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We study a class of self-adjoint operators defined on the direct sum of two Hilbert
spaces: a finite dimensional one called sometimes a “small subsystem” and an
infinite dimensional one called a “reservoir.” The operator, which we call a
“Friedrichs Hamiltonian,” has a small coupling constant in front of its off-diagonal
term. It is well known that under some conditions in the weak coupling limit the
appropriately rescaled evolution in the interaction picture converges to a contrac-
tive semigroup when restricted to the subsystem. We show that in this model, the
properly renormalized and rescaled evolution converges on the whole space to a
new unitary evolution, which is a dilation of the above mentioned semigroup.
Similar results have been studied before �Accardi et al., 1990� in more complicated
models under the name of “stochastic limit.” © 2007 American Institute of Physics.
�DOI: 10.1063/1.2405402�

I. INTRODUCTION

A. Weak coupling limit

The weak coupling limit is often invoked to justify various approximations in quantum phys-
ics, at least since Van Hove �1955�. It involves a dynamics depending on a small coupling constant
�. One assumes that

� ↘ 0, t → �, �2t fixed. �1.1�

Usually one separates the system into two parts: a “small subsystem” and a “reservoir.” The long
cumulative effect of the reservoir on the small system can in this limit lead to a Markovian
dynamics �i.e., a dynamics given by a semigroup�.

There exists a large literature devoted to the weak coupling limit reduced to the small sub-
system. It was first put on a rigorous footing by Davies �1974�. The setup considered by Davies,
in its abstract version, consists of a dynamics generated by H�ªH0+�W, a projection P com-
muting with H0 and such that PH0P=0. Davies proved that under appropriate assumptions there
exists the limit of the dynamics in the interaction picture restricted from the left and right by P,
and this limit is a semigroup on Ran P. Perhaps, it would be appropriate to call the weak coupling
limit reduced to the small subsystem the “Davies limit.” Another name which one can use is the
“reduced weak coupling limit.” �In the literature the names “weak coupling” and “van Hove limit”
are used—both are rather imprecise and the latter name is especially ambiguous, since it is also
used for a completely different concept in statistical physics.�

Davies and a number of other authors gave applications of the above idea to physically
interesting situations describing a dynamics of a composite quantum system, where P is a condi-
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tional expectation onto the small system and the resulting semigroup is completely positive. Note,
however, that the reduced weak coupling limit is an interesting mathematical phenomenon also in
its more general version.

Some authors point out that it should be possible to use the idea of the weak coupling limit not
just for the dynamics restricted to the small system, but for the whole system as well. Accardi
et al. �1990� argued that the full unreduced dynamics of a quantum system in an appropriate limit
can be described by the solution of a quantum Langevin �stochastic� equation. One can express
this solution in terms of a 1–parameter group of �-automorphisms, which is a dilation of the
completely positive semigroup obtained by Davies. They call it the “stochastic limit.” We prefer to
call it the “extended weak coupling limit,” since in itself this concept does not have to involve
“stochasticity.”

We believe that the above idea is interesting and worth exploring. In our next paper �Derez-
iński and De Roeck �e-print math-ph/0610054�� we would like to present our version of the
extended weak coupling limit applied to quantum systems, with some improvements as compared
to Accardi et al. �1990�. In particular, we believe that the approach of Dereziński and De Roeck
�e-print math-ph/0610054� proposes a more satisfactory kind of convergence �strong*� than that of
Accardi et al. �1990� �convergence of correlation functions� and that the proofs of Dereziński and
De Roeck �e-print math-ph/0610054� are considerably simpler than those of Accardi et al. �1990�.

B. Weak coupling limit for Friedrichs Hamiltonians

In the present paper we present results of the same flavor for a class of simple operators on a
Hilbert space, which we call Friedrichs Hamiltonians. We will show that for Friedrichs Hamilto-
nians the idea of the extended weak coupling limit works very well and yields in a rather natural
fashion a unitary dilation of the semigroup �t.

By a “Friedrichs Hamiltonian” we mean a self-adjoint operator H� on a Hilbert space H=E
� HR given by the expression

H� ª � E �V

�V* HR
� , �1.2�

where E is a self-adjoint operator on the space E ,V�B�E ,HR� and HR is a self-adjoint operator on
HR. We will assume that E is finite dimensional. The subscript R stands for the reservoir.

The Friedrichs model, often under other names such as the Wigner-Weisskopf atom, is fre-
quently used as a toy model in mathematical physics. In particular, one often considers its second
quantization on the bosonic or fermionic Fock space. �Note that the latter is extensively discussed
in Aschbacher et al. �2006��.

For a large class of Friedrichs Hamiltonians it is easy to prove that the Davies limit exists. In
this case, the Davies limit says that under appropriate assumptions the following limit exists:

lim
�↘0

eitE/�2
1E e−itH�/�2

1E ¬ �t, �1.3�

where �t is a contractive semigroup on E.
By enlarging the space E to a larger Hilbert space Z=E � ZR, one can construct a dilation of

�t. This means, a unitary group e−itZ such that

1E e−itZ1E = �t.

The operator Z is actually another example of a Friedrichs Hamiltonian. We devote Sec. II to the
construction of a dilation of a contractive semigroup that is well adapted to the analysis of the
weak coupling limit. Note that this construction is quite different from the usual one due to Nagy
and Foias �1970�. Even though it can be found in many disguises in the literature, we have never
seen a systematic description of some of its curious properties. Therefore, in Sec. II we devote
some space to study this construction. Note, in particular, that Z is an example of a Friedrichs
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Hamiltonian whose definition requires a “renormalization” in the terminology of Dereziński and
Früboes �2002�.

The main results of our paper are described in Sec. IV. We start from a rather arbitrary
Friedrichs Hamiltonian. First we describe its Davies limit. Then we show that for an appropriate
“scaling operator” J� and a “renormalizing operator” Zren

lim
�↘0

eit�−2ZrenJ�
* e−it�−2H�J� = e−itZ.

It is this convergence of the dynamics to a dilation of the semigroup �t that we call extended weak
coupling limit. Following Dereziński and Früboes �2006� and Dereziński and Früboes �2005�, we
will give two versions of these results: stationary and time dependent.

Note that the Davies limit follows from the extended weak coupling limit, since

1E ei�−2tZrenJ�
* e−i�−2tH�J�1E = 1E ei�−2tE e−i�−2tH�1E. �1.4�

C. The case of one-dimensional E

The main idea of the extended weak coupling limit can be explained already in the case of a
one-dimensional small Hilbert space E. If E has more than one eigenvalue, which is possible if
dim E�2, then the extended weak coupling limit is more complicated to formulate and prove,
which tends to obscure the whole picture. Therefore, in this subsection we describe the main idea
of our result in the case dim E=1.

Let E=C and HR=L2�R�. Let e�R and let � be a function on R. Assume that there is a
unique êª�−1�e�. Let � also stand for the corresponding multiplication operator on HR. Fix a
function v�L2�R� and denote by �v� the operator in B�HR ,E� which acts as �v � ª �v � f	�E and let
�v	ª ��v��*. Consider the following Hamiltonian on E � HR:

H� ª � e ��v�
��v	 �

� . �1.5�

�Note that in the literature the name “Friedrichs Hamiltonian” is usually reserved for an operator
of the form �1.5�. Operators of the form �1.2�, should be perhaps called “generalized Friedrichs
Hamiltonians.”�

The weak coupling limit in this model simply states that, under some mild assumptions,

lim
�↓0

1E e−i�−2t�H�−e�1E = e−i�t, �1.6�

where 1E is the orthogonal projection on E,

� ª P

R

dx
v*�x�v�x�
��x� − e

+ i�v*�ê�v�ê� , �1.7�

and P1/x is the principal value of 1 /x.
e−i�t is a contractive semigroup on E. It can be dilated to a unitary group e−itZ on the Hilbert

space on E � HR. The generator of the dilating group can be formally written in the form of a
Friedrichs Hamiltonian as

Z ª � Re � v�ê��1�

v�ê��1	 ���ê�x
� . �1.8�

���ê�x�R is the new multiplication operator on HR=L2�R�. 1 is the constant function with value
1 which is of course not an element of L2�R�. Because of this Eq. �1.8� does not make sense as an
operator. Nevertheless, one can give it a precise meaning, e.g., by constructing its resolvent or its
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unitary group, or by imposing a cutoff and taking it away �see, e.g., Dereziński and Früboes
�2002� and Kümmerer and Schröder �1984��.

To state the stochastic limit, we need the unitary rescaling operator J��B�L2�R�� defined as

�J�f��x� =
1

�
f� x − ê

�2 �, f � L2�R� . �1.9�

If the function v is sufficiently regular in ê, we show the following results:

�1� Theorem 6: The rescaled resolvent J�
*�z−�−2�H�−e��−1J� converges in norm to �z−Z�−1.

�2� Theorem 7: The rescaled unitary family J�
* e−it�−2t�H�−e�J� converges strongly to e−itZ.

D. Notation

We will often make the following abuse of notation. If H0 is a closed subspace of a Hilbert
space H, A�B�H0�, and f is a function on the spectrum of A, then the expression f�A� stands for

j0
*f�A�j0, �1.10�

where j0 is the embedding of H0 into H.
We set

C+ ª z � C,Im z � 0�, C− ª z � C,Im z 	 0� . �1.11�

II. DILATIONS

Let E be a Hilbert space and let the family �t�R+ be a contractive semigroup on E,

�t�s = �t+s, ��t� 
 1, t,s � R+. �2.1�

Definition 1:

�1� We say that �Z ,1E ,Ut�R� is a unitary dilation of �t�R+ if

�i� Z is a Hilbert space and Ut�R�B�Z� is a one-parameter unitary group,
�ii� E�Z and 1E is the orthogonal projection from Z onto E,
�iii� for all t�R+

1EUt1E = �t. �2.2�

�2� We call a dilation �Z ,1E ,Ut�R� minimal iff

UtE�t � R�cl = Z . �2.3�

We have the following theorem due to Nagy and Foias �1970�:

Theorem 1:

�1� Every contractive semigroup �t�R+ has a minimal unitary dilation �Z ,1E ,Ut�R�, unique
up to unitary equivalence.
�2� 1EUt1E=�−t

* for t	0.
�3� If �t�R+ is strongly continuous in t, then Ut�R can be chosen to be strongly continuous.

In the following we present a construction of a unitary dilation, which is well suited for the
extended weak coupling limit.

In what follows we assume that the contractive semigroup �t is norm continuous. Hence it has
a generator, denoted −i��B�E�, so that �t=e−it�. Since �t is contractive, −i� is dissipative,
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Im � =
1

i2
�� − �*� 
 0. �2.4�

Let h be a Hilbert space. Set ZR=L2�R� � h=L2�R ,h� and Z=E � ZR. Let 1E be the orthogo-
nal projection from Z onto E.

We define an unbounded linear functional on L2�R� with the domain L1�R��L2�R�, denoted
�1�, given by the obvious prescription

�1�f = 

R

f�x�dx .

By �1	, we denote the adjoint of �1� in the sense of forms. �Note that the adjoint of �1� in the sense
of forms is different from the adjoint in the sense of operators; in particular, the latter has a trivial
domain�.

Introduce the operator ZR on ZR as the operator of multiplication by the variable x,

�ZRf��x� = xf�x� .

Let ��B�E ,h� be an operator satisfying the condition

1

2i
�� − �*� = − ��*� . �2.5�

Put W= �1	 � � and W*= �1 � ��* and remark that the expressions

W, W*, WSW*, with S � B�E� , �2.6�

are well defined quadratic forms on DªE � ��L1�R��L2�R���alh� �where �al denotes the alge-
braic tensor product�.

Now we combine these objects into something that is a priori a quadratic form on D, but turns
out to be a bounded operator. For clarity we will explicitly write the projections 1E onto E and 1R

onto ZR. For t�0, we define

Ut = 1R e−itZR1R + 1E e−it�1E − i1E

0

t

du e−i�t−u��W* e−iuZR1R − i1R

0

t

du e−i�t−u�ZRW e−iu�1E

− 1R

0
u1,u2,u1+u2
t

du1du2 e−iu2ZRW e−i�t−u2−u1��W* e−iu1ZR1R,

U−t = Ut
*. �2.7�

For z�C+, we define

Q�z� ª �0 0

0 �z − ZR�−1� + � �z − ��−1 �z − ��−1W*�z − ZR�−1

�z − ZR�−1W�z − ��−1 �z − ZR�−1W�z − ��−1W*�z − ZR�−1� ,

Q�z̄� ª Q�z�*. �2.8�

Next we define the following quadratic form on D, using the matrix notation with respect to
the decomposition Z=E � ZR:

Z+ = �� W*

W ZR
�, Z− = ��* W*

W ZR
� . �2.9�

Last, for k�N, we define approximants Wk�B�E ,L2�R ,h�� to the form W
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Wku ª �1�−k,k�	 � � , �2.10�

and approximants ZR,k�B�ZR� for ZR

ZR,k ª 1�−k,k��ZR�ZR, �2.11�

where 1�−k,k� denotes the characteristic function of �−k ,k�. We set

Zk = �Re � Wk
*

Wk ZR,k
� . �2.12�

We have
Theorem 2: Let Ut be as in Eq. �2.7�, Q�z� as in Eq. �2.8�, Z± as in Eq. �2.9�, and Zk as in Eq.

�2.12�, with � satisfying condition �2.5�.

�1� The family Q�z� is the resolvent of a self-adjoint operator Z; that is, there exists a unique
self-adjoint operator Z such that for all z�C \R

Q�z� = �z − Z�−1. �2.13�

�2� Ut extends to a unitary, strongly continuous one-parameter group in B�Z� and

Ut = e−itZ. �2.14�

�3� Fix Im z0�0. Dom Z consists of vectors  of the following form:

 = � u

�z0 − ZR�−1Wu + g
�, u � E,g � Dom ZR, �2.15�

and Z transforms  into

Z = � �u + W*g

z0�z0 − ZR�−1Wu + ZRg
� . �2.16�

�4� For �Dom Z, we have

Z = lim
k→�

Zk . �2.17�

�5� For  ,��D, the function R� t� ��Ut�	 is differentiable away from t=0, its derivative
t� �d/dt���Ut�	 is continuous away from 0 and at t=0 it has the left and the right limits
equal respectively to

− i��Z+�	 = lim
t↓0

t−1���Ut − 1��	 , �2.18�

− i��Z−�	 = lim
t↑0

t−1���Ut − 1��	 . �2.19�

�6� The group Ut dilates the semigroup generated by −i�, that is, for t�0,

1EUt1E = e−it�. �2.20�

�7� This dilation is minimal if h=Ran �.

Remark 1: Naturally, every densely defined operator gives rise to a quadratic form on its
domain. However, Z+ and Z− are not derived from Z in this way. This is seen from the explicit
description of these domains, as well as from the fact that for �Dom Z we have
�d/d tU�t��t=0=−iZ, which should be compared with Eqs. �2.18� and �2.19�.

Remark 2: Motivated by Eqs. �2.12� and �2.17�, we can say that in some sense the operator Z
is given by the matrix
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Z = �Re � W*

W ZR
� . �2.21�

One should, however, remember, that strictly speaking the expression �3.20� does not define an
operator. To define it an appropriate renormalization is needed: one needs to impose a symmetric
cutoff and then remove it. The precise meaning of this renormalization is described by Eqs. �2.15�
and �2.16�, or by Eq. �2.17�. Nevertheless, in the sequel, we will freely use expressions of the form
�2.21�, remembering that its meaning is given by Theorem 2.

Remark 3: For ��R, introduce the following unitary operator on Z:

j�u = u, u � E; j�g�y� ª �−1g��−2y�, g � ZR.

Note that

j�
*ZRj� = �2ZR, j�

*�1	 = ��1	 .

Therefore, the operator Z enjoys the following scaling property, which plays an important role in
the extended weak coupling limit:

�−2J�
*��2 Re � �W*

�W ZR
�J� = �Re � W*

W ZR
� .

III. WEAK COUPLING LIMIT

A. Notation and assumptions

Let E and HR be Hilbert spaces. We assume that E is finite dimensional. We set H=E � HR.
Fix a self-adjoint operator HR on HR and E on E. Let the free Hamiltonian H0 on H be given

as

H0 = E � HR.

Let V�B�E ,HR�. By a slight abuse of notation we denote by V the corresponding operator on H.
For ��R, let the interacting Friedrichs Hamiltonian be

H� = H0 + ��V + V*� . �3.1�

We write E=�e�spEe1e�E� where e ,1e�E� are the eigenvalues and spectral projections of E. The
spectral subspace of E for e is denoted Ee. Let us list the assumptions that we will use in our
construction.

A1: Let h0 ,h1 ,h2 , . . . ,h� denote the Hilbert spaces of dimension 0,1 ,2 , . . . ,�. We assume
that there exists a partition of R into measurable sets I0 , I1 , I2 , . . . , I� and a unitary identification

HR � 

R

�

h�x�dx � �
n=0

�

L2�In� � hn, �3.2�

where h�x�ªhn for x� In and HR is the operator of the multiplication by the variable x. Thus, if
f =�R

� f�x�dx�HR, then

�HRf��x� = xf�x�

for Lebesgue almost all x. Moreover, there exists a measurable function

R � x � v�x� � B�E,h�x��

such that for Lebesgue a .a. x�R and all u�E

�Vu��x� = v�x�u . �3.3�
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In what follows, the identification �3.2� is fixed and will be used to define the scaling operator
J�. Note that if H is separable, the existence of such an identification is guaranteed by abstract
measure-theoretic arguments.

A2: For any e�spE, there exists n�e�� 0,1 ,2 , . . .�� such that e belongs to the interior of
In�e�. We will write he for hn�e�. Moreover, we assume that v is continuous at spE, so that for e
�spE, we can unambiguously define v�e��B�E ,he�.

A3: There is ��0, such that for a certain c�0 and for all e�spE,

�v*�x�v�x� − v*�e�v�e�� 
 c�x − e��. �3.4�

We also assume that x� �v�x�� is bounded.

B. The reduced weak coupling limit

In this subsection we describe the reduced weak coupling limit �or the Davies limit� for
Friedrichs Hamiltonians. The Davies limit is usually given in its time dependent version described
in Theorem 4. Its stationary form, which comes from Dereziński and Früboes �2006� and Derez-
iński and Früboes �2005�, has some technical advantages over the time dependent version.

In both theorems about the Davies limit we do not suppose Assumptions A1, A2, and A3.
Theorem 3 (Stationary Davies limit): Suppose that for e�spE and z�C+

lim
�↓0

V*�e + �z − HR�−1V

exists and is independent of z. Set

�e
st
ª lim

�↓0
1Ee

V*�e + �z − HR�−1V1Ee
,

�st
ª �

e�spE

�e
st.

Then

�1� for z�C+,

lim
�→0

1E�z − �−2�H� − e��−11E = �z − �e
st�−11E; �3.5�

�2� for all continuous functions with compact support f �Cc��0, +���,

lim
�↓0



R+

dtf�t�ei�−2tE1Ee−i�−2tH�1E = 

R+

dtf�t�e−it�st
, �3.6�

where all limits are in operator norm.

Theorem 4 (Time dependent Davies limit): Assume that

lim
t→�



0

t

eisEV*e−isHRVds

exists. Set

�e
dyn

ª lim
t→�



0

t

1Ee
V*e−is�HR−e�V1Ee

ds ,

�dyn
ª �

e�spE

�e
dyn.
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Then

lim
�→0

sup
0
t
T

�ei�−2tE1Ee−i�−2tH�1E − e−it�dyn
� = 0. �3.7�

In practice, �st and �dyn coincide. They will be denoted simply by � and called the Davies
generator.

Theorem 5 (Formula for the Davies generator): Suppose that Assumptions A1, A2, and A3
are true. Then the assumptions of Theorems 3 and 4 are true. Moreover, for e�spE and z�C+,

− i lim
t→+�



0

t

dsV* e−is�HR−e�V = lim
�↓0

V*�e + �z − HR�−1V = P

R

dx
v*�x�v�x�

x − e
+ i�v*�e�v�e� ,

where P denotes the principal value. Consequently, the stationary and time dependent Davies
generator coincide,

�e ª �e
dyn = �e

st = 1Ee�P

R

dx
v*�x�v�x�

x − e
+ i�v*�e�v�e��1Ee

. �3.8�

C. Asymptotic space and dynamics

Let e�spE. The asymptotic reservoir space and “total” space corresponding to e is

ZRe
ª L2�R� � he = L2�R,he� ,

Ze ª Ee � ZRe
.

We have the projections

1Ee
:Ze → Ee, 1Re

:Ze → ZRe
.

Let ZRe
be the operator of multiplication by the variable in R on ZRe

. We define the map
�e :Ee→he

�e ª v�e�1Ee
.

Under the assumptions A1, A2, and A3, we define the operator �e on Ee, as in Eq. �3.8�.
Note that −��e

*�e= �1/2i���e−�e
*�, which is the analog of the condition �2.5� for ZRe

, �e, and
�e for the space Ze=Ee � ZRe

. One can thus apply the procedure of Sec. II and construct a unitary
dilation of the semigroup e−it�e, as defined in Eq. �2.7�. We will denote this dilation by e−itZe.

We construct the full asymptotic space as a direct sum of independent reservoirs, for each
eigenvalue of E:

h ª �
e�spE

he,

ZR ª �
e�spE

ZRe
= L2�R,h� ,

Z ª �
e�spE

Ze = E � ZR.

We have the asymptotic reservoir Hamiltonian
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ZR = �
e�spE

ZRe
.

We define the map � :E→h,

� ª �
e�spE

�e,

where we used the decomposition E= �

e�spE

Ee and h= �

e�spE

he. We also have the operator � on E as

defined in Sec. II.
Clearly, ZR, �, and � satisfy the condition �2.5�. One can thus apply the procedure of Sec. II

and construct a unitary dilation e−itZ of the semigroup e−it� on Z=E � ZR.
Obviously, everything we constructed commutes with the orthogonal projections 1e :Z→Ze,

and we have

Z = �
e�spE

Ze.

We define the renormalizing Hamiltonian Zren on Z,

Zren ª �
e�spE

e1e = E + �
e�spE

e1Re
. �3.9�

D. Scaling

For any e�spE, we choose an open set Ĩe such that e� Ĩe� Ie and Ĩe are mutually disjoint. For

��R+, define the family of contractions J�,e :Ee � ZRe
=Ze→E � L2�Ĩe ,he�, which on ge�ZRe

act
as

�J�,ege��y� = � 1

�
ge� y − e

�2 � if y � Ĩe

0 if y � R \ Ĩe,
� �3.10�

and on Ee equals 1Ee
. Note that

J�,e
* J�,e = 1Ee

� 1�−2�Ĩe−e��ZRe
�, J�,eJ�,e

* = 1Ee
� 1Ĩe

�HR� . �3.11�

For = �e�spEe we set

J� ª �
e�sp�E�

J�,ee.

Note that J� is a partial isometry from Z to H.
Remark 4: The precise form of J� only matters in a neighborhood of spE. For instance, let

Ĩe�y��e�y� be increasing functions differentiable at e such that �d�e /dy��e�=1 for e�sp�E�.
Set

�J�,e
� ge��y� = � 1

�
ge��e�y� − �e�e�

�2 � if y � Ĩe

0 if y � R \ Ĩe.
� �3.12�

Then all the statements in this paper remain true if one replaces J� by J�
�.
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E. Main results

In this subsection we state the two main results of our paper. They say that the dynamics
generated by H� after an appropriate rescaling and renormalization for a small coupling ap-
proaches the asymptotic dynamics. Again, we present two versions of the result: stationary and
time dependent.

Theorem 6 (Stationary extended weak coupling limit): Assume A1, A2, and A3. Let Ze and
Z be as defined in Sec. III C and let J� be as defined in Sec. III D.

�1� For any e�spE and z�C+,

lim
�↓0

J�
*�z − �−2�H� − e��−1J� = �z − Ze�−11e. �3.13�

�2� For all continuous functions with compact support f �Cc��0, +���,

lim
�↓0



R+

dtf�t�ei�−2tZrenJ�
*e−i�−2tH�J� = 


R+
dtf�t�e−itZ, �3.14�

where all limits are in operator norm.

Theorem 7 (Time dependent extended weak coupling limit): Assume A1, A2, and A3. Let
Ze and Z be as defined in Sec. III C and let J� be as defined in Sec. III D. For all �Z and t
�R,

lim
�↓0

ei�−2tZrenJ�
*e−i�−2tH�J� = e−itZ . �3.15�

Remark 5: From the proof of Theorem 7, it follows immediately that Eq. �3.15� can be stated
uniformly in t on compact intervals, but in weak operator topology. For all  ,��Z and 0	T
	�,

lim
�↓0

sup
0
�t�
T

����ei�−2tZrenJ�
*e−i�−2tH�J� − e−itZ	� = 0. �3.16�

Remark 6: One can also state Eq. �3.15� in the interaction picture, avoiding the renormalizing
Hamiltonian Zren. For all t�R and �Z,

lim
�↓0

J�
*ei�−2tH0e−i�−2tH�J� = eitZRe−itZ . �3.17�

This is seen most easily by remarking that for all t�R and �Z,

lim
�↓0

J�
*ei�−2tH0J�e−i�−2tZren = eitZR . �3.18�

IV. PROOFS

A. Proof of Theorem 2

Statement �1� of Theorem 2 follows by the arguments described in a slightly different context
in Theorem 2.1 of Dereziński and Früboes �2002�. One can take over the proof of Dereziński and
Früboes �2002� almost verbatim. For completeness, we reproduce an adjusted proof.

Let Wk�B�E ,L2�R ,h�� for k�N be defined as in Eq. �2.10�

�k�z� ª Re � + Wk
*�z − ZR�−1Wk. �4.1�

Obviously, the operator
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Zk ª Re � + ZR + Wk
* + Wk �4.2�

is a well defined self-adjoint operator on Dom ZR �since it is a bounded perturbation of ZR�. By the
Feshbach formula �see Eq. �4.36��, one checks that the resolvent �z−Zk�−1 is norm convergent to
Q�z�: It suffices to remark that for all z�C \R,

lim
k→�

�k�z� = ��z� , �4.3�

lim
k→�

Wk
*�z − ZR�−1 = W*�z − ZR�−1 �4.4�

in norm. It follows that Q�z� satisfies the resolvent formula. To obtain that Q�z� is actually the
resolvent of a �uniquely defined� self-adjoint operator, it suffices �see Kato �1984�� to establish for
all z�C \R, �1� Ker Q�z�= 0�; �2� Ran Q�z� is dense in Z; �3� Q*�z�=Q�z̄�.

�3� is obvious. To prove �1�, we let u � g�E � ZR and we assume Q�z�u � g=0. Suppose that,
e.g., z�C+. Then

�z − ��−1�u + W*�z − ZR�−1g� = 0, �4.5�

�z − ZR�−1W�z − ��−1�u + W*�z − ZR�−1g� + �z − ZR�−1g = 0. �4.6�

Inserting Eqs. �4.5� into �4.6� yields �z−ZR�−1g=0 and hence g=0. Combined with Eq. �4.5�, the
latter implies u � g=0.

Using �1� and �3�, we get �2�, since

Ran Q�z�� = Ker Q�z�* = Ker Q�z̄� = 0� . �4.7�

Hence, statement 1 of Theorem 2 is proven.
To prove statement �2� we take  ,��D and compute the following Laplace transform:

− i

0

+�

dt eizt��Ut�	 = ��Q�z��	 . �4.8�

By functional calculus and the fact that Q�z�= �z−Z�−1,

− i

0

+�

dteizt��e−itZ�	 = ��Q�z��	 . �4.9�

Both t� � �Ut�	 and t� � �e−itZ�	 are continuous functions, and we can apply the inverse
Laplace transform to Eqs. �4.8� and �4.9�, which yields � �Ut�	= � �e−itZ�	. By the density of D
we obtain Ut=e−itZ. This, in particular, proves that Ut satisfies the group property.

To prove stratement �3� we note that any vector in ZR can be written as �z0−ZR�g for some
g�Dom ZR. Given such g, any vector in E can be written as �z0−��u−W*g �here we use the
invertibility of z0−��. Set

� ª ��z0 − ��u − W*g

�z0 − ZR�g � .

Then =Q�z0�� equals Eq. �2.15� and Z=−�+z0Q�z0�� equals Eq. �2.16�.
Statements �4�–�6� follow by straightforward calculations.
To prove statement �7�, we observe that

Spane−itZE,t � R�cl = Span�z − Z�−1E,z � C \ R�cl. �4.10�

Since Spanx� �z−x�−1 ,z�C \R� is dense in L2�R�, and using the fact that �z−��−1 ,z�C+ and
�z−�*�−1 ,z�C− are invertible, we have
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Span�z − Z�−1E,z � C \ R�cl = u � �L2�R� � �u�,u � E� . �4.11�

This easily implies statement �7�. �

B. Proof of Theorem 3

Theorem 3 is essentially a special case of Theorem 2 from Dereziński and Früboes �2005� �see
also Dereziński and Früboes �2006��. For the convenience of the reader, and because the case we
consider allows for some simplifications, we sketch the proof below.

Let

G−1�e,�,z� ª 1E�z − �−2�H� − e��−11E, �4.12�

which yields immediately the bound

�G−1�e,�,z�� 
 �Im z�−1. �4.13�

In the following we simplify the notation G�e ,� ,z� into G �hence, we fix a certain e�spE� and we
put

Gd = �
e��spE

1Ee�
G1Ee�

, Go ª G − Gd, �4.14�

and 1Ee�
ª1E−1Ee

.

By the Feshbach formula �see further Eq. �4.36��, we have

G = z − �−2�E − e� − �−21EV*�z − �−2�HR − e��−1V1E.

By the assumption of Theorem 3, it is immediate that

lim
�↓0

1Ee
Gd

−1 = �z − �e
st�−1. �4.15�

By the Neumann expansion and the assumption of Theorem 3, one has for small enough � and
some c�0

�1Ee�
Gd

−1� 
 c�2, �Go� 	 c . �4.16�

From G=Gd+Go, we deduce

G−1 = Gd
−1 − Gd

−1GoGd
−1 + Gd

−1GoGd
−1GoG−1, �4.17�

from which

1Ee
�G−1 − Gd

−1� = − 1Ee
Gd

−1Go1Ee�
Gd

−1�1 − GoG−1� . �4.18�

Using Eqs. �4.13�, �4.15�, and �4.16�, we see that the right hand side of Eq. �4.18� vanishes,
yielding

lim
�↓0

1Ee
G−1 = lim

�↓0
1Ee

Gd
−1 = �z − �e

st�−1. �4.19�

Writing

1Ee�
G−1 = 1Ee�

Gd
−1 − 1Ee�

Gd
−1GoG−1 �4.20�

and using Eq. �4.16�, one sees that
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lim
�↓0

1Ee�
G−1 = 0. �4.21�

Together, Eqs. �4.19� and �4.21� end the proof of �1�.
Statement �2� follows from �1� as in Dereziński and Früboes �2006�. �

C. Proof of Theorem 4

Theorem 4 is a special case of a well known result of Davies �1974� reproduced, e.g., in
Dereziński and Früboes �2006�. For the convenience of the reader, and because some simplifica-
tions are possible, we sketch the proof below.

We start from the following representation for �t,�ªeit�−2E1E e−it�−2H�1E:

�t,� = 1 + 

0

t

D�,t�u��u,�du , �4.22�

with

D�,t�u� = �−2

u

t

ei�−2vEV* e−i�−2�v−u�HRV e−i�−2uEdv

= �
e,e��spE



0

�−2�t−u�
1Ee

V* e−is�HR−e�V1Ee�
e−i�−2u�e�−e�ds . �4.23�

For T�0, let QªC0��0,T�� be the Banach space of continuous functions, equipped with the
supremum norm. Define the operators K� and K on Q by �for 0
 t
T�

�K�f��t� = 

0

t

D�,t�s�f�s�ds, �Kf��t� = − i�dyn

0

t

f�s�ds . �4.24�

We will prove that

s − lim
�↓0

K� = K . �4.25�

Let

�̃ ª − i lim
t→+�



0

t

V* e−is�HR−e�Vds , �4.26�

whose existence was proven in Theorem 5.
One checks that for all t� �0,T�

lim
�↓0
��K�f��t� + i�

e,e�



0

t

1Ee
�̃1Ee�

e−i�−2s�e�−e�f�s�ds� = 0, �4.27�

which follows by the assumption of Theorem 4 and dominated convergence. Since f is �bounded
and continuous, hence� integrable, the Riemann-Lesbegue lemma yields, for e ,e��spE,

lim
�↓0

i

0

t

1Ee
�̃1Ee�

e−i�−2s�e−e��f�s�ds = �e,e�

0

t

�e
dynf�s�ds , �4.28�

and hence Eq. �4.27� proves �4.25�. Note that �t,� and �tªe−it�dyn
satisfy the equations
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�� = �0 + K���, � = �0 + K� , �4.29�

where �0 is the constant function with value �0=�0,�=1. Remark that by the assumption of
Theorem 4, there exists a constant c and a �0 such that for all �
�0 and for all n�N, we have

�K�
n� 


�ct�n

n!
, �Kn� 


�ct�n

n!
. �4.30�

This means that both

�1 − K��−1 = �
n=0

+�

K�
n, �1 − K�−1 = �

n=0

+�

Kn �4.31�

exist and that for each n�N , s− lim�↓0 K�
n =Kn. By Eq. �4.29�, we thus have

�� − � = ��1 − K��−1 − �1 − K�−1��0 = �
n=0

+�

�K�
n − K�

n��0. �4.32�

Since each term in the right-hand side vanishes as �↓0 and the sequence is absolutely convergent
by Eq. �4.30�, Theorem 4 follows.

D. Proof of Theorem 5

Let us first state a general lemma about the principal value.
Lemma 1: Let f be a bounded function on R such that f /1+ �x��L1�R� , f is continuous at 0

and there exist � ,C�0 such that for �x�	C⇒ �f�x�− f�0��
 �x��. Then, for z�C+,

− i lim
T→+�



0

+T

dt

R

dxf�x�e−itx = lim
�↓0



R
f�x���z − x�−1dx = − P


R

f�x�
x

dx + i�f�0� . �4.33�

Proof: For the first expression of Eq. �4.33�, we write

− i lim
T→+�



0

+T

dt

R

dxf�x�e−itx = 

R

�− 1 + e−iTx�
x

f�x�dx

= f�0�

�x�
C

− 1 + e−iTx

x
dx + 


�x�
C

− f�x� + f�0�
x

dx

+ 

�x�
C

�f�x� − f�0��e−iTx

x
dx − 


�x��C

f�x�
x

dx + 

�x��C

f�x�e−iTx

x
dx .

�4.34�

The first term, by the residue calculus, goes to f�0�i�. By the Riemann-Lebesgue Lemma, the
third and the fifth terms on the right of Eq. �4.34� go to zero. The second and fourth terms yield
P��f�x� /x�dx.

To get the second equality in Eq. �4.33�, we write z=a+ ib and compute:



R

f�x���z − x�−1dx = 

R

�ibf�x�
��a − x�2 + ��b�2dx + 


�x�	�

f�x�� ��a − x�
��a − x�2 + ��b�2 −

− x

x2 + ��b�2�dx

− 

�x�	�

xf�x�
x2 + ��b�2dx + 


�x���

��a − x�f�x�
��a − x�2 + ��b�2dx , �4.35�

where 0	�	1 is fixed. The sum of the last two terms converges to −P�R�f�x� /x�dx. The second
term can be estimated by
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sup�f �

�x�	�

� ��a − x�
�x − �a�2 + �2b2 −

�x�
x2 + �2b2�dx

=
sup�f �

2
�log

��� + �a�2 + �2b2���� − �a�2 + �2b2�
��2 + �2b2�2 �→

�→0
0.

�

To apply this lemma, it suffices to note that f�x�ªv*�x�v�x� is a bounded L1 function, con-
tinuous and Hölder at spE.

E. Proof of Theorem 6

Lemma 2: Let e ,e��spE and z�C+. Then

lim
�↓0

1

�
V*�z − �−2�HR − e��−1J�,e� = �1� � v*�e��z − ZRe

�−1�e,e�.

Proof: Let ge��ZRe�
. Then

1

�
V*�z − �−2�HR − e��−1J�,e�g =

1

�2

Ĩe�

v*�y��z −
y − e

�2 �−1

ge�� y − e�

�2 �dy

= 

�−2�Ĩe�−e��

v*�e� + �2x��z − x + �−2�e − e���−1ge��x�dx .

For e�e�, we estimate the square of the norm by



�−2�Ĩe�−e��

�v*�e� + �2x��z − x + �−2�e − e���−1�2dx

R

�ge��x��2dx


 sup
y�R

�v�y��2

�−2�Ĩe�−e��

��z − x + �−2�e − e���−1�2dx

R

�ge��x��2dx → 0.

The first integral in the last line vanishes by Lesbegue dominated convergence since e� �Ie�
−e��. For e=e�,

�

�−2�Ĩe−e�

�v*�e + �2x� − v*�e���z − x�−1ge�x�dx�2


 

R

��v*�e + �2x� − v*�e���z − x�−1�2dx

R

�ge�x��2dx → 0,

by the Lebesgue dominated convergence theorem, since v is bounded and continuous in e. Since
ge� enters the above estimates only via �ge��

2=�R�ge��x��2dx, the convergence is in norm. �

The proof of Theorem 4 is based on the formula

�z − H��−1 = �z − HR�−1 + �1E + ��z − HR�−1V�G��z��1E + �V*�z − HR�−1� , �4.36�

where G��z�ª1E�z−H��−11E. After appropriate rescaling and sandwiching with J�,e�
* and J�,e�, Eq.

�4.36� becomes

012103-16 J. Dereziński and W. De Roeck J. Math. Phys. 48, 012103 �2007�

Downloaded 01 Feb 2008 to 193.0.85.159. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J�,e�
* �z − �−2�H� − e��−1J�,e� = �e�,e�1�−2�Ĩe�−e���ZR,e���z − ZR,e� − �−2�e� − e��−1

+ �1Ee�
+ J�,e�

* 1

�
�z − �−2�H� − e��−1V�

�G��z,e��V*�z − �−2�H� − e��−1 1

�
J�,e� + 1Ee�

� , �4.37�

where

G��z,e� ª 1E�z − �−2�H� − e��−11E.

The first term of Eq. �4.37� has �e�,e� because Ĩe� and Ĩe� are disjoint. It converges to

�e,e��e,e��z − ZRe
�−1.

By the stationary Davies limit �Theorem 3, statement �1��,

G��z,e� → 1Ee
�z − �e�−11Ee

.

Finally, by application of Lemma 2, the second term on the right-hand side of Eq. �4.37� converges
to

�e,e��e,e��1Ee
+ �z − ZR,e�−1�1	 � v�e��1Ee

�z − �e�−11Ee
��1� � v*�e��z − ZR,e�−1 + 1Ee

� .

�

F. Proof of Theorem 7

We start with the time dependent analog of Lemma 2.
Lemma 3: Let ge�L1�R ,he��L2�R ,he�=D�ZR,e. Then, uniformly for �t�	T, we have the

convergence

�−1V* eit�−2�e−HR�J�,ege → �1� � v*�e�e−itZge.

Proof:

1

�
V*e−it�−2�HR−e�J�,e�ge =

1

�2

Ĩe

v*�y�e−it�−2�y−e�ge� y − e�

�2 �dy

= 

�−2�Ĩe−e�

v*�e + �2x�eitxge�x�dx → v*�e� 
 e−itxg�x�dx .

�

The proof of Theorem 7 is based on the time dependent analog of the formula �4.36�:

e−itH� = e−itHR + T��t� + i�

0

t

T��t − s�V* e−isHRds + i�

0

t

e−isHRVT��t − s�ds

− �2
 

0
s1,s2,s1+s2
t

e−is1HRVT��t − s1 − s2�V* e−is2HRds1ds2,

where

T��t� ª 1E e−itH�1E.

Rescaling, multiplying from the left by eit�−2ZrenJ�,e
* and from the right by J�,e�, we obtain
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1e ei�−2tZrenJ�
* e−i�−2tH�J�1e�

= J�,e
* e−i�−2t�HR−e�J�,e� + eit�−2e1Ee

T��t�1Ee�
+

i

�
eit�−2e1Ee


0

t

T��t − s�V* e−i�−2sHRJ�,e�ds

+
i

�
eit�−2e


0

t

J�,e
* e−i�−2sHRVT��t − s�ds1Ee�

− �−2eit�−2e
 

0
s1,s2,s1+s2
t

J�,e
* e−is1�−2HR

�VT��t − s1 − s2�V* e−i�−2s2HRJ�,e�ds1ds2, �4.38�

where

T��t� ª 1E e−i�−2tH�1E.

The first term of Eq. �4.38� converges to

�e,e� e−itZR1Re
. �4.39�

To handle the next terms we use repeatedly the fact that

�T��s� − eis�−2E e−is�� →
�↘0

0

uniformly for 0
s
 t. The second term converges to

eit�−2e1Ee
e−it�−2E e−it�1Ee�

= �e,e�1Ee
e−it�.

The third term acting on ge��L1�R ,he��L2�R ,he� converges to

ieit�−2e1Ee

0

t

e−i�t−s��−2E e−i�t−s���1�v*�e��e−is�ZR+�−2e��ge�ds

= i1Ee

0

t

e−i�t−s���1�v*�e��e−isZRge� eis�−2�e−e��ds . �4.40�

If e−e��0, this goes to zero by the Lebesgue-Riemann Lemma. Therefore, Eq. �4.40� equals

�e,e�1Ee

0

t

e−i�t−s���1�v*�e��e−isZRgeds . �4.41�

The fourth term sandwiched between ge�L1�R ,he��L2�R ,he� and u�E converges to

i

0

t

�ge�e−isZR�1	 � v�e�e−i�t−s��e−i�−2�t−s�E1Ee�
u	ei�t−s��−2eds

= i

0

t

�ge�e−isZR�1	 � v�e�e−i�t−s��1Ee�
u	ei�t−s��−2�e−e��ds . �4.42�

Again, if e−e��0, this goes to zero by the Lebesgue-Riemann Lemma. Therefore, Eq. �4.42�
equals

�e,e�i

0

t

�ge�e−isZR�1	 � v�e�e−i�t−s��1Ee
u	ds . �4.43�

The fifth term sandwiched between ge�L1�R ,he��L2�R ,he� and ge�
�L1�R ,he���L2�R ,he�� converges to
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−
 

0
s1,s2,s1+s2
t

ei�t−s1��−2e�ge�e−is1ZRv�e� � �1	e−i�t−s1−s2��−2E e−i�t−s1−s2��v�e��*

� �1�e−is2�ZR+�−2e��ge�	ds1ds2

= − �
e��spE


 

0
s1,s2,s1+s2
t

ei�t−s1��−2�e−e��−s2�−2�e�−e���ge�e−is1ZRv�e� � �1	e−i�t−s1−s2��1Ee�
v�e��*

� �1�e−is2ZRge�	ds1ds2. �4.44�

By the Riemann-Lebesgue Lemma the terms with e−e��0 or e�−e��0 go to zero. Thus Eq.
�4.44� equals

− �e,e�
 

0
s1,s2,s1+s2
t

�ge�e−is1ZRv�e� � �1	e−i�t−s1−s2��1Ee
v�e�*

� �1�e−is2ZRge	ds1ds2.

Thus we proved that for  ,��D we have

sup
0
t
T

���eit�−2ZrenJ�
* e−it�−2H�J��	 − ��e−itZ�	� →

�→0
0.

By density, this can be extended to the whole Z. Using the fact that e−itZ is unitary and
eit�−2ZrenJ�

* e−it�−2H�J� is contractive we obtain that for �Z

lim
�↓0

eit�−2ZrenJ�
* e−it�−2H�J� = e−itZ .
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