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BALANCED GEOMETRIC WEYL QUANTIZATION

The usual Weyl quantization of b ∈ S ′(Rd×Rd) is the
operator Op(b) : S(Rd)→ S ′(Rd) with the kernel

Op(b)(x, y) :=

∫
b
(x + y

2
, p
)

e
i
h(y−x)p dp

(2πh)d
.

Hilbert-Schmidt operators correspond to square inte-
grable symbols:

(2πh)−dTrOp(a)∗Op(b) =

∫
a(z, p)b(z, p)dzdp.



Consider a (pseudo-)Riemannian manifold M .
There exists a neighborhood of the diagonal Ω ⊂M ×
M with the property that every pair (x, y) ∈ Ω is joined
by a unique geodesics [0, 1] 3 τ 7→ γx,y(τ ) such that
γx,y×γx,y ⊂ Ω. It is called a geodesically convex neigh-
borhood of the diagonal.



Let x ∈M and u ∈ TxM . We will write

x + u := expx(u).

Let (x, y) ∈ Ω. The symbol y−x will denote the unique
vector in TxM tangent to the geodesics γx,y such that

x + (y − x) = y.

(y−x)τ will denote the vector in Tx+τ (y−x)M such that(
x + τ (y − x)

)
+ (1− τ )(y − x)τ = y.



The Van Vleck–Morette determinant is defined as

∆(x, y) :=
∣∣∣∂(y − x)

∂y

∣∣∣|g(x)|
1
2

|g(y)|
1
2

.

Note that

∆(x, y) = ∆(y, x), ∆(x, x) = 1.



If B is an operator C∞c (M) → D′(M) then its kernel
is a distribution in D′(M ×M) such that

〈f |Bg〉 =

∫
f (x)B(x, y)g(y)dxdy, f, g ∈ C∞c (M).

We will treat elements of C∞c (M) not as scalar func-
tions, but as half-densities. With this convention, the
kernel of an operator is a half-density on M ×M .



We will say that M is geodesically simple if each pair
of points is joined by a unique geodesics, so that Ω =
M ×M .

Assume first that M is geodesically simple. Consider a
function on the phase space, often called a symbol

T∗M 3 (z, p) 3 b(z, p).



The balanced geometric Weyl quantization of b, de-
noted Op(b), is the operator with the kernel

Op(b)(x, y) :=∆(x, y)
1
2
|g(x)|

1
4|g(y)|

1
4∣∣g(z)|12

×
∫
b
(
z, p
)
e

i
hup

dp

(2πh)d
,

where

z := x +
y − x

2
, u := (y − x)1

2
.



Note that T ∗M possesses a natural density, hence there
is a natural identification of scalars with half-densities.

Up to a coefficient, the quantization that we defined is
unitary from L2(T ∗M) to operators on L2(M) equipped
with the Hilbert-Schmidt scalar product:

1

(2πh)d

∫
T ∗M

c(x, p)b(x, p)dxdp = TrOp(c)∗Op(b).



Define the star product

Op(a ? b) = Op(a)Op(b).

Here is its asymptotic expansion in Planck’s constant:

(a ? b) ∼ ab + h i
2

(
aαb

α − aαbα
)

+ h2
(
− 1

8

(
aα1α2b

α1α2 − 2a
α2
α1b

α1
α2 + aα1α2bα1α2

)
+ 1

12Rα1α2a
α2bα1 − 1

24R
β
α1α2α3pβ

(
aα2bα1α3 + aα1α3bα2

))
+ . . .

Lower indices—horizontal (spatial) derivatives.
Upper indices—vertical (momentum) derivatives.



If M is not geodesically simple, in the definition of
Op(b) we need to put a cutoff χ equal 1 in a neigh-
borhood of the diagonal and supported in Ω. This does
not affect the semiclassical expansion of the starproduct.



SCHRÖDINGER OPERATORS ON A RIEMANNIAN
MANIFOLD AND THE ASYMPTOTICS

OF THEIR INVERSE

Consider a symbol quadratic in the momenta, with the
principal part given by the Riemannian metric:

k(z, p) = gµν(z)
(
pµ − Aµ(z)

)(
pν − Aν(z)

)
+ Y (z).

Its quantization is a magnetic Schrödinger operator

K := Op(k) =|g|−
1
4(ih∂µ + Aµ)|g|

1
2gµν(ih∂ν + Aν)|g|−

1
4

+
1

6
R + Y.



K is a self-adjoint operator on L2(M). We are inter-
ested in the corresponding

heat semigroup W (t) := e−tK, Ret > 0

and Green’s operator (inverse) G :=
1

K
.

They are closely related:

G =

∫ ∞
0

W (t)dt.



We would like to compute the asymptotics of their ker-
nels. We make the ansatz

W (t) = Op
(
w(t)

)
,

w(t, z, p) ∼ e−tk(z,p)
∞∑
n=0

tn

n!
wn(z, p),

w0(z, p) = 1.



By applying the geometric pseudodifferential calculus
one can iteratively find

wn(z, p) =
∑

wn,α(z)
(
p− A(z)

)α
.

It is easy to see that wn is a polynomial in
(
p − A(z)

)
of degree ≤ 3

2n. Using the fact that the principal symbol
is given by the metric we show that degree ≤ n.



From this one obtains

W (t, x, y) ∼ W(t, x, y) :=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

|g(z)|
1
2(4πth2)

d
2

× exp
(
− 1

4t
vg−1(z)v − tY (z)

) ∞∑
k=0

(−t)k

k!
vβBk,β(z)e−ivA(z),

where as usual

z := x +
y − x

2
, u := (y − x)1

2
, v =

u

h
.



What is the meaning of ∼? We can write

W (t, x, y) :=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

|g(z)|
1
2(4πth2)

d
2

× exp
(
− 1

4t
vg−1(z)v − tY (z)

)
B(t, z, v)e−ivA(z).

Then formally

B(t, z, v) =

∞∑
k=0

(−t)k

k!
vβBk,β(z) + O(h∞).



Maybe we can fix h = 1 and replace O(h∞) with
O(t∞).

For geodesically simple manifolds, perhaps we can re-
place it by O(|v|∞).



In the literature

W (t, x, y)
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

|g(z)|
1
2(4πt)

d
2

× exp
(
− 1

4t
(x− y)2

)
B(t, x, y)

B(t, x, y) ∼
∞∑
n=0

tn

n!
Bn(x, y),

is called the Minackshisundaram-Pleijel expansion or the
Schwinger-De Witt expansion.



The usual way to find this expansion is to solve recur-
sively the differential equation

(∂t + K)W (t, x, y) = 0, t > 0,

W (0, x, y) = δ(x, y).

This method does not give a unique answer for all coef-
ficients, unlike the pseudodifferential calculus.



Assume that Y > 0. By integrating the heat kernel we
obtain an asymptotics of Green’s operator:

G(x, y) :=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

(4π)
d
2

∞∑
k=0

uβWk,β(z)e−iuA(z)

× 2K
k+1−d2

(√
ug−1(z)uY (z)

)(ug−1(z)u

4Y (z)

)k+1−d2
2

,

where Km are the MacDonald functions.



Using the well-known expansions of the MacDonald func-
tions we obtain a version of the Hadamard expansion

G(x, y) ∼ G(x, y) = ∆
1
2(x, y)|g(x)|

1
4|g(y)|

1
4e−iuA(z)

×
((
ug−1(z)u

)1−d2
∑
α

uαwα(z)

+ log
(
ug−1(z)u

)∑
α

uαvα(z)
)
.

(In odd dimensions the term with the logarithm is ab-
sent).



KLEIN-GORDON OPERATORS, THEIR INVERSES
AND BISOLUTIONS (PROPAGATORS)

Assume that M is equipped with the metric tensor g,
the electromagnetic potential A and the scalar potential
(or “mass squared”) Y . Consider the operator

K :=|g|−
1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y

If M is a Riemannian manifold, then K would be called
a Schrödinger operator.
We consider a globally hyperbolic Lorentzian manifold,
and then K is called a Klein-Gordon operator. Its math-
ematical theory is much more complicated!



We say that G is a bisolution of K if

GK = KG = 0.

We say that G is an inverse (Green’s operator if

GK = KG = 1l.

In quantum field theory an important role is played by
certain distinguished bisolutions and inverses. We will
call them propagators.



The most important propagators on the Minkowski space:

the forward/backward or advanced/retarded propagator

G∨/∧(p) :=

∫
dpeixp

(2π)4(p2 + m2 ∓ i0sgnp0)
,

the Feynman/anti-Feynman propagator

GF/F(p) :=

∫
dpeixp

(2π)4(p2 + m2 ∓ i0)
,

the Pauli-Jordan propagator

GPJ(p) :=

∫
dpeixpsgn(p0)δ(p2 + m2)

(2π)4
,

and the positive/negative frequency bisolution

G(+)/(−)(p) :=

∫
dpeixpθ(±p0)δ(p2 + m2)

(2π)4
.



In QFT textbooks, the Pauli-Jordan propagator expresses
commutation relations of fields, and hence it is often
called the commutator function.

The positive frequency bisolution is the vacuum expec-
tation of a product of two fields and is often called the
2-point function.

The Feynman propagator is the vacuum expectation of
the time-ordered product of fields and is used to evaluate
Feynman diagrams.



It is well-known that on an arbitrary globally hyperbolic
spacetime one can define the forward propagator (inverse)
G∨ and the backward propagator (inverse) G∧.

Their difference is a bisolution called sometimes the
Pauli-Jordan propagator (bisolution)

GPJ := G∨ −G∧.
All of them have a causal support. We will jointly call

them classical propagators. They are relevant for the
Cauchy problem.



We are however more interested in “non-classical prop-
agators”, typical for quantum field theory. They are less
known to pure mathematicians and more difficult to de-
fine on curved spacetimes:

• the Feynman propagator GF,

• the anti-Feynman propagator GF,

• the positive frequency bisolution G(+),

• the negative frequency bisolutions G(−).



There exists a well-known paper of Duistermat-Hörmander,
which defined Feynman parametrices (a parametrix is an
approximate inverse in appropriate sense).

There exists a large literature devoted to the so-called
Hadamard states, which can be interpreted as bisolutons
with approximately positive frequencies. These are how-
ever large classes of bisolutions. We would like to have
distinguished choices.



It is possible and helpful to introduce a time variable t,
so that the spacetime is M = R×Σ. We can assume that
there are no time-space cross terms so that the metric can
be written as

−g00(t, ~x)d2t + gij(t, ~x)dxidxj.

By conformal rescaling we can assume that g00 = 1, so
that, setting V := A0, we have

K = −(i∂t + V )2 + L,

L = −|g|−
1
4(i∂i + Ai)|g|

1
2gij(i∂j + Aj)|g|−

1
4 + Y.



We rewrite the Klein-Gordon equation Ku = 0 as a 1st
order equation for the Cauchy data(

∂t + iB(t)
)[u1(t)

u2(t)

]
= 0,[

u1(t)
u2(t)

]
:=

[
u(t)

i∂tu(t)−W (t)u(t)

]
B(t) :=

[
W (t) 1l
L(t) W (t)

]
,

W (t) := V (t) +
i

4
|g|(t)−1∂t|g|(t).



Denote by U(t, t′) the dynamics defined by B(t), that
is

∂tU(t, t′) = −iB(t)U(t, t′),
U(t, t) = 1l.

Note that if

E =

(
E11 E12
E21 E22

)
is a bisolution/inverse of ∂t + iB(t), then E12 is a biso-
lution/inverse of K.



The classical propagators can be easily expressed in
terms of the dynamics:

EPJ(t, t′) := U(t, t′), EPJ
12 = −iGPJ;

E∨(t, t′) := θ(t− t′)U(t, t′), E∨12 = −iG∨;

E∧(t, t′) := −θ(t′ − t)U(t, t′), E∧12 = −iG∧.



The dynamics preserves the pseudounitary structure (a
complexification of the symplectic structure) given by
charge matrix

Q :=

(
0 1l
1l 0

)
.

Let us introduce the classical Hamiltonian

H(t) := QB(t) =

(
L(t) W (t)
W (t) 1l

)
.

In a physically realistic case the Hamiltonian H(t) is pos-
itive. Mathematically it is often convenient to assume
that it is invertible (has a mass gap).



Assume now for a moment that the problem is station-
ary, so that L, V , B, H do not depend on time t. Clearly,

U(t, t′) = e−i(t−t′)B.

The quadratic formH defines the so-called energy scalar
product. It is easy to see that B can be interpreted as a
self-adjoint operator with a gap in its spectrum around 0.
Let Π(±) be the projections onto the positive/negative
part of the spectrum of B.



We define the positive and negative frequency bisolu-
tions and the Feynman and anti-Feynman inverse on the
level of ∂t + iB(t):

E(±)(t, t′) := ±e−i(t−t′)BΠ(±),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(+) − θ(t′ − t) e−i(t−t′)BΠ(−),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(−) − θ(t′ − t) e−i(t−t′)BΠ(+).



They lead to corresponding propagators on the level of
K:

G(±) := E
(±)
12 ,

GF := −iEF
12,

GF := −iEF
12.

They satisfy the relations

GF −GF = iG(+) + iG(−),

GF + GF = G∨ + G∧.



In the static case in QFT there is a distinguished state
given by the vacuum Ω. As on the Minkowski space, we
have the relations

−iGPJ(x, y) = [φ̂(x), φ̂(y)],

G(+)(x, y) =
(
Ω|φ̂(x)φ̂(y)Ω

)
,

−iGF(x, y) =
(
Ω|T

(
φ̂(x)φ̂(y)

)
Ω
)
.



Can one generalize non-classical propagators to non-
static spacetimes? We claim that the answer is yes if the
spacetime is asymptotically stationary and the Hamilto-
nians in the far future and past are positive.

We also need to make some mild technical asumptions,
which allow us to use the setting of Hilbertizable spaces
(In the stationary case there was a natural scale of Hilbert
spaces, which is not available when the generator is time-
dependent. Instead, we assume that the evolution pre-
serves a class of equivalent scalar products—a Hilbertiz-
able structure).



Let B(−∞), resp. B(+∞) be the generator of the dy-
namics in the far past and future. We define the incoming

positive/negative frequency bisolution E
(±)
− , resp. the

outgoing positive/negative frequency bisolution E
(±)
+ by

transporting the projections

1l[0,∞[

(
±B(−∞)

)
= Π

(±)
− ,

1l[0,∞[

(
±B(+∞)

)
= Π

(±)
+ .

with help of the evolution.



We obtain bisolutions G
(±)
− and G

(±)
+ with a clear phys-

ical meaning.

G
(+)
− defines the incoming vacuum state in the distant

past given by a vector Ω−. It corresponds to a preparation
of an experiment.

G
(+)
+ corresponds to the outgoing vacuum state in the

remote future given by a vector Ω+. This vector is related
to the future measurements.



The projection Π
(+)
− can be transported by the dynamics

to any time t, obtaining the projection Π
(+)
− (t). Similarly

we obtain the projection Π
(−)
+ (t). Using the fact that the

dynamics is pseudounitary, one can show that for for all
t the subspaces

RanΠ
(+)
− (t), RanΠ

(−)
+ (t)

are complementary.



Define Π
(+)
+−(t), Π

(−)
+−(t) to be the unique pair of pro-

jections corresponding to the pair of spaces

RanΠ
(+)
− (t), RanΠ

(−)
+ (t)

The (in-out) Feynman propagator is defined as

EF(t2, t1) := θ(t2 − t1)U(t2, t1)Π
(+)
+−(t1)

−θ(t1 − t2)U(t2, t1)Π
(−)
+−(t1),

GF := −iEF
12.



In a somewhat different setting, the construction of GF

was given by A.Vasy et al and by Gerard-Wrochna. But
it seems that the naturalness and simplicity of the above
construction was realized only recently.

Here is the physical meaning of the Feynman propaga-
tor: it is the expectation value of the time-ordered prod-
uct of fields between the in-vacuum and the out-vacuum:

GF(x, y) =

(
Ω+|T

(
φ̂(x)φ̂(y)

)
Ω−
)(

Ω+|Ω−
) .



It is easy to see that on a general spacetime the Klein-
Gordon operator K is Hermitian (symmetric) on C∞c (M)
in the sense of the Hilbert space L2(M). It seems nat-
ural to ask whether it is essentially self-adjoint on, say
C∞c (M). This question turns out to be a surprisingly
difficult.



Theorem. [D., Siemssen] Assume the spacetime is sta-
tionary.
(1) K is essentially self-adjoint on C∞c (M).
(2) For s > 1

2, the operator GF is bounded from the

space 〈t〉−sL2(M) to 〈t〉sL2(M). Besides, in the sense
of these spaces,

s− lim
ε↘0

(K − iε)−1 = GF.



Conjecture. On a large class of asymptotically station-
ary spacetimes
(1) the Klein-Gordon operator K is essentially self-adjoint
on C∞c (M),
(2) in the sense 〈t〉−sL2(M)→ 〈t〉sL2(M),

s− lim
ε↘0

(K − iε)−1 = GF.



In a recent paper of A. Vasy this conjecture is proven
for asymptotically Minkowskian spaces. It is true if the
spatial dimension is zero (when the Klein-Gordon opera-
tor reduces to the 1-dimensional Schrödinger operator).
It is also true on a large class of cosmological spacetimes.
Presumably, one can prove it on symmetric spacetimes.

Surprisingly, we have not found a trace of this ques-
tion in the older mathematical literature. Many respected
mathematicians and mathematical physicists react with
disgust to this question, claiming that it is completely
non-physical.



However, in the physical literature there are many pa-
pers that take the self-adjointness of the Klein-Gordon
operator for granted. The method of computing the
Feynman propagator with external fields and possibly on
curved spacetimes based on the identity

1

(K − i0)
= i

∫ ∞
0

e−itKdt (∗)

has even a name: the Fock–Schwinger or Schwinger–
DeWitt method. Of course, without the self-adjointness
of K, (∗) does not make sense.



ASYMPTOTICS OF PROPAGATORS
AROUND THE DIAGONAL

In the Lorentzian case, even if we can interpret K as
self-adjoint, the heat semigroup does not exists and in-
stead one should consider the so-called proper time dy-
namics W (it) = e−itK .



One can apply the balanced geometric pseudodifferen-
tial calculus to find the asymptotics of W (it) around the
diagonal:

W (it, x, y) ∼ W(it, x, y) :=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

|g(z)|
1
2(4πit)

d
2

× exp
(
− 1

4it
ug−1(z)u− itY (z)

) ∞∑
k=0

(it)kuβWk,β(z)e−iuA(z).



One can obtain the Feynman and the anti-Feynman
propagator by integration:

GF := (K − i0)−1 = i

∫ ∞
0

W (it)dt,

GF := (K + i0)−1 = −i

∫ ∞
0

W (−it)dt.



Here is the asymptotics of the Feynman and anti-Feynman
propagator:

GF/F(x, y) ∼ GF/F(x, y)

:=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

(4π)
d
2

∞∑
k=0

uβWk,β(z)e−iuA(z)

×±i2K
k+1−d2

(√
ug−1(z)uY (z)± i0

)(ug−1(z)u± i0

4Y (z)

)k+1−d2
2

.

Note that for spacelike u we can drop ±i0.



For timelike u they are obtained by an appropriate an-
alytic continuation:
Instead of the MacDonald function

± 2iK
k+1−d2

(√
ug−1(z)uY (z)± i0

)
,

we need to put the Hankel functions of the first and second kind

− πH±
k+1−d2

(√
−ug−1(z)uY (z)∓ i0

)
.



Note that 1
2(GF + GF ) vanishes for spacelike separated

points. The same property is shared by 1
2(G∨ + G∧).

Indeed, on the level of full asymptotic expansions we have

GF + GF ∼ G
∨ + G∧.

Let us stress that this does not imply

GF + GF = G∨ + G∧,

except for some special spacetimes.



By multiplying GF + GF with θ(±x0) we can compute
the asymptotics of the retarded and advanced propaga-
tors:

G∨/∧(x, y) :=
∆

1
2(x, y)|g(x)|

1
4|g(y)|

1
4

(4π)
d
2

∞∑
k=0

uβWk,β(z)e−iuA(z)

× πJ
k+1−d2

(√
ug−1(z)uY (z)

)(ug−1(z)u

4Y (z)

)k+1−d2
2

,

u2 < 0, ±u0 > 0,

where Jm are the Bessel functions.


