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Abstract

The paper is devoted to a systematic and unified discussion of various
classes of hypergeometric type equations: the hypergeometric equation,
the confluent equation, the Fi equation (equivalent to the Bessel equa-
tion), the Gegenbauer equation and the Hermite equation. In particular,
recurrence relations of their solutions, their integral representations and
discrete symmetries are dicussed.
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1 Introduction

Following [NU], we adopt the following terminology. Equations of the
form
(0(2)02 + 7(2)d- + 1) f(z) =0, (1.1)

where o is a polynomial of degree < 2,

T is a polynomial of degree <1,

7 is a number,
will be called hypergeometric type equations, and their solutions —hypergeometric
type functions. Differential operators of the form ¢(2)02 +7(2)9. +n will
be called hypergeometric type operators.

The theory of hypergeometric type functions is one of the oldest and
most useful chapters of mathematics. In usual presentations it appears
complicated and messy. The main purpose of this paper is an attempt to
present its basics in a way that shows clearly its internal structure and
beauty.

1.1 Classification

Let us start with a short review of basic classes of hypergeometric type
equations. We will always assume that o(z) # 0. Every class, except for
(9), will be simplified by dividing by a constant and an affine change of
the complex variable z.

(1) The 2F; or hypergeometric equation

(2(1 = 2)82 + (c — (a + b+ 1)2)d. — ab) f(2) = 0.
(2) The 2F, equation
(2202 + (=1 + (1 + a + b)2)0- + ab) f(z) = 0.



(3) The 1Fi1 or confluent equation
(202 + (¢ — 2)0, — a)f(z) = 0.
(4) The oF: equation
(202 + 0. —1)f(2) = 0.
(5) The Gegenbauer equation
(1 —2%)02 — (a+b+1)20. — ab) f(z) = 0.
(6) The Hermite equation
(82 — 220, — 2a)f(z) = 0.
(7) 2nd order Euler equation
(2202 + b20. + a) f(2) = 0.
(8) 1st order Euler equation for the derivative
(202 + ¢d.)f(2) = 0.
(9) 2nd order equation with constant coefficients
(02 + cd. +a)f(z) = 0.

One can divide these classes into 3 families:
L (1), (2), 3), (4);

2. (), (6);
3..(7), (8), (9).

Each equation in the first family has a solution equal to the hypergeo-
metric function ,F, with appropriate p,q. This function gives a name to
the corresponding class of equations.

The second family consists of reflection invariant equations.

The third family consists of equations solvable in elementary functions.
Therefore, it will not be considered in what follows.

The 2Fp and 1F} equation are equivalent by a simple substitution,
therefore they can be discussed together.

Up to an affine transformation, (5) is a subclass of (1). However, it
has additional properties, therefore it is useful to discuss it separately.

The main part of our paper consists of 5 sections corresponding to the
classes (1), (2)-(3), (4), (5) and (6). The discussion will be divided into

two levels:
1. Properties of the operator that defines the equation.

2. Properties of functions solving the equation.



1.2 Properties of hypergeometric type operators
We will discuss the following types of properties of hypergeometric type
operators:
(i) equivalence between various classes,
(ii) integral representations of solutions,
(iii) discrete symmetries,
(iv) factorizations,
(v) commutation relations.

Let us give some examples of these properties. All these examples will
be related to the 1 F1 equation.
We have

(—w)* ™ (w?0% + (=1 + (1 + a+ b)w)dw + ab) w™* (1.2)
= 202+ (c—2)8. —a, w=—z"". (1.3)
Therefore the 1 F1 operator, appearing in (1.3), is equivalent to the 2Fo

operator, which is inside the brackets of (1.2). This is an example of (i).
As an example of (ii) we quote the following fact: The integral

/ta_cet(t —z)"dt (1.4)

is a solution of the 1 F1 equation provided that the values of the fuction
ts t* et (= z) 7! (1.5)

at the endpoints of the curve 7 are equal to one another.

Note that the integrand of (1.4) is an elementary function. The con-
dition on the curve 7 can often be satisfied in a number of non-equivalent
ways, giving rise to distinct natural solutions.

An example of (iii) is the following identity:

wd2, + (¢ — w)dw — a
= —e - (285 +(c—2)0: —c+a)e’, w=—z (1.6)
Thus the 1 F} operator is transformed into a 1 F1 operator with different
parameters.
Here is a pair of examples of (iv):
2(202 + (¢ — 2)8. — a)
(20: +a—1)(20: +c—a—2) + (a—1)(a—c) (1.7)
= (20.+c—a—1-2)(20.+a)+ala+1—c). (1.8)

An example of (v) is
(20: +a) 2 (283 + (c—2)0. —a)
= 2(202+(c—2)0. —a—1)(20: +a). (1.9)

On both sides of the identity we see the 1 F1 operators whose parameters
are contiguous.



The commutation properties can be derived from the factorizations.
Let us show, for example, how (1.7) and (1.8) imply (1.9). First we rewrite
(1.7) as

2(202 + (¢ — 2)0, —a — 1)
= (20:4a)(20:+c—a—1-2)+ala+1—c). (1.10)

Then we multiply (1.8) from the left and (1.10) from the right by (20, + a),
obtaining identical right hand sides. This yields (1.9).

1.3 Hypergeometric type functions

After the analysis of hypergeometric type operators, we discuss hyperge-
ometric type functions, that is, functions annihilated by hypergeometric
type operators. In particular, we will distinguish the so-called standard
solutions which have a simple behavior around a singular point of the
equation. In particular, if zp is a regular singular point, the Frobenius
method gives us two solutions behaving as (z — zo)>‘i7 where A1, Ao are
the indices of zg. One can often find solutions with a simple behavior also
around irregular singular points.

For reflection invariant classes (5) and (6) one can also define another
pair of natural solutions: the even solution ST, which we normalize by
S7(0) = 1, and the odd solution S~ , which we normalize by (S~)'(0) = 2.

Discrete symmetries can be used to derive properties of hypergeometric
type functions. For instance, (1.6) implies that if f(z) solves the confluent
equation for parameters ¢ — a, ¢, then so does e f(—z) for the parameters
a,c. In particular, both functions F(a;c;z) and e*F(c — a;¢; —%) solve
the confluent equation for the parameters a,c. Both are analytic around
z = 0 and equal 1 at z = 0. By the uniqueness of the solution to the
Frobenius method they should coincide. Hence we obtain the identity

F(a;c;2) = €*F(c— a;c;—2). (1.11)

Commutation relations are also useful. For example, it follows imme-
diately from (1.9) that (20. + a)F(a;c;z) is a solution of the confluent
equation for the parameters a + 1, c. At zero it is analytic and its value is
a. Hence we obtain the recurrence relation

(20: + a)F(a;c;2) = aF(a+ 1;¢; 2). (1.12)

For each class of equations we describe a whole family of recurrence
relations. Every such a recurrence relation involves an operator of the
following form: a 1st order differential operator with no dependence on
the parameters + a multiplication operator depending linearly on the
parameters. We will call them basic recurrence relations.

Sometimes there also exist more complicated recurrence relations. We
do not give their complete list, we only mention some of their examples.
We call them additional recurrence relations.

Each of the standard solutions has simple integral representations of
the form analogous to (1.4). Each of these integral representations are
associated to a pair of (possibly infinite and possibly coinciding) points
where the integrand has a singularity. We will use two basic kinds of
contours for standard solutions:



(a) The contour starts at one singularity and ends at the other singular-
ity; we assume that at both singularities the analog of (1.5) is zero
(hence, trivially, has equal values).

(b) The contour starts at the first singularity, goes around the second
singularity and returns to the first singularity; we assume that the
analog of (1.5) is zero at the first singularity.

If available, we will always treat the type (a) contour as the basic one.
For instance, under appropriate conditions on the parameters, the 1 Fi
function has the following two integral representations:

type (a): /e%fc(t—l)c*‘kldt = WF(@C;Z),
[1,F ool
type (b): 2i7r1 / et (=) (—t+ 1) At = %F(a;c;z).
[1,0%,1]

(0T means that we bypass 0 in the counterclockwise direction; in this case
it is equivalent to bypassing oo in the clockwise direction).

There are various natural ways to normalize hypergeometric type func-
tions. The most obvious normalization for a solution analytic at a given
regular singular point is to demand that its value there is 1. (For the
2 Fp equation, the point 0 is not regular singular, however there is a natu-
ral generalization of this normalization condition). For equations (1)—(4),
this function will be denoted by the letter F', consistently with the con-
ventional usage. (Note the use of the italic font). In the case of reflection
symmetric equations (5) and (6), we will use the letter S.

However, it is often preferable to use different normalizations, which
involve appropriate values of the Gamma funtion or its products. Such
normalizations arise naturally when we consider integral representations.
They will be denoted by F for equations (1) — (4) (a similar notation
can be found in [NIST]), and S for (5) and (6). (Note the use of the
boldface roman font). Sometimes there will be several varieties of these
normalizations denoted by an appropriate superscript, related to various
integral representations. The functions with these normalizations have
often better properties than the F' and S functions. This is especially
visible in recurrence relations, where the coefficient on the right (such as
a in (1.12)) depends on the normalization.

For example, for the 1 F1 function we introduce the following normal-
izations:

F(a;cz) = ﬁ (a;¢; 2),
F'(a;¢;2) = WF(G;GZ%

the latter suggested by the type (a) integral representation given above.

1.4 Degenerate case

For some values of parameters hypergeometric type functions have special
properties. This happens in particular when the difference of the indices



at a given regular singular point is an integer. Then the two standard
solutions related to this point are proportional to one another. We call
them degenerate solutions. (The best known example of such a situation
are the Bessel functions of integer parameters). In this case we have
a simple generating function and an additional integral representation,
which involves integrating over a closed loop.

1.5 Canonical forms

Obviously, hypergeometric type operators coincide with differential oper-
ators of the form

0(2)92 + (0’ (2) + K(2))0. + %m/ +A (1.13)
= 0.0(2)0. + %(@fc(z) + k(2)0:) + A, where

o is a polynomial of degree < 2,
K is a polynomial of degree < 1,
A is a number.

One can argue that it is natural to use o, k, A to parametrize the hy-
pergeometric type operators (more natural than o,7,7n). (1.13) will be
denoted C(o, k, A; 2, 0-), or, for brevity, C(c, k, ). Let p(z) be a solution
of the equation

(0(2)0: — k(2))p(z) = 0. (1.14)
(Note that equation (1.14) is solvable in elementary functions). We have
the identity

Clo, K N) = p~ L (2)020(2)p(2)0- + %KJ oy (1.15)
We will call p the natural weight. To justify this name note that if A is real,
o,k are real and p is positive and nonsingular on ]a, b[C R, then C(o, &, \)
is Hermitian on the weighted space L?(]a, b[, p), when as the domain we
take C&°(]a, b]).
It is sometimes useful to replace the operator C(o, K, \) with

k(2)?

4o(z)

p(2)2C(0, k N)p(2) 2 = 8.0(2)0. — T (L16)
We will call (1.16) the balanced form of C(o, K, ).

Sometimes one replaces (1.1) by the 1-dimensional Schrodinger equa-
tion

(02— V() f =0, (1.17)
where
Ve = 3@ @) 4 @) s -

(1.17) is equivalent to (1.1), because

1 1

o(z) 2p(2)2C(o, K, )\)p(z)féa(z)fé = 83 —V(z), (1.18)



It will be called the Schrddinger-type form of the equation C(o, k,A)f = 0.

Some of the symmetries of hypergeometric type equations are obvious
in the balanced and Schrédinger-type forms. This is partly due to the fact
that they do not change when we switch the sign in front of k. This is a
serious advantage of these forms.

In the literature various forms of hypergeometric type equations are
used. Instead of the Gegenbauer equation one usually finds its balanced
form, called the associated Legendre equation. The modified Bessel equa-
tion and the Bessel equation, equivalent to the rarely used o Fi equation, is
the balanced form of a special case of the 1 F1 equation. Instead of the 1 Fi
equation one often finds its Schrodinger-type form, the Whittaker equa-
tion. This usage, due mostly to historical traditions, makes the subject
more complicated than necessary.

We will always use (1.1) as the basic form. Its main advantage is that
in almost all cases the equation in the form (1.1) has at least one solution
analytic around a given finite singular point. Even in the case of the
2Fp equation, whose all solutions have a branch point at 0, there exists a
distinguished solution particularly well behaved at zero.

1.6 Hypergeometric type polynomials

Hypergeometric type polynomials, that is, polynomial solutions of hyperge-
ometric type equations deserve a separate analysis. They have traditional
names involving various 19th century mathematicians. Note in particu-
lar that the (rarely used) polynomial cases of the 2 Fy function are called
Bessel polynomials, however they do not have a direct relation to the
better-known Bessel functions.

There exists a well-known elegant approach to their theory that allows
us to derive most of their basic properties in a unified way, see e.g. [NU, R].
Let us sketch this approach.

Fix o, k, p, as in Subsect. 1.5. For any n = 0,1,2,... we define

Palo,p52) == o ()02 p(2)0" (2) (1.19)

We will call (1.19) a Rodriguez-type formula, since it is a generalization of
the Rodriguez formula for Legendre polynomials.
One can show that P, solves the equation

"

(a(z)af + (o' (2) + K(2))0: — n(n + 1)% — rm/)Pn(U, p;z) =0. (1.20)
P, is a polynomial, typically of degree n, more precisely its degree is given
as follows:

1. If o = k' =0, then deg P,, = 0.

2. If 0 # 0 and —i—"f,l — 1= m is a positive integer, then

n, n=20,1,...,m;

deg P :{ n—m-—1, n=m+1m-+2,....

3. Otherwise, deg P, = n.

10



We have a generating function

p(z +to(2)) _ - n o 00 " 2
p(Z) _;t P’ﬂ( s P ) )7

an integral representation

P (0, p; 2)

_ %p_l(z) o™ (2 + O)plz + )" Nde (1.21)
1
]

[z

and recurrence relations

(0(2)0: + (K(2) = n0'(2)) Pu(0,p0™";2) = Pati(o,po”""';2),
0:Prsi(0,p0 " iz) = ( - ”% + ﬁl)Pn(a, po " z).

In almost all sections we devote a separate subsection to the corre-
sponding class of polynomials. Beside the properties that follow imme-
diately from the unified theory presented above we describe additional
properties valid in a given class.

The ¢ F1 equation does not have polynomial solutions, hence the corre-
sponding section is the only one without a subsection about polynomials.

Another special situation arises in the case of the Gegenbauer equation.
The standard Gegenbauer polynomials found in the literature do not have
the normalization given by the Rodriguez-type formula. The Rodriguez-
type formula yields the Jacobi polynomials, which for o = § coincide with
the Gegenbaquer polynomials up to a nontrivial coefficient. Thus for the
Gegenbauer equation it is natural to consider two classes of polynomials
differing by normalization. This is related to an interesting symmetry
called the Whipple transformation, which is responsible for two kinds of
integral representations.

1.7 Parametrization

Each class (1)—(6) depends on a number of complex parameters, denoted
by Latin letters belonging to the set {a,b,c}. They will be called the
classical parameters. They are convenient when we discuss power series
expansions of standard solutions.

Unfortunately, the classical parameters are not convenient to describe
discrete symmetries. Therefore, for each class (1)—(6) we introduce an
alternative set of parameters, which we will call the Lie-algebraic param-
eters. They will be denoted by Greek letters such as a, 3, u,0, A\, and
will be given by certain linear (possibly, inhomogeneous) combinations
of the classical parameters. Discrete symmetries of hypergeometric type
equations will simply involve signed permutations of the Lie algebraic pa-
rameters — in the classical parameters they look much more complicated.
Recurrence relations also become simpler in the Lie-algebraic parameters.

For polynomials of hypergeometric type a third kind of parametriza-
tion is traditionally used. They are characterized by their degree n, which

11



coincides with —a, where a is one of the classical parameters. The Lie-
algebraic parameters appearing inside the 1st order part of the equation
are used as the remaining parameters.

Let us stress that all these parametrizations are natural and useful.
Therefore, we sometimes face the dilemma which parametrization to use
for a given set of identities. We usually try to choose the one that gives
the simplest formulas.

We sum up the information about various parametrizations in the
following table:

Equation classical Lie-algebraic Polvnomial parameters
1 parameters parameters Y for polynomials
a=c—1 a=c—1
2o a,b,c B=a+b—c Jacobi B=a+b-c
y=b—a n=—a
2 Fy a,b f=-1+a+tb Bessel O=—-1+tatb
a=a—>b n=-a
1F1 a,c f=—c+2a Laguerre a=c—1
a=c—1 n=—a
oF1 c a=c-1 = —-—=—=——= ——=—-——
a = atb-l o = 3 Jacobi o= otb=l
2 2
Gegenbauer a,b A= b;“ or Gegenbauer n=-—a
Hermite a A=a— % Hermite n=—a

1.8 Group-theoretical background

Identities for hypergeometric type operators and functions have a high
degree of symmetry. Therefore, it is natural to expect that a certain
group-theoretical structure is responsible for these identities.

There exists a large literature about the relations between special func-
tions and the group theory [V, Wa, M1, VK]. Nevertheless, as far as we
know, the arguments found in the literature give a rather incomplete ex-
planation of the properties that we describe. In a seperate publication
[DM] we would like to present a group-theoretical approach to hyperge-
ometric type functions with, we believe, a more satisfactory justification
of their high symmetry. Below we would like to briefly sketch the main
ideas of [DM].

Each hypergeometric type equation can be obtained by separating the
variables of a certain 2nd order PDE of the complex variable with constant
coefficients. One can introduce the Lie algebra of generalized symmetries
of this PDE. In this Lie algebra we fix a certain maximal commutative
algebra, which we will call the “Cartan algebra”. Operators whose adjoint

12



action is diagonal in the “Cartan algebra” will be called “root operators”.
Automorphisms of the Lie algebra leaving invariant the “Cartan algebra”
will be called “Weyl symmetries”.

(Note that in some cases the Lie algebra of symmetries is simple, and
then the names Cartan algebra, root operators amd Weyl symmetries cor-
respond to the standard names. In other cases the Lie algebra is non-
semisimple, and then the names are less standard — this is the reason for
the quotation marks that we use).

Now the parameters of hypergeometric type equation can be inter-
preted as the eigenvalues of elements of the “Cartan algebra”. In partic-
ular, the Lie agebraic parameters correspond to a certain natural choice
of the “Cartan algebra”. Each recurrence relation is related to a “root
operator”. Finally, each symmetry of a hypergeometric type operator
corresponds to a Weyl symmetry of the Lie algebra.

We can distinguish 3 kinds of PDE’s with constant coefficients:

1. The Helmholtz equation on C" given by A, + 1, whose Lie algebra
of symmetries is C™ X so(n, C);

2. The Laplace equation on C™ given by A,,, whose Lie algebra of gen-
eralized symmetries is so(n 4 2, C)

3. The heat equation on C" @ C given by A, + 0s, whose Lie alge-
bra of generalized symmetries is sch(n,C) (the so-called (complez)
Schrédinger Lie algebra.

Separating the variables in these equations usually leads to differential
equations with many variables. Only in a few cases it leads to ordinary
differential equations, which turn out to be of hypergeometric type. Here
is a table of these cases:

Lie dimension of discrete

PDE algebra Cartan algebra symmetries equation

As+1  C? xs0(2,C) 1 Zo oFh;

Ay s0(6,C) 3 cube 2 F;

As so(5,C) 2 square Gegenbauer;
Ao + O sch(2,C) 2 Zo X D 1F1 or o Fy;
Ay + 0s sch(1,C) 1 Za Hermite.

1.9 Comparison with the literature

There exist many works that discuss hypergeometric type functions, e.g.
[NIST, Ho, MOS, AAR, R, WW, Ol, Tr]. Some of them are meant to
be encyclopedic collections of formulas, other try to show mathematical
structure that underlies their properties.

In our opinion, this work differs substantially from the existing litera-
ture. In our presentation we try to follow the intrinsic logic of the subject,
without too much regard for the traditions. If possible, we apply the same
pattern to each class of hypergeometric type equations. This sometimes
forces us to introduce unconventional notation.

13



We believe that the intricacy of usual presentations of hypergeomet-
ric type functions can be partly explained by historical reasons. In the
literature various classes of these functions are often described with help
of different conventions. Sometimes we will give short remarks devoted
to the conventions found in the literature. These remarks will always be
clearly separated from the main text.

Of course, our presentation does not contain all useful identities and
properties of hypergeometric functions. Some of them are on purpose left
out, e.g. the so-called addition formulas. We restrict ourselves to what we
view as the most basic theory. On the other hand, we try to be complete
for each type of properties that we consider.

Our work is strongly inspired by the book by Nikiforov and Uvarov
[NU], who tried to develop a unified approach to hypergeometric type
functions. They stressed in particular the role of integral representations
and of recurrence relations.

Another important influence are the works of Miller [M1, M2] who
stressed the Lie-algebraic structure behind the recurrence relations.

The method of factorization can be traced back at least to [IH].

Acknowledgement. I acknowledge the help of Laurent Bruneau, Michat
Godlinski, and especially Michal Wrochna and Przemystaw Majewski who
proofread parts of previous versions of this work.

The research of the author was supported in part by the National
Science Center (NCN) grant No. 2011/01/B/ST1/04929.

2 Preliminaries

In this section we fix basic terminology, notation and collect a number of
well known useful facts, mostly from complex analysis. It is supposed to
serve as a reference and can be skipped at the first reading.

2.1 Differential equations

The main object of our paper are ordinary homogeneous 2nd order linear
differential equations in the complex domain, that is equations of the form

(a(z)@f +b(2)0: + c(2)) ¢(2) = 0. (2.22)

It will be convenient to treat (2.22) as the problem of finding the kernel
of the operator

A(z,8.) := a(2)02 + b(2)9. + c(2). (2.23)

We will then say that the equation (2.22) is given by the operator (2.23).
When we do not consider the change of the variable, we will often write

A for A(z,0,).

2.2 The principal branch of the logarithm and the
power function

The function

{zeC: -7 <Imz <7} 3z~ e" €C\]— 00,0

14



is bijective. Its inverse will be called the principal branch of the logarithm
and will be denoted simply log z.
If p € C then the principal branch of the power function is defined as

C\] — 00,0] 3 z > 2/ 1= e"1°87,

Consequently, if a € C\{0}, then the functions log(a(z — 20)) and
(a(z — 20))* have the domain C\(zo + o™ '] — 00, 0]).

Of course, if needed we will use the analytic continuation to extend
the definition of the logarithm and the power function beyond C\] — oo, 0]
onto the appropriate covering of C\{0}.

2.3 Contours

We will write

FE = 1) - flz0).

In particular, if ]0,1[> ¢ — ~(t) € C is a curve, then

f(2)

T / F(2)dz. (2.24)

7(0)

In order to avoid making pictures, we will use special notation for
contours of integration.
Broken lines will be denoted as in the following example:

[wo, u, w1] := [wo,u] U [u, w1].

W Wi

This contour may be inappropriate if the function has a nonintegrable
singularity at u. Then we might want to bypass u with a small arc coun-
terclockwise or clockwise. In such a case we can use the curves

[wo, uT, wi]. (2.25)
Wo Wi
u
o
[wo,u ,wi]. (2.26)
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u
[ ]

We may want to bypass a group of points, say ui,u2. Such contours
are denoted by

[wo, (w0, u1)™, w1l

A small counterclockwise/clockwise loop around u is denoted

: [u"]

® ®

A counterclockwise/clockwise loop around a group of points, say, u1, u2
is denoted

[w"]

[(ur,uz2) "], [(u1,u2)” ).

A half-line starting at u and inclined at the angle ¢ is denoted
[u,e'?oo:={u+e’t : t>0}: (2.27)
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We will also need slightly more complicated contours:

[(u + ei¢ ’ 0)+7 w]

Here, the contour departs from u at the angle ¢, then it bypasses u with
a small arc counterclockwise and then it goes in the direction of w.
The following countour has the shape of a kidney:

[(u+e?-0)7]

This contour departs from u at the angle ¢, then it goes around u and
returns to u again at the angle ¢.

Instead of u+ €' - 0 we will write u + 0. Likewise, instead of u+ '™ -0
we will write u — 0.

2.4 Reflection invariant differential equations
Consider a 2nd order differential operator
92 4 b(2)0; + ¢(2). (2.28)

Assume that (2.28) is invariant w.r.t. the reflection z — —z. This means
that for some functions 7, p we have

b(z) = zn(2°),  c(z) = p(2?).
Then it is natural to make a quadratic change of coordinates:

8 + b(2)0: + ¢(z)
- 4 (83 - (% + @)&L + %) : (2.29)

TH(0Z + b(2)0: + ¢(2))=

= 4u (aﬁ + (% + @)&L + +%up(u)) . (2.30)

where
2
u=2z2°, z=+/u.

Thus if g+ (u), resp. g—(u) satisfy

(£ G e R -
m(u) + p(u
2

(a +( )> g-(w) = 0,

)+
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then g (2?) is an even solution, resp. zg—(z?) is an odd solution of the
equation given by (2.28).

Note that if 7, p are holomorphic, then 0 is a regular singular point of
(2.29) with indices 0, 3 and of (2.30) with indices 0, — 3.

72

2.5 Regular singular points

In this subsection we recall well known facts about regular singular points
of differential equations
We will write
f(z) ~(z—20)" at 2o
if f(2)(z — 20)" " is analytic at zo and lim f(2)(z — 20) > = 1. In partic-
zZ— 20
ular, we write

f(z)~1 at =z
if f is analytic in a neighborhood of zp and f(z¢) = 1.
An equation given by the operator
92 +b(2)0. + c(2) (2.31)
with meromorphic coefficients a(z), c(z) has a regular singular point at zo
if

bo := lim b(z)(z — 20), c¢o:= lim ¢(2)(z — 20)°
z—2zQ Z—20

exist. The indices A1, A2 of zo are the solutions of the indicial equation
A(/\* 1)+b0)\+60 :0

Theorem 2.1 (The Frobenius method) If A1 — A2 # —1,—-2,---,
then there exists a unique solution f(z) of the equation given by (2.31)
such that f(z) ~ (z — z0)™* at zo.

The case A1 — A2 € Z is called the degenerate case. In this case the
Frobenius method gives one solution corresponding to the point zp.
Likewise, (2.31) has a regular singular point at oo if

bo := lim b(z)z, & := lim ¢(2)2”
Z—00 zZ—00

exist. The indices A1, Ao of oo are the solutions of the indicial equation
AA+1) —boA + & = 0.

Theorem 2.2 (The Frobenius method at iI}ﬁnity) If ) PRI W #*
—1,-2,---, then there exists a unique solution fi1(z) of (2.81) such that

fi(z) ~ 2N at co.

Note the identity
(2= 20) " (82 + b(2)0: + c(2)) (2 — 20)°

(2.32)

= 92+ (20(z — 20) "' + b(2))0- + (0 = 0)(z — 20) 2+ 0b(2) (2 — 20) " + c(2).

If 2o is a regular singular point, then the corresponding indices of (2.32)
equal those of (2.31) +6. Likewise, if oo is a regular sigular point, then
the corresponding indices are shifted by —f. The indices corresponding
to other points are left unchanged.
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2.6 The Gamma function

In this section we collect basic identities related to Euler’s Gamma func-

tion that we will use.

Relationship to factorial

Recurrence relation

Reflection formula

II Euler's integral.

Hankel's formula.

Legendre's formula

'n+1)=n!l, n=0,1,2,..., (2.33)
I'(z+1) = 2I'(2), (2.34)
I'(z)0(1—2) = sifm, (2.35)

I'(2) ;:/ e '*7ldt, Rez >0, (2.36)
0

2

1 _ 1 tyz—1
1) 2m / e't*dt, (2.37)

[—00,0F,—o0]

2" I0 ()T (2 + 1/2) = Val(22).  (2.38)

1 m 0 82 m—1
272 1"(—): e s ds, Rem >0
Jo

I Euler’s integral and its consequences.

L)l (v)
I(u+v)

I(l—u—v)'(v)
(1 —u)

P(—u—v+1)
P(—u+1I(—v+1)

1
/ t“"'(1—t)""'dt Reu >0, Rev >0, (2.39)
0
(t

/-oo tu71
1

1 _ _

o / t“" (1 —t)""'dt, Rev > 0.
11,0+,1]

% / N1 —n)U e

i
]—00,0F,—00[

1 _ _

o / ' —1)""'dt, Re(—u—v+1)>0.
Joo,17,00[
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M — /j (1— 32)“71ds, Reu > 0, (2.40)

F(““’%) 1
%\/é*“) = '/100(82—1)"71d5, %>Reu>0, (2.41)
ﬁ o _Sufl _Sufl s
DT = e OO e 20
P(z—uw [
s = o e

2.7 The Pochhammer symbol

If a € C and n € Z, then the so-called Pochhammer symbol is defined as
follows:

(a)n:i=ala+1)...(a+n—-1), n=12...
((l,)_»n = m, n = 1.27

Note the identities

(@) = e = () s = () == a),

1
(@)-n = = (2.43)
1-2"=) ((:L)'" el <1, (2.44)
(1/2)nn! = (52!7 (3/2)nn! = % (2.45)

3 The 2F; or the hypergeometric equa-
tion
3.1 Introduction

Let a, b, c € C. Traditionally, the hypergeometric equation is given by the
operator

Fla,b;¢;2,8,) == z(1 — 2)07 + (c=(a+b+1)2)0. — ab. (3.46)
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The classical parameters a,b,c will be often replaced by another set
of parameters a, 3, u € C, called Lie-algebraic. They are related to one
another by

a:=c—1, B:=a+b—c, wi=>b—a;

a:%, b:%, c=1+a.
In the Lie-algebraic parameters the hypergeometric operator (3.46) be-
comes

Fo,.u(2,0:) (3.47)

1 1
= z2(1—2)02+ (I4+a)(1—2)— (14 8)2)0: + Z/f — Z(a +B+1)°.
The Lie-algebraic parameters have an interesting interpretation in terms
of the natural basis of the Cartan algebra of the Lie algebra so(6) [DM].
The singular points of the hypergeometric operator are located at

0,1,00. All of them are regular singular. The indices of these points
are

z2=0 z=1 zZ =00
l-¢c=—a c—a—-b=-p a:%
_ l+afBtpu
0 0 b= Tk

Thus the Lie-algebraic parameters are the differences of the indices.
The hypergeometric operator remains the same if we interchange a
and b (replace p with —p).

3.2 Integral representations
Theorem 3.1 Let [0,1] 3¢ — ~(t) satisfy

(1)
tbfc+1 1—¢ c—a t— 2 —b—1|” —
N
Then
Fl(a,b;c; 2,0) / 71— t) T (- 2) At = 0. (3.48)

Y

Proof. We check that for any contour v (3.48) equals

—b/ (&tb_c“(l —t)e_“(t—z)_b_l)dt.
O

Analogous (and nonequivalent) integral representations can be ob-
tained by interchanging a and b in Theorem 3.1.
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3.3 Symmetries

To every permutation of the set of singularities {0, 1, 00} we can associate
exactly one homography z — w(z). Using the method described at the
end of Subsect. 2.5, with every such a homography we can associate 4
substitutions that preserve the form of the hypergeometric equation. Al-
together there are 6 x 4 = 24 substitutions. They form a group isomorphic
to the group of proper symmetries of the cube. If we take into account
the fact that replacing p with —pu is also an obvious symmetry of the hy-
pergeometric equation, then we obtain a group of 2 x 24 = 48 elements,
isomorphic to the group of all (proper and improper) symmetries of a
cube, which is the Weyl group of so(6).

Below we describe the table of symmetries of the hypergeometric oper-
ator except for those obtained by switching the sign of the last parameter.
We fix the sign of the last parameter by demanding that the number of
minus signs is even.

Note that the table looks much simpler in the Lie-algebraic parameters
than in the classical parameters.
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All the operators below equal Fu g,.(w, Ow) for the corresponding w:

w==z:

w=1-—z:

N =

(—z) B (atBtutl)
(,z)%(a+ﬁ7u+1)(z —1)°"
(_Z)%(aJrBJrqul)(z _ 1)7,3

(—z)3(@th—nt1)

(72)%(a+ﬁ+u+1)
(_Z)%(ochBfqul)(z —1)°
(_Z)%(aJrBJrqul)(z —1)

(_Z)%(a+ﬂ—u+1)

._.
|
n

3 (atB+pt1)
L(a+B—p+1)
(a+B—n+1)
%

(a+B+p+1)

5 1)%(a+6+u+1)
)%(M—ﬁ—u-&-l)
5 1)%<a+ﬁ—u+1)
)2

(atB+pu+1)

23

Fopu(z,0:),
Fea,~p.u(2,0z)
Fo,—p,—u(2,0z)
Fap,—u(2,0z)

(=2)Fua,8(2: 02)
(=2)F-p—a,8(2,0:)
(—=2)Fu,~a,~5(2,0z)
(=2)F—p,a,-5(2,0z)

(2 — V) Fp,u,a(z,0)
(z — V)F_g,—pal(z0:)
(z = 1)Fp,—p,~a(2,0:)
(2 = DFp.u—al20:)

(2 = D) Faus(2,0:)
(2 — VD)F_a,—p,p(2,02)
(z — ) Fa,—p,—5(2,02)
(z — V) F_a,pu,—5(20)

—z)z(aBou=1)

(
(,Z)%(*afﬁﬂhl)(z _ 1)/37
(_Z)%(*afﬁfufl)(z —1)8,
(

_Z)%(*OHBJW*U

)

— ) 3(amptu-n),

)
(z

”— 1)%(*a76+u*1)’
(



3.4 Factorization and commutation relations
The hypergeometric operator can be factorized in several ways:
Fasw = (21=2)0:+ (1 +0)(1 = 2) = (14 8)2) ).
~1l@t B+ pt Dt —p1),
- 8%41—d&+4M1—d—6ﬂ)
~jlat B+ p—Da+p—p1),
= (1=20.—5-1) (20 +a)
@ B Dot Bt 1),
- (zaz fa+ 1) ((1 —2). — B)

~3(@t B+ pt Dt —p1);

Fapu = (0ot glatptu—1)(x01-2)0 + (1~ 2)a+p—p+1)~5)

—HatBru—Da—f-p+1),

- (z(lfz)aer%(lfz)(aJrﬂ*,unLl)fﬂfl)(z82+%(a+ﬁ+u+1)>

~{lat Bt ptDa=p-p-1),

= (404 glat B =) (1 =20 + S (1 - 2)a+F+p+1) - 5)
@B p—a— B+,

= (s0-20+ 50 -2+ s +p+ 1)~ -1)(20. 4 (a+ - p+1)

3@t B =t D= B+ 1)
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(= DFaspu = (=104 5@+ 8+u-1) (20 =20+ ja(-a—F+u—1)+a)

4

@+ B - D= B+p—1),

- (z(l—z)az-l-%z(—a—ﬁ-&-u—1)+o¢+1)((z—1)3z+%(a+ﬂ+u+1))

4

Latptptr)a-p+ut),

= (=10 + glatB—p—1) (120 + L2(-a—f—p—1) +a)

2

4

2

~flatf—p-Da-p-p-1),

= (z(l—z)az—l—%z(—a—ﬁ—,u—1)+o¢+1)((z—1)8z+%(a—&—ﬂ—u—l—l))

_Z(

Lot B—p+1)a=-B-p+1).

One way of showing the above factorizations is as follows: We start with
deriving the first one, and then we apply the symmetries of Subsect. 3.3.
The factorizations can be used to derive the following commutation

relations:
0-
= Fat1,8+1,u

(2(1=2)0: + (1 — 2)a— zP)

= Fa-1,8-1,u

(1 =2)9: - B)

= Fat1,8-1,u

(20. + )

= ]:afl,BJrl,u

Fa,B.u
0z,

]:a,/:?,u
(z1 = 2)0. 4+ (1 — 2)a — 2B),

]'—a’ﬂyu
(A =2)0: - B),

Fo,B.u
(202 + );

(20: + @+ B+p+1) zFapu

= 2F 0,841,041 (Zaz + %(a+ﬂ+ﬂ+1))7

(z(l—z)@z—l—%(l—z)(a+5—u+1)—ﬁ) z2Fa,B.u
= 2Fa,p—1,u—1 (Z(lfz)aﬂL%(172)(a+/3*#+1)*/3)7

(z@er%(aJr/B—;hLl)) 2Fa,8,u

= 2Fapria (2B+b(atf-pt),

(z(z—l)@z—%(1—2)(a+5+u+1)+ﬁ) 2Fa,B,u

25
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(z=1D0:+ 3(a+B+pu+1) (1-2)Fasu
= (1= 2)Fasrpputr (2= 13+ 3(a+B+pu+1),

(2(1=2)0: = 32(atf—pt1)+a) (1 - 2)Fapu
= (1 —2)Fa-1,8u-1 (z(l—z)@z—%z(oz—i—ﬂ—u—i—l)—l—oz)7

(z=18: + 3(a+B-p+1) (1-2)Fapu
= (1=2)Fatrppu—1 (=18 + 5(a+ B —p+1)),

(=10 bt Byt 1) = a) (1= 2)Faz
= (1= 2)Farppu+r  (2(z=1)0:+52(a+B+pt+1)—a).

Each of these commutation relations corresponds to a root of the Lie
algebra so(6).

3.5 Canonical forms

The natural weight of the hypergeometric operator is z%(1 — z)ﬁ , so that

Fopp=2%1-2)720.2271(1 - 2)° 0, + u; B W.
The balanced form of the hypergeometric operator is
Z%(l - Z)gfa,ﬂ,u27%(1 - 2)7%
a? 2 2_q
= Bzz(lfz)azfgfﬁJrﬂ —.

Note that the symmetries « - —«, f — —f and p — —p are obvious in
the balanced form.

Remark 3.2 In the literature, the balanced form of the hypergeometric
equation is sometimes called the generalized associated Legendre equation.
Its standard form according to [NIST] is

2 2
_an2\92 _ _ H1 _ H1
(1 —w")0y — 2wy +v(v+ 1) M—w)  20+w) (3.49)

Thus z = wT'H, moreover, i, p2 and v correspond to 5, and § — %

3.6 The hypergeometric function

0 is a regular singular point of the hypergeometric equation. Its indices
are 0 and 1—c. The Frobenius method implies that, for ¢ # 0,—1,-2,...,
the unique solution of the hypergeometric equation equal to 1 at 0 is given
by the series

= (a);(b); 27
RIS Y OTES

7=0



convergent for |z| < 1. The function extends to the whole complex plane
cut at [1,00[ and is called the hypegeometric function. Sometimes it is
more convenient to consider the function

Fla,bic;2) i Fla,b,c,z) _ i (a ](b)]ﬁ

defined for all a,b, c € C. Another useful function proportional to 2 F is

F'(a,b;c;2) := %F(a,b; ¢ z) = Z [(a +1];)(1;:<_:;)a)(b)j ji'

Jj=0

It has the integral representation

/ P — 1) (- 2) bt (3.50)
1
= F'(a,b;c;2), Re(c—a)>0, Rea>0, z¢]l,o0[

Indeed, by Theorem 3.1 the left hand side of (3.50) is annihilated by
the hypergeometric operator (3.46). Besides, by (?7) it equals %
at 0. So does the right hand side. Therefore, Equation (3.50) follows by
the uniqueness of the solution by the Frobenius method.

Another, closely related integral representation valid if Re(c — a) > 0
is

STt b s 2) = zi / (—)P (1 =) (s—1)~dt. (3.51)
i
[1,(2,0)F,1]

It is proven essentially in the same way as (3.50), except that instead of

(??) we use (77).

It is also useful to introduce

F°(a,b;c;2) := —=—~>F(a,b;c; 2). (3.52)

‘We have the identities

F(a,b;c;2)
(1—2)"""F(c—a,c—b;c;2)

—a oz
(1-2) F(a,c b’c’iz—l)

(1—2)""F (c —a,bic; ﬁ) . (3.53)

In fact, by the 3rd, 9th and 11th symmetry of Subsect. 3.3 all these
functions are annihilated by the hypergeometric operator. All of them
are ~ 1 at 1. Hence, by the uniqueness of the Frobenius method they
coincide, at least for ¢ # 0,—1,.... By continuity, the identities hold for
all c € C.
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Let us introduce new notation for various varieties of the hypergeomet-
ric function involving the Lie-algebraic parameters instead of the classical
parameters.

1 — 1
Fapu(z) = F( toth = +a+ﬂ+u;1+a;2),
2 2
1 — 1
Fapu(z) = F( toth £, +a+ﬁ+u;1+a;2)
2 2
1
= ———F )
F(a+1) 7[3,#(2)
1 — 1
F(1+agﬁfu)r(1+afﬁ+u

— 2
= F(Oé-i-l) Fa,ﬁ,u(‘z)?

Fo<l+a+/3—/1, l+a+B8+p

F?y.ﬁ,u(z) = 2 ’ 2

;1+a;z>

F( 1+<¥<;37p )F( 1+(x:&»£3+;t

)
= Fosu .
F((.Y + 1) VB k (Z)

3.7 Standard solutions — Kummer’s table

To each of the singular points 0, 1,00 we can associate two solutions cor-
responding to its indices. Thus we obtain 3 x 2 = 6 solutions, which we
will call standard solutions. Using the identites (3.53), each solution can
be written in 4 distinct ways (not counting the trivial change of the sign
in front of the last parameter). Thus we obtain a list of 6 x 4 = 24 ex-
pressions for solutions of the hypergeometric equation, called sometimes
Kummer’s table.

We describe the standard solutions to the hypergeometric equation in
this section. We will use consistently the Lie-algebraic parameters, which
give much simpler expressions.

It follows from Thm 3.1 that for appropriate contours ~ integrals of
the form

—lta—B+p
2

t—-1)

/z&‘wl_ﬂ?ﬁ+ ‘ dt (3.54)
!

are solutions of the hypergeometric equation. The integrand has four
singularities: {0,1,00,2}. It is natural to chose v as the interval joining
a pair of singularities. This choice leads to 6 standard solutions with the
I-type normalization.
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3.7.1 Solution ~ 1 at 0

If a # —1,-2,..., then the following function is the unique solution ~ 1
at 0:
Faop,u(2)
= (1=2) " Fap-u(2)
—l-—a—F+p z
= 1-— 2 Fo
( z) = Hs B(z — 1)

—1—a—B—n z

= (1-2) 2 Fa,u,ﬁ(m)

An integral representation for Re(1 + a) > |Re(8 — p):

© _1—a+4B+u —14+a—B+ —l—a—B—pu
/ o2 (=1 7 (t—z) 7 dt = Fhg,(2),
1
z & [1,00].
Note that all the identities of this subsubsection are the transcriptions
of identities of Subsect. 3.6 to the Lie-algebraic parameters.
3.7.2 Solution ~ z7* at 0

Ifa #1,2,..., then the following function is the unique solution behaving
as z~ ¢ at 0:

2 " Foap,-u(2)
2 (1= 2) P Foa—pu(z)

Ca —1to—Biu z
= 2z %(1-2)" = Foa-us( )
z—1
—a —lta—B—pu z
= z %(1-2)" 2 F—a,u,—ﬂ(m)

Integral representations for Re(1 — a) > |Re(8 — p)l:

Z _1—a+4B+u —1+a—B+u —1-a—B—u
/ AT T )T T At = 2 O Fla s (2),
0
z ¢}_0070]U[1700[§
0 —1—a+4pB — a—p —l—a—pB—
/ (—t) 1 2+ +u (1 —t) 14 . +p (t—z) 1 > Mdt _ (—Z)fa I_a,ﬁ’_ﬂ(z)’
z &[0, 00].

To check these identities we note first that the integrals are solutions of
the hypergeometric equation. By substituting t = zs we easily check that
they have the correct behavior at zero.

Of course, it is elementary to pass from the first identity, which is
adapted to the region on the right of the singularity z = 0 to the second,
adapted to the region on the left of the singularity. For convenience we
give both identities.
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3.7.3 Solution ~ 1 at 1

If B # —1,—2,..., then the following function is the unique solution ~ 1
at 1:

Fg0,u(1 = 2)
= OF e (1~ 2)
—1l—a—B+
= =z 2 uFﬁﬁuﬁa(l_Zil)

—1-a—B-p

= z 2 Fg%a(lfzfl)

Integral representation for Re(1 + ) > |Re(a — p)|:

0 —1—a+B4nu —lta—B4u —l—a—-B—u
/(—t) SR T L Ty — B L (1—2),

z ¢] — 00,0].
3.7.4 Solution ~ (1 —2)7% at 1

If B # 1,2,..., then the following function is the unique solution of the
hypergeometric equation ~ (1 — z)~7 at 1:

(1—2)F pa—u(l—2)
= 2% —2)PF g _au(l-2)

—l—a+B8—p

= z 2 (1—2’)_&}775,“,,&(1—2’_1)
—l—a4B+u

= 2 7 (=2 PF s _ual—z7Y.

Integral representations for Re(1 — ) > |Re(a + p)|:

T Ci-a4p —14a—g —1—a-p—
/t%“‘uw) - T T M = (-2 F (- 2),
Zg]*O0,0]U[l,OO[;
2 1ot —1fa-p —1—a-p-
/tl—i*‘i(t_n FETE G )T T A = (2 1) PFL (1 - 2),
1

z €] — o0, 1].

3.7.5 Solution ~ 2% at

If £ # 1,2..., then the following function is the unique solution of the
—l—a—F+p

hypergeometric equation ~ (—2)~% = (—z) 2 at oo
—1-a—B+p 1
—z) 2 —p—alz)

—1-a+B4u _ 1
T (1-2) P F o paz)

(
(

(1=2)" 7 P s(1=2)7")
(

—14a—B+pu
—) (1 —2) T T o as((1—2) 7).
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Integral representations for Re(1 — p) > |Re(a + §)|:

/°°t717a2+ﬁ+u (t _ 1) —1+a2—ﬂ+u (t _ z) —lfa;Bfu at = Z717a275+/i FI_#,Q,_Q(Zil),
z QI] — 00, 1]?
/z (71‘/) 71—o<2+ﬂ+u (1 . t) —1+a275+u (Z _ t) 717&2*13*11‘ dt _ (72) 71—azfﬁ+u I_H7[37_a(271),
. z ¢]0, o<].

3.7.6 Solution ~ 2z~ % at co

If o # —1,—2,..., then the following function is the unique solution of
—1—a—B—
the hypergeometric equation ~ (—2)7% = (—2) T at oo:

(=) 7 Fupalz")
= ()T T (1= Fupals Y
= (=27 T Fuas(1-97)
= ()-8 T Fuass((1-2)7)
Integral representations for Re(1 4+ u) > |Re(a — B)|:
/1 t—l—a2+5+u (1-1) “lta—piu (t—2) “1-a-g-u A = (-2 “l-a—p-u L,ﬂ,a(zil)a
O z ¢ [0,00[;
/1 e T T S PN
’ z & [—o0,1].

3.8 Connection formulas

We use the solutions ~ 1 and ~ 2z~ at 0 as the basis. We show how the
other solutions decompose in this basis.
For the first pair of relations we assume that z ¢] — oo, 0]U[1, col:

s

Fgau(l— = F.
Bra( z) sinm(—a)T (1_0442./3_” T (1—04—;-54,-#) ﬂyu(z)

z F_ — (Z)
— a,B,—p
1+o<+2ﬁ ,u.) r (1+a+2[3+p) )

+

sin ral’ (

1—2) PF ga_u(l—2) = T F.
( 2) oo, —p( 2) sinﬂ(fa)lﬂ(1_056+“)F(1_a5ﬂ_“) B.u(2)
s _
“F_o5_ .
1+a;ﬁ+u)r(1+agﬂ—u)z 8- (2)

sin ral’ (
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For the second pair we assume that z ¢ [0, oo

—l-a—f+u 1 W
—z 2 F_,3-a(2 = Faopu(z
( ) w8, ( ) Sinﬂ'(—Oé)F (1—0‘;5—M) T (1_044,2_5_#) B H«( )
™ _
+ —2) “F_0p.—u(2),
sin ral’ (1"'0"*2"3_“) r (H'agﬂ_“) (=2) B=n(2)
—l—a—B—p 1 s
—z 2 F oz = Fa, iz
( ) B, ( ) Sinﬂ'(*a)l—‘ (1—04;5+H) T (1_04_554_”) B P«( )

T _
<% a— (_Z) aF_O‘a y T (Z)
it -55-&-#)1—\(1-&- 25+u) Bi—p

sin ral’ (

The connection formulas are easily derived from the integral representa-
tions by looking at the behavior around 0.
One can simplify the connection formulas using F°:

1 -1 ! apu(?) }
. l—a+B—p 1—a+B+p cos L (a+B—p)cos I (a+B+p) R
sinmal (=S50S | -t et 1 B Fapsu(®
F%,a,u(l - Z)
(1—2) P F 40 (1—2)|
1 -1 1 F3.,.(1-2)

L l1+a—B—p 1+a—B+p cos L (a+B—p)cos Z (a+B+p) — B0

sin TI'ﬂF( 2 )F( 2 ) ~ cos é(a—,ﬁ-&-p,) cos %(a—ﬂ—p,) 1 (1 - Z) F_ﬁao‘_“(l - Z)
Feop.u(2)

Pl N (Z)

—a,B,—p

r [FeosE(-atBip) cosE(-a+f-p] [ (-7 T "
sin (

—cos 5 (a4 B+ p) cos F(a+ B —p)

. |: Z,B,u(z)
(~2)"°F

70(,‘3,7;1(2)

sin T

r {—COSS(Wvﬂ—u) cos 5 (—a+ B —p)

FZ,B,#(Z) :|
(—2)"“F2 (2)

—cosj(a+B+p) cosf(—a+p+p) ZaB—n

—1—a—B—p

(72’) 2 Zﬁ,u('zil)

—l—a—B+p o

(72) 2 7u,5,7oz(z_l)
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3.9 Recurrence relations

The following recurrence relations follow easily
relations of Subsect. 3.4:

0- Faﬁ,u( z) =

(z(1-2)0:+a(l—2)—B2)Fo 5,u(2) =

(1=2)8: = B)Fapu(z) =

(20, + a)FL,B,#(z) =

)

)

)
(2(1—2)82—54—%(1—@) FlLoo(2) =
(o ey
< (1- z6-+a—1iggﬁ—ﬁz)Fﬁa¢(@ =
(z—l plreti-s “)Fg,ﬂ,u(z) -
(-2 oI Bl )
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from the commutation

1+a+B8+p
Ll S}

—1+a+
%Fa 1,6-1,u(2),

1+a—08
%Foﬂrl a-1,u(2),

—l+a—p+
%Fa 1,6+1,u(2),

L+a+B+p
ff‘a pr1,ut1(2),

1+a-—
Agggngggglfylxﬁ L (2),

—1+a—B+pu
fFI o, B4+1,u— 1(2«')

—1+atp
%Fa B—1,u+1(2);

1+a+5+p4
fFOAI,B pt1(2)s

—l+a—p+
#Fa 1,8,nu— I(Z)7

1+a—B—p
“‘7{“*Fa+Lﬂu 1(2),

—14a+p
%Fa 1,8, u+1( )



3.10 Additional recurrence relations

There exist other, more complicated recurrence relations for hypergeo-
metric functions, for example

((1+a+5+u)(—1—a+ﬁ—u)
4

(1+a+ﬂ42ru) (ut1), (1+u)z(1—z)3z)Fa,ﬁ,u

_ (1—|—a—|—5—|—,u)(4—1—a+/3—#) Fogsal2), (3.55)

—+

((1+a+6—u)(—1—a+ﬂ+u)

4
N (1+a+572u)(*ﬂ+1) . (17N)z(1fz)8z)Fa,/3,u
_ (Hawﬂ)(gkmmm Fopa(2). (3.56)

Note that (3.55) follows from the 6th and 7th recurrence relation, and
(3.56) follows from the 5th and 8th of Subsect. 3.9.

3.11 Degenerate case-regular solutions

a = m € Z is the degenerate case of the hypergeometric equation at 0.
We have then

F(a,b;1+m;z2) = Z %z”

n=max(0,—m)
This easily implies the identity
(a=m)m(b—m)mF(a,b;1+m;z) = 27 "F(a—m,b—m;1—m;z2). (3.57)

Thus the two standard solutions determined by the behavior at zero are
proportional to one another. Equivalently, in the two notations that we
use, (3.57) can be rewritten as

F°(a+m,b,14+m;2) = 2z "F°(a,b—m;1—m;z),
an,,ﬁ,u (Z) - ZﬁmFo—in,ﬂ?p,(z)' (358)

One can also see the degenerate case in the integral representation
(3.48). If we go around 0, z, the phase of the integrand changes by ¢'2™¢ =
el?™™  Therefore, if & = m € Z, then the loop around 0, z is closed on the

Riemann surface of the integrand.
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We have an additional integral representation and a generating func-
tion:

1
2mi

(@)mFmatb—1,0-btm(2),

/ (1=t (1 —z/t) 2t " 't

[(0,2)*]

1= =z/)" = > t"™(@mFmato-1a-tem(2)-

meZ

To see the integral representation we note that the integral on the Lh.s. is
annihilated by the hypergeometric operator. Then we check that its value

at zero equals
1

27
[o+]

—a,;—m—1 _ (a)m
(1—t)" dt = =,

see (2.44).

(3.58) can be obtained from the integral representation. Indeed, make
the substitution ¢ = 2. Note that [(0,2)"] becomes [(c0,1)"], which
coincides with [(0,2)”]. Then we change the sign in front of the integral
and the orientation of the contour of integration, obtaining

—m

z

27

/ (1—s)"(1—z/s) *s ™ 'ds.
[(0,2)F]

Finally, we apply the first integral representation again.
The generating function follows from the integral representation.

3.12 Degenerate case—logarithmic solutions

The solutions determined by the behavior at 1 and co can be expanded
near zero. These expansions involve logarithmic terms:

Fgmu(l—2)

N (—1)m+t < e L (b — D))(AEmEptey (LmtBopy
k=1

F(l m+9 /1) 1 7W+ﬂ+/l (m k‘) :

2

. . (1+m~2h’3+;4 )j(l{»m,;ﬁfu)j .
—(j+1) —¢(m+]+1)+1n(z)> (ot ) J>,

+Z( <1+m+ﬁ+u+j) 1/<1+m+ﬁ +j>
j=0
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(1= 2)""F_pm,—u(1 - 2)
_ (=pm*
7F(1—m2—5+u)1—x(1—m;5—u)

m

(k= 1)!(1+m;5+“)7k( 1+m42r5*;4)
X <;(—1)k —
>

J0<w(1m B—w >+w(1*m;5+“_j)

ItmtBtpy (ltmtB—p
(G +1)—(m+j+1)+In(z )>( 7 )i )

J 2 jzj
(m + 7)!5! ’

—k
z

+

—1— m —1-m—B—p _1
(=2) Fupm(z)
( m+1 m 1) (1+m+5+u)7k(l+m+6*u)7k B
_1"(1 m 6+u 1 m+ﬁ+u <; (m k:)! 2 z k
+Z< (1+m—|—ﬂ+u+])+w(1—m B+pu j)
| . (Mempaty) (nmion), |
-G +1) —m+j+1)+ 1n(—z)> CET zj)
(=2) " TR ez
( 1 m+1 1) (1+m+ﬂ+u) k(1+m;67u)7k i
fF(lfm;ﬂ 1 m+,8 © ( — (m —k)!
> 1—|—m+6 I 1—m B—pn .
+ ( +J)+Y —J
> P

1+m+B+py (1+m+8—p
7¢(j+1)*w(m+j+1)+ln(fz))( 2 )il )

J 2 jzj
(m + 4)!4!

To show these identities, we use the connection formulas

1
FGo,.(1—2)=
pranll =2) sin ral(A=afBtu)p(lmatbn)

x (= Flpu(2) + 2 Faps u(2),
1

1—2)PF° 5, (1—2)=

( ) gl ) sinﬂaf(170‘;B+”)F(17°‘;B7”)

" (_ cos 3(a+ B —p)cos g(a+ B+ p) o

cos 5 (o — B+ p)cos (o — f — p) ap(2) + Z_aFia’B’f"(Z))’
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) =2z  F° “hy__ ™ <_ ™ — u)F° .
( Z) u,ﬁﬁa(z ) sin o COS2(OC+B /1’) aﬁd,,u(z)

008 T(—at B = n)(—2) “Fa (2)),
(=2) 7 T P ez ) = (—cos D (ot B+ p)FS 5 (2)

sin o 2

+cos 2 (—a+ B+ u)(—2) Flap u(2).

We introduce
Tflﬁ’u(z) = GQFZ,ﬁ,H(z). (3.59)

We apply the de I’Hopital rule obtaining

(_1)m+1

F3,, .(1—2)=
B, ’al( ) ﬂ_F(lf’rn;LﬁwL,u)F(lfm;[ﬂfu)

X (Tfnﬁ,;lr(z) + ZﬂnTi'rrL,B,fu(z) + ln(z)anﬁ,u(ZDv

(71)m+1
7TF( 1*77%;‘51‘# )F( I—m;/ifu)

(1 - Z)iﬁF(iB,m,fu(l - Z) =

X <Tfn_ﬁ,u(z) +2 T, u(2)

+ (In(z) — 7 tan g(m + 8 — u) — wtan g(m + 8- /L))F:’nﬁvﬂ(z))

—l-m—B—p

(=2)" T Fipm(T) =) cos Tm+ 8 - )

X <Tfn,5_ﬁ(z) + zimTimﬂ,,u(z) 4+ (ln(fz) — mtan g(m + 38— /L))anﬁvﬂ(z)),

—1—773,—6+/L °

(—2) 2 F,#yﬁym(zq) :(—1)"'“rl Cosg(m+5+u)

X (Tfn,ﬁ‘,#(z) +27 T, —u(2) + (ln(—z) — mtan g(m + B+ ,u))anBM(z)>

3.13 Jacobi polynomials

If —a=n=20,1,..., then hypergeometic functions are polynomials. We
will call them the Jacobi polynomials.

Following Subsect. 1.6, the Jacobi polynomials are defined by the
Rodriguez-type formula

Rz’ﬁ(z) = (71;1)",27“(2 — 1)758220‘*"(2 — 1)5+".

Remark 3.3 In most of the literature, the Jacobi polynomials are slightly
different:

PP (2) = Rﬁ’ﬂ(l_iz) _ (_1)nRg,a(

1+z)
5 — ).

2

The equation:
0=F(—n,1+a+B+n;8+1;20.)P>"(2)
= (21 =202 + (1 + @)1 = 2) = (14 B)2)2. +nln+a+ B+ 1)) P2(2).
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Generating functions:
A+t —2)*A—tz2)® = DY "Ry (2),
n=0

(142t 7P+ 0)

S RS(),
n=0

1+ (z—Dt) 7P - i "R (2).

Integral representations:

% (14 (1 — 2+ (1 — )P+
1

[0F]

RyP(z) =

1 Co—fn— e
= 5= (1+2t) a4 )t tae
[0+]

1
5 | At (- D)l — )P e
[0+)

Discrete symmetries:

o, _ o n po,—l—a—pB—2n z
RP(z) = (1-2)"R:, (-59)
n pB,a n pB,—l—a—B—2n z—1
= (“D"RI°(1-2) = (=2)"R] ()
—a—B— 1 B 1
_ n l—a—B-2n,p( 1 _ _ n l—a—B—2n,a
= 'R, () = G-vum (=)
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Recurrence relations:

9-RYP(2)
(2(1 = 2)8. —a(z — 1) — B2)R2P(2)

(1= 2)0. — BRI (2)
(20, + a)RYP (2)

(20. —n) Ry’ (2)
(z1—2)0.+1+a+n—(1+a+B+n)z) ROP(2)

(0. +1 —|—a+ﬂ—|—n)Rﬁ’ﬁ(z)
(2(1 = 2)0: —n — B +nz) Ry’ ()

((z— 1). — n) Ry (2)
(2(1 = 2)0: +a— (L+a++n)2) Ry (2)

(z=1)0: +1+n+a+B) Ry’ (2)
(2(1 — 2)0: + o+ nz) RyP(2)

—(a+B+n+ 1Ry (2),
(n+ DR77H(2),

—(B+n)Ry (),
(B+n)RSH(2),

—(a+n)Ry 2 (2),

n—1

(n + 1)szl_l(z)7

(L+a+B+n)Ryt(2),
—(B+n) Ry (2),

(B+n)RE7(2),
(n+ DR (2),

(1+n+a+pB)RET(2),
(n+ a)Ry P (2).

The first, second, resp. third integral representation is easily seen to
be equivalent to the first, second, resp. third generating function. The
first follows immediately from the Rodriguez-type formula.

The symmetries can be interpreted as a subset of Kummer’s table.
The first line corresponds to the symmetries of the solution regular at 0,
see (3.53) (or Subsubsect. 3.7.1). Note that from 4 expressions in (3.53)
only the first and the third survive, since n = —a should not change. The
second line corresponds to the solution regular at 1 (Subsubsect. 3.7.3),
finally the third line to the solution ~ z7% = 2" (Subsubsect. 3.7.5).

The differential equation, the Rodriguez-type formula, the first gener-
ating function, the first integral representation and the first pair of recur-
rence relations are special cases of the corresponding formulas of Subsect.
1.6.

Note that Jacobi polynomials are regular at 0, 1, and behave as z"
in infinity. Thus (up to coefficients) they coincide with the 3 standard
solutions. They have the following values at 0, 1 and the behavior at oco:

1 n e n 1 n
RXP(0) = %7 RYP(1) = (-1) W7
a,B
lim Ln(z) - (_1)"(0‘+ﬂ+—'”+1)¢
z2—00 z nl
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We have several alternative expressions for Jacobi polynomials:

o . n a+1),
RyP(z) = Jim (—=1)" (v — n)Fa 52010t s41(2) = %Fa,ﬂ,2n+a+ﬂ+l(z)
P(a+14n)

F(CM+1)F(H+1) ( mn—l—a—&—ﬂ—f— ja+ 72)

n

l+oa+)n(0+a+B8+n);,

Jj=0

One way to derive the first of the above identities is to use integral
representation (3.51). Using that a is an integer we can replace the open
curve [1, (0, 2)*", 1] with a closed loop [co™]:

lim (=1)" (v = n)FY g 20 s g1 (2)

vr—n
. sinvm
= Vh_lg p Fg,ﬁ,2u+a+ﬁ+1(z)
1 B+n a+n —1l—a—B—n
= — - 1-— - ds.
5 s) ( s) (z—9) s

[oo]

Then, making the substitions s = z — %7 s = zt, resp. s = (z — 1)t we
obtain the 1st, 2nd, resp. 3rd integral representation.
Additional identities valid in the degenerate case:

R = G (-0 R ), ac
RO = O ae R, sen
RyP(2) = (=) (-2 "R15(), aBeL

There is a region where Jacobi polynomials are zero. This happens iff
a,B € Z and «, § are in the triangle

a+n,
B+n,
—a—fB-n-—1. (3.60)

ININ N

In the analysis of symmetries of Jacobi polynomials it is useful to go
back to the Lie-algebraic parameters, more precisely, to set pu := —a —
B —2n — 1. Then (3.60) acquires a more symmetric form, since we can
replace its last condition by

0< pu+n.

One can distinguish 3 strips where Jacobi polynomials have special
properties. Note that the intersection of the strips below is precisely the
triangle described in (3.60).

1. w € Z and —n < pu < —1 or, equivalently, « + 8 € Z and —2n <
a+B8<—-n—1. Then R®® =0 or

degRS? =p+n=—-a—-f—n—1
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2. a€Zand —n < a < —1. Then R*? =0 or
R%P = 27*W, W not divisible by 2.
3. Be€Zand —n < B < —1. Then R®? =0 or
R =(2—=1)""V, V not divisible by z — 1.

These regions are presented in the following picture:

-1

Finally Jacobi polynomials satisfy some identities related to Subsect.
3.10. An additional generating function:

20 (1 —t 4 1) (A +t41r)7 = ZtnRS’ﬁ(z),
n=0

where 7 =+/(1—1t)%+ 4zt. (3.61)
Additional recurrence relations:
(m+a+ﬁ+n«n+ﬂ+n—@n+a+5+m@

+@2n+a+ B8+2)2(1 - z)@z)Rg’ﬁ(z) = (nt+a+B+1)(n+ 1)sz1 (2),

(n((n +a) — (2n+ a+ B)z)

—(2n+a+,3)2(1—Z)@)Rg’ﬁ(z) = (n+a)(n+B)Ry7 (2).

3.14 Special cases

Beside the polynomial and degenerate cases, the hypergeometric equation
has a number of other special cases. In their description most of the time
we will use the Lie-algebraic parameters, which are here more convenient
than the classical parameters.
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3.14.1 Gegenbauer equation through an affine transforma-
tion

Consider a hypergeometric equation whose two parameters coincide up to
a sign. After applying an appropriate symmetry we can assume that they
are at the first and second place, and that they are equal to one another.
In other words, o = 8. A simple affine transformation (6.96) can be then
applied to obtain a reflection invariant equation called the Gegenbauer
equation. We study it separately in Sect. 6.

3.14.2 Gegenbauer equation through a quadratic transfor-
mation

Hypergeometric equations with one of the parameters equal to % or —%
also enjoy special properties. After applying, if needed, one of the sym-
metries, we can assume that 1 = +2. Then identity (6.98) or (6.99) leads

to the Gegenbauer equation.

3.14.3 Chebyshev equation

Even more special properties have equations with a pair of parameters i%.
After applying one of the symmetries we can assume that « = 8 =
Thus we are reduced to the Chebyshev equation of the first kind; 5ee
(6.112). Another option is to reduce it to the Chebyshev equation of the
second kind, which corresponds to a = 8 = —%; see (6.113).

\ =

3.14.4 Legendre equation

Let £ be the sublattice of Z* consisting of points whose sum of coordinates
is even. It is a sublattice of Z3 of degree 2. By using recurrence relations
of Subsect. 3.9 we can pass from hypergeometric functions with given
Lie-algebraic parameters («, 8, pt) to parameters from (o, 8, u) + L.

This is especially useful in the degenerate case, when some of the pa-
rameters are integers. In particular, if two of the parameters are integers,
by applying recurrence relations we can make both of them zero. By ap-
plying an appropriate symmetry we can assume that « = 8 = 0. Thus we
obtain the Legendre equation, see (6.111).

3.14.5 Elementary solutions

One can easily check that
F(a,b;b;2) = Fy_1,00-a(z) = (1 —2)"".
Therefore, using Kummer’s table and recurrence relations we see that if
€1+ €28 + e3p  is an odd integer for some €1, €2,e3 € {—1,1} (3.62)

then Fi g, is an elementary function involving power functions, but not
logarithms.
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3.14.6 Fully degenerate case

An interesting situation arises if «, 8, u € Z, that is, we have the degen-
erate case at all singular points. We can distinguish two situations:

1. If a4+ B 4+ p is even, by walking on the lattice £ we can reduce
ourselves to the equation for the complete elliptic integral, which
corresponds to a = = =0.

2. If a+ B+ p is odd, by walking on the lattice £ we can reduce
ourselves to the equation for the Legendre polynomial of degree 0,
which corresponds to o = 8 =0, u = 1. This equation is solved by

Fo,o,l(z) :F(O,l;l;z) = 1,
2 Fioo(l—2"" =2z7'F(1,1;21—27Y) =log(z—1) —logz,
where we used Kummer’s table and

F(1,1;2;w) = —w™ " log(1 — w).

4 The {F; and 1 Fj equation

4.1 The |F; equation

Let a,c € C. The confluent or the 1 F1 equation is given by the operator
Flajc; z,8,) := 202 + (¢ — 2)0. — a. (4.63)

This equation is a limiting case of the hypergeometric equation:

blim %}'(a, b;c;2/b,0; ) = Fla;c; 2,0z).

4.2 The 5 F, equation

Parallel to the 1 F1 equation we will consider the 2 Fp equation, given by
the operator
Fla,b;—;2,8,) = 202 + (=14 (1 + a + b)2)d. + ab, (4.64)
where a,b € C. This equation is another limiting case of the hypergeo-
metric equation:
lim F(a,b;c;cz,0cz)) = —F(a,b;—; 2,0:). (4.65)

c—>00

4.3 Equivalence of the | F; and > F, equation
Note that
Fla,b;—;2,0.) = w202 + (wa +(1—a—b)w)dw + ab

! 2z = —w™'. Moreover,

where w = —z
(—2)* "' Fla,b;—;2,0.)(—2)"“ = F(a;1 +a — b;w, du). (4.66)

Hence the 2 Fp equation is equivalent to the 1 F1 equation. We will treat
the 1 F1 equation as the principal one.
The relationship between the parameters is

c=14+a—-b, b=1l4a-c
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4.4 Lie-algebraic parameters

Instead of the classical parameters we usually prefer the Lie-algebraic
parameters «, 0:

a:=c—1=a-—0b, 0:=—c+2a=—-14+a+b;
a:HgaJrG7 b:lfga+97 c=1+a.

In these parameters the 1 Fi operator (4.63) becomes
1
Fou(2,0.) = 202+ (14+a—2)0, — 5(1 + 0+ ),
and the 2 Fy operator (4.64) becomes

Late2-La2

Foulz,0.) = 22024 (=14 (2+0)2)0. + 1

The Lie-algebraic parameters have an interesting interpretation in
terms of a natural basis of a “Cartan algebra” of the Lie algebra sch(2)
[DM].

4.5 Integral representations

Two kinds of integral representations of solutions to the 1 F1 equation are
described below:

Theorem 4.1 1. Let [0,1] 3t — ~(t) satisfy

(1)
t et — z)7 ! oo
v(0)
Then
Fla;c;z,0z) / t* % (t — 2)"*dt = 0. (4.67)
vy
2. Let [0,1] > t — ~(t) satisfy
z (1)
et -0 =
7(0)
Then
Fla;c;2,0) / ettt (1—t) 't =0. (4.68)

~

Proof. We check that for any contour v the Lh.s of (4.67) and (4.68)
equal

—a/ ((%taicﬂet(t - z)f‘kl)dt,
v

—/ (Gte%t_c(l—t)c_a)dt

respectively. m]

For solutions of the 2Fp equation we also have two kinds of integral
representations:

44



Theorem 4.2 Let [0,1] 3¢ — ~(t) satisfy

ef%tbfﬂ,fl(t . Z)fbfl (1) _
~(0)
Then
Fla, b;f;z,az)/e*%t"*“*(tfz)*bdt (4.69)
vy

Proof. We check that for any contour v (4.69) equals

—b/7 (ate_%tb_a_l(t—z)_b_1>dt.

O

The second integral representation is obtained if we interchange a and

4.6 Symmetries
The following operators equal Fy,(w, ) for the appropriate w:
w=z:
Fo,a(2,02),
27%  Fo—al(z,0:) 2%,
—e*  F_pa(z,0.) €7,
—e 2% F_g_a(2,0.) €"2%.

The third symmetry is sometimes called the 1st Kummer transformation.
Symmetries of the ;F} operators can be interpreted as the “Weyl
group” of the Lie algebra sch(2).

4.7 Factorizations and commutation relations

There are several ways of factorizing the 1 F; operator.

Foa = (Zaz+1+a72)az7%(9+a+1),

8z(282—|—a—z) 0+ a-1),

1
2
(z@z—i—l—i—a)(az—l)—&-%(—9—&—044—1),

((’)z - 1) (z(‘?z —|—a) + %(—9 +a—1);

Foa = (20430 +a-1)(20. 4 (-0+at1)-2)
~1(-0+a+D@+a-1),
= (z@z—&—%(—9—&—04—1)—z)(z@z—i—%w—i—a—i—l))

—i(—@-l—a ~1)(0+a+1).
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One can use the factorizations to derive the following commutation
relations:

82 ]:9(1

)

= ]:9+1,a+1 8Z7

(20 +a—2) Foa
= ]:0—1,04—1 (Zaz+a—z)7

(zaz -+ a) ‘7'_970(
= Fot1,a-1 (20: + a),

(0. —1) Foa,
- -F'Ofl,oH»l (8z - 1)7

(20: + 10+ a+1)) z2Foa
= z2Fo42,0 (20:+3(0+a+1)),
(20: + 3(=0+a+1)—2) 2Fpa
= 2z2Fo-2,a (zaz + %(—0 +a+1)-— z)

Each of these commutation relations can be associated with a “root” of
the Lie algebra sch(2).

4.8 Canonical forms
The natural weight of the 1 Fi operator equals z%e™*, so that

1

Foo =2 0.2 e 0. — 51 +a+0).
The balanced form of the ; Fi operator is
o _z —_a z 9 2
z2e 2Fg oz 2e2 = 82282—2—5—%2.
Remark 4.3 We have
a_1 _z _a oz 2 1 0&2
22277 2 F0,a(2,0:)2" 2e2 = Op+ —Ow—1——, 2z=2uw;
w w
L a_q _z _a oz 2 1 o? .
2iz2 7 e 2 F0,a(2,0.)z" Ze2 = 8u+78u+1——2, z = 2iu.
U U

which are the operators for the modified Bessel and Bessel equations. Thus
both these equations essentially coincide with the balanced form of the 1 Fi
equation with 8 = 0. We will discuss them further in Rem. 5.3.

The Schrédinger form of the 1 F1 equation is

2
227 2e 2Fpaz 2 2e? = 85_7_7—’_(%_%)2172'(4'70)
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Remark 4.4 In the literature the equation given by (4.70) is often called
the Whittaker equation. Its standard form is

21 &k (1, 2)i
0 4+Z+ 1 )z

0 «
Thus, K, p correspond to —3, 5.

1
z

The natural weight of the 2 Fy operator equals 2%

(1+6)° o
-

, so that
~ 1 1
Fo,a = zieefzazzeﬁe?@z + —

The balanced form of the 3 Fy operator is

0 1 _o _1 1 g 1-a
2027 Fp oz 2e 22 = 0,220, — — + — + )
zne 8,02 7€ z 422 2z 4

(4.71)

The symmetries a — —a, as well as (z,0) — (—z, —6) are obvious in
both balanced forms and in the Whittaker equation.

4.9 The |F; function

Equation (4.63) has a regular singular point at 0. Its indices at 0 are
equal 0, 1 —c. For ¢ # 0,—1,—2,..., the unique solution of the confluent
equation analytic at 0 and equal to 1 at 0 is called the 1 F} hypergeometric
function or the confluent function. It is equal to

o~ (@)n 2"
F(a;c;2z) = galt
(¢)n n!
n=0
It is defined for ¢ # 0,—1,—2,.... Sometimes it is more convenient to

consider the function

e - F(a’; &) Z) _ - (a)n 2"
F(662) = 1 = 2 Te g m) ol

Other useful functions proportional to 1 F are

Fl(a;c;2) = %F(a;c;z),
F°(a;c;2) = ?EZ))F(a;c;z).

The confluent function can be obtained as the limit of the hypergeo-
metric function:

F(a;c;2) = blim F(a,b;c; z/b).
— 00
It satisfies the so-called Kummer’s identity:
F(ajc;z) =e*F (c—a;c;—2) . (4.72)

Integral representations for all parameters

1 a—c t —a

— t t— dt = F(a;c2),

5 / e(t—=z) (a;¢;2)
]—00,(0,2)t,—oc0]
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for Rea > 0, Re(c —a) >0

/ et (t— 1)t = Fl(ajc2),

[1,400]

and for Re(c —a) >0

1 z e c—a—1 _ osinma_y,
= / et(—t) “(—=t+1) dt = - F'(a;¢;2). (4.73)
[1,0F,1]
In the Lie-algebraic parameters:
_ 1+a+0 )
Fya(z) = F(#,l—i—a,z),
_ 1+a+0 )
Fo.o(z) = F(#,l—i—a,z)
— ;F (2)
T Dla+1) P
. (l+a+6
Fy.(2) = F (i;l—i—a;z)
_ p(#)p(&{&)}? )
T(a+1) el
140
Fo(z) = F(10H0 0000
r(gt?)
= WFQW(Z).

Remark 4.5 In the literature the 1 F1 function is often called Kummer’s
function and denoted

M(a,c,z) :== F(a;c; 2).
One also uses the Whittaker function of the 1st kind

1
M, ,.(2) == exp(—z/2)z“+1/2]\/[(,u — K+ 5 14 2p, z),

which solves the Whittaker equation.

4.10 The ,F; function
We define, for z € C\[0, +o0],

F(a,b; —; z) := lim F(a,b;c;cz),

c— 00

where |argc— 7| < m—¢€, € > 0. It extends to an analytic function on the
universal cover of C\{0} with a branch point of an infinite order at 0. It
has the following asymptotic expansion:

F(a,b;f;z)wzwz", largz — 71| < 7w — €.
n!

n=0
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Sometimes instead of 2 Fy it is useful to consider the functions
F'(a,b;—;2) L(a)F(a,b; —; 2),
F°(a,b;—;2) = T(a)T'(b)F(a,b;—;z).

We have an integral representation for Rea > 0
[ ettt = Pt i), 2 ¢ 0.,
0

and without a restriction on parameters

1 1 pa—1 b sinma _;
— i t— dt = ——F b; —; 0 .
omi / e ( 2) = (a,b;—52), 2z ¢&[0,00]
[0,27F,0]
When we use the Lie-algebraic parameters, we denote the 2 Fo function
by F. The tilde is needed to avoid the confusion with the 1 F} function:

Fou(s) = F(1+‘;+9,1_;‘+0;—;z),
Flaz) = p(EEORO1Z0t0 )

- (M,
Foo(z) = Fo<1+3+971—;+9;7;z>

_ F(1+Z+0>F<l_;+9)ﬁg,a(z).

Remark 4.6 In the literature the 2 Fy function is seldom used. Instead
one uses Tricomi’s function

Ula,c,z) =2z “Fla,14+a—c;——2z").

It is one of solutions of the 1F1 equation, which we will discuss in Sub-
subsect 4.11.8. One also uses the Whittaker function of the 2nd kind

1
Wien(2) = exp(—z/2)z”+l/2U(u — K+ 5,1 + 2u; z)7

which solves the Whittaker equation.

4.11 Standard solutions

The 1 Fi equation has two singular points. 0 is a regular singular point and
with each of its two indices we can associate the corresponding solution. co
is not a regular singular point. However we can define two solutions with
a simple behavior around oco. Altogether we obtain 4 standard solutions,
which we will describe in this subsection.

It follows by Thm 4.1 that, for appropriate contours 71, 2, the inte-

grals
—14+60—a —1—60—«
/t z e'(t—z)" = dt,

zZ . _1_q —1—6+4a
/eitl (t—1)" 2z dt




solve the 1 F1 equation.

In the first integral the natural candidates for the endpoints of the
intervals of integration are {—o00,0,z}. We will see that all 4 standard
solutions can be obtained as such integrals.

In the second integral the natural candidates for endpoints are {1,0 —
0,00}. (Recall from Subsect 2.3 that 0 — 0 denotes 0 approached from the
left). The 4 standard solutions can be obtained also from the integrals
with these endpoints.

4.11.1 Solution ~ 1 at 0
For o # —1,—2,..., the only solution ~ 1 around 0 is
Fpo(z) = € F_ga(—2).
The first integral representation is valid for all parameters:
1 t:liﬁ:g
_ 2
27 /
]—00,(0,2)* —oo[

. —1-0-«a
e(t—z) 2z dt = Foalz).

The second is valid for Re(1 + a) > |Ref)|:

z —1—6+a
Tt T T At = Fy(2)
[1,400[
4.11.2 Solution ~ z7* at 0
If « #1,2,..., then the only solution of the confluent equation behaving
as z~ ¢ at 0 is equal to
2 “Fy_a(z) = 2z € F_g_a(—2).

Integral representation for Re(1 — a) > |Red)|:

? —it0—a —1-60—a ol
t 2 e (Z - t) 2 dt = =z F@,—a('z)a z g] - 0070};
0

0 — —a —1—6—a
/ ()™ (= 2)

and without a restriction on parameters:

(—2)“Fo_a(2), 2¢][0,00[;

z —1—6+a

e / ettt (1 —t)" 2 dt = 2 “Fg_a(z), Rez>0.
T

(0—0)*

4.11.3 Solution ~ z7% at +o0

The following solution to the confluent equation behaves as ~ 2z7% =
1460+
272 at +oo for |argz| <7 — €

—1-0-a -~ 1
27 2 Fypia(—277).
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Integral representations for Re(1 46 — «) > 0:

— 00

and, for Re(1+ 60 + «) > 0:

—o0

4.11.4 Solution ~ (—z)""'e* at —oco

The following solution to the confluent equation behaves as ~ (—z)"~'e* =
(—=2) —7¢* at oo for largz — 7| <7 — e
—1460—a ~
e (=2)7 2 Flotal(z)
Integral representation for Re(1 — 6 — ) > 0:
Z —14+6—a —1-6—«a —1+6—a ~
/ (=) " F e m )T A = e(en) U, (7Y,

and for Re(1 — 0 + «) > 0:

1 —1— o4
/e%t—l—a(l—t) S = ef(—2)
0

4.12 Connection formulas

We decompose standard solutions in pair of solutions with a simple be-
havior around zero.

—1—-0—a ~ s

z 2 Fg,ia(fzfl) = — —Fo,0(2)
sin7(—a)T (145=2)
T _
2 %Fo _al(2),
51n7raF(1+92+°‘) 0.-a(2)
2 —14+0—a ~ _
(-2) 7 Fousa(zT) = ey Fo.a(2)

sinw(—a)l (=5-2)

7T —a
sin ral’ (1_9+a) (72) "Foe3)

For Im(z) > 0, one can rewrite these relations using F° and F°:

—l—fb—a ~

z 2 bra(—271)

—14+6—a

me®(—z) 2 o -1
I |7Z+u)r(1fgfu>F—0,ia(z )

sin o

™ -1 e iBe [ F§.a(2) }
(

—cosZ(0+a) e2%cos3(0—a)

0 —140—« + —1—-6—« —1—6—« ~1 1
/H) )T = (2, 2 ¢ 0,0

° oz —l-a =1-bta Z1-b-a ~; 1
/ et (—t) (1-t)" 2 dt = 2z 2 Fp_o(—2"), Rez>0.



s
. —i5 6
ie "2

sin o

. Hence the

The determinant of the matrix (with prefactor) is —
inverse relation is

—1-0—a ~ _
0-a) —] [ 2 Figa(-2)

> o ,—1
WF—Q,ia('é )

4.13 Recurrence relations

The following recurrence relations follow easily from the commutation
relations of Subsect. 4.7:

14+6+
0:Fpa(x) = —5 Forran(2)
(20 +a—2)Fpa(z) = Fo-1,a-1(2),
(20: + a)Fpa(z) = Foy1,a-1(2),
140
(0: = 1) Fou(z) = %Fefl,a+1(z)7
1+0 1+6
(zaz + %) Foa(x) = — o “Frial2),
(Zaz + 176’% _ z> Foo(z) = H%Fg_g’a(z).

The recurrence relations for the 2 Fy functions are similar:

1 +9+Oé ~ 1 +9+a ~
(Zaz + f) FIG,Q(Z) = TF§+1,Q+1(Z’),
146 — - -~
(Zzaz —1 + %Z) F(IQ,a(z) = 7FI€*1,0¢71(Z)5
1460—«
(0 + 5572 ) Foala) = Fhasaa)
140+« ~ 1-0+a-
(o 14 ) Bl = LR )
1+0+a
azFIG a(z) = 2 Fé+2,a(z)7
~ 1-0+a-
(0.~ 1-0)Fs0(s) = 2 CFD ()
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4.14 Additional recurrence relations

There exists an additional pair of recurrence relations:

<(1_a)z282+(1*0‘)(12* a+6) Z+—1—29+a> Fouls) = %Mpe}wz(z)’
1+a)(1 0)  —1-6-a) - —1-0—a -
(arorsto SRRy S Boote) = 2 e

4.15 Degenerate case-regular solutions
a =m € Z is the degenerate case of the confluent equation at 0. We have

then

F(a;1+m;2) = Z %z”.

n=max(0,—m)
This easily implies the identity
(a —m)mF(a;1+m;2) =27 "Fla—m;1 —m;2). (4.74)

Thus the two standard solutions determined by the behavior at zero are
proportional to one another. Equivalently, in the two notations that we
use, (4.74) can be rewritten as

Fo(a;14+m;2) = 2z "F°(a—m;1—m;z),

Fg,w:,(z) - ZﬁnLFg,fwl,(Z)' (475)

One can also see the degenerate case in the integral representations:

3 e1—z/t) "t "t = F_1i94 mm(2),
[(2.0) ]

=N ML=t ™At = 2 F 4, (2)

2mi —izadm,mmAs)

[(0,1)*]

The corresponding generating functions are

e (1—z/t)™" = > t"F 1j20 mm(2),
meEZ

A=) = Dt F sarm, m(2).
MmeEZL

4.16 Degenerate case—logarithmic solutions

The solutions determined by the behavior at co can be expanded near
zero. These expansions involve logarithmic terms:
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—1-0—a ~ 1 —1)ymtt u k—1 (k - 1)'<W)7k —k
z 2 o,m(—27") IE( 1+)927'm) (k—l -1 (m —k)! '
>° (7”75*9) 1+m-+6 . . . i
+;(mﬂ),y,( (z)+¢(2+])_¢<]+1)_¢<]+m+1))z>,
B —1t0-a - 1 —nmtt (& L G I
€ (_Z) 2 F*va(z ) _IE( 11—)927771) <¥1(_1)k (m(— k)' ) “ '

Let us derive this from the connection formulas

10— ~ _ T o — a0
S Baa2) = i (-~ Fha() 2 (),
ez( Z)71+297a - x
- 0 —1 . o o o
[(=0Fa (s el ) = dma (05 50+ QF5L()

+ cos g(@ - a)(—z)faF;_a(z)).
Introduce
T;,a(z) = 8(¥Fg,a(z)
Applying the de I’Hospital formula we obtain for m € Z

—1-6—a ~

2T (=2 =)™ (T () + 2T (2)

+ 1n(z)F;,m(z)) (4.76)
Wez(fz)%eim o
— m —0—m —0,m
D(I=Em) (=)

+ (In(z) — wtan Z(60 + m))F;,m(z)). (4.77)

(™Y = (=)™ cos g(e +m) (Tg,m(z) 2T (2)

Then we divide (4.76) by I'(:4E™)'(1E4=") and (4.77) by 7.

4.17 Laguerre polynomials

1 Iy functions for —a =n = 0,1,2,... are polynomials. They are known
as Laguerre polynomials.

Following Subsect. 1.6, they can be defined by the following version
of the Rodriguez-type formula:

1 _ _
Ly (2):= Eezz “ore LT

The differential equation:
F(—nja+1;2,0:)Ly(2)
= (zaf +(1+a—-=2)0.+ n)Lff(z) = 0.

o4



Generating functions:

e L+ = X "Ly (2),

n=0
—a—1 t o
(1-1) exp 15 = Z:Ot L5 (2).
Integral representations:
L3(2) =55 [ e (14 p)*tmetat

(0+]

= [ (1—t)"* Texp(Z)t " dt.

[0+]

Expression in terms of the Bessel polynomials (to be defined in the next

subsection):

Le(z) =2"Bp* o l(—z7h).

Recurrence relations:
9.L; (2)
(20 + a— z) Ly (2)

(20 + @) Ly (2)
(0: = 1) L(2)

(20: —n) Ly (2)
(20: +n+a+1—2)L;(2)

_La+1(z)7

n—1

(n+1)L331(2),

(a+n)L5 " (2),
_L2+1(z)7

—(n+a)Ly_1(2),
(n+ 1)Lyt (2).

The first, resp. second integral representation is easily seen to be
equivalent to the first, resp. second generating function.

The differential equation, the Rodriguez-type formula, the first gener-
ating function, the first integral representation and the first pair of recur-
rence relations are special cases of the corresponding formulas of Subsect.

We have several alternative expressions for Laguerre polynomials:

1.6.
Ly(z) = lim(fl)"(l/fn)FIH_a_Q,,’a(z)
v—sn

= Zn lim (1/ — n)f‘11+a72u,a(z) =

vr—n
_ - (1+a+j)n—]'(_z)j
2 i

n!

7(1 +'a)n F(—n;1+ «;2)
n!
(—2)"F(—n, —a—n;—; —2 )

Let us derive the above identity using the integral representation (4.73).
Using that a is an integer we can replace the open curve [1,0",1] with a

closed loop [co7]:

lim (—1)"(v — n)Flia_20.a(2)

F11+a72u,a(z)

= = es(=s) (1 - s)* " ds.

v—n
. sinvm
= lim
v—n T
1 z
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Then we set s = —%, resp. § = 1—% to obtain the integral representations.
The value at 0 and behavior at co:

(+De o L8G) (D"

Ly (0) =

n! z—o0 M n!

An additional identity valid in the degenerate case:

Ly(z) = (n+1)a(=2)""L, (), a€Z.

4.18 Bessel polynomials

The 2 Fp functions for —a = n = 0,1,2,... are polynomials. Appropri-
ately normalized they are called Bessel polynomials. They are seldom
used in the literature, because they do not form an orthonormal basis in
any weighted space and they are easily expressed in terms of Laguerre
polynomials.

Following Subsect. 1.6, they can be defined by the following version
of the Rodriguez-type formula:

BY(2) := %z_eezilafe_zilze"'z”.

Differential equation:
F(=n,n+60+1;—;8.,2)Bi(2)

= (202 + (14 2+ 0)2)0. - %n(l +0-a))Bi(z) = O

Generating functions:

8

e f(1—tz) " = t"BS"(2),
0

n

(1 + t2)9 exp(ﬁ) = ZO tnBZ*Zn(Z)

Integral representations:

Bi(2) == [ e(l—tz) " de
[0+]
=55 [ (1 +t2)""exp( et e
[0+]

Expression in terms of the Laguerre polynomials:
BY(z) = (—2)"Ly?=20= 1 (—270),

Recurrence relations:

(20: +n+0+1)Bi(z) = (n+0+1)B*(2),
(220, — 1 —nz) Bl(z) = —-Bil(2),
(20- —n) Bu(2) = —Bpri(2),
(2°0. =1+ (n+0+1)2) By(2) = —(n+1)Boyi(2),
0.B%(z) = —(n+0+1)B%(2),
(2°0. —1—02) Bi(2) = —(n+1)Biii(2).

96



Most of the above identities can be directly obtained from the corre-
sponding identities about Laguerre polynomials.

The differential equation, the Rodriguez-type formula, the second gen-
erating function, the second integral representation and the last pair of
recurrence relations are special cases of the corresponding formulas of
Subsect. 1.6.

We have several alternative expressions for Bessel polynomials:

lim (—1)" (v = )F,_1_g_2n(2) = —F(=nyn+0+1;—;2)

v—n n!

B)(2)

= 2" lim(v — n)Flg,,l,g,gl,(—z_l)
v—n

= WO (o —f - 2m -,
n:

The value at zero and behavior at co:

)=t g BUE) _ (CDm+6+ D),
" n!’ .

z—o00 2™ n!

Both for Laguerre and Bessel polynomials there exist additional recur-
rence relations and a generating function. Below we give a pair of such
recurrence relations for Bessel polynomials.

((2 F2n 4 0)220. + (2420 +0)(n+0+1)z

~(+0+D))Bl=) = —(n+ D) +0+ DB (),

( — (2n+6)2°9, + (2n + O)nz + n) Bl(z) = BY_i(2).
They correspond to an additional generating function

2 1+ ) Cexp($55) = X t"BA(2),

n=0

where r:=+/1+4zt.

4.19 Exponential integral

The case a = 0,c¢ = 1, equivalently, a = b = 0, equivalently, d = —1,a« = 0,
is special. It corresponds to Laguerre and Bessel polynomial of degree
zero. We have

Fo10=207+ (1 —2)0., (4.78)

and F_ o(z) = 1. Similarly,
Fo10=2"02+ (—1+2)0:, (4.79)

and 1 9(z) = 1. The fourth standard solution of the confluent equation
is expressed in terms of the so-called exponential integral defined as

Bi(z) = /me_”% (4.80)

e} 1
= / efzu@ :/ e s ds_ (4.81)
1 u 0 S
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If we introduce
) "z B df -1 kt+12kr
Ein(z) := /O (I—e t)j =2 % (4.82)
: k=1

then
Ei(z) = —y — log(z) + Ein(z). (4.83)

Remark 4.7 One sometimes introduces for real t

Ei(z) = /OO ot (4.84)

.t

Then
Ei(z) = v+ log |z| — Ein(—z), « > 0. (4.85)

4.20 Special cases

Apart from the polynomial case and the degenerate case, the confluent
equation has some other cases with special properties.

4.20.1 Bessel equation

If 6 = 0, the confluent equation is equivalent to the (modified) Bessel
equation, which we already remarked in Rem. 4.3. By a square root
substitution, it is also equivalent to the oF1 equation; see (5.87).

4.20.2 Hermite equation

If a = i%, the confluent equation is equivalent to the Hermite equation
by the quadratic substitutions (7.116) and (7.115).

4.20.3 Fully degenerate case

0, € Z will be called fully degenerate case. It can be divided into two
sublattices: even, for § 4+ a even, and odd, for § + « odd. Recurrence
relations preserve these sublattices.

The Bessel equation with integer parameters correspond to 6 = 0,
a € 27 and lie in the even lattice.

The Bessel equation with half-integer parameters correspond to 6 = 0,
a € 27 + 1 and lie in the odd lattice.

Exponential integral belongs to the odd lattice.

5 The (F; equation

5.1 Introduction

Let ¢ € C. In this section we will consider the ¢ F1 equation given by the
operator
F(c;2,05) := 283 +co, — 1.
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It is a limiting case of the 1 4 and 2 F} operator:

lim i.7-"(a,b; ¢ z/ab, 0z qp)) = lim 2]:(a;c;z/a78(z/a)) = Flc¢;2,0:).

a,b—oo ab

Instead of ¢ it is often more natural to use its Lie-algebraic parameter
a:=c—1, c=a+1l. (5.86)
Thus we obtain the operator
Falz,8.) = 202+ (a+1)0. — 1.

The Lie-algebraic parameter has well-known interpretation in terms of
the “Cartan element” of the Lie algebra aso(2), [V, Wa, DM].

5.2 Equivalence with a subclass of the confluent
equation

The o F1 equation can be reduced to a special class of the confluent equa-
tion by the so-called Kummer’s 2nd transformation:

Fle;2,0,) = %efwm]:(c — %; 2c — 1;w,8w>ew/2, (5.87)

where w = +44/z, z = %wQ. Using the Lie-algebraic parameters this can
be rewritten as

Falz,0.) = %e*wﬂfo,ga(w,aw)ew/? (5.88)

5.3 Integral representations

There are two kinds of integral representations of solutions to the oF}
equation. Thm 5.1 describes representations of the first kind, which will
be called Bessel-Schlifii representations. They will be treated as the main
ones.

Theorem 5.1 Suppose that [0,1] 3 ¢t — ~(t) satisfies

oz 7@
eet =
7(0)
Then
f(c;z,az)/ete%tfcdt =0. (5.89)
vy

Proof. We check that for any contour v (5.89) equals

— / (8tete% t)dt.
.

O

Integral representations that can be derived from the representations
for the confluent equation by 2nd Kummer’s identity will be called Poisson-
type representations. They will be treated as secondary ones. They are
described in the following theorem.
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Theorem 5.2 1. Let the contour -y satisfy

(1) B

(t2 _ Z)fc+3/262t
v(0)

Then
Fle;2,0:) /(t2 — ) T2 g = 0.
2!

2. Let the contour v satisfy

(1) _

(t2 _ l)cfl/Qth\/E
7(0)

Then
Fle; 2,0:) /(t2 —1)°7¥2eVEqE = 0.

~

Proof. By (5.87) and (4.67), for appropriate contours v and ~/,
e 2V / efsmote (s — 4\/5)7”%(18
-
2—2c+2/ th(tQ B z)_ﬁ'%dt
,y/

is annihilated by F(c), where we set t = 5 — /z. This proves 1.
By (5.87) and (4.68), for appropriate contours v and ~/,

_ WE _3
e 2‘ﬁ/e s s 1 — 5)° 2ds
~

_ _272(;4»2/ e2tﬁ(1 —t2)67%dt
,Y/

is annihilated by F(c), where we set t = 2 — 1. This proves 2. a

5.4 Symmetries

The only nontrivial symmetry is
27 F_o 2% = Fa.

It can be interpreted as a “Weyl symmetry” of aso(2).

5.5 Factorizations and and commutation relations

There are two ways to factorize the o} operator:

Fa = (z8z+a+1)az—1
= 6z(z82—|—oz)—1.
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The factorizations can be used to derive the following commutation
relations:

0: Fa
= Fa+1 82,
(20 + a) Fa

= Fa-1 (20:+a).
Each commutation relation can be associated with a “root” of the Lie
algebra aso(2).

5.6 Canonical forms
The natural weight of the o F} operator is z%, so that
Fo =2 %9,2°719, — 1.

The balanced form of the ¢ F} operator is
o @ a2
22 Fqz 2 = 0,20, —1——.
4z
The symmetry o — —a is obvious in the balanced form.

Remark 5.3 In the literature, the oF1 equation is seldom used. Much
more frequent is the modified Bessel equation, which is equivalent to the
oF1 equation:

2

o —o 1
22 Falz,0:)z"2 = 2+ =8y —1— a—Q,
w w
2
where z = %, w = £24/z.
FEven more frequent is the Bessel equation:
a _a 1 2
—22Fa(z,0,)z" 2 = 024+ =0, +1— a—z,
u u
where z = —%, u = +2iy/z. Clearly, we can pass from the modified

Bessel to the Bessel equation by w = Fiu.

5.7 The (F; function

The oF1 equation has a regular singular point at 0. Its indices at 0 are
equal to 0, 1 — c.

If¢#0,—1,—2,..., then the only solution of the ¢ F} equation ~ 1 at
0 is called the o F1 hypergeometric function. It is

. ,
1 27
F(c; z) := —
i=o (c); !

It is defined for ¢ # 0,—1,—2,.... Sometimes it is more convenient to

consider the function

i ‘7F(c;z)7°o 1 2
P =T = 24 T

=0
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defined for all c.
We can express the o F1 function in terms of the confluent function

Flc;2) = e_QﬁF(2CQ_1;2C—1;4\/E)

e2ﬁF(2CQ_ ! ;2¢ — 1, —4\@).
It is also a limit of the confluent function.
F(cz) = aILH;o F(a;c; z/a).
For all parameters we have an integral representation called the Schldfli

formula:

2mi
]—00,0t, —oo]

— / eleit™®dt = F(c,z), Rez>0.

For Rec > % we have a representation called the Poisson formula:
! 2\e—3 2tz 1
/ (-2 FY5 = e L)VaR(e,2).
-1
We will usually prefer to use the Lie-algebraic parameters:
Fo(z) = F(a+1;2),
F.(z) = F(a+1;2).
Remark 5.4 In the literature the o F1 function is seldom used. Instead,
one uses the modified Bessel function and, even more frequently, the Bessel

function:
2

()% (),
s = (3R ()

They solve the modified Bessel, resp. the Bessel equation.

I (w)

5.8 Standard solutions

z = 0 is a regular singular point. We have two standard solutions corre-
sponding to its two indices. Besides, we have an additional solution with
a special behavior at oo.

We know from Thm 5.1 that for appropriate contours  the integrals

/ eleit > 1t

~

solve the oFi1 equation. The integrand goes to zero as t — —oo and
t — 0 — 0 (the latter for Rez > 0). Therefore, contours ending at these
points yield solutions. We will see that in this way we can obtain all 3
standard solutions.

Besides, we can use Thm 5.2 to obtain other integral representations,
which are essentially special cases of representations for the 1 F1 and 2 Fy
functions.
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5.8.1 Solution ~1 at 0
If a # —1,—2,..., then the only solution of the ¢F} equation ~ 1 at 0 is
Fa (Z) = e_QﬁFoga (4\/2)
eQﬁFoga ( — 4\/5) .
For all parameters we have an integral representation
1 z oo
— / elett ™ 'dt = Fu(z), Rez>0;
2mi
]—00,0F,—oo[

and for Rea > —% we have another integral representation

/ (1- t2)a7%e2tﬁdt = D(a+ %)ﬁFa(z), z €] — 00,0].

—1

5.8.2 Solution ~ 27 at 0
If « #£1,2,..., then the only solution to the ¢F; equation ~ z~% at 0 is
2 %F_o(2) = ziaefg‘/;Fo,,za (4\@)
zio‘eQﬁFoﬁza( — 4\@)
For all parameters we have

1 zZ o _
— / elett ™ 'dt = 2 “F_o(2), Rez>0;
2mi

[(0-0)*]

and for % > « we have

/\/2 (z — t2)7o‘7%e2tdt = F(—a + 1)\/7?270‘F,a(z), z &] — 00, 0].
v 2

5.8.3 Solution ~ exp(—222)z~ %3 for z — 400

The following function is also a solution of the ¢ F} equation:

~ Louz —oa_1 = 1
Fo(z) == e 2VE,73 iF0,2a(—m>~

‘We have the identity
Fo(z) = 27 “F_o(2).

Integral representations for all parameters:

0
/ elet (—t) " tdt = W%Fa(z), Rez > 0;
for Rea > —1:
-1
2 ya—1 2tz _ 1 l £ _ X
/_w(t DR = Ir(at L) Rulz), 2 ¢ 00,0



for Rea < %:

—z L ~
[w (t? — 27" 2%dt = %F(—a—i—%)Fa(z), z €] — 0, 0].

As |z| = oo and |arg z| < 7/2 — €, we have

o
2

Fo(z) ~ exp(sz%)z i (5.90)

F, is a unique solution with this property.
To prove (5.90) we can use the saddle point method. We write the left

hand side as -
/ e? g 1g,
0

with ¢(s) = —s — £. We compute:

S

/ z 7" z
Fo) =1+, ¢'(6) =25,
We find the stationary point at so = /z with ¢"(s¢) = ~227% and

¢(s0) = —2+/z. Hence the left hand side of (5.90) can be approximated
by
/ 0+ F(5=20)76" (50) a1 g o 1} 54 m2VE,

Remark 5.5 In the literature, instead of the F function one uses the
MacDonald function, solving the modified Bessel equation:
2

W\ ~ w
Kalw) = v(3) F(7)
and the Hankel functions of the 1st and 2nd kind, solving the Bessel equa-
tion:

o = (R ),
H? (w) = _%(e“’fw)“ ~a(ei”%2).

5.9 Connection formulas

We can use the solutions with a simple behavior at zero as the basis:

Pax) = VT b+ YT 2. (5.91)

sin (—«) sin T

Alternatively, we can use the F function and its analytic continuation
around O in the clockwise or anti-clockwise direction as the basis:

Fa (Z) _ 1 (efiﬁ(afé)ﬁ‘& (Z) o eiﬂ'(afé)pa (671271'2:))
212
_ ].3 (efifr(afé)ﬁ‘a(ei%rz) elﬁ(afé)ﬁ‘a(z)) ’
212
—a 1 in(ati) & —im(at+1) & —i27
z “F_q(z) = < (e 2/ Fa(z) —e 2’ Fo(e z))
22
_ 13 (eiﬁ(a+%)pa(ei2ﬁz) _ e71n<a+%>ﬁ,a(z)> )
212
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5.10 Recurrence relations

The following recurrence relations easily follow from the commutation
relations of Subsect. 5.5:

azFa(Z) = Fa+1(2)7

(20: + a@)Fo(z) = Fa_i(2).

5.11 Degenerate case
a =m € Z is the degenerate case of the ¢ F1 equation at 0. We have then
F(14+m;z2) = Z ;z"

nl(m + n)!

n=max(0,—m)
This easily implies the identity (which we write in two notations)
F(l+m;2) = 2z "F(1—m;2),
Fo.(2) = 2z "F_n(2).
Thus the two standard solutions determined by the behavior at zero are
proportional to one another.

We have an integral representation, called the Bessel formula, and a
generating function:

1 o _
on [ €T = ) =R,
[0+]
ele®/t = Zthm(z).
meZ
Introduce

Tao(z) := daFa(z).
Applying the de I'Hospital formula to (5.91) we obtain for m € Z

(Tm(z) +2 Mo (2) + ln(z)Fm(z)) (5.92)

L S S I ]
= < (-1) m— k)!z (5.93)

k=1

Nz

E (In(x) — (i +1) - g +m+1)
+> 3(m +J)! o)
5.12 Special cases

If a = :I:%, then the ¢ F1 equation can be reduced to an equation easily
solvable in terms of elementary functions:

]:

]:'

(2,0.) = 9.—1,
(2,0.) = u (82 —1)u,

[N

=
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where u = 24/z. They have solutions

F

" 1(2) = cosh 2y/z, F

L (2) = exp(—2v3),
() = sinh 2/z ~ _exp(—2v/z)

N @ ==7

[N

F

Wl
[N

6 The Gegenbauer equation

6.1 Introduction

The hypergeometric equation can be moved by an affine transformation
so that its finite singular points are placed at —1 and 1. If in addition
the equation is reflection invariant, then it will be called the Gegenbauer
equation.

Because of the reflection invariance, the third classical parameter can
be obtained from the first two: ¢ = agﬁ. Therefore, we will use only
a,b € C as the (classical) parameters of the Gegenbauer equation. It will
be given by the operator

S(a,b;2,8.) := (1 — 2°)32 — (a + b+ 1)28. — ab. (6.95)
To describe the symmetries of the Gegenbauer operator it is convenient
to use its Lie-algebraic parameters

= atb=1 ). b-a
a=i4+a—-) b=Ll+a+)

2 -2

Thus (6.95) becomes
2
San(2,8.) = (1—22)0> —2(1+a)zd. + A2 — (a + %) .

The Lie-algebraic parameters have an interesting interpretation in terms
of the natural basis of the Cartan algebra of the Lie algebra so(5) [DM].

6.2 Equivalence with the hypergeometric equa-
tion

The Gegenbauer equation is equivalent to certain subclasses of the hyper-
geometric equation by a number of different substitutions.

First of all, we can reduce the Gegenbauer equation to the hyperge-
ometric equation by two affine transformations. They move the singular
points from —1, 1 to 0, 1 or 1, O:

S(a,b;z,0.) = F(a,b; 50, 0,), (6.96)
where
u = lgz, z=1-2u,
or w=12  z=_-1+2u
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In the Lie-algebraic parameters
Sa,/\(z7 8z) - fa,a,Q)\(’LL, 8u)

Another pair of substitutions is a consequence of the reflection invari-
ance of the Gegenbauer equation (see Subsect. 2.4):

S(a,b;2,0.) =4F(3, %; %;w,@wL

1 +1 b+1.3 (6.97)
z S(aﬂb;zvaz)z :4]:(112 aT;§;waaw)7
where
w=2% z=\w
In the Lie-algebraic parameters
Son(2,0:) = F_1 ,\(w,00), (6.98)
2 San(2,0:)2 = F1an(w,00). (6.99)

6.3 Symmetries

All the operators below equal S\ (w, 0y ) for an appropriate w:

w==*%z:
Sa,:i:kv
w==xz:
(z2 -1 S_a4a (z2 - 1),
— +2
w (z271)% :
(2= DD S (-,
+z .
w = (2271)% :

(22 _ 1)%(«1—)\4—%) S*)\,:ta (22 _ 1)%(—a+>\—%).

The symmetries of the Gegenbauer operator have an interpretation in
terms of the Weyl group of the Lie algebra so(5).
Note that the first two symmetries from the above table are inherited

from the hypergeometric equation through the substitution (6.96).

The symmetries involving w = —%2  go under the name of the

(z2-1)2
Whipple transformation. To obtain them we first use the substitution

(6.97) z — 22, then 2% — %, which is one of the symmetries from

the Kummer’s table, finally the substitution (6.97) in the opposite direc-
tion 2 — /15
transformation in Subsect. 6.5.

We will continue our discussion of the Whipple

67



6.4 Factorizations and commutation relations

There are several ways of factorizing the Gegenbauer operator:
San = ((1 — 28, —2(1 + a)z)az
1 1
+(a+)\+§)(—a+)\—§)
= 0. ((1 — 290, — 2az)

+(a+)\—%)(—a+)\+%),

(1-2°)San = ((1—,22)82—1—(a—)\—i—%)z)((l—zQ)@z—i—(a+)\+%)z)

~(a+a+g)(e-r+3)

= ((1 —2°)0, + (a+ A+ g)z) ((1 —2°)0, + (= X+ %)z)

e eaed)

22804«\ = (Z(l—ZQ)az—a—A—g—l—(—a—k)\—%)zQ)(zaz—l—a—i—)\—F%)

+(a+>\+%)(a+>\+g)

1

= (Zaz+oé+)\—g)(z(l—ZQ)az—a—)\—l—%-i—(—a+)\—7),22)

Hatr=3)(arr-3)

2

= (2(1722)8zfa+/\7ng(faf)\f%)f)(zaeraf)\Jr%)

+(a—)\+%>(a—)\+%>
= (z8z+a—)\—g)<z(1—z2)8z—a+)\+%+(_a_

ot eand)

The following commutation relations can be derived from the factor-
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izations:

0-

= 804+1,>\

(1 - 220, — 2a2)

= Safl,/\

(1= 22)0: — (a + A+ )2)
= (1 — 22)Sa,>\+1

((1- 22)82 —(a— A+ %)z)
= (1 — Zz)sa,>_1

(20: +a— A+ 1)

= 2°Sat1a-1
(120, ~(ar )
= ZQSafl)q»l

(20: +a+ A+ 1)

2
= 2"Sat1,a+1

(2(1-2%)0: ~a= A5 —(a—A+5)2?)
= 22304—1)\—1

(1 =240, — 2az),

(1 — ZQ)SQ,)\

(1=2%)0: — (a+ A+ 3)2),
(1 — ZQ)SQ,A

((1=2%)8. — (@ = A+ 3)2);
2280,,\

(282+a—)\+%),

zzsa,,\
(z(l—zz)az—a—!—)ﬂ—%—(a—k)ﬂ—%)zz),
zzsa,,\

(20: + a+ A+ 1),

22Sa,,\
(2(1=2")0:—a—A+1—(a—A+3)7%).

Each of these commutation relations is associated with a root of the Lie

algebra so(5).

Note that only the first pair of commutation relations is directly inher-
ited from the basic commutation relations of the hypergeometric equation
of Subsect. 3.4. The next pair comes from what we called additional com-
mutation relations (see Subsect. 3.10), which in the reflection invariant
case simplify, so that they can be counted as basic commutation relations
(see a discussion in Subsect. 1.2). Note that the Whipple transformation
transforms the first pair of the commutation relations into the second, and

the other way around.

The last four commutation relations form a separate class — they can
be obtained by applying consecutively an appropriate pair from the first

four commutation relations.

6.5 The Riemann surface of the Gegenbauer equa-

tion

Let us analyze more closely the Whipple symmetry.
First let us precise the meaning of the holomorphic function involved

in this symmetry. If z € Q4 = C\[-1,

Therefore,
z

1], then 1 — 272 € C\] — 00,0].

1

(2-1)3  (1-z72)3

(6.100)

defines a unique anlytic function on z € Q4 (where on the right we have
the principal branch of the square root). Note that, for z — oo, (6.100)
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converges to 1.

Consider a second copy of 2, denoted Q_. Glue them together along
] — 1,1], so that crossing | — 1,1[ we go from Q4+ to Qs. The result-
ing complex manifold will be called 2. The elements of 2+ correspond-
ing to z € C\] — 1,1[ will be denoted will be denoted z+. € is biholo-
morphic to the sphere with 4 punctures, which correspond to the points
—1,1,004,00_.

It is easy to see that €2 is the Riemann surface of the maximal holo-
morphic function extending (6.100). On Q_ it equals —

T-
(22-1)2

It is useful to reinterpret this holomorphic function as a biholomorphic
function from (2 into itself:

<_\/ﬂ> , Rez >0,
T(z=) = -
(7\/ﬁ)+’ Rez < 0
We also introduce
e(z4) = =z,
(—Dzx = (—2)+.

Note that 72 = id, €2 = id, (—1)? = id, 7¢ = (—=1)er. 7 and € generate
a group isomorphic to the group of the symmetries of the square. The
vertices of this square can be identified with (1,004, —1,00-). They are
permuted by these transformations as follows:

€(l,004,—1,00-) = (1,00-,—1,004),
(-1)(1,004,—1,00-) = (—=1,004+,1,00_),
7(1,004,—1,00_-) = (004, 1,00_, —1).

It is useful to view the Gegenbauer equation as defined on 2.

6.6 Integral representations
Theorem 6.1 1. Let [0,1] 3t — ~(t) satisfy

b—a+1

(1)
-0 =

40)

Then

S(a,b;2,0-) /(t2 —1)TE (- 2) Pt = 0. (6.101)

~
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2. Let [0,1] 5 t — ~(t) satisfy

—b—a (1)
1 b2 -0

(> 4 2tz + 1) =
~(0)

Then

S(a,b; z,0-) /(t2 Yotz 1) T = 0. (6.102)

5

Proof. We compute that (6.101) and (6.102) equal

a/ (at(lt2 - 1)1”’3‘“@—2)*”*1)(1@

/ (8t(t2 + 2tz +1) 7b27a+1tb_2)dt

~

respectively.

Note that (6.101) is essentially a special case of Theorem 3.1.

(6.102) can be derived from (6.101). In fact, using the Whipple sym-
metry we see that, for an appropriate contour 7,

(=172 [(*=1) "7 (s— ) s (6.103)

5

solves the Gegenbauer equation. Then we change the variables
t=svV22 —1—2, s= 2=

and we obtain that (6.103) equals

—b—a

/(t2 +2tz+1)"2 "7t
y

with an appropriate contour 7. O

Note that in the above theorem we can interchange a and b. Thus we
obtain four kinds of integral representations.

6.7 Canonical forms

The natural weight of the Gegenbauer operator equals (2% — 1), so that
2 —a 2 a+1 2 142
Sax = — (22— 1)7%0.(z% — 1)*M8, + A> — (a+§) .
The balanced form of the Gegenbauer operator is
(2= 1)28,n (22— 1) %
a? 1

+2% -

— —_ 2 e —
= 0:(1-2%)0. T2 1

Note that the symmetries « — —a and A — —\ are obvious in the
balanced form.

71



Remark 6.2 In the literature the Gegenbauer equation is used mostly in
the context of Gegenbauer polynomials, that is for —a = 0,1,2,.... In
the general case, instead of the Gegenauer equation one usually considers
the so-called associated Legendre equation. It coincides with the balanced
form of the Gegenbauer equation, except that one of its parameters is
shifted by % In the standard form it is

(1= 202 =220, — " +1(1+1),

so that m, | correspond to o, A — % according to our convention.

6.8 Even solution

Inserting a power series into equation we see that the Gegenbauer equation
possesses an even solution equal to

0 a b
S 5 .5 )2j
a b 1
- F(Q 279 2) = Flyanl@)

It is the unique solution of the Gegenbauer equation satisfying

SIAO) =1, 57000 =0, (6.104)

One way to derive the expression in terms of the hypergeometric function
is to use the transformation (6.97).
We have the identities

+ _ 9 —1=2ax2A iz
Saalz) = (=297 "% "SI, (ﬁ)

beside the obvious ones

S;,A(Z) = S;r,fx(z) = S:,A(_Z) = S+ A(=2),

6.9 0Odd solution

Similarly, the Gegenbauer equation possesses an odd solution equal to

so i ) (%)J@z)zm
22+ 1)

a+1 b+1 3 2 _

2 ' 2 ’2’2) = 2

0
= 22F( ZF;,Q L(22).

It is the unique solution of the Gegenbauer equation satisfying

Son =0, L0 =2 (6.105)

72



‘We have the identities
_ . —1—2a42Xx iz
Sra() = - TR ()
1—=z
= (1-2)7"57,,(2),
beside the obvious ones:

Sot)\(z) = Sct,f)\(z) = _S:,A(_Z) = _Sotf/\(_z)v

6.10 Standard solutions

As usual, by standard solutions we mean solutions with a simple behavior
around singular points. The singular points of the Gegenbauer equation
are at {1, —1,00}. The discussion of the point —1 can be easily reduced to
that of 1. Therefore, it is enough to discuss 2 x 2 solutions corresponding
to two indices at 1 and oco.

By Thm 6.1, for appropriate 71, 2 the integrals

/(t2 — 1)t - 2) T, (6.106)

Y1

/(t2 2tz 4 1) (—t) BTy (6.107)
Y2

are solutions.

The natural endpoints of v are —1,1, z, co. We will see that all stan-
dard solutions can be obtained from such integrals.

The natural endpoints of 2 are z + 22 — 1,z — v/22 — 1,0, 0c0. Simi-
larly, all standard solutions can be obtained from the integrals over con-
tours with these endpoints.

It is interesting to note that in some aspects the theory of the Gegen-
bauer equation is more complicated than that of the hypergeometric equa-
tion. One of its manifestations is a relatively big number of natural nor-
malizations of solutions. Indeed, let us consider e.g. integral representa-
tions of the type (6.106). The natural endpoints fall into two categories:
{1, -1} and {0,00}. Therefore, we have 3 kinds of contours joining two
of these endpoint: [—1,1], [0,00[ and the contours joining two distinct
categories. This corresponds two three distinct natural normalizations,
which we describe in the wht follows.

6.10.1 Solution ~1 at 1

If « # —1,—-2,..., then the unique solution of the Gegenbauer equation
equal to 1 at 1 is the following function:

Faoan (152 = Plabs HEEL 122

a+b+1 2
g b )

Saa(z):

2y a b
F, —%,A(lfz)—F(??

«,
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We will also introduce several alternatively normalized functions:
1

Sa(z) = m&m(z)
1 a+b+1 1—2 1—2
142022\ v/ 1422
1 — 1o T(EET)R(ET)
a,k(z) = 22 F(a—|—1) Sa,)\(z)
—a+b+1
Q_QM ( ,b;a+b+1;1iz):2_%_°‘+)‘FI
L(=5) 2 2
F(1+2a72)\)1—x( 1+2a+2)\)
11 _ 2 2
San(e) = T(2a+1) Sax(2)
T'(a)L(b) a+b+1 1—=2
— F . .
T(a+b) (a’b’ 2 2 )
F( 1422 F( 1+2a)
0 _ 22&; . _ B} .
ax(?) F(2a+1)5 A(2) ﬁil“(a—kl)s A(2)
LT’ a+b+1 1—2
a+b—1 2 . .
= 2 F(a+b)F(a’b’ 2 2 )

Assuming that z &] — oo, —1], we have the following integral represen-
tations: for Rea + % > ReA > —%

—1

/(ttl)*%“(zft)*%*wdt = S.(2),

— o0

and for Rea + 1 > [Re)|

oo

/(t2 otz + 1)t G = 8T ().
0

6.10.2 Solution ~27%(1—2)"“ at 1

If @« # 1,2,..., then the unique solution of the Gegenbauer equation
behaving as 27 “(1 — z)~“ at 1 is the following function:
1-—
(1- 22" 0 n(z) = 27°(1— z)*aF_a,a,_QA( . Z)
= Q=) CFL, Ly (-2,

Assuming that z €] — 0o, —1] U [1, 00|, we have the following integral
representations: for —Rea + % > ReX > f%

/(1—t2)7%+k(z—t)7%7°‘4dt = (1-2")7"SLaa(2),

—1
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1

and for 5 > Rea

h/l—zQ—z
/ (P +2t2+1)77 3 (=) 27t = (1-2%)7"SY \(2).
—iy/1—22—2

6.10.3 Solution ~ z7% at co

If 2\ # —1,—2, ..., then the unique solution of the Gegenbauer equation

behaving as z7% = 2727 at oo is the following function:
2 —1—2a+2X z _ ,l,a+)\ 2
(z" =1 S‘*""(ﬁ) = W) P a1
= 22 PE (),

Assuming that z €] — oo, 1], we have the following integral representa-
tions: for % > ReA

1

/(t2 S e = o7 T 8 (),

21
and for —Re\ + % > —Rea > —%

0

22—1—2

6.10.4 Solution ~ z~? at co

If 2\ # 1,2,..., then the unique solution of the Gegenbauer equation

1 _a-x

behaving as 2% = 272 at oo is the following function:

2 —1-2a—2) z Ll _a= 2
—]_ 4 S a(““‘*) - 1 2 F‘ aa(“‘7>
(2 ) \, = (1+2) e T

-

= IR L),

Assuming that z €] — oo, 1], we have the following integral representa-
tions: for ReA + 1 > |Req/|

oo

J G e e e B G BT =}
o

z

and for Re\ + % > —Rea > —%

—/22—1—2

/ (B 42tz + 1) 2(—t) 2t gt = (z2—1)*i*%*%sga(7
z

— o0

()

)

/ (t2+2tz+1)_a_%(—t)_%+a_’\dt _ (22 _ 1)*1724u+2>\ Si)\’a(;
z



Remark 6.3 As mentioned in Remark 6.2, in the literature instead of
the Gegenbauer equation the associated Legendre equation usually appears.
One class of its standard solutions are the associated Legendre function

of the 1st kind
z+1 ki 1—=2
<271> F(— b+ 11—mi—57)

27mF(1—m+l7—m—l;1—m;g>
(22-1)2 2

2m
msﬂn,wg(z),

Pi"(2)

which up to a constant are (2° — 1)% times the solutions of Subsubsect.
6.10.2. Another class of solutions are the associated Legendre function of
the 2nd kind

. (=D _l+m 42 l+mA+l 3,
Q') = S ( 5 g ltgie )
(22 -1)% ( 2
- P+ 1,0+ m 120+ 2; )
21+l(1+z)l+m+1r(1+%) + 1L l+m+1;20+ ]
— 2Pl (#)
( ) l+%,m m

m
2

which up to a constant are (22 —1)2 times the solutions of Subsubsect.
6.10.4. (In the literature one can find a couple of other varieties of as-
sociated Legendre functions of the 1st and 2nd kind, differing by their
normalization, see e.g. [NIST]).
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6.11 Connection formulas

We can express the standard solutions in terms of the even and odd solu-
tions

San(z) = RRCANE)

(1- )8 o 1(2) i St(2)

+ a = Soa(2),
Ti-¢+PrG-%-9
_1_ay2 z VT
(1-2%)7172728 \ o( ) = - - S5 (2)
22— 1 TG-¢-3rG+5-p
1/ TC _
+ 1 Sa,)\(z)a

— - Saa(z
PE-5+0G+5+3)

22 -1
W/
+ p P Soa(z)
N(;-5+3TG+5+3)
We set
ZW-,A(/LU) = (w2 - 1)7%7%7%8/\712( v ) (6108)
w? — 1
We have the connection formulas
1 1 — T r
2%/m TTEHa—n  TEran | |2 YZa(2) B Sa£a(2)
. 1 1 - 20
V2sin(m\) piverrmy v Il o wrwny 2 Za,2(2) | | 7w S—a.A
1 1 y Mo
2om | TTE ey ey Saalz) | 127 Zan(2)
: 1 1 20 - ’
V2sin(ma) | — FIZa—n T(ta—n 7(22271” S—(y,j:A(Z)_ _QAZQ,*A(Z)
__cosmA 1
T ™ T(Lta—MT(3+atr) Sax(F2)
31 1 cos T 2a
sin(mo) Y sy e m—y e (IET)QS,QA(ZFZ)
Sax(£2)
= 2a
e S-an(£2)

(s

(2)

)



6.12 Recurrence relations

The following recurrence relations can be easily derived from the commu-
tation properties of Subsect. 6.4

1/1 1
0:8an(z) = —5(5+a=A)(5+a+A)Sarn(2),
((1- 2%)8, — 20z) San(z) = —2Sa-1.x(2),
((1722)8 +a+/\ = ( +a+)\) axt1(z

((1—22)3 +a— 2] Sanx(z) = ( —&-a—)\)SaA 1

(z8 +-4+a—-X])San(z) = ( +a— )( +a— )SQH,A,l(z),

1
2

)

)
(2(1722)8Z+(%7a+)\) “2az ) Sar(z 28 1as1(2),

)

(z8 Fo4a+A])San(z < +a +/\>< +(Y+/\>Sa+1,>\+1(z),

(z(l—zz)az—i— (%—a—)\) (1—z2)—2az2> Sax(z) = —2Sa-1a-1(2).
6.13 Gegenbauer polynomials
If —a=n=0,1,2,..., then Gegenbauer functions are polynomials.

We will use two distinct normalizations of these polynomials. The Cj,
polynomials have a natural Rodriguez-type definition:

1

I, R

(2% — 1)"%ar(2* — 1)

The C,' polynomials are defined as

20+ 1),

O ()= .

Cr(2).

Remark 6.4 The first kind polynomials is just the special case of the
conventional Jacobi polynomials (see Rem. 8.3) with a = j3:

CL¥(2) = PY%(2).

The second kind of polynomials is called in the literature the Gegenbauer
polynomials. In the standard notation its parameter is shifted by %, which
is motivated by the generating function (6.110):

atl
Clle(z) = CR 2 (2).
When describing the properties of Gegenbauer polynomials we can

choose between C), and C,'. We either give properties of both kinds of
polynomials or choose those that give simpler formmulas.

8



Both kinds of polynomials solve the Gegenbauer equation:

((1 —2%)02 = 2(1 4 a)20. + n(n+ 20+ 1))071/11‘“(2)

= S(—n,n+20a+1;2,8.)C/"(z) = 0.
Generating functions:
Q=22+ -1)"* = > (2)"Cr " "(2), (6.109)
n=0
(122t +6)772 = Y ol (6.110)
n=0
Integral representations:
1 a+n
cLe = — (1—2t t? 2—1) 7" e,
(2) 27ri(72)”/ (1)
[0+]
1 1
oy = — [ (=242t " e
me) = oo [ (-2
[0+]

We give symmetries for both kinds of polynomials:

Ch%(z) = (-1)"CR%(~2)
_ Qatl4m)n 2 ygot-doan E2
- (¢2)”(a+§)n( G (
Ch%(z) = (F1)"Cr%(=2)
(F2)"(a+3)

_ \Te) \BTgn 2 NG
- (2a+1+n)n(z 12 Cn

II,—%—a—n( +z )
V22 =1/

We give recurrence relations only for C},"“, those for C;“ differ by coeffi-

cients on the right, but have a comparable level of complexity:

9.0 (2) = (2a+1)Ct(2),
((1 — 290, — 2az) Cih(z) = WC’EQ_I(@,

(1=290: = (n+2a+1)2) O (2) = —(n+1)C55(2),
((1 — 22)8z + nz) Crr%(z) = (n+2a)C%(2),

(20: —n)C(2) = (2a+1)C%(2),

o n+1)(n+2 a—
(21— 2%)0. +14+n— (n+2a+1)2°) C%(z) = —%Cﬁz '(2),
(20 +n+2a+1D)CH%2) = (a+ 1)C;I’a+1(2)7

2a+n—1)(2a+n)

e (2).

(2(1=2%)0. —n—2a+n2?) 0% (2) = -
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The differential equation, the Rodriguez-type formula, the first gener-
ating function and the first integral representation are special cases of the
corresponding formulas of Subsect. 1.6. Thus the polynomials C" belong
to the scheme of Subsect. 1.6. C™ do not have a natural Rodriguez-type
formula, and do not belong to the scheme of Subsect. 1.6.

The C" polynomials have simple expressions in terms of the Jacobi
polynomials:

(£1)"R%>® (1 ;F Z)

+1—2\" o, —2a—2n—1 2
- e ()
( 2 ) 1Fz

Cu®(2)

() mee (22)

We have several alternative expressions for C' and C" polynomials:

Ci%(e) = Jm(fl)n(”*")sl,wwé(z) = yhfi(l/—n)F;,a,QuuaJrl (%)
= (il)n(aj;i;l)nF(—n,ﬂ+2a+1;a+1;%),
Cu(2) = 31311(_1)"(.”—") g,u+a+%(z)
= (il)”%%lhp(fn7n+2a+l;a+l;1:;22')
[5] .

(_1)k(04 + %)nfk n—2k
= X Hm—oy

Values at +1, behavior at infinity we give for both kinds of polynomi-
als:

Lag, 2=n(9 1
CLo(£1) = (£nrletbn iy S0E 0 o (Oc—l—'n—i- )n7
) Z—00 n!
1
_ (epratie o ol 2Mat g
Co (1) = (F)" =5, lim == = Tz

The degenerate case has a simple expression in terms of C' polynomi-

als:
4

Lo
G = (,22 -1
The initial conditions at 0 and the identities for the even and odd case
are given only for C°®, since those for C)y* are more complicated:

) C;;;;‘a(z), o€ Z.

_1yM(qa L
O (0) = SRR 0.050(0) = 0
(=1)"2(a+ 3)m

C;haﬂ (0) =0 0. C;haﬂ (0) = ml
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e = et in i
g )
i) = (ot Emapnle)
R e
M

3 3 3
2F(— R — H )
z mm+2+a22

= "
We have the following special cases:
1. If a € Z,

2. faeZ+ 1, _"2 1 §a§—§,then02’a:0.

3. fa€Z, =% <o < —1, then o/ = (1 —2%)"*W, where W is
a polynomial not divisible by 1 — z2.

6.14 Special cases

When describing special cases of the Gegenbauer quation we will primarily
use the Lie-algebraic parameters.

6.14.1 The Legendre equation

Suppose that one of the parameters is an integer. Using, if necessary,
recurrence relations we can assume it is zero. After applying an appropri-
ate symmetry, we can assume that a = 0. We obtain then the Legendre
operator:

Son(2,8.) = (1—2%)9% — 220, + \* — i. (6.111)

For the particular case A = 0 its solutions can be expressed by the so
called complete elliptic functions.

The Legendre equation is usually parametrized by n = —% + A. Thus
we rewrite the Legendre operator as

Pu(z,8.) = (1—2°)82 — 220, +n(n+1).
Let us introduce the Legendre function

Pu(z) = So.i(n+§)(z)

1— 1—2
— F(—n,l—i—n;l;Tz) Fooi(2n+1)( 24)
n l+n
= F(-g5 —5bl1=2") =F 3 11 (1-2°).
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We also introduce its variety differing by a normalization:

P, = ———P,(2).

sinmn

Here are integral representations of P,(z) valid for all n:

/ (1 —t3)"(t—2) " 'dt o / (1—t*)""" (- 2)"dt,
[(1,2)+] [(1,2)+]
iy/1-22—2 iy/1-22—2
: / GRERRIR S / (
—iy/1-22—2 —iy/1-22—2

We give also a few integral representations of P, (z) valid for —1 < Ren <
0:

2771 2n+1

2mi

242tz +1)72 (=) " ldt.

/ (t2 + 2tz + 1)7%t"dt = / (t2 L2y + 1)7%tinildt,
0 0

27" /(t2 —D"z—t)" "Mt = 2"t /(t2 — 1) " Nz —t)"dt,

27" /(17t2)"(z7t)*"*1dt = 2ltn /(17t2)7"71(z7t)"dt.
1 1

We also introduce the associated Legendre function:
2 —n—1 VA
Qu(z) = (" —1)"2 Sn+%,0(ﬁ)
2

= (1+2) " '"F(n+1ln+1;2n+2; i) =(1+ z)‘”‘lFQHH,O,O(m)

142

="1p +1,0,1 (2’72).

n

n+1 n+2 3 5
Plnr2 e
Here is a differently normalized associated Legendre function:

o n1 (n+1) ;

Here is an integral representation of Q. (z) valid for all n:

/ (1—t3)"(t—2) " 'dt.

1=,—1%]

_ anle(

2771,71
2isinnmw

The following integral representations of Q,(z) are valid for Ren > —1:
0 —/22—-1—2
/ (> + 2tz +1)72 (—t)"dt = / (£ + 2tz +1)72 (=) " dt,

22—1—2

1

27'”71 /(t2 o 1)n(t o Z)fnfldt _ 2n /(tZ o 1)7n71(t o Z)ndt.

—1
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Remark 6.5 According to eg. [WW], the standard Legendre function is
P, (z), whereas the standard associated Legendre function is Qn(z)

6.14.2 Legendre polynomials

Assume now that n =0,1,....
The Legendre polynomials are special cases of both C* and C", as well
as special cases of the Legendre function:

Pu(z) = C°(2)=Cr"(2)
g2y
= 2%!@ (z"=1)".

Their generating function is a special case of the generating function for
c:

(1-2:t+6)72 = Y Pu(a)™.

6.14.3 Chebyshev equation of the 1st kind

Suppose that one of the parameters belongs to Z + % Using, if neces-
sary, recurrence relation, we can assume it equals —%. After applying an

appropriate symmetry we can assume that o = f%. We obtain then the
Chebyshev operator of the 1st kind:
S_1a(20:) = (1-2%)02 —20. + N\ (6.112)

After substitution z = cos ¢ it becomes
95+ N2

Thus the coresponding equation can be solved in terms of elementary
functions.

To obtain an operator that annihilates a polynomial of degree n we
simply set A = n:

(1—2%)02 — 28. +n”°.
The Chebyshev polynomials of the 1st kind are

n! —1 d —1
To(z) = %) Ch 2(,2):@0;1 2(2)

= 1 ((z FiVI—2) 4 (2 —iV1— z2)”).

—_ o~

\V)

1
Note that Cp' 2 = 0, therefore the usual generating function for C"
cannot be applied for the Chebyshev polynomials of the 1st kind. Instead,
we have generating functions

tn
—1 — A i
og(l — 2zt +t7) E Th(2) )
n=0
11—zt =
— = _ = T, (2)t".
1— 22t + 2 ; (2)
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6.14.4 Chebyshev equation of the 2nd kind

If one of the parameters belongs to Z+ %, instead of a = —% we can reduce
ourselves to the case a = % We obtain then the Chebyshev operator of
the 2nd kind:

S1a(2,0:) = (1-29)02 =320, +A° — L. (6.113)
After substitution z = cos ¢ it becomes
sin (07 + A%)(sinp) "
Clearly, the corresponding equation can also be solved in elementary func-
tions.
To obtain an operator that annihilates a polynomial of degree n we
set A=n+1:
(1— 2382 — 320. +n(n+2).
The Chebyshev polynomials of the 2nd kind are
Une) = 372!)n Chi(z) = O ()
(2 +iVT=22)" — (2 — iyT = 22)H
2iv/1 — 22 '
gllilciir generating function is a special case of the generating function for

1—2zt+t°)"" = iUn(z)t”.

7 The Hermite equation

7.1 Introduction

Let a € C. In this section we study the Hermite equation, which is given
by the operator
S(a, z,8,) := 82 — 220, — 2a.

The choice of the parameter a is dictated by the analogy with the pa-
rameters of the Gegenbauer. It will be called a classical parameter, even
though it is not the usual one in the literature.

The Hermite operator can be obtained as the limit of the Gegenbauer
operator:

1 2 . — .
bl;ngo gS(a, b; 24/2/b, a(zm)) = S(a; z,0z). (7.114)

To describe the symmetries it is convenient to use its Lie-algebraic
parameter:

1 1
A=a— - =+ -
a > a + 5
In the new parameter the Hermite operator equals
Sx(z,0,) = 82 —220. —2X—1.

The Lie-algebraic parameter has an interesting interpretation in terms of
a “Cartan element” of the Lie algebra sch(1) [DM].
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7.2 Equivalence with a subclass of the confluent
equation

The Hermite equation is reflection invariant. By using the quadratic trans-
formation we can reduce it to a special case of the confluent equation:

S(a;2,0.) = 4]-‘(%; %;w, A), (7.115)
z_IS(a;z,az)z = 4.7:((1;1;%;11},81”)7 (7.116)
where
w=2%  z=+w.
In the Lie-algebraic parameters
S>\(Z782) = 4}-)\,—%(1”7810)’
zflsA(z,az)z = 4.7-},%(1076“,).

7.3 Symmetries

The following operators equal Sx(w, 9y ) for an appropriate w:

w==xz:

8)\(25,82),
w = +iz :
—exp(—2%) S_a(2,0.) exp(z?).

The group of symmetries of the Hermite equation is isomorphic to Z4 and

can be interpreted as the “Weyl group” of sch(1).

7.4 Factorizations and commutation properties

There are several ways to factorize the Hermite operator:

Sy = (0:—22)0.—2x—-1
= 0.(0:—22) —2)+1,
223)\ = (za +)\—§>(za —)\—1—1—222)
* 2 = 2

Cepen

- (zaz*)\fngZQ)(zaz+)\+§)

+(A+g)(>\+%).
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The factorizations can be used to derive the following commutation rela-
tions:

0. Sx
= S)\+1 827
(8Z — 22) S)

= S)\fl (az — 22),

(zaz—&—)\—i—%) 228\
= 2°Sii2 (Zaz+)\+%),

(20. — A+ 1 —22%) 2’8,
= 228\_9 (20, — A+ % — 2z2).
Each of these commutations relations is associated with a “root” of the
Lie algebra sch(1).

7.5 Convergence of the Gegenbauer equation to
the Hermite equation

It is interesting to describe the transition from the symmetries of the
Gegenbauer equation to the symmetries of the Hermite equation. We
consider the limit (7.114). We also consider the surface € described in
Subsect. 6.5.

Let us look only at the part of 2 given by the union of Q4 N{Imz > 0} 4+
and Q_ N {Imz > 0}_ glued along | — 1,1[. The scaling involved in the
limit (7.114) transforms this part of Q2 into C.

7(Q4+ N {Imz > 0}) is equal to the union of Q_ N {Imz > 0,Rez > 0}
and Q_ N {Imz < 0,Rez > 0} glued along ]0,1[. Thus the limit of 7 on
Q4 N{Imz > 0} equals the multiplication by —i.

—7(Q-N{Imz < 0}) is equal to the union of Q4 N{Imz > 0, Rez < 0}
and Q_ N {Imz < 0,Rez < 0} glued along | — 1,0[. Thus the limit of —7
on Q_ N {Imz > 0} also equals the multiplication by —i.

Thus the multiplication by —i is not the limit of a single element of the
group of the symmetries of ther Gegenbauer equation, but a combination
of the limits of two symmetries.

7.6 Integral representations

Below we describe two kinds of integral representations of the Hermite
equation.

Theorem 7.1 1. Let [0,1] 5t — ~(t) satisfy

~(1) .

e (t—2) ! =
( ) ~(0)

Then
S(a;z,@z)/et2 (t—z)"“dt. (7.117)
8!
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2. Let [0,1] 5 t — ~(t) satisfy
O

67t2 72ztta _
~(0)

Then
S(a;z,az)/e_tz_QZtt“_ldt =0. (7.118)
Y

Proof. We check that for any contour ~, (7.117) and (7.118) equal

_a/ (e (2 — )7 ) a,
Y
2
72/ e TN ) At
A )
respectively.

We can also deduce the second representation from the first by the

symmetry involving the multiplication by e*” and the change of variables
z iz, O

7.7 Canonical forms
The natural weight of the Hermite operator equals efzz, so that
Sy=e 00770, — 22— 1.

The balanced (as well as Schrédinger-type) form of the Hermite operator
is

22 22 9 2
e 28e?2 = 0;—z"—2\

Note that the symmetry (z, A) — (iz, —A) is obvious in the balanced form.

Remark 7.2 The balanced form of the Hermite equation is known in
the literature as the Weber or parabolic cylinder equation. [t is usually
written in one of two forms

1 1
83—122_]@, 83-’—122—]{3

7.8 Even solution

Inserting a power series in the equation we see that the Hermite equation
has an even solution

S;'(z) = Z(%,)j'(Qz)2j

= (2))!
a 1 2 2
= F(ﬁ’ﬁ’z> = Fféy)\(z )-
It is the unique solution satisfying
SY(0) =1, %Sj(o) =0. (7.119)

It has the properties
S (2) = Sf (—2) = = 87, (i2).
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7.9 0Odd solution

The Hermite equation has an odd solution

Sy(z) = iLTH)j (22)2+!
A = 25+ 1) ’
— atl 3 2y _ 2
= ZZF( 5 g% ) = QZF%’A(Z ).

It is the unique solution of the Hermite equation satisfying

d g-0) = 2. (7.120)

S5 (0)=0, 2

It has the properties

S5 (2) = =S5 (—2) = —ie” 87, (iz).

7.10 Standard solutions

The Hermite equation has only one singular point, co. We will see that
one can define two kinds of solutions with a simple asymptotics at co.
By Thm 7.1, for appropriate v1 and <2 the following integrals are

solutions:
2 1
/e*t “rma gy,

Y1

/etz(z e

Y2

In the first case the integrand has a singular point at 0 and goes to
zero as t — Foo. We can thus use 71 with such endpoints. We will see
that they give all standard solutions.

In the second case the integrand has a singular point at z and goes to
zero as t — *ico. Using 72 with such endpoints we will also obtain all
standard solutions.

7.10.1 Solution ~ z=% for z — +0

The following function is the solution of the Hermite equation that behaves

© = ;723 for |z| = o0, |argz| < /2 —e:

as 2z~

a a+1 ,2)
= —2 .

Sa(z) = szf%ﬁ'_;)\(fz%) = ziaF(g, 5

PR

‘We will also introduce alternatively normalized solutions:

Si(z) = Q*A*%F(AJF%)SA(Z)

= 27a27“F(a)F(
S(2) = V7ESa(2).

a “+1._._272)
2’ 2 ) ) 7
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(The normalization of S is somewhat trivial — we introduce it to preserve
the analogy with the Gegenbauer equation, which had a less trivially
normalized solution Sj, .)

Assuming that z €] — 0o, 0], we have an integral representation valid
for —4 < ReX:

7.10.2 Solution ~ (—iz)a_lez2 for z — +ico

The following function is the solution of the Hermite equation that behaves

as (—iz)“flez2 = (—iz)Af%eZ2 for |z] = o0, |argz — /2| < /2 — e

—A(ziz)-

Assuming that z ¢ [0, co[, we have an integral representation valid for
all parameters:

eZQS_A(fiz) = (fiz)AféeZQF_%’

/ e T L rdt = 0”80, (—iz),

]=00,07F,00]

and for ReA < %:

e” SI,)\(—IZ)

- / o (—i(t — 2)) >t
[z,ic0]
7.11 Connection formulas

We can decompose the standard solutions into the even and odd solutions:

S\(z) = F(T%SM—F(T@)SW);

eZQS_A(—iz) = LSﬁ(z)ﬁ-iiS;(z).
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7.12 Recurrence relations

The following recurrence relations follow easily from the commutation
properties of Subsect. 7.4:

1
0:5:2) = —(3+2)S(2),
(0. —22)S\(2) = —=25\_1(»),
1 2
(20: + 5= A—22°)8\(2) = =2S\_2(2),
1 1/1 3
(20:+ 5+ NSA(2) = —5(5 n )\) (5 + )\)SAH(,Z).
7.13 Hermite polynomials
If —a=n=0,1,2,..., then Hermite functions are polynomials.

Following Subsect. 1.6, they can be defined by the following version
of the Rodriguez-type formula:
—1)"

H,(z) := ( — ezzafefzz.

Remark 7.3 The Hermite polynomials found usually in the literature
equal
n!H,(z).

The advantage of our convention is that the Rodriguez-type formula has
the same form for all classes of hypergeometric type polynomials.

The differential equation:

(02 — 220. + 2n) Ha(z)
= (_n;z78z)Hn(Z) =0.

The generating function:
exp(2tz —t?) = S 1" H,(2).
n=0
The integral representation:

Hy(z) = 55 [ exp(2tz — t*)t~" " 'dt.

27i

[0+]
Recurrence relations:
0:Hn(z) = 2H,_1(2),
(0. = 22) Ha(2) = —(n+ D) Hosa(2),
(20. —n)Hn(2) = 2Hp—2(2),
(20: +n+1— 222) H,(z) = —(n+1)(n+2)Hni2(2).
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The differential equation, the Rodriguez-type formula, the generat-
ing function, the integral representation and the first pair of recurrence
relations are special cases of the corresponding formulas of Subsect. 1.6.

We have several alternative expressions for Hermite polynomials:

Hn(z) = —lim(=1)"(r—n)SL, 1(2) = =5, 1(2)
- o ( ﬁ*”*l_,%)
- 27 2 7
R S
= El(n — 2k)!
Behavior at co. .
lim =) — 2.
n—oo )
Initial conditions at 0.
Ham(0) = 555, H3(0) =0,
H2m+1(0) = 07 Hé'm+1(0) = (7;1#
Identities for even and odd polynomials.
(—1)m22mm' —1/2/.2 (—1)m(2z)2mm' —2m—1 —2
Hop, = ~— - "L = B 2(_ 7
2m(2) (2m)! =) (2m)! (=)
(=D)™ o+ =™ 12
= o (B = F(’m’i’z )
(—1)™22" )y (=1D)™(22)*™ T m! __om-3,  _
Hop, = ~———— 2L} = m 2(—
2m+1(2) emir L &) 2m + 1) (=2

= (_l)me 3(2) = (_1)m2zF(fm;g;22).

m! —2m—j m!

A Contours for integral representations

In this appendix we collect contours used in various integral representa-
tions of hypergeometric type functions.

For each basic type of integral representations considered in our text
we give at least one contour for every standard representation. We give
the priority to type (a) contours. If they are unavailable, we show a type
(b) contour. In some cases we present both a type (a) and type (b).

We also show contours that yield the degenerate solutions and the
polynomial solutions. They are given by closed loops.

Here is the explanation of basic elements of our figures:
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singularity of the integrand

type (a) contour for a standard solution

type (b) contour for a standard solution

contour for a degenerate solution

contour for a polynomial solution
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