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Introduction.

Heun class equations is an important class of linear differential equations.

Painlevé equations is a celebrated class of well-behaved non-linear differ-

ential equations.

I will discuss a unified derivation of various types of Painlevé quations

from various types of Heun class equations. My talk is based on

J. Dereziński, A. Ishkhanyan, A. Latosiński “From Heun class equations to

Painlevé equations”, SIGMA 17 (2021), 056.

Inspired by

S. Y. Slavyanov, W. Lay, “Special Functions. A Unified Theory Based on

Singularities”; Oxford, 2000,

Y. Ohyama, S. Okumura, “A coalescent diagram of the Painlevé equations

from the viewpoint of isomonodromic deformations”, J. Phys. A 39 (2006).



The Heun class and Painlevé equations, just as many other classes of

equations are divided into several types. Among these types one is generic

(the standard Heun and the VI Painlevé), and other types are obtained by

confluence.

It is known that each type of Painlevé can be derived from one of the

types of Heun class. In the literature, this derivation is described separately

for each type. I will present a derivation which to a large extent is unified.

Such a unified derivation has obvious advantages from the pedagogical

point of view. It also automatically describes the coalescence of various

types.



The idea to present classes of special functions in a unified way is bor-

rowed from a well-known book by Nikiforov–Uvarov on hypergeometric class

equations. It is especially successful in the description of hypergeometric

polynomials, which comprise all classical orthogonal polynomials (Hermite,

Laguerre and Jacobi). In the next two slides I sketch the theory of hy-

pergeometric polynomials, to illustrate how a unified treatment of a class

consisting of several types can work. (These slides are beside the main topic

of my talk).



Unified theory of hypergeometric polynomials (following Nikiforov-Uvarov).

Fix polynomials σ, κ such that deg σ ≤ 2, deg κ ≤ 1. Let ρ be the

weight solving

σ(z)∂zρ(z) = κ(z)ρ(z). (∗)

More generally, for δ ∈ C set κδ := κ + δσ′(z) and ρδ(z) = ρ(z)σ(z)δ,

which also solves (∗). Then we have

Rodriguez formula P δ
n(z) :=

1

n!
ρδ(z)

−1∂nz σ
n(z)ρδ(z);

generating function
ρδ(z + tσ(z))

ρδ(z)
=

∞∑
n=0

tnP δ−n
n (z);

differential eq.
(
σ(z)∂2z + (σ′(z) + κδ(z))∂z−n(n + 1)

σ′′

2
− nκ′δ

)
P δ
n(z) = 0;

lowering ∂zP
δ−1
n+1(z) =

(
n
σ′′

2
+ κ′δ

)
P δ
n(z);

raising
(
σ(z)∂z + κδ(z)

)
P δ
n(z) = (n + 1)P δ−1

n+1(z);



orthogonality
∫ b

a

P δ
m(x)P

δ
k (x)ρδ(x)dx

= δmk

(
− κ′δ − (m + 1)σ

′′

2

)
. . .
(
− κ′δ − 2mσ′′

2

)
m!

∫ b

a

σm(x)ρδ(z)dx,

where σ(a)ρδ(a) = 0, for −∞ < a;

lim
x→∞

σ(x)ρδ(x)x
n = 0, for −∞ = a; similarly for b.

Hermite: σ(z) = 1, κ(z) = −2z, ρ(z) = e−z
2
, ]a, b[=]−∞,∞[;

Laguerre: σ(z) = z, κ(z) = α− z, ρ(z) = e−zzα, ]a, b[=]0,∞[;

Bessel: σ(z) = z2, κ(z) = −1 + θz, ρ(z) = e−z
−1
zθ, no orthogonality;

Jacobi: σ(z) = 1− z2, κ(z) = α(1− z) + β(1 + z),

ρ(z) = (1− z)α(1 + z)β, ]a, b[=]− 1, 1[.



Sigularities of 2nd order differential equations (following Slavyanov-Lay).

Consider
(
∂2z + p(z)∂z + q(z)

)
u(z) = 0. (∗∗)

Suppose that z0 ∈ C is a singularity of p or q:

p(z) =

∞∑
k=−m

pk(z − z0)k, p−m 6= 0;

q(z) =

∞∑
k=−`

qk(z − z0)k, q−` 6= 0.

We say that z0 is Fuchsian or regular-singular if m ≤ 1 and ` ≤ 2. Other-

wise, we define the rank of the singularity z0

rk(z0) :=max
{
m,

`

2

}
,

which is an integer or half-integer: Trasforming z → 1
z we obtain the

corresponding definitions for a singularity at ∞.



Consider a singularity at z0 = 0. As we learn in standard courses, if 0 is

Fuchsian, generically solutions of (∗∗) can be written as a convergent series

zρ
∞∑
j=0

ujz
j.

Let the rank at 0 be m. If m is an integer > 1, we can find formal solutions

in the form of a (usually divergent) series

exp
(w−m+1

m− 1
z−m+1 + · · · + w−1z

−1
)
zw0

∞∑
j=0

ujz
j.

If m is a half-integer > 1
2, we also have similar formal solutions, where the

sums go in steps of 1
2:

exp
(w−m+1

m− 1
z−m+1 + · · · + w−1

2
z−

1
2

)
zw0

∞∑
j=0

ujz
j.

These series are often asymptotic to true solutions.



(∗∗) has type (m1 . . .mn;mn+1) if its finite singular points have rank

m1, . . . ,mn and ∞ has rank mn+1. 1 will denote a Fuchsian singularity.

Example: The Riemann equations is the 2nd order equation with 3 Fuch-

sian singular points. One of them can be put at ∞:(
∂2z +

2∑
j=1

aj
z − zj

∂z +

2∑
j=1

bj
z − zj

+

2∑
j=1

cj
(z − zj)2

)
u(z) = 0, (∗ ∗ ∗)

where b1 + b2 = 0 and z1, z2 are distinct points in C. Its symbol is (11; 1).

We multiply (∗ ∗ ∗) by σ(z) := (z − z1)(z − z2) obtaining(
σ(z)∂2z + τ (z)∂z + η(z)

)
u(z) = 0, (4)

where τ (z) is a polynomial of degree ≤ 1 and σ(z)η(z) of degree ≤ 2.

More generally, Riemann class equations is the class containing the Rie-

mann equations and its confluent cases. They have the form (4) with

deg σ ≤ 2, deg τ ≤ 1 and deg ση ≤ 2.



In the following table we give the classification of Riemann class equations

according to the ranks of their singularities:

2F1 hypergeometric (11; 1) z(1− z)∂2z +
(
c− (a + b + 1)z

)
∂z − ab;

2F0 confluent (2; 1) z2∂2z +
(
− 1 + (a + b + 1)z

)
∂z + ab;

1F1 confluent (1; 2) z∂2z + (c− z)∂z − a;

0F1 Bessel (1; 32) z∂2z + c∂z − 1;

Hermite (; 3) ∂2z − 2z∂z − 2a;

Airy (; 52) ∂2z + z;

Euler (1; 1) z∂2z + c∂z;

1d Helmholtz (; 2) ∂2z + 1;

1d Laplace (; 1) ∂2z .

As we see, this table consists of the most useful equations of mathematical

physics.



The Heun equation is the 2nd order equation with 4 Fuchsian singular

points, one of them put at ∞:(
∂2z +

3∑
j=1

aj
z − zj

∂z +

3∑
j=1

bj
z − zj

+

n∑
j=1

cj
(z − zj)2

)
u(z) = 0,

where
∑3

j=1 bj = 0 and z1, z2, z3 are distinct points in C. We multiply this

by σ(z) := (z − z1)(z − z2)(z − z3) obtaining(
σ(z)∂2z + τ (z)∂z + η(z)

)
u(z) = 0,

where τ (z) is a polynomial of degree ≤ 2

and σ(z)η(z) of degree ≤ 4.



Equations are Heun class if they are obtained by confluence from the Heun

equation. They have the form(
σ(z)∂2z + τ (z)∂z + η(z)

)
u(z) = 0,

where deg σ ≤ 3, deg τ ≤ 2 and deg ση ≤ 4.

If σ has three distinct roots at z1, z2, z3, they are standard Heun equations

from the previous slide.

Heun class equations have many applications in physics: anharmonic os-

cillator, Laplace equation in various coordinates, wave equation on the Kerr

black hole, etc.



From 10 types of Heun class to 10 types of Painlevé.

(following Ohyama, Okumura)

The Painlevé equations is a famous class of nonlinear Hamiltonian differ-

ential equations with the so called Painlevé property–the absence of moving

essential and branch singularities in its solutions. Traditionally, Painlevé

equations are divided into 6 types, called Painlevé I, II, III, IV, V and VI. It

is actually natural to subdivide some of them into smaller types, obtaining

altogether 10 types.

The method of isomonodromic deformations allows us to derive Painlevé

equations from linear equations. There are several approaches. The ap-

proach that we use starts from 2nd order scalar equations. There is an

alternative approach involving 1st order systems of equations.



The first step of the derivation that we describe is a choice of a family of

Heun class equations(
σ(z)∂2z + τ (z)∂z + η(z)

)
u(z) = 0,

where σ, τ, η depend on a parameter denoted t and called the time. Then

we consider the corresponding deformed Heun class equation which depends

on two additional variables, λ, µ:(
σ(z)∂2z +

(
τ (z)− σ(z)

z − λ

)
∂z

+ η(z)− η(λ)− µ2σ(λ)− µ
(
τ (λ)− σ′(λ)

)
+
µσ(λ)

z − λ

)
v(z) = 0.

All finite singularities of the deformed equation are the same as in the original

equation except for one additional non-logarithmic singularity (also called

an apparent singularity). λ is the position of this singularity and µ = v′(λ)
v(λ) .



We assume that there exists a family of solutions v(z, t) of the deformed

equation satisfying the conditions of constant monodromy

∂tv(z, t) = a(z, t)∂zv(z, t) + b(z, t)v(z, t),

for some a ,b. These conditions lead to a set of nonlinear differential equa-

tion for λ, µ in terms of t, which can be interpreted as Hamilton equations

generated by certain Painlevé Hamiltonians H(t, λ, µ), that is

∂tλ = ∂µH(t, λ, µ),

∂tµ = −∂λH(t, λ, µ).

H(t, λ, µ) has always the form

H = a(t, λ)µ2 + b(t, λ)µ + c(t, λ).

The above Hamilton equations transformed to 2nd order equations for λ

are the usual presentations of Painlevé equations.



Here is the list of notrivial types of Heun class equations and the corre-

sponding types of Painleveé equations:

(1111) (standard) Heun Painlevé VI

(112) confluent Heun Painlevé nondegenerate V

(1132) degenerate confluent Heun Painlevé degenerate V (' ndeg III’)

(22) doubly confluent Heun Painlevé nondegenerate III’

(322) degenerate doubly confluent Heun Painlevé degenerate III’

(32
3
2) doubly degenerate doubly confluent Heun Painlevé doubly degenerate III’

(13) bi-confluent Heun Painlevé IV

(152) degenerate bi-confluent Heun Painlevé 34 (' II)

(4) tri-confluent Heun Painlevé II

(72) degenerate tri-confluent Heun Painlevé I .



The rank can be an integer or a half-integer. We also introduce the

rounded rank: if the rank is m or m − 1
2, where m is an integer, then we

say that its rounded rank is m. We denote this by the symbol m.

Using the rounded rank we can obtain a coarser classification:

(1111) (standard) Heun Painlevé VI

(112) confluent Heun Painlevé V

(22) doubly confluent Heun Painlevé III’

(13) bi-confluent Heun Painlevé IV-34

(4) tri-confluent Heun Painlevé II-I

The derivation of Painlevé VI from Heun (111; 1) by this method can be

traced back to a paper by Fuchs from the early 20th century. This approach

was later generalized to other Painlevé equations by Okamoto and refined

by Ohyama-Okumura and Slavyanov-Lay.



From Heun (111;1) to Painlevé VI

z(z − 1)(z − t)∂2z
+
(
(1− κ0)(z − 1)(z − t) + (1− κ1)z(z − t) + (1− κt)z(z − 1)

)
∂z

+

(
(κ0 + κ1 + κt − 1)2 − κ2∞

)
z

4

a(z) =
(λ− t)z(z − 1)

t(t− 1)(z − λ)
, b(z) = −λ(λ− 1)(λ− t)µ

t(t− 1)(z − λ)
.

t(t− 1)H =λ(λ− 1)(λ− t)µ2

−
(
κ0(λ− 1)(λ− t) + κ1λ(λ− t) + (κt − 1)λ(λ− 1)

)
µ

+

(
(κ0 + κ1 + κt − 1)2 − κ2∞

)
(λ− t)

4
.



From Heun (21;1) to Painlevé V

z(z − 1)2∂2z +
(
(2− χ1)z(z − 1) + (1− κ0)(z − 1)2 + tz

)
∂z

+

(
(κ0 + χ1 − 1)2 − κ2∞

)
4

(z − 1).

a(z) =
(λ− 1)z(z − 1)

t(z − λ)
, b(z) = −(λ− 1)2λµ

t(z − λ)
.

tH =(λ− 1)2λµ2 −
(
κ0(λ− 1)2 + (χ1 − 1)λ(λ− 1)− tλ

)
µ

+

(
(κ0 + χ1 − 1)2 − κ2∞

)
(λ− 1)

4
.



From Heun (321;1) to degenerate Painlevé V

(z − 1)2z∂2z +
(
(z − 1)z + (1− κ0)(z − 1)2

)
∂z

− t

(z − 1)
+
(κ20 − κ2∞)

4
(z − 1)

a(z) =
(λ− 1)z(z − 1)

t(z − λ)
, b(z) = −λ(λ− 1)2µ

t(z − λ)
.

tH =λ(λ− 1)2µ2 − κ0(λ− 1)2µ +
(κ20 − κ2∞)(λ− 1)

4
− tλ

(λ− 1)
.



From Heun (2;2) to non-degenerate Painlevé III’

z2∂2z +
(
t + (2− χ0)z − z2

)
∂z +

(χ0 + χ∞ − 1)z

2

a(z) :=
λz

t(z − λ)
, b(z) = − λ2µ

t(z − λ)
.

tH := λ2µ2 −
(
λ2 + (χ0 − 1)λ− t

)
µ +

1

2
(χ0 + χ∞ − 1)λ



From Heun (2; 32) to degenerate Painlevé III’

z2∂2z + (t + (2− χ0)z) ∂z +
1

2
z.

a(z) :=
λz

t(z − λ)
, b(z) = − λ2µ

t(z − λ)
.

tH = λ2µ2 +
(
1− χ0)λ + t

)
µ +

λ

2
.

From Heun (32;
3
2) to doubly degenerate Painlevé III’

z2∂2z + 2z∂z +
1

2
z +

t

2z
.

a(z) :=
λz

t(z − λ)
, b(z) = − λ2µ

t(z − λ)
.

tH = λ2µ2 + λµ +
λ

2
+

t

2λ



From Heun (1;3) to Painlevé IV

z∂2z +
(
1− κ0 − tz −

z2

2

)
∂z +

θ∞
2
z.

a(z) :=
2z

(z − λ)
, b(z) = − 2λµ

(z − λ)
.

H = 2λµ2 − (λ2 + 2tλ + 2κ0)µ + θ∞λ.

From Heun (1;52) to Painlevé 34

z∂2z + (1− κ0)∂z −
1

2
z2 − tz

2
.

a(z) =
z

z − λ
, b(z) = − λµ

z − λ
.

H =λµ2 − κ0µ−
λ2

2
− tλ

2
.



From Heun (;4) to Painlevé II

∂2z − (2z2 + t)∂z − (2α + 1)z.

a(z) :=
1

2(z − λ)
, b(z) = − µ

2(z − λ)
.

H =
1

2
µ2 −

(
λ2 +

t

2

)
µ−

(
α +

1

2

)
λ.

From Heun (;72) to Painlevé I

∂2z − 4z3 − 2tz.

a(z) :=
1

2(z − λ)
, b(z) = − µ

2(z − λ)
.

H =
1

2
µ2 − 2λ3 − tλ.



From Heun class to Painlevé — an attempt of a unified treatment

(following D., Ishkhanyan, Latosiński).

Recall that the starting point of the derivation of Painlevé equations is

the choice of a time-dependent family of Heun class equations:(
σ(z, t)∂2z + τ (z, t)∂z + η(z, t)

)
u(z) = 0,

where where deg σ ≤ 3, deg τ ≤ 2 and deg ση ≤ 4. Then we need to find

the compatibility functions a, b. From them we can compute the Painlevé

Hamiltonian H(t, λ, µ).

We will try to describe this derivation in a way which is as unified as

possible, using two similar ansatzes, called Case A and Case B. Together

they cover all normal forms of Heun class and Painlevé.



In Case A among other conditions we need to assume that σ(s) = 0 for

some s = s(t), so that we can write σ(z) = (z − s)ρ(z). Then for some

t 7→ m(t)

H = m(t)
(
(λ− s)ρ(λ)µ2 +

(
τ (λ, t)− (λ− s)ρ′(λ)

)
µ + η(λ, t)

)
.

In Case B among other things we suppose that deg σ ≤ 2. Then for some

t 7→ m(t)

H = m(t)
(
σ(λ)µ2 +

(
τ (λ, t)− σ′(λ)

)
µ + η(λ, t)

)
.

The resulting Painlevé Hamiltonians are proportional to appropriately in-

terpreted symbols of the Heun class operator:

(z − s)∂zρ(z)∂z +
(
τ (z, t)− (z − s)ρ′(z)

)
∂z + η(z, t), Case A;

∂zσ(z)∂z +
(
τ (z, t)− σ′(z)

)
∂z + η(z, t), Case B.

(Replace z and ∂z with λ, resp. µ).



Cases A and B need to be subdivided further into subcases.

Case A is subdivided into A1, Ap and Aq.

Case B is subdivided into Bp and Bq.

They differ by the choice of the time variable t.

• A1. The variable t is the position of one of Fuchsian singularities.

• Ap, Bp. The variable t is contained in τ (z).

• Aq, Bq. The variable t is contained in η(z).

Note that Subcase A1 works generically. In particular it works for the

standard Heun type (1111), leading to Painlevé VI. However, it does not

work for some other types. For instance, in most of the degenerate types

one needs to use either Subcase Aq or Subcase Bq.



In the following list we informally describe when we can apply various

subcases.

A1. σ(t) = 0, σ′(t) 6= 0, deg(z − t)η ≤ 2.

Ap. σ(0) = σ′(0) = 0, τ (0) 6= 0, ση(0) = (ση)′(0) = 0.

Aq. σ(0) = σ′(0) = 0, τ (0) = 0, ση(0) = 0, (ση)′(0) 6= 0.

Bp. deg σ ≤ 2, deg τ = 2, deg ση ≤ 2.

Bq. deg σ ≤ 2, deg τ ≤ 1, deg ση = 3.

One can derive Ap and Aq from Bp and Bq assuming σ(0) = 0 and

making the change of variables z 7→ 1
z , λ→

1
λ, µ→ −λ

2µ.



Subcase A1.

deg ρ ≤ 2, deg φ, deg η0 ≤ 1, κ, α ∈ C;

(z − t)ρ(z)∂2z

+
(
(1− κ)ρ(z) + φ(z)(z − t)

)
∂z +

αρ(t)

z − t
+ η0(z),

ρ(t)H :=(λ− t)ρ(λ)µ2

+
(
(1− κ)ρ(λ) + (φ(λ)− ρ′(λ))(λ− t)

)
µ +

αρ(t)

λ− t
+ η0(λ).



Subcase Ap. deg ρ1 ≤ 1, deg τ0, degψ ≤ 2;

z2ρ1(z)∂
2
z +
(
tρ1(z) + τ0(z)

)
∂z +

ψ(z)

ρ1(z)
;(

τ0(0) + tρ1(0)
)
H := λ2ρ1(λ)µ

2

+
(
tρ1(λ) + τ0(λ)− ρ′1λ2 − ρ1(λ)λ

)
µ +

ψ(λ)

ρ1(λ)
.

Subcase Aq. deg ρ1, deg φ ≤ 1, degψ0 ≤ 2;

z2ρ1(z)∂
2
z + zφ(z)∂z +

t

z
+
ψ0(z)

ρ1(z)
;(

(ση0)
′(0) + ρ1(0)t

)
H := λ2ρ1(λ)µ

2

+
(
λ(φ(λ)− ρ1(λ))− ρ′1λ2

)
µ +

t

λ
+
ψ0(λ)

ρ1(λ)
.



Subcase Bp.

deg σ ≤ 2, deg τ0 ≤ 2, degψ ≤ 2;

σ(z)∂2z +
(
tσ(z) + τ0(z)

)
∂z +

ψ(z)

σ(z)
;

(
t
σ′′

2
+
τ ′′0
2

)
H := σ(λ)µ2 +

(
tσ(λ) + τ0(λ)− σ′(λ)

)
µ +

ψ(λ)

σ(λ)
.

Subcase Bq.

deg σ ≤ 2, deg τ ≤ 1, degψ0 ≤ 3;

σ(z)∂2z + τ (z)∂z + tz +
ψ0(z)

σ(z)
;

(
t
σ′′

2
+
(ση0)

′′′

6

)
H := σ(λ)µ2 +

(
τ (λ)− σ′(λ)

)
µ + tλ +

ψ0(λ)

σ(λ)
.
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