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1. Introduction

In this article I would like to review the results of two recent papers [D, BD] on
quadratic bosonic Hamiltonians with an infinite number of degrees of freedom. I
would like to convince the reader that their theory is surprisingly rich.

Let a∗ξ/aξ denote creation/annihilation operators satisfying

(1) [aξ, aξ′ ] = [a∗ξ , a
∗
ξ′ ] = 0, [aξ, a

∗
ξ′ ] = δξ,ξ′ ,

and acting on a bosonic Fock space. (Above, δξ,ξ′ denotes the delta function.
Strictly speaking, a∗ξ/aξ are operator valued measures and they acquire the mean-
ing of an operator only after smearing out with appropriate test functions).

The first class of Hamiltonians that I would like to discuss was studied in [D]
and is given by a formal expression of the form

H =
∫

h(ξ)a∗ξaξdξ +
∫

z(ξ)aξdξ +
∫

z(ξ)a∗ξdξ + c,(2)

where h(ξ) ≥ 0. Note that in the above expression the constant c can be infinite.
Following [Sch], operators of the form (2) will be called van Hove Hamiltonians.

The second class of operators was recently studied by L. Bruneau together
with myself in [BD]. Operators from this class are given by a formal expression of
the form

H =
∫

h(ξ)a∗ξaξdξ

+
1
2

∫
g(ξ, ξ′)a∗ξa

∗
ξ′dξ +

1
2

∫
g(ξ, ξ′)aξaξ′dξ + c.(3)

We will call them Bogoliubov Hamiltonians. This name is justified by the famous
application of such Hamiltonians in the study of the Bose gas due to Bogoliubov
[Bog].
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There are several questions that one can pose about these operators. They
include: When the above formal expressions defines a self-adjoint operator? When
they are bounded from below? When they have a ground state? What is their
scattering theory? Rather complete answers to these questions exist in the case
of van Hove Hamiltonians. For Bogoliubov Hamiltonians, the answers are not so
complete, but still we have a number of interesting results about them.

Van Hove and Bogoliubov Hamiltonians are used in quantum physics very
often. A lot of interesting physical phenomena can be explained just with help of
quadratic Hamiltonians.

In my paper I would like to convince the reader that also from the math-
ematical point of view they are interesting objects and illustrate various curious
properties of unbounded operators.

Quadratic Hamiltonians are also useful, because they help to understand
properties of more complicated Hamiltonians used in quantum theory such as
those studied in [Fr, DG1, BFS, DJ].

2. Notation

Let us briefly review the notation for bosonic Fock spaces that we will use in our
paper [Be, RS2, BR, GJ, DG1, D1]. Suppose that Z is a Hilbert space. The bosonic
Fock space over the one-particle space Z is defined as

Γs(Z) :=
∞
⊕

n=0
⊗n

s Z.

It has a distinguished vector called the vacuum vector Ω = 1 ∈ ⊗0
sZ = C.

The bosonic Fock space can be viewed as a commutative algebra with the
product defined as follows: if Ψ ∈ ⊗n

s Z, Φ ∈ ⊗m
s Z, then

Ψ⊗s Φ := Θs Ψ⊗Φ ∈ ⊗n+m
s Z,

where Θs is the symmetrizing operator.
For z ∈ Z we define the creation operator

a∗(z)Ψ :=
√

n + 1z ⊗s Ψ, Ψ ∈ ⊗n
s Z,

and the annihilation operator a(z) := (a∗(z))∗.

In a large part of the literature one assumes that Z equals L2(Ξ) for some
measure space (Ξ,dξ). One introduces “operator valued measures” aξ/a∗ξ satisfying
(1). If ξ 7→ z(ξ) is a square integrable function then

a∗(z) =
∫

z(ξ)a∗ξdξ, a(z) =
∫

z(ξ)aξdξ.

We will use both notations. The notation involving the operator valued measures
will be called “traditional” – it is lengthy and depends on an arbitrary identification
Z = L2(Ξ), but is perhaps more familiar to some readers and often convenient.
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For an operator q on Z we define the operator Γ(q) on Γs(Z) by

Γ(q)
∣∣∣
⊗n

s Z
= q ⊗ · · · ⊗ q.

For an operator h on Z we define the operator dΓ(h) on Γs(Z) by

dΓ(h)
∣∣∣
⊗n

s Z
= h⊗ 1(n−1)⊗ + · · · 1(n−1)⊗ ⊗ h.

If h is the multiplication operator by h(ξ), then in the traditional notation we have

dΓ(h) =
∫

h(ξ)a∗ξaξdξ.

Note the identity Γ(eith) = eitdΓ(h).
For g ∈ ⊗2

sZ we define the 2-particle creation operator

a∗(g)Ψ :=
√

(n + 2)(n + 1)g ⊗s Ψ, Ψ ∈ ⊗n
s Z,

and the annihilation operator a(g) = a∗(g)∗.
In the traditional notation, if g equals the function g(ξ, ξ′), then we have

a∗(g) =
∫

g(ξ, ξ′)a∗ξa
∗
ξ′dξdξ′, a(g) =

∫
g(ξ, ξ′)aξaξ′dξdξ′.

3. Van Hove Hamiltonians

In this section we summarize properties of van Hove Hamiltonians, following [D].
Let Z = L2(Ξ). Let Ξ 3 ξ 7→ h(ξ) be a positive function. Let ξ 7→ z(ξ) be a

function on Ξ such that∫
h<1

|z(ξ)|2dξ +
∫

h≥1

|z(ξ)|2

h(ξ)2
dξ < ∞.

Then we can define a family of unitary operators on Γs(Z)

V (t) := Γ(eith) exp
(
a∗((1− e−ith)h−1z)− hc

)
.

One can easily check that

V (t1)V (t2) = c(t1, t2)V (t1 + t2)

for some complex numbers c(t1, t2).
For an operator B ∈ B(Γs(Z)) we define

βt (B) := V (t)BV (t)∗.

Then β is a 1-parameter group of ∗-automorphisms of the algebra of bounded
operators on the Fock space, pointwise continuous in the strong operator topology.

By a general theorem [BR], there exists a self-adjoint operator H such that

βt(B) = eitH B e−itH .

H is defined uniquely up to an additive constant. We call it a van Hove Hamilton-
ian. It is easy to see that formally it is given by (2), which contains an arbitrary
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constant c. One can ask if there is a natural choice of c. It turns out that there exist
two such natural choices. To describe them it is convenient (especially, if we want
to be rigorous) to use the unitary groups generated by van Hove Hamiltonians.

The following theorem describes the unitary group generated by van Hove
Hamiltonians of the first kind:

Theorem 1. Let ∫
h(ξ)<1

|z(ξ)|2dξ +
∫

h(ξ)≥1

|z(ξ)|2

h(ξ)
dξ < ∞.

Then

(4) UI(t) := exp
(

i
∫
|z(ξ)|2 sin th(ξ)− th(ξ)

h2(ξ)
dξ

)
V (t)

is a strongly continuous unitary group.

We define the type I van Hove Hamiltonian HI to be the self-adjoint generator
of (4), that is UI(t) = eitHI . Formally,

HI =
∫

h(ξ)a∗ξaξdξ +
∫

z(ξ)aξdξ +
∫

z(ξ)a∗ξdξ.

It satisfies Ω ∈ DomHI, (Ω|HIΩ) = 0.
Note that

inf spHI = −
∫
|z(ξ)|2

h(ξ)
dξ,

(which can be −∞). The linear perturbation contained in (2) is an operator iff∫
|z(ξ)|2dξ < ∞, otherwise it is a quadratic form.

Another natural class of van Hove Hamiltonians is described in the following
theorem:

Theorem 2. Let

(5)
∫

h(ξ)<1

|z(ξ)|2

h(ξ)
dξ +

∫
h(ξ)≥1

|z(ξ)|2

h2(ξ)
dξ < ∞.

Then

(6) UII(t) := exp
(

i
∫
|z(ξ)|2 sin th(ξ)

h2(ξ)
dξ

)
V (t)

is a strongly continuous unitary group.

We define the type II van Hove Hamiltonian HII to be the self-adjoint gen-
erator of (6), that is UII(t) = eitHII . Formally,

HII =
∫

h(ξ)
(

a∗ξ +
z(ξ)
h(ξ)

)(
aξ +

z(ξ)
h(ξ)

)
dξ.

It satisfies inf spHII = 0.
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Let us introduce the following unitary operator called sometimes the dressing
operator:

(7) U := exp
(
−a∗(

z

h
) + a(

z

h
)
)

.

Note that (7) is well defined iff ∫
|z(ξ)|2

h2(ξ)
dξ < ∞.

It intertwines HII and the free van Hove Hamiltonian:

HII = U

∫
h(ξ)a∗ξaξdξ U∗.

Hence, in this case HII has a ground state. Otherwise HII has no ground state.
Both HI and HII are well defined iff∫

|z(ξ)|2

h(ξ)
dξ < ∞,

and then

HII = HI +
∫
|z(ξ)|2

h(ξ)
dξ < ∞.

If ∫
h(ξ)<1

|z(ξ)|2

h(ξ)
dξ =

∫
h(ξ)≥1

|z(ξ)|2

h(ξ)
dξ = ∞,

then neither HI nor HII is well defined.
Altogether we have 3 kinds of situations that lead to different infrared be-

haviors of the van Hove hamiltonians. Likewise, we have 3 possible ultraviolet
behaviors. Thus, altogether we have 3 × 3 = 9 situations that lead to van Hove
Hamiltonians with distinct properties. They are summarized in the following table:

∫
h>1

|z|2 < ∞
∫

h>1
|z|2 = ∞∫

h>1
|z|2
h < ∞

∫
h>1

|z|2
h = ∞∫

h>1
|z|2
h2 < ∞

∫
h<1

|z|2
h2 < ∞ HII defined

gr. st. exists

∫
h<1

|z|2
h2 = ∞∫

h<1
|z|2
h < ∞

HII defined
no gr. st.

∫
h<1

|z|2
h = ∞∫

h<1
|z|2 < ∞

unbounded
from below

HI defined
pert. is

an operator

HI defined
pert. is not
an operator

infinite
renormalization
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In the literature, the analysis of the ultraviolet problem of van hove Hamil-
tonians can be found in [Be, Sch], following earlier treatments [vH, EP, To, GS].
The understanding of the infrared problem can be traced back to [BN], and then
was discussed in a series of papers [Ki]. Closely related problems of coherent rep-
resentations was discussed already in [Frie]. Nevertheless, it seems that [D] gives
the first complete treatment of this subject in the literature.

4. Scattering theory of Van Hove Hamiltonians

The main goal of this section is a description of scattering theory for van Hove
Hamiltonians. It is based on [D]

Let us start with some remarks about scattering theory in an abstract setting
(see e.g. [Ya, Kato, RS3]). Suppose we are given two self-adjoint operators: H0 and
H.

In the standard approach to scattering theory, which works e.g. for 2-body
Schrödinger operators, the wave operators are defined by

(8) Ω± := s− lim
t→±∞

eitH e−itH0 .

They satisfy Ω±H0 = HΩ± and are isometric. If RanΩ+ = RanΩ−, then the
scattering operator

S = Ω+∗Ω−

is unitary and H0S = SH0.
Unfortunately, this approach does not work for van Hove Hamiltonians. Let

us describe an alternative, less known approach to scattering theory.
Again, we start from two self-adjoint operators: H0 and H. We introduce the

unrenormalized Abelian wave operators:

(9) Ω±ur := s− lim
ε↘0

2ε

∫ ∞

0

e−2εt e±itH e∓itH0 dt.

They satisfy Ω±urH0 = HΩ±ur but do not have to be isometric. Note that if the usual
wave operators Ω± defined by (8) exist, then so do the unrenormalized Abelian
ones, and they coincide. However, (9) may exist even if the usual wave operators
do not.

Assume that the operators Z± := Ω±∗ur Ω±ur have a zero kernel. Then we can
define the renormalized Abelian wave operators

Ω±rn := Ω±ur(Z
±)−1/2.

They also satisfy Ω±rnH0 = HΩ±rn and are isometric.
If RanΩ+

rn = RanΩ−rn, then the renormalized scattering operator

Srn = Ω+∗
rn Ω−rn

is unitary and H0Srn = SrnH0.
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Note that the alternative approach is more suitable for quantum field theory
than the standard. In particular, as we will see, it works well in the case of van
Hove Hamiltonians.

Let

H0 =
∫

h(ξ)a∗ξaξdξ,

H =
∫

h(ξ)a∗ξaξdξ +
∫

z(ξ)aξdξ +
∫

z(ξ)a∗ξdξ +
∫
|z(ξ)|2

h(ξ)
dξ.

(In other words, H is a van Hove Hamiltonian of type II). Suppose that h has an
absolutely continuous spectrum and the assumption (5) is satisfied. Then it is not
difficult to show that the unrenormalized Abelian wave operators exist. One can
compute explicitely the wave and scattering operators:

Ω±ur = Z1/2U, Ω±rn = U, Srn = 1.

where U is the dressing operator and

Z = exp
∫
|z(ξ)|2

h2(ξ)
dξ.

Unfortunately, the scattering operator is trivial.
Note in parenthesis that scattering theory for operators similar but more

complicated than van Hove Hamiltonians can be quite interesting [DG1, DG2].

5. Bogoliubov Hamiltonians

In this section we describe mathematical theory of Bogoliubov Hamiltonians fol-
lowing [BD]. Again, it is not obvious how to define those Hamiltonians. The expres-
sion (3) is not very convenient for their rigorous definition. In order to fomulate
a definition that is natural and as general as possible, it is convenient to think
in terms of the classical phase space underlying the given bosonic Fock space. To
this end we need to recall some notions from linear algebra and the formalism of
second quantization.

Let Z be a complex Hilbert space. We will write Z for the space complex
conjugate to Z. The real vector space

Y := {(z, z) : z ∈ Z} ⊂ Z ⊕ Z
equipped with a natural symplectic form

(z1, z1)ω(z2, z2) := Im(z1|z2).

has the meaning of the dual of the classical phase space of the quantum system
described by the bosonic Fock space Γs(Z).

For y = (z, z) ∈ Y we define the corresponding Weyl operator

W (y) := eia∗(z)+ia(z) .

Note that W (y1)W (y2) = e−
i
2 y1ωy2 W (y1 + y2).
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A map r on Y is called symplectic if

(ry1)ω(ry2) = y1ωy2.

For such r,
W (ry1)W (ry2) = e−

i
2 y1ωy2 W (r(y1 + y2)),

and thus the commutation relations of Weyl operators are preserved.
Every linear map r on Y can be uniquely extended to a complex linear map

on Z ⊕ Z and written as

r =
[

p q
q p

]
.

r is symplectic iff

p∗p− q∗q = 1, −p∗q + q∗p = 0,

pp∗ − qq∗ = 1, qp∗ − pq∗ = 0.

We have the decomposition

r =
[

1 0
d∗ 1

] [
p 0
0 p∗−1

] [
1 c
0 1

]
,

with symmetric operators d := qp−1, c := p−1q. (We say that d is a symmetric
operator iff d = d

∗
).

Theorem 3 ( Shale Theorem). [Sh] Let r be symplectic. There exists a unitary U ,
which we call a Bogoliubov implementer, such that

UW (y)U∗ = W (ry), y ∈ Y,

iff Trq∗q < ∞.

The map B(Γs(Z)) 3 A 7→ UAU∗, where U is a Bogoliubov implementer,
will be called a Bogoliubov automorphism. For a given r, a Bogoliubov implementer
is determined up to a phase. There exists a distinguished choice, denoted Unat,
satisfying (Ω|UnatΩ) > 0, given by

Unat := |det pp∗|− 1
4 e−

1
2 a∗(d) Γ(p∗−1) e

1
2 a(c) .

An important role in our considerations will be played by strongly continuous
1-parameter groups of symplectic transformations. If R 3 t 7→ r(t) is such a group,
we introduce the maps t 7→ p(t), q(t) defined by

(10) r(t) =
[

p(t) q(t)
q(t) p(t)

]
.

If h is a self-adjoint operator on Z and g is a bounded symmetric operator
from Z to Z then

(11) r(t) = exp it
[

h g

g h

]
is a 1-parameter symplectic group.
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Let us consider for a while the case of finite dimensional Z. In this case theory
of Bogoliubov Hamiltonians, while not quite trivial, is well understood. (We still
keep the notation Z = L2(Ξ), but now Ξ has to be a finite set and the integration
over Ξ is just summation)

Clearly, in finite dimension every continuous 1-parameter symplectic group
is of the form (11). Consider a classical quadratic Hamiltonian

H(z, z) =
∫

h(ξ)zξzξdξ

+
1
2

∫
g(ξ, ξ′)zξzξdξdξ′ +

1
2

∫
g(ξ, ξ′)zξzξ′dξdξ′.

It is a function on the classical phase space

Y := {(z, z) : z ∈ Z} ⊂ Z ⊕ Z.

The Weyl quantization of H(z, z) equals

H =
1
2

∫
h(ξ)a∗ξaξdξ +

1
2

∫
h(ξ)aξa

∗
ξdξ

+
1
2

∫
g(ξ, ξ′)a∗ξa

∗
ξ′dξdξ′ +

1
2

∫
g(ξ, ξ′)aξaξ′dξdξ′

and corresponds to the choice of c in (3) given by

c =
1
2

∫
h(ξ, ξ)dξ =

1
2
Trh,

H is essentially self-adjoint on finite particle vectors. We have

eitH = (det p(t))−
1
2 e−

1
2 a∗(d(t)) Γ(p(t)∗−1) e

1
2 a(c(t)) .

Note that the set of operators of the form

(12) (det p)−
1
2 e−

1
2 a∗(d) Γ(p∗−1) e

1
2 a(c)

is closed wrt the multiplication. It is called the metaplectic group Mp(Y).
Let us now relax the condition dimZ < ∞ and ask about possible genral-

izations of the above costruction to the case of an arbitrary number of degrees
of freedom. Clearly, (12) is well defined provided that p − 1 is trace class, or
equivalently, r − 1 is trace class. The set of operators of this form is also closed
wrt multiplication. Thus, as noticed by Lundberg, the metaplectic group can be
defined also in the case of an infinite number of degrees of freedom.

We say that a strongly continuous 1-parameter group of symplectic trans-
formations t 7→ r(t) is implementable iff there exists a strongly continuous 1-
parameter unitary group t 7→ U(t), called the implementing unitary group, such
that

(13) U(t)W (y)U∗(t) = W (r(t)y), y ∈ Y.

Only now, after so much preparation, we introduce the rigorous definition of
a Bogoliubov Hamiltonian: A self-adjoint operator H is called a Bogoliubov Hamil-
tonian if there exists a 1-parameter strongly-continuous implementable symplectic
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group t 7→ r(t) such that H := −i d
dtU(t)

∣∣∣
t=0

, where t 7→ U(t) is its implementing
unitary group.

The following theorem is proven in [BD]:

Theorem 4. t 7→ r(t) is implementable iff Trq∗(t)q(t) < ∞ and

lim
t→0

Trq∗(t)q(t) = 0.

Once again, given an implementable Bogoliubov dynamics we have a 1-
parameter family of Hamiltonians, formally differing by the constant c. We would
like to discuss some of their natural choices.

Let us describe our first choice. Let t 7→ r(t) be an implementable symplectic
group. Let p(t) be defined by (10). We say that t 7→ r(t) is of type I iff d

dtp(t)
∣∣∣
t=0

=

ih, p(t) e−ith−1 is trace class and ‖p(t) e−ith−1‖1 → 0.

Theorem 5. In the type I case

UI(t) := det(p(t) e−ith)−
1
2 e−

1
2 a∗(d(t)) Γ(p(t)∗−1) e

1
2 a(c(t))

is a strongly continuous 1-parameter unitary group.

A type I Bogoliubov Hamiltonian is defined as

HI := −i
d
dt

UI(t)
∣∣∣
t=0

.

Let t 7→ r(t) be implementable. We say that it is of type II iff the implementing
1-parameter group has a generator, which is bounded from below. In this case we
define the type II Hamiltonian to be

HII := −i
d
dt

UII(t)
∣∣∣
t=0

.

such that inf spHII = 0 and UII(t) implements r(t).
For a finite number of degrees of freedom it is easy to see that we have a

complete characterization of type I and II Bogoliubov Hamiltonians:

Theorem 6. Let Z be finite dimensional. Then
(1) r(t) is always type I and

HI = dΓ(h) +
1
2
a∗(g) +

1
2
a(g).

(2) r(t) is type II iff its classical Hamiltonian is positive definite

zhz +
1
2
zgz +

1
2
zgz ≥ 0,

and then

HII = HI −
1
4
Tr

( h
2 − gg hg − gh

hg − gh h2 − gg

)1/2

−
(

h 0
0 h

) .
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In the case of an infinite number of degrees of freedom, our results about
Bogoliubov Hamiltonians are only partial. Let us give some examples taken from
[BD]:

Theorem 7. Let g be Hilbert-Schmidt. Then

HI = dΓ(h) +
1
2
a∗(g) +

1
2
a(g)

is essentially self-adjoint on the algebraic Fock space over Dom(h) and eitHI im-
plements r(t) given by (11).

Theorem 8. Let h be positive,

‖h−1/2⊗h−1/2 g‖Γ2
s (Z) < 1,

‖h−1/2g‖B(Z,Z) < ∞.

Then 1
2a∗(g)+ 1

2a(g) is relatively dΓ(h)-bounded with the bound less than 1. There-
fore, in this case, both the type I and type II Bogoliubov Hamiltonians are well
defined.

There is one class of Bogoliubov Hamiltonians, that we were able to analyze
rather completely: those satisfying the condition gh = hg. In this case, without
loss of generality we can assume that they are diagonal in a common orthonormal
basis e1, e2, . . . :

hen = hnen, hn ∈ R; gen = gnen, gn ∈ C.

We will say that such Hamiltonians are diagonalizable.

Theorem 9. [BD] Suppose h, g are diagonalizable in the above sense.
(1) r(t) is well defined iff for some b, a < 1, |gn| ≤ a|hn|+ b.
(2) r(t) is implementable iff

∑
n

|gn|2
1+h2

n
< ∞.

(3) r(t) is type I iff
∑
n

|gn|2
1+|hn| < ∞.

(4) r(t) is type II iff |gn| ≤ hn and
∑
n

|gn|2
hn+h2

n
< ∞.

Theorem 9 shows that there exist implementable 1-parameter symplectic
groups, which are not type II, even though their classical Hamiltonian is positive
definite. Thus there exist Bogoliubov Hamiltonians unbounded from below with
positive classical symbols. This is an example of an interesting infrared behavior
of Bogoliubov Hamiltonians.

Theorem 9 shows also that there exist implementable 1-parameter symplectic
groups, which are not type I. This means that, in order to express them in terms of
creation and annihilation operators, one needs to add an infinite constant – perform
an appropriate renormalization. This is an example of an interesting ultraviolet
behavior of Bogoliubov Hamiltonians.
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There remain various open questions concerning Bogoliubov Hamiltonians.
For instance, it would be interesting to give sufficient and necessary conditions for
symplectic group r(t) to be of type II in terms of its generator.

Note that Bogoliubov Hamiltonians were studied by various authors, among
them Friedrichs [Frie], Berezin [Be], Ruijsenaars [Ru1, Ru2], Araki and his collab-
orators [A, AY], Matsui and Shimada [MS], Ito and Hiroshima [IH]. Nevertheless,
the approach contained [BD], briefly described above, seems to be the most general
and flexible.
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