to QFT.
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0 Introduction

In these notes we discuss various models of Quantum Field Theory in 143
dimensions involving quadratic Lagrangians or, equivalently, quadratic Hamil-
tonians.

First of all, we describe basic types of free fields:

(1) neutral scalar bosons,

(2) neutral massive vector bosons (“massive photons”),
(3) neutral massless vector bosons (“massless photons”),
(4) charged scalar bosons,

(5) (charged) Dirac fermions,

(6) (neutral) Majorana fermions.

We also consider free fields perturbed by a linear or quadratic perturbation
involving a classical (c-number) function.

(1) neutral scalar bosons interacting with a linear source,
neutral scalar bosons interacting with a mass-like perturbation,

massive photons interacting with a classical 4-current,

charged scalar bosons interacting with an electromagnetic 4-potential,

)
)
4) massless photons interacting with a classical 4-current,
)
) Dirac fermions interacting with an electromagnetic 4-potential,
)

Majorana fermions interacting with a mass-like perturbation.

All the above models are (or at least can be) well understood in the non-
perturbative sense. Perturbation theory is not necessary to compute their scat-
tering operators and Green’s functions, which is not the case (at least so far) of
truly interacting models.

Quantum fields interacting with classical perturbations is a topic with many
important applications to realistic physical systems. Therefore, the formalism
developed in our text is well motivated physically.

Clearly, many important issues of quantum field theory are outside of the
scope of free fields interacting with classical perturbations. However, surpris-
ingly many difficult topics can be discussed already on this level. Therefore, we
believe that our text has pedagogical value, as a kind of an introduction to full
quantum field theory.

In our text we stress the deductive character of quantum field theory. Models
that we discuss are quite rigid and built according to strict principles. Among
these principles let us mention the Poincaré covariance, the Einstein causality
and the boundedness of the Hamiltonian from below. Some of these principles
are encoded in the Haag-Kastler and Wightman axioms. Even if these axioms
are often too restrictive, they provide useful guidelines.

The only known models for Haag-Kastler or Wightman axioms in 14-3 dimen-
sions are free theories. Their scattering theory is trivial. To obtain interesting



physical information one needs interacting theories. Unfortunately, interacting
theories are known only perturbatively.

Free theories are the quantizations of covariant 2nd order linear hyperbolic
equations on the Minkowski space. These equations can be perturbed by Oth or
1st order terms involving an arbitrary space-time functions called, depending on
the context, a classical (=external) linear source, mass-like term, 4-current or
electromagnetic 4-potential. We can consider the quantization of the perturbed
equation. Such a theory is still essentially exactly solvable, since the Hamilto-
nian is quadratic. It has no Poincaré covariance. However, it still gives rise to
a net of observable algebras satisfying the Einstein causality.

In our discussion we always start from the study of a classical theory, which
we discuss from the Hamiltonian and Lagrangian point of view. Then we dis-
cuss its quantization. Even though in all the cases we consider the Hamiltonian
is quadratic, its quantization often has various subtle points. In some cases,
especially for vector fields, there are several natural approaches to quantization,
which in the end lead to the same physical results. We try to discuss vari-
ous possible approaches. In our opinion, the existence of seemingly different
formalisms for the same physical system constitutes one of the most confusing
aspects of quantum field theory.

Classical perturbations that we consider are usually described by smooth
space-time functions that decay fast both in space and time. In particular,
their dynamics is typically described by time-dependent Hamiltonians. This is
a certain minor difficulty, which is often ignored in the literature. We discuss
how to modify the usual formalism in order to deal with this problem.

The models that we discuss illustrate many problems of interacting theories,
such as the ultraviolet problem, the infrared problem and the gauge invariance.

The ultraviolet problem means that when we try to define a theory in a
naive way some integrals are divergent for large momenta. In the context of our
paper this is never due to classical perturbations, which we always assume to be
smooth — the source of ultraviolet divergences is the behavior of propagators.

The ultraviolet problem is already visible when we consider neutral fields
with a masslike perturbation or charged fields with a classical electromagnetic
4-potential. In these systems classical dynamics exists under rather weak as-
sumptions. However there are problems with the quantum dynamics.

In some cases the quantum dynamics cannot be implemented on a Hilbert
space. This is the case of charged particles (bosons or fermions) in the presence
of variable spatial components of the 4-potential. On the other hand, the the
scattering operator exists under rather weak assumptions for 4-potential going
to zero in the past and future.

Even if we are able to implement the classical dynamics or the classical scat-
tering operator, we encounter another unpleasant surprise. The only quantity
that is not fixed by the classical considerations is the phase factor of the scat-
tering operator, written as e ¢/ where £ is usually called the vacuum energy.
Computed naively, it often turns out to be divergent. In order to make this
phase factor finite it is necessary to renormalize the naive expression. This di-
vergence appears in low order vacuum energy diagrams. It was first successfully



studied by Heisenberg and Euler in the 30’s. A quantity closely related to this
phase factor is the effective action, which for a constant field was computed
exactly by Schwinger.

The infrared problem means that in the naive theory some integrals are di-
vergent for small momenta. This problem appears already in non-relativistic
quantum mechanics — in scattering theory with Coulomb forces. These forces
are long-range, which makes the usual definition of the scattering operator im-
possible [14]. Tts another manifestation is the appearance of inequivalent repre-
sentations of canonical commutation relations, when we consider scattering of
photons against a classical 4-current that has a different direction in the past
and in the future [13, 15]. Thus, even in these toy non-relativistic situations
the usual scattering operator is ill-defined. Therefore, it is not surprising that
(much bigger) problems are present eg. in the full QED. One can cope with the
infrared problem by approximating massless photons with massive ones and re-
stricting computations only to inclusive cross-sections justified by an imperfect
resolution of the measuring device [58, 27, 56].

The expression gauge invariance has in the context of quantum field theory
several meanings.

(1) The most common meaning, discussed already in the context of classi-
cal electrodynamics, is the fact that if a total derivative is added to a
4-potential solving the Maxwell equation, then it still solves the Maxwell
equations. Of course, this no longer holds for the Proca equations — the
massive generalization of the Maxwell equations. Therefore, it is often
stressed that gauge invariance implies that the photons are massless.

(2) There exists another meaning of gauge invariance: we can multiply charged
fields by a space-time dependent phase factor and compensate it by chang-
ing the external potentials.

1. and 2. go together in the full QED, which is invariant with respect to
these two gauge transformations applied simultaneously.

(3) One often uses the term “gauge invariance” in yet another meaning: To
compute the scattering operator we can use various (free) photon prop-
agators. Equivalently, we have the freedom of choosing a Lagrangian in
the path integral formalism. This meaning applies both to massive and
massless photons. Some of these propagators are distinguished, such as
the propagator in the Feynman or the Coulomb gauge. (Note, however,
that time-ordered N-point Green’s functions depend on the choice of the
propagator).

All these three meanings of gauge invariance can be illustrated with models
that we consider.

The paper is most of the time rigorous mathematically. In the places where
it is not, we believe that many readers can quite easily make it rigorous. We
try to make the presentation of various models parallel by applying, if possible,
coherent notation and formalism. This makes our text sometimes repetitious —
we believe that this helps the reader to understand small but often confusing



differences between distinct models.

Mathematical language that we use is most of the time elementary. Some-
times we use some mathematical concepts and facts that are, perhaps, less
commonly known, such as C*-algebras, von Neumann algebras, the Schwartz
Kernel Theorem. The readers unfamiliar with them should not be discouraged
— their role in the article is minor.

Most of the material of this work has been considered in one way or another
in the literature. Let us give a brief and incomplete review of references.

On the formal level examples of quantum fields with classical perturbations
are discussed in most textbooks on quantum field theory, see eg. [26, 27, 47, 51,
56, 55, 5].

Linear hyperbolic equations is a well established domain of partial differential
equations, see eg [3].

Axioms of quantum field theory are discussed in [53, 23, 22].

A necessary and sufficient condition for the implementability of Bogoliubov
transformation was given by Shale for bosons [49] and by Shale and Stinespring
for fermions [50], see also [15]

Problems with implementability of the dynamics of charged particles in ex-
ternal potentials was apparently first noticed on a heuristic level in [46]. It was
studied rigorously by various authors. In particular, charged bosons were stud-
ied in [48, 36, 37, 38, 25, 1] and charged fermions in [41, 30, 29, 44, 12]. Rigorous
discussion of the smeared out local charge for charged fermions is contained in
[33].

The renormalization of the vacuum energy goes back to pioneering work of
[24]. In the mathematically rigorous literature it leads to the concept of a causal
phase discussed in the fermionic case in [45, 21].

The infrared problem goes back to [7, 28], see also [13].

The Gupta-Bleuler method of quantization of photon fields goes back to
[19, 6]. The C*-algebraic formulation of the subsidiary condition method is
discussed in [54].

Rigorous study of vacuum energy for Dirac fermions in a stationary potential
is given in [18].

A topic that not included in these notes are anomalies in QFT, which to
a large extent can be treated in the context of external classical perturbations
[20, 32, 10]

The notes also treat only dimension 14-3. Note, however, that related prob-
lems can be considered in other dimensions. Of particular importance is the
case of 141 dimension with a large literature, eg. [11, 34]
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1 Basic concepts

1.1 Minkowski space
1.1.1 Coordinates in Minkowski space

The coordinates of the Minkowski space R3 will be typically denoted by z*,
w=0,1,2,3. By definition, the Minkowski space is the vector space R* equipped
with the canonical pseudo-Euclidean form of signature (— + ++)

guata’ = =@+ 3 (@),

(Throughout these notes the velocity of light has the value 1 and we use the
FEinstein summation convention). We use metric tensor [g,,] to lower indices
and its inverse [g"”] to raise indices:

14 v
Ty = guax’, ' =g"x,.

For a function R'3 > x — f(z), we will sometimes use various kind of
notation for partial derivatives:

0f(x)

oxH

= Opn f(2) = 0 f () = [ u()-

Writing R? we will typically denote the spatial part of the Minkowski space
obtained by setting 20 = 0. If 2 € RY3, then # will denote the projection of
x onto R3. Latin letters 4, j, k will sometimes denote the spatial indices of a
vector. Note that z; = 2.

€% denotes the 3-dimensional Levi-Civita tensor (the fully antisymmetric
tensor satisfying €!23 = 1).

For a vector field R? 5 & — A(Z) we define its divergence and rotation in
the standard way:

divA = 8;A°,  (rotA)’ = €7%9; Ay

11



We write JA as the shorthand for the tensor 0;A;, moreover,
=N\ 2 2
(04)" = (9:4;)".
ij

On RY3 we have the standard Lebesgue measure denoted dz. The notation
dZ will be used for the Lebesgue measure on R3 ¢ RI3,

We will often write ¢ for 2% = —zy. The time derivative will be often denoted
by a dot:
: of(t) 9f(z°) 0 0
f(t):W =0 f(t) = Wzaof(x ) = fo(z”).

6(t) will denote the Heaviside function. We set |t|1 := 6(¢)[¢|.

1.1.2 Causal structure

A nonzero vector z € RY3 is called

timelike if x,z" <0,
causal if z 2t <0,
lightlike if x 2" =0,

spacelike if x,a* > 0.
A causal vector z is called

future oriented if 2° >0,

past oriented if z° < 0.

The set of future/past oriented causal vectors is called the future/past light
cone and denoted JE¥. We set J := J+ U J~.

If O C RY3, its causal shadow is defined as J(O) := O + J. We also define
its future/past shadow J*(O) := O + J*.

Let O; C RY3 i =1,2. We will write O x Oy iff J(O1) N O = (), or equiv-
alently, O1 N J(Oz) = (. We then say that O; and Oy are spatially separated.

A function on RY3 is called space-compact iff there exists a compact K C R13
such that suppf C J(K). It is called future/past space-compact iff there exists
a compact K C R such that suppf C J*(K).

The set of space-compact smooth functions will be denoted CS°(R'3). The
set of future/past space-compact smooth functions will be denoted C5 (R?).

1.1.3 Fourier transform

The definition of the Fourier transform of R® > # + f(#) will be standard:

Fi(E) = [ @z
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Often, we will drop F — the name of the variable will indicate whether we use
the position or momentum representation:

f(R) = / e [(T)az, f(7) = ﬁ / &F7 f(R)dF.

For the time variable (typically ¢) we reverse the sign in the Fourier transform:

1

f6) = [ et 1) = o= [ e,

1.1.4 Lorentz and Poincaré groups

The pseudo-Euclidean group O(1,3) is called the full Lorentz group. Its con-
nected component of unity is denoted SOT(1, 3) and called the connected Lorentz

group.
The full Lorentz group contains special elements: the time reversal T and
the space inversion (the parity) P and the space-time inversion X := PT:

T(z", %) = (—2°, %), P(° 2) = (2°, %), Xo = —ux.
It consists of four connected components
SO'(1,3), T-SO'(1,3), P-SO™(1,3), X-SO'(1,3).

O(1, 3) has three subgroups of index two: the special Lorentz group (preserving
the spacetime orientation), the orthochronous Lorentz group (preserving the
forward light cone) and the chiral Lorentz group (preserving the parity):

SO(1,3) = SO'(1,3)UX-SO'(1,3), (1.1)
0'(1,3) = SO'(1,3)UP-SO™(1,3), (1.2)
oMr(1,3) = SO™(1,3)UT-SO'(1,3). (1.3)

The affine extension of the full Lorentz group RY:3 x O(1, 3) is called the full
Poincaré group. Its elements will be typically written as (y,A). We will often
write y instead of (y, 1) and A instead of (0, A). It is the full symmetry group
of the Minkowski space.

Quantum field theory models are often not invariant wrt the full Poincaré
group but one of its subgroups: the connected, special, ortochronous or chiral
Poincaré group, which have the obvious definitions.

1.1.5 Double coverings of Lorentz and Poincaré groups

The full Poincaré group or one of its subgroups discussed above is sufficient
to describe spacetime symmetries on the level observables. On the level of the
Hilbert space one needs to replace it by one of its double coverings.

There exists a unique, up to an isomorphism, connected group Spin'(1,3)
such that the following short exact sequence is true:

1— Zy — Spin'(1,3) — SOT(1,3) — 1. (1.4)
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We say that Spin'(1,3) is a connected double covering of SOT(1,3). The group
Spin'(1,3) happens to be isomorphic to SL(2,C).

Unfortunately, the theory of double coverings of the group O(1,3) is rela-
tively complicated. O(1,3) has 8 non-isomorphic double coverings that extend
(1.4), that is groups G such that the following diagram with exact rows and
columns commutes:

1 1 1
\ . \:
1 - Zy — Spin®(1,3) — SO™(1,3) — 1
1 1
1 - Zy — G - 0,3 — 1, (1.5)
1 A 1
1 — ZQXZQ — ZQXZQ — 1
\ \
1 1

([52] Sect. 3.10). Indeed, let us fix elements P, T and X that cover P, T, X.
We can independently demand that

P2 =41, T?=41, X?=+1. (1.6)

To obtain these double coverings we need to take the group G generated by
Spin®(1,3) and P, T and X with the relations (1.6) and X := PT. (This defines
(1.5) uniquely). Clearly, (1.6) gives 2 -2 -2 = 8 possibilities.

Among them one has two distinguished double coverings G = Pin(1,3)
with the relations

T2 = +1, P2 =41, X2 =-1

The elements lsi, Ti and Xi anticommute among themselves. In what follows
we will drop + from lsi, Ty and X,.

Later on we will need the homomorphism 6 : Piny(1,3) — Zs = {1, -1},
which is #(A) = 1 for orthochronous A and #(A) = —1 for non-orthochronous
A. Tt is called the time orientation.

Each group (1.1), (1.2) and (1.3) has two non-isomorphic double coverings
extending (1.4). In particular, we have

1 1 1
! ! !
1 - Zy — Spin®(1,3) — SO (1,3) — 1
! ! !
1 - Z, — Spin(l,3) — SO(1,3) — 1, (1.7)
2 \ 4
1 — Zio — o — 1
{ 4
1 1
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The group Spin(1,3) is contained in both Pin,(1,3) and Pin_(1,3). It is
obtained from Spin'(1,3) by adjoining X satisfying X?> = —1. (The other
double covering, obtained by adjoining X satisfying X2 = 1 will not play a role
in our considerations).

We also have two double coverings of OT(1, 3) extending (1.4), one contained
in Piny(1,3), the other in Pin_(1,3):

1 1 1
! 4 4
1 — Zy — Spin®(1,3) — SOM™1,3) — 1
! { {
1 — Zy, — Pinl(1,3) — O07(1,3) — 1, (1.8)
l { 4
1 — Zo — Zo — 1
1 {
1 1

Pinl.(1,3) is obtained by adjoining P satisfying P2 = +11.
Finally, we have two double coverings of O"'(1,3) extending (1.4), one
contained in Pin, (1, 3), the other in Pin_(1,3):

1 1 1
1 1 \
1 - Zy — Spin'(1,3) — SO™(1,3) — 1
1 1 4
1 - Zy — Pin®r(1,3) — 0% (1,3) — 1, (1.9)
1 1 \J
1 — Lo — Lo — 1
1 \
1 1

Ping*(1,3) is obtained by adjoining T satisfying T2 = +1.

Clearly, R™ x Pin(1,3) is a double covering of the full Poincaré group. Its
elements will be often written as (y, A) and then the corresponding element of
R x O(1, 3) will be denoted by (y, A).

1.1.6 Complex Lorentz groups

The complexification of Spin'(1,3) is called Spin(4,C). It is a connected group
isomorphic to SL(2,C) x SL(2,C). We have the embedding

Spin'(1,3) ~ SL(2,C) > A (A, A) € SL(2,C) x SL(2,C) ~ Spin(4,C).

The group Spin(1,3) is contained in Spin(4,C). In particular, the two
elements covering the spacetime inversion are represented as follows:

Spin(1,3) 3 X +— (1, —1) € Spin(4,C),
Spin(1,3) 3 =X +— (=1,1) € Spin(4,C).
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Every finite dimensional representation of Spin'(1,3) extends uniquely by
holomorphic continuation to a representation of the connected complex group
Spin(4,C). This representation can be restricted to a representation of Spin(1, 3).
Thus every finite dimensional representation of Spin'(1,3) has a natural exten-
sion to a representation of Spin(1,3).

The complexification of Pin_(1,3) coincides with the complexification of
Pini(1,3). It is denoted Pin(4,C).

It will also be useful to introduce a group that we will call Pinet(1,3). It is
the real subgroup of Pin(4, C) that is generated by Pin_(1,3) and il, and also
by Pin4(1,3) and ill. We have

1 1 1
1 | 1
1 - Zy — Spin'(1,3) — SO™(1,3) — 1
1 \ \
1 - Z4 — Pine(1,3) —  0(1,3) — 1L (1.10)
1 1 1
1 — ZQ — ZQXZQXZQ — ZQXZQ — 1
1 1 +
1 1 1

1.2 General concepts of quantum field theory
1.2.1 Quantum mechanics

Pure quantum states are described by normalized vectors in a Hilbert space.
In typical situations the dynamics is generated by a bounded from below self-
adjoint operator called the Hamiltonian. It does not affect any physical pre-
dictions if we subtract from the Hamiltonian the infimum of its spectrum. The
Hamiltonian has often a ground state. The ground state is typically nondegen-
erate.

It will be convenient to formalize these properties.

Definition 1.1 We will say that H, H, ) satisfy the standard requirements of
quantum mechanics (QM) if

(1) H is a Hilbert space;

2) H is a positive self-adjoint operator on H (called the Hamiltonian);

(2)
(3) Q is a normalized eigenvector of H with eigenvalue 0;
(4)

Q is nondegenerate as an eigenvector of H.

1.2.2 Time reversal

If R is a unitary operator R reversing the time, that is, satisfying

—itH p—1 it H
Re R =",
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then RHR™' = —H. Therefore, if H is positive, then H = 0. Hence unitary
operators are not appropriate for the time reversal invariance.

Following Wigner, by a time reversal operator we will mean an anti-unitary
operator T satisfying

TefitHTfl _ eitH.
We have then THT ! = H, which is compatible with the positivity of H.

Let us review some concepts and notation related to linear and especially
anti-linear operators, motivated by their applications as Wigner’s time reversal.
Consider the complex vector space W = C™. Let p be a linear operator on W.
Then there exists a matrix [pqp] such that

(pw)g = Zpabwb, (1.11)
b

where w = [w,] € W. We will call [p,p] the matriz of p. Note that it is natural
to denote the operator and its matrix by the same symbol. In particular, the
matrix of the product of linear operators is simply the product of their matrices.

Let x be an antilinear operator on W. Then there exists a matrix [kqp] such

that
(Fw)a =Y KapWs, (1.12)
b

where, as usual, the bar denotes the complex conjugation. We will say that
[Kap] is the matriz of k. Unfortunately, it is dangerous to use the same letter
for an antilinear operator and its matrix, even if we will sometimes do so, as
in (1.12). The matrix of the product of two antilinear operators is in general
not the product of their matrices — one needs to put the bar in an appropriate
place.

Sometimes it will be convenient to denote linear transformations on W by
L;(W) instead of the usual L(W). Then antilinear transformations will be
denoted by L_1(W).

Let G be a group equipped with a homomorphism 0 : G — Zs = {1, —1}. Tt
yields an obvious partition of G:

G=G1UG_,.

We will say that G > g — 7(g) is a 8-linear representation on W if we have a
pair of maps

Giog — mw(g) € Li(W), (1.13)
G_1259 — 7T(g) € L_l(W), (114)

which together form a representation of G. One can write (1.13) and (1.14)
more compactly:

G>g — 7T(g) S Lg(g)(W) (115)
Suppose that W is equipped with a scalar product. Sometimes it will be

convenient to denote unitary transforations on W by Ui (W) instead of the
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usual U(W). Then anti-unitary transformations will be denoted by U_1(W).
We say that G 3 g — w(g) is a 0-unitary representation on W if we have a pair
of maps

G139 ~ 7T(g) S Ul(W), (116)
G_.12g9 — 7r(g) S U_l(W), (117)

which together form a representation of G. Again, (1.16) and (1.17) can be
written more compactly:

G>g — (g € Ug(g)(W). (1.18)

1.2.3 Relativistic quantum mechanics

Relativistic covariance of a quantum system described by a Hilbert space H
is expressed by choosing a strongly continuous unitary representation of the
double cover of the connected Poincaré group

RY % Spin'(1,3) 3 (y,A) = U(y,A) € UH). (1.19)

We will denote the self-adjoint generator of space-time translations by P =
(P° P). P° = H is the Hamiltonian. P is called the momentum. Thus

U((t, ), 1) = e HH+IP,

(We assume that the Planck constant 7 equals 1).

Representations of Spin'(1,3) can be divided into two categories. Integer
spin representations induce a representation of SOT(1,3), and half-integer rep-
resentations do not. The projections

(14 U(0,~1)), resp. 5 (1—U(0, 1))

DN | =

project onto the spaces of representations of integer, resp. half-integer spin. We
will write

I:=U(0,-1).

Obviously, PI = I P. Anticipating the connection of spin and statistics we will

call I the fermionic parity. Denote the x-automorphism defined by U(y, A) by
u -
(y,7)

U, 5y (A) =Uly, N)AU(y,A)".

Restricted to the commutant of
{I} :={A € B(H) : A= AI}
U(M) = Z/I(yy_;\), and thus we obtain a representation of the Poincaré group:

RY% % SO™(1,3) 3 (y,A) = Uy, a) € Aut({T}).
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Definition 1.2 The following conditions will be called the basic requirements
of relativistic quantum mechanics (RQM):

(1) Existence of a Poincaré invariant vacuum: There ezists a (normalized)
vector ) invariant with respect to RY3 x Spin'(1,3).

(2) Spectral condition: The joint spectrum of the energy-momentum operator
is contained in the forward light cone, that is, sp(P) C JT.

(3) Uniqueness of the vacuum: The vector ) is unique up to a phase factor.

(4) Integer and half-integer spin states live in separate superselection sectors:
Observables are contained in {I}'.

Note that conditions (1)-(3) imply the standard requirements of QM.

More precisely, (2) implies H > 0. Conversely, the Poincaré invariance and
the boundedness from below of H implies (2).

(2) implies also that € is the ground state of H. (3) implies that this ground
state is unique.

Obviously, I = Q.

Remark 1.3 Sometimes the expression relativistic quantum mechanics is used
for the theory of relativistic linear hyperbolic equations, such as the Klein-
Gordon and Dirac equation. For the Klein-Gordon equation this is certainly
incorrect. This is a classical equation — in particular, it does not have a nat-
ural interpretation in terms of a unitary dynamics on a Hilbert space. In our
terminology Dirac equation is also a classical equation — its unitary dynamics is
non-physical because the Hamiltonian is unbounded from below.

1.2.4 Haag-Kastler axioms for observable algebras

We still need some postulates that express the idea of causality. In the mathe-
matical physics literature one can find two kinds of axioms that try to formalize
this concept: the Haag-Kastler and the Wightman azioms. Even though the
Wightman axioms were formulated earlier, it is more natural to start with the
Haag-Kastler axioms.

Definition 1.4 We keep the basic requirements of RQM.

In addition, to each open bounded set O C RY® we associate a von Neumann
algebra A(0) C {I}. We will say that the family 2A(O), O open in R, is a
net of observable algebras satisfying the Haag-Kastler axioms if the following
conditions hold:

(1) Isotony: O1 C Oy implies A(O1) C A(O3).
(2) Poincaré covariance: for (y, A) € R x Spin'(1,3), we have

U, 1) (RA(0)) = 2A((y,1)0).
(3) Einstein causality: Let O1 x Oz. Then
Ai € Q[(Ol), 1= 1,2, zmplzes A1A2 = A2A1.
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Self-adjoint elements of the algebras 2A(O) are supposed to describe observ-
ables in O. This means that in principle an observer contained in O can perturb
the dynamics by a self-adjoint operator from 4(O), and only from A(O).

Remark 1.5 One can ask why von Neumann algebras are used in the Haag-
Kastler axioms to describe sets of observables. We would like to argue that it is
a natural choice.

Suppose we weaken the Haag-Kaster axioms as follows: We replace the fam-
ily of von Neumann algebras A(O) by arbitrary sets B(O) of self-adjoint ele-
ments of B(H), and otherwise we keep the axioms unchanged. Then, if we set
A(0) := B(O)" (which obviously contain B(O)), we obtain a family of von
Neumann algebras satisfying the usual Haag-Kastler axioms. In particular, to
see that the Einstein causality still holds, we use the following easy fact:

Let B4, B, be two *-invariant subsets of B(H) such that

A € %1, Ay €98y z'mplies A Ay = AsA;.
Set Ay = BY, Ay :=BY. Then
Al € 52[1, Ay € Ao zmplzes A1 Ay = Ay A,

1.2.5 Haag-Kastler axioms for field algebras

It is often natural to consider nets of algebras containing not only observables,
but also other operators that can be useful to construct observables. They
are called field algebras and satisfy a slightly modified version of Haag-Kastler
axioms.

Definition 1.6 We assume the basic requirements of RQM. We say that a fam-
ily of von Neumann algebras F(O) C B(H) associated to bounded open subsets
O of R'3 is a net of field algebras in the sense of Haag-Kastler axioms if the
following conditions hold:

(1)’ Isotony: O C Oy implies F(O1) C F(O2).
(2)” Poincaré covariance: for (y,A) € RY3 x Spin'(1,3), we have

Uy, 5)(§(0) =5((y,4)0).
(3)” Twisted Einstein causality. Let O x Oy. Then
A; €3(0;), A; = (_l)jiIAz‘Ia i1 =1,2, implies A1As = (—1)j1j2A2A1.

(4)’ Cyeclicity: (US(O))Q is dense in H.
0

The main reason for introducing the twisted Einstein causality is the need
to accommodate anticommuting fermionic fields. Clearly, if the net §F(O), O C
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R'3 satisfies the Haag-Kastler axioms for field algebras, then the net of their
fermionic even subalgebras

F0(0):={BcFO) : IBI =B}, OcCRY

satisfies the Haag-Kastler axioms for observable algebras.
Note that in our formulation the decomposition H = Hy & H1 given by the
operator I plays a double role.

(1) It describes the decomposition of the Hilbert space into integer and half-
integer spin representations.

(2) In the Einstein causality axiom, block-diagonal operators have the bosonic
character and block-off-diagonal operators have the fermionic character.
A priori it is not obvious that these two properties should give the same decom-
position. However, one can show that it is natural to assume from the beginning
that this is the case. This is the content the theorem about the connection of
the spin and statistics, described eg. in [53].
Setting A = —1 in Axiom (2)’ shows that the bosonic/fermionic superselec-
tion rule is local, ie., IF(O)I = F(O) for all O.

1.2.6 Global symmetries

Field algebras can be used to describe global symmetries.
Suppose that a group G has a unitary representation on the Hilbert H:

G>3g— R(g) eU(H)

We assume that R(g), g € G, commute with U(y, A) and leave invariant Q. This
implies that I commutes with R(g). Let R4 denote the automorphism defined

by R(g):
Y Ry(4) := R(g)AR(9)™", A€ B(H).

We define the gauge invariant subalgebras
§ei(0) ={B €%0(0) : Ry(B) =B, gec G}
or, equivalently,
5:i(0) = Fo(0) N{R(g) : g€ G}.

Then the net O — §,4i(O) satisfies then the Haag-Kastler axioms for observable
algebras.

1.2.7 Neutral quantum fields

In practical computations of quatum field theory the information is encoded
in quantum fields. Some of these fields are (formally) Hermitian, and then they
are called neutral fields. Some of them are not — they are usually called charged
fields. We will first consider only neutral fields. Charged fields will be discussed
later.
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Neutral fields are typically denoted by R 5 2+ (;Aba(m), wherea=1,...,n
enumerates the “internal degrees of freedom”, eg. the species of particles and
the value of their spin projected on a distinguished axis. Some of the fields
are bosonic, some are fermionic. They commute or anticommute for spatially
separated points, which is expressed by the commutation/anticommutation re-
lations

[ba(2), Pp(y)]+ =0, (z—1y)>>0.

One can try to interpret neutral quantum fields as “operator valued tempered
distributions”, which become (possibly unbounded) self-adjoint operators when
smeared out with real Schwartz test functions. We can organize the internal
degrees of freedom of neutral fields into a finite dimensional vector space V = R"™.
Thus for any f = (f,) € S(RY3,R™) we obtain a smeared out quantum field,
which is the operator

@ﬁ=2/hm%mm- (1.20)

1.2.8 Wightman axioms for neutral fields

Let us now formulate the Wightman axioms for neutral fields.

Definition 1.7 We assume that the basic requirements of RQM are satisfied.
V is a finite dimensional real vector space equipped with a representation

Spin'(1,3) 3 A — o(A) € L(V). (1.21)

We have a unique decomposition V = Vy & Vi. where Vy, resp. Vy is the space
of integer spin, resp. half-integer spin.
We suppose that D is a dense subspace of H containing 2 and we have a
map .
SR, V)3 f o d[f] € L(D) (1.22)
satisfying the following conditions:
(1) Continuity: For any ®,¥ € D,

S(R,V) 3 f = (D/[f]¥) (1.23)

18 continuous.
(2) Poincaré covariance: for (y,A) € RY3 x Spin®(1,3) we have

Z’l(y,]\) (‘g[ﬂ) =¢ [U(]\)f o (y,A)71 .

(3) Einstein causality: Let suppfi x suppfz = 0, where f; have values in Vj,,
1=1,2. Then o o
oLf1]olf2] = (=1)72 o[ f2] @[ f1].

(4) Cyclicity of the vacuum: Let 8 denote the algebra of polynomials gener-
ated by @[f]. Then F2Q) is dense in H.

22



(5) Hermiticity: For any ®,¥ € D,
(2[SL/1%) = (SL/]12[¥).

In what follows a map (1.22) satisfying Axiom (1) will be called an operator
valued distribution. By saying that it is cyclic we will mean that it satisfies
Axiom (4).

Setting A = —1 in Axiom (2), we see that f € S(RV3,V;) implies

olf] = (1Y I9[f]1.

1.2.9 Relationship between Haag-Kastler and Wightman axioms

“Morally”, Wightman axioms are stronger than the Haag-Kastler axioms. In
fact, let $'8(O) be the algebra of polynomials in ¢[f] with suppf C O, which
can be treated as a *-subalgebra of L(D). Then the family O — F*8(0) is
almost a net of field algebras and O — Sglg (O) is almost a net of observable
algebras in the sense of the Haag-Kastler axioms. Unfortunately, elements of
3218(0) are defined only on D and not on the whole H, and often do not extend
to bounded operators on H.

We know that the fields ¢[f] are Hermitian on D. Suppose they are es-
sentially self-adjoint. Then their closures are self-adjoint operators on H. We
could consider the von Neumann algebra F(O) generated by bounded functions
of gz@[f], suppf C O. Let §o(O) be its fermionic even part. Then there is still no
guarantee that the net O — Fo(O) satisfies the Haag-Kastler axioms: we are
not sure whether the Einstein causality holds.

To see this we recall that there are serious problems with commutation of
unbounded operators [42]. One says that two self-adjoint operators commute
(or strongly commute) if all their spectral projections commute. There exist
however examples of pairs of two self-adjoint operators A, B and a subspace

D C DomA N DomB with the following property:
(1) A and B preserve D and are essentially self-adjoint on D.
(2) A and B commute on D.
(3) A and B do not commute strongly.
(4) D is dense.

More about what is known about the relationship between the Haag-Kastler
and Wightman axioms the reader can find in [2], Sect. 4.9.
1.2.10 Global symmetries in the Wightman formalism

In the Wightman formalism we can encode global symmetries. Let G be a
group acting with the unitary representation U(g) and let U, the corresponding
x-automorphism, as described in Subsect. 1.2.6. Suppose in addition that g
acts on V such that R, (¢[f]) := #[gf], or in the unsmeared notation

R (a()) = gavv(x).
b
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where g commutes with o(A).

Rg4 can be interpreted as a x-automorphism of the polynomial algebra Fols,
We set 32?((’)) to be the subalgebra of fixed points of the action of G on Sglg(O).
One could argue that this x-algebra should describe observables in O.

Note that what we described is a global symmetry and not a local gauge
invariance. (In the older literature sometimes the former is called the gauge in-
variance of the first kind and the latter the gauge invariance of the second kind).
Satisfactory treatment of local gauge invariance, even Abelian, in the framework
of Wightman axioms seems to be problematic. In fact, a convenient description
of gauge fields seems to require a space with an indefinite scalar product. This
goes beyond the usual Wightman axioms and poses serious technical problems
[57].

Haag-Kastler axioms seem to provide a satisfactory general framework for
quantum field theory on a flat spacetime, also for theories with local gauge in-
variance. Their weakness is the abstractness and great generality. For instance,
we do not see how to recognize that a given family of algebras satisfying Haag-
Kastler axioms corresponds to a theory with local gauge invariance. (There
exists, however, a beautiful theory developed by Doplicher-Haag-Roberts that
allows us to recognize global symmetries.)

Wightman axioms seem more concrete. However, they have flaws. As we
mentioned earlier, they seem to be incompatible with the local gauge invariance.

In any case, both Haag-Kastler and Wightman axioms are useful as guiding
principles for quantum field theory.

1.2.11 Charged fields

_ Sometimes, instead of Hermitian fields one uses a pair of fields R332
Ya(2),Vi(2), a=1,...,m. We will call them charged fields. One assumes that
after smearing with complex test functions

% <,
= =
1 1
— —
> >
S S
8 8
N— SN—
< <,
7% S
— —
K 8
S~— N~—
oL jol
8 &

one obtains linear operators on D Hermitian cojugate to one another.
One can organize species of charged fields into a complex space W = C™.
Clearly, for any charged field 1,, by setting

R 1 - .,
¢a,R(x) = ﬁ(wu(x) + 1%(35)),
$ar(@) = —=(ha(x) — 93())

we obtain a pair of neutral fields. Thus introducing charged fields to the Wight-

man axioms is essentially only a notational change, which, as we will see, is
convenient for describing U(1) symmetries.
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1.2.12 Wightman axioms for neutral and charged fields

The modified Wightman axioms that admits both neutral and charged fields are
very similar to the Wightman axioms for neutral fields described in Subsubsect.
1.2.8. It would be boring to state them in full detail. In fact, almost all state-
ments from the Wightman axioms for neutral fields remain a part of the new
axioms. The only exception is Axiom (4) about the cyclicity of the vacuum,
which needs to be replaced by a new one. Below we will list the additional ele-
ments that need to be added. We indicate by (...) the places where appropriate
statements from Subsubsect. 1.2.8 should be inserted.

Definition 1.8 (...) We assume that W is a finite dimensional complex vector
space equipped with a representation

Spin'(1,3) 3 A — 7(A) € LOW). (1.24)
We have a unique decomposition W = Wy @ W1. where Wy, resp. Wy is the

space of integer spin, resp. half-integer spin.

(...) We have maps
SR, W) 3 h s [h],*[h] € L(D). (1.25)
(1) Continuity: (...)
SR W) > h s (B[] ) (1.26)
18 continuous.

(2) Poincaré covariance: (...)
Uy ) (BI]) = & [7(R)no (v, 0)7]

(3) Einstein causality: (...) Let supphi x supphs = 0, where h; have values in
Wj,, i =1,2. Then (...)

[fildlha] = (=1)7729[ha] @[ f1],
) ]}/A’[hz] = (—1)j1j2¢:’[h2] Plhal,
D] [h] = (=1)7247 [ha]t)[ha].

(4) Cyeclicity of the vacuum: Let '8 denote the algebra of polynomials in $[f],
O[h] and *[h]. Then F'2Q is dense in H.
(5) Hermiticity: (...)
(DIP[RY) = (P [R] 2| D).

It will be convenient to reformulate the axiom about the Poincaré invariance
in terms of the unsmeared fields:

Uy, i) (Pa(2)) = er A)ou(Az +y), (1.27)

Uy i) (Yalx)) = Z%b Yo (Ax + ). (1.28)

25



1.2.13 U(1l) symmetry

Consider the group U(1) = R/2xZ. A global U(1) symmetry is usually encoded
by dividing fields into neutral ¢ and complex 1. Let H,, be the closed span of
vectors of the form

O] Ol [ha] -+ ¥ [hpld[RY] -+ S[RLIQ,  n=p—q.

Note that the cyclicity of vacuum implies that the sum of #,, is dense in H.

Assume that H, are mutally orthogonal, so that we have the decomposition

H = @ H,. For § € U(1) we define R(f) := @ e"?. Clerly, R(6)2 = Q and
ne” nez

U(1) 2 0 — R(9) is a unitary representation commuting with U(y, A). Let Ry
be the corresponding *-automorphism:

Ro(A) = R(0)AR(—0).
We then have
Rﬂ(éa(x)) = an(x)a
Ro (772111 (:17)) = eiieqzzja (2),
Ro(di(x)) = e“4i(a).

Thus we have an example of a global symmetry, as in Subsect. 1.2.10.

1.2.14 Charge conjugation

Let C be a unitary operator such that CQ) = . Let C be the corresponding
*-automorphism:

C(A) = CAC™.

We say that it is a charge conjugation if it satisfies

C(da(x)) = D ay dulx), (1.29)
b

Clva(@) = >k vi(@), (1.30)
b

and hence

Cln() = Y Ry v(x), (1.31)
b

where o and k are some matrices on V and W. We will also assume that
ot =1, (kR)? =1, (1.32)

so that C* = 1.
‘We have
CRo =R_4C,

which is the reason for the name charge conjugation.
Note that C' is linear, even though C acts on fields antilinearly.

26



1.2.15 Parity invariance

Recall that the Wightman axioms involve the connected Lorentz group Spin'(1,3).
In particular, we have representations

Spin®(1,3) A = (/:\) Lv), (1.33)
Spin’(1,3) 5 A — 7(A) € L(W), (1.34)
R % Spin®(1,3) 3 (y,A) — U(y,A) € U(H). (1.35)

Chose + or —. Replace the group Spin'(1,3) in the Wightman axioms by
Pinl.(1,3), so that we have the representations

Pinl(1,3) 3 A — o(A) e L(V), (1.36)
Pinl(1,3)3 A — 7(A)eL(W), (1.37)
R % Pinl,(1,3) 3 (y,A) — U(y,A) € U(H). (1.38)

The resulting set of axioms will be called the Wightman axioms of a P-invariant
theory.

In particular, the space inversion (parity) Pe Pinl(l,S) is represented in
the Hilbert space by the unitary operator P := U(f’) P := Up denotes the
corresponding automorphism. It acts on the fields as follows:

P(da(2®, @) = Y oy (P)de(a’, 1),
b

P(a(2,8) = > ry (P2’ —).
b

We have P2 = 1 in the case + and P* = 1 in the case —.
Obviously, P is linear and P acts on fields linearly.
1.2.16 Time reversal invariance

Chose again + or —. Let us replace the group Spin'(1,3) in the Wightman
axioms by Pin$"*(1,3). We have now representations

Pin'(1,3) 5 A — o(A) e L(V), (1.39)
Pin™"(1,3) 3 A = 7(A) € Ly, (W), (1.40)
35 8pin'(1,3) > (y,A) — U(y,A) e Ug(zy(H). (1.41)

Note that we demand that (1.40) is 6-linear and (1.41) is f-unitary. We denote
by [7as(A)] the matrix of 7. For nonorthochronous A we demand that (1.28) is
replaced by

Uy Dda@ U )7 = S 7 ()i (Ax + ).
b
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The resulting set of axioms will be called the Wightman axioms of a T-invariant
theory.

In particular, the time reversal is implemented by the anti-unitary operator
T := U(T). T := Us; denotes the corresponding automorphism. The time
reversal acts on the fields as follows

T((;Aﬁa(xo,a?)) = Za (=20, 1),
ZTab T 1&; ’_’)'

We have T2 = 1 in the case + and 7% = 1 in the case —.
Note that T is antilinear and 7 acts on fields antilinearly.

T (¢a(2°, 7))

1.2.17 The CPT Theorem

Suppose that we have a theory satisfying the Wightman axioms (without the
P and T invariance). As described in Subsubsection 1.1.6 the representations
(1.33) and (1.35) possess natural extensions

Spin(1,3) 3 A — o(A) e L(V), (1.42)
Spin(1,3) 3 A — 7(A) e L(W). (1.43)

Let us stress that (1.35) is linear and not 6-linear! A deep theorem, called the
CPT Theorem, says that we can extend the representation (1.35) to a @-unitary
representation

¥ Spin(1,3) 3 (y,A) = U(y, A) € Uy(x,(H), (1.44)
such that (1.27) and (1.28) hold on the whole Spin(1, 3).

In particular, the spacetime inversion is implemented by the anti-unitary
operator X := U(X). X := Ug denotes the corresponding automorphism. Then

X (¢a()) = Z%—bl (X)o(—2),
X(ﬁa(x)) = Z Tab —x).
Note that X is antilinear but X acts on the fields linearly.

1.2.18 The CPT Theorem in a P and T-invariant theory

Let €,6 € {+,—}. Suppose we have a theory that satisfies the Wigthman axioms
with the P invariance described by the group Pin!(1,3) and the T invariance
described by the group Panh“(l, 3). By the CPT Theorem the theory is also

28



Spin(1,3) invariant. In particular, we have the matrices o(X), o(T), o(P),

7(X), 7(T) and 7(P), We also have the operators X, T and P. Define

a = U(X)@U(P_l)v
K = T(X)T(T_l)T(p_1)7
C = XT7'pL

Then C is unitary and the corresponding automorphism C(A) = CAC~! satis-
fies (1.29) and (1. 30)

The groups Pinl(1,3), Pin§""(1,3) and Spin(1,3) can be treated as sub-
groups of Piney (1, 3) Let G denote the group generated by these three groups
together. (Clearly, there are three possibilities: G is Pinext(1,3), Pin_(1,3) or
Pin,(1,3)). Assume that there exists representations

A) e L(V),
A) S L1<W> @] Lfl(W),

GsA — of
GoA — 7(
that extends the representations (1.36) and (1.38) of Pin!(1,3), (1.39) and
(1.40) of Pin$hir(1,3) and (1.42) and (1.43) of Spin(1,3). (If such a represen-
tation exists, it is clearly unique). o

Now XT~1P~! € O(1, 3) is the identity. Therefore, XT1P~! € G is one of
the four elements of Pineyt(1,3) covering the identity. All of them raised to the
fourth power are the identity. Therefore, the matrices «, x satisfy

ot =1, (kR)? =1,

which is the condition (1.32). Thus C is an example of a charge conjugation
according to the definition of Subsubsect. 1.2.13.

Obviously, X = CPT. This is explains the name of the CPT Theorem. (Let
us stress, however, that the theorem holds also if the theory is not P and T
invariant, so that we cannot write X = CPT).

1.2.19 N-point Wightman and Green’s functions

For simplicity, in this subsubsection we use Wightman axioms for neutral fields.
They allow us to define a multilinear map

SR, V) x --- x S(R3,V)
S (fnseen f1) = (QUSLAN] - 911]Q) € (1.45)

which is separately continuous in its arguments. By the Schwartz Kernel The-
orem [16, 42], (1.45) can be extended to a linear map

S (RN VEN) 5 F s /W(xN,...,xl)F(xN,...,xl)d:cN~~~d:E1,
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where RGN 5 (zy, ... 21) = W(zy,...,21) is a tempered distribution on
RN with values in the space dual to VOV, called the N-point Wightman
function, so that (1.45) equals

/W(xN, ooz fn(z) o fi(z)dey .. dag.

From the point of view of the Wightman axioms, the collection of Wightman
functions Wy, N = 0,1,..., contains all the information about a given quantum
field theory. In particular,

(8171 171126 gua] - - Dl ]2)

= /W(y1,...,yN,xM,...,x1)
X fi(xr) - fv(@n)gm (yar) - - g1(y1)dey - - - deydyns - - - dys.

This is expressed in the so called Wightman Reconstruction Theorem [53].

In practical computations Wightman functions are not often used. Much
more frequent are the so-called (time-ordered) Green’s functions. Their formal
definition is as follows:

(G(xn) - b)) (1.46)
sgn(0)¢ (xg(N) - 332(1\/71)) e (mg(z) - 552(1)) W(Zo(nys - To (1))

ogESN

where sgn, (o) is the sign of the permutation of the fermionic elements among
N,..., 1

Note that we multiply a distribution with a discontinuous function in (1.46),
which strictly speaking is illegal. Disregarding this problem, Green’s functions
are covariant due to the commutativity /anticommutativity of fields at spacelike
separations.

1.3 General scattering theory
1.3.1 Time ordered exponential

We will often use the formalism of time-dependent Hamiltonians. In this sub-
section we describe the main concepts of this formalism.

Assume that I is a unitary involution. (In applications, I will be the
fermionic parity operator). We call an operator B even, resp. odd, if B = +1BI.
Such operators will be called of pure parity.

Let t — By(t),...,B1(t) be time dependent operators of pure parity. Let
tn,...,t1 be pairwise distinct. We define the time-ordered product of By (ty),...,
Bi (tl) by

T (Bn(tn) - Bi(t1)) == sgn,(0)B,, (ts,) -+ Bo, (to,),
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where (01, ...,0,) is the permutation such that ¢,, > --- > t,, and sgn, (o) is
the sign of this permutation restricted to the odd elements among B,, ..., B;.
Consider a family of self-adjoint operators

tes H(2). (1.47)

We will assume that H(t) are even. (1.47) will be called the the Schridinger
picture Hamiltonian. For t1 > t_, we define the time-ordered exponential

t_

Texp (—i " H(t)dt) (1.48)

n=0 b >ty > >ty >
0o ty 1
Z —i) / / - H(ty))dt,, - --dt;.

For brevity, we will write U (¢4, ¢_) for (1.48) and call it the dynamics generated
by t — H(t). (Of course, if H(t) are unbounded, the above definition should
be viewed only as a heuristic indication how to define the family of unitary
operators U(ty,t_). In general, in most of this subsection we are not very
precise about the boundedness of operators, limits, etc.)

We also set U(t_,ty) = U(ty,t_)" L

Clearly, if H(t) = H, then U(ty,t_) = e~ i(t+—t-)H,
1.3.2 Heisenberg picture

Let A be an operator. Its evolution in the Heisenberg picture is
A(t) :=U(0,t)AU(t,0). (1.49)
Equivalently, A(t) is the solution of
d .
SAW) = [Hup(1), A), (1.50)
A(0) = A, (1.51)
where the Hamiltonian in the Heisenberg picture is defined as
t— Hyp(t) == U(0,t)H(t)U(t,0). (1.52)

Thus a quantum dynamics can be described by two time-dependent Hamiltoni-
ans: (1.47) and (1.52). If they do not depend on time, they coincide.

Let us note that a similar distinction exists in classical dynamical systems.
Consider a flow on R? given by the equation

d
&m(t) = v(t,z(t)).

31



For any initial condition (0) = xo € R?, we obtain a solution R > t + x(¢, z0).
Thus any time dependent observable F' has two descriptions:

RxR?> (t,z) — F(tx), (1.53)
Rx R3S (t,z9) — F(t,z(t z)). (1.54)

In fluid dynamics, (1.53) is sometimes called the Fulerian description, and (1.54)
the Lagrangian description.

In classical mechanics the phase space is described by coordinates (¢, 7) €
R™ x R™. The time evolution is described by the Hamilton equations

o(t) = O:H(t,6(1), (1)),
w(t) = —0sH(t, ¢(t),7(t)).

For any initial condition ((,250,7T0) € R™ x R™, we obtain a solution of the
Hamilton equations. Similarly as in the quantum case, we have two kinds of the
classical Hamiltonian:

RxR™ xR™ 3 (t,6,7) > H(t,é,7), (1.55)
R xR™ xR™ 3 (t,¢0,m0) + H(t,o(t, o, m0),7(t, ¢o,m0)). (1.56)

(1.55) is the Hamiltonian in the Eulerian description and (1.56) is the Hamilto-
nian in the Lagrangian description. The former is the analog of the Schrodinger
picture and the latter of the Heisenberg picture. If they do not depend on time,
they coincide.

We will use the classical Hamiltonian in the Lagrangian description and the
quantum Hamiltonian in the Schrodinger picture as the standard ones.

1.3.3 Time-dependent perturbations

Our time-dependent Hamiltonians will usually have the form
H(t) := Hy + AV (2),

where Hy, is a self-adjoint operator and R 5 ¢ — V(¢) is a family of self-adjoint
operators. We define the evolution in the interaction picture and the interaction
picture Hamiltonian:

UInt(t+,t7) = eit+HfrU(t+7t7)e_it7Hfr’
Hi(t) = Ne'™HuV(t)e e,
Note that
ty
Ui (t4,t-) = Texp [ =i\ Hun(t)dt | .
t_
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We define the scattering operator by

S = t+,—1}fr,n—>oo Ulnt (t+a t—)
= Texp <1/ Hlnt(t)dt> . (1.57)
We also introduce the Mgller operators
S~ = lim U(0, —t)e'™* = lim Uy, (0, —t)
t—o0 t—o0
0
~ Texp (—i / Hlm(t)dt> , (1.58)
—o0
+ R : —itHeg 72
ST = tlgrolo U(0,t)e = tl_l)rgo Unnt (0, 1)

= Texp (—i /O h Hlm(t)dt>*. (1.59)

Clearly, S = ST*S~.
For any operator A we distinguish now two Heisenberg pictures — wrt. the
full dynamics (1.49) and wrt. the free dynamics:

Ag(t) = et ge~1H (1.60)
Equivalently, Ag (t) is the solution of

d

a1 Afr (t) = i [Hfh Afr (t)] )

Ar(0) = A,

1.3.4 Time ordered Green’s functions

Assume that Hy, and V (¢) are even. Let @y, be a fixed even vector with Hy ®p, =
0, which we will call the vacuum. (In our applications, ®¢ will be always the
ground state of Hg.) Let Ag,...,A; be operators of fixed parity. The free
time-ordered Green’s functions are defined as

(Ak e (te) - - AL (1)) e
= (‘I)fr|T(Ak7fr(tk) e Al,fr(tl))q)fr) ’ (1'61)

where A; 1 (t) are A; in the Heisenberg picture for the free dynamics (1.60).
Suppose that there exist

®* ;= lim U(0,t)®y,. (1.62)

t—+oo

The interacting time-ordered Green’s functions are defined as

(Ap(tr) - - Ar(t1))
= ((I>+|T(Ak(tk)~-~A1(t1))‘1’7) s (163)
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where A;(t) are A; in the Heisenberg picture for the full dynamics (1.49).

Let t = f(t) = (fi(t),..., frx(t)) be an ntuple of functions. If A; is even,
we simply assume that f;(¢) has real values, if A; is odd, the values of f;(t) are
(anticommuting) Grassmann numbers. The generating function is defined as

_ oy DY () A,
2 = S S [rean X [ et o) A0

N=0

Note that the generating function is the vacuum expectation value of a certain
scattering operator:

Z(f) = (Px|S(f)Pse), (1.64)
where S(f) is the scattering operator (1.57) with AV (¢) replaced by

AV () + ) fi(t)As
i
We can express interacting Green’s functions by the free ones:

N G Y AtV fa
(Ap(ty) -+ Ay(ty)) = HZ:% ] /_Oodn /_Oodl (1.65)

n

X <‘/}r(sna Sn) e var(slv Sl)Ak,fr(tk:) T Al,fr(tl»fra

where Vi, (s,t) := etHnV (s)etH i

1.3.5 Adiabatic switching and the energy shift

In most of our notes we concentrate on time dependent perturbations that decay
sufficiently fast in the past and future. Such perturbations lead to a relatively
simple scattering theory, described in Subsubsection 1.3.3 and 1.3.4.

One would like also to consider the case of time-independent perturbations.
In fact, let V be a (time-independent) self-adjoint perturbation. In this and the
following two subsubsections we are interested in the time-independent Hamil-
tonian H := Hg + AV.

It is often convenient to extract information about H from the time-dependent
formalism. This can be done by introducing the so called adiabatical switching
invented by Gell-Mann and Low.

In this subsubsection we describe how to compute the energy shift using
adiabatic switching. We follow quite closely [40].

Let € > 0. We define V,(t) := e~ IV, We will write

H.(t) := Hg + AV,

for the corresponding time-dependent Hamiltonian. We also introduce the cor-
responding Hene, Ue(to,t_), Udne(ty,t_), ST, Se.
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Proposition 1.9 We have

DUNARS (1.66)

H (t Uty t-) — Uc(to, t)H(t2), 0>ty >t_;
*He(t_‘_)UE(t_‘_,t_) + Ue(t_t,_,t_)He(t_), t+ Z t_ Z 0,

iEAaAUEInt(t+,t,) (167)

Heng(t4)Uetne (T4, =) — Uetne (t4, t— ) Herne (1), 0>ty >t ;
_HeInt<t+)UEInt(t+; t*) + UeInt(tJm t*)HEInt(tf)a t+ 2 t_ Z 0;

+ieAOZ\ST = HSF — SFHy; (1.68)
ieANONS. = HySe+ ScHyp —2S7*HS, . (1.69)
Proof. Display the dependence on A by writing U, »(t4,t_). Fort, >¢_ >

0 we have -
Uey)\(t_;,_,t_) = UE’)\eee(tJ,_ + 9,t_ + 9)

Hence,
0 = Ly oty 40t +0)
= 40 e,hefe (4 s b— 0—0
d d
= 6)\8)\(]67)\(254,_,25_)4-7U€7)\(t+,t_)+7U67)\(t+,t_)
dt de_

= AU (t4,t-) —1H () U (4 t-) + 10 a(E4, 1) He A (2-).

This proves (1.66), from which the remaining identities follow. O

Assume that &y, is an eigenvector of Hy with Hy®py = EpPg. Set

(I)i .: Sei(bfr
‘ (O] S D)
| HSE Dy,
EFf = (@l HS" ) ‘i R) _ (O | HOE).
((I)fr‘SE (I)fr)
Proposition 1.10
(H — By, £1e)\dy) ST @, = 0, (1.70)
FieAdy log(Pp |STRy) = EF — Fy, (1.71)
(H — EX £ieXd)) @F = 0. (1.72)

Proof. Applying (1.68) to @ yields (1.70). We scalar multiply it with @y,
obtaining (1.71). Combining (1.70) with (1.71) gives (1.72). O

In the following theorem we argue that the adiabatic switching often allows
us to compute an eigenvector of H and its eigenvalue.
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Theorem 1.11 (1) Assume that

there exist a nonzero li\r"% oE. (1.73)
Then there exist
EZ = limEF
GL e{‘% €
dL, = lim |(Pg|ST Py )|PE.
GL el\r‘%‘( f‘ e *f )| €

(2) Supose in addition that
11\2% ANDE = 0. (1.74)

Then
+ + g+
H®g,, = Eq %G

Proof. (1) The existence of EZ; is immediate. Next we note that (&F|®F) =
|(®g,|SE D, )| 72, Hence 11\1‘% |(®g,|SEDy, )| exists. This implies the existence of
+
oE, .
By (1.72), we have
H — EZ;) lim @ = 0.
( GL) EI\I% €

This implies (2). O

In the remaining part of this subsubsection we assume that (1.73) and (1.74)
are true.

Suppose now that for small enough Ay > 0 and |A| < Ao, Hx has a unique
nondegenerate eigenvalue close to Ef., which we denote F), depending contin-
uously on A\, with Ey = Fy. If EéL, , also depends continuously on A, then we
see that EéLy)\ = E(EL,A = F) and (I%L’)\ is proportional to (I>E;L’)\. Note that
both CI%L_’ » and @y are normalized, hence they may differ only by a phase
factor.

In what follows we simply assume that

E:=E}, =Eg, ®:=0 =0y, . (1.75)
is true (even if the argument given above does not apply).
Lemma 1.12 Let B be an operator. Then

. (S+q)fr|BS7q)fr)
®|BP) = lim —= £
( | ) eNO0 ((I)fr‘Se(bfr)

(1.76)

Proof. The right hand side of (1.76) equals

(SIRuBSI.) L (@F|BY)  (8ylB0G,)
O (S P | S D) N0 (BT D7) (@&LI1%GL)
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O

The following theorem describes the Sucher formula often used in practical
computations of the energy shift.

Theorem 1.13
ieA
E —FE; = lim —0)log(®g|S Dy ). 1.
f 6%28A0g(f|5 fr) (1.77)

Proof. We sandwich (1.69) with ®¢ and divide with (®¢|S.Pf) obtaining

Sj(bfr|HS;®fr)

. (
—ieXDy log (D, |S. Bp,) = 2Ff — 2 .
ieAOy log(®g|Se Py ) i (S @ | ST Pyy)

The last term, by Lemma 1.12, converges to 2F. O

Note that the right hand side of the Sucher formula may have a nonzero
imaginary part. In this case we expect that it describes a resonance close to
E.

1.3.6 Adiabatic switching and Green’s functions

Recall that if A is an operator then A(t) = '’ Ae=1*H . To define the interacting
Green’s functions we fix a vector ®, which is a bound state of H, and we set

<Ak(tk)'-~A1(t1)> = ((I)lT(Ak(tk)Al(tl))(b) .

Suppose that H = Hg+AV. The Gell-Mann and Low Theorem about Green’s
functions allows us to express interacting Green’s functions by the free ones:

Theorem 1.14 Suppose that (1.73), (1.74) and (1.75) are true, so that we
can apply the results of the previous subsubsection. Then

(nlt) ) = i e S 0 (1.78)

n=0 TL'
« / ds,, - / dsy (Ve(sn) - Ve(s1) Ar(tr) -+ Ay (01,
& (i [ %
((I)fr|S€q)fr) = gi%nzo ol /_oo dsn/_oo d81 (179)

X <Vv6(sn) T Vve(sl)>fr~
Proof. (1.79) follows from (1.57) applied to Ue.
Let us prove (1.78). Let ¢, > --- > ¢1. Let A; ((t) denote the operator A; in
the Heisenberg picture for the evolution U,. The left-hand side of (1.78) is
(P|Ak(ty) - Ar(t1)®)
(P Ag.e(tr) - Are(tr)®)

~ m (S Pg| A e(tr) - - A1,e(t1)S. Pr)
eNO ((bfr|Se(I)fr) ’

lim
eN0

(1.80)
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where at the last step we used Lemma 1.12.
Let (- - - ). denote Green’s functions for the dynamics U.. Then the numerator
of (1.80) can be written as

(Ap,e(tr) - Are(tr))e (1.81)

Applying (1.65) to (1.81) we arrive at (1.78). O

Let us note that on the right of (1.78) only the free dynamics appears.
One can forget about the dynamics U, whose use can be treated as a trick.
Some authors consider (1.78) as a (perturbative) definition of Green’s functions,
forgetting about the auxiliary nonphysical dynamics Ue.

1.3.7 Adiabatic scatttering theory

In our notes we concentrate on time-dependent Hamiltonians, with perturba-
tions decaying fast as |t| — co. For such Hamiltonians the definitions of Mgller
and scattering operators given in (1.57), (1.58) and (1.59) work well.

One would also like to consider scattering theory of time-independent Hamil-
tonians. Unfortunately, in QFT these definitions typically need to be modified.

In Quantum Mechanics the situation is much better. For (time-independent)
Schrodinger Hamiltonians H := Hg + V(z), Hy := —A, (at least with short-
range potentials) there exists a very satisfactory scattering theory based on the
Mpgller operators

St =s— lim et 1tHn (1.82)
t—+oo
and the scattering operator by S := ST*S5~.

This approach almost never works in QFT, even for simple-minded mod-
els with classical (time-independent) perturbations considered in these notes.
In particular, the limit (1.82) almost never exists. One of the reasons is the
existence of the ground state for Hy in quantum field theory. H has essen-
tially always a different ground state or no ground state at all. It usually has a
different spectrum.

One can try to remedy this problem by introducing adiabatic switching
together with a renormalization of the phase, which is divergent as ¢ \, 0,
as in the following teorem:

Theorem 1.15 Suppose that (1.73), (1.74) and (1.75) are true.

(1) Assume also that there exist the adiabatic or Gell-Mann—Low Mgller oper-
ators

D, |SEDG,
SE = WAfhnlﬂgilgigi)JSf, (1.83)

Y (‘I)fr|56iq>fr)
and N
|(Pr| S Pr)|

S* =o0. 1.84
((bfr|seiq>fr) ‘ ( )

w— lim eA0)y
eN\0
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Then

SE.(Hy — Er) = (H —ReE)SZ,, (1.85)
SEL @ = OF,. (1.86)

(2) Define the adiabatic or Gell-Mann-Low scattering operator

Sar, = S&fSar.- (1.87)
Then
SGLHfr = HerGL»
ScrL®s = Py,
Proof. Using ‘—}cl = %, we obtain i@,\% = —‘—?ReiaT*f. Therefore, setting
f= ((Dfr|S€i‘1>fr) we compute
(@5 |SE P )| |(Par] SEPr )| (Pae| (HSE — S Hie)Pri)

FieAy——F— " = —

((I)fr‘Sét(I)fr) ((I)fr‘Sét(I)fr)

+
%Re (EX — Eg).

Therefore,

. |((bfr|siq)fr)| +
FieAdy et/ g-
M (@] SE )
‘((I)fr‘seiq)fr”

e W (LHSE + ST Hy + Re(EE — Ep)ST).
(‘I)fr\Seifbfr)( ¢+ 5 Hie + Re(Ee f)E)

Using ReFy. = Ef,, we obtain (1.85). (1.86) follows by definition. O

If the limit in (1.84) is strong and not only weak, SéEL are unitary. This
will be the case in the examples we consider in our text. In general, they do
not have to be unitary, and one needs to perform an additional wave function
renormalization, which we will not discuss.

Remark 1.16 Many textbooks use (1.82) as the starting point for a derivation
of the rules of QFT, eg. [56]. As indicated above, this is quite far from being
correct. Gell-Mann and Low invented the adiabatic switching as an attempt to
make this derivation somewhat more satisfactory. This approach often works in
QFT models with classical perturbations.

2 Neutral scalar bosons

In this section we consider the Klein-Gordon equation

(—O+m?o(z) =0 (2.1)
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and we quantize the space of its real solutions. We study two kinds of interac-
tions: an external linear source

(=0 +m?)g(x) = —j(x), (2.2)
and a mass-like perturbation
(=0 +m?)g(x) = —r(x)d(x). (2.3)

2.1 Free neutral scalar bosons
2.1.1 Special solutions and Green’s functions

Every function ¢ that solves the (homogeneous) Klein-Gordon equation

(=0 +m?){(z) =0 (2.4)
can be written as
o = [ g+ mt) s

B Z/( )3 dliQ 29(:‘2 v E2+m2’E)eq:in\/m+ifE7
T 2m)32V k2 +m

where g is a function on the two-sheeted hyperboloid k?4+m?2 = 0. A special role
is played by the following & special solutions of the homogeneous Klein-Gordon
equation.

(1) The positive frequency or Wightman, resp. negative frequency or anti-
Wightman solution:

dk
(2m)?
_ ﬂ:l/ dk e:FizO Ez+m2+ifE

(27)32V k2 + m?

1
= ngnxoé(xz)

m@( ) sgna® mle 2
87“/_721% (my/—x 772\F Ki(mVz?).

where H are the Hankel functions and K, is the MacDonald function of
the 1st order.

(2) The Pauli-Jordan or the commutator function:
dk

D(z) = i/ei]””sgn(ko)é(k2 +m?) o)

dk . 0 /=
/ pwee = n mze sin <9: +m )

1 0, o msgnz'O(—z?)
= gsgnx 6(3? ) — W

DE(z) = +i / e*20(+k0) 5 (k? +m?)

w

Ji(my/ —a?),
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where J; is the Bessel function of the 1st order. D(z) is the unique solution
of the Klein-Gordon equation satisfying
D(0,Z) =0, D(0,%) = &().

We have, suppD C J.
Solutions of
(=04 m?)¢(z) = §(x), (2.5)
are called Green’s functions or fundamental solutions of the Klein-Gordon equa-
tion. In particular, let us introduce the following 3 Green’s functions.

(1) The retarded, resp. advanced Green’s function:

ikx
n _ e dk
b™e) = / (k% + m? Fi0sgnkV) (2m)*

1 mb(—x2)0(La?)
= —0(£2°)d(2?) - —————LJ,(m\/ —z2).
2ﬂ_($)(3§') 47_(_\/_7.1:2 1(m I)
We have suppD* C J*. In the literature, DT (z) is usually denoted D*®*(z)
and D~ () is usually denoted D%V (z).

(2) The causal or Feynman(-Stueckelberg) Green’s function:

elk:z: dk
D¢(z) = / .
(k2 +m? —i0) (2m)*
1 N ml(—z?) /22 mif(z?) /3
o 47‘(6( 2 SWFH ( )+ 47r2\/x>2K1( )

The special solutions and Green’s functions introduced above are often called
propagators. They satisfy the following relations

D(z) = D(x) = =D(~=z) = D (x)+D ()
= D+(.Z')—D_(LI})7
D) = DW(@) = —D(=a),
D*(z) = D*(z) = D™ (-z) = 0(a")D(x),
D=(z) =D (2) =D"(-z) = 0(-2°)D(x),
D°(z) = D°(—z) = 0(z°)DP)(z) —0(—2°)D) ().
Let us prove the last identity.
. _ elkx dk
D) = / (k2 +m2 — (k0| +i0)2) (2m)*
1 —ik0x0+iEf
= dk 2.6
(2m)* /2\/k:2+m2 (VEz +m2 — k0] - 10) 20
efikozoJril_c‘f dk

(2.7)

N |
2V + m? (\/k2 +m? + k0] +io) (2m)*
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In (2.7) we can replace i0 with —i0. Then the parts of (2.6) and (2.7) with
k% < 0 are swapped:

_ / e—ikoro-&-ilgf dk
2V 4 m? (VIZ +m2 = w0 —i0) )
efilcowojtil_c‘f dk

I |
k2 + m? <\/k2 +m2 4+ k0 — i()) (2m)*
e~V k24m220+ikz d];;
= if(z" / — 3
k2 + m2 (2m)
+i6(—2°) / AR
Wk2 fm2 (27)°
= H(xO)D(+) (z) — 9(—xO)D(7)(x).

where in the last step we integrate wrt k% using

—iz%k°
€ 0 __ . Fiz? 0
/76 0 iOdk = 2rie ™ ¢0(+x”).

Let us now prove that suppD™ C JT. By the Lorentz invariance it suffices
to prove that DV is zero on the lower half-plane. We write

ikx
+ _ e dk
D) = /(k2+m2 —i0sgnk?) (2m)*
efikaOJril_c'f dkOdE
/ (k2 +m? — (k0 +10)2) (2m)*

Next we continuously deform the contour of integration, replacing k° by k°+iR,
where R € [0,00[. We do not cross any singularities of the integrand and note
that e~i#"(**+1R) goeg to zero (remember that 20 < 0).

2.1.2 Space of solutions

A space-like subspace of codimension 1 will be called a Cauchy subspace.
Solutions of the Cauchy problem are uniquely parametrized by their Cauchy

data (the value and the normal derivative on a Cauchy surface). They can be

expressed by the Cauchy data with help of the Pauli-Jordan function.

Theorem 2.1 Lets,9 € C(R3). Then there exists a unique ¢ € C2(RY3)
that solves

(—O0+m?)¢=0 (2.8)

with initial conditions ((0,Z) = ¢(&), ((0,&) = ¥(&). It satisfies suppl C
J(supps U supp?) and is given by

(3 = | D6TF-De@dg+ [ DZ-o@dag.  (29)
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Let Yka, resp. CYkq denote the space of real, resp. complez, space-compact
solutions of the Klein-Gordon equation.
For (1, (s € C°(RY3) we define

(@) =" G w) = 9MG(@)G(x) — Q@) (). (210)
We easily check that
Ot (2) = (O = m*) G () (@) — G (2)(D —m?)(a(2),
Therefore, if (1, (s € CVka, then
,5" () = 0.
One says that j*(z) is a conserved 4-current.

The flux of j# across any Cauchy subspace S does not depend on its choice.
It defines a symplectic form on YVka

GwC = /Sj”(C1,C27$)d3u($)

[ (Fatoaes +aenéen)a @

Clearly, the form (2.11) is well defined also if only (o € Ykg, and (3 is a
distributional solution of the Klein-Gordon equation.
The Poincaré group R x O(1,3) acts on Ykg and CYkg by

rn¢@) = ¢ ((y, A7)

T(y,a) are symplectic (preserve the symplectic form) for A € 07(1, 3), otherwise
they are antisymplectic (change the sign in front of the symplectic form).

The Pauli-Jordan function D can be used to construct solutions of the Klein-
Gordon equation parametrized by space-time functions, which are especially
useful in the axiomatic formulation of QFT.

Theorem 2.2 (1) For any f € C*(RY3,R), D f € Ykg, where
D (@)= [ Dl - ) (W)

(2) Every element of Yka is of this form.
(3)

—w*mewwzfﬁ@wu—wﬁ@mw. (2.12)

(4) If suppf1 x suppfa, then

(D fr)w(D * f2) = 0.
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The right hand side of (2.12) is sometimes called the Peierls bracket of f; and

fa.
Let us prove (2.12). Choose time ¢ later than suppf;, i = 1,2. Then we have
Dx f; = D% x f;. Now

D+ fi)(D* fo)
J (@7« @20 5 2)(6.2) ~ (D« L)EDDT + o)1, )z
[, (- E=m0* s @)D"« o))

H(DF % f1)(@)(0 = m2) (DY + f)(w) ) da
[ (@D = £)@) — (DF < )@ o)) o
= [(@OF < 2)@) - A@O @) de = [ A@D f)(e)da.

2.1.3 Classical fields

We will also consider the space dual to Ykg. More precisely, we can endow the
space Ykg with the standard topology of C2°(R?) & C2°(R?) given by the initial
conditions. The space of real, resp. complex continuous functionals on YVkg will
be denoted by Vi, resp. by CYf,. The action of T' € CYf on ¢ € Yk will
be denoted by (T'|¢), and sometimes simply by TC.

If T € CYfy, we define T* € CYf, by

(T*1¢) :==(T[¢), ¢ € Vka-

Note that in this context the star does not denote the Hermitian conjugation
(which in our text is the standard meaning of the star).

Let us stress that the space Vkq is real, which reflects the fact that in this
section we consider neutral fields. In the section devoted to charged fields the
main role will be played by the complexification of Vka, that is Wka := CVka-

For x € RY3, ¢(z), m(x) will denote the functionals on Yk given by

(¢(2)I0) = ¢(2),  (m(@)[¢) := ((x)-
They are called classical fields. Clearly, for any ¢ € Ykg we have
(=0 +m?)($(@)|¢) = 0.

Thus the equation
(=04 m?)¢(x) =0 (2.13)

is a tautology.
On YV we have the action of the Poincaré group (y, A) — Té_/i)' Note that

rEh o) = oAz +y).
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Clearly, ¢(x) = w(x) and, by (2.9),

o(t,7) = / D(t, 7 — (0, §)dg + / D(t,7 — §)m(0,5)d7 (2.14)

By (2.11), the symplectic form can be written as

SIECHES /(—<7T(t,f)|41><¢(t,f)|@>+<¢(t7f)\Cl)(?T(t’f)lCﬂ)df,

or more simply,
w= /¢(t,a§‘) A (. £)d7,
The conserved 4-current can be written as

u(@) = ¢(2) A 9, d(2).

2.1.4 Poisson brackets

The symplectic structure on the space Ykg leads to a Poisson bracket on func-
tions on Ykqa:

{o(t, D), 6(t,5)} = {n(t, ¥),(t,5)} = O,
The relations (2.15) can be viewed as mnemotechnic identities that yield the
correct Poisson bracket for more regular functions, eg. the smeared out fields in
(2.17) or (2.19) described below. Note that formally ¢(t, #) and 7 (¢, Z) generate

the algebra of all functions on Yk¢.
Using (2.14) we obtain

{o(2),0(y)} = D(z —y).

Therefore, the Pauli-Jordan solution is often called the commutator function.

2.1.5 Smeared fields

There are two basic methods to introduce smeared fields.

One way to smear them out is to use the pairing given by the symplectic
form. It is convenient to allow complex smearing functions paired antilinearly.
More precisely, for ( € CYkg we introduce the functional on Ykg given by

(@(C)lp) = Cwp, P € Ve-

Note in passing that w can be treated as a linear map from Ykg to y;gG,
which satisfies B B
—(wQ)p = Cwp.

Therefore, a possible alternative notation for ¢((¢)) is —w(.
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Clearly,
(0 = [ (Dot )+ TEDIn(. ) o, (216)

Note that o
{0(¢1)), #((¢2)} = ¢yw(s. (2.17)

We can also smear fields with space-time functions. For f € C(RY3 R),
we set

o= [ s@pota)da.
We have

olfl = o~ Dx1), (2.18)
(GlA]. o]} = / / f1(#)D(z — y) faly)dady. (2.19)

To see (2.18), write an element of Ykg as D x g for some g € C°(R*3 R):
(@(=Dx*f)IDxg) = (Dx[flw(Dx*g)= /f(l")D(m —y)g(y)dady
~ [@6@IDsgds = @lAID )

2.1.6 Lagrangian formalism

In classical mechanics we have the Hamiltonian formalism, where the basic
object is the phase space equipped with a symplectic form, and the Lagrangian
formalism, where we start from the configuration space. In classical field theory
we can also use both formalisms.

In this context, the Hamiltonian approach is often called the on-shell for-
malism. This means that the field ¢(z) acts on the space of solutions of the
equations of motion. In other words, the field ¢(x) that we use in the Hamilto-
nian formalism satisfies the equation (2.13) — one says that it is on-shell.

In the Lagrangian formalism one also uses a classical field, which we will
denote by ¢(x), as before. But now, this field is off-shell. This means, we do
not enforce any equation on ¢(z). One can interpret ¢(z) as the functional on,
say, C°°(RY3) or C2°(RY3) such that (¢p(z)|f) = f(2).

Using ¢(z) in the off-shell formalism, introduce the Lagrangian density

L(x)= —10,0(x)0"¢(x)— Fm>p(x)?. (2.20)
The FEuler-Lagrange equation

oL

S

0 (2.21)

yields the Klein-Gordon equation (2.1).
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When we go from the Lagrangian to Hamiltonian formalism, we enforce the
on-shell condition, that is, the Euler-Lagrange equation, and we introduce the
variable conjugate to ¢(z):

oL

w(x) = 36 0(@) =¢o(x).

Then we express everything in terms of ¢(x) and ().

2.1.7 Stress-energy tensor

We can also introduce the stress-energy tensor

T(@) = ot (e) + g L) (222)
= MP(x)0"¢(x) — g’“’% ((%(b(ﬂﬁ)(“)“(b(x) + m2¢(gc)2) .

It is easy to check that the stress-energy tensor is conserved for a solution
of the Klein-Gordon equation (on shell)

9, T (z) = 0.

We express the stress-energy tensor in terms of ¢(x) and m(x). Its compo-
nents with the first temporal coordinate are called the Hamiltonian density and
momentum density:

—

Hr) = T = 5 (x@)? + (G9@)” + m?o(x)?).
Pi(x) = T%(x) = —n(2)d¢(x).
They are examples of quadratic functionals on Yka:
H@IO = 5 (C@? + (@) +mc@)?)
(P'(@)[¢) —((2)0°¢(x).

We introduce the (total) Hamiltonian and momentum:
H o= / TH0(2)ds,(x) = / H(t,)d7,
S
/ TH(x)ds,(z) = / Pi(t, )dz. (2.23)
S

where S is any Cauchy subspace.
H and P are the generators of the time and space translations:

¢($) = {(b(l‘),H}, W(Z‘) = {ﬂ(I),H},
d(x) = —{¢(x), P}, On(x) = —{n(x), P}.

The observables H, P!, P? and P? are in involution. (This means that the
Poisson bracket of every pair among these observables vanishes).

Pi
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2.1.8 Diagonalization of the equations of motion

For k € R3, set ¢ = (k) := Vk2 +m? and k := (e(k), k). k € RY3 of this form
will be called on shell. Define

¢t(E) = /(b(t,f)e_‘gidf,
m(k) = /ﬂ(t,x)e_i%df
Clearly,
oi(k) = du(-F),
m(k) = m(=k),
W?(E)¢(El)}={ﬂf(g)vﬂt(€')} = 0, o
{oi(k),m(K)} = (2m)%d(k — k')

¢t(E) ﬂ-t(]g)v
(k) = —e*(k)ou(k)
For k on shell we set
1 e(k) | - i .
Q¢ k = t k Tt k )
" (27r)3< z 2(F) ( )>
* 1 E(E) * /7 1 * /7
a; (k) = L (k) — m (k) |.
@ (%)3( UGyl >)
We have the equations of motion
ar(k) = —ie(k)ay(k),

4z o [ek) , i .
alk): = ik 260, 7(0,Z) |, (2.24
(k) ) ( 5 ¢(0,7) + e ( )) (2.24)
. Az g ek i .
a*(k) = ik —=¢(0,7) — w(0, % 2.25
(k) ) ( > ¢(0, 7) = ( )) (2.25)



Thus

a:(k)
a; (k) =
{a(k), H}
{a™(k), H} =
{a(k),a(k)} = {a”(k),a"(K)} =
{a(k),a"(K)} =

The fields can be written as

M:/WT e
o - (D

\/27‘( \f

+ —1kma*(k)) ,

e_ikma*(k)) :

a(k), a*(k) diagonalize simultaneously the Hamiltonian, momentum and

symplectic form:

H = / dke(k)a* (k)a(k),
P = / dkka* (k)a(k),
w = /dEa*(k)Aa(k).

With (1, (> € Yka, the last identity is the shorthand for

iGoa = [ (Tl alh) )~ (alh) 1) TalEIGaD) .

2.1.9 Plane waves
Let k € R1? satisfy k0 = e(k). A plane wave |k) is
1

defined as

(zlk) = ——— —¢iho,

(27)34/2¢ (k)

(2.30)

Note that, following Dirac, we denote plane waves using the “ket notation”
|k) when they appear on the right of a bilinear form. We also write (x|k) for
the evaluation of |k) at the point € R13. Plane waves are solutions of the
Klein-Gordon equation which are not space compact.
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If a plane wave appears on the left, we employ the “bra notation”, which
implies an additional complex conjugation:
FONTAY 1 —ika
(klz) = (z[k) = ———F==¢"""
(2m)34/2e(k)

Note that in the neutral case we use only positive frequency plane waves, corre-
sponding to k:o_'> 0. L.
Let k = (e(k), k), k' = (e(K'), k).

i(k|w|k) = i(klw|k) = o,
—i(k|lw|k) = i(klw|k) = 6(k—kK).

a(k) and a*(k), defined in (2.24) and (2.25) will be called plane wave functionals.
They can be expressed as

a(k) = i¢((|k))
~ / (94(k10.2)6(0. ) — (K0, #)(0,7) ).

_ / (04 TRI0. 9)6(0. 7) — (R0, F(0.7) ) .

The fields can be written in terms of plane waves functionals as

ox) = / ((zlk)a(k) + (eTk)a* (k) ) dF.

So far we used only the real space Ykg. We can complexify it and extend
a(k) to CYke by complex linearity. Every ¢ € CYk¢ satisfies

(a(k)¢) = i(klwc, (2.31)

(a(k)[C) = —i(klw, (2.32)

T) = d—E e (g e R a(k)C)) . (2.
o = f — @( (a(IC) + e+ BT ) - (233)

2.1.10 Positive frequency space

W&iG) will denote the subspace of CYkg consisting of positive, resp. mnegative
frequency solutions, that is,

WI((JE}) = {9€ClVkg : (klwg =0},
Wl =W = {g€Cka : (klwg =0}
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In other words, WI((+G) is the subspace of CYkq that consists of functions of
the form

g(x) = / m\/; ok (

For g1,92 € WI(;(F}) we define the scalar product

(91192) := igiwga :/<a(k)|91><a(k)lgz>dg- (2.34)

The Hilbert space of positive energy solutions is denoted Zkq, and is the com-

pletion of WI(;rG) in this scalar product.
Note that

(a(k)lg) = (klg), g€ Zka-
We can identify Zxg ~ L?(R3) and rewrite (2.34) as

(g1lg2) = / (FTar) (klga)dF. (2.35)

RY3 % O'(1,3) leaves Zkg invariant.
We have a natural identification of Ykg with WI(;E;) Indeed, if ¢ € Ykg is
given by (2.33), then we can project it onto W(+) obtaining

(@) = [ ——F e (2.36)
V(2m)3 \/28
This identification allows us to define a real scalar product on Ykqg:
(Gle)y = Re(¢PIcth).
We can compute explicitly this scalar product:
Glaly = [ [G0a-0Dh 0.7 - pé.pisg (2.37)

//clox — Az +m?)(—i) D0, 7 — 7)¢(0, )ATAF.

2.1.11 Quantization

Let us describe the quantization of the Klein-Gordon equation, following the
formalism of quantization of neutral bosonic systems [15]. We will use the
“hat” to denote the quantized objects.

We want to construct H, H, Q satisfying the standard requirements of QM
(1)-(3) and a self-adjoint operator valued distribution

R 32— ¢(z), (2.38)

such that, with #(x) := q@(w),
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(1) (—O+m?)g(x) =0,
(0, %)

(4) Qs cyclic for ¢(z).

The above problem has a solution, which is essentially unique. Indeed, let
H,H,Q, RY3 > 2+ ¢(z), 7(z) solve the above problem. Decorating (2.24) and
(2.25) with hats leads to the definitions of two operator valued distributions
Hermitian conjugate to one another:

NEoE

A7 ie([<(F)
Pk

alk): = / di)ge—iﬁf< @&(o,fﬂ ! 7%(0,:?)), (2.39)

2¢ (k)

Using (2) and (3) we obtain the quantized versions of (2.26)-(2.29):

-

la(k),H = e(k)a(k), (2.41)

[@*(k),H = —e(k)a*(k), (2.42)
a(k),a(k")] = [a*(k),a*(K")] = 0, (2.43)
[a(k),a* (k)] = 6&(k—FK). (2.44)

HQ = 0 implies Ha(k)Q = —e(k)a(k)Q. But H > 0. Thus we should
assume
a(k)Q = 0. (2.45)
By (4), Q is cyclic for a(k) and a*(k). Using (2.41), (2.44) and (2.45) we see
that Q is cyclic just for a*(k). In other words, H is spanned by vectors of the
form

/\11(15'1,...,En)a*(kl)---a*(kn)gd/’él---dEn.

Using again (2.41), (2.44) and (2.45) we see that the scalar product of two
vectors WU, W is zero if n # n’, and otherwise it is

=3 — — -

(U9 :/W(El,...,kn)\lﬂ(kl,...,kn)dk}---dkn.

Therefore, H can be identified with I's(L?*(R?)), Q with the Fock vacuum, a* (k)
with the creation operators in the “physicist’s notation”, the quantum field is

o(z) = Fra(k) + e M rar(k)),

dk
0 (e
/ V/(2m)34/ 2¢ (k)

92



finally, the quantum Hamiltonian and the momentum are

H = / a*(k)a(k)e (k)dE,

By (2.34) we can identify L?(R3) with the positive frequency Hilbert space
Zkg. Using the “mathematician’s notation” on the right we can write

a*(k) = &*(\k)) (2.46)
Note that the whole R13xO"(1, 3) is unitarily implemented on H by U(y, A) :=
(), )
(y:0) Zxo A A
Uy, Mo(@)U(y, A)* = ¢((y, M)z).
This is true even though we only required that time translations are imple-

mented.
‘We have

[6(x), ()] = —iD(z - y).
For f € C(RY3 R) set

of) = / f(@)d()da. (2.47)

(2.47) satisfy the Wightman axioms with D := I'fin(Zkq).
For an open set O C R? we set

A(0) := {exp(ig[f]) : f € CZ(O,R)}".

The algebras 2A(0O) satisfy the Haag-Kastler axioms.

2.1.12 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses smeared fields instead of point fields, which may better appeal to
some people.

Again, we want to construct H,H,Q satisfying the standard requirements
of QM (1)-(3). Instead of (2.38) we look for a linear function

Ve 3¢ $(Q)

with values in self-adjoint operators such that

(1)
[(¢1): ()] = iGwa. (2.48)

(2) A . -
O(r1.5)0) = M H(¢he M.
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(3) Qs cyclic for the algebra generated by $((¢)).

One can pass between these two versions of the quantization by
360 = [ (~étt.2d.2) + D) (2.49)

2.1.13 Quantization in terms of C'*-algebras

Let us mention yet another equivalent approach to quantization, using the lan-
guage of C*-algebras.

Let CCR(YVka) denote the (Weyl) C*-algebra of the CCR over Yka. By
definition, it is generated by W((¢), ¢ € Vkga, such that

C1wlo

WEOW () =e7"2 W(G+¢), WO =W(=).
R x O'(1,3) acts on CCR(Ykg) by *-automorphisms defined by
Py,n) (W(Q) =W (r(y,a)(Q)) -

We are looking for a cyclic representation of this algebra with the time evolution
generated by a positive Hamiltonian.
The solution is provided by the state on CCR(Yk¢) defined by

p7(©Q) = e (- 5cl0y).

Let (Hy, Ty, 2y) be the GNS representation generated by the state ¢. Then this
representation has the required properties. H,, can be identified with I's(Zkc)
and the fields are related to the Weyl operators by

my(W(0)) = (.

2.1.14 Two-point functions

Note the identities

@@ = —iDD—y) (2:50)
@TGE@HY) = D ) (251)
In fact,
@i = [ [ G el 1))
_ / AR ey
(27)32¢(F)
= —iDW(z —y);
@TG@HNY = 06— QUKD + 00" — a)(2Ad)d)

= —i0(a® — ") DD (2 — y) —i6(y° — 2°)DH) (y — z)
= —iD%xz —y).
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(2.50) implies the following identities for spacetime smeared fields and Weyl
operators:

@olP0) = i [ [ @D~ y) sl dod, (252)
@) = exp (2 /] f<x>D<+><x—y>f(y>dxdy). (2.53)

Differentiating if needed (2.50) with respect time we obtain the equal time
correlation functions expressed as real symmetric kernels:

(Q16(0,9)6(0,5)?) = —iD™M(0,7 - 7), (2.54)
(Q$(0,D)7(0,)9) = 0, (2.55)
(Q7(0,2)7(0,7)Q) = 0?DH (0,7 —7)

= —i(—Az +m?)DH(0,Z - 7). (2.56)

This yields the identities for spatially smeared fields and Weyl operators, where
the scalar product (-|-)y on Yk was introduced in (2.37):

@) = i [ [0.apD0.5- 9oy
“i [ [ 0.2z 4 mHDD 0.7 - 0,z
= Oy, (2.57)
(@e¥9) = exp(~ (Cl0)y). (2.59)

2.2 Neutral scalar bosons with a linear source
2.2.1 Classical fields

We go back to the classical theory. The fields studied in the previous subsection
will be called free fields. We change slightly the notation: free classical fields
will be now denoted by ¢ (), 7 (x). Clearly, they satisfy
(0 +m?)o(z) = 0, (2.59)
Tfr (37) = (bfr(x)'
Fix a function

RY3 52 j(z) €R, (2.60)

which will be called the (external) linear source. In most of this subsection we
will assume that (2.60) is Schwartz. The interacting fields satisfy the equation

(-O+m)o) = i), (261)
m(z) = &) (2.62)
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We also require that the interacting fields have the same equal-time Poisson
brackets as the free fields:

{o(t,2),0(t,9)} = {7(t,2),7(t,5)} = 0,
There are several, usually equivalent, ways to introduce interacting fields.

One way is to treat them as functionals on the space of solutions to the free
Klein-Gordon equation, Ykg. We can demand in addition that

o(Z) =0r(0,Z) =¢(0,7),
(&) =7m(0,2) =m(0,2). (2.64)
This condition determines the field ¢(z) uniquely:
b(x) = () (2.65)
+ [ (D@ =006 + D (@~ )04 0)d.
Let us mention some alternative ways to define the interacting fields ¢(x).

First of all, there is nothing special about the time ¢t = 0 in (2.64) — we can
replace it with any ¢ = tg. Alternatively, we can demand

lim (¢fr(ta f) - ¢(taf)) =0, tliIgo (ﬂfr(ta f) - ﬂ(tvf)) =0,

t—o0

or  lim (¢n(t,3) - ¢(t,7) =0,  lim (ra(t,7) - n(t, ) = 0.

Another possibility is to introduce Yk (j), the space of smooth real space-
compact solutions of
(—0 +m*)¢(x) = —j(2), (2.66)

and define ¢(x) by
(0(@)|¢) :=((x), (€ IVkald)
2.2.2 Lagrangian and Hamiltonian formalism

We can obtain the equations (2.61) as the Euler-Lagrange equations for the
Lagrangian density

L(z) = —30,0(x)0"¢(x) — 3m*d(z)* — j(x)d(z). (2.67)
The conjugate variable is
oL

w(w) = gy = hol)

just as in the free case.
The Legendre transformation leads to the Hamiltonian density
1

H) = 5 (7(@)? + (00()” + m?6(2)?) + j(x)o(a).
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and the (time-dependent) Hamiltonian

H(t) = /%mmw (2.68)
— m2
_ /df(%w(t, 7)% + %(&b(t,f))Q + 5ol 3)? +j(t,f)¢(t,f)).

The Hamiltonian generates the dynamics:
o(t, @) = {o(t, ), H(t)}, #(t, &) = {7(t, ), H(t)}. (2.69)

In (2.68) and (2.69), H(t), ¢(t,Z) and 7 (t,Z) should be understood as the
functions of the initial conditions at ¢ = 0. Therefore, we use the Lagrangian
description (see Subsubsect. 1.3.2).

We can also introduce the Hamiltonian in the Eulerian description, which

is convenient for quantization. It uses the fields ¢(Z) and 7 (&) introduced in
(2.64):
2

Healt) = [ ai(5r@? + 5 (G0@)” + -

; (@) + (4. 3)0()).

2.2.3 Quantization

We will use the notation (]Bfr(l’) for the free quantum fields studied in the previous
subsection. We are now looking for interacting quantum fields ¢(x) satisfying

(-0 +m?)p(z) = —j(z). (2.70)
We also set R
(x) = ¢(x) (2.71)

and require the equal time commutation relations

[6(t,2), (1, )] = [7(t, @), 7(t,5)] = 0,

7(t
(¢, @), 7(t,)] = 16(F — ). (2.72)

We would like to solve (2.70) and (2.72) in terms of free fields. That means,
we are looking for g%(;v) on the Hilbert space of the free Klein-Gordon fields,
I's(Zkg). We will in addition demand that the interacting and free fields at
time ¢ = 0 coincide:

- (va) = éfr(07 7—’:)7
#(%): = 7(0,7) = 7(0, ). (2.73)

RS
—~
el
-

Clearly, the unique solution is obtained by decorating (2.65) with hats:

ba) = dula)
+ [ (D@ =066 + D (e = p0(-4")ids. (270)
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It can be written as

o(t, &) = Texp <—i /t ’ ﬁf(s)ds> $(0, &) Texp (-1 /0 t ﬁ(s)ds) : (2.75)

where the the Schrodinger picture Hamiltonian is

N ~ ~ m2 . o
At) = /df:(ifr?(f) + %8@(:1?)8@(5) + R +j(t,f)¢(f)):. (2.76)

Note that H(t) is obtained from Hgy(t) by the Wick quantization A.1.3, which
is expressed by decorating the fields with “hats” and putting the “double dots”.

In principle, one could replace H(t) by H(t) + C(t) for any real function
t — C(t). The choice that we made satisfies

(QH®HQ) =0, teR. (2.77)

Condition (2.77) is quite arbitrary — the vector 2 is the ground state of of the
free Hamiltonian at time zero — in particular, it depends on the choice ¢t = 0 in
(2.73).

We also have the interaction picture Hamiltonian

mmw::/ijmﬂM. (2.78)

2.2.4 Operator valued source

So far we assumed that j(z) is a c-number. Most of the formalism works, at
least formally, for operator valued sources. The main additional difficulty is the
need to distinguish between the source in various pictures.

Let us start with the Schrodinger picture. Let R 3 z +— j(z) be an
operator-valued function (or distribution) that commutes with time zero fields:
[6(),(t,9)] = [7(@).j(t. P =0, TR’ teR.

Define the the Schridinger picture Hamiltonian H(t) by (2.76), where j(z) is
replaced by j(z).

Then we define the the Heisenberg picture fields ¢(x), #(z), as in (2.75). We
also have the source in the Heisenberg picture

up(t, @) = Texp (—i /t Oﬁ(s)ds> 3(t, 7) Texp <—i /0 tﬁ'(s)ds)

having the commutation relations

[Qg(ta f)?jHP(tag)] = [’fr(ta f)?jHP(ta g)] = 0.
The Klein-Gordon equation (2.70) and the relation (2.74) generalize:
(-O0+m*)d(x) = —jup(x), (2.79)

Ba) = dula)
+ [ (D7 =660 + D™ (2 = 9)8(-4)) e ().
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We can also introduce the source in the interaction picture
~ - ‘t[f[.r ~ - ,'tI:[.r
]Int(t;z) et j(t,I)e o ’

satisfying the commutation relations

[éfr(m f)a jInt (t7 g)] = [’frfr(ta f)vjlnt (ta 37)] = 07 f? g S Rsv te R

The interaction picture Hamiltonian is
Hunlt) = [ Gt 2)30t. 907,
which is obtained from (2.78) by replacing j(t, ) with Jjiu (¢, Z).

2.2.5 Scattering operator

We go back to a c-number source j(z). The interaction picture Hamiltonian

written in terms of creation and annihilation operators equals

ﬁlnt (t)

dk
/ V(@m)3y /22 (k)

(7 =M, Kya(k) + =P, Fyar (k).

The scattering operator (1.57) can be computed exactly. On the level of creation

and annihilation operators it acts as

V/(2m)34/ 26 (k) ’

Sa(k)S* = &(k)+iM.
(27)34/2¢(k)

We have an explicit formula:

S = exp (;/(k2_|g§7]z)22—10) (;£4>

(2.80)

(2.81)

(2.82)

dk

a(k)

X exp

[ HEBB gy ) (DD
\/2¢(F) v (@m)? \/2¢(k)
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To see this, we insert f(t,k) := _eite(®) R g (A.10). In particular,

/(2m)3/2:(k)

the exponent of (A.10) becomes:

// it =tD=® (¢ — 15)j(t1, K)j(te, K)dtrdts  dE
(E) (27T)3
(kO E)\?dk‘)dk dk° dk

k) —

( 1 n 1 ) dk
(e(k) — k0 —i0)  (e(k) + k® —i0)/ (2m)*
i 13 (k)[? dk

B 2//(5(12;’)2—(k0)2—io) (2m)*

Note that we used j(k0, k) = j(—k°, —k)
For distinct k1, ..., k&, on shell, set

Koy ) o= @7 (k) - -7 (1)

Matrix elements of the scattering operator between such vectors are called scat-
tering amplitudes:
AnT4n

(kf,...,kmmk—,,...,k;) (2.83)
(=)
(

- i dk )
- eXp( / k2+m2 )(QW))\/W
kD ED )
\ /25(1;?1+) 2e(k,) 2¢(k ) 2¢ (k)

2.2.6 Green’s functions

Recall that the N-point Green’s function is defined for zy, ..., 21 as follows:
<q3(93N) T é(l‘l))
_ <Q+|T(¢g(m) ...... g,(zl))gf) : (2.84)
where
QOF = lim Texp (—1/ H ds)
t—+oo
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One can organize Green’s functions in terms of the generating function:

Z(f)

Z/ / N P(zn) - dx1)) flan) - flzr)day - day

<Q+‘Texp (—1/ /f (t, ) d:v dt) )
<Q’Texp (—i /_ (0t / f(m)¢fr(x)dx> Q)

o} [ g oy -

One can retrieve Green’s functions from the generating function:

; e d(x)) = iV o
Glaw) - dlen) =i oS 2] (286)

We introduce also amputated Green’s functions:

<(Z§(kn) U qg(kl»amp
= (kp+m?) - (k] +m®) (b(kn) - D(k1)). (2.87)

Amputated Green’s functions can be used to compute scattering amplitudes:
(k;7...,k1+| Slk,.. k;) (2.88)
(D) Dt )d(=k, ) -+ (=k7))amp
VR f2s () - 2 2k )26 (k)

where all k& are on shell.

2.2.7 Path integral formulation

Recall that the generating function equals

Z(f) = exp (;/ (j(z)+ f(2)D(z —y) (j(y) + f(y))dxdy)

_ i k) + f(R)* dk
= exp (2/ (2 + m? = 10) (27T>4> . (2.89)
We have the following expressions for the action integral:
[ tateae =~ [ Jot@)-0+mota)d.
/(E(x)fqﬁ(:r)f(z))dz = /ﬁfrasdx—/(bx (z) + f(
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Consider heuristically the space of all (off-shell) configurations with the Lebesgue
measure ITd¢(x). Physicists like to rewrite (2.89) as

S Jdg(@)exp (i f (£(z) = f(z)¢(x))dx) 200
() = fl;[dgb(x)exp (i [ L(z)dz) ’ (2:90)

which follows by basic rules of Gaussian integrals. Note that strictly speaking
(2.90) is ambiguous, since D¢, the causal propagator, is only one of many inverses
(Green’s functions) of —O + m?2. The choice of the causal propagator is an

additional convention that is not explicitly contained in the expression (2.90).

2.2.8 Feynman rules

Perturbative expansions can be organized in terms of Feynman diagrams. The
prescriptions how to draw Feynman diagrams and to evaluate them are called
Feynman rules. We restrict ourselves to Feynman rules in the momentum space.

We have 1 kind of lines and 1 kind of wertices. At each vertex just one
line ends. Vertices are denoted by solid dots. Lines have no distinguished
orientation. However, when we fix the orientation of a line, we can associate to
it a momentum k.

Diagrams for Green’s functions, in addition to internal lines have external
lines ending with insertion vertices, which will be denoted by small circles. To
compute Green’s functions we do as follows:

(1) We draw all possible Feynman diagrams. More precisely, we put N dots for
insertion vertices, labelled 1,..., N. We put n dots, labelled 1,...,n, for
interaction vertices. Then we connect them in all possible allowed ways.
The expression for the diagram is then divided by n!.

(2) To each vertex we associate the factor —ij(k), where k is the momentum
flowing towards this vertex.

(3) To each line we associate the propagator

—i

TR0 =

(4) For internal lines we integrate over the variables with the measure %.
Diagrams used to compute scattering amplitudes with N~ incoming and N+
outgoing particles are similar to diagrams for N~ + N T-point Green’s functions,
except that instead of insertion vertices we have incoming and outgoing particles.
For the incoming lines, —k are on-shell, for the outgoing lines, k is on-shell. The
rules are changed only concerning the external lines:
1
(2m)32e(k)
1
(2m)32¢(k)

(i) To each incoming external line we associate

(ii) To each outgoing external line we associate
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Figure 1: Diagram for Green’s function.

o <

< <

Figure 2: Diagram for a scattering amplitude.

2.2.9 Vacuum energy

Let D denote the value of the (unique) connected diagram with no external

lines. We have
i 13 (k)[? dk D
log(€$92) = / (k2 +m?2 —i0) (2m)* 2~

We can derive it diagrammatically as follows. At the order 2m there are

2m) ..
;7:2' pairings. Hence

(QSQ) = Z '2mm' D™ = exp(D/2).

m:O

2.2.10 Problems with the scattering operator
S can be ill defined.

63



. .

Figure 3: Diagram for vacuum energy.

First of all,

Rel [ MR Ak L[ LR 1)
(k2+m?2—i0) 2m)* 2 ) (k24+m?2) (2n)*
can be infinite. This is not a very serious problem. (2.91) is responsible only for
the phase of the scattering amplitude and does not influence scattering cross-
sections.

We can try to remedy the problem by an apropriate renormalization of the
phase. In particular, in the case of a stationary source or, more generally, a
source travelling with a constant velocity, we can use the adiabatic switching
and the Gell-Mann and Low construction to obtain a meaningful scattering
operator. We will describe this construction in the next subsubsections.

The problem with S is more serious if

Im;/ |j<k>|2 /|a (e(k). )* _dk
2 ) (K2 +m?— sk (2m)3

is infinite. Then no unitary operator S satisfies the relations (2.80) and (2.81),
see Thm A.1. The scattering operator is ill defined. However, as we describe in
Subsubsect. 2.2.14, also in this situation there is a pragmatic solution — we can
define inclusive cross-sections.

Note that if k +— j(k) is Schwartz, then S is well-defined, even if m = 0.

2.2.11 Energy shift and scattering theory for a stationary source

Suppose now that the source does not depend on time and is given by a Schwartz
function R?® 3 # ~ j(Z). Then we have the time-independent Hamiltonian

. 1oy Lome o m2a 0 N
i = [ (5@ + 5(00(@)” + 5-6(@)? + (#)$(@) ) :dd
By the method of completing the square (A.14) we compute the infinum of H:

5 1 '*e_m|zy|'*dd
——5/.7( )W (¥)dzdy.

Obviously, the standard Mgller operators S+ (1.82) are ill defined and we
need to use the Gell-Mann-Low construction. Let us replace j with j* (¢, Z) :=
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0(+x)j(Z)e !l Its Fourier transform is j*(k°, k) = Fi(k Fie)~1j(k), Inserting
this into (2.82) we obtain

St = exp(—/ i(F) a” (k) dF )
9 :

R L TR A O S 1 G
e ( 2 / 2 (k) (e(F)? + 2) (2m)3 T2 / 2(e(k)? + €2) (27")3).

Note that the phase of SF behaves as O(e~!). In the definition of SZEL we take
this phase away and put € N\, 0, see (1.83). We obtain

Ak _
SGL —

B ey R
o ( /m 0 =)

j(k) dk
xexp(/\/;dig)ga(k)\/w)
1 (k)P dE)

2. 2e(k)3 (2m)3/)

xexp(—

If m > 0 orif [j(Z)dZ = 0, then H has a ground state and the operators
S’éL are well defined. We have

SELHy = (H — E)SE,.
Note a somewhat disappointing feature: Sé}_L = S’(_;L, and hence the scatter-
ing operator Sqr, == ng:gaL = 1 is trivial.
If m =0 and [ j(Z)dZ # 0, then H has no ground state (even though it is
bounded from below) and the operators SéL are ill defined.

2.2.12 Travelling source

Consider now a source of a profile given by a function ¢ € C>°(R3) travelling
with velocity ¥. That means

i, &) = q(Z — tv). (2.92)

We note that the Fourier transform of (2.92) in the spatial variables equals

-

J(t k) = q(R)e ttE.
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The interaction picture Hamiltonian becomes

B dk
ot = V2= ()

This is the interaction picture Hamiltonian for a time-independent perturbation

where the 1-particle energy e(k) is replaced by £(k) — 7K.
We use the Gell-Mann-Low type adiabatic switching, so that we replace j

(e*it(d’;)*ﬁ’;) a(Bya(k) + e (=B=7%) q(E)&*(k))-

by
Je(t, @) := e et B).

We slightly generalize the Gell-Mann—Low Mgller operators:

SE = lim —— 215"

e(k)(e( )
X ex (k) a(k) dk
’ ( 2 (k) (e (k) — TF) (27r)3)

~ Note that if |v| < 1 (if the source is slower than light) and m > 0, then
SérL = Sqp, are well defined unitary operators.
If m =0 and [ ¢(Z)dZ # 0, then the infrared problem shows up: S'éEL are ill

defined.
It is interesting to assume that the source has a different asymptotics in the

future and in the past. For simplicity, suppose that the change occurs sharply
at time ¢ = 0 and consider

oo g (E—tU2), t<0,
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The following operator can be used as a scattering operator:

Let m = 0. Then (2. 93) is ill defined if
f q+(Z)dZ # [ q-

fq+ )dZ = [ ¢q_(Z)dZ # 0 and vy # v_.

Alternatlvely, we can introduce first the scattering operator S, with the adi-
abatically switched interaction. Then we can define another kind of scattering
operator by taking € N\, 0 and renormalizing the phase:

Note that (2.93) and (2.94) differ only by a phase. (2.94) is given by (2.82)

where we replace
/ J5(%)[* dk
(k2 +m? —1i0) (2m)4

Im / / (), bl
k2 + m2 ) 27r)3’
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Here, j(k) is the Fourier transform of the source (2.92):

(k) / j(t, B)e FFHRt 4z
i (®) g ()

kT, — kO —i0 kG- — KO 4i0

If we do not like the adiabatic switching approach we can directly define the
Mgller operators by removing the (possibly infinite) phase shift from (2.82).

2.2.13 Scattering cross-sections

We consider again an arbitrary source term j. Given on-shell momenta of in-
coming particles k¥ _, ...,k and outgoing particles k:f, ey k;ﬁ we can compute
the scattering cross-section for the corresponding process, or actually its density
w.r.t. the Lebesgue measure dk; ---dk, :

o (ki kbok kD)
N 2
- ’(k{,...7km5|ki,...,k;)‘
B 1 /|j k)2 dk )
- J/en)m ) 2 (k) (27m)?
X|y<e<kf3,kf>|2m\y(s(k;}kmz ek, > WP itk kD)
2¢(ky) 2¢(k,\) 2¢(k,,) 2e(ky)

Note that the crosssections are zero if m = 0 and [ j(z)dz # 0. In the next
subsubsection we describe how to cope with this problem.

2.2.14 Inclusive cross-section

Let § > 0. The 1-particle Hilbert space can be split as Z = Z.5 @ Z54 corre-
sponding to the soft momenta |k| < ¢ and hard momenta |k| > §. Clearly,

[3(2) 2T(2<5) ©T(255), Q=0 @05,

Assume first that m > 0 and the scattering operator is computed as above.
Clearly, the scattering operator and scattering cross-sections factorize:

S~8.,5®8555 0=0<5 055
More precisely, let

@] A 1] 1, <6 (2.95)
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Then we have the soft scattering cross-sections
0<6 (qrvaq:ﬁfr7q;‘—a7q;)

~ 2
= ’(qraaQ;i_n+|S<5|q7_n—37Q1_)’

I S i(e(@),@1? _dq
N (Qﬂ)(m++m’) p( /é‘l<5 2¢(q) (27T)3)

GE@). TP HE@h ) TP i )T P L) @)
2:(7) 2:(q) 2:(,,) 2:(3))

Likewise, let

\kﬂ,,|k [, |l<:1 Lo |k, | >0 (2.96)
The corresponding hard scattering cross-section are
oss (k. Kk k)
. 2
- ’(kj,...,k;\&(;|k;,,...,k;)‘

_ 1 exp( — i(e(k), k)* dk
/@m)eTE) p( /|12>5 2¢ (k) (27T)3)

D) FDP L) Fy)l 10, ) k)P i), FDP

2e(ki") 2e (k) 2¢(k,,_) 2¢(ky)
‘We have
U>5(k+ ...,k:;;;k;_ ,---,k:l_) (2.97)
- (kf,.. kEkT e k)
/ / ok g gk KT A dd)
\q1|<6 IqJ|<5

0~¢ describes the experiment that does not measure outgoing particles of mo-
mentum less than § and in the incoming state there are no particles of mo-
mentum less than §. Actually, we would have obtained the same scattering
cross-section if the part of the incoming state below the momentum ¢ was ar-
bitrary. This is an example of an inclusive cross-section — a cross-section which
involves summing over many unobserved final states.

If m \, 0, the soft scattering operator 5’<5 has no limit. All 0.5 go to zero.
In fact, they are proportional to

(@), dF
O<s :exp<_ /qké |j(2(52®®| (23)3)'

The hard scattering operator §>5 and o5 have well defined limits and can have
a physical meaning.
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One can imagine various experimental scenarios that lead to different inclu-
sive cross-sections. For example, imagine that our apparatus does not detect
the details of an outgoing state if the total energy of soft particles is less than
0. This leads to the following inclusive cross-section:

o (K, kR k) = o (KRR k)
oo

—|—Z/ a(k}f,...,kL,ql,...,qj;k;,,-~-,k‘f)dcj’l-udcj’j.
= Je@+te@n<s

Note that both o5 and 627 are proportional to one another:

o (k. ko k L k)
0>6 (kii_7ak:+7k;—a akl_)
= Q5|95 10,6 (Hi)S<6Q<s) = 05(;) (2.98)

o0

+Z/ o5 (a1, q55) ddi -+ g,
j=1 e(qr)++e(q;)<o
This ratio is in practice not very interesting — it contributes a common numerical

factor to all scattering cross-sections for hard particles.

2.3 Neutral scalar bosons with a mass-like perturbation

2.3.1 Classical fields

A scalar field can be also perturbed by a mass-like perturbation. Classically,
this is expressed by the equation

(=0 +m?)(x) = —r(2)d(), (2.99)

where R > x +— k(z) is a given function. In most of this subsection we will
assume that x is Schwartz and m > 0. We introduce also 7 () := ¢(z).

Let us define the corresponding retarded and advanced propagators as the
unique distributional solutions of

(— Oy +m? + k(2)) D (z,y) = 6(z — y), (2.100)

satisfying
suppD* C {z,y : =z € JE(y)}.

We also generalize the Pauli-Jordan function:
D(xvy) = D+(.’E,y) - D_(‘T7y)

Note that
suppD C {z,y : z € J(y)}.
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The function D can be used to solve the initial value problem of (2.99):
- [on@zs0|_ o007
/D (0, ¥)dy. (2.101)

We would like to interpret the classical field ¢(z) satisfying (2.99) as a func-
tional on the space Ykg coinciding with the free field at time 0, as in (2.64). B
(2.101), this allows us to express uniquely the field ¢ in terms of the free field.

2.3.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

£(2) =~ 50u6(0)0"0(x) — 3 (m* + K(x))o(a)’.

As in Subsubsect. 2.2.2, the variable conjugate to ¢(z) is w(z). We easily obtain
the Hamiltonian density

H(x) = ~r(x) + = (B

o (m® + 5(2))¢ (@),

so that the full Hamiltonian generating the dynamics is

:/”H(t 7)dz

2.3.3 Dynamics in the interaction picture
The classical interaction picture Hamiltonian can be expressed in terms of plane
wave functionals:
1 L N,
Hp(t) = 3 / K (t, T) 3 (t, 7)di (2.102)
o 1 / dkldk‘gﬂ(t kl —+ kQ

(2m)34/2e( kl )/ 2e( k‘g

+2e1ts(k1) ite(k2) (kl) ( k2)+eits(El)JritE(EQ)a*(kl)a*(k:2)).

( 71t6(E1)7it€(E2)a(7k1)a(71€2)

Consider the equations of motion in the interaction picture:

af (k) = {aj(k), Him(t)}
B / dk1k(t, —k + k1)
(2m) \/;\/E
><( it ) -te ) g )+ ite(k)-&-ite(kl)a:(k;l))
as(k) = a*(k).

)
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The solution of these equations at two times are related by a matrix of the form

lpur,t Gty ,t_ 1 (2.103)

it Pty t_
in the following way:
[ aa(k‘) ‘| /d]_{ [ pt+,t_ (ka kl) qt+,t_ (k;kl) ‘| [ 01:7 (kil) ]
= 1 .
iy (k) Qt+,t,(k7k1) Peyt (k, k1) a;_ (k1)

(2.103) has a limit as ¢, —t_ — oo, which can be called the classical scattering
operator.

One can try to solve the equations of motion by iterations. The first iteration

is often (at least in the quantum context) called the Born approzimation, and
it gives the following formula for the elements of (2.103):

- S t k k S
PR (B ki) = 0(F— K1) +i / (/7+ U -iseByriseh,
- 27‘(‘ 28 2e k?1
t+ _k k . - . -
@ (k) = / as— TR R)  iaefyine)

2.3.4 Quantization

Again, we are looking for quantum fields R3 i ¢(z) satisfying
(O +m?)g(x) = —k(z)d(), (2.104)

with the conjugate field 7 () := ¢(x) having the equal time commutators (2.72),
and coinciding with the free field at time 0, as in (2.73). The solution is given
by putting “hats” onto (2.101).

We would like to check whether the classical scattering operator and the clas-
sical dynamics are implementable in the Fock space for nonzero k. By Thm A.2,
we need to check the Shale condition, that is, whether the off-diagonal elements
of (2.103) are square integrable. For simplicity, we will restrict ourselves to the
Born approximation; the higher order terms do not change the conclusion.

The verification of the Shale condition is easier for the scattering operator.
Consider

—k + kl ise(R)—ise(R

Born 1ss(k) ise(k1)

Toomoo (ks k1) = / ds . (2.105)
- (2m)34/2e(k \/25 k1

Recall that x is a Schwartz function. Therefore, we can integrate by parts as
many times as we want:

k k 155(12) 1ss(k1)
qgocjmoo k kl = n+1/ ds s + 1 ©

(2r) \/25 £)\/22(k k) +e(k))
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This decays in k and l;l as any inverse power, and hence is square integrable on
R3 x R3. Therefore the classical scattering operator is implementable.
Next let us check the implementability of the dynamics, believing again that
it is sufficient to check the Born approximation. We integrate by parts once:
g (k. ky)
—r(ty, k4 kl)eﬂqs(k) it e(K1) + K t_, k4 E ) —it_e(K)—it_e(k1)

(2m)34/2e(k \/28 k1

+d 8 I‘i s, —k+k‘ ) —ise(K)—ise(k1)
+
t- (27)31/2e (k)1 / 2 (k-

Using that r(s, k + k1) decays fast in the second variable, we sce that (2.107)
can be estimated by

(2.107)

¢
(e(k) + e(k1))?

which is square integrable. Therefore, the dynamics is implementable for any
tty.

By a similar computation we check that if we freeze ty € R, the dynamics
generated by the momentary Hamiltonian Hip(to) is implementable.

2.3.5 Quantum Hamiltonian

We may try to write the quantum Hamiltonian as

H(t) := /:(%er(f) + %(67(1?))2 + %(m2 - H(t,a’c’))¢2(x)):d§:'. (2.108)
We will see later on that the Wick-ordered expression (2.108) does not define
an operator. However we will use it to derive the Feynman rules, which unfor-
tunately will lead to divergent diagrams.

Formally (2.75) remains true if we add a time dependent constant C(t) to
(2.108). We will see that in order to define correct Hamiltonians H(t) this
constant has to be infinite. We will obtain bounded from below Hamiltonians
Hyen (t), however the vacuum will not be contained in their form domain. There-
fore, the condition (Q|Hyen(£)Q) = 0 for all ¢, which is equivalent to the Wick
ordering, cannot be imposed.

The interaction picture Hamiltonian is

N 1 N
Hi(t) = 5/m(t,gz'):gb%r(t,g?):d:z‘ (2.109)
- 1/ dEldEQH(t,El +E2)

(27)31/ 2e (k1)) 22 (k2)

+26it€(é1)7it6(%2)d* (kl)d(fkg) + eita(E1)+it5(E2)&*(kl)&* (kz)) )

o—ite(k1)—ite(R2) 4 a(—k1)a(—ke)

73



As in the case of linear sources, we define the scattering operator, scattering
amplitudes, Green’s functions, amputated Green’s functions and the generating
function, see (2.83)—(2.88).

2.3.6 Path integral formulation

The generating function (and hence all the other quantities introduced above)
can be computed exactly. It is

2D = (a((-0 w0+ w0 (o)
X exp (;f(D +m® 4k — 10)1f>

1

= (det(]l + HDfr)il exp (HD?J) :
X exp (;fD%(llMDEr)lf)‘ (2.110)

Here, the determinant is understood (at least formally) as the Fredholm deter-

minant on the space L2(R13). The term exp(/@Dfr)% is responsible for the Wick
ordering.

Similarly as in the case of (2.90), (2.110) is often expressed in terms of path
integrals as

C/l;[dq’)(x) exp (i/(ﬁ(m) —f(:c)qb(x))dx). (2.111)

Here, C' is a normalization constant, which does not depend on f. Again, the
formula (2.111) is only symbolic, the full information is contained in (2.110).

2.3.7 Feynman rules

Feynman rules are similar as in the case of a linear source. The difference is
that now vertices have 2-legs. The rule (2) for calculating Green’s functions
changes: for each vertex with incoming momenta k1, ko we insert the number
—ik(k1 + k2), where k1 and ko are the momenta of lines entering the vertex.
Another difference is that we do not allow a line to begin and end at the same
vertex — this is because we use the Wick ordered H(t).

Diagrams can be decomposed into connected components of two kinds:

1. lines ending at insertion vertices (for Green’s functions) or on-shell parti-
cles (for scattering amplitudes) with 0,1,2,... interaction vertices;

2. loops with 2,3, ... interaction vertices.

Note that loops with 1 interaction vertex do not appear because of the Wick
ordering.
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Figure 4: Diagram for Green’s function.

< <

D=

Figure 5: Diagram for scattering amplitude.

Diagrams without loops (both for Green’s functions and scattering ampli-
tudes) are finite, because the external momenta are fixed and on interaction
vertices we have the fast decaying function k.

Consider a loop with 4-momenta k1, ..., k, flowing around it. On vertices we
have the function , which essentially identifies k; with k; 1. The propagators
give the power |k;|=2. Thus we are left with 4 degrees of freedom and the
integrand that behaves as |k|~2". This is integrable if n > 2, but divergent for
the 2-vertex loop. We will see that only the imaginary part of this diagram is
divergent.
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2.3.8 Vacuum energy

The classical scattering operator is well defined. The quantum scattering oper-
ator, if computed naively (that is, using the Wick ordered Hamiltonian) is ill
defined. Its problem comes from the overall phase, which is not fixed by the
classical transformation.

One can say that this phase has no physical meaning, since it does not appear
in scattering cross-sections. However, it may be relevant for a more complete
theory. We will see that there is a natural choice of this phase, which leads
to a renormalized scattering operator S'ren(n). We will also see that there is a
natural renormalized Hamiltonian Hyey (t).

Figure 6: Vacuum energy

The logarithm of the vacuum-to-vacuum scattering amplitude times the imag-
inary unit will be called the vacuum energy. It can be computed exactly:

£ = ilog(QSQ) = ilog Z(0)
= %Tr(log(—lﬂ—i—mz—iO) — log(—O+4+m?4k—i0) + n(—D—&—mQ—iO)_l)

= %Tr( —log(1 4+ «Df.) + /for)
RSN GO
N 17;2 2n

Here, Tr is understood (at least formally) as the usual trace of operators on
L2(RY3). &, is the nth order contribution to the vacuum energy. Note that for
n = 1 there is no contribution because of the Wick ordering and for n = 2 it is
divergent.

We have £, =122, where D,, = (—1)"Tr(xD§.)" is the value of the loop with
n vertices. This is a special case of a more general rule saying that to compute
log(Q|SQ) we need to sum over all connected diagrams with no external lines
divided by the symmetry factor (the order of the group of the symmetries of
the diagram). In the case of a loop with n vertices its group of symmetries is
the nth dihedral group, hence the symmetry factor is 2n.

Tr(kD§)" =: Y En. (2.112)
n=2
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2.3.9 Pauli-Villars renormalization

The lowest contribution to the vacuum energy is of the second order and comes
from the loop with two vertices. Formally, it can be written as

dk ) dk
&= [ rmmm g = [ Inb)P(b g

where the right hand side defines the vacuum energy function w(k). Unfortu-
nately, computed naively, (k) is logarithmically divergent.

The renormalization of a mass-like perturbation is not very difficult and can
be done in many ways. We will describe 3 methods of renormalization. All of
them will lead to the same renormalized vacuum energy function w** (k).

We start with the Pauli- Villars method. In the context of a mass-like per-
turbation, the Pauli-Villars regularization consists in introducing an additional
fictitious field that has a (large) mass M and appears only in loops. (Thus we
ignore diagrams involving external lines of the fictitious particle). In addition,
each loop of the fictitios field has a (nonphysical) coefficient —1. We organize
our computations by setting mg = m, Cy = 1, m; = M, and C; = —1. The
Pauli-Villars regularized vacuum energy function is the sum of the loop of the
physical particle and of the fictitious one:

1
dras (K2 ='/
() =i 42 (g + 3k)* +mi —i0)((q — 3k)* + mif —10)

_ _1/ d’q
B 2m)4

1 iR D)
= d d E C —_— - + -
47T / al/ Qs (or £ oa)? exp( i(aq ag)m 10[1 p

= 47r / / ZC exp (1p (m +W)>

- (M) /deCIOg(m +k(14—v)_io)
_ (471r) /dec <1og<1+(4”22)k2—io>+1ogm$>.

We used the identities (A.20) and (A.22). We inserted

1= / dpd(p — a1 — aa), (2.113)
0

and then changed the variables as a; = p( v) , Qg = p(1+u) so that dajdasg =
2pdvdp We also used the symmetry v — —11 to restrict the integration from
[—1,1] to [0,1]. At the end we use the identity (A.24).

(s

1
/ doy / das Z C; exp (—i(a1 + az) <q2 + Zkﬂ + mf) —i(ay — oq)qk;)
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We define the renormalized vacuum energy function as

Wre“(kQ) = ]\/}ll)noo (m](kz) - 7TM(0))
1 M?
. . 2 -
o I\/}linoo (ﬂM(k )+ 4(4m)? log m2>
1 1 K21 —0%) .
- /0 log (1 - 10)dv. (2.114)

Note that 77"(0) = 0. Using (A.26) we obtain

ﬂ_ren(k2)
2 2 2 2 2
_ 1 <\/k; +am? | VE +\/1?_2>’ 0

O,
142\ Ve VR ram - Ve

L‘HJ =2i arctan% we can extend this formula for

Using the analyticity and log =

k% < 0:
ﬂ,rcn(k))
/T2 2 N,
= L 5 R dm Qarctanik—Q , —4m? < k? < 0;
i\~ Ve VR am?
1 —k2 — 4m? V—k2 —4m? + /K2 5 5
1(am)? ( — <log Yy v B v — 17r) -2, k* < —4m~.

2.3.10 Renormalization of the vacuum energy

The renormalized 2nd order vacuum energy is

ren _ ren 2 dk
N A C LGl

=t [ (mar ) = maa00) ()

M — o0

MW<2W [ @R g =m0 [ n(x)?dx)

The full renormalized vacuum energy has a compact formula:

gren — 8581’1 + io: gn

D¢ 2
—fTr(log(l + f-;Dfr) xD§, + %)

/|m J[2rren( (%) (2.115)
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We can formally write 7o (k) := N}im ma (k) (which is typically infinite).
—00

Note that the renormalized scattering operator Sren is a well defined unitary
operator and the renormalized Hamiltonian H,e,(t) is a well defined self-adjoint
operator:

Sren
Hien(t) = H(t) — m50(0) / K (t, ©)2d7. (2.117)

oimee (0) [ w(2)*de & (2.116)

The counterterm has an infinite coefficient 7o (0). Otherwise, it is quite well
behaved — it depends locally on the interaction, and therefore the renormaliza-
tion preserves the Einstein causality. This manifests itself in the identity

Sren(’£2)‘§ren(ml) = S’ren("{2 + Kl)a

whenever suppks is later than suppk;.
Formally, the correct Lagrangian density is

Lren(x) = L(2) + Too (0)r(z)2.

2.3.11 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum
energy. We start with computing the imaginary part of 7(k) without a regular-
ization, which gives a finite result:

i d*q 1
I ren k2 _ I i/
)= g | e (s TR e i0) (g~ SR T mE 10)

1 ! (1—vHk? )

Using log(t — i0) = log|t| — imf(—t), we see that the imaginary part of the
logarithm is very simple. Hence

Imr™en (k2) = —”/(Jla<—1—(1_7’2)k2)dv

1(dn)2 am?
i
= ||
A(dm)2 k2 | ™l

We can obtain the real part by using the fact that 77" (0) = 0 and the once
subtracted dispersion relations for the lower complex halfplane, see Thm A.4:

P 1 1
Reﬂ_ren(ka) — _77)/ dSImTrren(S) (Sk2 — 5) . (2.118)
™ o -
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2.3.12 Wick rotation

Recall that the causal propagator is defined as

1
R 2pes D(p) = —5——.
p () p? 4+ m?2 —i0

It can be interpreted as a boundary value of a holomorphic function

((C\(]—oo,—m]U[m,oo[))xR3 5 (°,p) (2.119)
1 1

— D¢ = = .
(p) _(p0)2 +ﬁ2+m2 p2+m2

The physical region R of (2.119) lies at the boundary—on ]0,c0[xR? from

above and on | — 00, 0[xR3 from below:

D<(p) = lim D(". 7).

Define the Fuclidean scalar product as

(pla)e == p°¢" + P4,

and the Fuclidean propagator

((C\(] — i00, —im] U [imJoo[)) xR> 3 (°,7) (2.120)
0 R - 0 _ 1 — 1
= DE(p ,p) == D(ip",p) = (1°)% + 2 + m? - (p|p>,2E+m2'

Clearly, we can express the causal propagator in terms of the Euclidean propa-
gator with help of the Wick rotation:

D¢, p) = lim DE(e7%p° p).
(0.7 = lim D", )

Suppose now that a physical quantity is given by an integral

d4 G(p? 2
RLS Sp— F(p) = / q4 (p y P4, 4 ) — (2121)
(2m)* (ap? + 2bpg + cq? + m? — i0)

where G is holomorphic and the matrix ch b ] is positive definite. Then

instead of F' we can consider the holomorphic function

(«:\(] — 00, —m] U [m,oo[)) «xR® 3 (%) (2.122)
_ d’q G(p*.pa,q°)
— F(p) = / (27T)4 (ap2 t 2bpq + o + mQ)nv

80



where there is no need to put i0, because the denominator is automatically
invertible. The physical function (2.121) is the boundary value of (2.122):

lim F(e'?p°, p).
Jimy (e'*p”, P)

We can also introduce the Euclidean version of F' given by

FE(p) = F*(0°.p) = F(ip’,p)
_ / id*q G((plp)g, (la)e, (dl)E)
(2m)* (a(plp)3 + 2b(pla)e + clglg)f +m?)"’

where in the integral we substituted (i¢°, ¢) for (¢°, 7). This substitution can be
reached from the original variables inside the holomorphy domain by the Wick
rotation, hence it does not affect the integral. FF is holomorphic on the domain
of (2.120). We can retrieve the physical values of F from F'® by

F@°,p) = lim FE(e 90, p).
(p”,P) o (e™p",p)

In what follows, whenever we use Euclidean functions such as FT, we will
use the Euclidean scalar product (p|¢)g. We will denote this scalar product
simply by pgq, since its use will be obvious from the context.

2.3.13 Dimensional renormalization

Let us renormalize the vacuum energy by yet another method — the method of
dimensional regularization. We will use the Euclidean quantities.
Let us first compute formally the 2-vertex loop:

B2 _ _ [ d 1
=) = | G G T

1! d? 1
- 5 dv 4 2 2
2J4 (2m) (¢% + £ + m?2 + vqk)

_ ! v d%q 1
= /0 d /(271')4 (q2+%(1—v2)+m2)2’ (2.123)

where we used the Feynman identity (A.28), replaced ¢ + % with ¢, used the

symmetry v — —v to replace 3 fil dv with fol dv. After this preparation, we
use the dimensional regularization:

dq4 . 47dQ S B
/(27r)4 is replaced by M(Qﬂ)dd/o lg1%~1d|ql, (2.124)

where Qg is the “area of the unit sphere in d dimension”, see (A.30). Thus
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instead of (2.123) we consider its dimensionally regularized version:

Bds1o 4 de |d 1
4rBA(R2) = / / sdldl
(+ 5 l—v)+ m?)

1) /0 dv( — 7 + log(p*4m) — log (%2(1 ik mZ))
(2.125)

R

(47)?
1

C(4m)2(2—d/2)
To renormalize we demand that 7%7*(0) = 0. Thus

E,ren /1,2 _ : Edp.2y _ Ed
pBren(p2)  — m(w (k2) — 7 (o))

! / dvlo (1+ L 2))
= — v v
4(47)2 ST a2 ’
which coincides with the Wick rotated result obtained by the Pauli-Villars
method. Thus the renormalization of (2.125) amounts to choosing

12
log 2= log 4, (2.126)

dropping the pole term and setting d = 4.

2.3.14 Energy shift

Suppose that the perturbation does not depend on time and is given by a
Schwartz function R® > # +— (7). The naive (Wick ordered) Hamiltonian
is

. 1,5, 1, 2o 2 1, 5, N\ 22 R
H = :<§7T (Z) + §(a¢(x)) + g(m + K(Z)) ¢ (x)):dx
The infimum of a quadratic Wick ordered Hamiltonian can be computed exactly
(A.19):

B - At m? )Y (A )Y - (A ) )

l\DM—t

—A+m?+rk —A +m? T2
- K
A+m2+;‘€+7’2) (—A+m2+72) (A4 m?+72)2

-2 -2
A+m2+T2)_(—A+m2+H+T2)_( Atm2+r22”
L L 1»457‘2g
(=A +m?+72)2 (—A+m2+/@+72) 2

= 1 1 n—1 ,dr

- Z:;( 1/TY (A +m2 + 72)2 K((—A+m2+72)ﬁ) "on
= ) 1 ndr
- nz::z / ((—A+m2+72)’”“) 2
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Above, we rewrote the square root by using the identities (A.35) and (A.36),
expanded the denominator in the Neumann series and at the end we used the
identity (A.37). Note that the nth term of the above expansion corresponds to
the loop with n vertices. They are all well defined except for n = 2, which needs
renormalization. We can guess that the renormalized energy shift is

- - dk 1
ren __ ren 2
Eren _ /W (0,k)|x(k)| 2n)? +/Tr—(_ ey (2.127)

1 1 1 odr
K K -—
“A+m?2+4+72) (—A+m2+Kr+732) (—A+m2+72)T 27

X
( 7
where we rewrote the sum of terms with n > 3 in a compact form, and 7" was
introduced in (2.114).
Another way to derive the expression for E*" is to use Sucher’s formula.
We introduce the adiabatically switched perturbation e~</*/5(#) multiplied by a
coupling constant A, which will be put to 1 at the end. The Fourier transform

of the switching factor e~cltl ig 52?;2 Therefore,
e = ilog(Q]STmQ)
L 4 -, drdk
_ )\2 ren k k 2 )\3 .
[ R e PR s +00)
By Sucher’s formula,
ren  __ : E Gren
E = E% 5 Oy log(92|S:7Q)
- 4€3 o drdk
_ : 2 ren 2 3
= lim) /7r (B e B s + O
= A?/wren(o k)| (k)2 dF +0(\%)
i (27r)3 )

where we used [ (ezi%ydr = 2. Eventually, we put A = 1 and we obtain
(2.127).

3 Massive photons
Let m > 0. In this section we discuss the quantization of the Proca equation
—0, F" (x) + m?*AY(x) = 0, (3.1)

where
FH .= gr AY — 0¥ AM. (3.2)

Beside the free equation, we will also consider the Proca equation interacting
with a given vector function J#, called an external 4-current:

—0, F" (x) + m*A¥(z) = —J"(2). (3.3)
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We will assume that the 4-current is conserved, that is
0,J" () = 0. (3.4)

There are several possible approaches to the Proca equation on the classical
and, especially, quantum level. In particular, one can use from the beginning the
reduced phase space, both for the classical description and quantization. This
is the approach that we will treat as the standard one. Alternative approaches
will be discussed later.

3.1 Free massive photons

3.1.1 Space of solutions

Let Vp;, resp. CYp, denote the set of real, resp. complex smooth space-compact
solutions of the Proca equation

—0"(0,Cy — 0,Cy) + m?¢(x) = 0. (3.5)

It is easy to see that for (1,(s € CYp, the following expression defines a
conserved 4-current:

I (C1, G2y @) (3.6)
= (0"Cru(x) — ¢t () G () — Cru(2) (8¢5 () — 8V Ch ().

Yp; is a symplectic space with the symplectic form
Gonde = [ 3G Gara)ds,(o) (3.7)
s
= [ (- (6.3 - Fult.9) Gt + Gt ) (Gat. D) — Bt ) ) o,

where S is any Cauchy surface.
The Poincaré group RY3 x O(1,3) acts on Yp, by

r(y,/\)é—u(x) = AZCV ((ya A)_lx) .
r(y,a) are symplectic for A € O7(1,3), otherwise they are antisymplectic.

3.1.2 Classical 4-potentials

We introduce the functionals A, (x) called 4-potentials. They act on ¢ € Vp,
giving

<Au($)‘c> = Cu(x)

On Yf. we have the action of the Poincaré group (y, A) — T?;_/&)' Note that

rfaAu(®) = (AL A, (A + ).
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We also introduce the field tensor and the electric field vector:
F,(z) = 0,A,(x)—0,Au(x),
El(‘f) = F()l(x) = Ai — 81‘140.

Clearly, the free Proca equation (3.1) is satisfied. Equivalently, we have
(-O0+m?*)A,(x) = 0, (3.8)
0"A,(x) = 0. (3.9)
Yet another equivalent system of equations convenient for further analysis is
(A +m?) Ay +divA = 0, (3.10)
(—O0+m?)A = 0. (3.11)

(3.9) can be rewritten as

Ay = divA. (3.12)

Thus only Ais dynamical: Ay can be computed from A. Taking the divergence

of the definition of the electric field E = A — Ay, then using (3.12) and (3.11),
we can express Ag in terms of E:

m?Ay = —divE. (3.13)

Finally, we have the following version of the evolution equations in terms of E,
A with only first order derivatives:

5 _ 1 5. =
A = E- —0divE, (3.14)

m

&
Il

—(—A+m?)A - 8divA. (3.15)

3.1.3 Poisson brackets
The symplectic form on Yp, (3.7) can be written as

—

wpr = / A(t, %) A E(t,7)dz.

It leads to a Poisson bracket on functions on YVp,:

{Ai(tvf)7*’4j(tvg)}:{Ei(t7f>7Ej(t737)} = 0,
{Ai(t,2), E;(t,9)} = 050 —79).  (3.16)

We have
{Au(x), Au(y)} = (guu - m;’) D(z —y),
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where D(z — y) is the Pauli-Jordan function.
Indeed, this follows after we insert (3.14), (3.13) and (3.12) into

—

7)) = [(pt.a-pio.n+ .- 9A0.5) d7

AO(tv f)

[ (D7 = Ddof0.) + D(t.7 - DAa(0.5)) 45
and then we commute them with A, (0, Z) and A(0, 7).

3.1.4 Smeared 4-potentials

We can use the symplectic form to pair distributions and solutions. For { € Vp,,
the corresonding spatially smeared 4-potential is the functional on YVp, given by

(A(C1p) = Cwp.

Note that o
{A(G), A(GR)} = Cwds.

A = | (—(E(uf)—a<0<t,f>>ﬁ<t,f>+5<t,f>E<t,f>) aF. (317

Another way of smearing the 4-potentials is also useful. For a space-time vec-
tor valued functions f € C°(RY3,R3) the corresponding space-time smeared
4-potential is

Alf] = /fu(x)A“(ac)dac. (3.18)
Note that A[f] = A((¢)), where
Cu=—Dx*f,+ a;;gyD*fl,.

Adding to f* a derivative 9"y for x € C2°(R'3) does not change (3.18).
3.1.5 Lagrangian formalism and stress-energy tensor
Consider the Lagrangian density in the off-shell formalism

1 LV m2 L
M = S AA,

L= 1

The resulting Euler-Lagrange equations

oL _, (oL
04, ~ "\ 04,

coincide with the Proca equation.
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The canonical stress-energy tensor, which follows directly from the Noether
Theorem, equals

oL .,

7;‘;;’1 = g#U‘C - aAa’M «

1 2
- fg’“’(ZFagFO"B n %AQA”‘) § pHe A

One usually prefers to replace it with the Belifante-Rosenfeld stress-energy ten-
sor. It is defined as

™

T + D3

1 2
—gh” (ZFQBFQB + mTAQAC“) +m2ArAY + FrOFY
where
YHVE = _3WH = FPRYAY, (3.19)
On solutions of the Euler-Lagrange equations we have
OuTdan = 0uTH = 0.

In addition, 7" is symmetric.
As discussed before, the variables Ag(z) are not dynamical. To pass to the
Hamiltonian formalism, we introduce the variable conjugate to A*(x)

0 ji () L(@) = Ei(x).

The Hamiltonian and the momentum density obtained from the Belifante-
Rosen tensor are

H@)=TO%) = 2E2) + —— (divE)2(x) + (rotA)2(2) + " A2(a),

A A 2 2m?2
Pi() = T (z)

m?A°(2) A% (2) + E'(z)F7(z).
The total Hamiltonian and momentum obtained from both Belifante-Rosen
and canonical stress-energy tensor coincide:

H o= /H(t,f)df:/zgg(t,f)df,
P / Pit, #)dd — / T (¢, 7)d3.

Using (3.14) and (3.15) we check that H generates the equations of motion and
P the translations.
It is also natural to introduce

S(x) := Fi(z)e* 0, A (2), (3.20)
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and its spatial integral

= / S(t, 7)dz.

(3.21)

We are not aware of an established name of these quantities. We will call (3.20)

the polarization density and (3.21) the polarization.
The observables H, ]3, S are in involution.

3.1.6 Diagonalization of the equations of motion

For k € R3, k # 0 fix two spatial vectors & (k), (k) that form an oriented

orthonormal basis of the plane orthogonal to k. Define

- 1

el +1) = (51(12;') + i@(%)) .

Note that

Let k € R with k0 = e(k) = V k2 + m2. Introduce

u(k,0) = ('E E(M),

m’ mlk|
u(k,+1) = (0,€(E,i1)).
Note that
uy(k,o)k* = 0,
uy(k,o)ut(k,0') = 6400,
uy(k,o)u, (ko) = guy—ﬁ-k”kl’
o=0,%+1 m
Set
Ak) = / A, #)e-Fr 4T
(2m)3
- s o ik A
Ei(k) = E(t,%)e .
(2m)3
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We have the equations of motion

—

- Lo k - - -
Eyk) = —(F2+m>)Ak) +k k-A,(k),

the relations . ~ . .
Aj (k) = Ai(=k), Ef (k)= Ei(-Fk),
and the Poisson brackets

-,

{A5,(k), Ay (K"} = {E;(F), By (K))} = 0,
{A5(k), B (K)} = 0ij6(k— k)
Set

Ak, £1) = &k, +£1)-A,(k),

Ey(k, 1) = &k, +1)-Ex(k),

. m k - -

At k,O — = e k,

(k,0) g(lf) “f' (k)

E,(k,0) = @EQE.

(k,0) T (k)

We have the equations of motion
Ay(
Ey(

) = Et(];a U)v

ko
ko) = —e(k)?Auk, o).

the relations

and the Poisson brackets

{A;(k,0), Ak, o)} = {E} (k,0), Ei(K ,0")} = 0, (3.24)
{Ar(k,0),By(K',0")} = G,00(k—k).
We set
wlho) = B A o)+ —E(E0),
2 2 (F)
(ko) = E(f)AZ‘(E,U)— LB (Fo)
2e(k)

89



We have the equations of motion

a(k,o) = —ie(k)a(k, o),
at(k,o) = ie(k)ai(k, o).

We will usually write a(k, o), a*(k, o) for ag(k, o), ai(k, o), so that

ai(k,o0) = e_ita(’;) (k,o0),
ay(k,o0) = eite(¥) a*(k,o).

dZ iz 5(12:')_,—» oo i = S
k,+£1) = — e RT [ 2k, +1)A(0, &) + ek, £1)E(0, %) |,
( ) N(eToE (2( )A(0, ) 25(15)( )())

Az g |e(k) . N i S
k,+1) = ka4 | 222 @k, +1) A(0, &) — ek, £1)E(0,%) |,
( ) Tk ( 5 € )A(0, 7) ) ( E( ))
a = dz o ikE n ﬁff z X 75(]}')&_, z
. Az g m ok - i ek k <,

a*(k,0) = ik —A(0,7) — —{\| —=2=FE(0, 7
0 Voo ( ST AT )>
Their Poisson brackets are
{a(k, 0),a(F',0")} ={a"(F,0),a" (K0} = 0.
{a(k,0),a*(K',0")} = —i6(k— K)oy

The 4-potentials can be written as

Au) = (uu (k. o) alk, o) + (koo a* (k. 0) )

We have accomplished the diagonalization of the Hamiltonian, momentum,
polarization and symplectic form:
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H = > /dEs(E)a*(k,o)a(k,a),

o=0,%+1

P = Z /dEEa*(k,U)a(k,a),
o=0,%+1

S = Z /dEa|E|a*(l€,o)a(k¢,0),
o=0,+1

w o=y /a*(k,g)m(k,a)d%.
o=0,%+1

3.1.7 Plane waves
A plane wave is defined as
1 .
|k, o)t = —qu”(k,a)e‘]m, (3.25)
(2m)34/2e(k)
with k° = (k) = V k2 + m2. We have

i(k,olwlk’,o") =i(k,olw|k',d’) = 0,
i(k, olw|k/, o) = —i(k,o|w|k,0") = 6(k—Kk)by.q.

a(k, o) can be called plane wave functionals:
CL(]@O‘) = _iA(Ok?U)))
= 71/<(at(k70|13)z - 81(k70|17)0)Az(0, f) - (k,O"I)zEl((),f))df,
a*(k,o) = 1A(| =k, 0))
= i/((@t(k,cﬂx)i = 0;(k,olx),)Ai(0, ) — (k,a|x)iEi(O,f))d£’.

3.1.8 Positive frequency space

Wg will denote the subspace of CYp, consisting of positive frequency solutions:

Wg) = {9g€CYp, : (k,olwg=0, 0 ==,0}.

Every g € W](;rr) can be written as

o)(a(k,0)|g)-

dk .
w(x) = elkxuu(ka
! U-zo:,ﬂ/ V(213 /2¢(k)
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For g1,92 € W}(;rr) we define the scalar product

ww:@m:Ej/mmmmwww% (3.26)
o=0,+1

We set Zp, to be the completion of Wl(jj) in this scalar product. R'3 x
O71(1,3) leaves Zp, invariant.
We have
(a(k,0)|g) = (k,olg).

We can identify Zp, with L?(R3,C?) and rewrite (3.26) as

(91192) = Z /k0|91 (k, o|g2)dk

0=0,%+1

3.1.9 Spin averaging

For a given k € RY3 with k2 = m?2, let M, N be vectors with
M"k, = Nk, =0.

The following identity allows us to average over spin and is useful in computa-
tions of scattering cross-sections:

> Mbuy(k,o)uy(k,0)N” = MFN,. (3.27)
o=0,%+1
In fact,
1. N ktky
Z uu(k,o)uy (ko) = guw + ?
o=0,%+1

Therefore, the left hand side of (3.27) equals

— M- k)N -k
gy (TR -4
m

But
k-M=k-N=0.
3.1.10 Quantization

We want to construct (H,ﬁ ,Q) satisfying the standard requirements of QM
(1)-(3) and a self-adjoint operator-valued distribution R > z + A, (z) such

that, setting ﬁ = ff— 51210, we have
(1) =", A, —8,A,) +m?A,(z) = 0;

(2) [Ai(0,2), 4;(0,9)] = [Ei(0,2), E;(0,§)] = 0,

4;
[40(0,2), £5(0, 7)) = 18,567 ~ §);
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(3) 1tHA (LL' ) —itH _ A ({E0+t7.’f);
(4) Qis cyclic for Au(ac).

The above problem has an essentially unique solution, which we describe
below.

For the Hilbert space we should take the bosonic Fock space H = I's(Zp,)
and for  the Fock vacuum. With Zp, ~ L*(R3 C?) and k on shell we have

creation operators
a*(k,0) = d*(\k,a)),
written in both “physicist’s” and “mathematician’s notation” satisfying
la(k,0),a(k',0")] = [a*(k,o),a*(K',0")] = 0,
[d(k,a),&*(k/,al)] = 6(];;7 k/)ét‘f,ﬂ"
Therefore the quantum 4-potentials
Au(x) (3.28)
- ¥ (u#(k, )" a(k, o) + u, (k, o)e k7" (k, a))

oc=0,%+1

satisfy the required commutation relations. The quantum Hamiltonian, momen-
tum and polarization are

H = Z/ kya*(k,o)a(k, o)dk,

0=0,£1

P= ¥ /ka (k, 0)a(k, o)dk,
c=0,%1

S = Z /a|k’|a (k,0)a(k,o)dE.
0=0,£1

The group RY? x O'(1,3) is unitarily implemented on H by U(y,A) =
I‘(T(W\)‘ ) We have
Zpr

Uly, M)A, (z)U(y, A)* = AL A, ((y,A)z).

Moreover,

(Al A)] = =i (g~

Note the identities




For f € C(RY3,R13) set
A= [ @i,

We obtain a family that satisfies the Wightman axioms with D := Ti"(Zp,).
For an open set O C R? we set

mwy;&m@mmzfe@%akmg.

The algebras 2(O) satisfy the Haag-Kastler axioms.

3.2 Massive photons with an external 4-current
3.2.1 Classical 4-potentials

We return to the classical Proca equation. We assume that
RY3 5z J(x) = [J*(x)] € R*3 (3.30)
is a given function called an external 4-current, which satisfies
o,J"(x) = 0. (3.31)

In most of this subsection we will assume that (3.30) is Schwartz.
In its presence the Proca equation takes the form

—OM(9,AY — OV A) +mPAY (z) = —JY(z). (3.32)
Note that (3.32) and (3.31) imply the Lorentz condition
dA"(x) = 0. (3.33)

We have therefore
(-0 +m?) A () = —J"(z). (3.34)

The temporal component of (3.32) has no time derivative:
—AAg + 8ydivA + m2 Ay = —Jj. (3.35)
Therefore, we can compute Ay in terms of A at the same time:
Ag = —(=A +m?) " (BpdivA + Jy). (3.36)
The only dynamical variables are the spatial components, satisfying the equation

-

(2 —A+m?)A=—J. (3.37)

94



3.2.2 Lagrangian and Hamiltonian formalism

The Lagrangian density is

2
L o= —iFWF‘“’ - %A,LA“ — J, AW
1 w AV 1 v AK m? 3 w
= _iaﬂAya A —iaﬁAya A _TA'UIA _J;LA
m2

2

1 B I IPI W R y m? o oo
= —5(rotd)? + (940) +§(A) — AAy + - AF — - A = TA+ T,

—

As noted before, only spatial components A(x) are dynamical and the con-

jugate variable is E(z) = A(x) — dAo(x). Thus we have the standard Poisson
brackets:

{Ai(tﬂ‘f)vAj(tvg)}:{Ei(tvf)ij(tvg)} = 0,
5,0(Z— 7). (3.38)

~
b
5
—
\.@F
8]
N~—
=
—
\.@F
\_}
—
Il

We can compute Ag in terms of E:
1 L=

The canonical Hamiltonian density is

L) 4
0A;(z) Ai()

1 - 1 2,02
= 5(0tA)*(z) — 5(940)*(x) -

HoMa) = —L(z)+

—%A%(m) + ’%f?(x) + (@) A(x) — Jo(x) Ao ().

We add to it a spatial divergence div(E (2)A°(z)) and express it in terms of A,
57 obtaining the usual Hamiltonian density

Hia) = LB()+ o (rotd)(a)
+m;Ag(m) + m;ﬂ(x) + J(z)A(z)
The Hamiltonian
H{t) = / H(t, 7)dF = / HE (1, ) (3.40)

generates the equations of motion. Using the splitting of A and E into the
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transversal and longitudinal part, as in (A.41), we can rewrite H(t) as
= [aE(GER D + At DA+ ) At ) + T )

+/df(§((fA)*1/2divE(t,:17))2 + 2—;2((]0(15,5) — divE(t, 7))

+%((—A)*1/2divﬁ(t,a‘:’))2>. (3.41)

We can interpret interacting fields as functionals on Vp, satisfying

A(0,7) = Ax(0,7),  E(0,%) = Ex(0, 7).
3.2.3 Quantization
We are looking for operator valued distributions R™3 5 z + A, (z) satisfying
—0, (" AV (x) — OV AM(2)) + m2 AV () = —J"(x),
having the standard equal time commutation relations with Bl = /V — 8,4,

i(0,9)] = 0,
j(0,27)] = 10;0(7 - 7).

[4i(0,2), 4;(0,9)] = [E:(0, ),
A —

We will assume that /1, E coincide with free fields at ¢ = 0:

Al(@) = AY0,%) = AL(0,T),
Ei&) = EY(0,7) = EL(0,2).

‘We have

A, (t, @) := Texp (i /t ' ﬁ(s)ds> A, (%) Texp (i /O t H(s)ds) ,

where the Hamiltonian H (), and the corresponding Hamiltonian in the inter-
action picture are

A = / a7 (B @) + 5 5 (77, 7) — dvE (@)’
Q(rotA) @+2 A2(f)+f(t,f)21(f)):
Hilt) = / 0 (= I BB (1,7) + T, ) A, 8) + 5 510,87,
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Using (3.28) and divEp = —(—A + m?2)~divAg, we express the interaction
picture Hamiltonian in terms of creation/annihilation operators:

N dE T S TS

Hi(t) = [ —————= ("W J,(t, k)ur(k,0)a*(k,0)
I /«/(277)3\/25@)(

i i 0(+ 1|2

+e R (¢, k)u“(k,o)d(k,a))—i—/(;zgJz(;;];” :

We can compute the scattering operator

S = exp (;/(;T]_ﬂ)éljﬂ(k)Dgu(k)J”(k))

o=0,%1 (2m)? 2e (k)
where ) .
DO (k)= —— (g + ). 3.42
) = g (e + ) (3.42)
(The superscript 0 over DY, will be explained later on).
For xzp,...,x1, the N-point Green’s function is defined as follows:

(Apy (@) - Ay, (1))
= (QﬂT(AMN(xN)..-Am(xl))m).

Green functions can be organized into the generating function

[ [ )+ A () (D P53 o) 1 (1) -
T;Q/ / N 1 N 1 N 1

_ (g(Texp <—i | sy —i [ f“(x)flu(x)dx) Q) . 2().

The amputated N-point Green’s functions are

<AHN (kN) e Aul (k1)>amp
= (kX +m®) - (k] +m®) (A (k) - Ay, (K1)

For kq,...,kx on shell, set

|k‘N,O'N7...,k‘1,O'1) = fl*(kN,O'N>---&*(k170'1)Q.
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Amputated Green’s functions can be used to compute scattering amplitudes:

+ o+ + O o - -
(AT 1] R

umkf,ol) e (ko e (ko) bt (ko)

niges \/25 k) \/25 (k) \/25 (k. _)- \/25 (k1)

<121 j(k ) A + (k )A (_kn—) AH; (_lﬁ )>amp

3.2.4 Causal propagators

The causal propagator used to compute Green’s functions and scattering ampli-

tudes that follows directly from the interaction picture Hamiltonian is (gw - 8;‘2") D¢,
see (3.29). If we compute scattering amplitudes, we can pass from this propa-
gator to another by adding k, f, (k) + f.(k)k, for an arbitrary function f,(k).

To see this note that after adding &, f, (k) + f,.(k)k, the contribution of each

line changes by
JH () (R fo (k) + fu(k)ky) 7 (K),
which is zero, because k,J*(k) = 0. For scattering amplitudes, external lines
do not involve the propagator. Therefore, scattering amplitudes do not change.
Below we will list a number of useful causal propagators. (In principle,
they should be decorated by the superscript c, for causal, which we however

suppress).
For any o € R, we can pass to the following propagators
1 kuk,
D = e (et

The above propagator for « = 0 was obtained in the Hamiltonian approach, see
(3.29). For a = 1 we obtain the so-called propagator in the Feynman gauge

1
DFeyn k _
' () m? + k% — 10
a = oo corresponds to the propagator in the Landau or Lorentz gauge:
1 k. k
Lan __ iy
D' = e <g‘“’_ = )
We can introduce the propagator in the Yukawa gauge:
1 1 kik;
Yuk _ - Yuk _ yuke — __ — (g, — —
Do == e P =0 P T e o <5” m2 + E2) '
We have D2k = DEY™ + k, fY 5 (k) + fY"%(k)k,, where
k k;
Tk (k) = ) s (k) = -

(k2 + m2 —i0)2(m?2 + k2) (k2 +m2 —i0)2(m? + k2)
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(The propagator in the Yukawa gauge is the massive analog of the propagator
in the Coulomb gauge.)
The propagator in the temporal gauge is

1 kik;
tem tem tem vy
Poo™ =0, Do" =00 D™ =5 s 0 —10(5“_1@8)'

We have Dig™ = DFY™ + k,, fi™ (k) + fio™ (k)ky, where

1
(m2 + k2 — 10)2k,

k;
(m? + k? — 10)2k2"

k) = LS = -

3.2.5 Feynman rules

Perturbation expansion can be organized with help of Feynman diagrams, which

are very similar to diagrams for neutral fields interacting with a linear source.

We have 1 kind of lines and 1 kind of vertices. At each vertex just one line ends.
To compute Green’s functions we do as follows:

(1) In the nth order we draw all possible Feynman diagrams with n vertices
and external lines.

(2) To each vertex we associate the factor —iJ* (k).

(3) To each line we associate the propagator —iDY, (k) = Wg—io (g,“, + Buky ) .

M m?2
(4) For internal lines we integrate over the variables with the measure %
To compute scattering amplitudes with N~ incoming and NT outgoing par-
ticles we draw the same diagrams as for N~ + N T-point Green’s functions. The
rules are changed only concerning the external lines.

(i) With each incoming external line we associate ——~———u(k, o).
(2m)32e(k)

1 T
———u(k,0).
V(2m)32e(F) (k,0)

If we prefer, we can use a different causal propagator instead of Dgy. Green’s

functions change, because of external lines, however scattering amplitudes do
not.

(ii) With each outgoing external line we associate

3.2.6 Path integral formulation

We can compute exactly the generating function:

Z(f) (3.43)

i [ (G + M 2kyky) ”
= oo (5 [T S () 4 1))
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This can be rewritten in the path integral formalism. Recall that

/ Lo(@)ds = — / %(8MA,,(33)8”A”(3:) 0, A, ()9 AP (x)

+m?A (x)A”(a:))dx

= /A 9" (—0+m?) + 049") A, (x)dx,

/ (L) — () Ay)(2)da / Cor(a)da - / (T + () () Ay () da.

—2

Note that DY, (k) = %z,_]@i‘ak”, or in the position representation DY, =

(g — m™29,0,) D¢ is one of the inverses of g (—0+ m?) + 9*9”. Therefore,
(3.43) is often formally rewritten as

f];[l;[dAu(a:)exp (1f (,C(a:) — (JH(x) + f”(m))Au(x))dx)

Z2(f) = fggdAu( exp(fﬁfr )

Let D7, be one of the propagators considered in Subsubect. 3.2.4. Let By
be its inverse. We have the corresponding “free action”

T = 5 [A@)B (o~ A y)dody,

We define the corresponding generating function as

(3.44)

TR T F7(F) Do (B) (T () + f”(k))dk)

- ( / ) 74 Dapalic = )0 + ()l )
H AM( )eXp (1Tofr+1f J“ +f“( )) M(l.)dx)
Ik l;[l;IdAu(m) exp (iTofr)

In general, Z,(f) differs for various propagators D}, unless f satisfies the
Lorentz condition. However, all Z,(f) can be used to compute the same scat-
tering operator.

Likewise, the Euler-Lagrange equations obtained from those various action
integrals differ from the Proca equation. However, Vp, belong always to their
solutions.

If we take the Lagrangian

—% (9,4 (@)0" A4 (2) + m? A (2) A, (2)

+a— I)G#A”(x)&,A”(xD, (3.45)
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then we obtain the propagator Dy, . Indeed,
g (k? +m?) + (a — 1)kHEY

is the inverse of Df, (k).
If we restrict the integration by the Lorentz condition

9, A" (z) = 0. (3.46)

and take the Lagrangian (3.45) (they now coincide for all a), then we obtain
the propagator in the Landau/Lorentz gauge.
If we take the Lagrangian

f% (3“Ai(x)3“A,; (z) + m?A;(z) Ay ()
+%aﬂaiAi (2)0"0,A;(x) + 0 Ai (2)9; A; ()
—9; Ao (2)8; Ao () — m2A0(x)2),

we obtain D?{l‘}k. Indeed,

(K +m?) ((m + kmk) — Syu0000 (B2 + m?)

is the inverse of Dzl‘}k(k).
If we take the action
1

-5 [ (2)(-0) @ - )00, 4;(0)

+0;Ai(@) (=0) 7 (z — )94, (1) ) dedy,

(which is nonlocal and does not involve Ag), we obtain thym. Indeed,

kik;
(K +m?) (%‘ - kzj>

is the inverse of Di$™ (k).

3.2.7 Energy shift

Suppose that the 4-current is stationary and is given by a Schwartz function
R3 > ¥+ J#(Z). Note that divJ(F) = 0.
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Using the quantum version of (3.41), we can write the Hamiltonian as

—

/ di - Efr )+ Atr( DA+ m?) A (@) + T(@) A (@)

+/ (%( 1/2d1VE( )) +T(JO( T) — diVE?(f))Z
-|-7(( A~ 1/levA 2)

By (A.14), the infimum of H is

1 21570/ = e~ mlE=7l 0/~
3.3 Alternative approaches

3.3.1 Classical 4-potentials without the Lorentz condition

So far our treatment of massive photons was based on the Proca equation (3.1).
As we remember, the Proca equation is equivalent to the Klein-Gordon equation
for vector fields (3.8) together with the Lorentz condition (3.9). This suggests
an alternative approach to the massive photons.
In this approach one considers first the Klein-Gordon equation on functions
with values in R13:
(=0 +m?)¢,(z) = 0. (3.47)

The space of smooth real space-compact solutions of (3.47) will be denoted by
Vvec- The following 4-current

Tec(C1y G2y ) = 0"Cuu(2)C5 (2) = Gy (2)0" G (2)

is conserved, that is
aﬂj\l;cc(x) =0.

It defines in the usual way a symplectic form on Yyec
CleCCCQ = / jgcc(glv <27 CL’)dS# (1')
S
[ (Fatages + aeni )i,

where S is any Cauchy surface.
One introduces the 4-potentials A*(z) as the functionals on Yy, defined by

(A (@)[€) = ¢H(=).
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We clearly have

(-0 +m?)A,(z) =0. (3.48)
We can use the Lagrangian
1 2
L(z) = —§AM, (x)AMY (z) — — Ay (x) A ().

The conjugate variables are

9
M) = 5 )

L(z)=A,(x).
The Poisson structure is given by the equal time brackets

{A#(tvf)vAV(t7g)} = {H/A(t>f)7nu(tag)} = 0,
{AL2), LD} = 9uwd(Z — 7).

The stress-energy tensor is

oL
T;u/ _ Aa,u + gp.l/L
0Aa,,

= AGrA™Y — %g’“’ (Aa,gA%P +m2A,A%).

The Hamiltonian and momentum density are

m2
HE) = T = ST + LA @)AH ) + 4, ()44 @),

Pi(z) = TO%z) = —Tl,(x)A"(z).

As usual, we can define the Hamiltonian and momentum
H - / H(t, 7)dE, (3.49)
Pl = / Pi(t, 7)d7.

The Hamiltonian (3.49) is unbounded from below.

3.3.2 The Lorentz condition
Introduce two subspaces of Vyec
Vor = {C € Vyec : 3MC“ = O},
ysc = {C S yvec : CN = aMX7 X € yKG}'

Note that Vyec = Vior @ Vsc is a decomposition into symplectically orthogonal
subspaces each preserved by the Poincaré group. If { € Vyec, then its projection
onto V. is

1 v
= —0"0,C". (3.50)
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Elements of )i, satisfy the Proca equation, so that we can make the iden-
tification

yLor = yPr~
On YVior the forms wye. and wp, coincide.
Clearly, we are back with the theory that was used in most of this section.
In particular, the Hamiltonian (3.49) restricted to Vo is now positive.

3.3.3 Diagonalization of the equations of motion

In order to diagonalize the Hamiltonian, besides the vectors u(k,o) with o =
0,+£1 introduced in (3.22), we will need the vectors for the scalar plane waves

1 - -
k = —(e(k), k).
ulk,50) 1= —(=(F), F)
Note that
uu(k,o)ut(k,o') = 0400,
Zuu(k,a)uy(k,cr) = Guv-
Set
AR = / A, e Fe 42
(2m)?
T (1. = >\ —ikZ dr
(k) = II(t, ¥)e .
(2m)?
We have the equations of motion
Ay(R) = T(k),
M(k) = —e(k)*Au(k),

the relations = . . .
Aj (k) = Ay(—k), T (k) = T (—Fk),

and the Poisson brackets

-,

(A7 (B), A (K)} = {1, (k). I, (K)} = 0,

Set,
Ak, o) u,, (K, o) AY(F),
Ht(Ea U) = uM(Ev U)H?(E)
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We have the equations of motion

At(Ea U) = Ht(lga U)v
IL(ko) = —e(k)?Au(k, o),

the relations
A;(k,0) = A=k, —0), TI; (ko) = I, (—k, —0),

and the Poisson brackets

{AI(E7J)7At(E/ﬂO—/)} = {H:(E70)7Ht(k/7al)} = Oa
{Ar(k,0),IL(K,0")} = kKood(k—k). (3.52)
where koo =1 for o0 =0’ = £1,0 and Kgcsc = —1. We set
wlko) = "D 4 (F 0) - 1.0,
2e(k)
itk = | W arE o)+ — (o)
2e(k)

We have the equations of motion
a(k,o) = —ie(k)a(k, o),
ai(k,o) = ie(kK)a;(k,o).
and the Poisson brackets
{a(k,0),a(k',0")} = {a*(k,0),a*(K',d")} = 0,
{a(k,0),a*(K,0")} = —ikgod(k—FK).

We diagonalize the Hamiltonian and momentum:

H > / dke(k Ya(k, o) — / dke(k)a* (k,sc)a(k, sc),
o=0,%+1

P = Z/dkkaka (k,0) /dk;k:ak;sc (k, sc).
0=0,£1

The 4-potentials can be decomposed as

Z/mﬁ

Clearly, the restriction to )i, amounts to dropping all scalar components.

(un (ks o)™ alk, @) + w, (i 0)e*a (k, 7))
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3.3.4 Positive frequency space

W\(,ch) will denote the subspace of CYye. consisting of positive frequency solutions:

wih = {9 €CYp; : (k,0lwyecg =0, o==£,0,sc}.

vec

Every g € W‘E;rc) can be written as

@ = S [ — ek k,0)alk, 0)lg).
o=0,%1,sc (27‘(’)3 28(]{3)

For g1,92 € W\(,:C) we have a natural scalar product

(aloe) =i0necse = Y [ Talolartalk. o)) dF
o=0,%+1

- / (k50 lgn)a(k, sc)g2)dF
- / o Tan(B)gn)aw ()] g2} dF. (3.53)

Unfortunately, the above definition gives an indefinite scalar product. We can
also introduce a positive definite scalar product, which unfortunately is not
covariant:

(91]g2)s =Y / an (Bl (ay ()l go) dF.

The positive frequency space Wé;;) equipped with the scalar product (3.53) can
be completed in the norm given by (-|-)+. It will be called Zy.. It is an example
of the so-called Krein space, which is a space with an indefinite scalar product
and has a topology given by a positive scalar product.

Using the projection (3.50), W\(,.jc) can be decomposed into the direct sum
of orthogonal subspaces W](j;r) and ng ). On WI(J;) the scalar product (3.53)

is positive definite, on VVS(CJr ) it is negative definite. Their completions will be
denoted Zio, and Zg. L

Every ¢ € Vyee can be uniquely written as ¢ = ¢V + ¢(H), where ¢(() e
W‘(,,jc) This allows us to define a real scalar product on Vyec:

(Gle)y = Re(¢ i) (3.54)
- / / (0, 2) (—)D) (0,7 — )4 (0, §)dFdg

+ [ [ 0,08z + w2 (-DH0,7 - 0. s

Again, (3.54) is positive definite on Yo, and negative definite on Y.
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3.3.5 “First quantize, then reduce”

The quantization described in Subsect. 3.1 will be called “first reduce, then
quantize”. There exist alternative methods of quantization, which use the sym-
plectic space Vye. introduced in (3.47) as the basis. There are two basic ways
to implement this idea.

The first insists on using only positive definite Hilbert spaces. Unfortunately,
the Hamiltonian turns out to be unbounded from below.

In the Gupta-Bleuler approach the 4-potentials A#(z) evolve with positive
frequencies. Unfortunately, it uses an indefinite scalar product.

3.3.6 Quantization without reduction on a positive definite Hilbert
space

In this approach we use the Hilbert space
FS(ZLOT S gsc) (355)

equipped with a positive definite scalar product. More explicitly, we replace
a(k,o) with a(k,o) for ¢ = 0,+1. We replace a(k,sc) with *(k,sc). They
satisfy the standard commutation relations

Il

(e%)
—~
Eonl A
|

=
~

)
[b(k,sc), b* (k', sc)]
a(k, ), b(k,sc) kill the vacuum:

a(k,o)Q = b(k,sc)2 = 0.

The quantized 4-potentials, Hamiltonian and momentum become

azo:ﬂ/ \/7\/25
/ - \/; <“u (k,sc)e™@b* (k, sc) —I—We_ikxé(k‘,sc)) ,

H > / dke(F)a* (k,o)a(k, o) — / dke(k)b* (k, sc)b(k, sc),

o=0,%+1

> / dkka* a(k, o) / Akkb* (k,sc)b(k, sc).

o=0,+1

Ay(e) = (el )™k, ) + (s 2o *4" (1, )

~
I

The propagator in the position representation is given by
. . . 2
(AT (Au(@) A ))2) = =i(g — 50,0, ) D ~ ),
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and in the momentum representation

—i

Kk,
k2 +m2—i0 <g“”+2 m? >

It is an example of a propagator from the class considered in Subsubsect. 3.2.4.
Note also that

(QA(Q)*) = (clohy + —5 (O 10C") (356)

which is the scalar product (3.54) corrected by a term given by the scalar product
(2.37). Note that (3.56) is positive definite.

Vectors built by applying fields satisfying the Lorentz condition to the vac-
uum will be called physical. Equivalently, physical vectors are elements of the
algebraic Fock space built on WI(;r After the completion the physical space
coincides with T's(Z1,0;). Thus we obtain the same space as in the method “first
reduce, then quantize”.

It will be convenient to describe this method in the C*-algebraic language.
Let CCR(Yyec) denote the (Weyl) C*-algebra of the CCR over Yyec, that is, the
C*-algebra generated by W((), ¢ € Vyec, such that

i ¢1wvecC2

W)W (G)=e"2 " W(G+¢), W) =W(=0). (3.57)
We have the obvious action of R'# 0" (1, 3) on CCR(Vyec) by *-automorphisms:
Py,n) (W(Q)) =W (ry,n)(Q)) -
Choose the state on CCR(Vyec) defined by
»(W(Q)) (3.58)
= o (S0 — 5 (0,¢10.¢))

m

Let (Hy,my, ) be the GNS representation generated by the state 1. Using
(3.56) we see that M, can be identified with I's(Z10r @ Zsc) and the fields are
related to the Weyl operators by

my(W(¢)) = (@,

3.3.7 The Gupta-Bleuler approach

This approach also uses the symplectic space Vs as the basic input. It follows
almost verbatim the usual steps of quantization of the Klein-Gordon equation.
We introduce the bosonic Fock space I's(Zyec), which has an indefinite scalar
product and can be viewed as a Krein space.

We replace a(k, o) by a(k, o). The commutation relations have a wrong sign
for the scalar component:

[a(k,0),a*(K',0")] = Kood(k—k).
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The annihilation operators kill the vacuum:
a(k,0)Q =0.

The expressions for the Hamiltonian, momentum and 4-potentials are the same
as in the classical case:

H dke(k)a* (k,o)a(k, o) dke(k)a*(k,sc)a(k, sc),
o’zo:j:l/ ) / 6 )

> / a(k, o) — /dEEa*(k,sc)a(k,sc).

o=0,£1

P

(uﬂ (k,0)e*®a(k, o) 4+ u,(k,o)e ‘kmd*(k,a)).

Z/W\/f

Note that all eigenvalues of H are positive, however its expectation values (wrt
the indefinite scalar product) can be negative. We have

(QIA @A, )Q) = —iguDP (@ —y),
(QUT(A(2) A (1))Q) = ~iguD(z —y).

In particular, the 2-point Green’s function is the propagator in the Feynman
gauge. Smeared 4-potentials A((g)) are well defined operators.

Similarly as in the previous method, vectors created by applying fields sat-
isfying the Lorentz condition to the vacuum will be called physical. Again we
obtain the algebraic Fock space built on Wﬁir) . This space is positive definite
and after the completion coincides with T's(Zr,,). Thus the physical space is
the same as before.

4 Massless photons
In this section we discuss the quantization of the Mazwell equation
-0, F"(x) = 0, (4.1)
where, as in the previous section,
FH .= gFAY — 9Y AP,
We will also consider an external conserved 4-current, that is a vector func-

tion J¥(z) satisfying
8, J" (z) = 0. (4.2)

The Maxwell equation in the presence of the current J reads

B FM(z) = J¥(x). (4.3)
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Similarly as in the massive case, there are several possible approaches to the
Maxwell equation on the classical and, especially, quantum level. The approach
based from the beginning on the reduced phase space, both for the classical
description and quantization, will be treated as the standard one. The situation
is however somewhat more complicated than in the massive case, since the
Lorentz condition is not enough to fully reduce the phase space. Alternative
approaches will be discussed later.

We try to make the discussion of massive and massless photons as parallel as
possible. This is not entirely straightforward. In particular, the massless limit is
quite subtle — to describe it one needs to fix the time coordinate. The covariant
4-potential converges as m N\, 0 in an appropriate sense to the noncovariant
4-potential in the Coulomb gauge.

4.1 Free massless photons
4.1.1 Space of solutions and the gauge invariance

It is well known that the Maxwell equation
= (8“@”(3:) — 8”0‘(9&)) = 0 (4.4)

is invariant w.r.t. the replacement of ¢, with ¢, 4+ d,x, where x is an arbitrary
smooth function on the space-time. In particular, there is no uniqueness of the
Cauchy problem for (4.4).

This property is called gauge invariance. It poses problems both for the
classical and quantum theory. One could avoid the problem of gauge invariance
by considering fields and not 4-potentials as basic objects. However, when one
quantizes the Maxwell equation with a 4-current, it is more convenient to use
4-potentials. Therefore, we will stick to 4-potentials.

There exist several ways to cope with gauge invariance. The approach that
we will use as the standard one can be called first reduce, then quantize. In this
approach we start with the Maxwell equation in the form (4.4). Note that it
coincides with the Proca equation with m = 0. We will use objects defined in
the context of the Proca equation, where we replace Pr with Max to indicate
that the mass is zero.

Thus the space of smooth space compact solutions of (4.4) is denoted Vi
and (3.6) defines a conserved 4-current, which we now call j— , that leads to
the form defined as in (3.7):

G107 2 (4.5)
= / (* (G(t, T) — 5(10(75,5?)) Go(t, @) + G (L, 7) (é(t,f) - 5@‘10(1575))) dz.

Unfortunately, this form is only presymplectic not symplectic (it is degenerate).

(4.5) does not depend on the gauge. To see this it is enough to note that
if (o = Jx, and (3 is a solution of the Maxwell equation, then the integrand of
(4.5) is a spatial divergence, so (4.5) is then zero.
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We say that a solution ¢ of the Maxwell equation is in the Coulomb gauge if
Co=0, div(=0.

A functon in C°(R3,R?) will be called transversal if its divergence vanishes.

Note that every ¢ € YV, is gauge-equivalent to a unique solution of the
Maxwell equation in the Coulomb gauge, denoted by ¢“°U, where
X(t,Z) = —(=A) 1 divC(t, @), ¢S + Oux = o (4.6)

Neither x nor ¢(“°" have to be space-compact. The Stokes theorem yields
however that fdivf(t,f)da‘f = 0, therefore y and ¢“°"! behave like O(|#|2)
because of (A.39).

The presymplectic form can be written as

C?OH]W%CSOUI (47)

[ (- + e o) az

Gyl =

Note that the integrand of (4.7) behaves as O(|Z|~%), hence is integrable.

Proposition 4.1 Let ¢ € Y- We have the following equivalence:
(1) ¢ € Kerwy— .

(2) CCoul =0.

(3) ¢ =0x.

Proof. (2)=-(3) follows from (4.6).

The implication (3)=-(1) follows from the gauge invariance of the form wy— .
Let us prove (1)=-(2). Let ¢“°"! # 0. Then one of the transversal functions

R? 3 & — (0, ), (0, £) is nonzero. Therefore we can find transversal functions
@, ¥ in C°(R3,R3) such that

/ (—a@) ¢, 7) + w(@)CC (0, 7)) di £ 0. (4.8)
There exists a unique ¢ € C (R4, R*) such that
£(0,@) = (0,d(7)), £(0,7) = (0,9(7)), D& =0.

§ clearly belongs to YV— and is in the Coulomb gauge. We have

Coul
Swiinl = Swymn ("

[ (~éo.a50.2) + 0.0 0,9)) dz.

which equals (4.8) and is nonzero. Hence ¢ ¢ Kerw— . O
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Define
Max = Yy /Kerwyg— .

In other words, Vmax is obtained by the symplectic reduction of the presymplec-
tic space Yy . Clearly, V\ax is equipped with a natural symplectic form wyiax.
R3 % OT(1,3) acts on Yyax by symplectic transformations.

By Prop. 4.1, Ymax consists of gauge equivalence classes of Vi

Analogously we define the space CY\ax of gauge classes of complex smooth
space-compact solutions of (4.4).

4.1.2 Classical 4-potentials

A, (x) denotes the functional on Y given by

(Au(@)[C) = (). (4.9)

Obviously, A, (z) is not defined on Vax.
We introduce also the functional ASO“I(JC) on Vi, called the the classical
4-potential in the Coulomb gauge,

ASou(z) := 0, AC(z):= Ay () = A(z) — A divA(z).
Note that
(AL (@)]€) = (Au(@) |7 = ¢ (),

where ¢©°"! on the right hand side is the representative of the class ¢ in the

Coulomb gauge. A" (z) does not depend on the gauge, hence can be inter-

preted as a functional on Y\ax. It is not, however, Lorentz covariant.
Moreover, we introduce the functionals F),, (z) on Yy, called the fields:

(Bl (2)[C) 7= 9, (2) = 0y Cu()-

They also do not depend on the gauge, hence can be interpreted as functionals
on Vuax- They are moreover Lorentz covariant.
We will write E;(x) = Fy;(z). Clearly, E = 9, A“°"! and

divAC(z) = 0, divE(z) = 0. (4.10)

In what follows we will usually drop the subscript Coul from A®°%(zx). This
introduces a possible ambiguity with A(x) defined in (4.9). However, when we
speak about Vnay, then (4.9) is ill defined, only A°"(x) is well defined, so we

think that the risk of confusion is small.
The symplectic structure on the space Miax

Whax = /Ai(t,f) A Ei(t, 7)dE
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together with the constraint (4.10) leads to a Poisson bracket on the level of
functions on Waax:

{Ai(ta 3_3')7 Aj(t> ?7)} = {Ei(ta f)v Ej(ta 37)} = 0,
. . 0;0; L
i) Bem = (- %)o@ -9,
From the above relations we deduce

(i) 4500 = (35 - 22 ) Dl ).

4.1.3 Smeared 4-potentials

We can use the symplectic form to pair distributions and solutions. For { €
Wmax we introduce the corresponding spatially smeared 4-potentials, which is
the functional on Vyax given by

(A(Q)1p) = pwrtaxCs P € Chvtax-

Note that _ _
{A(G), AR} = GwmaxCa-

A = [ (-GtDares + GEDE D) d7 (1)

Let us stress that A((¢)) depends on ¢ only modulo gauge transformations and
is Lorentz covariant.

We can also introduce space-time smeared 4-potentials in the Coulomb gauge,
which are the functionals on Vyax, for f € C°(RY3 RL3) given by

Alf] = /f”(aj)AN(x)dx. (4.12)
Note that A[f] = A((¢)), where

0;07
Ci:—D*<fi_ Afj), C():O.

(4.12) is not Lorentz covariant. To see this it is enough to note that it does
not depend on f°. Replacing [f*] with [f* + 9*x] for x € C*(RY?) does not
change (4.12), because 9, A" (x) = 0.

4.1.4 Lagrangian formalism and the stress-energy tensor

The Euler-Lagrange equations for the Lagrangian density
L= 1F o
= _Z pv

coincide with the Maxwell equation.
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The canonical stress-energy tensor is

L .

T = gL
can 8Aa7lt (e}

1
_gWZFaﬁFaﬁ — FrepY

One usually replaces it with the Belifante-Rosenfeld stress-energy tensor. It is
defined as

T = T+ 0.3
1
= 9" FoFoP 4 Fropy |
where
Yuva = —Zavpu = Fua Ay, (4.13)
On solutions of the Euler-Lagrange equations we have
MT " = 0"Tw = 0.

In addition, 7, is symmetric.

To pass to the Hamiltonian formalism we use the Coulomb gauge, writing
A, for ASOHI. Recall that in this gauge Ag = 0 and divA = 0. The variable
conjugate to A; is 04 L = E', which also satisfies divE = 0. We express 75"
and 7, in terms of A and E. We introduce the Hamiltonian, momentum and
polarization density

[=)
—~
8
SN—
Il
[N

70 (E?(x) n (rot/f)2(x)) ,
Pi(z) :=T%(x) = E'(2)F'(x),
S(x) = FEi(z)ei* 9, A ().

They yield the Hamiltonian, momentum and polarization as in (3.20) satis-
fying analogous properties.

4.1.5 Diagonalization of the equations of motion

As in the massive case, we would like to diagonalize simultaneously the Hamil-
tonian, momentum, polarizaton and symplectic form.

For k € R3 we set k = (¢, k), e(k) := Vk2. The vectors u(k,+1) are defined
as in (3.23). u(k,0) are not defined at all.

For 0 = 41, define the following functionals on Y\.x, called plane wave
functionals:




We have accomplished the promised diagonalization

H

3 / dfe(F)a* (k, o)a(k, o),
o==+1

P = Z /dEEa*(k,o)a(k,U),

o==+1

s = Z/dﬁamm*(k,a)a(k,a),

o=%+1

inax = Z /a*(k,O')/\a(k,O')dE.

o=+1

The 4-potentials can be written as

Ay(x) = (uu(x,a)eik””a(k,a) +uy,(z, o) a*(k, a)) .

dk
U;I / V(2m)34/ 2 (k)

Plane waves are defined as in the massive case, with ¢ = £1. We have
a(k,o) =1A((|k,0))

and

—

Ay = Y /((x|k,o)a(k,a)+(x|k,o)a*(k7o))dk.

o==+1

4.1.6 Positive frequency space

ng/[ﬂ;)x will denote the subspace of C)p\ax consisting of classes of solutions that

in the Coulomb gauge have positive, resp. negative frequencies.

Every g € WIS,L)X can be written as

" *u(k,0)(a(k,0)lg).

B dk
o= a:zil/ V(27)3 4/ 2¢(k)

For ¢1,92 € ng/};)x we define the scalar product

(91192) = iGrwmtaxgs = Y /<a(/~f,U)|91><a(/€,0)\92>d/;~ (4.14)
o==+1

The definition of Wﬁ;)x depends on the choice of coordinates. It is however
easy to see that the space WlE/[J;)X is invariant w.r.t. R x O7(1,3).

We set Zpax to be the completion of ng/f;)x in this scalar product.
We have

(a(k,0)lg) = (k,0lg)-
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We can identify Zypa, with L2(R3, C?) and rewrite (4.14) as

(aloe) = 3 [ Toolani(kolga)a

o=%+1

We can identify Vpax with WIE/IZ)X and transport the scalar product onto
WMax, which for (1, (5 is given by

(Glé)y = Re(¢|cit)
= [ [em0.a 000 0.5 - iseo,dsag

/ / ¢Coul(0, 7)(—Az)(—i) D0, & — 7)o (0, 7)dzdy.

4.1.7 Spin averaging

Let us describe the spin averaging identities useful in computations of scattering
cross-sections. For a given k € RM3 with k2 = 0, let M, N be vectors with

M"k, = N"k, = 0.

Then we have -
> Mrw,(k,o)u, (k,o)NY = MFN,. (4.15)
o=+1

To see (4.15), note that

— kK,
Z uy(k,o)uy (k,0) = guw + 60600 — .
o==+1 |k‘2

Therefore, the left hand side of (4.15) equals

=

S — ME)(NE
M#g,, N” + MON® — (%(2@
But o .
MO = W NO = ﬂ
k| ||

4.1.8 Quantization

We would like to quantize the Maxwell equation starting from the symplectic
space Vpax- We will use the 4-potentials in the Coulomb gauge (where, as usual,
we drop the superscript Coul). The quantization is similar to the Proca equation
based on Yp, described in Subsubsect. 3.2.3, with Condition (1) replaced by

—0A;(z) =0,  9iAi(z) =0, Ay(z)=0,
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and Condition (2) replaced by

[AZ(Oaf)vAJ(ng)] = [El(ovf)aEJ(ng)] = 0,
: 0;0; o
i (52-]- - A]) (& — 7).

The above problem has a solution unique up to a unitary equivalence. We
set H :=I'y(Zmax). The creation operators will be denoted by

[AZ (07 f), Ej (07 :'7)]

i*(k,o) = a*(ko)).

) will be the Fock vacuum. We set

) e [ S (ke
Aa) = | N T (o

The quantum Hamiltonian, momentum and polarization are

ek 4k, o) + ui(k,a)e-ikwa*(m)) ,

H = Z/a*(k,a)a(k,a)e(l%')dl%’,
o==+1

j . Z/d*(k,o)&(k,a)ﬁdﬁ
o=%+1

S = Z/d/%di;'m*(k,a)a(k,a).
o==+1

The whole group R'3xOT(1, 3) is unitarily implemented on H by U(y, A) :=

F(r(y,A) ZMa) We have

Uy, ) E (2)U (5, M) = A AY B (9, M)2).
Moreover,

R . . 0;0;
[Aj(z), Ai(y)] = —i (%‘ - AJ> D(x —y).
Note the identities
(QAi(2)A;(y)Q) = —1{ 0 ——x~ | D (@ —y),
Ao A , 9i0; \ e
T () A ()2) = ~i (85— %2 ) DG ).

The family

Coo (RS RS 5 s A[f] ::/f”(m)flu(x)dx
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with D := I'I"(Z\.,) does not satisfy the Wightman axioms because of two
problems: the noncausality of the commutator and the absence of the Poincaré
covariance.

If we replace /Al“ with Fuw we restore the causality and the Poincaré covari-
ance.

For an open set O C R'3 we set

A(0) = {exp(iF[f]) : f € CZ(0,@2RY)}.

The algebras A(O) satisfy the Haag-Kastler axioms.

4.1.9 Quantization in terms of C'*-algebras

Let CCR(YVyf,) denote the (Weyl) C*-algebra of canonical commutation rela-

ax

tions over Vyr— . By definition, it is generated by W((), ¢ € Yy, such that

1%\ s

W(COW(G) = e B WG+ G). WO = W(=0).

R % O7(1,3) acts on CCR(Vyfz,) by *-automorphisms defined by

Fyn) W(Q) =W (r,0)(0)) -

We are looking for a cyclic representation of this algebra with the time evolution
generated by a positive Hamiltonian.
Consider the state on CCR(:))W ) defined for ¢ € Vi by

ax

YIVQ) = e~ ().

Note that the state is gauge and Poincare invariant. Let (Hy, Ty, Qy) be
the GNS representation. %, is naturally isomorphic to I's(Z2max). 2y can

be identified with the vector Q. my(W(()) can be identified with A, In
particular, if (i and (3 are gauge equivalent, then A((¢) = A((¢2)). However,
A(x) in the sense of (4.9) is not well defined.

4.2 Massless photons with an external 4-current
4.2.1 Classical fields

We return to the classical Maxwell equation. We consider an external 4-current
given by function R3 > 2+ J(z) = [J¥(z)] € RY? satisfying

8,7 (x) = 0. (4.16)

In most of this subsection we assume that J is Schwartz. The Maxwell equation
reads
—0,0"A, + 0,0, A" = —J,. (4.17)

118



Let ¢ be a solution of
—0,0"C, + 0,0,( = —J,. (4.18)

We write separately the temporal and spatial equations:

SAG+dive = —J,
(82 — A) ( — 8o+ ddive = .
We can compute (j in terms of 5at the same time:
Co(x) = A7 (Jo + Bpdiv) (). (4.19)
We can insert this into spatial equations, using Jo = divf7 obtaining
G = Jir, (4.20)
where
(o = (—dATNdIVC,
J_;r = J—9AtdivJ.
Thus Etr can be treated as the only dynamical variables. divf =: © is an

arbitrary space-time function, which can be used to determine (.
The simplest choice is ©® = 0, which corresponds to the Coulomb gauge:

CO = A_1J07
Dg = j;;rv
div¢ = 0. (4.21)

The Coulomb gauge seems to be the most natural gauge for the Hamiltonian
approach.
Let ¢ be a space compact solution of (4.18). Setting

CEOHI = C,u + a,uXv

where x(t, %) := (—A)~div((t, Z), we obtain a solution of (4.21). ¢ is the
unique solution of (4.21) gauge equivalent to ¢. It does not have to be space
compact.

Thus the classical 4-potential in the Coulomb gauge A®°"(z) satisfies

AGM = —(=A)"",,
DgCoul _ j:cra
divA® = o,

The electric field is E=A-0A,. Itis easy to see that if we use the Coulomb
gauge, then Etr = ACoul,
Similarly as in the previous subsection, we will drop the superscript Coul in

what follows.
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4.2.2 Lagrangian and Hamiltonian formalism
The Lagrangian density is
1 v
L = —ZFWF“ - J, A"
1 29 1 - 2 1,22 g -
(rotA)® + 2 (840)° + 5(XAI) — AJAy — JA + JoAg.

We will use the Coulomll gauge. Thus we assume that Ag = A~1.Jy and thg
only dynamical variable is A satisfying divA = 0. Using the transversality of A
we can rewrite the Lagrangian density as

ooy 1,5, o
L = —5(814) + §(A) —JA
1 =
+§(8A0)2 + JoAg.

The conjugate variable is Ey,(z) = A(z). Thus we have the Poisson brackets

{Ai(t,2), A; (6, 9)} = {Ewilt, ), B j(t, )} = 0,

). By = (35— 52 ) o

Note that E differs from Ej, by a c-number function —5A0. Therefore, E

©
satisfies the same commutation relations as E,.
The canonical Hamiltonian density is

HO(z) = —L(x)+ EnAi(x)
SRR + 5 (Be)’ (@) + T()Ale)
1 -

*5(3/10)2(515) — Jo(z) Ao ().

We add to it a spatial divergence div(Ag (m)ng(x)) and express Ag in terms of
Jo. We obtain the usual Hamiltonian density

M) = B+ 5 (A7) + T) )

+%J0(—A)71J0(JC).

Similarly as in the massive case, the Hamiltonian

H{t) = / H(t, 7)d = / HE (1, F)dT (4.22)

generates the equations of motion and we can interpret interacting fields as

functionals on Vyax satisfying

E(va) = A'fr(ovf)v E(va) = E_:fr(ovf)'
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4.2.3 Quantization

To quantize the Maxwell equation in the presence of an external 4-current we
will use the Coulomb gauge, dropping as usual the subscript Coul.
We are looking for quantum 4-potentials R3 > z — A, () satisfying

Agoul — 7(7A)71J0,
DjCoul — j;r’
divA® = o,

having the following commutation relations with E(x) = A(x) — Aq(z).

[Ai(tﬂf)>Aj(t»g)]:[Ei(tvf)ﬂEj(tag)] = 0,

A i) = (8- 22 )o@ - ),

The above conditions determine Ay. To fix A and E we assume that they
coincide with their free quantum counterparts at ¢t = 0:

A(0,7) = An(0,7) = A(@),
B(0,7) = Ex(0,7) = E().

The Schrédinger picture Hamiltonian and the corresponding interaction pic-
ture Hamiltonian are

H(t) /df-( E2(5)+%( A)Q(:E’)JrJ( DA@)):

//deO e |ﬁ —(.1),

Hp(t) = + / dff(t,f)flfr(tj)

1 1
- dzdg gl ¢, @) ——— JOt, 7).
+2// e EAL)

The scattering operator can be computed exactly:

S = exp (; / (;£4J“(k)DS§“I(k)J”(k)>

i (ko) %) (i), Ry

o==%1 \/26(];)
dk
xexp | —i a(k,
2 Ve

X exp
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where the propagator in the Coulomb gauge is defined as

1 ) kik;
Dgooul — _ﬁ’ ngoul =0, Dleoul — 0 (61‘]’ - E2J) .

We did not use the fact that J* is conserved.

4.2.4 Causal propagators

If we compute scattering amplitudes, we can pass from the propagator in the
Coulomb gauge to another by adding k,, f, (k)+ f,.(k)k, for an arbitrary function
fu(k). Let us list a number of useful propagators in other gauges.

We distinguish the family of propagators

1 1 ks
k2 — 10 (9’“’+ (a_1> k2 )

Some of them have special names:

: Kk,
Dﬁ,‘f“ = kziio (g;w — ‘k—z> Landau or Lorentz gauge,

Feyn . 1
D, = g9 Feynman gauge,

DSB’ = ﬁ (g,w + 2%’;“) Fried and Yennie gauge.

We have DGO = Dyey® + k, f20U (k) + £ (k)ky, where

k
Coul 0 Coul

ki
(k2 —i0)2k2

The propagator in the temporal gauge

1 kik;
Pl =0, D=0, Dy = g (09 )

We have Dig™ = DFY™ + k, f™ (k) 4 fi™ (k)k,, where

1
(k2 —i0)2ko’

ks

R0 = =G —opm:

fo (k) =

4.2.5 Path integral formulation

Let D}, be one of the propagators considered in Sect. 3.2.4. Let B4 be its
inverse. Then we can use the corresponding action to express the generating
function by path integrals, as described in Sect. 3.2.6, where this approach for
massive vector fields was considered.

The discussion of the propagators Djy, and Dfﬁ,m is an obvious generalization
of the massive case.
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To obtain the propagator in the Coulomb gauge DC"“l7 we take the La-
grangian

1
5 (0u4:(@)0" Ai(w) = 0,40 (2)0i Ao (=) ).
and restrict the integration by the condition
divA(z) =

4.2.6 The m — 0 limit

Assume that J* is a conserved 4-current. Using the propagator in the Yukawa
gauge we can write the scattering operator for a positive mass as

: i Ak — 1 kikj \
¢ = oo i (- )0

i dk 1 0o
_2/(%)4 Ezm?u (k)| )

xexp | —i u” k o)
=0, :tl \/ \/26
dk ut (k,o)
xexp | —i / a(k - J/‘
o:zoj,il 1% (2m)? \/25
= Str & S11ga

(In the expressions where we use the 3-dimensional integration dE, the 4-momenta
are on shell, that is, k = (e(k), k)). Here, the transversal scattering operator is

3 i oAk — 1 kik;
= — . . J
St P <2/(27r)4J ey <g” k2 >‘] (k)

PdE T
5/ oy zz2+m2"] " )

xexp | —i k7a)u”(k’a) JH(k
o=+1 v/ 2e(k)
Uu (k,o)

xexp | —i /
Uzj;l \% 271- \/25
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and converges to the massless scattering operator in the Coulomb gauge as
m N\, 0. The longitudinal scattering operator is

. i, dk — 1 Rk
Sig = exp (Qm / (27r)4J (k)m2 + k2 =10 (m2 + k2)k2 ' (k)

J“

. dk a(
X exp —1/\/Wa \/7

X exp a(k,0) up(k,0)

v 2¢(k)

Jr (k)

This can be rewritten as
. i dk J - k|2
Sig = exp lm2/ 7 CAL =
2 (2m)* (m? + k2)(m? + k2)k2

1 [ dk m?JOk)
e (‘2/ @m)7 26 (k)i )

I 0
xexp | i dk 3&*(1@,0)%
(2m) ]/ 22 (F)

0
xexp | 1 7d(k,0)m ,

v(2m)? 1]/ 22 (F)

where the integral on the first line should be understood as the principal value.
Thus Sig, under rather general circumstances, converges to 1.
4.2.7 Current produced by a travelling particle

Consider a classical particle travelling along the trajectory ¢t — #(t) with a
constant profile ¢(Z). Then its 4-current equals

i)
J(t, %) = q(F - y(t))(l T)
Assume that §(t) = to™= for £¢ > 0. Then
Jh(k) = / JH(t, e~ FEHR qpqy

i(1,7, )" i(1,7_ )" .
_ _u( +).+x( )' o(F)
kvy — k0 —i0  kv_ — k0410

. -,
iply ip? -

p— —_— k
( kp+iO+kp_+iO) a(k),
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where pi = \/ﬁ(l, @ﬂ:)

Consider photons of mass m > 0 coupled to the 4-current J#. Similarly as
in Subsubsect. 2.2.12, we define the scattering operator Sgr, by replacing

/ %J“(k)DW(k)J”(k)

n (4.23) with
Im/%(ﬂ‘( D, (k)J (k). (4.24)

(4.24) is infrared divergent if m =0, [ ¢( q(% T)dZ # 0 and v, # U_.

We could try to justify the use of SGL similarly as in Subsubsect. 2.2.12,
by introducing the Gell-Mann-Low adiabatic switching. This justification is
adopted by many physicists, eg. [31]. One could criticize this approach, since
after multiplying by the switching function e ¢t/ the 4-current is no longer
conserved. Therefore, as indicated above, we prefer to define the scattering
operator Ser, simply by removing the (typically infinite) phase shift.

4.2.8 Energy shift

Suppose that the 4-current is stationary and is given by a Schwartz function
R? 5 7 JH(T) with divJ(Z) =
The Hamiltonian is given by

o= [ar(GE@ - %(*A@))ﬁf(f)ﬁ’(f)):

d#diJ%(Z) ——=——= J°(%).
// Y 4| —yl @)

By (A.14), the infimum of H is

-

= —7//dxdny 47T\x—y|J(y)
0

— =17 70( 7 7
= //dxdyJ <x>4ﬂ|f_g|J @).

4.3 Alternative approaches
4.3.1 Manifestly Lorentz covariant formalism

So far, our treatment of the Maxwell equation was based on the Coulomb gauge,
which depends on the choice of the temporal coordinate. One can ask whether
massless vector fields can be studied in a manifestly covariant fashion.

Let = be an arbitrary space-time function. The Maxwell equation allow us
to impose a generalized Lorentz condition

9, A" = 2. (4.25)
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The Maxwell equation together with (4.25) imply
—0AF = —JH 4+ OHE. (4.26)

The function = has no physical meaning. Therefore it is natural to adopt the
simplest choice Z = 0, that is the usual Lorentz condition, for which (4.26) reads
—0A* = —J*. We will discuss this approach in what follows. For simplicity,
we will limit ourselves to free fields.

4.3.2 The Lorentz condition

Recall that the Proca equation is equivalent to the Klein-Gordon equation for
vector fields together with the Lorentz condition. Therefore, one can first de-
velop its theory on the symplectic space Vyec, and then reduce it to the subpace
YLor, as described before.

One can follow a similar route for the Maxwell equation. However, there is
a difference: the reduction by the Lorentz condition is insufficient, one has to
make an additional reduction.

Anyway, let us start as described in Subsubsect. 3.3.1 by introducing the
space Vyec, the form wyec, the subspace Vi or, the 4-potentials Au(x), Hu(m) =
A, (x), where now m = 0.

In the massive case YVr,o, was symplectic (that means, the form wye. restricted
to Vror was nondegenerate). This is no longer true in the massless case. Instead,
the following is true.

Proposition 4.2 Y. is coisotropic. That means, if C is symplectically orthog-
onal to Yior, then ¢ € Vior.

Proof. Using —009, A"(x) = 0 we see that, for any fixed ¢, we can replace

9, A (z) =0 (4.27)

with
0 = 8,4t 7) = (—11° + 8;A)(t, T), (4.28)
0 = 9,01"(t,7) = (—AA° + 9, A")(t, 7) (4.29)

as the defining conditions for YVi,;. Vi is coisotropic iff

{0,A"(t,2),0, A" (t,9)} = 0O, (4.30)

[0I1(2), 9,1 (1,70} = 0, (431)
{0, A4 (t,2),0,11*(t, )} = O. (4.32)
It is clear that (4.30) and (4.31 are true. To see (4.32) we compute:

{0, A"(t, %),0,11" (t,9)}
= Ayo(& — ) + 07,050 —§) = 0.

YLor is a subspace of Viiox and on Vi, the forms Wi and wyee coincide.
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Proposition 4.3 Any ¢ € YV is gauge equivalent to an element of YVior-

Proof. We can find smooth functions &, and £_ such that

OuC =&+ + &,

&_ is past space compact and & is future space compact. By using the advanced
and retarded Green’s functions we can solve

_DX* :gfa _DX+ :§+a

where x_ is past space compact and x is future space compact. Then ¢, +0,x
belongs to Vyor. O

Therefore, the symplectically reduced )y, coincides with the symplectically
reduced Y, that is, with Vyax. This shows that both approaches to the
Maxwell equation are equivalent on the classical level.

4.3.3 Positive frequency space

Wéfr) will denote the subspace of C),,, consisting of solutions that have posi-
tive, resp. negative frequencies.

For g1, 92 € W](;r) we define the scalar product

(gl|92) = iglwvcc!h
— iggoulwvecggoul ] (433)

Note that the definition (4.33) does not depend on the choice of coordinates and
is invariant wrt. the group R x O'(1, 3).

The scalar product is positive semidefinite, but not strictly positive definite.
Let ngj)_r),o be the subspace of elements WI(j)_B with a zero norm. Using Prop.
4.1 we see that WIEj)_r),O consists of pure gauges. The factor space WI(:;) / WI(JXO
has a nondegenerate scalar product. Its completion is naturally isomorphic to
the space Zyax, which we constructed in Subsubsect. 4.1.6.

We have a natural identification of )i, with WIS;) given by the obvious
projection. For ¢ € Yo we will denote by ¢(*) the corresponding element

of WI(;B This identification allows us to define a positive semidefinite scalar
product on Vyer:

(Gle)y = Re(¢;”16")
= //Clcloul(o,f)(_l)D(+)(0,f_ g)C%OUI(O,ﬁ)dfdg’

4 / / (oM (0, 7)(~Az) (—1) D) (0, 7 — FCSM(0, §)dzd.
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4.3.4 “First quantize, then reduce”

One can try to use the symplectic space Vyee of real vector valued solutions of
the Klein-Gordon equation as the basis for quantization. In the literature, this
starting point is employed by two approaches.

The first, which we call the approach with a subsidiary condition has the
advantage that it uses only positive definite Hilbert spaces. Unfortunately, in
this approach there are problems with the 4-potential A“(x). Besides, the full
Hilbert space turns out to be non-separable.

In the Gupta-Bleuler approach the 4-potentials A"(x) are well defined and
covariant. Unfortunately it uses indefinite scalar product spaces.

4.3.5 Quantization with a subsidiary condition

The quantization of the Proca equation described in Subsubsec. 3.3.6 is prob-
lematic in the zero mass limit. If m = 0, we cannot use the Hilbert space (3.55)
for the quantization, since it is not well defined.

However, the C*-algebraic formulation survives the m ~, 0 limit. In par-
ticular, the (Weyl) C*-algebra of canonical commutation relations over Yyec,
introduced in (3.57) and denoted CCR(Vyec), is well defined also for m = 0 and
is invariant wrt the Poincaré group.

Strictly speaking, the spaces Jye. and hence the algebras CCR(Dyec) are
different for various m. If we fix a Cauchy subspace we can identify them by
using the initial conditions.

Recall that in the massive case

(AR = (€10 + 5 @ucH10C") . (134

Recall that ¢ € Vo iff 9,,¢* = 0. Therefore, in the limit m N\, 0,

+OO; C € yLor-
So, the following state on CCR(Jyec) is the limit of the state (3.58) for m \, 0:

1
B(W(©Q) = {g"p( $C10). g Ziﬁ

QIA)*Q) = {<C|C>y7 ¢ € Viors

Let (Hy, Ty, Qy) denote the GNS representation for this state. We can
identify
J: qu —1? (yvcc/yLor; FS(ZMax)) . (435)

To describe this identification, first note that Vyec/VLor can be parametrized by
smooth space-compact functions

E = 0u¢",
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which can be called the values of the Lorentz condition. For each = choose
(g € Vvec such that 9,¢E = =. We demand that

(Jmu(W(e)2) ) = {

Then J is given by

Qv a}tCM =g,
0, (" #£E.

e%vaecCEeiA((g_CE))Qa It =
0. OuCh #

Note that H, is non-separable — it is an uncountable direct sum of superselection
sectors corresponding to various values of the Lorentz condition. All these
superselection sectors are separable.

Special role is played by the (separable) subspace (superselection sector)
corresponding to the Lorentz condition Z = 0. We can choose (=—g = 0 and
thus this subspace is naturally isomorphic to I's(Zmax) with the fields obtained
by the usual quantization obtained by the method “first reduce, then quantize”.

Note that 7y (W(¢)) maps between various sectors of (4.35) if ¢ & Vior. The
unitary group R 3 ¢ — my, (W (¢(€)) is strongly continuous if and only if ¢ € V.
If this is the case, we can write 7, (W (¢)) = ¢4(). We have A((¢1) = A((¢2))
if in addition ¢; differs from ¢ by a pure gauge. A((¢)) is ill defined if ¢ & Vpor.

To my knowledge, the approach that we described above, restricted to the
Oth sector, was essentially one of the first approaches to the quantization of
Maxwell equation. It is typical for older presentations, eg. [27]. However,
without the language of C*-algebras it is somewhat awkward to describe. One
usually says that the Lorentz condition GMA“(QU) = 0 is enforced on the Hilbert
space of states and constitutes a subsidiary condition.

([

(Jmy (W(C)) ) (B) = {

4.3.6 The Gupta-Bleuler approach

The Gupta-Bleuler approach follows the same lines as in the massive case until

we arrive at the algebraic Fock space built on Wﬁir) . As we know, the scalar

product on W](;r) is only semidefinite. We factor WI(:;) by the null space of
its scalar product, obtaining Wls/;)x We complete it, obtaining Zp.« and we
take the corresponding Fock space I's(Znyax) — this coincides with the usual
quantization.

Equivalently, we can take the (algebraic) Fock space over WIE;) It has a nat-
ural semidefinite product. We divide by its null space and take the completion.
Again, the resulting Hilbert space can be naturally identified with T's(Zpax)-
5 Charged scalar bosons

In this section we consider again the Klein-Gordon equation

(=0 + m?)Y(z) = 0. (5.1)
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This time we will quantize the space of its complezr solutions.

The formalism used in physics to describe complex fields, and especially to
quantize them, is different from the real case, therefore we devote to it a separate
section.

The advantage of complex fields, as compared with real fields, is the possi-
bility to include an external electromagnetic 4-potential A(x) = [A¥(z)] and to
consider the equation

(= (@ +i4,(2)) (9% + 1A (@) + m?) () = 0.

5.1 Free charged scalar bosons
5.1.1 Classical fields

Wk will denote the space of smooth space-compact complex solutions of the

Klein-Gordon equation
(=O+m*¢=0. (5.2)

(In the context of neutral fields, it was denoted CYkq, because it was an aux-
iliary object, the complezification of the phase space Yxg. Now it is the basic
object, the phase space itself).

Clearly, the space Wkg is equipped with a complex conjugation ¢ — ¢ and
a U(1) symmetry ¢ v €9¢, 6 € R/27Z = U(1).

If T is a real linear functional on W, then we have two kinds of natural
complex conjugations of T

(TIC) = (T10),  (T"]¢) = (T[C)- (5:3)

Both maps T + T and T ~— T* are antilinear. When restricted to the real
subspace Yikg C Wka, the functionals T and T* coincide.

A special role is played by complex linear functionals on W. The space of
such functionals will be denoted W#. If T € W#, then T € W#, unlike T*,
which is antilinear.

In the neutral case a crucial role was played by the conserved 4-current
Ju(C1,¢2), where ¢1,¢2 € Vka; see (2.10). In the charged case we will use its
sesquilinear version defined on Wkg:

3G G2 m) = 0G(@)Ca(r) — Gi(2)0" G2 (). (5-4)

If we decompose elements of Wik into their real and imaginary part ¢ = (g +i(J,
then the real part of the 4-current splits into a part depending on (g and on (;:

Rej“(?lv <27 LC)
= 9"(r1(z)Cr2(z) — Cr,1(2)0"(R,2(2)
+0" (1 (2)Cr2 (@) — (1 (2)0" (2 ().
Thus Wk can be viewed as the direct sum of two symplectic spaces with the

form B
ReC w(a = (r,1wCr 2 + (11w 2.
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For z € R, one can introduce the fields ¢r(z), ¢1(z), mr(z), m(x) as the
real linear functionals on Wgkq given by

(#r(@)[C) == Re¢(z),  (¢1(2)|C) := Im((2), (5.5)
(mr(2)[C) = ReC(x),  (m(2)|¢) := Im((). (5.6)

Clearly, we have the usual equal time Poisson brackets (we write only the non-
vanishing ones):

{¢R(t7f)77TR(tﬂ 37)} = {¢I(t7f)77rl(t7g)} = 5(5_ 37) (57)

In practice instead of (5.5) and (5.6) one prefers to use complez fields i (x),n(z) €
W# defined by

! @) = —C(@)

BE@IO =25, @ @) = @),

1 . . _ 1 —

(@)0) = lw). @0 = l)

Clearly,
W) = \%(sim(x) Ligi(a), t(x) = %(d)a(:v) i),
n(x) = %(mm Lim(z), 1°(z) = %(WR@) = im(a)).
Note that

vl7) = [ D7~ DuO.047+ [ D7 - Pn©.005 (65)
The only non-vanishing equal-time Poisson brackets are

{w(t7 f)v 77* (t, 37)} = {W (t, 5)7 ﬂ(ta 17)} = 6(5 - g) (59)

Using (5.8) we obtain

v(y)} = 0,
{v(z),v"(y)} = D(z—y).
5.1.2 Smeared fields

We can use the symplectic form to pair distributions and solutions. For { € Wkg
the corresponding spatially smeared fields are the functionals on Wkg given by

W) = %pr,
W (C)lp) = %w, p € Wi
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Equivalently,

Note that

{((6), v()} = ¥ (G), v* ()} = 0,
{v(¢), " ()} = Cwé.

We can also introduce space-time smeared fields. To a space-time function
f € C=(RY3,C) we associate

f@)y(x)de,

<
=
i
—
K.ﬁ

i) = [ few s
Clearly,
(WLALOLLT = (0 (A o [R)) =
WAL e = / [7@ (y)dady,

Ylfl = =D+ ), &*If] == (D * f)).

5.1.3 Lagrangian formalism

In the Lagrangian formalism we use the complex off-shell fields ¥ (x) and ¥*(x)
as the basic variables. We introduce the Lagrangian density

L(z) = —0u*(x)0"P(z) — m**(2)v().
The Euler-Lagrange equations

oL oL
1
50, =0, OyL— 8“81/)“ 0 (5.10)

yield (5.1). The variables conjugate to 1 (x) and ¢*(z) are

Oy L — Oy

oL

n(z) = Do) Q" (z),
oL
n(z) = m = 0ot ().
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5.1.4 Classical 4-current

The Lagrangian is invariant w.r.t. the U(1) symmetry ¢ ~ e~%y). The Noether
4-current associated to this symmetry is called simply the 4-current. It is

7o) = (5@ G~ G i)

= (0" (@) (x) — 9" (@)0" ().
It is conserved on shell and real:

OuJ*(z) = 0,
JH(z)" = J"(x).

Up to a coefficient, it coincides with (5.4) viewed as a quadratic form:

(TH@I0) = LHC )
= %(8“{(%)((90) - C(w)@"((m)).

The 0th component of the 4-current is called the charge density
Q(z) := J°() = i(—n"(x)¢(x) + ¢* (x)n(x)).

We have the relations

(t,g)} = 0. (5.11)
The (total) charge
Q :z/Q(t,f)df

is conserved (does not depend on time).
For y € C®(R3,R), let o, denote the x-automorphism of the algebra of
functions on Wxkq defined by

ay (¥(0,7)) = e XDy(0,7),

ay(n(0,%) = e XFy(0,7). (5.12)
Obviously,

a (¥*(0.7) = XPy(0,8),

oy (n*(0,7)) = X@p*(0,7). (5.13)

(5.12) is called the gauge transformation at time ¢t = 0 corresponding to x. Set

Qly) = / (3000, 7)d7. (5.14)



Q(x) generates the one-parameter group of gauge transformations R 3 s — Qsy
(5.12). In other words, for any classical observable B (a function on Wkg))

8SaSX(B) - {asx(B)aQ(X)}a
an(B) = B.

5.1.5 Stress-energy tensor

The Lagrangian is invariant w.r.t. space-time translations. This leads to the
stress-energy tensor

0L o 0L

T’ V@) IV @55 o
Oy (@) () + O ()0 ()

g™ (B (@)0°0(x) + m2 (@)(a))

T (z) + 9" L(x)

It is conserved on shell

8, T" () = 0.

The components of the stress-energy tensor with the first temporal coordinate
are called the Hamiltonian density and momentum density. We express them
on-shell in terms of ¥ (x), ¥*(x), n(x) and n*(x):

Hr) = T() = 0 (@)nle) + 56" (@0)Fh(e) +m*o* () (o),
Pie) = TO@) = —(2)0(x) — 0" (@n(a).

—

H(z) and P(z) acting on ¢ € Wk yield

H@IO) = K@+ 106w + o l@)P,

Pl = 5@ - 500@)).

We can define the Hamiltonian and momentum
H:/H@@M,ﬁ:/ﬁ@@m

H and P are the generators of the time and space translations. The observables
H, P, P, P; and @ are in involution.

5.1.6 Diagonalization of the equations of motion

Recall that in the neutral case the generic notation for the energy-momentum
was k. The on-shell condition was k2 + m? = 0, k° > 0. In other words,

KO =e(k) = VE2 + m2.
In the charged case, following [17], it will be convenient to use different letters
for the generic notation of the energy-momentum. In the charged case, the
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energy-momentum will be denoted generically by p with the on-shell condition
p?> +m? =0, p° > 0. We will also use a different letter for the energy: E(p) :=

\/P? +m?2. In other words, p = (E(p), p).
Define
/ P(t, £)e P7dL,

n(p) = /n(t,f)e*iﬁdf.
Clearly, the only nonvanishing Poisson brackets are

(@), ()} = i (@), (@)} = (2n)°0(F - 9).
The equations of motion are
1/.&(15&) = m(P),
1) = —B*@)(p).

For on-shell p € R define

¥e(P)

ar(p) = \/(;T)g( E;mwtﬁH QE(mn(tﬁ))
i) = s (V5 en - ),
bi(p) = (;T)g( Eémzb*(t,ﬁﬂ 2;@17 (t,ﬁ))7
i) = s (Y Ee ) - e ).

We have the equations of motion

ar(p) = —iE(@)ai(p), ét(p) = —iE@)bi(p),
ai (p) =iE(P)ai (p),  bi(p) =1iE(P)b; (p).

We will usually write a(p), a*(p), b(p), b*(p) instead of ag(p), af(p), bo(p), b§(p),
so that

a(p) = /

E@) i
2 2E(p)

(

(\/E;% Zg@m)em "
(P

(

E(p)
2

S
Il
—_— — —

——%(0,7) — \/—ﬁ)n



a(p) = e Pa(p),  bi(p) = e FP(p),
ai(p) = FPa*(p), b (p) = TPV (p).

The only non-vanishing Poisson bracket are
{a(p),a”(p)} = {b(p),b"(p)} = —id(p'— p).

We have the following expressions for the fields:

dﬁ eip:ra efip:c *
/(%)3 S5 (€™ a(p) + e 77b"(p)) ,
— APV E[D) vV E(®) ipT (0 o ipT
@) = [ G (€™ a(p) — e Pb"(p)) -

We have accomplished the diagonalization of the basic observables:
[ E@ (@ Date) + 5 @b(w)
Bo— [ dpla’ w)ale) + 5 (0)().

[ a#ta* @)ato) b 1)

Every ¢ € Wkg can be written as
_ dp
V (2m)2/ E(p)

Note that the plane wave functional a(k) of the neutral case is slightly different
from its counterpart a(p) of the charged case. The former acts on the real space
Ykc and the latter on the complex space Wkg, but the latter is not simply
the complexification of the former — compare (2.33) and (5.15) and notice the
absence of v/2.

H

Q

(@) (¢ (a®)I€) + 7 b (P)IC))- (5.15)

5.1.7 Plane waves

In the charged case we use almost the same plane waves as those introduced
in the neutral case in (2.30). There are three differences: the generic notation
for the energy-momentum is now p, plane waves with a negative frequency pO
are now on the equal footing as those with a positive frequency, and there is a
factor /2 is missing in the denominator. Thus for p € R3 with p> + m? =0

we define 1
T = —eim. .16
(z[p) T VB (5.16)

Let p°, p > 0. We have

\
[=)

i(—plwlp’) = i(—plw|p’)
—i(=plw| =) = i(plwlp’) = 25(p—p").

136



a(p) and b(p) can be called plane wave functionals:
alp) = 7 (),
b)) = sl - ).

V2
Thus for every ¢ € Wig we have
elld) = Slplc, (517)
BEl = —5(-plc (515)

5.1.8 Positive and negative frequency subspace

When we discussed neutral scalar fields we introduced positive/negative fre-
quency spaces, which in the notation used in the charged case can be defined
by

Wil == {9€Ckc : (plwg=0, p° <0},
Wid =W = {9€Cka : (lwg =0, p° >0}
Every ¢ € Wkga can be uniquely decomposed as ¢ = ¢((H) + ¢(2) with (&) ¢

+
W)
We equip WI(;&) with the scalar product

3 7ui? = [l awId s 619

G716 = g

We set ZI({E;) to be the completion of W(+) in this scalar product. By (5.17),

(a(P)¢™) = (pIc™).

ZI(:E;) can be identified with L?(R3) and (5.19) rewritten as
@) = [ elded )

Instead of WI(;G) for quantization we will use the corresponding complex

conjugate space denoted WI(<_G) and equipped with the scalar product

(=) =) L=, = - N7
@R = 5 edT = ool emId e 620
We set ZI((G) to be the completion of W}(@) in this scalar product. By (5.18),
_ —=(=)
b)) = (=plC ).
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ZI((G) can be identified with L?(R3) and (5.20) rewritten as
=) 5() s o R S N
@7 = [ G s

Note that W}(<E;) = WI(jG), where we use the usual (internal) complex conju-
gation in Wgkqg. Therefore in principle we could identify ZI(<_G) and ZI(:E;) This
identification will be important for the definition of the charge conjugation.
Normally, however, we treat ZI((E}) and ZI(;E;) as two separate Hilbert spaces.

RY3 % O7(1,3) acts on 24 and Z(J in a natural way.

5.1.9 Quantization

In principle, we could quantize the complex Klein-Gordon equation as a pair of
real Klein-Gordon fields. However, we will use the formalism of quantization of
charged bosonic systems [15].

We want to construct (H, H, () satisfying the usual requirements of QM
(1)-(3) and an operator valued distribution

R 32— o)(z) (5.21)

satisfying, with 7(z) := ¢ (x),
(1) (=0 +m?)(z) = 0;

(2) the only non-vanishing 0-time commutators are
[:(0,8),77(0,5)] = 16(F = ), ["(0,8),7(0,9)] =16(F —5);  (5.22)

(3) (e, e~ = (a® +1,7);
(4) Qs cyclic for ¢ (z), P*(x).

The above problem has an essentially unique solution, which we describe
below.

We set - -

+ —
H:=T(Zxc ® Zxa)-

Creation/annihilation operators for the particle space ZI(JG) ~ L?(R3) are de-

noted with the letter a and for the antiparticle space ZI({G) ~ L?(R3) with the
letter b. Thus, for p on the mass shell, using physicist’s notation on the left and
mathematician’s on the right, creation operators for particles/antiparticles are
written as

‘() = a*(Ip). (5.23)
‘) = (-») (5.24)
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Q is the Fock vacuum. The quantum field is

7 — d—ﬁ eip:va efipzA*
6@ = [ o e (i) - 0)
~ dﬁ E(ﬁ) ipT A —ipx 1%

i(a) s () — e ().

The quantum Hamiltonian, momentum and charge are

o= [ (& wae) + b @) B (5.25)
P [ (@ 0i) + b o)) 55
Q = /(&*(p)d(p)—l;*(p)g(p)) dp.

Equivalently, for any ¢

A = / (i (6 @), 7) + B (L DT T) + 20 (1, B, 7)) dF,

P = / (=0 (6, DT, 7) - 3 (4, Dyt D) ) a7,

O = i / (7" (1 @) @) + 9 (1 (e, 7))

Thus all these operators are expressed in terms of the Wick quantization of their
classical expressions.

Note that the whole group R'3 x O'(1, 3) acts unitarily on H by U(y, A) :=
Do) @ (o ). with
T(y.A) 2 QL T(y.n) 200 wi

Moreover, R X R X
[(@), v*(y)] = —iD(z —y), [¥(z),(y)] =0.
Note the identities
Q@) (1)) = —iDM(z—y),
(QUT (W ()" ())) —iD*(z — y).
For f € C*(RY,C) we set

=
=
I

[ Tt
[ 1@ @

<
*
)
Il
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We obtain an operator valued distribution satisfying the Wightman axioms with
D =Tz o 2()).
For an open set O C RY3 the field algebra is defined as
LA LA "
§(0) = {exp (W f] +101]) ¢ feCE(O,0)} .

The observable algebra 24(O) is the subalgebra of F(O) fixed by the automor-
phism A .
B @ Be 100,

The algebras F(O) and A(O) satisfy the Haag-Kastler azioms.

5.1.10 Quantum 4-current

Let us try to introduce the (quantum) 4-current density by

Tra) = (0 @)le) + D) ()
0 (@)0"(x) — 0" b(a)" (). (5.26)

In Subsubsect. 5.2.6 later on we will introduce a certain unitary operator C
called the charge conjugation satisfying CQ = Q, CJ#(z)C~1 = —JH(x). The
existence of such C' implies

(Q|T"(2)) = 0.

Therefore, (5.26) can be replaced with the following equivalent definition:
JH@) = i (0 @)i(e) — @) () ) - (5.27)

Thus J*(z) can be defined both as the Weyl quantization (5.26) and the Wick
quantization (5.27) of the corresponding quadratic classical expression.
Formally, we can check the relations

8"ju(ac) = 0,
Ty = J"().
In particular, we have the (quantum) charge density

Q) := J°(x) = i:(=* (@)d(2) + ¢~ (2)i(x)):

with the relations

[Q(t, @), d(t,7)] = —(t, P~ ),
[: (t7f)77?(t7 = 77?@77])5(1?7 g)»
[Q(tvf)’ Q(tvzj)] = 0 (5.28)



Similarly, as in the classical case, for y € C°(R3 R), let o, denote the cor-
responding gauge transformation at time t = 0 defined as the x-automorphism
of the algebra generated by the fields operators satisfying

a($(0,7) = e XDP(0,3),

ay (7(0,2) = e X@p(0, 7). (5.29)
Obviously,

O‘X(&*(va)) = eiX(f)QZJ (Oaf)v

a(@*(0,7) = (0, 2). (5.30)

Assume that x # 0. Let us check whether «, is unitarily implementable.
On the level of annihilation operators we have

L (alp / / <\/ \/ ) dmdp; AP —DT—iex(@ ()
)

Let ¢, (p, p1) denote the integral kernel on the second line above. By the Shale
criterion (Thm A.2), we need to check whether it is square integrable. Now

(EE) e

mnwmum+w> |
(E() + E(p1))VE®E@D)

After integrating in & we obtain fast decay of ¢, in p'+ p1, which in particular
allows us to control the term |p| — |p]. We obtain

C
0, )2 dp ~ ==,
/Iq(p p1)["dp B2

which is not integrable. Thus «, is not implementable.
Formally, if we set

Q00 = [ x(@®8.7)dz. (53
then e¢Q() implements the gauge transformation:
aX(B) — 0€Q(0) Bo—1eQ(X)

But we know that a,, is not implementable. Thus for nonzero x (5.32) cannot
be defined as a closable operator.
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However, the (quantum) charge

Az/Q(tfdf

as we have already seen, is a well defined operator
For further reference let us express the charge and current density in terms

of creation and annihilation operators:

o -1 5[5 )
pl

)a(p2) — P T2 ()b )

X (eﬂwm +1zp2

dp1 dpz E(py)
E(p2)

)+ empl+‘mb<p1> (v2)).

( e 1:vp1 la?pg&* pl

P dp1dpa .
i@ = | [ ey Q)E(ﬁ)@ﬁm)
x (=TI (py)a(pa) + P TP ()b )
| | e rema
2(2m)3\/E(p1) E(72)
x (~emm “””(pl)l;( 2) + P )a(py) )
5.1.11 Quantization in terms of smeared fields

An alternative equivalent formulation of the quantization program uses smeared
we look for an antilinear function

fields instead of point fields. Instead of (2.38)
Wia 3 ¢ = 9(Q)

with values in closed operators such that
(1) W) 97 (@)] =it WG P[] =

(2) (o 50) = TR
(3) Q is cyclic for the algebra generated by ¥((¢)), ¥*((¢))-

3
One can pass between these two versions of the quantization by

9(0) = [ (<ieDi.7) + T ) di (53
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5.2 Charged scalar bosons in an external 4-potential
5.2.1 Classical fields

Let us go back to the classical theory. Let
RY3 5 2+ A(x) = [A*(z)] € RM® (5.34)
be a given function called the (external electromagnetic) 4-potential. In most of
this subsection we will assume that (5.34) is Schwartz. The (complex) Klein-
Gordon equation in the external 4-potential A is
(=(Bp + ieAu(@)) (0" + ieA™(2)) + m?2) (x) = 0. (5.35)
If 9 satisfies (5.35) and R'3 3 x — x(x) € R is smooth, then e~'°X¢) satisfies
(5.35) with A replaced with A + J.
In this subsection, the field satisfying the Klein-Gordon equation with A =0
will be denoted ;.
The retarded/advanced Green’s function is defined as the unique solution of
(—(0, +ieA,(2))(0" + ieA"(x)) +m?) DF(z,y) = 6(z — y) (5.36)
satisfying
suppD* C {z,y : =z € JE(y)}.
We generalize the Pauli-Jordan function:
D(iﬂ,y) = D+(.’E,y) - D_(l',y)
Clearly,
suppD C {z,y : =z € J(y)}.
The Cauchy problem of (5.35) can be expressed with help of the function D:

v = = [ 0D E 87,00 (5:7)

+ | D6F0,§)%(0,9)dg.
We would like to introduce a field R3 > z +— () satisfying (5.35). As we
will see shortly, the conjugate field is
n(z) := 0ot (x) + ieAo(z)¢(z).
For definiteness, we will assume that ¢ (z), n(x) act on Wkg and at time ¢t = 0
coincide with free fields:

¢(0,f) = wfr(o,f)v

77(075) = nfr(oaf)'
This determines the field v uniquely:
wed) = = [ 0D(F 5|yt 0.707 (5.39)

+ s D(ta fa 0; ?7) (nfr(ov ?j) - ieAO(Oa :J)wfr(oa g)>dg

143



5.2.2 Lagrangian and Hamiltonian formalism

Consider the Lagrangian density
L(x) = —((9“ — ieAM(.Z‘))’(/J*(ZE) (6” + ieA“(x))w(x) — m2y*(z)Y(x).

The Euler-Lagrange equations (5.10) yield (5.35).
Let us introduce the variable conjugate to *(x) and ¢ (x):

oL

77(55) = W = 80¢(x) + ier(w)w(w%
n(z) = ébifw)5b¢ﬁ(x)ier(x)¢#(xy

We introduce the Hamiltonian density

Hir) = ggggwm ) - £
= e >+1er< ) (@ (@)n(e) — " (2)(a))
(0 — ieAi(@) (@) (3, + ieAy(z))b(z) + mPe* (@) (z)
o (@)n(e) + 0 (@)d(a)
Fiedo(w) (B (@)n(e) - n* (@)b(e)) — iedi(x) (6" (@)0b(z) — B (@)(e)
(

n
+e? A(w) 2" (2)v(x) + m*P* ()1 (@)

:/H@@M

can be used to generate the dynamics

O(t,7) = {ot,2), Ht)},  0(t.7) = {n(t,7), H(1)}.

The interaction picture Hamiltonian can be partially expressed in terms of
the free 4-current density:

aﬁ(x)

The Hamiltonian

Huat) = [ d7(eAu . 2)70(. ) + At 2050700 (6.

(5.39)

Il
o
81
/ /\

)
b
=)
—
ﬂ@t-
5
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v@&-
&
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(e )
X (Ao(t,ﬁl — Do) EEITE®R) 0% (1 a(py) — Ao (t, —p1 + Pa)e 1tE(ﬁl)JritE(ﬁ?)b(pl)b*(1?2))
/ /dpldpz < \/ Epl) \/E(p})
E(py) E(py)
% (Aoft, i + p)e FIIHEE) o ()b

dpldpz
(pl + P2)
// 27T (pz)
x (At — o) ‘tE@l)-“E@z)a*(m)a(pz)+ff<t, i+ ) PP ()b ()

5[/ dpld”z 51~ )
2m)2\/E (1) E (p2)
><( Alt, p1+pz)elt”m”ﬂ(m)a*(pl)b*(m)+E(t7 i — F)e ) HEE)(py)a(py)

(p2) — Aot —271—ﬁz)efitE(ﬁl)fitE%)b(Pl)a(m))

/ / dp1dp>

)*/E@p) VE(p?)
x (A2(1 = 7o) PP P (py)a(ps) + A2(~ i + Fo)e P THEE ()b ()
A2 + ) PP ET) " (51 )b () + AP (i — Fo)e M EP)HEEp(p )a(py) ).

5.2.3 Classical discrete symmetries
If ¢ solves the Klein-Gordon equation with the

Choose ¢ € C, [€c] = 1.
—A. Thus replacing

4-potential A, then so does £¢¢ with the 4-potential
Y(z), " (x), Az)
with  £ov"(2), Ecp(x), —A(x)
is a symmetry of the complex Klein-Gordon equation with an external 4-potential

(5.35). It is called charge conjugation and denoted C
Choose &p € {1,—1}. Recall that P(z°, %) := (2°, —%) denotes the space

inversion. Replacing
(@), 9" (@), (Ao(w), A(x))
with  Ep(Pa), Epy™ (P), (Ao(Pa), —A(Px))
is a symmetry of (5.35) called parity and denoted P.
Choose &7 € C, [ér| = 1. Recall that T (20, %) :=

= (—2°, %) denotes the time
reflection. Replacing

Y(@), " (@), (Ao(x), A(x))
with  €p9"(Tx), &r)(Tx), (Ao(Tx), —A(Tx))

145



is a symmetry of (5.35) called time reversal and denoted 7. B
The composition of C, P and T has an especially simple form if £ &pér = 1.
It consists in replacing

Y(x), " (x), Az)
with 7/)(_93)’1/)*(—33), —A(—Jf)
It is called the CPT symetry and is denoted X.
C, P, T and X commute with one another and we have the relations

CC=Pl=T?=Xx=id.

5.2.4 Quantization

We are looking for a quantum field satisfying
(— (0, +ied,(2))(0" +ied*(x)) + m?) P(x) = 0. (5.40)

We set X R
(@) := Gotp(x) +ieAo(x)¢ ().
We will assume that ’(/AJ, 7 act on the Hilbert space of free fields

+ -
T(25d @ 2id),
and at time t = 0 we have

¢(f) = w(07f) = wfr(oﬁf)a
ﬁ(f) = f](oaf) = ﬁfr(ovf)'
The solution is unique and is obtained by decorating (5.38) with “hats”.
We would like to ask whether the quantum fields are implemented by a
unitary dynamics. Equivalently, we want to check if the classical dynamics
generated by Hiy(t) satisfies the Shale criterion (Thm A.2).
By following the discussion of Subsubsect. 2.3.4 we check that the classical
scattering operator is unitarily implementable.
The Shale criterion is satisfied for the dynamics from ¢_ to ¢, iff the spatial
part of the 4-potential is the same at the initial and final time:

Alt,, @) = A(t_, &), TeR> (5.41)

To see this note that Hy,(t) consists of three terms described in (5.39).

The term GQA'(t,f)z’lp%kr(t,f)'ll)fr(t,f) is very similar to the mass-like pertur-
bation considered already in Subsubsect. 2.3.4, which did not cause problems
with the Shale criterion for the dynamics for any ¢, ,¢_.

The same is true for the term eAg(t,Z)Qn (¢, Z). Indeed, a similar term
was discussed before in the context of gauge transformations, see in particular
(5.31). Then there was a problem with the square integrability. But now we
can integrate by parts, which improves the decay.

The term eA(t, ) T (t, &) is problematic — it has worse behavior for large mo-
menta then the previous two terms. The integration by parts creates a boundary
term that is not square integrable unless (5.41) holds, when it vanishes.
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5.2.5 Quantum Hamiltonian

Formally, the fields undergo a unitary dynamics given by

U(t, T) := Texp <i /t ' ﬁ(s)ds) (0, Z)Texp (i /O t ﬁ(s)ds> ,

where the Schrodinger picture Hamiltonian is

+H(0i — 1eA;(t, B))0* (F)(0; + ieAi(t, 7)) (F)
+m%*(f)¢3(f)). (5.42)

Note that the above Hamiltonian is formally the Weyl quantization of its corre-
sponding classical expressions. This is perhaps not obvious the way it is written.
To see this we should note that equal time 1& and 1&* commute, the same is true
for equal time 7 and 7%, finally the mixed term can be expressed by the 4-current
where the Wick and Weyl quantizations coincide, see Subsubsect. 5.1.10.

In any case, the analysis of the previous subsubsection shows that the above
Hamiltonian is often ill defined and should be understood as a formal expression,
even when we try renormalize by adding a constant C(t). We will need it to
develop perturbation expansion for the quantum scattering operator and to
compute the energy shift.

(5.42) can be compared with the free Hamiltonian without the Wick order-
ing, which differs from (5.25) by an (infinite) constant:

f = [ 45(i @@ + 0 @0G(@) 4w @)0(D)). (543)
This leads to the following interaction picture Hamiltonian:
Fun) = [ A7(cAu (2T ) + A6, 2)50,7)0(0,)
_ / A7 (Au(t, B)TE (1, E) + Al B0 (¢, 7)1, 7)
+e2A0(t,az')%g(t,fwﬁ(t,f)). (5.44)

5.2.6 Quantized discrete symmetries

The discrete symmetries considered in Subsubsect. 5.2.3 remain true when we
decorate the fields with “hats”. Thus on the level of quantum observables the
discrete symmetries are the same as in the classical case.

A separate discussion is needed concerning the implementation of these sym-
metries by unitary or antiunitary operators on the Hilbert space I' (ZI(;E;) GBZI((_) ).
We will discuss this for free fields, that is, for A = 0. Free fields are used to com-
pute the scattering operator for the 4-potential A, denoted by S (A). Therefore,
our analysis will lead to some identities for S(A).
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First consider the charge conjugation. As we have already pointed out in
Subsubsect. 5.1.8, the spaces ZI(;E;) and ZI(<_G) can be naturally identified. There-
fore, we can define a unitary operator on Zf{g D ZI(Q})

X(91,92) = (fcgmgcgl)-

Clearly,

xlp) =¢écl—p), xI—p)=Eclp)-
We set C :=T'(x). We have C? =1, CQ = Q,

Cihp ()07 = Eetbi(x), CPi(x)C™" = Ectpu(a),
CQu(@)C" = ~Qa(e), CTnlw)C" = ~Tulx),
CS(A)C™! = §(-A).
Define a unitary operator on Zf(E) e Z (E)
7(91,92) == (§pg1 o P, Epga o P).
(The circle denotes the composition of two functions). Clearly,
7| E,p) = &p|E, —p), 7|—E,—p) =Ep|—E,p).

We have a natural implementation of the parity P := I'(r). It satisfies P% = 1,
PQ=Q,

Pifr(2) P~ = €pifi(Pa), Py (z)P~' = €pfi(Pa),
POy (2)P~ = 0n(Pz), PJi(x)P~! = —J(Px),
PS(A°, A)P~' = §5(A°oP,—AoP).

Define the following antiunitary operator on ZI(;E;) @ ZI((G):

7(91.9) = (érg1 0 T,&pg2 o T).

Clearly,
T|Eam = £T|E7 *p’)v T|7E7 7]7) = €T|7E717)'

Set T :=TI'(1). We have T? =1, TQ = Q,
Tiee(0)T ™" = Epdpiy(Ta), T (@)™ = Erdhee(T),

TOu(2)T " = On(Ta), THu(e)T~" = —Fu(T),
TS(A°, A)T~' = S(A°0 T, —AoT).
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5.2.7 2N-point Green’s functions

For yn,...y1,ZN, ..., 21, the 2N point Green’s function are defined as follows:

(@ () -+ B yn )bl -+ dlan)
= (T (@) ) aw) ) ) Q)

One can organize Green’s functions in terms of the generating function:

- Z / /N, B ()0 () blan) (o))

Xg(yl) - g(yn)g(an) - glz)dyr - dynday - - - doy
_ (Q’Texp (—i /_ o; i (£)dt — i / (@) bk (@)de — i / g(m)q&fr(x)dx> Q)

One can retrieve Green’s functions from the generating function:

(W (y1) - " (yn)d(an) - - ()

82N

dg(y1) -+~ 9g(yn)g(zn) - - g (1)

= (¥ Z(9.9))

We introduce also the amputated Green’s function

(W (P1) - ()P (N) - D (P1))
= () + ) (()? +m?) ((pw)? +m?) - ((p1)* + m?)
(7 (ph) - & (P )b (pw) - - (1))
Set
[=Dps ooy =P8 P -y p1) = B (D) - D (Ph)a (pn) -+ @7 (1)
One can compute scattering amplitudes from the amputated Green’s functions:
(=pih o opfan I8 py )
() - O (=p, ) (=P ) D

VERPITETETE  BEG) 2B (L) 2B L) 2B

where all pi©, pi’ are on shell.
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5.2.8 Path integral formulation

Since the Hamiltonian that we consider is quadratic, we can compute exactly
the generating function in terms of the Fredholm determinant on L?(R%3):

Z(9,9) (5.45)
= det (— O+ m?) (= (9, +ied,(2)) (0" + ieA" () + m* —i0) '

X exp <i§ (O + ieA, (2))(0" + ieA*(z)) + m? — iO)_1 g)
= det (]1 + (—ieA#(a:)a“ —ied"A,(x) + 62Au($)A“($)> ?r)_l
X exp (igD?r (]1 + (—ieAu(x)(’)H —ied" A, (x) + eZAu(x)AH(J:»Dfr) 19) )

Let us stress that the above formulas are based on the formal expression for
the Hamiltonian (5.44) where we used the Weyl quantization, in contrast to
the analogous formula (2.112) for the mass-like perturbation, which were Wick
ordered. The expression is to a large degree ill-defined.

Formally, (5.45) can be rewritten in terms of path integrals as

J 114" (2) 1Y (y) exp (i/ () — g@)p* (@) - g(e)e(x))dr)
Jmdy(y) 1 dw(y’) exp (i [ L (z)da) '

5.2.9 Feynman rules

Let us describe the Feynman rules for the charged scalar field in an external
4-potential. We have 1 kind of lines and 2 kinds of vertices. Each line has an
arrow. At each vertex two lines meet, one with an arrow pointing towards, one
with an arrow pointing away from the vertex. The 1-photon vertex is denoted
by an attached “photon line” ending with a small cross. The 2-photon vertex
has two “photon lines”, each ending with a cross. Note that the “photon lines”
are in this context only decorations of the vertices — there are no photons in
this theory. They are usually denoted by wavy, sometimes dashed lines. For
typographical reasons we use dashed lines.
To compute Green’s functions we do as follows:

(1) We draw all possible Feynman diagrams.

(2) (i) To each 1-photon vertex we associate the factor
ie(p) +p, ) A" (0" —p7).
(ii) To each 2-photon vertex we associate the factor

—ie*(A"A,) (" —p7).
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(3) To each line we associate the propagator
—iD§ (p) = S S
fr p2 +m2 —i0’

d4p

(4) We integrate over the variables of internal lines with the measure )T
It is immediate to derive the Feynman rules for charged scalar bosons from

the path integral formula (5.45).

The derivation of the Feynman rules within the Hamiltonian formalism using
the Dyson expansion of the scattering operator is relatively complicated, since
one has to use not only the two-point functions of “configuration space fields”

¥, *, but also of conjugate fields n, n* [26]:

(UT (e ()5 (1)) —iDg(x — ),

(QUT (e (2)05 (1)) = 100 D (2 — ),
(QUT(Wr(@)f(y))) = —i0y0 D (x —y),

(QUT (s ()71 (9))) = —10200y0 D (x — y) —i0(x — ).

X X X
/ \“ "I

@)
o-X

X 2
. 4
. 4
.

4
4

1,

¢ X
Figure 7: Diagram for Green’s function.

To compute scattering amplitudes with N~ incoming and N T outgoing par-
ticles we draw similar diagrams as for N~ + N*-point Green’s functions, where
as usual the incoming lines are drawn on the right and outgoing lines on the
left. The rules are changed only concerning the external lines.

(i) With each incoming external line we associate

1

e charged boson: e
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¥ X
Figure 8: Diagram for scattering amplitudes.

e charged anti-boson: ——-——.
& VEDREG)
(ii) With each outgoing external line we associate

1

e charged boson: Wk
w P

e charged anti-boson: WEP)
w Iz
5.2.10 Vacuum energy

Formally, the vacuum energy can be computed exactly:

£ = ilog(Q]5N) = ilog Z(0,0)
_ iTr(log (~O+m?—i0) — log (—(8M+ieAu(x))(&“—i—ieA"(a:))—&-mQ—iO))

= —iTr(log (]1 + (—ied, (z)0" —ied" A, (z) + eQAH(m)A“(x))Dgr))

A3 (5.46)

Here Dy is the value of the loop ¢ and ny is its symmetry factor. Any such a
loop is described by a cyclic sequence (o, ..., a,), where o; = 1,2 correspond
to 1— and 2—photon vertices. The symmery factor ny is the order of the group
of the authomorphisms of this loop. The loop is oriented, hence this group is
always a subgroup of rotations. In particular, if the loop has n identical vertices,
the group is Z,, and ny = n.

Actually, it is better to organize (5.46) not in terms of the number of vertices
on a loop but in terms of the order wrt e. Using the unitary charge conjugation
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Figure 9: Divergent diagrams for vacuum energy.

operator C' and CQ2 = ) we obtain
(QIS(A)Q) = (QCS(A)CTIQ) = (Q|S(—A)Q).

Therefore, diagrams of an odd order in e vanish. This is the content of Furry’s
theorem for charged bosons. Hence (5.46) can be written as

£ = i eneg,,.
n=1

The expressions for &, obtained from the Feynman rules are convergent for n >
3. E, is logarithmically divergent, but its physically relevant gauge invariant
part is convergent. &; is quadratically divergent and its gauge-invariant part
is logarithmically divergent. It needs an infinite renormalization, which will be
described below.

5.2.11 Pauli-Villars renormalization

The lowest nonzero loop diagrams are of the second order in e, and hence of

the first order in o = g. There are two kinds of loops of this order: a loop

with two 1-photon vertices with symmetry factor 2 and a loop with a 2-photon
vertex with symmetry factor 1, see the Fig. 9. The sum of their contributions
has the form

& = [ oA DA L o) (547

(5.47) defines the vacuum energy tensor IL,, (p).

We will first compute II,,,, using the Pauli- Villars reqularization. The ultra-
violet problem is more severe now than it was for the mass-like perturbation,
where a single additional fictitious particle sufficed to make the expressions well
defined. Now we need two fictitious particles:

m2 :=m?, Co:=1,
2., 2 2 .
my = m” + 2A°, Ci:=1,
m2 :=m? + A% Cy = —2.
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Using
Y Ci=> Cmi=0 (5.48)

we can check that with this choice the sums used in the following computations
are integrable.

In the following formula we have a contribution of the loop with 2 single-
photon vertices and twice the contribution of the loop with a single 2-photon
vertex. It is convenient to write the latter as the sum of two terms, equal to
one another.

. d*q 4q,.q,
Mur(p) = 2/ ( i J .
’ ) ((g+ 3p)* +mf —i0)((¢ — 3p)* +mi —i0)
_ Guv _ Guv )
((a+3p)2 +mF—i0)  ((¢— 3p)* +m] —i0)
e f e el )
)4 ((g+ 3p) +m§—io)((q—§p)2+m§—io)

_ e[ > (a1 — a2)? 2
— (47‘_)2/0 dal/o dOQ;Ci <(al+az)4(g;wp *p,upu)

42 Qg 2 1 n m?
Gpuw (a1 + a2)4p (a1 + Ckz)?’ (a1 + OQ)2

[e5Ke%)

. 2 . 2
X e -1 +ay)m; —1—————
Xp( (e 2)m; 1a1+a2p)

=: (_glwpz ‘|‘pupu)2H/g\i( )+ 2H;WA( )

We used the identity (A.23).
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The gauge dependent part of the vacuum energy tensor vanishes:

d
7H}gLVA( )
- e o *° . 2 . a1 o
= Zi:CZ (an)? /0 doq/0 dag exp < i(a + az)ms; lal +a2p )
a1 aep? i m2
Xg;u/ < 142P 1 3 + ! 2)
(a1 + az) (a1 + az) (1 +az)

- ZC 2p3 / dal/ das exp (-1,0 ((a1+a2) 2+ o5 ]e%] p2)>
a1 + a2
x%‘
P(Oél-i-ag

= pé)/ dal/ dagexp< ((Oq-i—oéz) 2+ a9 p2>)
o1 + a2

1
xigw =

(1 +az)?

To compute the gauge invariant part we proceed similarly as in Subsubsec. 2.3.9,
see (2.113), and we obtain

) = gy [t [ de DO
(‘“aw%)mf—ia?f;ﬁ)
~ e [ a0 [ e (i (i L))
- 2(;202/01(1”;@”21%@%%10)
We define

et(p?) = lim (I (p*) — I5(0)) (5.49)

e2 1 (1 _ U2)p2
= —— [ dviPlog |14+ —F5——i0].
2(4m)? /0 vv© log ( + 2 1 )
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Using (A.27), and then analytic continuation, we obtain
Hren(p2)

@ [ +4m?)P log VP Am? + /p?
(p?)3/2 P2+ 4m?2 — /p?

2 2 1 4m?2)3/2 /2
= © 5 (P~ + 272/)2 Qarctanip
2 3(4m) (=p?) p? + 4m?
4 2
- 2(”;+1)>, —4m? < p? < 0;

2
3
2 2 — 4m2)3/2 02 _ am2 _ 2
e ((p m*) (log p m+\/p_m)
2
3

5.2.12 Renormalization of the vacuum energy

Note that the Fourier tranform of the electromagnetic field is

Fuw(p) = puAu(p) — puvAu(p)- (5.50)
Hence
—Fu(p)F* (p) = —p°|A(p)” + [pA(p)*- (5.51)
Thus the renormalized 1st order contribution to the vacuum energy is
ren __ dp ren/, 2\ () KV

We can formally write I18. (k) := Alim Hii (k) (which is typically infinite).
—00

Note that the renormalized scattering operator Sien is a well defined unitary
operator:

G = ML) [ Fu@P (@)da g, (5.53)

However, there is no correctly defined renormalized Hamiltonian. Formally, the
correct Lagrangian density is obtained by replacing £(x) with

Lien(w) = L(x) = TE,(0) F (2) F™ ().
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5.2.13 Method of dispersion relations

There exists an alternative method to renormalize and compute the vacuum
energy. We start with computing just the imaginary part of the gauge invariant
vaccum energy function, which does not require a regularization, so that we
obtain ImIT**"(p?) from the very beginning:

e? ! —02)p2
ImIT™" (p?) = 2(477)2/0 dvv?(—7)8 (_1_(14m2)p>
B _2~3e(47)2 (_p§)3/2 |- —am?| . (5.54)

As in (2.118), using II**"(0) = 0 and Thm A.4 we obtain

men(p?) — L [ 4m2dsIeren(s)< ! 2—1>. (5.55)

T J_o s—p s

Note that (5.54) is nonzero only for p?> < —4m?, and then it is negative. For
such p we can find a coordinate system with p = (p°,0). Then

*g/wpz + Pupy = pg (g;w + 5;L060y)

and
—F,,(p°,0)F (p°,0) = p3| A(p°,0)|°. (5.56)

Thus the imaginary part of (5.52) is negative (and is responsible for the decay).

5.2.14 Dimensional renormalization

We present an alternative computation of IIJ' based on the dimensional regu-
larization. We use the Euclidean formalism.

E
211, (p)

—62/ d4 ( 4Q/_LCIV
@m)* \ (g + 3p)2 +m?)((q — 3p)? +m?)
29w )
q2 +m2
/ 44,9y — 29, (¢* + §p* +m?)
2m)* (¢ + 3p)2 +m?)((q — 5p)* +m?)
! d4q 4qMQV 29;w (q2 + ip2 + m2)
/ / 2m)t (g —l—%—l—mQ—I—vqp)Q
— 2 /1 dv/ d'q 44,90 — 29, (4> + 42]9 +m?) + v*(pupy, — gwp*;)
(@@ + 5 (1= o)+ m2p2

2

e2

1

, (5.57)

where we used the Feynman identity (A.28), replaced ¢ + % with ¢, used the
symmetry v — —v to remove fil dvv and replace 3 fil dv with fol dv. After
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this preparation, we use the dimensional regularization:

d'q . T R Al |
/(277)4 is replaced by ) /0 lg|*~"d|ql, (5.58)

Q;LQVd4q . ,u47de /OO d+1
laced by ———— g, dlql, 5.59
[ B s replaced by oo, [ gt ag (559)

where Qg is given by (A.30). Thus (5.57) is replaced by
4 dQ
g = - o [Tl

2
% ((4/d - 2)9#1/‘] - QQMU(Zp +m ) +v (pupv - guu%)
2
@+ 20— )

e 1 247 2-d/2
_ 7(47r)2/0 dv(zf(lf;)_’_m?) o a2

p 1, 2 2 P
QQ;w(Z 1 —v )"'m ) —QQ;w(ZP +m ) +v (pupu _guu5>

/ d om )Q_d/Qr(z d/2)v*( %)
v - UV \PuPv — GuvP
0 p—: 1-— vz) +m? g g

1 2
»/()

dv — v+ log 247 — log ( 1 (1—v%) + m2)>v2(pupu - ng2)

R

- m (pupl/ - QWPQ) (5-60)

We can now renormalize (5.60):

HE,ren(p2)(ppr _ g;wp2)
— : E,d/ 2\ _ 17E.d
- (111121 (H[LV (p ) H,uu (O)>
= ! /1 dvv? lo (1 + i(l ))( - %)
- 2(471_)2 o g 4 2 p/_tpl/ g,ullp .

This coincides with the Wick rotated result obtained by the Pauli-Villars method.

5.2.15 Abstract gauge covariance

Let us adopt for a moment an abstract setting. Let R 3 ¢ — H(t) be a time-
dependent Hamiltonian generating the dynamics

Ulty,t_) := Texp —1/ H(s ds)

Let ¢t — W(t) be a family of unitary operators that have the interpretation of
time dependent gauge transformations. We will assume that W (t) converges to
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identity as ¢ — Foo and is generated by a time dependent family of self-adjoint
operators t — R(t), so that

W(t) = Texp( — i/_too R(s)ds)

Then ;
W (U (b tYWH(t_) = Texp( —i ltf[R(s)ds)7

t_

where the gauge-transformed Hamiltonian is

Hg(t) :== W) H@)W*(t) + R(t). (5.61)

5.2.16 Ward identities

Let us go back to the setting of quantized charged scalar fields. The gauge invari-
ance implies strong conditions on the scattering operator and Green’s functions.
Let S(A) denote the scattering operator for the external 4-potential A. Let
x be a Schwartz function on RY3. It is easy to see that the scattering operator
is gauge-invariant: . R
S(A) = S(A+ dx). (5.62)
Differentiating this identity w.r.t. x and setting x = 0 we obtain the Ward(-
Takahashi) identities for the scattering operator in the position representation:
0 A
—5(A) =0.

Y

: 8z‘\u(y)

In the momentum representation these identities read
o o
pus—8(4) = 0.
Au (P)

We will write ({*(z})---9*(zy)(xn) - (x1))a to express the depen-
dence of Green’s functions on the external 4-potential A. We have

(@ (@) - (@) (an) -

= (@¥"(21) P (@y)P(an) Y

By differentiating with respect to x(y) and setting x = 0 we obtain the Ward(-
Takahashi) identities for Green’s functions in the position representation:

(71)) A+ax (5.63)
(Il»Aeiex(w'l)+---+iex(:v3v)*iex(xzv)*--~*iex(fr1).




In the momentum representation these identities read

g ) ) w) D)
N
= . W@ )) (0 — @) (PN )V (pN) - d(p1)a +
J= . A A A A A
- Z(l/}*(lﬁ) V(PN N) b+ @) d(p1) a

(5.62) and (5.63) are essentially obvious if we use the path integral expres-
sions. It is instructive to derive these statements also in the Hamiltonian for-
malism. This derivation is not fully rigorous, since transformations cannot be
implemented, and in general the dynamics does not have a well defined Hamil-
tonian.

Formally, we define the gauge transformation as a unitary operator

W(x,t) = exp (—ie / dfx(t,f)g(f)>
= exp (—ie/; ds/dfx(s,f) A(f)) (5.64)
= Texp (—ie 1 ; ds / dz x(s, ) A(f)).

To see the second identity it is enough to note that [Q(Z), Q(7)] = 0, hence
we can replace Texp with exp in (5.64). Clearly,
WOGOP@EW () = XED9(@),
WD (68 = D).

Let H(A,t) denote (5.42), that is the Schrodinger picture Hamiltonian. Let

U(A,ty,t_) be the corresponding dynamics.
W (x, OV EL(E, AW (x, 8) + e / (. 5)O(@)dz
- / df(ﬁ*(f) 1(T) —ie(Ao(t, &) + X(t, ©)): (¢ (£)7(Z) — 7" ()P (D))
+(8; — ieA;(t, 2))e' X (2)(8; 4 ie Ay (t, T))e T XED ) (F)
+m (@)(3))
= H(t,A+9y).

Therefore, by (5.61), we have the following identity, which expresses the gauge
covariance:

W(th+)U(A7t-‘r:t—)W*(Xat—) = U(A+8Xat+at—) (565)
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Using that lim W (x,t) = 1, we obtain
t—Foo

ei”FIUU(A + Ox,ty, t,)e_it*ﬁo

Il
g

S(A+dy)
= lim e, e U (A, by, t )W (x, t_) e it Ho
— S(a),
which implies (5.62). (5.63) is a consequence of (5.65).

5.2.17 Energy shift

Suppose that the 4-potential does not depend on time and is given by a Schwartz
function R? > 7 — A(F) = [A,(Z)]. We assume that A3 < m?. The naive (Weyl
ordered) Hamiltonian is

B o= [ as(i @@ + ieAd@: (0 @i(@) - i (@0(@):
(05 — 1Ay ()" (F)(0; + 1eA; (£)) Y (F)
+m2* (x)uz(f)). (5.66)

It can be compared with the Weyl ordered free Hamiltonian (5.43). We can ap-
ply the formula (A.17) to compute the naive energy shift (the difference between
the ground state energies of H and Hy,):

Tr(\/— (5—1— ied)? +m2 — e2 A2 — 1/ —02 + m2)
i e E,,.

n=1

In the above sum all the terms with n > 2 are well defined. The term with
n = 1 needs renormalization. The renormalized energy shift is

"B,

Eren — _62/Hren( ) HV(ﬁ’)F#V

where IT**" was introduced in (5.49).

6 Dirac fermions
In this section we study the Dirac equation
(—=iv"0, + m)y(z) =0

and its quantization. Here, m > 0 and ~* are Dirac matrices.
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Note that the Dirac equation is complex, and therefore it describes charged
particles. In particular, one can consider the Dirac equation in the presence of
an external electromagnetic 4-potential A(z) = [A*(z)]:

(’y"(—i@u +ed,(z))+ m)w(:r) =0.
The theory of Dirac fermions is in many ways parallel to the theory of

charged scalar bosons described in Sect. 5.

6.1 Free Dirac fermions

6.1.1 Dirac spinors

We adopt the following conventions for Dirac matrices v*, u =0,...,3:
[ryH?’YV]-i- = _29#1/’
=10 7= =123

Sometimes we will also need

A5 = iy ly2e8,

It satisfies
[+ =0, (P2 =1, v =7
All irreducible representations of Dirac matrices are equivalent and act on
the space C*. One of the most common is the so-called Dirac representation

o _[1 0 . [ o &
77 0_13 7* _50)

s [0 1
=74 ]

Here is the Majorana representation:

0 -1 0 o -1 0 0
0 _ : 1_ . 1 2 _ . 3 _ .
71|:1 0:|a 71{0_1 0:|)71|:0 1:|371|:03
0 o

5_ 2
’Y - |:0,2 0 :|a
and the spinor representation:

o |01 . |0 =@

TSt 7T lé o |

1 0

5 _

=0 4]
Above we used the Pauli matrices & = (01, 02,03) defined by

0 1 0 —i 1 0
R B NS B Y
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They satisfy o;0; = 2¢€;10%.
Note useful (representation independent) trace identities:

Tl = 4,
Tr(ay)(by) = —dab,
Tr(ay) (b)(e7)(dy) = 4(ab)(ed) — 4(ac)(bd) + 4(ad) (be).

We also introduce the spin operators

o Tow v
ot =Syl
In the Dirac representation
; 0 iot
01 _ )
T = [ ic* 0 } ’
ij _ k| ok 0
o € { 0 o ] . (6.1)

The operators o*¥ form a representation of the Lie algebra so(1, 3) = spin(1, 3).
It is the infinitesimal version of the representation

Spin'(1,3) 3 A — 7(A).

6.1.2 Special solutions and Green’s functions
Note the identity
— (=70 +m)(—ivd —m) = —O+m?

Therefore, if
(=0 +m?)¢(x) =0,

then (iv*0, + m)((z) is a solution of the homogeneous Dirac equation:
(—=iy"0, +m)(iv"0, + m)¢(z) = 0.
In particular, we have special solutions of the homogeneous Dirac equation

S®(@) = (90 +m)DH) (),
S(z) = (ivd+m)D(x),
where D®) and D are the special solutions of the Klein-Gordon equation intro-
duced in Subsubsect. 2.1.1. We have suppS C J.

If
(=0 +m?)¢(x) = 8(x),

then (iy"*0, + m)((x) is a Green’s function of the Dirac equation, that is

(=ivd 4+ m)(ivd + m){(x) = §(x).
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In particular, a special role is played by the Green functions

S (@) = (iyd+m)D*(a),
59z) = (70 +m)D(x),
where D* and D¢ are the Green’s functions of the Klein-Gordon equation in-

troduced in Subsubsect. 2.1.1. We have suppS* C J*.
The Dirac propagators satisfy the identities

S(z)=—=8(—z) = SH(z)+5)(x)
= S§7(z) -5 (),
SH(@) = 59 (=),
St(x)=5"(~a) = 0(z")S(x),
S7(z) = 0(=2°)S(x),
S¢(x) = S(—x) = 0(x°)S)(x) —(—2®)SH) ().

Recall that the bosonic causal Green’s function in the momentum represen-
tation can be written as

1
D¢(p)= ————.
P = =10
The Dirac causal Green’s function can be written in a similar way:

—Yp+m

S¢ = ——

®) = Frmr—n

1
= —F, (6.2)

P+ m — 1€

where i€ is the shorthand for i0sgnpry.

6.1.3 Space of solutions
We set o; = 7%9%, i =1,2,3, and 3 := +°. We obtain matrices satisfying

B2=1, (=1, i=1,...,3;
Boy + o =0, oo + ajoy =0, 1<i<j<3;

B8* =8, a =a, i=1,...,3.
In the Dirac representation we have

1 0 R a
Using @, 8 we can rewrite the Dirac equation in the form of an evolution
equation:

ST )

i0,¢(t, ) =D¢, D:=ap+mp.

Note that D is essentially self-adjoint on C°(R3, C*).
The following theorem describes the Cauchy problem for the Dirac equation:

164



Theorem 6.1 Let 9 € C°(R3,C*). Then there exists a unique ¢ € C°(RY3)
that solves the Dirac equation with initial conditions (0, %) = ¥(Z). It satisfies
supp( C J(supp?) and is given by

((t,7) = —i - S(t, T — §)BI(§)dy. (6.3)

Let Wp be the space of space-compact solutions of the Dirac equation, that
is ¢ € C2(RY3,CY) satisfying (—iy*d, +m)¢ = 0.
For (1, (s € C°(RY3,C*) set

JH (15 oy ) = i) ByHGa (). (6.4)

We easily check that

i (x) = (=170 + m)G1(2)BG(2) — Ci(z) B(—1v0 + m)Ca(z).
Therefore, if (1,(2 € Wp, then j* is a conserved 4-current:
Oug"(z) = 0.

For (1,(> € Wp, the flux of j* does not depend on the choice of a Cauchy
hypersurface S. It defines a scalar product on Wp, which will have two optional
symbols:

Cta = (GlG) = [ (61, G (o)
s
In terms of the Cauchy data this scalar product coincides with the natural scalar
product on L?(R3,C*):
G- [ GEDGE DS
The group RY? x Spin'(1,3), acts unitarily on Wp by

(@) = T(A)C ((y,A) ).

We can also parametrize solutions of the Dirac equation by space-time func-
tions. In fact, for any f € C°(RY3, C*), let us write

S f(z) = / Sz - y)f(y)da.

Theorem 6.2 (1) For any f € C°(RY3,CY), S f € Wp.
(2) Every element of Wp is of this form.

(3) Sxfi-Sxfo= [ [ fi(x)8S(x —y)fa(y)dady.

(4) If suppfa x suppfa, then

S*flS*fQ:O
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6.1.4 Classical fields

We will also consider the space dual to Wp, denoted Wf;. In particular, for
x € RY3 4p(x),*(z) will denote the functionals on Wp with values in C*,
called classical Dirac fields, given by

W@)0) =), W @) =@
By (6.3),
B(t.7) = i / S(t,7 — )80, §)d.

It is convenient to introduce the Dirac conjugate of the field -

() = pp*(x).

(In a large part of the physics literature, 1/; is denoted ).

)
On WY, we have the group action R13 x Spin'(1,3) 3 (y,A) — r?;*[xl):

e (e) = (A )p(As +y).

6.1.5 Smeared fields

We can use the scalar product to pair solutions. For ¢ € Wp, the corresponding
spatially smeared fields are the functionals on Wp given by

@(p) = C-p,
1/}*

p
W () == ¢-p, peW.

Clearly, for any t
v(©) = [TEHu Dz,
V() = / C(t, Z)* (t, T)dd.

For f € C2°(RY3,C*), the corresponding space-time smeared fields are given
by

=
=
[

/ F@w(a)de = (S « f),
/ @)y (2)de = (S * ).

<

*

=
[

6.1.6 Diagonalization of the equations of motion

Let us use the Dirac representation, denoting elements of C* with [ G ] , where

Q

¢, ¢ € C?. Ater the space-time Fourier transformation the Dirac equation
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becomes

-+ F0C, +mé = 0,
p°C, — PG +m¢, = 0.
This can be rewritten as
_ 0P
CT - _po + mCJ,a
_
o= p° + mCT'

Using (7p)? = §? we obtain
—(@")?+p*+m* =0.

Set E(p) := \/p? + m?2, so that p = (X E(p),p). Define

w2 = [8)

Traditionally, one often introduces the following spinors:

vVE+m [ X ] 0
,£1/2 _— 5 , = FE(p) > 0;
wps1f2) = YR A | =)
\/m |: $6:ﬁ X:l: :|
,+1/2) = Y———| Etm , p°=—E@{) <O0.
u(p, £1/2) Wors i p (p)
Note that
(u(PaS)‘U(pa S/)) = (Ss,s’»
(u(p,s)|u(—p, SI)) = 0.

The basic plane waves are defined as

p,s) = u(p, s)e.

1
(2m)?

(6.5)

By writing (p, s|, as usual, we will imply the complex conjugation. We have

(p,slp,s') = 8(F— )05y, sgn(p’p®) >0,
(p,slp’,s’) = 0, sgn(pop/o) < 0.

Note that plane waves diagonalize simultaneously the Dirac Hamiltonian D,

the momentum p = —id and the scalar product:

Dlp,s) = p’lp,s),
_18|pa 8) = ﬁ.lpvs)v
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Gt =3 [ (lp.9)o5lea) + (Gl = =) (-, —slGa))

In addition, positive frequency plane waves diagonalize the “upper spin in the
3rd direction” and negative frequency plane waves diagonalize the “lower spin
operator in the 3rd direction”:

1 o3 0 B .
2 [ 0 0 } lp,s) = s[p,s), sgnp” >0,
110 0 B .

2 [ 0 o3 } Ip,s) = slp,s), sgnp’ <0.

6.1.7 Plane wave functionals

Plane wave functionals are the functionals defined by plane waves. One could
doubt whether they deserve a special notation. In the bosonic case the situation
was slightly less trivial, because the pairing was given by the symplectic form.
For fermions the pairing is given by the scalar product, hence it is straightfor-
ward. Anyway, special notation for plane wave functionals is partly motivated
as a preparation for quantization.

Let p € RY3 with p® > 0. Anticipating the quantization, we will use different
notation for positive and negative frequencies:

a(p,s) = ¢(Ip,s)) (6.6)

—

- J%Weiﬁfw(o,f),

b(p,s) = (| —p,—s)) (6.7)
de ——
Ve P

We have

1/’(35) )eipma(p, S) + U(—p, _8)e71pxb* (pa S))

Z / \/ 271'
3 / A5 (1p, $)ap, 5) + | — p, —5)b" (0, 9)).

6.1.8 DPositive and negative frequency subspaces

We define
WS = {CeWp ¢ (p,s|O) =0, p° <0},
WS = {CeWn ¢ (psl¢) =0, p°>0}

Every ¢ € Wp can be uniquely decomposed as ¢ = ¢((H) +¢(=) with (&) e W](Di).
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On W](;r) we keep the old scalar product:
@ = 3 [l a

We set Z](;r) to be the completion of W[()+) in this scalar product.
Instead of W](;) for quantization we will use the corresponding complex

conjugate space denoted W](D_) and equipped with the scalar product
(=) 7(=) - ()N 1=
i) = 1) Z/ & sl ap

We set 31(3_) to be the completion of W](;) in this scalar product.
The action of R13 x Pin'(1,3) leaves Z](;) and Z](D_) invariant.

6.1.9 Spin averaging

ﬁ(:va + m) are the projections onto the positive and negative energy states
resp. With E = E(p) = p° > 0, we have the identities

- 1 [ E4m —Gp ]
Zu(p,s)u(p,s) -~ 9@ g5 —E+m
—py+m m
= —_— = —A
2F EP
. 1 [E-m —&p |
ZU(—IL—S)U(_P’—S) -~ 98 gfg —-E—-m
—py—m m
= —— = ——A_.
2F E

In the following spin averaging identities due to H.B.C.Casimir, which are
useful in computations of scattering cross-sections, the trace involves only the
spin degrees of freedom:

. 2 TrB(—p*ty +m)B(—p 7y +m)
> ™, sT)Bu(p~,s7)|” = - ,
o AETE
_ SN TrB(—p*y —m)B(—p~y —m)
Z ‘U(—p+,—s+)BU(—p ) =S )’ = AE+tE— )
st,s
. T TrB(—pty —m)B(—p v +m)
Z |u(—p+,—s+)Bu(p y S )| = _ )
v AETE
- 2 TB(—p*y+m)B(-p~y —m)
Z la(p®, sT)Bu(—p~,—s7)|" = Vo ,
st,s—
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where B is an arbitrary operator on the spinor space and B = BB*p3 is its
pseudo-Hermitian conjugate.
If we specify B = 3, then

> a5 u )

'2

I
<
T
S|
t
|
V)

+
N—
=8

|
)E|

|
V)
|

st,s— st,s—
 EYE 4ptp4m?  (EY4+E ) —|p—p|?
E+tE- B 2F+E- ’
- . . 2 - _ B 2
> [t =T )| = Y s u(-p =57
st s~ st s~
 EYE - 4ptpe —m® (BT —E )4 g +po
E+E- - 2E+E- '

6.1.10 Quantization

We would like to describe the quantization of the Dirac equation. As usual, we
will use the “hat” to denote quantized objects.
We will use the formalism of quantization of charged fermionic systems [15].
We want to construct (H, H, Q) satisfying the standard requirements of QM
(1)-(3) and a distribution
R 32— i)(z) (6.8)
with values in C* ® B(H) such that the following conditions are true:

(1) (=170 +m)(x) = 0;
(2) [$a(0,8), 45 (0,5)]+ = 0u6(Z — ), [a(0,8),4(0, )]+ = 0;
(3) eitH’L/AJ(l'O, f)e—itﬁ _ 1L(xo +t,7);
(4) Qs cyclic for ¥ (), P* (z).
The above problem has a solution unique up to a unitary equivalence, which
we describe below.

We set
Ho=Ta.(257 @ 207).

Creation/annihilation operators for the particle space ZI()+) ~ L?(R3,C?) are

denoted with the letter a and for the antiparticle space Z](;) ~ L?(R3,C?)
with the letter b. Thus, for p on the mass shell and s = :I:%, using physicist’s
notation on the left and mathematician’s on the right, creation operators for
particles/antiparticles are written as

a*(p,s) = a*(lp,s)), (6.9)
) = b(—p-s). (6.10)

) is the Fock vacuum. The quantum field is

i = Y [ %(u<p,s>eipfa<p,s>+u<p,s)emé*@,s)).

170



The quantum Hamiltonian and momentum are

H = /Z (@*(p, s)a(p, s) +l;*(p75)l;(p,s)) E(p)dp, (6.11)

e
Il

|3 (@ 0.5)00,9) + 50 )b0p,)) (612)
We also have the charge operator

@ = X [(@@Esies - @iEe)d (613)
_ The whole group R x Spin'(1,3) acts unitarily on H. Moreover, if we set
W(x) = B (x), then

[Va(®), Yo(y)]+ = Sap(z — ), [Ya(2), Y(y)]+ = 0. (6.14)
We have

(dal@)do®)) = 5@~ ),
(UT(Wa(@)91(3))0)

= Sz —y).
For f € C(0,C*) we set
i = [ T,
il = [ F@

We obtain an operator valued distribution satisfying the Wightman axioms with
D :=TinzP o z(7).
For an open set O C RY3 the field algebra is defined as

§(O) = (" [f1,P[f] : fe€CF(O,CH}.

The observable algebra 24(0) is the subalgebra of F(O) fixed by the automor-
phism A .

B ¢PQBe 10
where @Q will be defined in (6.13). The nets of algebras F(©) and 2A(0), O C
R'3, satisfy the Haag-Kastler axioms.

6.1.11 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses the smeared fields instead of point fields. Instead of (2.38) we look
for an antilinear function

Wh 3 ¢ = (<)

with values in bounded operators such that
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(1) W«Q»%TKQDH—ZZ}'@l [W(G), P(&)]+ = 0.
(2) ¥((r4.50) = e Hp(¢)e
(3) Qs cyclic for ¥((¢)), ¥*(C))-

One can pass between these two kinds of quantization by

B(¢) = / Dt F). (6.15)

6.1.12 Dirac sea quantization

When we quantized a fermionic field we demanded that the quantum Hamil-
tonian H be positive. In the bosonic case this condition can be dropped if we
start from a positive classical Hamiltonian H. Usually this suffices to guarantee
the positivity of H. (If we start from a classical Hamiltonian that is not positive
definite, the bosonic quantum counterpart has no chances of being positive).

Suppose now that we drop the positivity requirement of H in the fermionic
case. Then we have many possible quantizations. Among them one is distin-
guished — it is just the usual second quantization. It means that we consider the
antisymmetric Fock space I', (W), where WEP! denotes the completion of W
in its natural scalar product.

The Hilbert space ngpl is equipped with a distinguished family of commuting
self-adjoint operators: the Dirac operator D and the momentum operator —id.
We can second quantize them using the operation dI" obtaining the operators
on T, (W), the Hamiltonian and the momentum

H = dI'(D), (6.16)

— -,

P = dI'(-i0). (6.17)
The number operator will be rebaptized as the charge and denoted
Q = dr'(D).

(Let us stress that we do not use “hats” in the above notation).
Let us reinterpret ¢*(z) /v (x) (without “hats”) as the creation/annihilation
operators on the space Fa(Wf)pl). As in (6.14), they satisfy

[Wa(2), V()4 = Sav(x — 1), [Pal@),s(y)]+ = 0. (6.18)

The plane wave functionals a(p, s), a*(p,s), b*(p,s), b(p, s) defined as in (6.6)
and (6.7) in terms of ¥ (z), ¥*(x), can be used to diagonalize the Hamiltonian,
momentum and charge

H = / > (a*(p, s)a(p, s) — b(p, )b" (p, s)) E(p)dp, (6.19)
P = / > (@*(p.s)a(p. s) = b(p. )b (p. 5)) FAF (6.20)

@ = [ @ alr.s) + oot (p,) 5 (6:21)
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The vacuum of I‘a(WBpl) is annihilated by ¢(z), hence also by a(p, s) and
b*(p, s). It is the state of the lowest charge possible. Therefore, it will be called
the bottom of the Dirac sea. We will call the above described procedure the
Dirac sea quantization. .

The reader should compare the formulas for H (6.19), P (6.20) and @ (6.21)

with H (6.11), P (6.12) and Q (6.13). They differ only by the order of a part of
field operators. So formally they coincide modulo an (infinite) additive constant.

The usual quantization, called the positive energy quantization and the Dirac
sea quantization are just two inequivalent representations of canonical anticom-
mutation relations. If Wp had a finite dimension (which can be accomplished
by applying both an infrared and ultraviolet cutoff), then the Dirac sea quan-
tization would be unitarily equivalent with the positive energy quantization by
the procedure invented by Dirac and called often filling the Dirac sea. The
Hamiltonians H and H , and as we see lauter_Z the charges @ and Q would differ

by a finite constant. The momenta P and P would coincide.

6.1.13 Fermionic Hamiltonian formalism

Bosonic quantum fields can be interpreted as a quantization of a classical sys-
tem. In the Hamiltonian (on-shell) formalism this system is described by an
appropriate symplectic space. In the charged case, the symplectic space can be
viewed as a complex space and instead of the symplectic structure it is natural
to consider an appropriate Hermitian form. The spaces Vkg and Wgkg were
examples of such spaces. Symmetries are described by symplectic transforma-
tions. The dynamics is generated by a (classical) Hamiltonian — a function on
the symplectic space.

An important element of the Hamiltonian formalism is the “algebra of clas-
sical observables” — the commutative algebra of functions on the symplectic
space equipped with the Poisson bracket. One can ask whether there exists an
analogous structure behind fermionic quantum fields.

Clearly, the space Wp, which is equipped with a scalar product, is the ob-
vious fermionic analog of a (complex) symplectic space from the bosonic case.
The fermionic analog of the “algebra of classical observables” considered in the
literature, eg. [51], is the Zy-graded algebra of operators on I'y(WE') equipped
with the graded commutator.

The space Fa(WBpl) is equipped with the fermionic parity operator, which
we denote by I := (—1)?. An operator A satisfying IAI = +A will be called
even/odd. Operators that are either even or odd will be called homogeneous. If
A is homogeneous we will write |A] = 0 if A is even and |A] = 1 if A is odd.
The analog of the Poisson bracket is the graded commutator:

{A,B} := AB — (—-1)41BIB4, (6.22)

Note that (), ¥*(x) are odd operators and for such operators {-,-} coin-
cides with the anticommutator. Thus, to make (6.18) look “classical”, we can
replace [-,-]4+ with {-,-} in this identity.
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Note that the “classical” version of the Dirac theory has a quantum charac-
ter. In particular, the “classical fermionic algebra” is an algebra of operators on
a Hilbert space and symmetries are unitary. Nevertheless, one has a far reaching
analogy with the usual commutative classical mechanics.

6.1.14 Fermionic Lagrangian formalism

The Lagrangian formalism in the bosonic case involves the commutative algebra
of functions on the space-time (the “off-shell formalism”). In the literature one
can also find its fermionic analog. The fermionic Lagrangian formalism involves
the Grassmann algebra generated by anticommuting functions on space-time.
This algebra is generated by anticommuting fields RY? > 2 +— (), *(z).
(Thus, the anticommutators of the off-shell ¥ (z), ¥*(y) are always zero, unlike
in the on-shell formalism).

Note that every Grassmann algebra, besides multiplication, is equipped with
the integral (called sometimes the Berezin integral), the left and the right deriva-
tive. We will use the left derivative as the standard one (see eg. [15]).

The Lagrangian density is an even element of this Grassmann algebra:

1 /-~

L) = =5 (V@ (-10)6(@) +i0u(@) 1 (x)) — mi(e)i (),

where as usual 1/3(x) = py*(z). The Euler-Lagrange equations

oL oL
0;L—0,—— =0, OpL.—-0,7—— =0 6.23
b #81/17# Wb #81/),;1 ( )

yield the Dirac equation.
One can define the stress-energy tensor

(o — 6E(x) Vab(z) — 8[1(:1:) v, z BY L
T = g ) G0 g L)
= 5 (P 0" )(a) + i)

g (5 (P (~10)(a) +0D(@)np()) + mi()p(r))-
It is conserved on shell
0" T (x) = 0.

The components of the stress-energy tensor with the first temporal coordinate
are called the Hamiltonian density and momentum density.

H(z) = T =)

= S @EDY() + 00 (@) () ) +my” (1) (),
Pi(x) = T%a)

= S @) + 0 () ().
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Note that in (6.24) and (6.24) we put * on the left and ¢ on the right.
This is the Wick ordering for the Dirac sea quantization, which can be called
the charge Wick ordering. The Hamiltonian and momentum defined from these
densities coincide with the operators defined by the Dirac sea second quantiza-
tion (6.16), (6.17):

H

/ H(t, 7)d7,

P / P(t, 7)dz.

6.1.15 Classical 4-current

The Lagrangian is invariant w.r.t. the U(1) symmetry ¢ ++ e7i%y). The Noether
4-current associated to this symmetry is the /-current, defined as

By = iz M _ M
TH@) = (@ -
= P

It is conserved on shell and self-adjoint:

v(a))

0, J" () 0, (6.24)
TH(x)* = J"(x). (6.25)

The sesquilinear form given by J coincides with (6.4):

GI"(@2)¢ = j"(Cr.C2u2)

= Q@) C(x), (1,6 € Wh.

The current or the spatial part of 4-current can be expressed in terms of the
o matrices:

J(z) = ¢* (@)@ (x).
The 0th component of the 4-current is called the charge density

Q(z) := J°(x) = ¥* ()¢ ().
The charge is
Q = /Q(t,q?)df
= Z/(a*(ﬁS)a(ﬁS)+b(ﬁ,s)b*(ﬁ,s))dﬁ
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x — Q(t, T) is a well defined distribution with values in operators on space
L. (W), We have the relations

{Qt,2),v(t,y)} = —v(t7)i(F -7,
{Q(t’ ‘f)a P* (ta :'j)} = ¢*(t7 :J)(S(f - g)v
{Q@, ), Qt,9)} = 0, (6.26)

where the bracket coincides now with the commutator, since Q is even.
For x € C°(R3,R), let o, denote the *-automorphism of the algebra of
operators on Wp defined by

ax(w(oaf)) = eiiX(f)w(Oaf)'
Obviously,
O‘X(w*(&f)) = eiX(f)¢*(07f)‘

o is called the gauge transformation at time ¢ = 0 corresponding to x. Set

Q00 = [ x@Q0.7)dz. (6.27)
It can be used to implement the corresponding gauge transformation:

aX(B) — olQ() Be—1R(X)

6.1.16 Quantum 4-current

Let us try to introduce the quantum 4-current density as an operator valued dis-

tribution on Fa(Zgr) & Z](Df)) by the antisymmetric quantization of the classical
expression

1 e n =, *
THw) = 5 (07 (@)By" () — (@) 7" (). (6.28)
(See Subsubsect. A.1.3 for the definition of antisymmetric quantization. Note
that (By*)* = p+*, and hence S7* is the transpose of Sy*). The charge con-
jugation C', which we introduce later on in Subsubsect. 6.2.6, satisfies CQ2 = €2
and CJH(x)C* = —=J#(x). Therefore, (Q T+ (x)?) = 0. Hence

JMx) = abla)y™h(a):.

Formally, we can check the quantum versions of the relations (6.24) the (6.25).
We have .

T (x) = " (z)arp(x):,
and the Oth component of the 4-current is called the charge density

O(z) := Jo(z) = 0" (2)Y(x):.

176



Formally, the charge density satisfies

[Q(t,2), ¥t )] = —b(t9)E —7),

[Q(t. &), 4" (t,5)] = (LT~ ),
[Q(¢, ) oty = o

For y € C®(R3) let v, denote the gauge transformation at time ¢ = 0
defined as a #-automorphism of the algebra generated by fields satisfying (5.29),
and hence also (5.30). Assume that x # 0. Let us check whether ¢, is unitarily

implementable.
On the level of annihilation operators we have

dzdpy —— i(F1—P)F—iex(3) A
z//(2ﬂ§QU(p7 s)u(pr, s1)e! P PTTX@g(p, )
dzdpy =5 i+ E—iex(@) e
+Z (271_)3 u(p, S)U(iplvfsl)e b (pl)
s1

(6.29)

Let ¢y (P, s;P1, s1) denote the integral kernel on the second line above. We need
to check whether it is square integrable. Now

> lulp, s)u(—p1, —s1)]* = |ﬁ+p1|2z(§g()ﬁl—)13(ﬁ1)). (6.30)

5,81

After integrating in & we obtain fast decay in '+ p7, which allows us to control
the numerator of (6.30). We obtain

C
dp'~ ——=,
/Iqxp )[2dp ~ EG)?

which is not integrable. Therefore, o, is not implementable by the Shale-
Stinespring criterion, see Thm A.2.
Formally, with

Q) = / (@00, )d7, (6.31)
eieQ() implements the gauge transformation:
ay (B) = el*Q0) Be1eQ(0),

But we know that nontrivial gauge transformations are not implementable.
Thus for nonzero x (6.31) cannot be defined as a closable operator.

However, the (quantum) charge
/Q(t,f)df (6.32)

is a well defined self-adjoint operator, which we already discussed before.
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For further reference let us express the charge density in terms of creation
and annihilation operators:

5, iopy +iopz x 4
// P1 Pz u(pr, s1)u(pz, s2)e CP1HEP2G* (ny 51 )a(pa, s2)

d d izpy —izps j b
// D1 p2 —p1, —s1)u(—p2, —52)e P TEP2D (po, 59)b(p1, S1)
d d o —izp1 —izps ;o b*
+// 5 ZZU(M,Sl)u(—pz,—sﬁe PrER2 G (py, 51)b" (2, S2)

d d izp2 ],
// P pz pn, s )u(pa, 82)e P2 (p) 5 )i(pa, 52).

To obtain 7 (z) one inserts & between u(-, -) and u(-,-).

6.2 Dirac fermions in an external 4-potential
6.2.1 Dirac equation in an external 4-potential

Let
RY¥ > 2 A(z) = [A,(z)] € RY? (6.33)

be a given function. In most of this subsection we assume that (6.33) is Schwartz.
The Dirac equation in an external /-potential A is

(v (=0, + eAp(z)) + m)y(z) = 0. (6.34)

If 1 satisfies (6.34) and R13 > 2 +— x(z) € R is an arbitrary smooth function,
then e'®Xq) satisfies (6.34) with A replaced with A + .
Note the identity

—(7"(=10, + eAu(@)) + m) (v (=10, + eAu(w)) — m)
= (O 1AL @)(0" +ieA" (@) +m? + So" Fu(2).  (6.35)
Let D*(z,y) denote the retarded /advanced Green’s function of (6.35). Then
S5 (@) = ((-i0u + eAu(@)) - m)Dia.y)

is the retarded/advanced Green’s function of (6.34), that is, the unique solution
of

(v (=i, + eAy(x)) + m)S’i(Jc, y) =d(x —y) (6.36)
satisfying
suppST C {z,y : z € JE(y)}.
We set
S(z,y) = 5" (z,y) = S (z,y).
Clearly,

suppS C {z,y : =z € J(y)}.
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We would like to introduce a field R > x — () satisfying (6.34). If we
assume that it acts on Wp and coincides with the free field ¢ (z) at 20 =0,
such a field is given by

w(t?f) = —i - S(tafa07?j)6wfr(07g’)dg (637)

6.2.2 Lagrangian and Hamiltonian formalism

(6.34) can be obtained as the Euler-Lagrange of a variational problem. The
Lagrangian density can be taken as

L(z) = —% (@(x)v“(—iau)w(x) + i@uzz(x)v”w(x))
—(@)ed, (2)y" ¥ (x) — mi(z)(x).

The Euler-Lagrange equations (6.23) yield (6.34).
We can introduce the Hamiltonian density

L) .. L)
59 Y a0

)& (—i0)(x) + 10y (z)d(x))
(z)(e7A(z) + mp + eAo(x)) ¢ ().

:/’H(txdx

can be interpreted as a self-adjoint operator on I'y(Wp
“classical” dynamics

H(z) = () — L(2)

:((x

The Hamiltonian

°Ply that generates the

¢(t’ T) = i{H(t)a "/}(tv f)}?

where now {-, -} has the meaning of the commutator.

6.2.3 Classical discrete symmetries
Let k be a unitary 4 x 4 matrix satisfying
k=1, ry'r™ =-7#,

where the bar denotes the complex conjugation. In particular, kfx™1 = —f.
Note also that
ki =u, ueCh
Choose {c € C, |{c| = 1. If ¢ solves the Dirac equation with the 4-potential
A, then so does {ck( with the 4-potential —A. Thus replacing

¥(z), v (z), Az)
with k™ (x), EoRy(x), —A(x)
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is a symmetry of the Dirac equation with external 4-potentials (6.34). It is
called charge conjugation and denoted C.

The matrix x depends on a representation. In the Majorana representation
it is the identity. In the Dirac and spinor representation it can be chosen to
be 42 multiplied by an arbitrary phase factor. In fact, in these representations
FH = 4H, except for p = 2 satisfying 7> = —+2. When we consider the Dirac
representation, we will adopt the convention

K= iy
Then £ = k = k*. The spinor basis that we chose in (6.5) is compatible with &:

Hu(pa 5) = u(7p775)- (638)

Choose &p € {1, —1}. Recall that P denotes the space inversion. Replacing

(), " (), (Ao(2), A(z))
with  £p7°0(Pz), £p7°07(Pz), (Ao(Pz),—A(Pz))

is a symmetry of (6.34) called parity and denoted P.
Choose &1 € C, [€7]| = 1. Recall that T denotes the time reflection. Replac-
ing (in the Dirac representation)
with  Epy'7*¢*(Tz), &ry'y*9(Tz), (Ao(Tz), —A(Tz))

is a symmetry of (6.34) called time reversal and denoted 7.
The symmetry that is guaranteed by the CPT Theorem consists in replacing

b(x), (), Alx)
with 175w(7x)v *1751/)*(7x)7 7A(7£C).

It is denoted X'. (Note that iy® = 4%y17243).
Assume that £ {p&r =1i. Then

X =CPT
and we have the relations

C?=P?=_T2=_-X2=id,
CP+PC=CT+TC=0,
XP+PX=XT+TX=0,
CX—-XC=PT—-TP=0.

To understand better these relations, let us notice that the automorphisms
P, CT and X anticommute and

P?=(CT)* = -X% =id,
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where id denotes the identity. Thus together with Spin'(1,3) they represent
the group Pin, (1,3), see Subsubsect. 1.1.5.
Besides,
(PT)? = —id
and PT commutes with P, CT, X. Thus it behaves as i-id. Thus the group
generated by Spin'(1,3), C, P and T is Pinex(1,3), see Subsubsect. 1.1.6.

6.2.4 Quantization

We are looking for a quantum field satisfying
(v"(=i0, + eAp(z)) + m)z/;(x) =0 (6.39)

such that . R R
(&) = (0, Z) = (0, 2).

Clearly the solution is obtained by decorating (6.37) with hats.

As in the bosonic case, we ask whether the fields are implemented by a
a unitary dynamics. Equivalently, we want to check if the classical dynamics
generated by Hiy(t) satisfies the Shale-Stinespring criterion.

Arguments parallel to those of Subsubsect. 2.3.4 show that the classical
scattering operator is unitarily implementable.

An analysis similar to that of Subsect. 5.2.4 shows that the dynamics from
t_ to t4 is implementable on the Fock space iff the spatial part of the 4-potential
is the same at the initial and final time:

Alty, @) = A(t_,Z), TeR> (6.40)

6.2.5 Quantum Hamiltonian

Formally, we can also obtain the quantum field from a unitary dynamics:
~ 0 A ~ t A
P(t, &) := Texp (—i/ H(s)ds) (0, ) Texp (—i/ H(s)ds) ,
t 0

where the Schrodinger picture Hamiltonian H (t) and the corresponding inter-
action picture Hamiltonian are

H(t)

/ A (™ (2)(@(—i0 + eA(t, ) +mB + eAo(t, 7)) (T)):,
Hi(t) = / dZeA,(t, D) T (t, T).
Note that unlike in the case of charged bosons we use the Wick ordering.

This is because H (t) differs from Hy, by a term involving the 4-current JF(t, 7),

which is automatically Wick ordered. Therefore, we can assume that both H (t)
and Hy are Wick ordered, which was impossible for charged bosons.
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6.2.6 Quantized discrete symmetries

The discrete symmetries considered in Subsubsect. 6.2.3 remain true when we
decorate the fields with “hats”. Thus on the level of quantum observables the
discrete symmetries are the same as in the classical case.

Let us now discuss the implementation of these symmetries by unitary or
antiunitary operators on the Hilbert space Fa(Z]gH D Z]({)). We will discuss
this for free fields, that is, for A = 0. As in the bosonic case, this will imply
some properties of the scattering operator S (A).

First consider the charge conjugation. We define the following unitary op-
erator on Z](DH &) Z](;)

X(91,92) = (5(@92@0/@1)-
We check that

X|pas):§0|_p7_3)a X‘_p?_s)zgc|p7$)'
We set C' :=T'(x). We have C? = 1,
O (x)C™" = Eorilfy(z), CPfi(x)C" = EoRin(x),
Cer(m)C_l = _er(m)7 Cc?fr(x)c_l = _u?fr(x)y
CS(A)C™! = §(—A).
Define the following unitary operator on Z](;_) @ Z](D_):
7(91,92) = (£p7°91 0 P,£p7 %G5 0 P).
We check that
7T|E7ﬁ: 3) = £P|E7 _]5; 8), 7T|—E, _ﬁ, S) = £P|_E,ﬁ S)
Set P :=T(m). We have P? = 1,
Py ()P~ = £py " (Pr), Py (x)P™" = £pry 0, (Pa),
PO(2)P™ = Qn(Pz), PJn(z)P™" = —Tu(Pa),
PS(Ag, A)P~' = §(AgoP,—AoP).
Define (in the Dirac representation) the following antiunitary operator on
Z](;) S3) ZE;): ( 3
7(91,92) = (¢r7'7°G1 o T,€x7' 7% g2 0 T).
We check that
T|E7ﬁ7 S) = £T|E7 _ﬁv —8)7 T|_E7 _ﬁ; S) = ET|_E7]77 _S)‘
Set T :=TI'(1). We have T? = —1,
Ty (2)T ™ = Epy'* 95 (Ta), T ()T = &ry' % (Ta),
Ter(x)Til = Qﬁ‘(Tz)7 T:7fr(x)T71 = *jfr(Tw)a
TS(Ap, A)T" = S(Ago T,—AoT).
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6.2.7 2N-point Green’s functions

We consider again a Dirac field in an external 4-potential [A#*(x)]. For yn,...y1,
TN,-..,T1, the 2N point Green’s function are defined as follows:

(D) - @(ym«ﬁgxm ()

= (2T ($w) - D) dlan) - dlan) ) )

One can organize Green’s functions in terms of the generating function:

Z(9,9)
- DR = . .
= 3 [ e S i)

X;(yl) og(yn)g(n) -+ glaa)dys - - dynday - - - dzy
= (9t (<1 [ =i [ g@intors i [ erisens ) 2).

where R!? 5 2 — g(z), §(z) € C* are Grassmann variables anticommuting with

U(z), P().
One can retrieve Green’s functions from the generating function:

(D) - D(yn)d(an) b))

_ (_1)N 82N
9g(y1) -+ - 9g(yn)0g(xN) - - - Og (1)

We introduce also the amputated Green’s function

g9=g=0

Z(9,9)

(W) - DN 1)) g
= (v +m)-- (v +m) (vpn +m) - (yp1 +m)

< (P(ph) () (pn) - P(p1)).

Introduce many particle plane waves

|=Pnrs —SNvi -3 =P —S1iPN, SN - - - 3D, S1)

= 0 Py siy) - 0P, 81)a" (o sw) - @t (pry s1)Q,
where all p;, p; are on shell. Scattering amplitudes are the matrix elements of
the scattering operator S between plane waves. One can compute scattering

amplitudes from the amputated Green’s functions:

(—p,fi/, —st s Syl sy s, )
alpl, st u(=pt, —s it a(=py =) l) - ulpy s )

- \/(27T)3(n++n+’+n_’+n_)

x( ) DO ) D



The scattering operator and Green’s functions satisfy the Ward identities

analogous to those satisfied by charged bosons.

6.2.8 Path integral formulation

We have the following formula for the generating function:

2(9.9) (6.41)
= det (*(—i0, + eAy(x)) + m)(—in"0, + m — ie)fl

X exXp (ig(yﬂ(—iaﬂ +eA,(z)) +m— ie)flg)
= det (1+ v,eA"SE)

-1
X exp (igSfCr (]l + meA“SfCr) g) ,

where € has the same meaning as in (6.2).

In terms of path integrals this can be formally written as

J I (a) L (y) exp (1 (£() = g(a)i(a) = Gy ())dr)
J I;Idiﬁ(y)ly‘;dw(y’) exp (i [ Lo (x)dz) '

6.2.9 Feynman rules

The Feynman rules are very similar to those for charged bosons, except that
there are no two-photon vertices. Here are the Feynman rules for Green’s func-
tions.

(1) In the nth order we draw all possible topologically distinct Feynman di-

(
(
(
(

2
3

4
5

agrams with n vertices and external lines. All the charged lines have a
natural arrow.

To each vertex we associate the factor —iey* A, (p™ —p™).

—pytm

To each line we associate the propagator —iSf.(p) = —l o

For internal lines we integrate over the variables with the measure %.

)
)
)
) If two diagrams differ only by an exchange of two fermionic lines, there is

an additional factor (—1) for one of them. This implies, in particular, that
loops have an additional factor (—1).

To compute scattering amplitudes with N~ incoming and N T outgoing par-

ticles we draw the same diagrams as for N~ + N T-point Green’s functions. The
rules are changed only concerning the external lines.

(i) With each incoming external line we associate

1
(2m)°

e fermion:

u(p, s).
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e anti-fermion: \/(;T)Bﬂ(—]% —5).

(ii) With each outgoing external line we associate

1
(2m)?

e fermion: u(p, s).

e anti-fermion: \/(;T)BU(—ZL—S)

Each incoming and outgoing antifermion has an additional factor (—1).
(This follows from the rule (5) above).

6.2.10 Vacuum energy

Formally, the vacuum energy can be computed exactly:

£ = ilog(QSQ) = ilog Z(0,0)
= iTr(log (v (—i0u+eA,(z)) + m — ie) — log (—iv"8, +m — ie))
= iTrlog (1 4++"eA,Ss.)
— D
= iy —/. 42

Here D, is the value of the loop with n vertices. Note that n in the denomi-
nator is the order of the group of the authomorphisms of a loop with n vertices,
which is Z,,.

Furry’s theorem, proven as in the bosonic case, says that diagrams for
charged fermions of the odd order in e vanish. Hence (6.42) can be written

as
00
2n
Ezg e"E,,
n=1

2n _ 3Day
where e“"&, =iz,

Just as in he bosonic case, the expressions for &, obtained from the Feynman
rules are convergent for n > 3. The gauge invariant part of & is convergent. The
computation of £ will be described below — it needs an infinite renormalization.

There exists a close relationship between the fermionic and bosonic vacuum

energy. To see it, note that using y°v,(7°)~! = —v,, we obtain
E = iTr(log (= "(=10, + eAu(x)) + m — ie)
—log (iv"0, +m — ie)). (6.43)
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We add up 3(6.42) and 3(6.43) and use identity (6.35). We obtain

£ %Tr(—log(—(aﬂ—&—ieAM(a:))(@“—i—ieA“( )+ m? 4 S0t F(x)  0)

+1og(—D+m2—iO))

%Trlog (]1 + (ie@MA“(x) +ieA*(2)0, + €2 A, (z) A*(2)
€ v
50" FW(x))Dfr). (6.44)
We can compare (6.44) with a similar expression in the bosonic case (5.46).

6.2.11 Pauli-Villars renormalization

A single electron loop with two vertices coming from a 4-potential A* leads to
a contribution of the form

& = [ oA DA ).

Unfortunately, computed naively, II,,, (p) is divergent.
We will compute it using the Pauli-Villars regularization, similarly as for
charged bosons, see Subsubsect. 5.2.11:

_ 2 d'q Try, ((q + %p)V + mi) Vv (( - %p)’y + mi)
QHMVA(p) = zi:Czle / (2m)4 ((q n %p)2 + mz2 _ iO) ((q _ %p)Q erlz — i())

ZC ie / 4d* q 209y — %pupu = Juv( - iPQ +m?)
4 (g + 2p)> + m2 —10)((g — 3p)®> + m2 —i0)

80(1042 2
= d d 14 v
47r / al/ a2<a1+a)(pup — Guvp”)

4 < L BN i N m?2 >
puw (Oé] + a2)4p (Oél + 042)3 (al + a2)2

o
X exp (—i(al +ag)m? —i— 2 p2)

ai + o
=t (=gup® + pupy)2005 (p?) + 2015, (p).

We used the identity (A.23).
The gauge dependent part of the vacuum energy tensor up to a coefficient is
the same as for charged bosons and vanishes. We apply the same substitutions
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and use the same identities as in the charged boson case:
i 2 40[10(2
e = ———3 G / d / d
A(p ) (4m)2 21: Qg (e%) (@ +a2)

. . Qp o
X ex —1(; + « m2—i
P< (1 2) i a1+a2p>

_ ,0 2)
- 4w220/ /?1_”

o (i [+ 0=2))

= J;)QZ:C/ dv(l—v)log(m?+w—i0)

0

e? ' 2 (1—v?)p® . 1 2
= W;Ci(/o dv(l—v)log( +42—10>+310gmi>.

Define

e (p?) = lim (I (p?) - 11§ (0)) (6.45)

A— oo

e? ' 2 (1=v?)p* .

Denote the vacuum energy function for neutral bosons, introduced in (2.114),
by mie". Let II}*" denote the vacuum energy function for charged bosons (5.49)
and ITf*" for charged fermions (6.45). Let us note the following identity:

20T (07) + I (p°) = 4e>n™™" (). (6.46)

This identity can be also derived from (6.44), (5.46) and (2.112).

6.2.12 Method of dispersion relations

The imaginary part of the gauge invariant vacuum energy function can be com-
puted without regularization:

2 1 2,2
1—
ImIT™" (p?) = ImJTF/O dv(1 —v?)log (m2 + A= iO>

(46;2 /01 dv(1 — v2)(—)0 (_W - m2)

2 2 2
__detm (—p° +2m?) 2 — dm
3T (P

2|2
+7

The full vacuum energy tensor can be obtained by using the once subtracted
dispersion relations, as in (5.55).
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6.2.13 Dimensional renormalization

We can also use dimensional regularization to compute II}J*. We use the Eu-
clidean formalism.

d4g 2 V_l . 2 1p2 4 2
21, () 2Tr]1/( 4 249y — 5PuPv — G (@ — 7P° +m?)

2m)* ((q+ 5p)* +m?)((q — 5p)* +m?)

— 2TI‘]1/ d’[}/ d4q QQHQV - %pﬂplj — guy(q2 _ in + m2)
(g% + 2+ m? + vgp)?
€2TI‘]1/ dv/
0

2
2ty — pupv — Gu (@ — 3% +m?) + 02 (3pupy — G )
(2 + B (1 — v2) + m2)2

(6.47)

Then we use the dimensional regularization. Besides the rules (5.58) and (5.59)
we have a new rule:

Trll is replaced by 2%2. (6.48)
Thus (6.47) is replaced by

2d/2 4— dQ
MEd(p) = / v / lal1dlg]
2
((2/d—1)9;wq — §PuPy — gw(—zp +m?) + 0} (3pupy — 9 )

(¢2 + 2 (1 —v2) +m2)?

_ A dv(Lf re—a)
(4m)? Jo %(1 —v2)+m?

2 2
p 1 1 1 P
(om0 0) S a7 0) 2 02

= oy et ) T - D~ s

~[3,

(ig? /01 d”( — 7 + log(*2m) — log (%0 —v?)+ m2)) (0 = D (pups — gud”)

12

o Wy T v ? . 649
T3an22—d/2) (Pupv = gup”) (6.49)
We can now renormalize (6.49):

7 () (pupy — Guud”)
= lim (154(p%) — 15(0) )

d—4
1 ! 2

— _— 1— 21 1 p 1_ 2 v LVQ'
a0z /. do( v)og( + gl v))(pup Gup”)
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Again, this coincides with the Wick rotated result obtained by the Pauli-Villars
method.

Remark 6.3 In the above computations we first try to eliminate gamma matri-
ces. The only remnant of gamma matrices is trll, where 1 is the identity on the
space of Dirac spinors, to which we apply the rule (6.48). However, we would
have obtained the same final result if we used eg. the rule Trl = 4, since at the
end we apply the normalization condition I3 (0) = 0. We use the condition
(6.48), since it is the usual choice in the literature.

Note, however, that in more complicated situations the dimensional renor-

malization can be problematic, especially for fermions in the presence of v°.

6.2.14 Energy shift
Suppose that the 4-potential does not depend on time and is given by a Schwartz
function R? 3 & — A(Z) = [4,(F)].

The free Hamiltonian is

e — / A7 (7) (G (—i8) + mB) $(7)-

The naive interacting Hamiltonian is

/dw G(—i8 + cA(®) + mB + eAo(D)D(@)-

We apply QA.19) to compute the difference between the ground state energies
of H and Hy,, obtaining

Tr( — |@(—i0 + eA(Z)) + mB + eAo(T)| + |@(—-1) + m,B)D

i "B, (A). (6.50)
n=1

Note that we could have assumed that Hy, and H are given by the antisym-
metric quantization, used the formula (A.17), and we would have obtained the
same result for the energy shift. Indeed, formally, the Wick and Weyl quantized
versions of Hy, and H differ by the same (infinite) constant (which was not true
in the bosonic case).

All the terms in (6.50) with n > 2 are well defined. The term with n =1
needs renormalization. The renormalized energy shift is

Eren  — eQ/Hren( ) uy(—*)F;w

n=2

where IT™" was introduced in (6.45).
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7 Majorana fermions

In this section we consider again the Dirac equation
(=70, + m)o(a) = 0.

We will quantize the space of its solutions satisfying the Majorana condition.
We obtain a formalism that describes neutral fermions.

In the bosonic case we first treated the neutral case and only then the charged
case. In the fermionic case it is convenient to reverse the order.

7.1 Free Majorana fermions
7.1.1 Charge conjugation

Consider a representation of Dirac matrices v*. Let s be a unitary 4 x 4 matrix
described in Subsubsect. 6.2.3. We say that u € C* is neutral or satisfies the
Majorana condition if u = ku.

Recall that in the Majorana representation s can be taken to be the identity.
In the Dirac and spinor representation x := ivys.

7.1.2 Space of solutions
If a function ( satisfies the Dirac equation
(=17*0u +m)¢(z) =0,

then xC also satisfies the Dirac equation. Therefore, we can restrict the Dirac
equation to functions ( satisfying the Majorana condition

k¢ = C. (7.1)

The space of smooth space compact solutions of the Dirac equation satisfying
(7.1) will be denoted Yp. Note that it is a real vector space equipped with a
nondegenerate scalar product

¢ G= / Gi(t, D)6 (t, F)dT.

In the Majorana representation the space Vp consists simply of real func-
tions. However, we will most often use the Dirac representation, where the
Majorana condition is less trivial.

Let ¢(x) be the linear functional on Yp defined by

(9(2)]C) = ¢().

The complexification of Vp, that is CYp, can be identified with Wp. We can
extend ¢(x) to CYp by complex linearity. The subspace Vp is then determined
by the condition

Ko™ (x) = ¢(), (7.2)

where * is the complex conjugation as defined in (5.3).
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7.1.3 Smeared fields

Smeared fields are defined very similarly as for Dirac fields. Note that in spite
of the similarity of the formulas, the objects are different: they act on the real
space Vp, and not on the complex space Wp.

For { € Wp, the corresponding spatially smeared field is the functional on

Yp given by
(@(py == C-p, peIb.

/((t, 2)o(t, £)dz

For f € C®(RY3 C*) such that xf = f, the corresponding space-time
smeared field is given by

Clearly, for any ¢

/ F@é(x)de = o(S * f).

7.1.4 Plane waves

Since we consider neutral fields, the generic name for the momentum variable
is again k, instead of p.

Recall that in the Dirac representation we defined the plane waves wu(k, s)
given by (6.5). These plane waves are compatible with the Majorana condition

in the following sense:
ku(k, s) = u(—k,—s). (7.3)

We can introduce the plane wave functionals, where k% > 0,

a(k,s) = o(lk,s))
dz
B / V(2m)3

ulk, s)e"*Ep(0, 7).

Note that
@) = 01~k ~5)
= / \/;i;T)gu(—k, —s)eiEf¢(O, z).
We have
o(z) = Z/ \/? ,s)e*a(k, s) +u(—k,—s)e *a*(k, s))

Z/dié(m,s)a(k,s) L=k —s)a* (k. 5).
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7.1.5 Quantization

To quantize the Dirac equation with the Majorana condition we use the formal-
ism of quantization of neutral fermionic systems [15].

We want to construct (H, H, Q) satisfying the standard requirements of QM
(1)-(3) and a distribution

R 32— ¢(z), (7.4)
with values in C* ® B(H), satisfying the Majorana condition
K" (z) = o(x), (7.5)

and such that the following conditions are true:
(1) (—iyd+m)g(x) = 0;
(2) [6a(0,2), ¢(0,%)]+ = 26a40(Z — §);
(3) (a0, F)e i = G(a0 +t, 7);
(4) Qs cyclic for ¢(z).

The above problem has an essentially unique solution, which we describe
below.

Let Zp ~ L?(R3,C?) denote the fermionic positive frequency Hilbert space
defined in Subsubsect. 6.1.8. We set H :=I',(Z2p). Creation/annihilation oper-
ators on Zp will be denoted a*/a. In particular, for & on shell and s = j:%, we
have creation operators, written below in both physicist’s and mathematician’s

notation:
a*(k,s) =a*(|k, s)). (7.6)

The quantum field is

u(k, s)e*a(k, s) + u(—k, —s)e *a* (k, s)) .

- 3/ S

The quantum Hamiltonian and momentum are

big

[l
—
M
/:T'\l
g

P

Il
Q
=
Cln
?m
o
e

The whole R'3 x Spin'(1,3) acts unitarily on . Moreover, if we set ¢(z) :=
8" (x), then

[Ba (@), 0 (1)) = 2Sw(w — y). (7.7)
‘We have
ba(@)()) = 255 (@~ ).
(QUT(Da(@) (1)) = 25%(x —y).
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For f € C(RY3,C*) such that xf = f, we set

o = / F@d(a)dz.

If we use the Majorana representation, so that x = 1, we obtain an operator
valued distribution satisfying the Wightman axioms with D := T'i*(Zp).
For an open set O C RY3 the field algebra is defined as

§(0)={olf]  feCE(O,CY), n] =]}
The observable algebra 2(O) is the even subalgebra of F(O). The nets of alge-
bras F(O) and A(O), O C R, satisfy the Haag-Kastler axioms.

7.1.6 Quantization in terms of smeared fields

There exists an alternative equivalent formulation of the quantization program,
which uses the smeared fields instead of point fields. We look for a linear function

Yo 3¢ 6(9)
with values in bounded self-adjoint operators such that
(1) [(¢)s (D)4 = 2C; - G
(2) B(r(,.5,0) = e H(¢)e 1,

(3) Qs cyclic for ().
One can pass between these two versions of the quantization by

() = / Dt )AL, (78)

7.2 Majorana fermions with a mass-like perturbation
7.2.1 Classical fields

The meaning of the expression a mass-like perturbation is slightly different for
fermions, where we perturb m, and for bosons, where we perturb m?.

“Classical” Majorana fields with a mass-like perturbation satisfy the Majo-
rana condition (7.2) and the equation

<_i'7uau + m)qb(:c) = —U(.T)(b(l‘), (7'9)

where we assume that R > x — () is a given real Schwartz function.
Let us define the corresponding retarded and advanced propagators as the
unique distributional solutions of

(—17.0" + 0(2))S* (2, y) = 6(x — y) (7.10)
satisfying
suppS*E C {z,y : = € JE(y)}.
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We also set
S(z,y) == S (x,y) — S~ (x,y).

Clearly
suppS C {z,y : =z € J(y)}.

The “classical” Majorana field coinciding with the free field at time ¢t = 0 is
defined as

o(t.7) = / S(t,7,0, )81 (0, ).

7.2.2 Lagrangian and Hamiltonian formalism
The Lagrangian density that yields (7.9) is
1/~ . - -
L@) = =5 ($@)"(=i0,)6(@) +i0,0(2)7"6(2)) + dla) (m + o (@) $(a),

where ¢(z) are off-shell fields satisfying the Majorana condition (7.2).
We can introduce the Hamiltonian density

H(z) = Qb(x)a — L(x)
()
= %(W(m)&(—ié)qb(x) + 15¢*(x)¢(x)) + ¢*(z)(m + U(x))ﬂ)q&(x)’

and the Hamiltonian

H(t) = / H(t, 7)d.

7.2.3 Quantum fields

The quantum fields should satisfy the Majorana condition (7.5), the equation

(—i7u0" +m)d(x) = —o(2)d(), (7.11)
and they should coincide with the free fields at time ¢ = 0:
3(Z) := (0, %) = (0, ).

The quantization amounts to putting “hats” onto (7.11).
We write the Schrédinger picture Hamiltonian as

A(t) = / 6% @) (s + (m + (1, ) ) (@),

The interaction picture Hamiltonian is
1

Hunlt) = 5 [ 0(t.2:65(6.7)50n (¢, 2z

As usual, we define the scattering operator, scattering amplitudes, Green’s
functions, amputated Green’s functions and the generating function.
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7.2.4 Path integral formulation

The generating function (and hence all the other quantities introduced above)
can be computed exactly. It equals

—iy0+m+o :
Z2(f) = det<(( yorm+ ))exp(— 1))

—iyd+m+o—1i0 J—ify(')—&—m—iO

X exp (;f(—iafy +m+o— iO)_1f>
det (14 0S5, exp(—0S5))

X exp (;fsfcr(masfg)—lf). (7.12)

(7.12) can be expressed in terms of path integrals:

c / 1d6(x) exp (i / (L) - f(x)¢(x))dx).

Here, C' is a normalization constant, which does not depend on f. As usual, the
formula (7.13) is only symbolic, the full information is contained in (7.12).

One can derive Feynman rules fully analogous to the Feynman rules of
bosonic mass-like perturbations.

7.2.5 Vacuum energy

The logarithm of the vacuum-to-vacuum scattering amplitude can be computed
exactly:

E = ilog(QSN) = 1ilogZ(0)
= %Tr(log(l +05°) +O'SC)
. - (_1)n+1 c\n __. S
n=2 n=2
Note that &, = —i%’z’, where D,, = (=1)"Tr(c.5°)™ is the value of the loop with

n vertices, similarly to the bosonic case (2.112) except for a different sign.

7.2.6 Renormalization of the vacuum energy

The nth order contribution to the vacuum energy has the form

En = /w(kl,...7kn)

Xd(kl) v U(kn_l)a(fkl e — kn—l)
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For n = 2,3,4, &, are divergent and need renormalization.
Using the Pauli-Villars method we define for n = 1,2,3 the renormalized
vacuum energy functions

k1, .o k1) = Ah—>néo (7rA(k1, vy kn—1) — A (0, ..., 0))
Thus
g”rlen
dk dk,, _
- /wfe“(kl, sk )o (k) - (B )o (- — kn_l)(QT; = (%)41
. dky  dkn
= [lim </7TA(k17---7kn—1)0'(k1)"'U(kn—l)a(_kl"' _kn—l)W"' @)

—7a (0, 0) / a(x)"dx> .

The renormalized scattering operator S’ren is a well defined unitary operator.
Formally, we have

Sren _ e(iﬂ(x, (0) [ k(z)?dz+imes(0,0) [ k(z)3dz+iTes (0,0,0) [ n(x)4d:c) Sv

Lren(x) = L(z) + Too(0)k(2)? + oo (0,0)k(x)> 4+ 750 (0,0, 0)k(z) ™.

7.2.7 Pauli-Villars renormalization of the 2nd order term

&3 and &, are logaritmically divergent. Below we present computations only for
&, which is quadratically divergent. As a special case of (7.13) for n = 2 we
write

dk

&= [ ol s

Using the Pauli-Villars regularization, as in Subsubsect. 5.2.11, we compute:
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4rp (K?)

_ —(q+ k)7+mz)( (¢ — 3k)y +m;)
o /271'420 q—|—1k:) m?2 —10)((q —§k;) +m? —i0)

_ / (—4¢> + k* 4 4m?)
- )= (g + SR)2+m? —10)((q — $h)* +m? —10)

4o agk? 4m? 2i
— d d C;
(472 / al/ 2 Z ( (a1 + a2)? z ¥ (a1 + ag)? * (a1 + ag)?

. 2 . (g o
X e —i(ag + ag)mi —i——k
Xp( (e 2)m; 1041-1—042 )

1 /1 /Ood/) 2\ 7.2 o 2
= ——— | dv — > Ci| (1 —=v)k"+4m” 4+ —
(47)% Jo o P ; ( ) P
1— 2
X exp (—ip (m? + 4Uk2)>
1 ! 1— 2
= W/ deC,»((l—vZ)k‘Q—!—élmf)log<m?+( 41] )kz—i0>.
0 i

Note that at the end we use (A.24) besides (A.25), because of the quadratic
divergence.
Finally, the renormalized vacuum energy function is defined as

TR = lim (m(kQ) —m(o)) (7.14)
_ _(572)2/01 (%Jr%)log(ur%—io)du

A Appendix

A.1 Second quantization
A.1.1 Fock spaces

Let Z be a Hilbert space. Let S, denote the permutation group of n elements
and o € S,,. ©(0) is defined as the unique operator in B(®™Z) such that

9(0)91 ® - & gn =90-1(1) Q- ®ga*1(n)7 g1,---39n € Z.

O(0o) is unitary. We define the symmetrization/antisymmetrization projections

o = — Z O(0), oy = — Z sgno©(o)

' oES, . ogES,
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In what follows we will consider in parallel the symmetric/antisymmetric, or
bosonic/fermionic case. To facilitate notation we will write s/a for either s or
a.

@g/ . are orthogonal projections. The n-particle bosonic/fermionic space is
defined as
s/aZ @s/a (Al)

The bosonic/fermionic Fock space is
Lya(2) = © @l,2. (A2)

The vacuum vectoris Q:=1 € ®g/aZ =C.

We use the convention saying that the tensor products and direct sums used
in (A.1) and (A.2) are completed in their natural topology, so that n-particle
spaces and Fock space are Hilbert spaces. Sometimes we may want a similar
construction without the completion (in particular, if Z is not a Hilbert space).
Then we will speak about algebraic n-particle spaces or algebraic Fock spaces.

A.1.2 Creation/annihilation operators

For g € Z we define the creation operator
i*(9)V =0 Vnt+lga v, Ve, Z

and the annihilation operator a(g) := (a*(g))".

Above we used a compact notation for creation/annihilation operators popu-
lar among mathematicians. Physicists commonly prefer another notation, which
is longer and less canonical, but often more flexible. In order to introduce it, we
need to fix an identification of Z with L?(Z) of some measure space = Wlth its
elements called generically & and the measure called d¢. For instance, = can be
R? with the Lebesgue measure. Every g € Z can be represented as a function
23& g(f). Then

a(g) = [ g(&a(¢) (A.4)

() = [o©a©c (A.3)
/

We will call the notation on the left of (A.3) and (A.4) “mathematician’s nota-
tion” and on the right “physicist’s notation”.

Sometimes one introduces formal symbols |£) treated as vectors, possibly
nonnormalizable, such that for g € L?(Z) we can write

g= / ©g(€)de. g(6) = (€lg).
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We have the following dictionary between creation operators written in the
“physicist’s notation” (on the left) and the “mathematician’s notation” (on the
right):

i€ = a(jo)). (A5)
/ (Elg)as(©)de = a(g). (A.6)

Let [+, -], resp. [, ]+ denote the commutator, resp. anticommutator. Bosonic/fermionic
creation and annihilation operators satisfy the canonical commutation/anticommutation
relations, which in the “mathematician’s notation” read

6°(f).a"(@)5 = [a(f).alg))= =
a(f).a ()l

(fl9) = [ F@ate)ae,
and in the “physicist’s notation”, at least for = = R%, have the form

[a" (), a" ()] = [a(§), a(¢)l= 0,
(©),a"(N]= = dE—-¢).

=
[a

A.1.3 Weyl/antisymmetric and Wick quantization

Let
(517"'577175;17"' ’gi)'_}b(glv §m7€n7"' afl) (A7)

be a complex function, symmetric/antisymmetric separately wrt the first m and
the last n arguments. Let us introduce the following expression:

/- /bgl, e €]) (A8)

xa® (&) - a”(§m)al8y) - - a(€)déy - - dndgy, - - gy,

where a(£) and a*(£) are commuting/anticommuting symbols. B
In the symmetric case (A.8) can be interpreted as a polynomial on Z & Z.
Indeed, if we interpret the symbols a(¢) as the evaluations of g € Z = L2(R%):

(a(®)lg) = g(&), (a"(&)lg) = 9(&),

then (A.8) has the meaning of a polynomial function. It is common to use the
name a polynomial for (A.8) also in the antisymmetric case.

The Wick quantization of (A.8) is the operator on the Fock space given by
the same expression, except that we put the “hats” on a and a*. Note that the
creation operators are on the left and annihilation operators are on the right:

/b(§17 £m7§n7"' 761)
xa@* (&1) -+ a" (&m)a(&y) -~ a(€)dér, -+ €pd€y -+ dE,.
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In practice we often have some fields, say 1(€), v2(§), that can be written
as linear combinations of a(¢) and a*(§), eg.

/ Ai(&)a(e) + / Bi(&)a* (€).

Their quantizations are denoted by “hats”:

pi) = / A,(©)a(e) + / B(€)a* (6).

Suppose we have a polynomial

3 / / o (€1 )i (61) i, (€)1 . (AD)

i1,ee00bm

We assume that the coefficients ¢;, .. ;.. (&1, - - &) are symmetric/antisymmetric.
The most natural quantization of (A.9) is the operator on the Fock space given
by the same expression, where we just put “hats” on the fields. It is called the
Weyl quantization in the bosonic case. In the fermionic case this quantization
seems to have no established name, although it would be tempting to call it the
fermionic Weyl quantization. Following [15], we will call it the antisymmetric
quantization.

By inserting (A.9), we obtain a polynomial expressed in terms of a(§) and
a*(€). Its Wick quantization has the traditional notation where the expression
decorated with hats is put between double dots:

> /---/ch,..i,im@lf--%)@(&)---@(fm)da-~~dfm:.

For 1st order polynomials their Wick quantization obviously coincides with
their Weyl/antisymmetric quantization:

Y EGEGI IR FIGET
We will often use Wick quantizations of second degree polynomials. For

instance, let ¢(¢,&’) be a symmetric/antisymmetric function. Then the Wick
and Weyl/antisymmetric quantizations differ by the vacuum expectation value:

[ [ ee.ere©e¢ g

/ / (6.6) (A©A©a" (©)a" () + A©)B(E)a* (©)ae)
A(€)a* (€)a(©) + BO)BE)a(§)a(¢)) ) dgag’

- / / (6.6 p(E) (€' dede / / (6, €) (QUp(©)p(€)0) dede’.
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A.1.4 Second quantization of operators

For a contraction ¢ on Z we define the operator I'(q) on I'y/,(Z) by

I'(q)

®r, 2

®.Z
I'(q) is called the second quantization of q.
Similarly, for an operator h we define the operator dI'(h) by

=h@1VE 4. 41 DE g
M Z

s/a

dr(h)

®r, Z

s/a

dI'(h) is called the (infinitesimal) second quantization of h.
If h is the multiplication operator by h(§), then using physicist’s notation
we have

dr(h) = / h(E)a* (€)a(€)de.

Note the identity T'(ei?) = el*dl'(h),

A.1.5 Implementability of Bogoliubov translations

Consider bosonic creation/annihilation operators. Let & — f(£) be a complex
function. Set

ar(§) =a*(§)+f(9),
ar(§) = a(g) + f(¢)-

A proof of the following well-known fact can be found eg. in [15].
Theorem A.1 There exists a unitary operator U on the Fock space such that
Ua* (U™ = a;(§), Ua(§U" = ai(§),
if
J1r©Pas < o

Up to a phase factor

U= exp ([ (@)1(€) - ' ©F)de).

The following formula is a time-dependent generalization of the well-known
ldentlty eia*(f)+ia«(f) — efé(flf)eid* (f)eia'(f);

Texp <1a( / f(t)dt) +ia( / f(t)dt)) (A.10)

= o/ f(f(tl)|f(t2))0(t17t2)dt1dt2€i&*(ff(t)dt) eid(ff(t)dt).
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A.1.6 Implementability of Bogoliubov rotations

We will treat simultaneously the bosonic and fermionic case. The upper signs
will always correspond to the bosonic case and lower to the fermionic case.
Let p, ¢ be operators with the integral kernels p(&,£'), q(£,¢’). We assume

that q(¢, &) = £q(&',€). Set

i) = / (p(E.€)a" (€) + q(6.€)a(¢"))de’, (A11)

a6 = / (€& (¢') + P& Ta(6))de” (A.12)
Assume that
P’pFqiqg=1, pqFq¢*p=0,
" Faq¢ =1,  pg* Fqp* =0,

which guarantees that aj, G satisfy the same commutation/anticommutation
relations as a*, a.

Here, we use the following notation: For an operator p we will write p* for its
Hermitian conjugate, p# for its transpose of p and p for its complex conjugate.
If the integral kernel of p is p(£,&’), then clearly

p*(&€) =p(, &), p"(¢&)=pE.E), BEE)=p&E).

Theorem A.2 There exists a unitary U on the Fock space such that
Ua* (U™ = a;(§), Ua(§U" = a1(§),

iff q is Hilbert-Schmidt, that means,

[ [ ate.erpaga < .

The above theorem is called the Shale criterion [49] in the bosonic and the
Shale-Stinespring criterion [50] in the fermionic case. See also eg. [15].

A.1.7 Infimum of a van Hove Hamiltonian

Consider a bosonic Hamiltonian of the form
1= [ @ [vor @t [M@agae (1)

Such Hamiltonians are sometimes called van Hove Hamiltonians [13, 15]. As-
sume that ¢ is positive. We would like to compute the infimum of the spectrum
of H, denoted inf H.
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By completing the square we can rewrite (A.13) as

[0+ 29 (a0 + 2 )as - [ ae (A1)

It is easy to see that the infimum of the first term in (A.14) is zero. Hence

e [ 10@P
inf H = / =) d¢. (A.15)

A.1.8 Infimum of a Bogoliubov Hamiltonian

Consider a bosonic or fermionic Hamiltonian
H o= [hee)@©a) £a©a )
+ / (9(6,€)a"(©)a"(¢') = g€, E)a(©)a(¢))dede’.  (A.16)

We assume that h(£,&) = h(',€), g(&, &) = +g(¢',€). We will call (A.16)
Bogoliubov Hamiltonians. Note that (A.16) is the Weyl/antisymmetric quanti-
zation of the corresponding classical quadratic Hamiltonian. In the case of an
infinite number of degrees of freedom it is often ill defined, but even then it is
useful to consider such formal expressions.

We have the following formula for the infimum of H [15]:

1
1 2 * # 12
{ h? ¥ gg*  Fhg*gh _ (A7)

Here, we write h for the operator with the integral kernel h(¢,¢’) and g for the
operator with the integral kernel g(&,&’).
Consider the Wick ordered version of (A.16):

= 2 [ e (©a(e)acag
4 / (9(6.€)a" (©)a" (¢') = g€, E)a(€)a(e))dede’.  (A.18)

(In the case an infinite number of degrees of freedom :H: has a better chance to
be well defined compared with H). The formula for the infimum of : H: is more
complicated, but is more likely to lead to a finite expression [15]:

1
P | h? ¥ gg*  Fhg+gh# ]2 h 0
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A.2 Miscellanea

A.2.1 Identities for Feynman integrals

1 oo
10 — i/o daexp(—iaA), (A.20)
pu = 10, exp(—ipz) s (A.21)
/ ( ;Tp) exp (—i(ap? +bp)) = i (1%2622 exp (ib?/4a) . (A.22)
Using these identities, a typical evaluation of a loop integral goes as follows:
i / PU@
2m)* ) (a1¢? +2big + ¢ —i0) -+ - (ang?® + 2b,q + ¢, — i0)

n+l
= / dag -+ / dan/qu

X exp ( — i (a1¢® + 2b1q + c1) - - - — i (ang® + 2bgq + Cq))

in+1 o] o] ) )
= (27)4 /0 day -- ./0 day, /qu(laz) exp ( —i(aray -+ oznan)q2

—i(a1by -+ 4+ anby + 2)g —i(aqer -+ + ancn))

z2=0
in o0 o0
= - da1~-~/ dan(aqay - - + apay) "2 P10,
= [ )2P(i0.)
agby -+ apb, +2)%
X eXp (1 4(onay - + anay) ey ancn)) 2=0 (4.23)
If > C; =0, then
> dp _ipa, :
> Ci?e PA = =" Cilog(A; — i0). (A.24)
0o i
If in addition ) C;A; = 0, then

/ Z c d” e A = =N "0 A log(A; — 10). (A.25)

/1og(A2 —w))dw = wlog(A? —w?) — 2w

A+t w) .
+Alog(A_w), 0<w<A4; (A.26)
3 2ud 242
[t tona? —wtidw = tog(a? —u?) - 2 - 2
A3 (A4 w)
+1lo A (A2
3 g(A w)’ 0<w< (A.27)
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A.2.2 Identities for the dimensional regularization
The Feynman identity:
o1t d
o5 =5 / - ”1 . (A.28)
-1 (3(A+ B)+ 1(A-B)v)
The behavior of I' around 0:

1

r2-d/2) ~ a2 — 7. (A.29)
The area of the unit d — 1-dimensional sphere:
2ﬂ_d/2
= —. A.30
= T2 (450
Integrals, which can be reduced to special cases of the Euler integral:
/ b Ldt = E(AQ)*%d/QF(d/Q)F(Q —d/2) (A.31)
SRCEVOEE |
/OO Ldt = 1(A?)—Hdl/?P(l +d/2)T'(1 —d/2)
o (2 + A2)2 2

= %(Az)*Hd/QF(d/Q)F(Q —d/2)(-1+2/d)"'. (A.32)
Typical integrals:
/~L4_de /oo |q|d—1 d|q|
@m?* Jo (g2 + 42)°
1 plam

- = (T)H/Qr(z —d)2)

1 247 1
(47T)2<1+(2d/2)10guA2 )(2_d/27)

1 247 1
(47r)2(—7+10g'uA2 + (27d/2)), (A.33)

Q

Q

4—dQ o0 d+1
o (14 2/a) 17 g
(2m) 0 (q2+A2)

2 2470\ 2—d/2

(fﬁ)Q (%) e a2

A? wram 1

(47)2 (1 + (2 d/2)log = ) (2 —d2 7)
A? wlan 1

(4w)2(_7+log FERRCY d/2))'

Q

(A.34)

Q
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A.2.3 Operator identities

If A is a positive self-adjoint operator, then

A dr
A2 — /77 A.
(A+72) 271’ (A-35)
1 dr
A"Y2 /77
(A+72)2r
_ 1 odT

In the following identity x is a certain operator. It is useful when studying nth
order loop diagrams:

1 1 n—1 ,dr
T 2 —
/ r(A+72)2”‘((A+72)“) " on
1 1 ndr
= — | Tr(——— —. A.
Zn/ r((A—FTQ)K) 27 (A.37)
A.2.4 Coulomb and Yukawa potential
If p € C.(R3), then

p=-Af
has a unique solution in functions that decay at infinity given by
1
7) = (=A)"p(@) = | —=——=p(¥)dy. A.38
1@ = (87000 = [ (i (A39)

For large |Z|, (A.38) has the asymptotics

47T1|f|/p(37)d§'+ 0 <|51|2> . (A.39)

More generally

ol
mkﬂrwm=/——7w@@. (A.40)

4r|Z —
A.2.5 Vector fields
Consider a vector field R? 5 # — A(Z) € R®. We say that it is transversal if
divA(Z) = 0.

If it is not necessarily transversal but sufficiently nice, its transversal part is
defined as

—

A (T) := AZ) + (—A) ' ddivA(Z). (A.41)
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‘We have the identities

A(@)?2dz = /Atr dx—l—/(( A)~V2divA(F)) az,
/ (G4, (2))%d7 + / (divA(#))%dz, (A.42)
% / (rot A(Z))di. (A.43)

—
Qy
—
8
=
[NV}
Q.
8
Il

—
Qy
=y
g
—
8
N
[\v}
o
8
I

A.2.6 Dispersion relations

The principal value of %, denoted P%, is the distribution acting on a test function

f as
P It (f + )

It appears in the Sochocki formula

1

. 1 . 1
£10  megy — FimE)+Pe

€

Let f be holomorphic on {Imz > 0} with continuous boundary values at the
real line. Let f = fgr+if] be its decomposition into the real and imaginary part.
The following theorem follows easily from the Cauchy formula and describes
what physicists call dispersion relations:

Theorem A.3 Assume that f € CY(R), 1+J‘0E‘ € LY (R) and on the upper
half-plane |Ellim f(E)=0. Then for E€R
— 00

fe(E+i0) = /fl $110) e,
R fR(§+10)
fi(E+i0) = —;P g_iEdg.

Sometimes a function f does not have enough decay, and instead we can
apply Thm A.3 to its derivative. Then by integrating we obtain the so-called
once substracted dispersion relations.

/

Theorem A.4 Assume that f € C%*(R), 1Jf‘E‘ € LYR) and on the upper
half-plane lim f'(E)=0. Then for E € R
|E|—o0

fR(E+10) = fu(0+10)+ P / fi(€ +i0) <1 - 1) .

§-LE ¢
fA(E+i0) = f(0+10—7’P/fR§+10 (flE 2)(15.
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