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Let Uτ be the group of dilations on L2[0,∞[, that is (Uτf)(x) = eτ/2f(eτx). We say that A is

homogeneous of degree ν if UτAU−1
τ = e−ντA.

Consider the differential expression

−∂2
x + cx−2 (1)

on C∞c ]0,∞[. Clearly (1) is homogeneous of degree −2.

(1) is essentially self-adjoint on C∞c ]0,∞[ for c ≥ 3
4 and not essentially self-adjoint for c < 3

4.



Theorem 1 1. There is a unique holomorphic family {Hm}Rem>−1 such that Hm coincides with

the the closure of −∂2
x +

(
m2 − 1

4

)
x−2 if m ≥ 1.

2. For each m with Rem > −1, the operators Hm are homogeneous of degree −2 and satisfy

H∗m = Hm, the spectrum of Hm is absolutely continuous and is equal to [0,∞[.

3. Hm is self-adjoint if m is real.

4. If 0 ≤ m < 1, the operator Hm is the Friedrichs extension of −∂2
x +

(
m2 − 1

4

)
x−2.

5. If −1 < m ≤ 0, the operator Hm is the Krein extension of −∂2
x +

(
m2 − 1

4

)
x−2.



The operators Hm are interesting for many reasons.

• They have several interesting physical applications, eg. they appear in the decomposition of

the Aharonov-Bohm Hamiltonian.

• They have rather subtle and rich properties, illustrating various concepts of the operator theory

in Hilbert spaces (eg. the Friedrichs and Krein extensions, holomorphic families of closed

operators).

• Surprisingly rich is also the theory of the first order homogeneous operators Aα = i∂x + iαx ,

which is closely related to the theory of Hm.

• Essentially all basic objects related to Hm, such as their resolvents, spectral projections, wave

and scattering operators, can be explicitly computed.

• A number of nontrivial identities involving special functions, especially the Bessel functions,

find an appealing operator-theoretical interpretation in terms of the operators Hm. Eg. the

Barnes identity leads to the formula for wave operators.



For each complex number α let Ãα be the differential expression

Ãα := −i∂x + i
α

x

acting on distributions on R+. Its restriction to C∞c ]0,∞[ is a closable operator in L2[0,∞[ whose

closure will be denoted Amin
α . This is the minimal operator associated to Ãα. The maximal operator

Amax
α associated to Ãα is defined as the restriction of Ãα to D(Amax

α ) := {f ∈ L2[0,∞[ | Ãαf ∈
L2[0,∞[}.

The following properties of the operators Amin
α and Amax

α are easy to check:

(i) Amin
α ⊂ Amax

α ,

(ii) (Amin
α )∗ = Amax

−α and (Amax
α )∗ = Amin

−α ,

(iii) Amin
α and Amax

α are homogeneous of degree −1.



Proposition 2 1. We have Amin
α = Amax

α if and only if |Reα| ≥ 1/2.

2. Let Reα > −1/2. Then

(i) rs (Amax
α ) = C−.

(ii) The map α 7→ Amax
α is holomorphic in the region Reα > −1/2.

(iii) If Reα ≥ 0 then iAmax
α is the generator of a C0-semigroup of contractions

3. Let Reα < 1/2. Then

(i) rs (Amin
α ) = C+.

(ii) The map α 7→ Amin
α is holomorphic in the region Reα < 1/2.

(iii) if Reα ≤ 0 the operator −iAmin
α is the generator of a C0-semigroup of contractions



For an arbitrary complex number m we introduce the differential expression

L̃m := −∂2
x +

m2 − 1/4

x2

acting on distributions on R+. Note that L̃m = L̃−m. We will however see that m, not m2, is the

natural parameter.

Let Lmin
m and Lmax

m be the minimal and maximal operators associated to it in L2(0,∞). It is clear

that they are homogeneous operators of degree −2 and

(Lmin
m )∗ = Lmax

m .



If m is a complex number we set

ζm(x) = x1/2+m.

Note that ζ±m are both square integrable at the origin if and only if |Rem| < 1.

We also choose ξ ∈ C∞(R+) such that ξ = 1 on [0, 1] and 0 on [2,∞[.

For Re (m) > −1, we define Hm to be the operator Lmax
m restricted to D(Lmin

m ) + Cξζm.



Theorem 3 For any Re (m) > −1 we have sp (Hm) = [0,∞[. If Rm(λ;x, y) is the integral kernel of

the operator (λ−Hm)−1, then for Re k > 0 we have

Rm(−k2;x, y) =

{ √
xyIm(kx)Km(ky) if x < y,
√
xyIm(ky)Km(kx) if x > y.

,

where Im is the modified Bessel function and Km is the MacDonald function.



Theorem 4 Let m > −1. Then the operators Hm are positive, self-adjoint, homogeneous of

degree 2 with spHm = [0,∞[. Besides we have the following table:

m ≥ 1: Hm = A∗1/2+mA1/2+m = A∗1/2−mA1/2−m, H1
0 = Q(Hm),

Hm = Lmin
m = Lmax

m ;

0 < m < 1: Hm = A∗1/2+mA1/2+m =
(
Amin

1/2−m

)∗
Amin

1/2−m H1
0 = Q(Hm),

Hm is the Friedrichs ext. of Lmin
m ;

m = 0: H0 = A∗1/2A1/2, H1
0 + cξζ0 dense in Q(H0),

H0 is the Friedrichs and Krein ext. of Lmin
0 ;

−1 < m < 0: Hm =
(
Amax

1/2+m

)∗
Amax

1/2+m, H1
0 + cξζm = Q(Hm),

Hm is the Krein ext. of Lmin
m .

In the region −1 < m < 1 (which is the most interesting one), it is quite remarkable that for strictly

positive m one can factorize Hm in two different ways, whereas for m ≤ 0 only one factorization

appears.



As an example, let us consider the case of the Laplacian −∂2
x, i.e. m2 = 1/4. The operators H1/2

and H−1/2 coincide with the Dirichlet and Neumann Laplacian respectively. One usually factorizes

them as H1/2 = P ∗minPmin and H−1/2 = P ∗maxPmax, where Pmin and Pmax denote the usual momentum

operator on the half-line with domainH1
0[0,∞[ and H1[0,∞[ respectively. The above analysis says

that, whereas for the Neumann Laplacian this is the only factorization of the form S∗S with S

homogeneous, in the case of the Dirichlet Laplacian one can also factorize it in the rather unusual

following way

H1/2 =
(
Pmin + ix−1

)∗ (
Pmin + ix−1

)
.



Proposition 5 The family Hm has the following property:

0 ≤ m ≤ m′ ⇒ Hm ≤ Hm′,

0 ≤ m < 1 ⇒ H−m ≤ Hm.

Proposition 6 Let m 6= 0.

i) If 0 ≤ argm ≤ π/2, then Num (Hm) = {z | 0 ≤ arg z ≤ 2 argm}. Hence Hm is maximal sectorial

and iHm is dissipative.

ii) If −π/2 ≤ argm ≤ 0, then Num (Hm) = {z | 2 argm ≤ arg z ≤ 0}. Hence Hm is maximal

sectorial and −iHm is dissipative.

iii) If | argm| ≤ π/4, then −Hm is dissipative.

iv) If π/2 < | argm| < π, then Num (Hm) = C.



Proposition 7 For 0 < a < b <∞, the integral kernel of 1l[a,b](Hm) is

1l[a,b](Hm)(x, y) =

∫ √b
√
a

√
xyJm(kx)Jm(ky)kdk,

where Jm is the Bessel function.

Let Fm be the operator on L2(0,∞) given by

Fm : f(x) 7→
∫ ∞

0

Jm(kx)
√
kxf(x)dx (2)

Up to an inessential factor, Fm is the so-called Hankel transformation.

Theorem 8 Fm is a unitary involution on L2(0,∞) diagonalizing Hm, more precisely

FmHmF−1
m = x2.

It satisfies FmeitD = e−itDFm for all t ∈ R.



Theorem 9 If m, k > −1 are real then the wave operators associated to the pair Hm, Hk exist and

Ω±m,k := lim
t→±∞

eitHme−itHk = e±i(m−k)π/2FmFk

= e±i(m−k)π/2 Ξk(D)

Ξm(D)
. (3)

where

Ξm(t) = ei ln(2)tΓ(m+1+it
2 )

Γ(m+1−it
2 )

.

The scattering operator Sm,k for the pair (Hm, Hk) is a scalar operator Sm,k = eiπ(m−k)1l.

(3) has been obtained independently by Richard and Pankrashkin.



The definition (or actually a number of equivalent definitions) of a holomorphic family of bounded

operators is quite obvious and does not need to be recalled. In the case of unbounded operators

the situation is more subtle.

Suppose that Θ is an open subset of C, H is a Banach space, and Θ 3 z 7→ H(z) is a function

whose values are closed operators on H. We say that this is a holomorphic family of closed

operators if for each z0 ∈ Θ there exists a neighborhood Θ0 of z0, a Banach space K and a

holomorphic family of injective bounded operators Θ0 3 z 7→ A(z) ∈ B(K,H) such that RanA(z) =

D(H(z)) and

Θ0 3 z 7→ H(z)A(z) ∈ B(K,H)

is a holomorphic family of bounded operators.



We have the following practical criterion:

Theorem 10 Suppose that {H(z)}z∈Θ is a function whose values are closed operators on H.

Suppose in addition that for any z ∈ Θ the resolvent set of H(z) is nonempty. Then z 7→ H(z)

is a holomorphic family of closed operators if and only if for any z0 ∈ Θ there exists λ ∈ c and

a neighborhood Θ0 of z0 such that λ ∈ rs (H(z)) for z ∈ Θ0 and z 7→ (H(z) − λ)−1 ∈ B(H) is

holomorphic on Θ0.

The above theorem indicates that it is more difficult to study holomorphic families of closed oper-

ators that for some values of the complex parameter have an empty resolvent set.



It is interesting to note that Ξm(D) is a unitary operator for all real values of m and

Ξ−1
m (D)x−2Ξm(D) (4)

is a function with values in self-adjoint operators for all real m. Ξm(D) is bounded and invertible

also for all m such that Rem 6= −1,−2, . . . . Therefore, the formula (4) defines an operator for all

{m | Rem 6= −1,−2, . . . } ∪ R. Clearly, for Rem > −1, this operator function coincides with the

operator Hm studied in this paper. Its spectrum is always equal to [0,∞[ and it is analytic in the

interior of its domain.

One can then pose the following question: does this operator function extend to a holomorphic

function of closed operators on the whole complex plane?


