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2. Various levels of description used in physics

• More exact fundamental description;

• More approximate effective description.

One of the aims of theoretical and mathematical physics
is to justify effective models as limiting cases of more
fundamental theories.



3. Small quantum system weakly interacting
with a large reservoir.

We are interested in a class of dynamics generated by
a Hamiltonian (self-adjoint operator) Hλ of the form

Hamiltonian of the small system
+ Hamiltonian of the large reservoir
+ λ times interaction.

There are a number of varieties of such Hamiltonians
used in quantum physics and they go under various
names. We use the name
Pauli-Fierz Hamiltonians.



4. Reduced weak coupling limit
(Pauli, van Hove,...,Davies)

• Reduce the dynamics to the small system.

• Consider weak coupling λ→ 0.

• Rescale time as t
λ2.

• Subtract the dynamics of the small system.

In the limit one obtains a dynamics given by a
completely positive Markov semigroup. It is an irre-
versible non-Hamiltonian dynamics.



5. Extended weak coupling limit
(Accardi-Frigerio-Lu, D.-De-Roeck)

Known also as stochastic limit.

• Consider weak coupling λ→ 0.

• Rescale time as t
λ2.

• Rescale the reservoir energy by the factor of λ2

around the Bohr frequencies.

• Subtract the dynamics of the small system.

In the limit one obtains a (reversible) quantum Langevin
dynamics, which gives a dilation of the completely pos-
itive semigroup obtained in the reduced weak coupling
limit.
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7. DILATIONS
OF CONTRACTIVE SEMIGROUPS



8. Dilations
of contractive semigroups

Let K be a Hilbert space and e−itΥ a contractive semi-
group. This implies that iΥ is dissipative:

−iΥ + iΥ∗ ≤ 0.

Let Z be a Hilbert space containing K, IK the embed-
ding of K in Z and e−itZ a unitary group on Z. We say
that (Z, IK, e−itZ) is a dilation of e−itΥ iff

I∗K e−itZ IK = e−itΥ, t ≥ 0.

This clearly implies

I∗K e−itZ IK = e−itΥ∗
, t ≤ 0.

We say that the dilation is minimal if {e−itZ K : t ∈ R}
is total in Z.



9. Standard construction of a dilation I

We define the vector space F̃ of functions f from R to
K, such that

{s ∈ R|f (s) 6= 0} is a finite set.

We equip F̃ with a bilinear form

(f |f ′) :=
∑

t≥s
(f (s)| e−iΥ|t−s| f ′(t))K +

∑

t<s

(f (s)| eiΥ∗|t−s| f ′(t))K

One checks that the form (·|·) is positive definite.
Let N denote the subspace of f , for which (f |f ) = 0.
Let F denote the completion of the pre-Hilbert space
F̃�N .



10. Standard construction of a dilation II

For u ∈ K define P̃ u(s) := δs,0u, where δs,0 is Kronecker’s
delta. Then Pu := [Pu] ∈ F defines an isometric em-
bedding of P : K → F .
Define now

W̃tf (s) = f (s− t).

W̃t is a one-parameter group on F̃ that preserves the
form (·|·). Therefore, it defines a one-parameter uni-
tary group Wt on F . Wt dilates the semigroup e−itΥ:

PWtP = e−itΥ .

In fact, it is a minimal dilation of e−itΥ.



11. Construction of a dilation

Let h be an auxiliary space and ν : K → h satisfy
1

2i
(Υ − Υ∗) = −πν∗ν.

Let (1| be a linear functional with domain L2(R)∩L1(R):

(1|f =

∫

f (x)dx.

Let ZR be the operator of multiplication on L2(R) by
the variable x. Define Z := K ⊕ h⊗L2(R). Introduce
the singular Friedrichs operator given by the following
formal expression:

Z :=

[

1
2(Υ + Υ∗) (2π)−

1
2ν∗ ⊗ (1|

(2π)−
1
2ν ⊗ |1) ZR

]

Then (Z, IK, e−itZ) is a dilation of e−itΥ.



12. Construction of a dilation
– the unitary group

Ut = I∗R e−itZR IR + I∗K e−itΥ IK

−i(2π)−
1
2I∗K

∫ t

0
du e−i(t−u)Υ ν∗ ⊗ (1| e−iuZR IR

−(2π)−
1
2iI∗R

∫ t

0
du e−i(t−u)ZR ν ⊗ |1) e−iuΥ IK

−(2π)−1I∗R

∫

0≤u1,u2, u1+u2≤t
du1du2 e−iu2ZR ν ⊗ |1) e−i(t−u2−u1)Υ ν∗ ⊗ (1| e−iu1ZR IR.

We check that Ut is a strongly continuous unitary
group. Therefore, we can define Z as its unitary gener-
ator: Ut = e−itZ. (Here IR is the embedding of h⊗L2(R)
in Z). .



13. Construction of a dilation
– resolvent of the generator

For z ∈ C+, we define

R(z) := I∗R(z − ZR)−1IR + I∗K(z − Υ)−1IK
+(2π)−

1
2I∗K(z − Υ)−1ν∗ ⊗ (1|(z − ZR)−1IR

+(2π)−
1
2I∗R(z − ZR)−1ν ⊗ |ν)(z − Υ)−1IK

+(2π)−1I∗R(z − ZR)−1ν ⊗ |1)(z − Υ)−1ν∗ ⊗ (ν|(z − ZR)−1IR;

R(z) := R(z)∗.

We can check that R(z1) − R(z2) = (z2 − z1)R(z1)R(z2),
KerR(z) = {0}. Therefore, we can define Z as the self-
adjoint operator Z satisfying R(z) = (z − Z)−1.



14. Construction of a dilation
– removing a cutoff

Z is the norm resolvent limit for r → ∞ of the following
regularized operators:

Zr :=





1
2(Υ + Υ∗) (2π)−

1
2ν∗ ⊗ (1|1[−r,r](ZR)

(2π)−
1
2ν ⊗ 1[−r,r](ZR)|1) 1[−r,r](ZR)ZR





(Note that it is important to remove the cut-off in a
symmetric way).



15. False quadratic form
of the generator of dilations

On D := K ⊕ h ⊗ (L2(R) ∩ L1(R)) we can define the
(non-self-adjoint) quadratic form

Z+ :=

[

Υ (2π)−
1
2ν∗ ⊗ (1|

(2π)−
1
2ν ⊗ |1) ZR

]

One can say that it is a “false form” of Z. In fact, for
ψ, ψ′ ∈ D, the function R 3 t 7→ (ψ| e−itZ ψ′) is differen-

tiable away from t = 0, its derivative t 7→ d
dt(ψ| e−itZ ψ′)

is continuous away from 0 and at t = 0 it has the right
limit equal to

−i(ψ|Z+ψ′) = lim
t↓0

t−1
(

ψ|(e−itZ −1)ψ′
)

.



16. Scaling invariance

For λ ∈ R, introduce the following unitary operator on
Z

jλu = u, u ∈ K; jλg(y) := λ−1g(λ−2y), g ∈ ZR.

Note that

j∗λZRjλ = λ2ZR, j∗λ|1) = λ|1).

Therefore, the operator Z is invariant with respect to
the following scaling:

Z = λ−2j∗λ

[

λ21
2(Υ + Υ∗) λ(2π)−

1
2ν∗ ⊗ (1|

λ(2π)−
1
2ν ⊗ |1) ZR

]

jλ.



17. WEAK COUPLING LIMIT
FOR FRIEDRICHS OPERATORS



18. Friedrichs operators

Let H := K ⊕HR be a Hilbert space, where K is finite
dimensional. Let IK be the embedding of K in H. Let
K be a self-adjoint operator on K and HR be a self-
adjoint operator on HR. Let V : K → HR. Define the
Friedrichs Hamiltonian

Hλ :=

[

K λV ∗
λV HR

]

.



19. Reduced weak coupling limit
for Friedrichs operators

Assume that
∫

‖V ∗ e−itHR V ‖dt <∞. Define the
Level Shift Operator

Υ :=
∑

k

∫ ∞

0
1k(K)V ∗ e−it(HR−k) V 1k(K)dt.

Note that ΥK = KΥ.

Theorem.

lim
λ→0

eitK/λ2
I∗K e−itHλ/λ

2
IK = e−itΥ .



20. Continuity of spectrum

Assumption. We suppose that for any k ∈ spK there
exists an open Ik ⊂ R such that k ∈ Ik,

Ran1Ik(HR) ' hk ⊗ L2(Ik, dx),

1Ik(HR)HR is the multiplication operator by the vari-
able x ∈ Ik and

1Ik(HR)V '
∫ ⊕

Ik

v(x)dx.

We assume that Ik are disjoint for distinct k and
x 7→ v(x) ∈ B(K, hk) is continuous at k.



21. Asymptotic space

Define h := ⊕
k

hk, Z := K ⊕ h⊗L2(R). Let ν : K → h be

defined as
ν := (2π)

1
2 ⊕
k
v(k)1k(K).

Note that it satisfies

ν∗ν =
1

i
(Υ − Υ∗).

As before, we set ZR to be the multiplication by x on
L2(R) and

Z :=

[

1
2(Υ + Υ∗) (2π)−

1
2ν∗ ⊗ (1|

(2π)−
1
2ν ⊗ |1) ZR

]

,

so that (Z, IK, e−itZ) is a dilation of e−itΥ.



22. Scaling

For λ > 0, we define the family of partial isometries
Jλ,k : hk ⊗ L2(R) → hk ⊗ L2(Ik):

(Jλ,kgk)(y) =

{

1
λgk(

y−k
λ2 ), if y ∈ Ik;

0, if y ∈ R\Ik.
We set Jλ : Z → H, defined for g = (gk) ∈ ZR by

Jλg :=
∑

k

Jλ,kgk,

and on K equal to the identity. Note that Jλ are partial
isometries and

s− lim
λ↘0

J∗λJλ = 1.



23. Extended weak coupling limit
for Friedrichs operators

On Z = K ⊕ ⊕

k
hk⊗L2(R). we define the renormalizing

Hamiltonian Zren := K ⊕⊕
k
k.

Theorem.

s∗ − lim
λ↘0

eiλ−2tZren J∗λ e−iλ−2tHλ Jλ = e−itZ .

Here we used the strong* limit: s∗ − limλ↘0Aλ = A
means that for any vector ψ

lim
λ↘0

Aλψ = Aψ,

lim
λ↘0

A∗
λψ = A∗ψ.



24. COMPLETELY POSITIVE MAPS



25. Positive maps

Let K1,K2 be Hilbert spaces. We say that a map

Λ : B(K1) → B(K2)

is positive iff A ≥ 0 implies Λ(A) ≥ 0.
We say that Λ is Markov iff Λ(1) = 1.



26. n-positive maps

Let K1,K2 be Hilbert spaces. We say that a map Λ is
n-positive iff

Λ ⊗ id : B(K1 ⊗ Cn) → B(K2 ⊗ Cn)

is positive. We say that it is completely positive, or
c.p. for short iff it is n-positive for any n.

There are many positive but not completely positive
maps. For instance, the transposition is positive but
not 2-positive.



27. The Stinespring dilation of a c.p. map

Theorem.

1. Let h be a Hilbert space and ν ∈ B(K1,K2⊗h). Then

Λ(A) := ν∗ A⊗1 ν (∗)
is c.p.

2. Conversely, if Λ is c.p., then there exist a Hilbert
space h and ν ∈ B(K1,K2 ⊗ h) such that (*) is true
and B(K2)⊗1 ν K1 is dense in K2 ⊗ h.

3. If h′ and ν′ also satisfy the above properties, then
there exists a U ∈ U (h, h′) such that ν′ = 1K2

⊗ U ν.



28. Construction of the Stinespring dilation I

We equip the algebraic tensor product B(K1)⊗K2 with
the scalar product:

ṽ =
∑

i

Xi ⊗ vi, w̃ =
∑

i

Yi ⊗ wi,

(ṽ|w̃) =
∑

i,j

(vi|Λ(X∗
i Yj)wj).

By the complete positivity, it is positive.



29. Construction of the Stinespring dilation II

Define
π0(A)ṽ :=

∑

i

AXi ⊗ vi.

We check that

(π0(A)ṽ|π0(A)ṽ) ≤ ‖A‖2(ṽ|ṽ),
π0(AB) = π0(A)π0(B),

π0(A
∗) = π0(A)∗.



30. Construction of the Stinespring dilation III

Let N be the set of ṽ with (ṽ|ṽ) = 0. Then the com-
pletion of H := B(K1)⊗K2/N is a Hilbert space. There
exists a nondegenerate ∗-representation π of B(K1) in
H such that

π(A)(ṽ + N ) = π0(A)ṽ.

For every such a representation we can identify H with
K1 ⊗ h for some Hilbert space h and π(A) = A⊗ 1.
We set

νv := 1 ⊗ v + N .

We check that
Λ(A) = ν∗A⊗1 ν.



31. Uniqueness of the Stinespring dilation

If h′, ν′ is another pair. We check that
∥

∥

∥

∥

∥

∥

∑

i

Xi ⊗ 1h ν vi

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

i

Xi ⊗ 1h′ ν
′ vi

∥

∥

∥

∥

∥

∥

.

Therefore, there exists a unitary U0 : K2 ⊗ h → K2 ⊗ h′
such that U0ν = ν′ and U0 A⊗1h = A⊗1h′ U0. Therefore,

there exists a unitary U : h → h′ such that U0 = 1 ⊗ U .



32. Kadison-Schwarz inequality

Theorem. If Λ is c.p. and Λ(1) is invertible, then

Λ(A)∗Λ(1)−1Λ(A) ≤ Λ(A∗A).

Proof.

Λ(A)∗Λ(1)−1Λ(A) = ν∗A∗ ⊗ 1ν(ν∗ν)−1ν∗A⊗1ν

≤ ν∗ A∗A⊗1 ν.



33. COMPLETELY POSITIVE SEMIGROUPS



34. C.p. semigroups

Let K be a finite dimensional Hilbert space. We will
consider a c.p. semigroup on B(K). We will always
assume the semigroup to be continuous, so that it can
be written as etM for a bounded operator M on B(K)
It is called Markov if it preserves the identity.

If M1, M2 are generators of (Markov) c.p. semigroups
and c1, c2 ≥ 0, then c1M1 + c2M2 is a generator of a
(Markov) c.p. semigroup. This follows by the Trotter
formula.



35. Examples of semigroups

Example 1. Let Υ = Θ + i∆ be an operator on K. Then

M (A) := iΥA− iAΥ∗ = i[Θ, A] − [∆, A]+

is a generator of a c.p. semigroup and

etM (A) = eitΥA e−itΥ∗
.

Example 2. Let Λ be a c.p. map on K. Then it is the
generator of a c.p. semigroup and

etΛ(A) =

∞
∑

j=0

tj

j!
Λj(A).



36. Generators of c.p. semigroups I

Theorem. Let etM be a c.p. semigroup on a finite
dimensional space K. Then there exists self-adjoint
operators Θ, ∆ on K, an auxiliary Hilbert space h and
an operator ν ∈ B(K,K⊗h) such that M can be written
in the so-called Lindblad form

M (S) = i[Θ, A] − [∆, A]+ + ν∗ A⊗1 ν, A ∈ B(K).

We can choose Θ and ν so that

TrΘ = 0, Trν = 0.

etM is Markov iff 2∆ = ν∗ν.



37. Generators of c.p. semigroups II

Remark. If we identify h = Cn, then we can write

ν∗A⊗1ν =

n
∑

j=1

ν∗jAνj.

Then Trν = 0 means Trνj = 0, j = 1, . . . , n.



38. Construction of the Lindblad form I

The unitary group on K, denoted U (K), is compact.
Therefore, there exists the Haar measure on U (K),
which we denote dU . Note that

∫

UXU∗dU = TrX.

Define

iΘ − ∆0 :=

∫

M (U∗)UdU,

where Θ and ∆0 are self-adjoint.
Lemma.

∫

M (XU∗)UdU = (iΘ − ∆0)X.
Proof. First check this identity for unitary X, which
follows by the invariance of the measure. But every
operator is a linear combination of unitaries.



39. Construction of the Lindblad form II

Differentiating the inequality

etM (X)∗ etM (1)−1 etM (X) ≤ etM (X∗X)

we obtain

M (X∗X) +X∗M (1)X −M (X∗)X −X∗M (X) ≥ 0.

Replacing X with UXU , where U is unitary, we obtain

M (X∗X)+X∗U∗M (1)UX−M (X∗U∗)UX−X∗U∗M (UX) ≥ 0.

Integrating over U (K) we obtain

M (X∗X)+X∗XTrM (1)−(iΘ−∆0)X
∗X−X∗X(−iΘ−∆0)

∗ ≥ 0.



40. Construction of the Lindblad form III

Define

∆1 := ∆0 +
1

2
TrM (1),

Λ(A) := M (A) − (iΘ − ∆1)A−A(−iΘ − ∆1)

Arguing as above we see that Λ is completely positive.
Hence it can be written as

Λ(A) = ν∗1 A⊗1 ν1.



41. The Hamiltonian part of the Lindblad form

The operator Θ has trace zero, because

iTrΘ + Tr∆0 =

∫

U1M (U∗)UU∗
1 dUdU1

=

∫

U2UM (U∗)U∗
2 dUdU2

= −iTrΘ + Tr∆0.

We will say that the generator of a c.p. semigroup is
purely dissipative if Θ = 0.



42. Non-uniqueness of the Lindblad form

Let w be an arbitrary vector in h and

∆ := ∆1 + ν∗1⊗|w) +
1

2
(w|w),

ν := ν1 + 1⊗|w).

Then the same generator of a c.p. semigroup can be
written in two Lindblad forms:

(iΘ − ∆1)A +A(−iΘ − ∆1) + ν∗1Aν1

= (iΘ − ∆)A + A(−iΘ − ∆) + ν∗Aν.

In particular, choosing w := −Trν1, we can make sure
that Trν = 0.



43. Scalar product given by a density matrix

Let ρ be a nondegenerate density matrix. On B(K) we
introduce the scalar product

(A|B)ρ := Trρ1/2A∗ρ1/2B

If M is a map on B(K), then M∗ρ will denote the adjoint
for this scalar product. Clearly,

M∗ρ(A) = ρ−1/2M∗(ρ1/2Aρ1/2)ρ−1/2.



44. Detailed Balance Condition I

Let M be a generator of a c.p. semigroup. Recall that
it can be uniquely reresented as

M = i[Θ, ·] +Md,

where Md is its purely dissipative part and i[Θ, ·] its
Hamiltonian part. We say that M satisfies the De-
tailed Balance Condition for ρ iff Md is self-adjoint
and i[Θ, ·] is anti-self-adjoint for (·|·)ρ.
Proposition. If M , the generator of a Markov c.p.
semigroup, satisfies the Detailed Balance Condition
for ρ, then

[Θ, ρ] = 0, Md(ρ) = 0.



45. Detailed Balance Condition II

Theorem. Suppose that δ is a positive operator and ε
is an antiunitary operator on a Hilbert space h such
that ε2 = 1, εδε = δ−1/2. Let ν ∈ B(K,K ⊗ h). Assume
that

ρ−1/2⊗1 νρ1/2 = 1⊗δ ν,

(φ⊗w|νψ) = (νφ|ψ ⊗ δεw), φ, ψ ∈ K, w ∈ h.

Then M (A) := −1
2[ν

∗ν,A]+ + ν∗A⊗ 1ν
is a purely dissipative generator of a c.p. Markov semi-
group satisfying the Detailed Balance Condition for ρ
and ν∗νρ1/2 = ρ1/2ν∗ν.



46. PAULI FIERZ OPERATORS



47. Bosonic Fock spaces.
Creation/annihilation operators

1-particle Hilbert space: HR.

Fock space: Γs(HR) :=
∞
⊕
n=0

⊗ns HR.

Vacuum vector: Ω = 1 ∈ ⊗0
sHR = C.

If z ∈ HR, then

a(z)Ψ :=
√
n(z|⊗1(n−1)⊗Ψ ∈ ⊗n−1

s HR, Ψ ∈ ⊗ns HR

is the annihilation operator of z and a∗(z) := a(z)∗ the
corresponding creation operator. They are closable
operators on Γs(HR).



48. Second quantization

For an operator q on HR we define the operator Γ(q)
on Γs(HR) by

Γ(q)
∣

∣

∣⊗ns HR

= q ⊗ · · · ⊗ q.

For an operator h on HR we define the operator dΓ(h)
on Γs(HR) by

dΓ(h)
∣

∣

∣⊗ns HR

= h⊗ 1(n−1)⊗ + · · · 1(n−1)⊗ ⊗ h.

Note the identity Γ(eith) = eitdΓ(h).



49 Pauli-Fierz operators

Let K, ZR be Hilbert spaces. Consider a Hilbert space
H := K ⊗ Γs(HR), where HR is the 1-particle space of
the reservoir and Γs(HR) is the corresponding bosonic
Fock space. The composite system is described by the
self-adjoint operator

Hλ = K ⊗ 1 + 1 ⊗ dΓ(HR)

+λ(a∗(V ) + a(V ))

Here K describes the Hamiltonian of the small sys-
tem, dΓ(HR) describes the dynamics of the reservoir ex-
pressed by the second quantization of HR, and a∗(V )/a(V )
are the creation/annihilation operators of an operator
V ∈ B(K,K ⊗HR).



49. Creation/annihilation operators
in coupled spaces

If K is a Hilbert space and V ∈ B(K,K ⊗HR), then for
Ψ ∈ K ⊗⊗ns HR we set

a(V )Ψ :=
√
nV ∗⊗1(n−1)⊗Ψ ∈ K ⊗⊗n−1

s HR.

a(V ) is called the annihilation operator of V and a∗(V ) :=
a(V )∗ the corresponding creation operator. They are
closable operators on K ⊗ Γs(HR).



51. Alternative notation

Identify HR with L2(Ξ, dξ), for some measure space
(Ξ, dξ), so that one can introduce a∗ξ/aξ – the usual

creation/annihilation operators. Let h be the multi-
plication operator by x(ξ). Then V can be identified
with a function Ξ 3 ξ 7→ v(ξ) ∈ B(K) and we have an
alternative notation:

dΓ(HR) =

∫

x(ξ)a∗ξaξdξ,

a∗(V ) =

∫

v(ξ)a∗ξdξ,

a(V ) =

∫

v∗(k)aξdξ,

H = K +

∫

x(ξ)a∗ξaξdξ + λ

∫

(

v(ξ)a∗ξ + v∗(ξ)aξ
)

dξ.



52. LANGEVIN DYNAMICS
OF MARKOV SEMIGROUPS



53. C.p. Markov semigroups

Let K be a finite dimensional Hilbert space. Suppose
that we are given M , the generator of a c.p. Markov
semigroup on B(K). Recall that there exists an opera-
tor Υ, an auxiliary Hilbert space h and an operator ν
from K to K ⊗ h such that

−iΥ + iΥ∗ = −ν∗ν
and M can be written in the Lindblad form

M (A) = −i(ΥA− AΥ∗) + ν∗ A⊗1 ν, A ∈ B(K).



54. Quantum Langevin dynamics I

Let (1| denote the (unbounded) linear form on L2(R):

(1|f :=

∫

f (x)dx.

|1) will denote the adjoint form. We define the 1-
particle space ZR := h ⊗ L2(R). The full Hilbert space
is Z := K⊗Γs(ZR). ZR is the operator of multiplication
by the variable x on L2(R).



55. Quantum Langevin dynamics II

We choose a basis (bj) in h and write

ν =
∑

νj ⊗ |bj).
Set

ν+
j = νj,

ν−j = ν∗j .

We will denote by IK the embedding of K ' K ⊗ Ω in
Z.



56. Quantum Langevin dynamics III

For t ≥ 0 we define the quadratic form

Ut := e−idΓ(ZR)
∞
∑

n=0

∫

t≥tn≥···≥t1≥0

dtn · · · dt1

×(2π)−
n
2

∑

j1,...,jn

∑

ε1,...,εn∈{+,−}
×(−i)n e−i(t−tn)Υ νεnjn e−i(tn−tn−1)Υ · · · νε1j1 e−i(t1−0)Υ

×
∏

k=1,...,n: εk=+

a∗(eitkZR |1) ⊗ bjk)

×
∏

k′=1,...,n: εk′=−
a(eitk′ZR |1) ⊗ bjk′);

U−t := U∗
t .



57. Quantum Langevin dynamics IV

Theorem. Ut is a strongly continuous unitary group
on Z, and hence can be written as Ut = e−itZ for some
self-adjoint operator Z. We have

1∗K e−itZ 1K = e−itΥ,

1∗K eitZ A⊗ 1 e−itZ 1K = etM (A).

Formally (and also rigorously with an appropriate reg-
ularization)

Z =
1

2
(Υ + Υ∗) + dΓ(ZR)

+(2π)−
1
2a∗ (ν ⊗ |1)) + (2π)−

1
2a (ν ⊗ |1))



58. Quantum Langevin equation I
(Hudson - Parthasaraty)

The cocycle Wt := eitdΓ(ZR) e−itZ solves

i
d

dt
Wt

=
(1

2
(Υ + Υ∗)

+(2π)−
1
2a∗

(

ν ⊗ | e−itZR 1)
)

+ (2π)−
1
2a

(

ν ⊗ | e−itZR 1)
) )

Wt,



59. Quantum Langevin equation II

Apply the Fourier transformation on L2(R), so that

(2π)−
1
2|1) will correspond to |δ0). Writing Ŵt for Wt after

this transformation, we obtain the quantum Langevin
equation in a more familiar form:

i
d

dt
Ŵt

=

(

1

2
(Υ + Υ∗) + a∗ (ν ⊗ |δt)) + a (ν ⊗ |δt))

)

Ŵt.



60. Stochastic Schrödinger equation

Let D0 := h ⊗ (C(R) ∩ L2(R)). Let
al
Γs(D0), denote the

corresponding algebraic Fock space and D := K⊗al
Γs(D0).

For ψ, ψ′ ∈ D, and t > 0, the cocycle Ŵ (t) solves

i
d

dt
(ψ|Ŵ (t)ψ′)

=
(

ψ|(Υ + a∗(ν⊗|δt))Ŵtψ
′
)

+
∑

i

(

ψ|νiŴta(|bi)⊗|δt))ψ′
)

.



61. The “age” of observables

For any Borel set I ⊂ R, the space L2(I) can be treated
as a subspace of L2(R). Therefore, we have the decom-
position

Γs(h⊗L2(I)) ⊗ Γs(h⊗L2(R \ I)).
Therefore,

MR(I) := 1K ⊗B
(

Γs(h⊗L2(I))
)

,

M(I) := B
(

K ⊗ Γs(h⊗L2(I))
)

,

are well defined as von Neumann subalgebras of B(Z).



62. Quantum Langevin dynamics
and the observables

A quantum Langevin dynamics makes the bosons “older”.
At the time t = 0 they may become entangled with the
small system.

Theorem. If t > 0 and I ⊂ R\] − t, 0[, then

eitZ MR(I) e−itZ = MR(I + t),

eitZ M([−t, 0]) e−itZ = M([0, t]).



63. WEAK COUPLING LIMIT
FOR PAULI-FIERZ OPERATORS



64. Reduced weak coupling limit (E.B.Davies)

We consider a Pauli-Fierz operator

Hλ = K ⊗ 1 + 1 ⊗ dΓ(HR) + λ(a∗(V ) + a(V ))

We assume that K is finite dimensional and for any
A ∈ B(K) we have

∫

‖V ∗A⊗ 1 e−itH0 V ||dt <∞.

Theorem. There exists a Markov semigroup etM such
that

lim
λ↘0

e−itK/λ2
I∗K eitHλ/λ

2
A⊗ 1 e−itHλ/λ

2
IK eitK/λ2

= etM (A),

and a contractive semigroup e−itΥ such that

lim
λ↘0

eitK/λ2
I∗K e−itHλ/λ

2
IK = e−itΥ .



65. Continuity of spectrum

Assumption. Suppose that for any ω ∈ spK−spK there
exists open Iω ⊂ R such that ω ∈ Iω and

Ran1Iω(HR) ' hω ⊗ L2(Iω, dx),

1Iω(HR)HR is the multiplication operator by the vari-
able x ∈ Iω and

1Iω(HR)V '
∫ ⊕

Iω
v(x)dx.

We assume that Iω are disjoint for distinct ω and
x 7→ v(x) ∈ B(K,K⊗hω) is continuous at ω.



66. Formula for the Davies generator I

The operator Υ : K → K arising in the weak coupling
limit is

Υ := −i
∑

ω

∑

k−k′=ω

∫ ∞

0
1k(K)V ∗1k′(K) e−it(HR−ω) V 1k(K)dt.

Let h := ⊕
ω

hω. We define νω : K → K⊗ hω

νω := (2π)
1
2

∑

ω=k−k′
1k(K)v(ω)1k′(K),

ν : K → K ⊗ h

ν :=
∑

ω

νω.



67. Formula for the Davies generator II

Note that

iΥ − iΥ∗ =
∑

ω

∑

k−k′=ω

∫ ∞

−∞
1k(K)V ∗1k′(K) e−it(HR−ω) V 1k(K)dt

=
∑

ω

∑

k−k′=ω
1k(K)v∗(ω)1k′(K)v(ω) 1k(K)

= ν∗ν.

The generator of a c.p. Markov semigroup that arises
in the reduced weak coupling limit, called sometimes
the Davies generator is

M (A) = −i(ΥA−AΥ∗) + ν∗A⊗1ν, A ∈ B(K).



68. Asymptotic space and dynamics

Recall that given (Υ, ν, h) we can define the space ZR
and the Langevin dynamics e−itZ on the space Z :=
K ⊗ Γs(ZR). Recall that

ZR = ⊕
ω

hω ⊗ L2(R).

We will need the renormalizing Hamiltonian on Z
Zren := E + dΓ(⊕

ω
ω).



69. Scaling

For λ > 0, we define the family of partial isometries
Jλ,ω : hω ⊗ L2(R) → hω ⊗ L2(Iω):

(Jλ,ωgω)(y) =

{

1
λgω(y−ω

λ2 ), if y ∈ Iω;

0, if y ∈ R\Iω.
We set Jλ : ZR → HR, defined for g = (gω) by

Jλg :=
∑

ω

Jλ,ωgω.

Note that Jλ are partial isometries and

s− lim
λ↘0

J∗λJλ = 1.



70. Extended weak coupling limit

(Inspired by Accardi-Frigerio-Lu).
Theorem.

s∗ − lim
λ↘0

eiλ−2tZren Γ(J∗λ) e−iλ−2tHλ Γ(Jλ) = e−itZ .

Theorem. (Convergence of the interaction picture).

s∗ − lim
λ↘0

Γ(J∗λ) eiλ−2tH0 e−iλ−2(t−t0)Hλ eiλ−2t0H0 Γ(Jλ)

= eitZ0 e−i(t−t0)Z e−it0Z0 .



71. Asymptotics of correlation functions

Corrolary Let A`, . . . , A1 ∈ B(Z) and t, t`, . . . , t1, t0 ∈ R.
Then

s∗ − lim
λ↘0

I∗K eiλ−2tH0 e−iλ−2(t−t`)Hλ e−iλ−2t`H0

×Γ(Jλ)A`Γ(J∗λ) · · · Γ(Jλ)A1Γ(J∗λ)

eiλ−2t1H0 e−iλ−2(t1−t0)Hλ e−iλ−2t0H0 IK

= I∗K eitZ0 e−i(t−t`)Z e−it`Z0A`

· · ·A1 eit1Z0 e−i(t1−t0)Z e−it0Z0 IK.



72. CANONICAL COMMUTATION RELATIONS



73. Representations of the CCR I

Let Y be a real vector space equipped with an
antisymmetric form ω. (We call Y a symplectic space
if ω is nondegenerate). Let U (H) denote the set of
unitary operators on a Hilbert space H. We say that

Y 3 y 7→Wπ(y) ∈ U (H)

is a representation of the CCR over Y in H if

Wπ(y1)W
π(y2) = e−

i
2y1ωy2Wπ(y1 + y2), y1, y2 ∈ Y .

This implies the canonical commutation relation in the
Weyl form

Wπ(y1)W
π(y2) = e−iy1ωy2Wπ(y2)W

π(y1).



74. Representations of the CCR II

Let Y 3 y 7→Wπ(y) be a representation of the CCR.
We say that Ψ0 ∈ H is cyclic if
Span{Wπ(y)Ψ : y ∈ Y} is dense in H.

Clearly,
R 3 t 7→Wπ(ty) ∈ U (H)

is a 1-parameter group. We say that a representa-
tion of the CCR ) is regular if this group is strongly
continuous for each y ∈ Y.



75. Field operators

Assume that y 7→W π(y) be a regular representation of
the CCR.

φπ(y) := −i
d

dt
Wπ(ty)

∣

∣

∣

t=0
.

φπ(y) will be called the field operator corresponding
to y ∈ Y. We have Heisenberg canonical commutation
relation

[φπ(y1), φ
π(y2)] = iy1ωy2

We can extend the definition of field operators to the
complexification CY of Y:

φ(yR + iyI) = φ(yR) + iφ(yI).



76. Quasi-free representations

Let Y 3 y 7→ Wπ(y) be a representation of the CCR.
We say that Ψ ∈ H is a quasi-free vector iff there exists
a quadratic form η such that

(Ψ|W (y)Ψ) = exp(−1

4
yηy).

Note that η is necessarily positive, that is yηy ≥ 0 for
y ∈ Y.
A representation is called quasi-free if there exists a
cyclic quasi-free vector in H.

It is easy to see that quasi-free representations are
regular. Therefore, in a quasi-free representation we
can define the corresponding field operators, denoted
φ(y).



77. Correlation functions

Theorem. Let Ψ ∈ H. Suppose we are given a regular
representation of the CCR

Y 3 y 7→ eiφ(y) ∈ U (H).

Then the following statements are equivalent:

(1) For any n = 1, 2, . . . , y1, . . . yn ∈ Y, Ψ ∈ Dom (φ(y1) · · · φ(yn)),
and

(Ψ|φ(y1) · · · φ(y2m−1)Ψ) = 0;

(Ψ|φ(y1) · · · φ(y2m)Ψ)

=
∑

σ∈Pairings(2m)

m
∏

j=1
(Ψ|φ(yσ(2j−1))φ(yσ(2j))Ψ).

(2) Ψ is a quasi-free vector.



78. Conjugate Hilbert space

Let Z be a (complex) Hilbert space. The space con-
jugate to Z is a Hilbert space Z equipped with an
antilinear map

Z 3 z 7→ z ∈ Z
such that (z1|z2) = (z1|z2). We will write z = z.

Natural model of a conjugate space: take Z = Z as a
real vector space; z = z; the new multiplication by the
imaginary unit changes the sign:

i·z := −i · z.



79. Symplectic space
built on a complex Hilbert space

For a Hilbert space Z we define

Y = Re(Z ⊕ Z) := {(z, z) : z ∈ Z.}.
Y is equipped with symplectic form

(z, z)ω(w,w) = 2Im(z|w).

Note that CY can be identified with Z ⊕ Z.



80. Creation/annihilation operators

Suppose that

Re(Z ⊕ Z) 3 y 7→W (y) ∈ U (H).

is a regular representation of the CCR.
For z ∈ Z ⊂ CY we introduce creation/annihilation
operators

a(z) := φ(0, z), a∗(z) = φ(z, 0).

They satisfy the usual relations

[a(z1), a(z2)] = 0, [a(z1), a(z2)] = 0,

[a(z1), a
∗(z2)] = (z1|z2).



81. Identifying a symplectic space
with a Hilbert space

Often we identify Y with Z by

Z 3 z 7→ 1√
2
(z, z) 3 Y

so that zωw = Im(z|w). Then

φ(w) =
1√
2

(a∗(w) + a(w)) ,

a∗(w) =
1√
2

(φ(w) − iφ(w)) ,

a(w) =
1√
2

(φ(w) + iφ(w)) .



82. REPRESENTATIONS OF THE CCR
IN FOCK SPACES



83. Fock representation of the CCR

Let Z be a Hilbert space and consider the creation/annihilation
operators acting on the Fock space Γs(Z). Then

φ(w) :=
1√
2

(a∗(w) + a(w))

are self-adjoint and

Re(Z ⊕Z) ' Z 3 z 7→ exp iφ(w)

is a regular representation of the CCR called the Fock
representation. We have

(Ω| eiφ(w) Ω) = e−
1
4(w|w) .

a(z)Ω = 0.

It is an example of a quasi-free representation.



84. Double Fock space

Let Z be a Hilbert space and consider the Fock space
Γs(Z ⊕ Z). We have creation/annihilation operators
a∗(z1, z2), a(z1, z2), satisfying

[a∗(z1, z2), a
∗(w1, w2)] = [a(z1, z2), a(w1, w2)] = 0,

[a(z1, z2), a
∗(w1, w2)] = (z1|w1) + (z2|w2).

The antiunitary involution

Z ⊕ Z 3 (z1, z2) 7→ ε(z1, z2) := (z2, z1) ∈ Z ⊕Z,
will be useful. Note that

Γ(ε)a(z1, z2)Γ(ε) = a(z2, z1),

Γ(ε)a∗(z1, z2)Γ(ε) = a∗(z2, z1).



85. Parametrization of Araki-Woods
representation of the CCR

Fix a self-adjoint operator γ on Z satisfying 0 ≤ γ ≤ 1,
Ker(γ − 1) = {0}. We will also use a positive operator ρ
on Z called the 1-particle density related to γ by

γ := ρ(1 + ρ)−1, ρ = γ(1 − γ)−1.



86. Left Araki-Woods representation of the CCR

Z ⊃ Dom(ρ
1
2) 3 z 7→ Wγ,l(z) ∈ U (Γs(Z ⊕ Z)) is a regu-

lar representation of the CCR, called the left Araki-
Woods representation, where

a∗γ,l(z) := a∗
(

(ρ + 1)
1
2z, 0

)

+ a
(

0, ρ
1
2z

)

,

aγ,l(z) := a
(

(ρ + 1)
1
2 z, 0

)

+ a∗
(

0, ρ
1
2z

)

,

φγ,l(z) := 2−
1
2(a∗γ,l(z) + aγ,l(z)), Wγ,l(z) := eiφγ,l(z) .

In fact, Wγ,l(z1)Wγ,l(z2) = e−
i
2Im(z1|z2)Wγ,l(z1 +z2). We will

write MAW
γ,l for the von Neumann algebra generated by

Wγ,l(z).



87. Right Araki-Woods representation of the CCR

Z ⊃ Dom(ρ
1
2) 3 z 7→ Wγ,r(z) ∈ U (Γs(Z ⊕ Z)) is a regu-

lar representation of the CCR, called the right Araki-
Woods representation, where

a∗γ,r(z) := a∗
(

0, (ρ + 1)
1
2z

)

+ a
(

ρ
1
2z, 0

)

,

aγ,r(z) := a
(

0, (ρ + 1)
1
2 z

)

+ a∗
(

ρ
1
2z, 0

)

,

φγ,r(z) := 2−
1
2(a∗γ,r(z) + aγ,r(z)), Wγ,r(z) := eiφγ,r(z) .

In fact, Wγ,r(z1)Wγ,r(z2) = e
i
2Im(z1|z2)Wγ,l(z1 + z2). We will

write MAW
γ,r for the von Neumann generated by Wγ,r(z).



88. Araki-Woods representation of the CCR
as a quasi-free representation

The vacuum Ω is a bosonic quasi-free vector for Wγ,l.
Its expectation value for the Weyl operators is equal
to

(

Ω|Wγ,l(z)Ω
)

= exp
(

− 1
4(z|z) − 1

2(z|ρz)
)

and the “two-point functions” are equal to
(

Ω|a∗γ,l(z1)aγ,l(z2)Ω
)

= (z2|ρz1),
(

Ω|a∗γ,l(z1)a∗γ,l(z2)Ω
)

= 0,
(

Ω|aγ,l(z1)aγ,l(z2)Ω
)

= 0.



89. Araki-Woods representation of the CCR
and von Neumann algebras

Γ(ε)aAW
γ,l Γ(ε) = aAW

γ,r , etc. Hence, Γ(ε)MAW
γ,l Γ(ε) = MAW

γ,r .

MAW
γ,l is a factor.

If γ = 0, then it is of type I.
If γ has some continuous spectrum, it is of type III.

Proposition. Kerγ = {0}
iff Ω is a cyclic vector for MAW

γ,l

iff Ω is a separating vector for MAW
γ,l

iff (Ω| · Ω) is a faithful state on MAW
γ,l .

In this the case, the Tomita-Takesaki theory yields
the modular conjugation J = Γ(ε) and the modular
operator ∆ = Γ(γ ⊕ γ−1).



90. Araki-Woods representation of the CCR
and free dynamics

Let h be a positive self-adjoint operator on Z commut-
ing with γ and

τ t(Wγ,l(z)) := Wγ,l(e
ith z).

Then t 7→ τ t extends to a W ∗-dynamics on MAW
γ,l and

L = dΓ(h⊕ (−h))

is its Liouvillean, that means

τ t(A) = eitLA e−itL, A ∈ MAW
γ,l ,

LΩ = 0.

(Ω|·Ω) is a (τ, β)-KMS state iff γ = e−βh, or equivalently,
the density satisfies the Planck law ρ = (eβh−1)−1.



91. Confined Bose gas

Assume that γ (and equivalently ρ) is trace class. Then
Γ(γ) is trace class with

TrΓ(γ) = det(1 − γ)−1 = det(1 + ρ).

Define the state ωγ on the W ∗-algebra B(Γs(Z)) given
by the density matrix

Γ(γ)/TrΓ(γ).

Then
ωγ(W (z)) = exp

(

− 1
4(z|z) − 1

2(z|ρz)
)

Thus we obtain the same expectation values as for the
Araki-Woods representation.



92. Confined Bose gas
in terms of a Araki-Woods representations

There exists a unitary operator

Rγ : Γs(Z) ⊗ Γs(Z) → Γs(Z ⊕Z)

(a Bogoliubov transformation) such that

Wγ,l(z) = RγW (z) ⊗ 1R∗
γ,

MAW
γ,l = Rγ B(Γs(Z))⊗1 R∗

γ.



93. SMALL SYSTEM IN CONTACT

WITH BOSE GAS



94. Small quantum system
in contact with Bose gas at zero density

Hilbert space of the small quantum system: K = Cn.
The Hamiltonian of the small system: K.
The free Pauli-Fierz Hamiltonian:

Hfr := K ⊗ 1 + 1 ⊗
∫

|ξ|a∗(ξ)a(ξ)dξ.

Rd 3 ξ 7→ v(ξ) ∈ B(K)

describes the interaction:

V :=

∫

v(ξ) ⊗ a∗(ξ)dξ + hc

The full Pauli-Fierz Hamiltonian: H := Hfr + λV. The
Pauli-Fierz system at zero density:

(

B(K ⊗ Γs(L
2(Rd)), eitH · e−itH

)

.



95. Small quantum system
in contact with Bose gas at density ρ.

The algebra of observables of the composite system:

Mγ := B(K) ⊗ MAW
γ,l ⊂ B

(

K ⊗ Γs(L
2(Rd) ⊕ L2(Rd))

)

.

The free Pauli-Fierz semi-Liouvillean at density ρ:

Lsemi
fr := K ⊗ 1 + 1 ⊗

(

∫

|ξ|a∗l (ξ)al(ξ)dξ −
∫

|ξ|a∗r (ξ)ar(ξ)dξ
)

.

The interaction: Vγ :=
∫

v(ξ) ⊗ a∗γ,l(ξ)dξ + hc.

The full Pauli-Fierz semi-Liouvillean at density ρ:

Lsemi
γ := Lsemi

fr + λVγ.

The Pauli-Fierz W ∗-dynamical system at density ρ:

(Mγ, τγ), where τγ,t(A) := eitLsemi
γ A e−itLsemi

γ .



96. Relationship between the dynamics
at zero density and at density ρ.

Set γ = 0 (equivalently, ρ = 0).

M0 ' B(K ⊗ Γs(L
2(Rd)) ⊗ 1.

Lsemi
0 ' H ⊗ 1 − 1 ⊗

∫

|ξ|a∗r (ξ)ar(ξ)dξ.

τ0,t(A⊗ 1) = eitH A e−itH ⊗1.

If we formally replace al(ξ), ar(ξ) with aγ,l(ξ), aγ,r(ξ)

(the CCR do not change!) then M0, L
semi
0 , τ0 trans-

form into Mγ, L
semi
γ , τγ. In the case of a finite num-

ber of degrees of freedom this can be implemented by
a unitary Bogoliubov transformation. (Mγ, τγ) can be
viewed as a thermodynamical limit of (M0, τ0).



97. Thermal reservoirs

Theorem. If γ = e−β|ξ|, then

1. In the reduced weak coupling limit we obtain a c.p.
Markov semigroup satisfying the Detailed Balance
Condition wrt the state given by the density matrix
e−βK /Tr e−βK;

2. For any λ there exists a normal KMS state for the
W ∗-dynamical system τγ; Araki, D.-Jakšić-Pillet

3. Under some conditions on the interaction saying
that it is sufficiently regular and effective, there ex-
ists λ0 > 0 such that for 0 < |λ| < λ0, this state is
a unique normal stationary state (Jakšić-Pillet, D-
Jakšić, Bach-Fröhlich-Sigal, Fröhlich-Merkli).



98. Standard representation of Mγ.

Often one uses the so-called standard representation:

π : Mγ → B(K ⊗K ⊗ Γs(L
2(Rd) ⊕ L2(Rd)),

π(A⊗B) = A⊗ 1 ⊗B,

JΦ1 ⊗ Φ2 ⊗ Ψ = Φ2 ⊗ Φ1 ⊗ Γ(ε)Ψ.

The free Pauli-Fierz Liouvillean:

Lfr := K ⊗ 1 ⊗ 1 − 1 ⊗K ⊗ 1

+1 ⊗ 1 ⊗
∫ (

|ξ|
(

a∗l (ξ)al(ξ) − a∗l (ξ)al(ξ)
))

dξ,

π(Vγ) =
∫

v(ξ) ⊗ 1 ⊗ a∗γ,l(ξ)dξ + hc,

Jπ(Vγ)J =
∫

1 ⊗ v(ξ) ⊗ 1 ⊗ a∗γ,r(ξ)dξ + hc.

The full Pauli-Fierz Liouvillean at density ρ:

Lγ = Lfr + λπ(Vγ) − λJπ(Vγ)J.


