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PAULI FIERZ OPERATORS

Bosonic Fock spaces.

1-particle Hilbert space: Hgy.

Fock space: I'y(HR) := D RUVHR.
n=0

Vacuum vector: Q =1 € @YHgr = C.

It z € Hg, then
a(2)¥ = Vn(z|@1" VO € P YHy, T e @ VHg

is called the annihilation operator of z and a*(z) := a(z)*

the corresponding creation operator.



Second quantization

For an operator ¢ on Hyr we define the operator I'(¢) on

FS (HR) by
I'(g)

RQHR

For an operator h on Hg we define the operator dI'(h) on
FS(HR) by

— h® 1(”‘1)® L oo 1(”‘1)@) R h.

dr(h
QI

Note the identity I'(el?) = etdl'(h),



Creation /annihilation operators

in coupled spaces

If K is a Hilbert space and V € B(IC, K ® Hg), then for
Ve K®®IHg we set

a(V)U = /nV*@1" V80 ¢ K @ @ 'Hg.

a(V') is called the annihilation operator of V' and
a*(V) := a(V)* the corresponding creation operator.
They are closable operators on  ® I's(Hg). In
particular, if V = v ® |b), then

a*(V)=v®a(b), a(V)=v"®ab).



Pauli-Fierz operators

Consider a Hilbert space H := K ® I'(Hgr), where Hp is
the 1-particle space of the reservoir and I'y(Hg) is the

corresponding bosonic Fock space. The composite system

is described by the self-adjoint operator

H, = K®1+1xdl'(Hg)
+X(a*(V) + a(V))

Here K describes the Hamiltonian of the small system,
dI'(HR) describes the dynamics of the reservoir expressed
by the second quantization of Hg, and a*(V')/a(V') are

the creation/annihilation operators of an operator

Ve B(/C,/C 020 HR)



Alternative notation

Identify Hgr with L*(Z,d¢), for some measure space
(Z,dE), so that one can introduce af/ae — the usual
creation/annihilation operators. Let h be the

multiplication operator by x(£). V' can be identified with
a function Z 3 £ — v(§) € B(K).

A(H) = [ al@otaede.
[ v©azde, a(v) = [ o (wacd
H = K+/:C(f)azagdf%—)\/(v(ﬁ)a§+v*(£)a§) d¢.

a* (V)



QUANTUM LANGEVIN DYNAMICS

C.p.u.p. semigroups

Let K be a finite dimensional Hilbert space. Suppose
that we are given M, the generator of a completely
positive unity preserving semigroup on B(X). Then there
exists an operator 1, an auxiliary Hilbert space h and an
operator v from /C to K ® ) such that

—iYT +1iT" = —v*v
and M can be written in the Lindblad form

M(A) = —i(TA— AY*) +1* A®Qlv, A€ B(K).



Quantum Langevin dynamics I

Let (1| denote the (unbounded) linear form on L?(R):

(1f = [ o)

1) will denote the adjoint form. We define the 1-particle
space Zg := b ® L*(R). The full Hilbert space is
Z:=K®TIs(ZRr). Zg is the operator of multiplication by
the variable z on L*(R).



Quantum Langevin dynamics II

We choose a basis (b;) in h and write

v=> v;®lb).

Set
+
v, = v
— . %k
v, = U5,

We will denote by Ix the embedding of X ~ K ® 2 in Z.



Quantum Langevin dynamics 111

For t > 0 we define the quadratic form

U = emiarw Z [ dtean

t>tn > 21120

SRIDDED'D

]17 7]”1 €1,-. 7€n€{+ _}

_\n —1(t tn)Y €en —i(tn—tn—1)Y €1 ,—i(t1—0)Y
X (—i) Vit e vl e

< JI aE e,
S | I LW
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Quantum Langevin dynamics IV

For ¢ <0 we set U_; :== U;".

Theorem. U, is a strongly continuous unitary group on
Z. and hence can be written as U, = e %4 for some

self-adjoint operator Z. For t > 0 we have

x —it/ —itY

[Fe? Al eI = ™M(A).
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Quantum Langevin dynamics V

Formally (and also rigorously with an appropriate

regularization)
1
Z = 5(T +17) + dI'(ZR)

+(2m) " 2a* (v @ 1)) + (27)"za (v @ |1))
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Quantum Langevin equation I
(Hudson - Parthasaraty)

The cocycle W, := elt%0 ™12 for Z, := dI'(Zg) solves
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Quantum Langevin equation 11

Apply the Fourier transformation on L*(R), so that
(27)~2|1) will correspond to |0y). Writing W, for W, after
this transformation, we obtain the quantum Langevin

equation in a more familiar form:

.d -
1&Wt
_ (%(T +T)4+a*" (v®|0)) +a(v® |5t))> W;.
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Stochastic Schrodinger equation

al
Let Dy := b @ (C(R) N L*(R)). Let I's(Dy), denote the
corresponding algebraic Fock space and D := K ® %S(Do)-
In the sense of quadratic forms on D the cocycle W ()

solves
—W(t) = (T+a*(we|6)W,

+ Z V;Wta(bj(@\(st))

J
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The “age” of observables

For any Borel set I C R, the space L*(I) can be treated
as a subspace of L*(R). Therefore, we have the

decomposition
[, (hRL*(1)) @ Ts(hRL*(R\ I)).

Theretore,

3

&

=
[

1k ® B (Ts(haL*(1))),
M(I) = B(KT(haL*(1))),

are well defined as von Neumann subalgebras of B(Z).

16



Quantum Langevin dynamics

and the observables

A quantum Langevin dynamics makes the bosons
“older”. At the time ¢t = 0 they may become entangled

with the small system.

Theorem. If ¢ > 0 and I C R\| —¢,0[, then

eitZ mR(]) e—itZ _ SﬁR(l i t),
2 M([—t,0]) e 4 = m([0,1]).
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WEAK COUPLING LIMIT
FOR PAULI-FIERZ OPERATORS

We consider a Pauli-Fierz operator on the Hilbert space

K&l (HR)

Hy, = K®1+1®d[(Hg)+ Ma* (V) + a(V)).
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Reduced weak coupling limit

We assume that /C is finite dimensional and for any
A€ B(K) we have [ ||[V*A®1 e ™o V||dt < 0.

Theorem. (F.B.Davies) There exists a c.p.u.p. semigroup

™ gsuch that

}\i{]% e—itK/,\2 ]E it Hx /22 A1 o itH /22 I eitK/)\2 _ otM ( A),

and a contractive semigroup e ' such that

. . 2 _ g 2 _ 9
11<I1 eltK/)\ ];g o itHy /A ]/C — e ity .
AN0

19



Assumptions on the continuity of spectrum

Assumption. Suppose that for any w € spK — spK there
exists open [, C R such that w € [, and

Ranl; (Hg) =~ bw®L2(]w,d£E),

17, (Hg)Hg is the multiplication operator by the variable
x € I, and

1 (H)V ~ /I @ o(z)de.

We assume that I, are disjoint for distinct w and
r— v(x) € B(K, K®b,,) is continuous at w.

20



Formula for the Davies generator I

Let h := ®b,. We define v, : K — K R b,

)7 Z 1 (K)v(w) 1w (K),

w=k—k'

and v : K - K ®F§b
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Formula for the Davies generator II

The operator T : I — I is

= —1 Z Z / 1k V*lk/ K) e_it(HR_w) V 1k(K)dt

w k—k'=w
Note that
iT—ir =)y Y /
w k—k'=w?"Y
- Y Y
w k—k'=w
= V.

22

K)V* 1, (K) e T =) 171, (K)dt

w) L (K)v(w) 1x(K)



Formula for the Davies generator III

The generator of a c.p.u.p. semigroup that arises in the
reduced weak coupling limit, called sometimes the Davies

generator, 1S

M(A) = —i(TA— AT") + v A1y, A€ B(K).
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Asymptotic space and dynamics

Recall that given (T,v,h) we can define the space Zg

—itZ

and the Langevin dynamics e on the space

Z =K ®I4(ZR). Recall that

Zr = ®bh, ® L*(R).
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Scaling

For A > 0, we define the family of partial isometries
Sw o ® L*(R) — b, ® L*(1,):

1 Y—w . .

_gw( 2 )7 if Yy ~ [wa
(Nrwlo)(y) =g 277 |

0, if y € R\1,.

We set Jy : Zg — Hg, defined for ¢ = (g,,) by
Jrg = Z I3 G-

Note that J, are partial isometries and

— lim JyJ) = 1.
S AI\‘I%J)\J)\
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Extended weak coupling limit

(Inspired by Accardi-Frigerio-Lu).
Theorem. D., De Roeck.

S* . }\1{% F(J;\k) ei)\_ZtHO e—i)\_z(t—to)HA ei)\_QtoH() F(J)\)

itZo —i(t—tQ)Z —itoZo

= € € €

Thus the physical dynamics converges to a quantum

Langevin dynamics (both in the interaction picture).
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Asymptotics of correlation functions

Corrolary Let Ay,..., A1 € B(Z) and t,t,,...,t;,t) € R.
Then

. oy —2 aN—2(4_ iy —2
S* . hm ];g el)\ tH()e INT2(t—ty)H ) e iAN"“tyHg

NG
XT(Jx)AL(Jy) - - - T(Jx) AT (J3)

oy —2 iy —2 . iy —2
el)x tlHoe i\ (tl tO)H}‘e iAN"“toHop ]IC

[;é eltZo e—l(t—tg)Z e—lth() AE

. A]_ eltlZO e—l(tl—to)Z e—ltoZo []C
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