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Abstract. One can argue that on flat space R
d, the Weyl quantization is

the most natural choice and that it has the best properties (e.g., sym-
plectic covariance, real symbols correspond to Hermitian operators). On
a generic manifold, there is no distinguished quantization, and a quan-
tization is typically defined chart-wise. Here we introduce a quantiza-
tion that, we believe, has the best properties for studying natural opera-
tors on pseudo-Riemannian manifolds. It is a generalization of the Weyl
quantization—we call it the balanced geodesic Weyl quantization. Among
other things, we prove that it maps square-integrable symbols to Hilbert–
Schmidt operators, and that even (resp. odd) polynomials are mapped to
even (resp. odd) differential operators. We also present a formula for the
corresponding star product and give its asymptotic expansion up to the
fourth order in Planck’s constant.

1. Introduction

Quantization means representing operators by their classical symbols, that is,
functions on phase space. This concept first appeared in quantum physics in the
early twentieth century. Only later this idea was adopted in pure mathematics.
Mathematicians, in particular, introduced the so-called pseudodifferential op-
erators, defined as quantizations of certain symbol classes. Pseudodifferential
calculus is nowadays a major tool in the study of partial differential equations.

Pseudodifferential calculus is useful both on R
d and on manifolds. In the

case of R
d, one can use its special structure to define several distinguished

quantizations. One of them is the Weyl or Weyl–Wigner quantization. One
can argue that it is the most natural quantization and that it has the best
properties. Let us list some of its advantages:

1. The Weyl quantization is invariant with respect to the group of linear
symplectic transformations of the phase space T∗

R
d = R

d ⊕ R
d.
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2. Real symbols correspond to Hermitian operators.
3. Error terms in various formulas have a smaller order in � if we use the

Weyl quantization than if we use other kinds of quantizations.
4. The Weyl quantization of even, resp. odd polynomials is an even, resp.

odd differential operator.
5. The Weyl quantization is proportional to a unitary operator if symbols

are equipped with the natural scalar product and operators are equipped
with the Hilbert–Schmidt scalar product.

In order to define a quantization on a generic manifold M , one typically
covers it by local charts and then uses the formalism from the flat case within
each chart. This construction obviously depends on coordinates and thus there
is no distinguished quantization on a generic manifold. In particular, consid-
ering the natural symplectic structure of the cotangent bundle T∗M , quanti-
zations are symplectically invariant only on the level of the so-called principal
symbol. This is not a problem for many applications of pseudodifferential cal-
culus, which are quite rough and qualitative. In such applications, it is even
not very important which kind of quantization one uses. In more quantitative
applications, it is more important to choose a good quantization, which usually
means a version of the Weyl quantization.

Suppose in addition that M is pseudo-Riemannian. One can try to use its
structure to define a quantization that depends only on the geometry of M . In
order to discuss various possibilities, let us first assume that M is geodesically
simple, that is, each pair of points x, y ∈ M can be joined by exactly one
geodesic.

Here is one possible proposal of a geometric1 generalization of the Weyl
quantization: given a function T∗M � (z, p) �→ b(z, p), we define its naive
geodesic Weyl quantization to be the operator with the integral kernel, which
for x, y ∈ M is defined as

Opnaive(b)(x, y) :=
∫

T∗
zM

b(z, p)e−iu·p dp

(2π)d
, (1.1)

where z is the middle point of the geodesic joining x and y, u is the tangent
vector at z such that x = expz(− 1

2u) and y = expz(
1
2u), and we integrate

over the variable p in the cotangent space T∗
zM . The quantization Opnaive

is geometric (does not depend on coordinates) and it reduces to the Weyl
quantization if M = R

d. However, there exist better definitions, as we argue
below.

In our paper, we propose to multiply the right-hand side of (1.1) by

|g(x)| 1
4 |g(y)| 1

4

|g(z)| 1
2

, (1.2)

the product of the appropriate roots of the determinants of the metric at x, y
and z. With this factor, we obtain an integral kernel which is a half-density in

1Geometric in the sense of relying on the pseudo-Riemannian geometry of the manifold.
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both x and y. Then we multiply it by the biscalar

Δ(x, y)
1
2 , (1.3)

the square root of the so-called Van Vleck–Morette determinant.2 We obtain

Op(b)(x, y) :=
Δ(x, y)

1
2 |g(x)| 1

4 |g(y)| 1
4

|g(z)| 1
2

∫
T∗

zM

b(z, p)e−iu·p dp

(2π)d
, (1.4)

which we call the balanced geodesic Weyl quantization of the symbol b. This
quantization belongs to a family of quantizations considered in [14], although
for scalar functions instead of half-densities.

Note that the Van Vleck–Morette determinant is a biscalar, and therefore
Op(b)(x, y) is a half-density in both x and y, which is appropriate for the
integral kernel of an operator acting on smooth, compactly supported half-
densities on M . Moreover, the balanced geodesic Weyl quantization has a
remarkable property: it satisfies

Tr
(
Op(a)∗ Op(b)

)
=

∫
T∗M

a(z, p)b(z, p) dz
dp

(2π)d
. (1.5)

This is the analog of property (5) from the list of advantages of the Weyl
quantization in the flat case. Actually, the balanced geodesic Weyl quantization
has all the advantages from that list except for (1).

It is easy to see that a quantization which reduces to the Weyl quan-
tization in the flat case and satisfies (1.5) is essentially unique and is given
by (1.4).

In general pseudo-Riemannian manifolds, there can be no or many
geodesics joining pairs of points. However, there always exists a certain neigh-
borhood Ω of the diagonal such that each pair (x, y) ∈ Ω is joined by a dis-
tinguished geodesic. Therefore, on a general pseudo-Riemannian manifold the
definition (1.4) (and also (1.1)) makes sense only inside Ω. To make it global,
one can insert a smooth cutoff supported in Ω, equal to 1 in a neighborhood
of the diagonal. This is not a serious drawback, since in practice pseudodif-
ferential calculus is mostly used to study properties of operators close to the
diagonal. Note also that this cutoff does not affect Op(a) if a is a polynomial in
the momenta, since the kernel of Op(a) is then supported inside the diagonal.

We are convinced that our quantization is a good tool for studying natural
operators on M , such as the Laplace–Beltrami operator Δ in the Riemannian
case and the d’Alembert (wave) operator � in the Lorentzian case. In our fu-
ture papers, we plan to describe applications of this quantization to computing
singularities at the diagonal of the kernel of the heat semigroup eτΔ, Green’s
operator (Δ+m2)−1, the proper time dynamics eiτ�, the Feynman propagator
(� − i0)−1, etc.

2 The (complicated) story of the Van Vleck–Morette determinant can be found in an inter-
esting article [8], where it is argued that its correct name should be the Morette–van Hove
determinant. We, however, use the name that seems to be established in the differential
geometry community.



1598 J. Dereziński et al. Ann. Henri Poincaré

Besides the geodesic Weyl quantization, we introduce also a whole family
of quantizations parametrized by τ ∈ [0, 1]. The Weyl quantization corresponds
to τ = 1

2 . All of them satisfy obvious analogs of the identity (1.5). One can
argue that the cases τ = 0 and τ = 1 are also of practical interest. However,
the case τ = 1

2 typically leads to the most symmetric algebraic expressions. As
mentioned above, the main application of our pseudodifferential calculus is to
obtain asymptotic expansions of integral kernels B(x, y) around the diagonal
x = y. The geodesic Weyl quantization gives such expansions around the
middle point of the geodesic joining x and y. If we use the τ = 0 quantization,
then the expansion uses x as the central point, which is less symmetric and
involves less cancellations.

For many authors, the philosophy of quantization is quite different from
ours. Some authors study quantization as an end in itself. Others are interested
only in applications which are quite robust and to a large extent insensitive
to the choice of the quantization. Such applications include propagation of
singularities, elliptic regularity, computation of the index of various operators.
Other applications, such as spectral asymptotics, are more demanding in the
choice of quantization. Our aim is to have an efficient tool for computing the
asymptotics of various operators, giving an expansion which is as simple as
possible. We have already checked this when computing the Feynman prop-
agator on a Lorentzian manifold. We started from the naive geodesic Weyl
quantization, and we discovered empirically that inserting the prefactors (1.2)
and (1.3) decreases substantially proliferation of various error terms.

There is another argument why the balanced Weyl quantization is supe-
rior to the naive one: If one computes asymptotics of heat kernels or Feynman
propagators using the traditional methods, without the momentum variables,
as e.g., in [3,4], then the prefactors (1.2) and (1.3) appear. So these prefactors
simplify the expressions one looks for.

Our original motivation for introducing the balanced geodesic Weyl quan-
tization comes from quantum field theory on curved spacetimes. One would like
to define renormalized Wick powers of fields and its derivatives using a scheme
that depends only on the local geometry. On a (flat) Minkowski space, renor-
malization is usually done in the momentum representation. There are in fact
several (essentially equivalent) schemes for renormalization that use momen-
tum representation. It is usually stated that on curved spaces the momentum
representation is not available, and one has to use the position representation,
which is much more complicated. The main tool for renormalization is then
the asymptotics around the diagonal of the Feynman propagator, or what is
equivalent, of the so-called Hadamard state defining the two point function.
The use of a quantization allows us to use the momentum representation for
renormalization on curved spacetimes. In our opinion, the balanced geodesic
Weyl quantization will lead to the simplest computations in this context.

Quantization and pseudodifferential calculus is an old subject with an in-
teresting history and large literature. The Weyl quantization was first proposed
by Weyl in 1927 [37]. Wigner was the first who considered its inverse, called
sometimes the Wigner function or the Wigner transform [39]. The star product
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(the product of two operators on the level of symbols) and the identity (1.5)
were first described by Moyal [24].

Pseudodifferential calculus became popular after the paper by Kohn–
Nirenberg [20]. Kohn–Nirenberg used the τ = 1 quantization. The usefulness
of the Weyl quantization in PDE’s was stressed by Hörmander [18,19]. Weyl
quantization is also discussed, e.g., in [11,34].

Several quantizations on manifolds were considered before in the litera-
ture. Working either with the Levi-Civita connection on a Riemannian man-
ifold, with an arbitrary connection, or with the so-called linearization intro-
duced in [5,6], most works attempt to generalize the τ = 0 or τ = 1 quan-
tization, see e.g., [5,6,15,38], the more recent works [7,28,29,31–33] and the
references therein. An extensive introduction to early results on this topic can
be found in [15]. Besides addressing the intricacies of defining a quantization
on a manifold (e.g., caustics of geodesics), some of these works discuss symbol
classes, the star product, heat kernel and resolvent computations (although
only to low order).

A generalization of the Weyl quantization to manifolds with a connection
was advocated by Safarov [23,31] and is essentially equivalent to what we call
the naive geodesic Weyl quantization. Similar definitions can be found also in
other places in the literature, e.g., [25]. More recently, Levy [21] considered a
similar generalization for manifolds with linearization. Like in our manuscript,
these papers consider the whole class of τ -quantizations on manifolds. They,
however, do not use the geometric factor involving the Van Vleck–Morette
determinant, which as we argued above, improves the properties of a quanti-
zation.

Ideas very close to those of our paper were discussed by Fulling [14], who
analyzed the effect of various powers of the Van Vleck–Morette determinant
on the quantization. Fulling, in particular, remarked that the square root of
this determinant may be viewed as the distinguished choice. He also noticed
the term 1

6R, which appears when one tries to define the Laplace–Beltrami
or d’Alembert operator using the Weyl-type quantization involving the Van
Vleck–Morette determinant. There is one difference between our approach and
Fulling’s: he used scalars, whereas we use half-densities—of course, this is a
minor difference, since it is easy to pass from one framework to the other. We
go much further than Fulling in the analysis of the balanced geodesic Weyl
quantization: we prove the identity (1.5), which we view as a key advantage
of this quantization, and we analyze the corresponding star product.

Güntürk in his PhD thesis [16] attempted to develop a Weyl calculus
on Riemannian manifolds, including the star product. His approach, however,
involved some constructions depending on coordinates; hence, it was not fully
geometric.

As we stressed above, the balanced geodesic Weyl quantization is
geometric—by this we mean that it essentially depends only on the geome-
try of a pseudo-Riemannian manifold M . However, one should mention that
the name geometric quantization has already a well-established meaning, which
involves a somewhat different setting. The usual starting point of geometric
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quantization is a symplectic or, more generally, a Poisson manifold. Then one
tries to define a noncommutative associative algebra which is a deformation
of the commutative algebra of functions on this manifold. This deformation is
often performed only on the level of formal power series in a small parameter,
usually called Planck’s constant �. The resulting construction goes under the
name of (formal) deformation quantization. See e.g., [1,13,40] for an overview
on geometric quantization and [17] for its relation to deformation quantization.

In our construction, the symplectic manifold is always T∗M , the cotan-
gent bundle to a pseudo-Riemannian manifold M . We obtain a certain unique
realization of deformation quantization—a formal power series in � that gives
an associative product on functions on T∗M , which depends only on the ge-
ometry of M .

The plan of the paper is as follows: In Sect. 2, we introduce notation
for various objects of differential geometry of pseudo-Riemannian manifolds,
which we will use when presenting our results. In Sect. 3, we define a family
of quantizations depending on a τ ∈ [0, 1]. The most important is the geodesic
Weyl quantization, which corresponds to τ = 1

2 . We discuss its basic properties.
Among these properties, the most demanding technically is the formula for
the star product. We give its expansion up to the terms of the 4th order. In
Sect. 4, we explain the methods for the derivation of the expansion of the star
product. This is the most technical part of our paper. The methods that we
use are essentially known from the works of Synge [35], DeWitt [12] (see also
[9]), Avramidi [2,3] and others.

There are several systems of notation in differential geometry. We will use
more than one. For the presentation of our results, we use mostly a coordinate-
free and index-free notation, which is rather concise and transparent. It works
especially well around the diagonal and is convenient for presentation of the
results of our work. However, to compute quantities it is preferable to use other
notations, which typically involve coordinates and indices.

2. Elements of Differential Geometry

2.1. Basic Notation

Let M be a connected manifold. The tangent and cotangent space at x ∈ M
are denoted TxM and T∗

xM , respectively. Tp,q
x M will denote the space of p-

contravariant and q-covariant tensors at x.
Often we will use a coordinate dependent notation, which involves indices,

denoted by Greek letters. Sometimes we will also use multiindices, which will
be indicated by boldface letters. For instance, α = (α1, . . . , αn) and |α| = n.
Thus T ∈ Tp,q

x M after fixing a system of coordinates can be written as T β
α

with |α| = q, |β| = p.
From now on we assume that M is a (pseudo-)Riemannian manifold M

with the metric tensor g. For any x ∈ M , let Ux ⊂ TxM be the set of vectors
u such that the inextendible geodesic γu(τ) starting at x with initial velocity
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u is defined at least for τ ∈ [0, 1]. The exponential map is then defined as

Ux � u �→ expx(u) = γu(1) ∈ M.

For brevity, we will often write

x + u := expx(u), x − u := expx(−u).

We say that M is geodesically complete if for any x ∈ M we have Ux = TxM .

2.2. Bitensors

Given two points x, y ∈ M , a bitensor is an element T ∈ Tp,q
x M ⊗ Tt,s

y M for
some p, q, t, s. A bitensor field is a function M × M � (x, y) �→ T (x, y) such
that T (x, y) is a bitensor. In other words, a bitensor field T is a section of
the exterior tensor product bundle Tp,qM � Tt,sM . Below will generally not
distinguish between bitensors and bitensor fields in notation, and call both
simply ‘bitensors’.

If we use coordinate notation, we distinguish indices belonging to the
second point by primes. For example, T (x, y)β ν ′

α μ′ is a |β|-contravariant, |α|-
covariant tensor at x and |ν|-contravariant, |μ|-covariant tensor at y. Note
that in the context of bitensors the prime is not a part of the name of the
corresponding indices, and only the indication to which point they belong.

As another example, consider a bitensor T (x, y)μν′ and two vector fields
vμ and wμ. Then

f(x, y) = T (x, y)μν′v(x)μw(y)ν

is a biscalar, i.e., a scalar in x and y.
If no ambiguity arises, we will often omit the dependence on x, y.
For the coincidence limit y → x, we use Synge’s bracket notation

[T ](x) := lim
y→x

T (x, y),

whenever the limit exists and is independent of the path y → x.

2.3. Parallel Transport and Covariant Derivative

The metric defines the parallel transport along an arbitrary curve. We will
most often use the parallel transport along geodesics. Given u ∈ TxM and a
tensor T ∈ Tp,q

x M , denote by

vT wu ∈ Tp,q
x+uM (2.1)

the tensor T parallel transported from x to the point x + u along the unique
geodesic given by u.

Let S ∈ Tp,q
x+uM . The tensor S backward parallel transported to x is the

unique vSwu ∈ Tp,q
x M such that

0vSwu

8u = S.

In coordinates, the backward parallel transport on vectors is defined by
the bitensor g(x, x + u)ν

μ′ at x and x + u, and on covectors by its inverse
g(x, x + u)ν

μ′
. More precisely, for a tensor Sν

μ ∈ Tp,q
x+uM we have

g(x, x + u)α
μ′g(x, x + u)β

ν ′
Sμ

ν =
(vSwu

)α

β
,
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where

g(x, x + u)α
μ′ = g(x, x + u)α1

μ′
1
· · · g(x, x + u)αp

μ′
p
, p = |α|,

g(x, x + u)β
ν ′

= g(x, x + u)β1
ν′
1 · · · g(x, x + u)βq

ν′
q , q = |β|,

and we use the Einstein summation convention. We have the identities

g(x, x + u)α
μ′g(x, x + u)β

μ′
= δα

β ,

g(x)αβg(x, x + u)α
μ′g(x, x + u)β

ν′ = g(x + u)μν . (2.2)

The latter identity means that the metric is covariantly constant.
Let M � x �→ T (x) ∈ Tr,s

x M be a tensor field, i.e., a tensor-valued
function. The covariant derivative of T in direction u is defined as

u · ∇T (x) := lim
τ→0

1
τ

(
T (x) − vT (x + τu)wτu

)

=
d
dτ

vT (x + τu)wτu

∣∣∣
τ=0

or, in coordinates,

∇μTα
β := Tα

β ;μ := ∂μTα
β + Γα1

μνT να2···αr

β + · · · + Γαr
μνT

α1···αr−1ν
β

− Γν
μβ1

Tα
νβ2···βs

− · · · − Γν
μβs

Tα
β1···βs−1ν ,

where Γλ
μν are the Christoffel symbols.

We can also take covariant derivatives of bitensors. For that case, note
that derivatives with respect to the two base points commute with each other.
That is (suppressing all other indices), every bitensor field (x, y) �→ T (x, y)
satisfies the identity T;μν′ = T;ν′μ.

An important result concerning the covariant derivative of bitensors and
their coincidence limit is Synge’s rule. It states:

[T ];μ = [T;μ] + [T;μ′ ]. (2.3)

We refer to Chap. I.4.2 of the excellent review article [30] for a proof.

2.4. Horizontal and Vertical Derivatives

Let T∗M � (x, p) �→ S(x, p) ∈ Tr,s
x M be a tensor-valued function on the

cotangent bundle. The horizontal derivative of S in direction u is defined as

u · ∇S(x, p) := lim
τ→0

1
τ

(
S(x, p) − 0

S(x + τu, vpwτu)
8

τu

)

=
d
dτ

0
S(x + τu, vpwτu)

8
τu

∣∣∣
τ=0

or, in coordinates,

∇μSα
β := Sα

β ;μ := ∂μSα
β + Γν

μρpν
∂

∂pρ
Sα

β + Γα1
μνSνα2···αr

β + · · · + Γαr
μνS

α1···αr−1ν
β

− Γν
μβ1

Sα
νβ2···βs

− · · · − Γν
μβs

Sα
β1···βs−1ν .

Note that the horizontal derivative can be viewed as a natural generalization
of the covariant derivative. Therefore, it is natural to denote it by the same
symbols—it will not lead to ambiguous expressions.
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The vertical derivative of S at x in direction q ∈ T∗
xM is defined as

q · ∂pS(x, p) := lim
τ→0

1
τ

(
S(x, p) − S(x, p + τq)

)

=
d
dτ

S(x, p + τq)
∣∣∣
τ=0

,

or, in coordinates,

∂p
μSα

β :=
∂

∂pμ
Sα

β .

Note that the vertical derivatives commutes with the horizontal derivative.

2.5. Geodesically Convex Neighborhood of the Diagonal

In general, a pair of points of M can have no joining geodesics, a single one
or many. We will say that M is geodesically simple if every pair of points is
joined by a unique geodesic γx,y.

Unfortunately, many interesting connected geodesically complete mani-
folds are not geodesically simple. However, in the general case we have a weaker
property, which we describe below.

Let Diag := {(x, x) | x ∈ M} denote the diagonal. There exists a neigh-
borhood Ω ⊂ M × M of Diag with the property: for all (x, y) ∈ Ω there is a
unique geodesic [0, 1] � τ �→ γx,y(τ) ∈ M joining x and y, and

γx,y([0, 1]) × γx,y([0, 1]) ⊂ Ω.

Such a neighborhood will be called a geodesically convex neighborhood of the
diagonal.

For (x, y) ∈ Ω, we introduce the suggestive notation

(y − x) := exp−1
x (y) ∈ TxM, (2.4)

which is the tangent to the distinguished geodesic joining x and y. Note that
(y − x) is a bitensor. More precisely, it is a vector in x and a scalar in y, i.e.,
an element of T 1,0M � T 0,0M .

We have

x + τ(y − x) = γx,y(τ).

Parallel transporting (y − x), we define for τ ∈ [0, 1]

(y − x)τ := v(y − x)wτ(y−x) ∈ Tx+τ(y−x)M

as a short-hand. Clearly (y − x) = (y − x)0 and

(y − x)τ = (1 − τ)−1(y − z), z = x + τ(y − x)

for τ 
= 1. Furthermore, note the coincidence limit

∂(y − x)μ

∂yν

∣∣∣∣
x=y

= δμ
ν , (2.5)

which follows directly from (2.4).
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2.6. Synge’s World Function

Synge’s world function Ω � (x, y) �→ σ(x, y) is defined as half the squared
geodesic distance between x and y. That is, using the notation of (2.4),

σ(x, y) :=
1
2
(y − x)α(y − x)α =

1
2
(x − y)α(x − y)α. (2.6)

It is an example of a biscalar.
In the covariant derivatives of σ, the semicolon ; will usually be omitted.

Thus for any multiindices α, β, μ, ν

σ;βν ′

;αμ′ = σβν ′

αμ′ .

We have

σ(x, y)μ = − (y − x)μ.

Introduce the transport operators D := σμ∇μ and D′ := σμ′∇μ′ . The
definition (2.6) of Synge’s world function immediately implies

(D − 2)σ = 0, (D′ − 2)σ = 0. (2.7)

Differentiating (2.7) once, we obtain

(D − 1)σμ = 0, (D − 1)σμ′
= 0,

(D′ − 1)σμ = 0, (D′ − 1)σμ′
= 0,

(2.8)

which are useful identities for the calculation of the coincidence limits of deriva-
tives of the world function, see Sect. 4.1.

2.7. Bitensor of Parallel Transport

Another example of a bitensor is the bitensor of the parallel transport, gμ
ν′ ,

which transports TyM onto TxM along the geodesics γy,x. In the notation
of (2.1), for a vector field v,

g(x, y)μ
ν′vν(y) =

(vvw(y−x)

)μ(x).

Note that in Sect. 2.3 we considered a similar object g(x, x+u)μ
ν , except that

there it was viewed as a function of x ∈ M , u ∈ TxM , and now it is viewed
as a function of (x, y) ∈ Ω.

Equivalently, the bitensor gμ
ν′ is defined by the transport equations

Dgμ
ν′ = 0 = D′gμ

ν′ (2.9)

with the initial condition [gμ
ν′ ] = δμ

ν .

2.8. Van Vleck–Morette Determinant

If T ∈ T1,1
x M , we will write |T | for | det T |. Note that |T | is well defined

independently of coordinates.
If S ∈ T0,2

x M or S ∈ T2,0
x M , we will use the same notation |S| for the

absolute value of the determinant. |S| may now depend on the coordinates,
but it can still be a useful object. For instance, the metric g(x) belongs to
T0,2

x ; however, |g(x)| will play a considerable role in our analysis.
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Let Tμ
ν′(x, y) be a bitensor, contravariant in x and covariant in y. Then

it is easy to see that

|T (x, y)| |g(x)| 1
2

|g(y)| 1
2

does not depend on coordinates, and hence is a biscalar. For instance, by (2.2),

∣∣g(x, y)μ
ν′

∣∣ |g(x)| 1
2

|g(y)| 1
2

= 1. (2.10)

For (x, y) ∈ Ω, the matrix

∂(y − x)μ

∂yν′ = σμ
ν′(x, y) (2.11)

is a bitensor, contravariant in x and covariant in y. Note that the derivatives
on the right-hand side of (2.11) can be applied in any order, and instead of
the covariant derivatives we can use the usual derivatives.

The Van Vleck–Morette determinant is defined as

Δ(x, y) :=
∣∣∣∣∂(y − x)

∂y

∣∣∣∣ |g(x)| 1
2

|g(y)| 1
2
.

By the discussion above, its definition does not depend on the choice of coor-
dinates. For coinciding points, we have Δ(x, x) = 1 by (2.5).

Theorem 2.1. Δ is continuous on Ω and Δ(x, y) = Δ(y, x).
Besides, for any τ ∈ [0, 1], we have

Δ(x, y) =
∣∣∣∣∂(y − x)τ

∂y

∣∣∣∣
∣∣g(

x + τ(y − x)
)∣∣ 1

2

|g(y)| 1
2

(2.12a)

=
∣∣∣∣∂(x − y)τ

∂x

∣∣∣∣
∣∣g(

y + τ(x − y)
)∣∣ 1

2

|g(x)| 1
2

. (2.12b)

Proof. We use the symmetry of the world function and then we raise and lower
the indices:

σ(x, y)μ
ν′ = σ(y, x)ν

μ′

= σ(y, x)α
β′g(x)ανg(y)β′μ′

.

Therefore,
∣∣σ(x, y)μ

ν′
∣∣ =

∣∣σ(y, x)α
β′

∣∣ |g(x)|
|g(y)| ,

which shows the symmetry of Δ(x, y).
We have (y − x)τ = v(y − x)wτ(y−x). Therefore,

∂(y − x)τ

∂y
=

2
∂(y − x)

∂y

:τ(y−x)

,
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where we only parallel transport the part of the bitensor at x, that is,

∂(y − x)τ
μ

∂yν′ = g(x + τ(y − x), x)μ
α

∂(y − x)α

∂yν′

Using (2.10), we obtain for the determinant

∣∣∣∣∂(y − x)τ

∂y

∣∣∣∣ =
∣∣∣∣∂(y − x)

∂y

∣∣∣∣
∣∣g(

x + τ(y − x)
)∣∣ 1

2

|g(x)| 1
2

.

Now (2.12a) and (2.12b) follow. �

The Van Vleck–Morette determinant enters in the expression for the Ja-
cobian of a certain useful change of coordinates:

Proposition 2.2. Set zτ = x + τ(y − x), and uτ = (y − x)τ . Then
∣∣∣∣∂(zτ , uτ )

∂(x, y)

∣∣∣∣ = Δ(x, y)
|g(x)| 1

2 |g(y)| 1
2

|g(zτ )| . (2.13)

Proof. We have∣∣∣∣∂(zτ , uτ )
∂(x, y)

∣∣∣∣ =
∣∣∣∣∂(zτ , uτ )
∂(x, uτ )

∣∣∣∣
∣∣∣∣∂(x, uτ )

∂(x, y)

∣∣∣∣ =
∣∣∣∣∂zτ

∂x

∣∣∣
uτ

∣∣∣∣
∣∣∣∣∂uτ

∂y

∣∣∣
x

∣∣∣∣. (2.14)

Now, by (2.12),
∣∣∣∣∂uτ

∂y

∣∣∣
x

∣∣∣∣ = Δ(x, y)
|g(y)| 1

2

|g(zτ )| 1
2

(2.15)

Clearly,
∣∣∣∣∂zτ

∂x

∣∣∣∣ =
|g(x)| 1

2

|g(zτ )| 1
2
. (2.16)

Inserting (2.15) and (2.16) into (2.14) we obtain (2.13). �

The Jacobian (2.13) will play an important role in our construction. For
brevity, we therefore define the geometric factor (zτ = x+ τ(x− y) as before)

Υτ (x, y) :=
Δ(x, y)

1
2 |g(x)| 1

4 |g(y)| 1
4

|g(zτ )| 1
2

,

which will appear in several of our proofs.

Remark 2.3. Actually, the left-hand side of (2.13) depends only on the connec-
tion on M and does not depend on its pseudo-Riemannian structure. Clearly,
the same is true concerning Υτ . Therefore, the balanced geodesic Weyl quan-
tization can be defined on a manifold with just a connection—it does not
need to be a pseudo-Riemannian manifold. (This remark is due to Wojciech
Kamiński.)
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3. Quantization

3.1. Quantization on a Flat Space

In this subsection, we collect well-known facts concerning the quantization on
a flat space, which we would like to generalize to curved (pseudo-)Riemannian
manifolds.

Consider the vector space X = R
d, with X# denoting the space dual to X .

By the Schwartz kernel theorem, continuous operators B : S(X ) → S ′(X ) are
defined by their kernels B(· , ·) ∈ S ′(X × X ). An operator B on L2(X ) is
Hilbert–Schmidt if and only if its kernel satisfies B(· , ·) ∈ L2(X × X ). The
Hilbert–Schmidt scalar product satisfies the identity

Tr(A∗B) =
∫

X×X
A(x, y)B(x, y) dx dy.

Let us fix a positive number � called Planck’s constant. The parameter
� conveniently keeps track of the “order of semiclassical approximation”.

Let b ∈ S ′(X × X#). For any τ ∈ R, we associate with b the operator
Opτ (b) : S(X ) → S ′(X ), given by the kernel

Opτ (b)(x, y) :=
∫

X#
b
(
x + τ(y − x), p

)
e

i(x−y)·p
�

dp

(2π�)d

and called the τ -quantization of the symbol b.
The most natural quantization corresponds to τ = 1

2 and is called the
Weyl quantization of the symbol b. Instead of Op 1

2
(b), we will simply write

Op(b).
The quantizations corresponding to τ = 0 and τ = 1 are also useful. They

are sometimes called the x, p and the p, x quantizations. In a part of the PDE
literature, the x, p quantization is treated as the standard one. Quantizations
corresponding to τ different from 0, 1

2 , 1 are of purely academic interest.
If A,B are Hilbert–Schmidt operators on L2(M) such that A = Opτ (aτ )

and B = Opτ (bτ ), then

Tr(A∗B) =
∫

X×X#
aτ (z, p)bτ (z, p) dz

dp

(2π�)d
.

Suppose that the operators Op(a) and Op(b) can be composed. Then one
defines the star product or the Moyal product a 	 b by

Op(a 	 b) = Op(a)Op(b).

Using the identity

exp
(

1
2∂x · A∂x

)
f(x)

= (2π)− n
2 (det A)− 1

2

∫
Rn

exp
(− 1

2 (x − y) · A−1(x − y)
)
f(y) dy

(3.1)
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for an invertible n × n matrix A with ReA ≥ 0, which holds for f ∈ S(Rn)
but can also be understood in larger generality, one obtains two formulas for
the star product:

(a 	 b)(z, p) =
∫

X×X×X#×X#
e

2i(u1·p2−u2·p1)
� a(z + u1, p + p1)

× b(z + u2, p + p2) du1 du2
dp1 dp2

(π�)d
(3.2a)

= exp
(

i
2�(∂u1 · ∂p2 − ∂u2 · ∂p1)

)
× a(z + u1, p + p1)b(z + u2, p + p2)

∣∣∣u1=u2=0
p1=p2=0

. (3.2b)

3.2. Operators on a Manifold

In this subsection, the (pseudo-)Riemannian structure of M is irrelevant.
If B is a continuous operator C∞

c (M) → D′(M), then its kernel is the
distribution in D′(M × M), denoted B(· , ·), such that

〈f |Bg〉 =
∫

M×M

f(x)B(x, y)g(y) dx dy, f, g ∈ C∞
c (M).

For instance, the kernel of the identity is given by the delta distribution.
We will treat elements of C∞

c (M) not as scalar functions, but as half-
densities. With this convention, the kernel of an operator is a half-density on
M × M . Note that with our conventions we need not specify a density with
respect to which we integrate.

If two operators A,B can be composed, then we have

AB(x, y) =
∫

M

A(x, z)B(z, y) dz. (3.3)

(3.3) is true, e.g., if both A and B are Hilbert–Schmidt, but of course it also
holds in various other situations.

Clearly, the space of square-integrable half-densities on M forms a Hilbert
space which will be denoted L2(M). It is well known that an operator B on
L2(M) is Hilbert–Schmidt if and only if its kernel satisfies

B(· , ·) ∈ L2(M × M).

If two operators A,B are Hilbert–Schmidt, the Hilbert–Schmidt scalar product
is given by

Tr(A∗B) =
∫

M×M

A(x, y)B(x, y) dx dy. (3.4)

3.3. Balanced Geodesic Quantization

Consider a smooth function

T∗M � (z, p) �→ b(z, p). (3.5)

Note that T∗M possesses a natural density, independent of the (pseudo-)
Riemannian structure. Hence b can be interpreted as we like—as a scalar,
density or, which is the most relevant interpretation for us, as a half-density.
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Assume first that M is geodesically simple. Let τ ∈ R. We associate
with (3.5) an operator with the kernel

Opτ (b)(x, y) :=
Δ(x, y)

1
2 |g(x)| 1

4 |g(y)| 1
4

|g(zτ )| 1
2

∫
T∗

zτ
M

b(zτ , p)e− iuτ ·p
�

dp

(2π�)d
,

(3.6)

where zτ = x + τ(y − x) ∈ M and uτ = (y − x)τ ∈ Tzτ
M . We call Opτ (b) the

geodesic τ -quantization of the symbol b.
If M is not geodesically simple, then the definition (3.6) needs to be

modified. Recall that Ω is a geodesically convex neighborhood of Diag. Choose
Ω1, another geodesically convex neighborhood of Diag such that the closure of
Ω1 is contained in Ω. Fix a function χ ∈ C∞(M × M) such that χ = 1 on Ω1

and suppχ ⊂ Ω. Then instead of (3.6) we set

Opτ (b)(x, y) := χ(x, y)
Δ(x, y)

1
2 |g(x)| 1

4 |g(y)| 1
4

|g(zτ )| 1
2

∫
T∗

zτ
M

b(zτ , p)e− iuτ ·p
�

dp

(2π�)d
,

(3.7)

where zτ = x + τ(y − x) ∈ M and uτ = (y − x)τ ∈ Tzτ
M .

Most of the time we will use τ = 1
2 , which is the analog of the Weyl

quantization, and then we will write simply Op(b) instead of Op 1
2
(b). Op(b)

will be called the balanced geodesic Weyl quantization of the symbol b.
Our quantization depends on a Planck constant � > 0. This is however

a minor thing: if we set � = 1, we can easily put it back in all formulas, by
dividing all momenta except those appearing in the arguments of symbols by
� (i.e., replacing p by �

−1p). Therefore, for simplicity, in all proofs we will set
� = 1. However, in the statements of various properties, we will keep � explicit.

Conversely, suppose that we are given a kernel B(x, y) supported in Ω1.
Note that then we can drop χ from (3.7) and its τ -symbol is

bτ (z, p) :=
∫

TzM

|g(z)| 1
2

Δ(xτ , yτ )
1
2 |g(xτ )| 1

4 |g(yτ )| 1
4
B(xτ , yτ )e

iu·p
� du, (3.8)

where xτ = z − τu and yτ = z + (1 − τ)u.
Using (2.15), this can be reexpressed as

bτ (z, p) =
∫

M

Δ(xτ , y)
1
2

|g(y)| 1
4

|g(xτ )| 1
4
B(xτ , y)e

iuτ ·p
� dy

for τ 
= 1, where uτ = (1 − τ)−1(z − y) and xτ = z − τu, or

bτ (z, p) =
∫

M

Δ(x, yτ )
1
2

|g(x)| 1
4

|g(yτ )| 1
4
B(x, yτ )e

iuτ ·p
� dx

for τ 
= 0, where uτ = − τ−1(z − x) and yτ = z + (1 − τ)u.

Proposition 3.1. Equation (3.8) is the inverse to (3.7).



1610 J. Dereziński et al. Ann. Henri Poincaré

Proof. On the one hand, if b(z, p) is a symbol with τ -quantization Opτ (b)(x, y),∫
TzM

Υτ (x, y)−1 Opτ (b)(x, y)eiu·p du

=
∫

TzM×T∗
zM

b(z, q)eiu·(p−q) dq

(2π)d
du = b(z, p),

where x = z − τu and y = z + (1 − τ)u. On the other hand, if B(x, y) is a
kernel and bτ (z, p) is its symbol given by (3.8),

Υτ (x, y)
∫

T∗
zM

bτ (z, p)e−iu·p dp

(2π)d

= Υτ (x, y)
∫

T∗
zM×TzM

Υτ (x′, y′)−1B(x′, y′)ei(v−u)·p dv
dp

(2π)d

= B(x, y),

where u = (y − x)τ , x′ = z − τv and y′ = z + (1 − τ)v. �

Remark 3.2. The drawback of (3.7) is the fact that Opτ (b) depends on the
cutoff χ. It is possible to modify this definition so that it is purely geometric
and this cutoff is not needed. In fact, recall that given z ∈ M and u ∈ TzM
there exist −∞ ≤ t− < t+ ≤ +∞ such that ]t−, t+[ � t �→ expz(tu) ∈ M is
an inextendible geodesics. We set

Opτ,global(b)(x, y) :=
∑

(z,u)∈Γτ (x,y)

∣∣∣∣∂(x, y)
∂(z, u)

∣∣∣∣
− 1

2
∫

T∗
zM

b(z, p)e− iu·p
�

dp

(2π�)d
,

where

Γτ (x, y) :=
{
(z, u) ∈ TM

∣∣ expz(−τu) = x, expz

(
(1 − τ)u

)
= y

}
.

If M is geodesically simple, so that we can take χ = 1, then

Opτ (b) = Opτ,global(b).

If not, they may be different, and besides Opτ,global(b) does not depend on the
cutoff χ. However, since we are mostly interested in properties of operators
around the diagonal, we keep the definition (3.7).

3.4. Independence of the Quantization on the Cutoff

We have already mentioned that the dependence of the quantization on the
cutoff χ is mild. This is of course not true if the symbol has low regularity. It
can be however expected for various typical classes of symbols used in the pseu-
dodifferential calculus. In this subsection we will illustrate this independence
on the example of the most popular symbol class, Sm(T∗M).

Let m ∈ R. The class Sm(T∗M) consists of b ∈ C∞(T ∗M) such that for
any compact K ⊂ M and for arbitrary multiindices α,β

sup
(z,p)∈T∗M,z∈K

〈p〉|α |−m|∂p
α∇βb(z, p)| < ∞. (3.9)

Note that the class Sm(T ∗M) is purely geometric (it does not depend on
the choice of coordinates).
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The following two propositions are versions of well-known properties of
the standard pseudodifferential calculus adapted to the balanced geodesic Weyl
quantization.

Proposition 3.3. Let b ∈ Sm(T∗M) for some m. Then Opτ (b)(x, y) is smooth
outside of the diagonal.

Besides, together with all derivatives, it is O(�∞) outside of the diagonal.

Proof. The function (x, y) �→ (
zτ (x, y), uτ (x, y)

)
is smooth. So are the cutoff

function and the geometric prefactor. Since we are only interested in smooth-
ness outside of the diagonal, i.e., for u 
= 0, it is therefore enough to study the
smoothness of the function

(z, u) �→ uα

∫
b(z, p)e

iu·p
�

dp

(2π�)d

for some (sufficiently large) |α|. Now,

∇β (−i∂u)γ uα

∫
b(z, p)e

iu·p
�

dp

(2π�)d

= �
|α |−|γ |

∫
∇βb(z, p)(−i∂p)αpγ e

iu·p
�

dp

(2π�)d

= �
|α |−|γ |

∫
e

iu·p
� pγ (i∂p)α∇βb(z, p)

dp

(2π�)d
. (3.10)

Integrand (and prefactor) of (3.10) grow at most as �
|α |−|γ |−d〈p〉m−|α |+|γ |.

For large enough |α| it is thus integrable. This shows the smoothness of
Opτ (b)(x, y) outside of the diagonal and that it is O(�∞). �

Proposition 3.4. Suppose that χ1, χ2 are two cutoffs of the type described above
and Op1, Op2 be the quantizations corresponding to χ1, χ2. Let b ∈ Sm(T∗M).
Then Op1(b)(x, y)−Op2(b)(x, y) is smooth, and together with all its derivatives
it is O(�∞).

Proof. We repeat the arguments of Proposition 3.3. �

3.5. Hilbert–Schmidt Scalar Product

Proposition 3.5. Suppose that A,B are Hilbert–Schmidt operators on L2(M),
whose kernels are supported in Ω1. Let A = Opτ (aτ ) and B = Opτ (bτ ). Then

Tr(A∗B) =
∫

T∗M

aτ (z, p)bτ (z, p)
dp

(2π�)d
dz. (3.11)

Proof. Inserting (3.7) in (3.4), we find

Tr(A∗B) =
∫

T∗
zτ

M×T∗
zτ

M×M×M

Υτ (x, y)2aτ (zτ , p)bτ (zτ , q)

× eiuτ ·(p−q) dp

(2π)d

dq

(2π)d
dx dy.
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Changing integration variables from (x, y) to (zτ , uτ ), see (2.13), and dropping
the subscript τ gives

R.H.S. =
∫

T∗
zM×T∗

zM×TzM×M

aτ (z, p)bτ (z, q)eiu·(p−q) dp

(2π)d

dq

(2π)d
du dz

=
∫

T∗M

aτ (z, p)bτ (z, p)
dp

(2π)d
dz.

Thus all quantizations that we defined are unitary (up to a natural coef-
ficient), which, as we believe, is a strong argument in favor of them.

One can expect that the formula (3.11) holds for a large class of operators
such that A∗B is trace class, even if A and B are not Hilbert–Schmidt. For
example, denote by f(x) the operator of multiplication by a complex function
M � z �→ f(z). Note that Opτ (f) = f(x). Therefore, we obtain the formula

Tr
(
f(x)Opτ (b)

)
=

∫
T∗M

f(z)b(z, p)
dp

(2π�)d
dz. (3.12)

Note that the integral kernel of the operator f(x) is supported exactly
at the diagonal, therefore in the identity (3.12) there is no dependence on the
cutoff χ.

3.6. Translating Between Different Quantizations

Suppose we are given a symbol for the geodesic τ -quantization and wish to
find a corresponding symbol for the τ ′-quantization. An asymptotic formula is
given by the following proposition (see also [31], where an analogous formula
is derived):

Proposition 3.6. Let τ, τ ′ ∈ R and consider symbols bτ , bτ ′ such that

Opτ (bτ ) ∼ Opτ ′(bτ ′).

Then

bτ (z, p) ∼ exp
(− i�(τ ′ − τ)∂p · ∇)

bτ ′(z, p)

=
∑

n

(τ ′ − τ)n

n!
(− i�∂p · ∇)nbτ ′(z, p).

Proof. Let u ∈ TzM , p ∈ T∗
zM and q′ ∈ Tz′M with

z′ := z + (τ ′ − τ)u.

Then, setting

u′ = vuw(τ ′−τ)u ∈ Tz′M,

q = vq′w(τ ′−τ)u ∈ T∗
zM,
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we calculate

bτ (z, p) =
∫

TzM

|g(z)| 1
2

|g(z′)| 1
2

∫
T∗

z′ M
bτ ′(z′, q′)ei(u·p−u′·q′) dq′

(2π)d
du

=
∫

TzM×T∗
zM

bτ ′(z′, vqw(τ ′−τ)u)eiu·(p−q) dq

(2π)d
du

∼
∫

TzM×T∗
zM

eiu·(p−q)
∑
α

1
|α|! (τ

′ − τ)|α |uα∇αbτ ′(z, q)
dq

(2π)d
du

=
∫

TzM×T∗
zM

∑
α

1
|α|!

(
(i∂q)αeiu·(p−q)

)
(τ ′ − τ)|α |∇αbτ ′(z, q)

dq

(2π)d
du

=
∫

TzM×T∗
zM

eiu·(p−q)
∑
α

1
|α|!

(−i(τ ′ − τ)∂q · ∇)|α |
bτ ′(z, q)

dq

(2π)d
du

= exp
(− i(τ ′ − τ)∂p · ∇)

bτ ′(z, p).

3.7. Quantization of Polynomial Symbols

In this section, we consider the quantization of symbols, which are polynomial
in the momenta. Note that for polynomial symbols the integral kernel of their
quantization is supported on the diagonal; therefore, there are no problems
with multiple geodesics between two points.

As usual, boldface Greek letters denote multiindices. We sum over re-
peated multiindices and write pα = pα1 · · · pαn

.

Proposition 3.7. Consider the polynomial symbol

a(z, p) = a(z)αpα , (3.13)

where a(z)α are symmetric tensors. Then

Opτ (a) = �
|γ |+|δ |τ |α+γ |(1 − τ)|β+δ |

× |g|− 1
4 (− i�∇)αaα+β+γ+δξγδ |g| 1

2 (− i�∇)β |g|− 1
4 ,

(3.14)

with

ξγδ := (− 1)|γ |(− i∇)γ (− i∇′)δΔ(x, y)− 1
2

∣∣∣
x=y

,

where the prime indicates (covariant) differentiation with respect to y.
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Proof. We calculate
(
f

∣∣ Op τ (a)h
)

=
∫

M×M×T∗
x+τ(y−x)M

f(x)a
(
x + τ(y − x)

)α
pαh(y)

× Υτ (x, y)e−iu·p dx dy
dp

(2π)d

=
∫

M×TzM×T∗
zM

f(z − τu)a(z)αpαh
(
z + (1 − τ)u

)

× Υτ

(
z − τ, z + (1 − τ)u

)−1e−iu·p dz du
dp

(2π)d

=
∫

M×TzM×T∗
zM

f(z − τu)a(z)αh
(
z + (1 − τ)u

)

× Υτ

(
z − τu, z + (1 − τ)u

)−1(i∂u)αe−iu·p dz du
dp

(2π)d

=
∫

M×TzM×T∗
zM

e−iu·p(− i∂u)αf(z − τu)a(z)αh
(
z + (1 − τ)u

)

× Υτ

(
z − τu, z + (1 − τ)u

)−1 dz du
dp

(2π)d

=
∫

M

(− i∂u)αf(z − τu)a(z)αh
(
z + (1 − τ)u

)

× Υτ

(
z − τu, z + (1 − τ)u

)−1 dz
∣∣∣
u=0

.

After an integration by parts, this implies (3.14). �

For the balanced geodesic Weyl quantization, (3.14) simplifies and we
find:

Proposition 3.8. Consider a polynomial symbol (3.13), as in Proposition 3.7.
Then

Op(a) = 2−|α+β+γ |
�

|γ ||g|− 1
4 (− i�∇)αaα+β+γ ξγ |g| 1

2 (− i�∇)β |g|− 1
4

with

ξγ :=
∑

α+β=γ

(− 1)|α |(− i∇)α (− i∇′)βΔ(x, y)− 1
2

∣∣∣
x=y

. (3.15)

Moreover, if a is an even polynomial, Op(a) has only even degree derivatives,
and if a is an odd polynomial, Op(a) has only odd degree derivatives.

Proof. The second part of the proposition follows from

(− i∇)α (− i∇′)βΔ(x, y)− 1
2

∣∣∣
x=y

= (− i∇)β (− i∇′)αΔ(x, y)− 1
2

∣∣∣
x=y



Vol. 21 (2020) Pseudodifferential Weyl Calculus 1615

due to the symmetry of the Van Vleck–Morette determinant Δ(x, y) = Δ(y, x).
Indeed, for odd |γ|, either |α| or |β| is odd and thus the sum (3.15) consists
of terms of the form

0 = (− 1)|α |(− i∇)α (− i∇′)βΔ(x, y)− 1
2

+ (− 1)|β |(− i∇)β (− i∇′)αΔ(x, y)− 1
2

∣∣∣
x=y

.

Consider the example of a quadratic symbol a(z, p) = a(z)μνpμpν . Then

1
�2

Opτ (a) = − |g|− 1
4
(
τ2∇μ∇νaμν |g| 1

2 + 2τ(1 − τ)∇μaμν |g| 1
2 ∇ν

+ (1 − τ)2aμν |g| 1
2 ∇μ∇ν

)|g|− 1
4 +

1
6
aμνRμν ,

where we used the fact that

∇μΔ(x, y)− 1
2

∣∣∣
x=y

= 0, ∇μ∇νΔ(x, y)− 1
2

∣∣∣
x=y

= − 1
6
Rμν .

Suppose that aμν = gμν is the inverse metric. Since the metric is covariantly
constant, we obtain

1
�2

Opτ (a) = |g|− 1
4 (− i∇μ)gμν |g| 1

2 (− i∇ν)|g|− 1
4 +

1
6
R = − gμν∇μ∇ν +

1
6
R

independently of τ . In four dimensions, this is the conformally invariant
Laplace–Beltrami operator (or its pseudo-Riemannian generalization).

3.8. Balanced Geodesic Star Product

In this section, we consider only the balanced geodesic Weyl quantization. We
define the balanced geodesic star product by the identity

Op(a 	 b) = Op(a)Op(b).

Let us first describe an explicit formula for the star product, which general-
izes (3.2) from the flat case. For simplicity, we assume that we can take χ = 1.

Theorem 3.9. The balanced geodesic star product is given by the formulas

(a 	 b)(z, p)

=
∫

TzM×TzM×T∗
zM×T∗

zM

a(z + v1, vp + p1wv1)b(z + v2, vp + p2wv2)

× Λ(z, u1, u2)e
2i(w+u1−u2)·p

� e
2i(u1·p2−u2·p1)

� du1 du2
dp1 dp2

(π�)2d
, (3.16a)

∼ exp
(

i
2�(∂u1 · ∂p2 − ∂u2 · ∂p1)

)
Λ(z, u1, u2)e

2i(w+u1−u2)·p
�

× a(z + v1, vp + p1wv1)b(z + v2, vp + p2wv2)
∣∣∣u1=u2=0
p1=p2=0

, (3.16b)

where

Λ(z, u1, u2) := 2−d

∣∣∣∣ ∂(w, w̃)
∂(u1, u2)

∣∣∣∣ Δ(z − w, z + w̃)
1
2 Δ(z + w, z + w̃)

1
2

Δ(z − w, z + w)
1
2 Δ(z, z + w̃)

, (3.17)
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Figure 1. The geodesic triangle in the proof of Theorem. 3.9.
z, z1, z2 are the middle-points of the three geodesics between
the points x, y, z̃ spanning the triangle. w is the tangent to the
geodesic from z to y; w̃ is the tangent to the geodesic from z
to z̃; v1 and v2 are the tangents to the geodesics from z to z1

resp. z2. u1 and u2 are the parallel transports of the tangents
to the geodesics from z2 resp. z1 to z̃ along v1 resp. v2. In the
flat case, ui = vi

and the vectors u1, u2, v1, v2, w, w̃ ∈ TzM satisfy the relations

z − w = (z + v1) − vu2wv1 , (3.18a)

z + w = (z + v2) − vu1wv2 , (3.18b)

z + w̃ = (z + v1) + vu2wv1 = (z + v2) + vu1wv2 . (3.18c)

The schematic arrangement of these vectors can be seen in Fig. 1.

Proof. Let C(x, y) be the integral kernel of Op(a 	 b). Clearly,

C(x, y) =
∫

M

Op(a)(x, z̃)Op(b)(z̃, y)dz̃. (3.19)

Let z be the middle point between x and y. Let w, w̃ ∈ TzM be defined by

x = z − w, y = z + w, z̃ = z + w̃.

Then we can rewrite (3.19) as

C(z − w, z + w)

=
∫

M

Op(a)(z − w, z̃)Op(b)(z̃, z + w) dz̃

=
∫

TzM

Υ0(z, z + w̃)−2 Op(a)(z − w, z + w̃)Op(b)(z + w̃, z + w) dw̃.
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The star product of the symbols can then be found by applying (3.8):

(a 	 b)(z, p) = 2d

∫
TzM

Υ 1
2
(z − w, z + w)−1C(z − w, z + w)e2iw·p dw

= 2d

∫
TzM×TzM

Υ 1
2
(z − w, z + w)−1Υ0(z, z + w̃)−2

× Op(a)(z − w, z + w̃)Op(b)(z + w̃, z + w)e2iw·p dw dw̃.
(3.20)

Consider next the vectors u1, u2, v1, v2 ∈ TzM defined in (3.18). z + v1

is the middle point between z − w and z + w̃, and z + v2 is the middle point
between z + w and z + w̃. Therefore,

Op(a)(z − w, z + w̃)

= Υ 1
2
(z − w, z + w̃)

∫
T∗

z1
M

a(z + v1, vq1wv1)e−2iu2·q1 dvq1wv1

(2π)d

= Υ 1
2
(z − w, z + w̃)

|g(z + v1)|
1
2

|g(z)| 1
2

∫
T∗

zM

a(z + v1, vq1wv1)e−2iu2·q1 dq1

(2π)d
,

Op(b)(z + w̃, z + w)

= Υ 1
2
(z + w, z + w̃)

|g(z + v2)|
1
2

|g(z)| 1
2

∫
T∗

zM

b(z + v2, vq2wv2)e2iu1·q2 dq2

(2π)d
.

Changing the integration variables in (3.20) from w, w̃ to u1, u2, and inserting
the formulas for Op(a), Op(b), we obtain

(3.20) = 2d

∫
TzM×TzM

∣∣∣∣ ∂(w, w̃)
∂(u1, u2)

∣∣∣∣ Υ 1
2
(z − w, z + w)−1Υ0(z, z + w̃)−2

× Op(a)(z − w, z + w̃)Op(b)(z + w̃, z + w)e2iw·p du1 du2

=
∫

TzM×TzM×T∗
zM×T∗

zM

a(z + v1, vq1wv1)b(z + v2, vq2wv2)

× Λ(z, u1, u2)e2i(w·p+u1·q2−u2·q1) du1 du2
dq1 dq2

π2d

=
∫

TzM×TzM×T∗
zM×T∗

zM

a(z + v1, vp + p1wv1)b(z + v2, vp + p2wv2)

× Λ(z, u1, u2)e2i(w+u1−u2)·pe2i(u1·p2−u2·p1) du1 du2
dp1 dp2

π2d
,

with Λ as defined in (3.17).
This yields (3.16a). Using (3.1), we obtain (3.16b). �

Remark 3.10. A similar formula can be given also for τ 
= 1
2 . For this purpose,

make in (3.17) the substitutions

z − w �→ z − 2τw, z + w �→ z + 2(1 − τ)w, (3.21)
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and replace (3.18) by

z − 2τw = (z + v1) − 2τvu2wv1 ,

z + 2(1 − τ)w = (z + v2) − 2(1 − τ)vu1wv2 ,

z + w̃ = (z + v1) + 2(1 − τ)vu2wv1 = (z + v2) + 2τvu1wv2 .

Unlike in the flat case, all derivatives in (3.16b) remain also for τ = 0 and τ = 1
because of the non-trivial geometric factor Λ(z, u1, u2) exp(2i(w + u1 + u2) · p)
and the dependence of v1 and v2 on both u1 and u2. Note, however, that v1 = 0
for τ = 0 and v2 = 0 for τ = 1.

3.9. Asymptotic Expansion of the Geodesic Star Product

The geodesic star product can be expanded as a sum

a 	 b =
∑

n

�
n(a 	 b)n + O(�∞) (3.22)

according to the order of Planck’s constant. Note that each nth term contains
exactly n position derivatives, with Riemann tensors counting as two deriva-
tives. It also contains exactly n momentum derivatives, with multiplication
by p counting as − 1 derivatives. The asymptotic expansion does not depend
on the cutoff χ.

Due to the length of the expressions involved, we shall adopt the follow-
ing notation for the derivatives of the symbols: Lower indices always denote
horizontal derivatives

aα1···αn
= ∇αn

· · · ∇α1a,

and upper indices always denote vertical derivatives

aα1···αn = ∂p
αn · · · ∂p

α1a.

Since we only consider scalar symbols, no ambiguity arises. Recall also that
horizontal and vertical derivatives commute so that their relative position is
irrelevant.

In this notation, the five lowest-order summands in (3.22) are

(a � b)0 = ab,

(a � b)1 = i
2

(
aαbα − aαbα

)
,

(a � b)2 = − 1
8

(
aα1α2b

α1α2 − 2aα2
α1b

α1
α2 + aα1α2bα1α2

)
+ 1

12Rα1α2a
α2bα1

− 1
24Rβ

α1α2α3pβ

(
aα2bα1α3 + aα1α3bα2

)
,

(a � b)3 = − i
48

(
aα1α2α3b

α1α2α3 − 3aα3
α1α2b

α1α2
α3 + 3aα2α3

α1 bα1
α2α3 − aα1α2α3bα1α2α3

)
+ i

24Rα1α2

(
aα2

α3b
α1α3 − aα2α3bα1

α3

) − i
16Rβ

α1α2α3

(
aα1α3

β bα2 − aα2bα1α3
β

)
− i

48Rβ
α1α2α3pβ

(−aα1α3
α4 bα2α4 − aα2

α4b
α1α3α4 + aα1α3α4bα2

α4 + aα2α4bα1α3
α4

)
+ i

48Rα1α2;α3

(
aα3bα1α2 − aα1α2bα3

)
+ i

48Rβ
α1α2α3;α4pβ

(
aα1α3α4bα2 − aα2bα1α3α4

)
,

(a � b)4 = 1
384

(
aα1α2α3α4b

α1α2α3α4 − 4aα4
α1α2α3b

α1α2α3
α4 + 6aα3α4

α1α2b
α1α2
α3α4

− 4aα2α3α4
α1 bα1

α2α3α4 + aα1α2α3α4bα1α2α3α4

)
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− 1
96Rα1α2

(
aα2

α3α4b
α1α3α4 − 2aα2α4

α3 bα1α3
α4 + aα2α3α4bα1

α3α4

)
+ 1

32Rβ
α1α2α3

(
aα1α3

βα4
bα2α4 − aα1α3α4

β bα2
α4 − aα2

α4b
α1α3α4
β + aα2α4bα1α3

βα4

)
+ 1

192Rβ
α1α2α3pβ

(
aα1α3

α4α5b
α2α4α5 + aα2

α4α5b
α1α3α4α5 − 2aα1α3α5

α4 bα2α4
α5

− 2aα2α5
α4 bα1α3α4

α5 + aα1α3α4α5bα2
α4α5 + aα2α4α5bα1α3

α4α5

)
− 1

96Rα1α2;α3

(
aα3

α4b
α1α2α4 − aα3α4bα1α2

α4 − aα1α2
α4 bα3α4 + aα1α2α4bα3

α4

)
− 1

384Rβ
α1α2α3;α4

(
2aα1α3α4

β bα2 + aα2α4
β bα1α3 − 5aα1α3

β bα2α4

− 2aα2
β bα1α3α4 + 2aα2bα1α3α4

β − 5aα2α4bα1α3
β + aα1α3bα2α4

β

− 2aα1α3α4bα2
β

)
− 1

96Rβ
α1α2α3;α4pβ

(
aα1α3α4

α5 bα2α5 − aα2
α5b

α1α3α4α5 − aα1α3α4α5bα2
α5

+ aα2α5bα1α3α4
α5

)
+ 1

288Rα1α2Rα3α4a
α2α4bα1α3

− 1
288Rα1α2R

β
α3α4α5pβ

(
aα1α3α5bα2α4 + aα2α4bα1α3α5

)
− 1

288Rβα1R
β

α2α3α4

(
aα2α4bα1α3 + aα1α3bα2α4 + aα3bα1α2α4

+ aα1α2α4bα3
)

− 1
2880Rβ

α1
γ

α2Rβα3γα4

(
28aα2α3α4bα1 + 14aα1α2bα3α4 − 31aα1α3bα2α4

+ 14aα1α4bα2α3 + 28aα1bα2α3α4
)

+ 1
5760Rβ

α1γα2R
γ

α3α4α5pβ

(
7aα1α2α3α5bα4 − 11aα1α3α5bα2α4

− 44aα2α3α5bα1α4 + 7aα1α2α4bα3α5 + 7aα3α5bα1α2α4

− 44aα1α4bα2α3α5 − 11aα2α4bα1α3α5 + 7aα4bα1α2α3α5
)

+ 1
1152Rβ

α1α2α3R
γ

α4α5α6pβpγ

(
aα1α3α4α6bα2α5 + 2aα1α3α5bα2α4α6

+ aα2α5bα1α3α4α6
)

− 1
1920Rα1α2;α3α4

(
aα1α2α3bα4 + aα1α2α4bα3 + 2aα1α3α4bα2

+ 2aα1α3bα2α4 − 9aα1α2bα3α4 − 9aα3α4bα1α2 + 2aα2α4bα1α3

+ 2aα2bα1α3α4 + aα3bα1α2α4 + aα4bα1α2α3
)

+ 1
1920Rβ

α1α2α3;α4α5pβ

(
3aα1α3α4α5bα2 + 3aα2bα1α3α4α5

+ aα2α4α5bα1α3 + aα1α3bα2α4α5 − 7aα1α3α4bα2α5 − 7aα2α5bα1α3α4
)
.

3.10. Analysis of the Expansion of the Star Product

In this subsection, we analyze terms that appear in the expansion of the
star product. The term that appears at �

r, that is (a 	 b)r(z, p), is a linear
combination with numerical coefficients of terms of the form⎛

⎝ s∏
j=1

R(z)πj
ρj ;ν j

⎞
⎠ pηa(z, p)β1

α1
b(z, p)β2

α2
,

where we use the same notation for the derivatives of the symbols a and b as
in the previous subsection.
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We have |ρi| = 3, πi are single indices, i = 1, . . . s. The following identities
are always satisfied:

r = |β1| + |β2| − |η|

r = 2s +
s∑

i=1

|νi| + |α1| + |α2|.

Observe that the first identity can be read off immediately from (3.16b) and
then the second follows by the fact that all indices must be contracted.

These terms can be divided into two kinds:

1. Terms that have the same form as the terms appearing in the star product
on a flat space. They satisfy

|η| = s =
s∑

j=1

|νj | = 0, |β1| = |α2|, |β2| = |α1|.

2. Terms that contain the curvature tensor and its covariant derivatives.
They satisfy

s ≥ max(1, |η|),
|β1| ≥ max(1, |η| + |α2|),
|β2| ≥ max(1, |η| + |α1|).

For the star product of several symbols, we also can write

(a1 	 · · · 	 an)(z, p) =
∞∑

r=0

�
r(a1 	 · · · 	 an)r(z, p) + O(�∞),

where (a1 	 · · · 	 an)r(z, p) is a linear combination with numerical coefficients
of terms of the form⎛

⎝ s∏
j=1

R(z)πj
ρj ;ν j

⎞
⎠ pηa1(z, p)β1

α1
· · · an(z, p)βn

αn
.

The identities and bounds for n = 2 generalize to this case:

r = 2s +
s∑

i=1

|νi| +
n∑

j=1

|αj | =
n∑

j=1

|βj | − |η|,

s ≥ |η|.

4. Calculation of the Star Product

In this section we explain the methods that we used to obtain the expansion
of the star product. We also give various intermediate results.
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4.1. Coincidence Limits of Synge’s World Function

In our calculations, we will need a certain family of coincidence limits of co-
variant derivatives of the Synge’s function. More precisely, we will need

[σμ
(α ′)(β ′)] = [σμ

(α′
1···α′

m)(β′
1···β′

n)],

where parentheses around indices indicate symmetrization.
For notational simplicity, below we shall use the same index repeatedly

to indicate symmetrization, e.g.,

Rμ
αβα =

1
2
(Rμ

α1βα2 + Rμ
α2βα1).

This notation is very convenient for the compact representation of tensorial
expressions with multiple overlapping symmetries.

With the help of the tensor algebra package xAct for Mathematica [22,26],
we obtained the following coincidence limits:

[σμ
α′β′ ] = 0

[σμ
α′α′β′ ] = 2

3Rμ
αβα

[σμ
α′β′β′ ] = − 1

3Rμ
βαβ

[σμ
α′α′α′β′ ] = 1

2Rμ
αβα;α

[σμ
α′α′β′β′ ] = 5

6Rμ
αβα;β − 1

6Rμ
βαβ ;α

[σμ
α′β′β′β′ ] = − 1

2Rμ
βαβ ;β

[σμ
α′α′α′α′β′ ] = 2

5Rμ
αβα;αα + 8

15Rμ
αγαRγ

αβα

[σμ
α′α′α′β′β′ ] = 7

10Rμ
αβα;βα − 1

10Rμ
βαβ ;αα

+ 7
15Rμ

αγαRγ
βαβ + 31

15Rμ
αγβRγ

αβα − 8
15Rμ

βγαRγ
αβα

[σμ
α′α′β′β′β′ ] = − 3

10Rμ
βαβ ;αβ + 9

10Rμ
αβα;ββ

+ 7
15Rμ

βγβRγ
αβα + 1

15Rμ
βγαRγ

βαβ − 8
15Rμ

αγβRγ
βαβ

[σμ
α′β′β′β′β′ ] = − 3

5Rμ
βαβ ;ββ − 7

15Rμ
βγβRγ

βαβ .

To simplify the resulting expressions, several identities such as the Bianchi
identities were applied automatically via the xAct Mathematica package.

Let us describe the methods we used to compute the coincidence limits
above, and more generally, how one can compute the quantities

[σα1···αnβ′
1···β′

m
]. (4.1)

As a first step, we note that the following coincidence limits are immedi-
ate:

[σ] = 0, [σμ] = 0, [σμν ] = [σμ′ν′ ] = gμν . (4.2)

By raising indices, it follows from (4.2)

[σμ
ν ] = δμ

ν

and thus, applying Synge’s rule (2.3),

[σμ
ν′ ] = − δμ

ν .
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Proposition 4.1. For n > 1,

[σμ
(ν1···νn)] = 0, [σμ

(ν′
1···ν′

n)] = 0.

Proof. Since the proof of both identities proceeds analogously, we only prove
the first identity. We apply n symmetrized covariant derivatives to one of the
identities of (2.8)

σμ
ασα − σμ = 0,

obtaining

0 = σμ
ασα

(ν1···νn) + σμ
α(ν1σ

α
ν2···νn) + · · · + σμ

α(ν1···νn)σ
α − σμ

(ν1···νn).

Then we take the coincidence limit and apply (4.2):

0 = δμ
α[σα

(ν1···νn)] + [σμ
α(ν1 ][σ

α
ν2···νn)]

+ · · · + [σμ
α(ν1···νn−1 ]δ

α
νn

− [σμ
(ν1···νn)]

= [σμ
(ν1···νn)] + [σμ

α(ν1 ][σ
α

ν2···νn)]

+ · · · + [σμ
α(ν1···νn−2 ][σ

α
νn−1νn)]. (4.3)

Specializing to n = 2, this yields

[σμ
(ν1ν2)] = 0.

The result for n > 2 is then obtained from (4.3) by induction. �

Next note that to compute (4.1), it is enough to do it first for all primed
or all unprimed indices:

[σα1···αn
] = [σα′

1···α′
n
]. (4.4)

Indeed, by Synge’s rule (2.3),

[σα1···αnβ′
1···β′

m
];μ = [σα1···αnμβ′

1···β′
m

] + [σα1···αnβ′
1···β′

mμ′ ],

so it is easy to add or remove primes.
Note that σα1···αn

is not symmetric with respect to permutation of indices
except for the first two since covariant derivatives do not in general commute.
For instance, we have

σαβγ = σαγβ + σμRγβα
μ. (4.5)

For more complicated cases, we have the following lemma.

Lemma 4.2. Let α = (α1 · · · αn) and ν = (ν1 · · · νm). Then

σαβγν = σαγβν + · · · ,

where · · · indicates terms with σ’s having at most n + m indices.

Proof. We have

σαβγ = σαγβ +
n∑

j=1

σα(i,μ)Rγβαi

μ, (4.6)

where α(i, μ) is the multiindex coinciding with α except that on the ith place
there is μ instead of αi. This proves the lemma for m = 0.
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Then we apply the covariant derivatives ∇νm
· · · ∇ν1 to both sides of (4.6).

We obtain

σαβγν = σαγβν +
n∑

j=1

(
σα(i,μ)Rγβαi

μ
)
;ν

. (4.7)

Clearly, after applying the Leibniz rule, the second term on the right of (4.7)
will not contain σ’s with more than n + m indices. �

Let us now describe a recursive procedure to compute (4.4) relying on
one of the identities (2.8), viz.,

σα1 = σβα1σ
β .

Applying n − 1 covariant derivatives, this yields

σα = (σβα1σ
β);α2···αn

with α = (α1, . . . , αn). Therefore, by the Leibniz rule and Lemma (4.2),

σα = σβασβ +
n∑

i=1

σα(i,β)σ
β

αi
+ · · · , (4.8)

where, as above, α(i, β) is the multiindex coinciding with α except that on
the ith place there is β instead of αi, and · · · indicates terms where no factor
of σ has more than n − 2 indices. Then we take the coincidence limit and use
the basic coincidence limits (4.2) to obtain

[σα ] = 0 + n[σα ] + [· · · ],
where [· · · ] indicates the coincidence limit of the · · · terms in (4.8). Since [· · · ]
contains no factor of σ with more than n − 2 indices, this gives the desired
recursion.

4.2. Covariant Taylor Expansion

Let M � x �→ T (x) ∈ Tp,q
x M be a tensor field. Note also the following impor-

tant fact:
dn

dτn
vT (x + τu)wτu

∣∣∣
τ=0

= (u · ∇)nT (x).

Therefore, a (covariant) Taylor expansion for T is given by

vT (x + u)wu ∼ exp(u · ∇)T (x) =
∑

n

1
n!

(u · ∇)nT (x), (4.9)

where it is necessary to first parallel transport T (x+u) to x. Let us rewrite (4.9)
in coordinates:

gγ
γ ′(x, x + u)gδ

δ ′
(x, x + u)T γ ′

δ ′ (x + u) ∼
∑

ρ

1
|ρ|!T

γ
δ ;ρ(x)uρ ,

where uβ = uβ1 · · · uβn . We remark that formulas for remainder term are
analogous to the usual Taylor expansion.
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We will be especially interested in expansions of bitensors around the
diagonal. Let (x, y) �→ T (x, y) be a bitensor. Then (4.9) can be rewritten as

vT (x, x + u)wu ∼ [exp(u · ∇′)T ](x) =
∑

n

1
n!

[(u · ∇′)nT ](x),

where ∇′ denotes covariant differentiation with respect to the second argu-
ment. In coordinates, this can also be written as

g(x, x + u)γ
γ ′g(x, x + u)δ

δ ′
T (x, x + u)βγ ′

αδ ′ ∼
∑
ρ′

1
|ρ|!

[
T βγ ′

αδ ′;ρ′

]
(x)uρ .

A particularly efficient approach to calculating coefficients of covariant
expansions of many important bitensors is Avramidi’s method [2,3,10], espe-
cially the semi-recursive variant presented in [27]. Avramidi’s method relies
on deriving recursion relations for the coefficients from certain transport equa-
tions [such as (2.8)] for the bitensor. We refer to [27] for a full explanation and
several examples.

The Taylor expansion for tensor fields (4.9) generalizes to tensor-valued
functions on the cotangent bundle via the horizontal derivative.

0
S(x + u, vpwu)

8
u

∼ exp(u · ∇)S(x, p) =
∑

n

1
n!

(u · ∇)nS(x, p). (4.10)

4.3. Geodesic Triangle

Consider three points x, y, z in a geodesically convex neighborhood of the diag-
onal. By connecting these three points by the distinguished geodesics between
them, we obtain a geodesic triangle.

We define the following vectors:

v := (y − x) ∈ TxM,

w := (z − x) ∈ TxM,

u′ := (z − y) ∈ TyM,

u := vu′wv ∈ TxM.

The arrangement of these vectors is schematically depicted in Fig. 2.
While w = u+v on flat spaces, due to the effects of curvature on parallel

transport this is no longer true on generic curved spaces, i.e., the triangle
formed by these vectors does not close.

We will consider two cases: First, suppose that we are given v, w, and u
is unknown. In other words,

u = v(x + w) − (x + v)wv,

or, in terms of the world function with y = x + v, z = x + w,

uμ = − g(x, y)μ
α′σ(y, z)α.
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Figure 2. A geodesic triangle spanned by three points x, y, z.
v is the tangent at x to the geodesic from x to y; w is the
tangent at x to the geodesic from x to z; u′ is the tangent
at y to the geodesic from y to z; u is the parallel transport
of u′ from y to x along the geodesic given by v

We perform two covariant expansions (with base point x) to find

uμ ∼ − g(x, y)μ
α′

∑
n

1
n!

(w · ∇′)nσ(y, x)α

∼ −
∑
m,n

1
m!n!

[(v · ∇)m(w · ∇′)nσμ](x)

= −
∑
α ,β

1
|α|!|β|!v

αwβ [σμ
(α)(β ′)](x),

where we used (2.9).
Secondly, suppose that we are given u, v, and w is unknown. In other

words,

w =
((

(x + v) + vuwv) − x
)
,

or in terms of the world function with z = (x + v) + vuwv,

wμ = −σ(x, z)μ.

We perform two covariant expansions (first with base point y = x+v and then
with base point x) to find

wμ ∼ −
∑

n

1
n!

(u′ · ∇′)nσ(x, y)μ

∼ −
∑
m,n

1
m!n!

[(v · ∇′)m(u · ∇′)nσμ](x)

= −
∑
α ,β

1
|α|!|β|!v

αuβ [σμ
(α ′)(β ′)](x), (4.11)
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where we used (2.9).
Set

w = (u + v) + δ(u, v),

where δ(u, v) specifies the geodesic defect, i.e., the failure of u, v, w to form a
triangle due to the effects of curvature. In other words,

δ(u, v) =
((

(x + v) + vuwv) − x
)

− u − v.

Since

[σμ
(ν ′)] =

{
−δμ

ν for |ν| = 1,

0 otherwise,

we find from (4.11)

δ(u, v)μ = −
∑

m,n≥1

1
m!n!

[(v · ∇′)m(u · ∇′)nσμ] (4.12a)

= −
∑
α ,β

|α |,|β |≥1

1
|α|!|β|!u

αvβ [σμ
(α ′)(β ′)]. (4.12b)

4.4. Expansion of the Van Vleck–Morette Determinant

Following [2,3], we define the symmetric biscalar

ζ(x, y) := log Δ(x, y)
1
2 .

It satisfies the transport equation

D′ζ =
1
2
(4 − σα′

α′). (4.13)

For the remainder of this section, let u, v ∈ TzM . Using Avramidi’s
method [2,3,10,27] applied to the transport equation (4.13), it is easy to cal-
culate the covariant expansion of ζ(z, z+u) to high orders. Up to fourth order,
it is given by

ζ(z, z + u) = 1
12Rα1α2u

α1uα2 + 1
24Rα1α2;α3u

α1uα2uα3

+
(

1
360Rβ

α1γα2R
γ

α3βα4

+ 1
80Rα1α2;α3α4

)
uα1uα2uα3uα4 + · · ·

(4.14)

where all tensors here and below are evaluated at z unless otherwise indicated.
For an expansion of up to 11th order, we refer to [10]. This calculation can be
automated with the CovariantSeries package for Mathematica [27,36].

Applying a (covariant) Taylor expansion to the expansion above, we ob-
tain

ζ(z + v, z + v + vuwv)

= 1
12Rα1α2u

α1uα2 + 1
24Rα1α2;α3u

α1uα2uα3 + 1
12Rα1α2;β1u

α1uα2vβ1

+
(

1
360Rβ

α1γα2R
γ

α3βα4 + 1
80Rα1α2;α3α4

)
uα1uα2uα3uα4

+ 1
24Rα1α2;α3β1u

α1uα2uα3vβ1 + 1
12Rα1α2;β1β2u

α1uα2vβ1vβ2 + · · ·
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With the help of Synge’s rule, the coefficients of the covariant expansion
of ζ(z − u, z + u) can be obtained from those of ζ(z, z + u). A helpful fact for
this calculation is the symmetry of ζ. Among other things, it implies that only
even order coefficients are non-vanishing. We obtain, up to fourth order,

ζ(z − u, z + u) = 1
3Rα1α2u

α1uα2

+
(

2
45Rβ

α1γα2R
γ

α3βα4

+ 1
30Rα1α2;α3α4

)
uα1uα2uα3uα4 + · · ·

(4.15)

Combining the latter expansion with an additional (covariant) Taylor
expansion, we find (again up to fourth order)

ζ(z + v − vuwv, z + v + vuwv)

= 1
3Rα1α2u

α1uα2 + 1
3Rα1α2;β1u

α1uα2vβ1

+
(

2
45Rβ

α1γα2R
γ

α3βα4 + 1
30Rα1α2;α3α4

)
uα1uα2uα3uα4

+ 1
6Rα1α2;β1β2u

α1uα2vβ1vβ2 + · · ·

(4.16)

4.5. Four Geodesic Triangles

The vectors u1, u2, v1, v2, w, w̃ in the proof of Theorem 3.9 form several geo-
desic triangles, in particular, the four triangles are shown in different colors in
Fig. 1. In formulas, we have

w = −u1 + v2 + δ(−u1, v2), (4.17a)

−w = −u2 + v1 + δ(−u2, v1), (4.17b)

w̃ = u2 + v1 + δ(u2, v1), (4.17c)

w̃ = u1 + v2 + δ(u1, v2), (4.17d)

where we use the geodesic defect δ(· , ·) defined in (4.12).
Define the even and odd parts of the geodesic defect as

δ±(u, v) =
1
2
(
δ(u, v) ± δ(−u, v)

)
, u, v ∈ TzM.

Then, solving (4.17) for v1, v2, w, w̃, we find

v1 = u1 + δ−(u1, v2) − δ+(u2, v1),

v2 = u2 − δ+(u1, v2) + δ−(u2, v1),

w = −u1 + u2 − δ−(u1, v2) + δ−(u2, v1),

w̃ = u1 + u2 + δ−(u1, v2) + δ−(u2, v1).
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These equations can be solved perturbatively to obtain an expressions for
v1, v2, w and w̃ depending only on u1 and u2. Up to 5th order,

vμ
1 = uμ

1 + 1
2Rμ

α1α2α3u
α1
2 uα2

1 uα3
2

+ Rμ
α1α2α3;α4

(− 1
24uα1

1 uα2
2 uα3

1 uα4
2 + 5

24uα1
2 uα2

1 uα3
2 uα4

1

− 1
12uα1

1 uα2
2 uα3

1 uα4
1 + 1

12uα1
2 uα2

1 uα3
2 uα4

2

)
+ Rμ

α1α2α3;α4α5

(
1
24uα1

2 uα2
1 uα3

2 uα4
2 uα5

2 − 1
12uα1

1 uα2
2 uα3

1 uα4
1 uα5

2

+ 1
12uα1

2 uα2
1 uα3

2 uα4
1 uα5

1

)
+ Rμ

α1βα2R
β

α3α4α5

(
5
24uα1

2 uα2
2 uα3

2 uα4
1 uα5

2 − 1
6uα1

2 uα2
1 uα3

1 uα4
2 uα5

1

+ 1
12uα1

1 uα2
1 uα3

2 uα4
1 uα5

2

)
+ · · · (4.18)

vμ
2 = uμ

2 + 1
2Rμ

α1α2α3u
α1
1 uα2

2 uα3
1

+ Rμ
α1α2α3;α4

(− 1
24uα1

2 uα2
1 uα3

2 uα4
1 + 5

24uα1
1 uα2

2 uα3
1 uα4

2

− 1
12uα1

2 uα2
1 uα3

2 uα4
2 + 1

12uα1
1 uα2

2 uα3
1 uα4

1

)
+ Rμ

α1α2α3;α4α5

(
1
24uα1

1 uα2
2 uα3

1 uα4
1 uα5

1 − 1
12uα1

2 uα2
1 uα3

2 uα4
2 uα5

1

+ 1
12uα1

1 uα2
2 uα3

1 uα4
2 uα5

2

)
+ Rμ

α1βα2R
β

α3α4α5

(
5
24uα1

1 uα2
1 uα3

1 uα4
2 uα5

1 − 1
6uα1

1 uα2
2 uα3

2 uα4
1 uα5

2

+ 1
12uα1

2 uα2
2 uα3

1 uα4
2 uα5

1

)
+ · · · (4.19)

wμ = −uμ
1 + uμ

2 + Rμ
α1α2α3

(
1
6uα1

1 uα2
2 uα3

1 − 1
6uα1

2 uα2
1 uα3

2

)
+ Rμ

α1α2α3;α4

(− 1
6uα1

2 uα2
1 uα3

2 uα4
2 + 1

6uα1
1 uα2

2 uα3
1 uα4

1

)
+ Rμ

α1α2α3;α4α5

(− 7
120uα1

2 uα2
1 uα3

2 uα4
2 uα5

1 + 1
120uα1

1 uα2
2 uα3

1 uα4
2 uα5

2

+ 1
40uα1

1 uα2
2 uα3

1 uα4
1 uα5

1 + 7
120uα1

1 uα2
2 uα3

1 uα4
1 uα5

2

− 1
120uα1

2 uα2
1 uα3

2 uα4
1 uα5

1 − 1
40uα1

2 uα2
1 uα3

2 uα4
2 uα5

2

)
+ Rμ

α1βα2R
β

α3α4α5

(
7

360uα1
2 uα2

2 uα3
1 uα4

2 uα5
1 − 11

360uα1
2 uα2

1 uα3
2 uα4

1 uα5
2

− 11
90uα1

1 uα2
2 uα3

2 uα4
1 uα5

2 + 7
360uα1

1 uα2
1 uα3

1 uα4
2 uα5

1

− 7
360uα1

1 uα2
1 uα3

2 uα4
1 uα5

2 + 11
360uα1

1 uα2
2 uα3

1 uα4
2 uα5

1

+ 11
90uα1

2 uα2
1 uα3

1 uα4
2 uα5

1 − 7
360uα1

2 uα2
2 uα3

2 uα4
1 uα5

2

)
+ · · · (4.20)

w̃μ = uμ
1 + uμ

2 + Rμ
α1α2α3

(
1
6uα1

1 uα2
2 uα3

1 + 1
6uα1

2 uα2
1 uα3

2

)
+ Rμ

α1α2α3;α4;α5

(− 7
120uα1

2 uα2
1 uα3

2 uα4
2 uα5

1 + 1
120uα1

1 uα2
2 uα3

1 uα4
2 uα5

2

+ 1
40uα1

1 uα2
2 uα3

1 uα4
1 uα5

1 − 7
120uα1

1 uα2
2 uα3

1 uα4
1 uα5

2

+ 1
120uα1

2 uα2
1 uα3

2 uα4
1 uα5

1 + 1
40uα1

2 uα2
1 uα3

2 uα4
2 uα5

2

)
+ Rμ

α1βα2R
β

α3α4α5

(
7

360uα1
2 uα2

2 uα3
1 uα4

2 uα5
1 − 11

360uα1
2 uα2

1 uα3
2 uα4

1 uα5
2

− 11
90uα1

1 uα2
2 uα3

2 uα4
1 uα5

2 + 7
360uα1

1 uα2
1 uα3

1 uα4
2 uα5

1

+ 7
360uα1

1 uα2
1 uα3

2 uα4
1 uα5

2 − 11
360uα1

1 uα2
2 uα3

1 uα4
2 uα5

1

− 11
90uα1

2 uα2
1 uα3

1 uα4
2 uα5

1 + 7
360uα1

2 uα2
2 uα3

2 uα4
1 uα5

2

)
+ · · · (4.21)
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Note that the expansions for v1 and v2 can be obtained from one another by
exchanging u1 and u2. Moreover,

δ+(u1, v2)μ = − 1
3Rμ

α1α2α3u
α1
1 uα3

1 uα2
2

+ Rμ
α1α2α3;α4

( 1
24uα1

2 uα2
1 uα3

2 uα4
1 − 5

24uα1
1 uα2

2 uα3
1 uα4

2

)
+ Rμ

α1α2α3;α4α5

(− 1
60uα1

1 uα2
2 uα3

1 uα4
1 uα5

1 − 3
40uα1

1 uα2
2 uα3

1 uα4
2 uα5

2

+ 1
40uα1

2 uα2
1 uα3

2 uα4
1 uα5

2

)
+ Rμ

α1να2R
ν

α3α4α5

(1
6uα1

1 uα2
1 uα3

1 uα4
1 uα5

2 − 1
45uα1

1 uα2
1 uα3

1 uα4
2 uα5

1

+ 2
45uα1

1 uα2
2 uα3

2 uα4
1 uα5

2 − 1
180uα1

2 uα2
1 uα3

2 uα4
1 uα5

2

− 7
180uα1

2 uα2
2 uα3

1 uα4
2 uα5

1

)
+ · · ·

δ−(u1, v2) = 1
6Rμ

α1α2α3u
α1
2 uα2

1 uα3
2

+ Rμ
α1α2α3;α4

(− 1
12uα1

1 uα2
2 uα3

1 uα4
1 + 1

12uα1
2 uα2

1 uα3
2 uα4

2

)
+ Rμ

α1α2α3;α4α5

(− 7
120uα1

1 uα2
2 uα3

1 uα4
1 uα5

2 + 1
120uα1

2 uα2
1 uα3

2 uα4
1 uα5

1

+ 1
40uα1

2 uα2
1 uα3

2 uα4
2 uα5

2

)
+ Rμ

α1να2R
ν

α3α4α5

( 7
360uα1

1 uα2
1 uα3

2 uα4
1 uα5

2 − 41
360uα1

1 uα2
2 uα3

1 uα4
2 uα5

1

− 1
12uα1

1 uα2
2 uα3

1 uα4
1 uα5

2 + 1
6uα1

2 uα2
1 uα3

1 uα4
1 uα5

2

+ 2
45uα1

2 uα2
1 uα3

1 uα4
2 uα5

1 + 7
360uα1

2 uα2
2 uα3

2 uα4
1 uα5

2

)
+ · · ·

and δ±(u2, v1) are obtained by exchanging u1 and u2.

4.6. Expansion of the Geometric Factor

To calculate the Jacobian determinant in the proof of Theorem 3.9, we use

− 1
2 (w − w̃) = u1 + δ−(u1, v2),
1
2 (w + w̃) = u2 + δ−(u2, v1).

Therefore,

∣∣∣∣ ∂(w, w̃)
∂(u1, u2)

∣∣∣∣ = 2d

∣∣∣∣1 +
∂
(
δ−(u1, v2), δ−(u2, v1)

)
∂(u1, u2)

∣∣∣∣,

with v1 and v2 understood as functions of u1, u2.

Using the series expansion of the logarithm, it holds

det(1 + A) ∼ exp
(
−

∑
k

(− 1)k

k
tr(Ak)

)
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for a square matrix A, and thus we find (up to fourth order)∣∣∣∣ ∂(w, w̃)
∂(u1, u2)

∣∣∣∣ = 2d exp
[
Rα1α2

(
1
6uα1

1 uα2
1 + 1

6uα1
2 uα2

2

)
+ Rα1α2;α3

(
1
12uα1

1 uα2
1 uα3

1 − 1
12uα1

1 uα2
1 uα3

2

+ 1
6uα1

1 uα2
2 uα3

1 + 1
6uα1

2 uα2
1 uα3

2

− 1
12uα1

2 uα2
2 uα3

1 + 1
12uα1

2 uα2
2 uα3

2 )

+ Rα1α2;α3α4

(
1
40uα1

1 uα2
1 uα3

1 uα4
1 − 1

30uα1
1 uα2

1 uα3
2 uα4

2

+ 1
10uα1

1 uα2
2 uα3

1 uα4
2 + 1

10uα1
2 uα2

1 uα3
2 uα4

1

− 1
30uα1

2 uα2
2 uα3

1 uα4
1 + 1

40uα1
2 uα2

2 uα3
2 uα4

2

)
+ Rμα1R

μ
α2α3α4

(
1
9uα1

1 uα2
2 uα3

1 uα4
2 + 1

9uα1
2 uα2

1 uα3
2 uα4

1

)
+ Rμ

α1να2R
ν

α3μα4

(
1

180uα1
1 uα2

1 uα3
1 uα4

1 + 1
45uα1

1 uα2
1 uα3

2 uα4
2

+ 1
45uα1

1 uα2
2 uα3

1 uα4
2 + 49

180uα1
1 uα2

2 uα3
2 uα4

1

+ 1
180uα1

2 uα2
2 uα3

2 uα4
2

)
+ · · · ].

Naturally, the result is invariant under exchange of u1 and u2.
Next we calculate

Δ(z − w, z + w̃)
1
2 = Δ(z + v2 − vu1wv2 , z + v2 + vu1wv2)

1
2

= exp
[
1
3Rα1α2u

α1
1 uα2

1 + 1
3Rα1α2;α3u

α1
1 uα2

1 uα3
2

+
(

2
45Rμ

α1να2R
ν

α3μα4 + 1
30Rα1α2;α3α4

)
uα1
1 uα2

1 uα3
1 uα4

1

+ 1
6Rα1α2;α3α4u

α1
1 uα2

1 uα3
2 uα4

2 + · · · ],
Δ(z + w, z + w̃)

1
2 = Δ(z + v1 − vu2wv1 , z + v1 + vu2wv1)

1
2

= exp
[
1
3Rα1α2u

α1
2 uα2

2 + 1
3Rα1α2;α3u

α1
2 uα2

2 uα3
1

+
(

2
45Rμ

α1να2R
ν

α3μα4 + 1
30Rα1α2;α3α4

)
uα1
2 uα2

2 uα3
2 uα4

2

+ 1
6Rα1α2;α3α4u

α1
2 uα2

2 uα3
1 uα4

1 + · · · ],
Δ(z − w, z + w)−

1
2 = exp

[− 1
3Rα1α2(u

α1
1 − uα1

2 )(uα2
1 − uα2

2 )

− (
2
45Rμ

α1να2R
ν

α3μα4 + 1
30Rα1α2;α3α4

)
× (uα1

1 − uα1
2 )(uα2

1 − uα2
2 )(uα3

1 − uα3
2 )(uα4

1 − uα4
2 )

+ 1
9Rμα1R

μ
α2α3α4(u

α1
1 − uα1

2 )(uα2
1 uα3

2 uα4
1 − uα2

2 uα3
1 uα4

2 )
]
,

Δ(z, z + w̃)−1 = exp
[− 1

6Rα1α2(u
α1
1 + uα1

2 )(uα2
1 + uα2

2 )

− 1
12Rα1α2;α3(u

α1
1 + uα1

2 )(uα2
1 + uα2

2 )(uα3
1 + uα3

2 )

− (
1

180Rμ
α1να2R

ν
α3μα4 + 1

40Rα1α2;α3α4

)
× (uα1

1 + uα1
2 )(uα2

1 + uα2
2 )(uα3

1 + uα3
2 )(uα4

1 + uα4
2 )

− 1
18Rμα1R

μ
α1α2α3(u

α1
1 + uα1

2 )(uα2
1 uα3

2 uα4
1 + uα2

2 uα3
1 uα4

2 )
]
.

where we used (4.14), (4.15) and (4.16) together with (4.18), (4.19), (4.20)
and (4.21).
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All together, we obtain

Λ(z, u1, u2) = 2−d

∣∣∣∣ ∂(w, w̃)
∂(u1, u2)

∣∣∣∣ Δ(z − w, z + w̃)
1
2 Δ(z + w, z + w̃)

1
2

Δ(z − w, z + w)
1
2 Δ(z, z + w̃)

= exp
[
1
3Rα1α2u

α1
1 uα2

2 + Rα1α2;α3

(
1
6uα1

1 uα2
1 uα3

2 + 1
6uα1

2 uα2
2 uα3

1

)
+ Rα1α2;α3α4

(
1

120uα1
1 uα2

1 uα3
1 uα4

2 + 1
120uα1

1 uα2
1 uα3

2 uα4
1

+ 1
60uα1

1 uα2
2 uα3

1 uα4
1 − 1

60uα1
1 uα2

2 uα3
2 uα4

1

− 1
60uα1

1 uα2
2 uα3

1 uα4
2 + 3

40uα1
1 uα2

1 uα3
2 uα4

2

+ 3
40uα1

2 uα2
2 uα3

1 uα4
1 + 1

120uα1
2 uα2

2 uα3
2 uα4

1

+ 1
120uα1

2 uα2
2 uα3

1 uα4
2 + 1

60uα1
1 uα2

2 uα3
2 uα4

2

)
+ Rμα1R

μ
α2α3α4

(
1
18uα1

1 uα2
1 uα3

2 uα4
1 − 1

18uα1
1 uα2

2 uα3
1 uα4

2

− 1
18uα1

2 uα2
1 uα3

2 uα4
1 + 1

18uα1
2 uα2

2 uα3
1 uα4

2

)
+ Rμ

α1να2R
ν

α4μα3

(
7
45uα1

2 uα2
1 uα3

1 uα4
1 − 7

90uα1
1 uα2

2 uα3
2 uα4

1

+ 31
180uα1

1 uα2
2 uα3

1 uα4
2 − 7

90uα1
1 uα2

1 uα3
2 uα4

2

+ 7
45uα1

1 uα2
2 uα3

2 uα4
2

)
+ · · · ].

4.7. Expansions of the Remaining Factors

Inserting in e2i(w+u1−u2)·p the expansion of w in terms of u1 and u2, as given
by (4.20), we obtain

e2i(w+u1−u2)·p = exp
[
ipμ

(
Rμ

α1α2α3

(
1
3uα1

1 uα2
2 uα3

1 − 1
3uα1

2 uα2
1 uα3

2

)
+Rμ

α1α2α3;α4

(− 1
3uα1

2 uα2
1 uα3

2 uα4
2 + 1

3uα1
1 uα2

2 uα3
1 uα4

1

)
+Rμ

α1α2α3;α4α5

(− 7
60uα1

2 uα2
1 uα3

2 uα4
2 uα5

1 + 1
60uα1

1 uα2
2 uα3

1 uα4
2 uα5

2

+ 1
20uα1

1 uα2
2 uα3

1 uα4
1 uα5

1 + 7
60uα1

1 uα2
2 uα3

1 uα4
1 uα5

2

− 1
60uα1

2 uα2
1 uα3

2 uα4
1 uα5

1 − 1
20uα1

2 uα2
1 uα3

2 uα4
2 uα5

2

)
+Rμ

α1βα2R
β

α3α4α5

(
7

180uα1
2 uα2

2 uα3
1 uα4

2 uα5
1 − 11

180uα1
2 uα2

1 uα3
2 uα4

1 uα5
2

− 11
45uα1

1 uα2
2 uα3

2 uα4
1 uα5

2 + 7
180uα1

1 uα2
1 uα3

1 uα4
2 uα5

1

− 7
180uα1

1 uα2
1 uα3

2 uα4
1 uα5

2 + 11
180uα1

1 uα2
2 uα3

1 uα4
2 uα5

1

+ 11
45uα1

2 uα2
1 uα3

1 uα4
2 uα5

1 − 7
180uα1

2 uα2
2 uα3

2 uα4
1 uα5

2

)
+ · · ·

)]

Expanding a(z + v1, vpwv1
) and b(z + v2, vpwv2

) around z (using the hor-
izontal derivative, see (4.10)), and replacing v1 resp. v2 by their expansions
with respect to u1 and u2, as given by (4.18) and (4.19), we obtain

a(z + v1, vpwv1
) =

(
a + a;αuα

1 + 1
2
a;α1α2u

α1
1 uα2

1 + 1
6
a;α1α2α3u

α1
1 uα2

1 uα3
1

+ 1
24

a;α1α2α3α4u
α1
1 uα2

1 uα3
1 uα4

1 + · · · )
+ Rβ

α1α2α3

(
1
2
a;βuα1

2 uα2
1 uα3

2 + 1
2
a;βα4u

α1
2 uα2

1 uα3
2 uα4

1 + · · · )
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+ Rβ
α1α2α3;α4

(
a;β

(
1
12

uα1
2 uα2

1 uα3
2 uα4

2 − 1
24

uα1
1 uα2

2 uα3
1 uα4

2

+ 5
24

uα1
2 uα2

1 uα3
2 uα4

1 − 1
12

uα1
1 uα2

2 uα3
1 uα4

1

)
+ · · ·

)
+ · · ·

b(z + v2, vpwv2
) =

(
b + b;αuα

2 + 1
2
b;α1α2u

α1
2 uα2

2 + 1
6
b;α1α2α3u

α1
2 uα2

2 uα3
2

+ 1
24

b;α1α2α3α4u
α1
2 uα2

2 uα3
2 uα4

2 + · · · )
+ Rβ

α1α2α3

(
1
2
b;βuα1

1 uα2
2 uα3

1 + 1
2
b;βα4u

α1
1 uα2

2 uα3
1 uα4

2 + · · · )

+ Rβ
α1α2α3;α4

(
b;β

(
1
12

uα1
1 uα2

2 uα3
1 uα4

1 − 1
24

uα1
2 uα2

1 uα3
2 uα4

1

+ 5
24

uα1
1 uα2

2 uα3
1 uα4

2 − 1
12

uα1
2 uα2

1 uα3
2 uα4

2

)
+ · · ·

)
+ · · ·

where we recall that a;α, b;α etc. denote the horizontal derivatives of the sym-
bols a and b.
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