EXTENDED WEAK COUPLING LIMIT

Jan Dereziński

Based on joint work with Wojciech De Roeck

2. Various levels of description used in physics

- More exact fundamental description;
- More approximate effective description.

One of the aims of theoretical and mathematical physics is to justify effective models as limiting cases of more fundamental theories. 3. <u>Small quantum system weakly interacting</u> with a large reservoir.

We are interested in a class of dynamics generated by a Hamiltonian (self-adjoint operator) H_{λ} of the form Hamiltonian of the small system

- + Hamiltonian of the large reservoir
- + λ times interaction.

There are a number of varieties of such Hamiltonians used in quantum physics and they go under various names. We use the name Pauli-Fierz Hamiltonians. 4. Reduced weak coupling limit (Pauli, van Hove,...,Davies)

- Reduce the dynamics to the small system.
- Consider weak coupling $\lambda \to 0$.
- Rescale time as $\frac{t}{\lambda^2}$.
- Subtract the dynamics of the small system.

In the limit one obtains a dynamics given by a **completely positive Markov semigroup**. It is an irreversible non-Hamiltonian dynamics.

5. Extended weak coupling limit (Accardi-Frigerio-Lu, D.-De-Roeck)

Known also as stochastic limit.

- Consider weak coupling $\lambda \to 0$.
- Rescale time as $\frac{t}{\lambda^2}$.
- Rescale the reservoir energy by the factor of λ^2 around the Bohr frequencies.
- Subtract the dynamics of the small system.

In the limit one obtains a (reversible) quantum Langevin dynamics, which gives a dilation of the completely positive semigroup obtained in the reduced weak coupling limit.

PLAN OF THE MINICOURSE

- 1. DILATIONS OF CONTRACTIVE SEMIGROUPS
- 2. WEAK COUPLING LIMIT FOR FRIEDRICHS OPERATORS
- **3. COMPLETELY POSITIVE MAPS**
- 4. COMPLETELY POSITIVE SEMIGROUPS
- 5. PAULI FIERZ OPERATORS
- 6. LANGEVIN DYNAMICS OF MARKOV SEMIGROUPS
- 7. WEAK COUPLING LIMIT FOR PAULI-FIERZ OPERATORS
- 8. CANONICAL COMMUTATION RELATIONS
- 9. REPRESENTATIONS OF THE CCR IN FOCK SPACES
- 10. SMALL SYSTEM IN CONTACT WITH BOSE GAS

7. <u>DILATIONS</u> OF CONTRACTIVE SEMIGROUPS

8. <u>Dilations</u> of contractive semigroups

Let \mathcal{K} be a Hilbert space and $e^{-it\Upsilon}$ a contractive semigroup. This implies that $i\Upsilon$ is dissipative:

$$-i\Upsilon + i\Upsilon^* \le 0.$$

Let \mathcal{Z} be a Hilbert space containing \mathcal{K} , $I_{\mathcal{K}}$ the embedding of \mathcal{K} in \mathcal{Z} and e^{-itZ} a unitary group on \mathcal{Z} . We say that $(\mathcal{Z}, I_{\mathcal{K}}, e^{-itZ})$ is a dilation of $e^{-it\Upsilon}$ iff

$$I_{\mathcal{K}}^* e^{-itZ} I_{\mathcal{K}} = e^{-it\Upsilon}, \quad t \ge 0.$$

This clearly implies

$$I_{\mathcal{K}}^* e^{-itZ} I_{\mathcal{K}} = e^{-it\Upsilon^*}, \quad t \le 0.$$

We say that the dilation is minimal if $\{e^{-itZ} \mathcal{K} : t \in \mathbb{R}\}$ is total in \mathcal{Z} .

9. <u>Standard construction of a dilation I</u>

We define the vector space $\tilde{\mathcal{F}}$ of functions f from \mathbb{R} to \mathcal{K} , such that

 $\{s \in \mathbb{R} | f(s) \neq 0\}$ is a finite set.

We equip $\tilde{\mathcal{F}}$ with a bilinear form

$$(f|f') := \sum_{t \ge s} (f(s)|e^{-i\Upsilon|t-s|} f'(t))_{\mathcal{K}} + \sum_{t < s} (f(s)|e^{i\Upsilon^*|t-s|} f'(t))_{\mathcal{K}}$$

One checks that the form $(\cdot|\cdot)$ is positive definite. Let \mathcal{N} denote the subspace of f, for which (f|f) = 0. Let \mathcal{F} denote the completion of the pre-Hilbert space $\tilde{\mathcal{F}}/\mathcal{N}$.

10. <u>Standard construction of a dilation II</u>

For $u \in \mathcal{K}$ define $Pu(s) := \delta_{s,0}u$, where $\delta_{s,0}$ is Kronecker's delta. Then $Pu := [Pu] \in \mathcal{F}$ defines an isometric embedding of $P : \mathcal{K} \to \mathcal{F}$. Define now

$$\tilde{W}_t f(s) = f(s-t).$$

 \tilde{W}_t is a one-parameter group on $\tilde{\mathcal{F}}$ that preserves the form $(\cdot|\cdot)$. Therefore, it defines a one-parameter unitary group W_t on \mathcal{F} . W_t dilates the semigroup $e^{-it\Upsilon}$:

$$PW_tP = \mathrm{e}^{-\mathrm{i}t\Upsilon}$$

In fact, it is a minimal dilation of $e^{-it\Upsilon}$.

11. Construction of a dilation

Let \mathfrak{h} be an auxiliary space and $\nu : \mathcal{K} \to \mathfrak{h}$ satisfy $\frac{1}{2i}(\Upsilon - \Upsilon^*) = -\pi \nu^* \nu.$

Let (1| be a linear functional with domain $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$: (1| $f = \int f(x) dx$.

Let $Z_{\mathbb{R}}$ be the operator of multiplication on $L^2(\mathbb{R})$ by the variable x. Define $\mathcal{Z} := \mathcal{K} \oplus \mathfrak{h} \otimes L^2(\mathbb{R})$. Introduce the singular Friedrichs operator given by the following formal expression:

 $Z := \begin{bmatrix} \frac{1}{2}(\Upsilon + \Upsilon^*) & (2\pi)^{-\frac{1}{2}}\nu^* \otimes (1) \\ (2\pi)^{-\frac{1}{2}}\nu \otimes |1) & Z_{\mathrm{R}} \end{bmatrix}$ Then $(\mathcal{Z}, I_{\mathcal{K}}, \mathrm{e}^{-\mathrm{i}tZ})$ is a dilation of $\mathrm{e}^{-\mathrm{i}t\Upsilon}$. 12. <u>Construction of a dilation</u> – <u>the unitary group</u>

$$U_{t} = I_{\mathrm{R}}^{*} e^{-\mathrm{i}tZ_{\mathrm{R}}} I_{\mathrm{R}} + I_{\mathcal{K}}^{*} e^{-\mathrm{i}t\Upsilon} I_{\mathcal{K}}$$

$$-\mathrm{i}(2\pi)^{-\frac{1}{2}} I_{\mathcal{K}}^{*} \int_{0}^{t} du \ e^{-\mathrm{i}(t-u)\Upsilon} \nu^{*} \otimes (1|e^{-\mathrm{i}uZ_{\mathrm{R}}} I_{\mathrm{R}})$$

$$-(2\pi)^{-\frac{1}{2}} I_{\mathrm{R}}^{*} \int_{0}^{t} du \ e^{-\mathrm{i}(t-u)Z_{\mathrm{R}}} \nu \otimes |1| e^{-\mathrm{i}u\Upsilon} I_{\mathcal{K}}$$

$$(2\pi)^{-1} I_{\mathrm{R}}^{*} \int du_{1} du_{2} \ e^{-\mathrm{i}u_{2}Z_{\mathrm{R}}} \nu \otimes |1| e^{-\mathrm{i}(t-u_{2}-u_{1})\Upsilon} \nu^{*} \otimes (1|e^{-\mathrm{i}u_{1}Z_{\mathrm{R}}} I_{\mathrm{R}}.$$

$$0 \le u_{1}, u_{2}, u_{1}+u_{2} \le t$$

We check that U_t is a strongly continuous unitary group. Therefore, we can define Z as its unitary generator: $U_t = e^{-itZ}$. (Here I_R is the embedding of $\mathfrak{h} \otimes L^2(\mathbb{R})$ in \mathcal{Z}). 13. <u>Construction of a dilation</u>
– resolvent of the generator

For $z \in \mathbb{C}_+$, we define

$$R(z) := I_{\rm R}^* (z - Z_{\rm R})^{-1} I_{\rm R} + I_{\mathcal{K}}^* (z - \Upsilon)^{-1} I_{\mathcal{K}} + (2\pi)^{-\frac{1}{2}} I_{\mathcal{K}}^* (z - \Upsilon)^{-1} \nu^* \otimes (1 | (z - Z_{\rm R})^{-1} I_{\rm R} + (2\pi)^{-\frac{1}{2}} I_{\rm R}^* (z - Z_{\rm R})^{-1} \nu \otimes |\nu\rangle (z - \Upsilon)^{-1} I_{\mathcal{K}} + (2\pi)^{-1} I_{\rm R}^* (z - Z_{\rm R})^{-1} \nu \otimes |1\rangle (z - \Upsilon)^{-1} \nu^* \otimes (\nu | (z - Z_{\rm R})^{-1} I_{\rm R}; R(\overline{z}) := R(z)^*.$$

We can check that $R(z_1) - R(z_2) = (z_2 - z_1)R(z_1)R(z_2)$, $KerR(z) = \{0\}$. Therefore, we can define Z as the selfadjoint operator Z satisfying $R(z) = (z - Z)^{-1}$. 14. <u>Construction of a dilation</u> – removing a cutoff

Z is the norm resolvent limit for $r \to \infty$ of the following regularized operators:

$$Z_r := \begin{bmatrix} \frac{1}{2} (\Upsilon + \Upsilon^*) & (2\pi)^{-\frac{1}{2}} \nu^* \otimes (1|1_{[-r,r]}(Z_{\mathrm{R}})] \\ (2\pi)^{-\frac{1}{2}} \nu \otimes 1_{[-r,r]}(Z_{\mathrm{R}})|1) & 1_{[-r,r]}(Z_{\mathrm{R}})Z_{\mathrm{R}} \end{bmatrix}$$

(Note that it is important to remove the cut-off in a symmetric way).

15. False quadratic form of the generator of dilations

On $\mathcal{D} := \mathcal{K} \oplus \mathfrak{h} \otimes (L^2(\mathbb{R}) \cap L^1(\mathbb{R}))$ we can define the (non-self-adjoint) quadratic form

$$Z^{+} := \begin{bmatrix} \Upsilon & (2\pi)^{-\frac{1}{2}}\nu^{*} \otimes (1) \\ (2\pi)^{-\frac{1}{2}}\nu \otimes |1) & Z_{\mathrm{R}} \end{bmatrix}$$

One can say that it is a "false form" of Z. In fact, for $\psi, \psi' \in \mathcal{D}$, the function $\mathbb{R} \ni t \mapsto (\psi | e^{-itZ} \psi')$ is differentiable away from t = 0, its derivative $t \mapsto \frac{d}{dt}(\psi | e^{-itZ} \psi')$ is continuous away from 0 and at t = 0 it has the right limit equal to

$$-i(\psi|Z^+\psi') = \lim_{t\downarrow 0} t^{-1} \left(\psi|(e^{-itZ}-1)\psi'\right)$$

16. Scaling invariance

For $\lambda \in \mathbb{R}$, introduce the following unitary operator on \mathcal{Z}

$$j_{\lambda}u = u, \quad u \in \mathcal{K}; \qquad j_{\lambda}g(y) := \lambda^{-1}g(\lambda^{-2}y), \quad g \in \mathcal{Z}_{\mathbf{R}}.$$

Note that

$$j_{\lambda}^* Z_{\mathrm{R}} j_{\lambda} = \lambda^2 Z_{\mathrm{R}}, \quad j_{\lambda}^* |1) = \lambda |1).$$

Therefore, the operator Z is invariant with respect to the following scaling:

$$Z = \lambda^{-2} j_{\lambda}^* \begin{bmatrix} \lambda^{2} \frac{1}{2} (\Upsilon + \Upsilon^*) & \lambda (2\pi)^{-\frac{1}{2}} \nu^* \otimes (1) \\ \lambda (2\pi)^{-\frac{1}{2}} \nu \otimes |1\rangle & Z_{\mathrm{R}} \end{bmatrix} j_{\lambda}.$$

17. WEAK COUPLING LIMIT FOR FRIEDRICHS OPERATORS

18. Friedrichs operators

Let $\mathcal{H} := \mathcal{K} \oplus \mathcal{H}_{\mathbb{R}}$ be a Hilbert space, where \mathcal{K} is finite dimensional. Let $I_{\mathcal{K}}$ be the embedding of \mathcal{K} in \mathcal{H} . Let K be a self-adjoint operator on \mathcal{K} and $H_{\mathbb{R}}$ be a selfadjoint operator on $\mathcal{H}_{\mathbb{R}}$. Let $V : \mathcal{K} \to \mathcal{H}_{\mathbb{R}}$. Define the Friedrichs Hamiltonian

$$H_{\lambda} := \begin{bmatrix} K & \lambda V^* \\ \lambda V & H_{\mathrm{R}} \end{bmatrix}.$$

19.Reduced weak coupling limit
for Friedrichs operators

Assume that $\int \|V^* e^{-itH_R} V\| dt < \infty$. Define the Level Shift Operator

$$\Upsilon := \sum_{k} \int_0^\infty \mathbf{1}_k(K) V^* \,\mathrm{e}^{-\mathrm{i}t(H_\mathrm{R}-k)} \,V \mathbf{1}_k(K) \mathrm{d}t.$$

Note that $\Upsilon K = K \Upsilon$.

Theorem.

$$\lim_{\lambda \to 0} e^{itK/\lambda^2} I_{\mathcal{K}}^* e^{-itH_{\lambda}/\lambda^2} I_{\mathcal{K}} = e^{-it\Upsilon}$$

20. Continuity of spectrum

Assumption. We suppose that for any $k \in \operatorname{sp} K$ there exists an open $I_k \subset \mathbb{R}$ such that $k \in I_k$,

$$\operatorname{Ran1}_{I_k}(H_{\mathbf{R}}) \simeq \mathfrak{h}_k \otimes L^2(I_k, \mathrm{d}x),$$

 $1_{I_k}(H_{\mathbf{R}})H_{\mathbf{R}}$ is the multiplication operator by the variable $x \in I_k$ and

$$1_{I_k}(H_{\mathbf{R}})V \simeq \int_{I_k}^{\oplus} v(x) \mathrm{d}x.$$

We assume that I_k are disjoint for distinct k and $x \mapsto v(x) \in B(\mathcal{K}, \mathfrak{h}_k)$ is continuous at k.

21. Asymptotic space

Define $\mathfrak{h} := \bigoplus_k \mathfrak{h}_k, \ \mathcal{Z} := \mathcal{K} \oplus \mathfrak{h} \otimes L^2(\mathbb{R}).$ Let $\nu : \mathcal{K} \to \mathfrak{h}$ be defined as

$$\nu := (2\pi)^{\frac{1}{2}} \bigoplus_k v(k) \mathbf{1}_k(K).$$

Note that it satisfies

$$\nu^*\nu = \frac{1}{i}(\Upsilon - \Upsilon^*).$$

As before, we set $Z_{\rm R}$ to be the multiplication by x on $L^2({\mathbb R})$ and

$$Z := \begin{bmatrix} \frac{1}{2}(\Upsilon + \Upsilon^*) & (2\pi)^{-\frac{1}{2}}\nu^* \otimes (1) \\ (2\pi)^{-\frac{1}{2}}\nu \otimes |1) & Z_{\mathrm{R}} \end{bmatrix},$$

so that $(\mathcal{Z}, I_{\mathcal{K}}, \mathrm{e}^{-\mathrm{i}tZ})$ is a dilation of $\mathrm{e}^{-\mathrm{i}t\Upsilon}$.

22. Scaling

For $\lambda > 0$, we define the family of partial isometries $J_{\lambda,k} : \mathfrak{h}_k \otimes L^2(\mathbb{R}) \to \mathfrak{h}_k \otimes L^2(I_k)$:

$$(J_{\lambda,k}g_k)(y) = \begin{cases} \frac{1}{\lambda}g_k(\frac{y-k}{\lambda^2}), & \text{if } y \in I_k; \\ 0, & \text{if } y \in \mathbb{R} \backslash I_k \end{cases}$$

We set $J_{\lambda} : \mathbb{Z} \to \mathcal{H}$, defined for $g = (g_k) \in \mathbb{Z}_R$ by

$$J_{\lambda}g := \sum_{k} J_{\lambda,k}g_k,$$

and on \mathcal{K} equal to the identity. Note that J_{λ} are partial isometries and

$$s-\lim_{\lambda\searrow 0}J_{\lambda}^{*}J_{\lambda}=1.$$

23. Extended weak coupling limit for Friedrichs operators

On $\mathcal{Z} = \mathcal{K} \oplus \bigoplus_k \mathfrak{h}_k \otimes L^2(\mathbb{R})$. we define the renormalizing Hamiltonian $Z_{\text{ren}} := K \oplus \bigoplus_k k$.

Theorem.

$$s^* - \lim_{\lambda \searrow 0} e^{i\lambda^{-2}tZ_{\text{ren}}} J^*_{\lambda} e^{-i\lambda^{-2}tH_{\lambda}} J_{\lambda} = e^{-itZ}$$

Here we used the strong* limit: $s^* - \lim_{\lambda \searrow 0} A_{\lambda} = A$ means that for any vector ψ

$$\lim_{\lambda \searrow 0} A_{\lambda} \psi = A \psi,$$
$$\lim_{\lambda \searrow 0} A_{\lambda}^{*} \psi = A^{*} \psi.$$

24. <u>COMPLETELY POSITIVE MAPS</u>

25. Positive maps

Let $\mathcal{K}_1, \mathcal{K}_2$ be Hilbert spaces. We say that a map $\Lambda: B(\mathcal{K}_1) \to B(\mathcal{K}_2)$

is positive iff $A \ge 0$ implies $\Lambda(A) \ge 0$. We say that Λ is Markov iff $\Lambda(1) = 1$.

26. *n*-positive maps

Let $\mathcal{K}_1, \mathcal{K}_2$ be Hilbert spaces. We say that a map Λ is *n*-positive iff

 $\Lambda \otimes \mathrm{id} : B(\mathcal{K}_1 \otimes \mathbb{C}^n) \to B(\mathcal{K}_2 \otimes \mathbb{C}^n)$

is positive. We say that it is completely positive, or c.p. for short iff it is n-positive for any n.

There are many positive but not completely positive maps. For instance, the transposition is positive but not 2-positive.

27. The Stinespring dilation of a c.p. map

Theorem.

1. Let \mathfrak{h} be a Hilbert space and $\nu \in B(\mathcal{K}_1, \mathcal{K}_2 \otimes \mathfrak{h})$. Then $\Lambda(A) := \nu^* A \otimes 1 \nu$ (*)

is c.p.

- 2. Conversely, if Λ is c.p., then there exist a Hilbert space \mathfrak{h} and $\nu \in B(\mathcal{K}_1, \mathcal{K}_2 \otimes \mathfrak{h})$ such that (*) is true and $B(\mathcal{K}_2) \otimes 1 \nu \mathcal{K}_1$ is dense in $\mathcal{K}_2 \otimes \mathfrak{h}$.
- 3. If \mathfrak{h}' and ν' also satisfy the above properties, then there exists a $U \in U(\mathfrak{h}, \mathfrak{h}')$ such that $\nu' = 1_{\mathcal{K}_2} \otimes U \nu$.

We equip the algebraic tensor product $B(\mathcal{K}_1) \otimes \mathcal{K}_2$ with the scalar product:

$$\tilde{v} = \sum_{i} X_{i} \otimes v_{i}, \quad \tilde{w} = \sum_{i} Y_{i} \otimes w_{i},$$
$$(\tilde{v}|\tilde{w}) = \sum_{i,j} (v_{i}|\Lambda(X_{i}^{*}Y_{j})w_{j}).$$

By the complete positivity, it is positive.

29. Construction of the Stinespring dilation II

Define

$$\pi_0(A)\tilde{v} := \sum_i AX_i \otimes v_i.$$

We check that

$$\begin{aligned} (\pi_0(A)\tilde{v}|\pi_0(A)\tilde{v}) &\leq \|A\|^2(\tilde{v}|\tilde{v}), \\ \pi_0(AB) &= \pi_0(A)\pi_0(B), \\ \pi_0(A^*) &= \pi_0(A)^*. \end{aligned}$$

Let \mathcal{N} be the set of \tilde{v} with $(\tilde{v}|\tilde{v}) = 0$. Then the completion of $\mathcal{H} := B(\mathcal{K}_1) \otimes \mathcal{K}_2/\mathcal{N}$ is a Hilbert space. There exists a nondegenerate *-representation π of $B(\mathcal{K}_1)$ in \mathcal{H} such that

$$\pi(A)(\tilde{v} + \mathcal{N}) = \pi_0(A)\tilde{v}.$$

For every such a representation we can identify \mathcal{H} with $\mathcal{K}_1 \otimes \mathfrak{h}$ for some Hilbert space \mathfrak{h} and $\pi(A) = A \otimes 1$. We set

 $\nu v := 1 \otimes v + \mathcal{N}.$

We check that

$$\Lambda(A) = \nu^* A \otimes 1 \ \nu.$$

31. Uniqueness of the Stinespring dilation

If \mathfrak{h}' , ν' is another pair. We check that

$$\left\|\sum_{i} X_{i} \otimes 1_{\mathfrak{h}} \nu v_{i}\right\| = \left\|\sum_{i} X_{i} \otimes 1_{\mathfrak{h}'} \nu' v_{i}\right\|.$$

Therefore, there exists a unitary $U_0 : \mathcal{K}_2 \otimes \mathfrak{h} \to \mathcal{K}_2 \otimes \mathfrak{h}'$ such that $U_0 \nu = \nu'$ and $U_0 A \otimes 1_{\mathfrak{h}} = A \otimes 1_{\mathfrak{h}'} U_0$. Therefore, there exists a unitary $U : \mathfrak{h} \to \mathfrak{h}'$ such that $U_0 = 1 \otimes U$.

Theorem. If Λ is c.p. and $\Lambda(1)$ is invertible, then $\Lambda(A)^*\Lambda(1)^{-1}\Lambda(A) \leq \Lambda(A^*A).$

Proof.

$$\Lambda(A)^* \Lambda(1)^{-1} \Lambda(A) = \nu^* A^* \otimes 1\nu (\nu^* \nu)^{-1} \nu^* A \otimes 1\nu$$

$$\leq \nu^* A^* A \otimes 1 \nu.$$

33. COMPLETELY POSITIVE SEMIGROUPS

34. C.p. semigroups

Let \mathcal{K} be a finite dimensional Hilbert space. We will consider a c.p. semigroup on $B(\mathcal{K})$. We will always assume the semigroup to be continuous, so that it can be written as e^{tM} for a bounded operator M on $B(\mathcal{K})$ It is called Markov if it preserves the identity.

If M_1 , M_2 are generators of (Markov) c.p. semigroups and $c_1, c_2 \ge 0$, then $c_1M_1 + c_2M_2$ is a generator of a (Markov) c.p. semigroup. This follows by the Trotter formula. **Example 1.** Let $\Upsilon = \Theta + i\Delta$ be an operator on \mathcal{K} . Then $M(A) := i\Upsilon A - iA\Upsilon^* = i[\Theta, A] - [\Delta, A]_+$ is a generator of a c.p. semigroup and

$$e^{tM}(A) = e^{it\Upsilon} A e^{-it\Upsilon^*}$$

Example 2. Let Λ be a c.p. map on \mathcal{K} . Then it is the generator of a c.p. semigroup and

$$e^{t\Lambda}(A) = \sum_{j=0}^{\infty} \frac{t^j}{j!} \Lambda^j(A).$$

Theorem. Let e^{tM} be a c.p. semigroup on a finite dimensional space \mathcal{K} . Then there exists self-adjoint operators Θ , Δ on \mathcal{K} , an auxiliary Hilbert space \mathfrak{h} and an operator $\nu \in B(\mathcal{K}, \mathcal{K} \otimes \mathfrak{h})$ such that M can be written in the so-called Lindblad form

$$M(S) = \mathbf{i}[\Theta, A] - [\Delta, A]_{+} + \nu^* A \otimes 1 \nu, \qquad A \in B(\mathcal{K}).$$

We can choose Θ and ν so that

$$\mathrm{Tr}\Theta = 0, \quad \mathrm{Tr}\nu = 0.$$

 e^{tM} is Markov iff $2\Delta = \nu^* \nu$.
37. Generators of c.p. semigroups II

Remark. If we identify $\mathfrak{h} = \mathbb{C}^n$, then we can write

$$\nu^* A \otimes 1\nu = \sum_{j=1}^n \nu_j^* A \nu_j.$$

Then $\operatorname{Tr}\nu = 0$ means $\operatorname{Tr}\nu_j = 0, \ j = 1, \ldots, n$.

The unitary group on \mathcal{K} , denoted $U(\mathcal{K})$, is compact. Therefore, there exists the Haar measure on $U(\mathcal{K})$, which we denote dU. Note that

$$\int UXU^* \mathrm{d}U = \mathrm{Tr}X.$$

Define

$$i\Theta - \Delta_0 := \int M(U^*) U dU,$$

where Θ and Δ_0 are self-adjoint. Lemma. $\int M(XU^*)UdU = (i\Theta - \Delta_0)X$. Proof. First check this identity for unitary X, which follows by the invariance of the measure. But every operator is a linear combination of unitaries. 39. Construction of the Lindblad form II

Differentiating the inequality

$$e^{tM}(X)^* e^{tM}(1)^{-1} e^{tM}(X) \le e^{tM}(X^*X)$$

we obtain

$$M(X^*X) + X^*M(1)X - M(X^*)X - X^*M(X) \ge 0.$$

Replacing X with UXU, where U is unitary, we obtain $M(X^*X)+X^*U^*M(1)UX-M(X^*U^*)UX-X^*U^*M(UX) \ge 0.$ Integrating over $U(\mathcal{K})$ we obtain $M(X^*X)+X^*X\operatorname{Tr} M(1)-(\mathrm{i}\Theta-\Delta_0)X^*X-X^*X(-\mathrm{i}\Theta-\Delta_0)^* \ge 0.$ 40. Construction of the Lindblad form III

Define

$$\Delta_1 := \Delta_0 + \frac{1}{2} \operatorname{Tr} M(1),$$

$$\Lambda(A) := M(A) - (\mathrm{i}\Theta - \Delta_1)A - A(-\mathrm{i}\Theta - \Delta_1)A$$

Arguing as above we see that Λ is completely positive. Hence it can be written as

$$\Lambda(A) = \nu_1^* A \otimes 1 \nu_1.$$

41. The Hamiltonian part of the Lindblad form

The operator Θ has trace zero, because

$$i\mathrm{Tr}\Theta + \mathrm{Tr}\Delta_0 = \int U_1 M(U^*) U U_1^* \mathrm{d}U \mathrm{d}U_1$$
$$= \int U_2 U M(U^*) U_2^* \mathrm{d}U \mathrm{d}U_2$$
$$= -i\mathrm{Tr}\Theta + \mathrm{Tr}\Delta_0.$$

We will say that the generator of a c.p. semigroup is purely dissipative if $\Theta = 0$.

42. Non-uniqueness of the Lindblad form

Let w be an arbitrary vector in \mathfrak{h} and

$$\Delta := \Delta_1 + \nu^* 1 \otimes |w| + \frac{1}{2} (w|w),$$

$$\nu := \nu_1 + 1 \otimes |w|.$$

Then the same generator of a c.p. semigroup can be written in two Lindblad forms:

$$(i\Theta - \Delta_1)A + A(-i\Theta - \Delta_1) + \nu_1^* A \nu_1$$

= $(i\Theta - \Delta)A + A(-i\Theta - \Delta) + \nu^* A \nu.$

In particular, choosing $w := -\text{Tr}\nu_1$, we can make sure that $\text{Tr}\nu = 0$.

Let ρ be a nondegenerate density matrix. On $B(\mathcal{K})$ we introduce the scalar product

$$(A|B)_{\rho} := \mathrm{Tr}\rho^{1/2}A^*\rho^{1/2}B$$

If M is a map on $B(\mathcal{K})$, then $M^{*\rho}$ will denote the adjoint for this scalar product. Clearly,

$$M^{*\rho}(A) = \rho^{-1/2} M^{*}(\rho^{1/2} A \rho^{1/2}) \rho^{-1/2}$$

44. Detailed Balance Condition I

Let M be a generator of a c.p. semigroup. Recall that it can be uniquely reresented as

$$M = \mathbf{i}[\Theta, \cdot] + M_{\mathrm{d}},$$

where M_d is its purely dissipative part and $i[\Theta, \cdot]$ its Hamiltonian part. We say that M satisfies the Detailed Balance Condition for ρ iff M_d is self-adjoint and $i[\Theta, \cdot]$ is anti-self-adjoint for $(\cdot|\cdot)_{\rho}$.

Proposition. If M, the generator of a Markov c.p. semigroup, satisfies the Detailed Balance Condition for ρ , then

$$[\Theta, \rho] = 0, \qquad M_{\rm d}(\rho) = 0.$$

45. Detailed Balance Condition II

Theorem. Suppose that δ is a positive operator and ϵ is an antiunitary operator on a Hilbert space \mathfrak{h} such that $\epsilon^2 = 1$, $\epsilon \delta \epsilon = \delta^{-1/2}$. Let $\nu \in B(\mathcal{K}, \mathcal{K} \otimes \mathfrak{h})$. Assume that

$$\rho^{-1/2} \otimes 1 \ \nu \rho^{1/2} = 1 \otimes \delta \ \nu,$$

$$(\phi \otimes w | \nu \psi) = (\nu \phi | \psi \otimes \delta \epsilon w), \quad \phi, \psi \in \mathcal{K}, \quad w \in \mathfrak{h}.$$

Then $M(A) := -\frac{1}{2}[\nu^*\nu, A]_+ + \nu^*A \otimes 1\nu$

is a purely dissipative generator of a c.p. Markov semigroup satisfying the Detailed Balance Condition for ρ and $\nu^* \nu \rho^{1/2} = \rho^{1/2} \nu^* \nu$.

46. PAULI FIERZ OPERATORS

47. <u>Bosonic Fock spaces.</u> Creation/annihilation operators

1-particle Hilbert space: \mathcal{H}_{R} . Fock space: $\Gamma_{s}(\mathcal{H}_{R}) := \bigoplus_{n=0}^{\infty} \otimes_{s}^{n} \mathcal{H}_{R}$. Vacuum vector: $\Omega = 1 \in \otimes_{s}^{0} \mathcal{H}_{R} = \mathbb{C}$.

If $z \in \mathcal{H}_{\mathrm{R}}$, then $a(z)\Psi := \sqrt{n}(z|\otimes 1^{(n-1)\otimes}\Psi \in \otimes_{\mathrm{s}}^{n-1}\mathcal{H}_{\mathrm{R}}, \quad \Psi \in \otimes_{\mathrm{s}}^{n}\mathcal{H}_{\mathrm{R}}$ is the annihilation operator of z and $a^{*}(z) := a(z)^{*}$ the corresponding creation operator. They are closable operators on $\Gamma_{\mathrm{s}}(\mathcal{H}_{\mathrm{R}})$.

48. Second quantization

For an operator q on \mathcal{H}_R we define the operator $\Gamma(q)$ on $\Gamma_s(\mathcal{H}_R)$ by

$$\Gamma(q)\Big|_{\otimes^n_{\mathrm{s}}\mathcal{H}_{\mathrm{R}}} = q \otimes \cdots \otimes q.$$

For an operator h on \mathcal{H}_R we define the operator $d\Gamma(h)$ on $\Gamma_s(\mathcal{H}_R)$ by

$$\mathrm{d}\Gamma(h)\Big|_{\otimes^n_{\mathrm{s}}\mathcal{H}_{\mathrm{R}}} = h \otimes 1^{(n-1)\otimes} + \cdots 1^{(n-1)\otimes} \otimes h.$$

Note the identity $\Gamma(e^{ith}) = e^{itd\Gamma(h)}$.

Let \mathcal{K} , \mathcal{Z}_R be Hilbert spaces. Consider a Hilbert space $\mathcal{H} := \mathcal{K} \otimes \Gamma_s(\mathcal{H}_R)$, where \mathcal{H}_R is the 1-particle space of the reservoir and $\Gamma_s(\mathcal{H}_R)$ is the corresponding bosonic Fock space. The composite system is described by the self-adjoint operator

$$H_{\lambda} = K \otimes 1 + 1 \otimes d\Gamma(H_{R}) + \lambda(a^{*}(V) + a(V))$$

Here K describes the Hamiltonian of the small system, $d\Gamma(H_R)$ describes the dynamics of the reservoir expressed by the second quantization of H_R , and $a^*(V)/a(V)$ are the creation/annihilation operators of an operator $V \in \mathcal{B}(\mathcal{K}, \mathcal{K} \otimes \mathcal{H}_R)$.

49. Creation/annihilation operators in coupled spaces

If \mathcal{K} is a Hilbert space and $V \in B(\mathcal{K}, \mathcal{K} \otimes \mathcal{H}_R)$, then for $\Psi \in \mathcal{K} \otimes \otimes_s^n \mathcal{H}_R$ we set

$$a(V)\Psi := \sqrt{n}V^* \otimes 1^{(n-1)\otimes}\Psi \in \mathcal{K} \otimes \otimes_{\mathrm{s}}^{n-1}\mathcal{H}_{\mathrm{R}}.$$

a(V) is called the annihilation operator of V and $a^*(V) := a(V)^*$ the corresponding creation operator. They are closable operators on $\mathcal{K} \otimes \Gamma_s(\mathcal{H}_R)$.

51. <u>Alternative notation</u>

Identify \mathcal{H}_{R} with $L^{2}(\Xi, \mathrm{d}\xi)$, for some measure space $(\Xi, \mathrm{d}\xi)$, so that one can introduce a_{ξ}^{*}/a_{ξ} – the usual creation/annihilation operators. Let h be the multiplication operator by $x(\xi)$. Then V can be identified with a function $\Xi \ni \xi \mapsto v(\xi) \in B(\mathcal{K})$ and we have an alternative notation:

$$d\Gamma(H_{\rm R}) = \int x(\xi) a_{\xi}^* a_{\xi} d\xi,$$

$$a^*(V) = \int v(\xi) a_{\xi}^* d\xi,$$

$$a(V) = \int v^*(k) a_{\xi} d\xi,$$

$$H = K + \int x(\xi) a_{\xi}^* a_{\xi} d\xi + \lambda \int \left(v(\xi) a_{\xi}^* + v^*(\xi) a_{\xi} \right) d\xi.$$

52.LANGEVIN DYNAMICSOF MARKOV SEMIGROUPS

Let \mathcal{K} be a finite dimensional Hilbert space. Suppose that we are given M, the generator of a c.p. Markov semigroup on $B(\mathcal{K})$. Recall that there exists an operator Υ , an auxiliary Hilbert space \mathfrak{h} and an operator ν from \mathcal{K} to $\mathcal{K} \otimes \mathfrak{h}$ such that

$$-\mathrm{i}\Upsilon + \mathrm{i}\Upsilon^* = -\nu^*\nu$$

and $M\ {\rm can}\ {\rm be}\ {\rm written}\ {\rm in}\ {\rm the}\ {\rm Lindblad}\ {\rm form}$

$$M(A) = -i(\Upsilon A - A\Upsilon^*) + \nu^* A \otimes 1 \nu, \qquad A \in B(\mathcal{K}).$$

Let (1) denote the (unbounded) linear form on $L^2(\mathbb{R})$:

$$(1|f := \int f(x) \mathrm{d}x.$$

1) will denote the adjoint form. We define the 1particle space $\mathcal{Z}_{R} := \mathfrak{h} \otimes L^{2}(\mathbb{R})$. The full Hilbert space is $\mathcal{Z} := \mathcal{K} \otimes \Gamma_{s}(\mathcal{Z}_{R})$. Z_{R} is the operator of multiplication by the variable x on $L^{2}(\mathbb{R})$. 55. Quantum Langevin dynamics II

We choose a basis (b_j) in \mathfrak{h} and write

$$\nu = \sum \nu_j \otimes |b_j).$$

Set

$$\nu_j^+ = \nu_j,$$

$$\nu_j^- = \nu_j^*.$$

We will denote by $I_{\mathcal{K}}$ the embedding of $\mathcal{K} \simeq \mathcal{K} \otimes \Omega$ in \mathcal{Z} .

56. Quantum Langevin dynamics III

For $t \ge 0$ we define the quadratic form

$$\begin{split} U_t &:= e^{-id\Gamma(Z_R)} \sum_{n=0}^{\infty} \int dt_n \cdots dt_1 \\ &\times (2\pi)^{-\frac{n}{2}} \sum_{\substack{j_1, \dots, j_n \\ j_1, \dots, j_n}} \sum_{\substack{\epsilon_1, \dots, \epsilon_n \in \{+, -\} \\ (-i)^n e^{-i(t-t_n)\Upsilon} \nu_{j_n}^{\epsilon_n} e^{-i(t_n - t_{n-1})\Upsilon} \cdots \nu_{j_1}^{\epsilon_1} e^{-i(t_1 - 0)\Upsilon} \\ &\times \prod_{\substack{k=1, \dots, n: \\ k=1, \dots, n:}} a^* (e^{it_k Z_R} | 1) \otimes b_{j_k}) \\ &\times \prod_{\substack{k'=1, \dots, n: \\ k'=1, \dots, n:}} a(e^{it_{k'} Z_R} | 1) \otimes b_{j_{k'}}); \\ U_{-t} &:= U_t^*. \end{split}$$

Theorem. U_t is a strongly continuous unitary group on \mathcal{Z} , and hence can be written as $U_t = e^{-itZ}$ for some self-adjoint operator Z. We have

$$1_{\mathcal{K}}^* e^{-itZ} 1_{\mathcal{K}} = e^{-it\Upsilon},$$

$$1_{\mathcal{K}}^* e^{itZ} A \otimes 1 e^{-itZ} 1_{\mathcal{K}} = e^{tM}(A)$$

Formally (and also rigorously with an appropriate regularization)

$$Z = \frac{1}{2} (\Upsilon + \Upsilon^*) + d\Gamma(Z_{\rm R}) + (2\pi)^{-\frac{1}{2}} a^* (\nu \otimes |1)) + (2\pi)^{-\frac{1}{2}} a (\nu \otimes |1))$$

58. <u>Quantum Langevin equation I</u> (Hudson - Parthasaraty)

The cocycle $W_t := e^{itd\Gamma(Z_R)} e^{-itZ}$ solves

$$\begin{aligned} &\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}W_t \\ &= \left(\frac{1}{2}(\Upsilon + \Upsilon^*) \right. \\ &+ (2\pi)^{-\frac{1}{2}}a^* \left(\nu \otimes |\mathrm{e}^{-\mathrm{i}tZ_{\mathrm{R}}} 1)\right) + (2\pi)^{-\frac{1}{2}}a \left(\nu \otimes |\mathrm{e}^{-\mathrm{i}tZ_{\mathrm{R}}} 1)\right) \right) W_t, \end{aligned}$$

59. Quantum Langevin equation II

Apply the Fourier transformation on $L^2(\mathbb{R})$, so that $(2\pi)^{-\frac{1}{2}}|1)$ will correspond to $|\delta_0\rangle$. Writing \hat{W}_t for W_t after this transformation, we obtain the quantum Langevin equation in a more familiar form:

$$i\frac{\mathrm{d}}{\mathrm{d}t}\hat{W}_{t} = \left(\frac{1}{2}(\Upsilon + \Upsilon^{*}) + a^{*}\left(\nu \otimes |\delta_{t}\right)\right) + a\left(\nu \otimes |\delta_{t}\right)\right)\hat{W}_{t}.$$

Let $\mathcal{D}_0 := \mathfrak{h} \otimes (C(\mathbb{R}) \cap L^2(\mathbb{R}))$. Let $\overset{\text{al}}{\Gamma}_{s}(\mathcal{D}_0)$, denote the corresponding algebraic Fock space and $\mathcal{D} := \mathcal{K} \otimes \overset{\text{al}}{\Gamma}_{s}(\mathcal{D}_0)$. For $\psi, \psi' \in \mathcal{D}$, and t > 0, the cocycle $\hat{W}(t)$ solves

$$i\frac{\mathrm{d}}{\mathrm{d}t}(\psi|\hat{W}(t)\psi') = \left(\psi|(\Upsilon + a^*(\nu \otimes |\delta_t))\hat{W}_t\psi'\right) + \sum_i \left(\psi|\nu_i\hat{W}_ta(|b_i)\otimes |\delta_t))\psi'\right)$$

61. The "age" of observables

For any Borel set $I \subset \mathbb{R}$, the space $L^2(I)$ can be treated as a subspace of $L^2(\mathbb{R})$. Therefore, we have the decomposition

$$\Gamma_{\mathrm{s}}(\mathfrak{h} \otimes L^2(I)) \otimes \Gamma_{\mathrm{s}}(\mathfrak{h} \otimes L^2(\mathbb{R} \setminus I)).$$

Therefore,

$$\mathfrak{M}_{\mathrm{R}}(I) := 1_{\mathcal{K}} \otimes B\left(\Gamma_{\mathrm{s}}(\mathfrak{h} \otimes L^{2}(I))\right),$$
$$\mathfrak{M}(I) := B\left(\mathcal{K} \otimes \Gamma_{\mathrm{s}}(\mathfrak{h} \otimes L^{2}(I))\right),$$

are well defined as von Neumann subalgebras of $B(\mathcal{Z})$.

62. Quantum Langevin dynamics and the observables

A quantum Langevin dynamics makes the bosons "older". At the time t = 0 they may become entangled with the small system.

Theorem. If t > 0 and $I \subset \mathbb{R} \setminus] - t, 0[$, then $e^{itZ} \mathfrak{M}_{\mathbb{R}}(I) e^{-itZ} = \mathfrak{M}_{\mathbb{R}}(I+t),$ $e^{itZ} \mathfrak{M}([-t,0]) e^{-itZ} = \mathfrak{M}([0,t]).$

63. <u>WEAK COUPLING LIMIT</u> FOR PAULI-FIERZ OPERATORS

64. Reduced weak coupling limit (E.B.Davies)

We consider a Pauli-Fierz operator

$$H_{\lambda} = K \otimes 1 + 1 \otimes d\Gamma(H_{\mathrm{R}}) + \lambda(a^{*}(V) + a(V))$$

We assume that \mathcal{K} is finite dimensional and for any $A \in B(\mathcal{K})$ we have $\int ||V^*A \otimes 1| e^{-itH_0} V| |dt < \infty$.

Theorem. There exists a Markov semigroup e^{tM} such that

 $\lim_{\lambda \searrow 0} e^{-itK/\lambda^2} I_{\mathcal{K}}^* e^{itH_{\lambda}/\lambda^2} A \otimes 1 e^{-itH_{\lambda}/\lambda^2} I_{\mathcal{K}} e^{itK/\lambda^2} = e^{tM}(A),$

and a contractive semigroup $e^{-it\Upsilon}$ such that

$$\lim_{\lambda \searrow 0} e^{itK/\lambda^2} I_{\mathcal{K}}^* e^{-itH_{\lambda}/\lambda^2} I_{\mathcal{K}} = e^{-it\Upsilon}$$

Assumption. Suppose that for any $\omega \in \operatorname{sp} K - \operatorname{sp} K$ there exists open $I_{\omega} \subset \mathbb{R}$ such that $\omega \in I_{\omega}$ and

$$\operatorname{Ran1}_{I_{\omega}}(H_{\mathrm{R}}) \simeq \mathfrak{h}_{\omega} \otimes L^{2}(I_{\omega}, \mathrm{d}x),$$

 $1_{I_{\omega}}(H_{\rm R})H_{\rm R}$ is the multiplication operator by the variable $x\in I_{\omega}$ and

$$1_{I_{\omega}}(H_{\mathrm{R}})V \simeq \int_{I_{\omega}}^{\oplus} v(x)\mathrm{d}x.$$

We assume that I_{ω} are disjoint for distinct ω and $x \mapsto v(x) \in B(\mathcal{K}, \mathcal{K} \otimes \mathfrak{h}_{\omega})$ is continuous at ω .

66. Formula for the Davies generator I

The operator $\Upsilon: \mathcal{K} \to \mathcal{K}$ arising in the weak coupling limit is

$$\Upsilon := -i \sum_{\omega} \sum_{k-k'=\omega} \int_0^\infty 1_k(K) V^* 1_{k'}(K) e^{-it(H_R - \omega)} V 1_k(K) dt.$$

Let $\mathfrak{h} := \bigoplus_{\omega} \mathfrak{h}_{\omega}$. We define $\nu_{\omega} : \mathcal{K} \to \mathcal{K} \otimes \mathfrak{h}_{\omega}$

$$\nu_{\omega} := (2\pi)^{\frac{1}{2}} \sum_{\omega = k - k'} \mathbf{1}_k(K) v(\omega) \mathbf{1}_{k'}(K),$$

 $u: \mathcal{K} \to \mathcal{K} \otimes \mathfrak{h}$

$$\nu := \sum_{\omega} \nu_{\omega}.$$

67. Formula for the Davies generator II

Note that

$$i\Upsilon - i\Upsilon^* = \sum_{\omega} \sum_{\substack{k-k'=\omega}} \int_{-\infty}^{\infty} 1_k(K) V^* 1_{k'}(K) e^{-it(H_R - \omega)} V 1_k(K) dt$$
$$= \sum_{\omega} \sum_{\substack{k-k'=\omega}} 1_k(K) v^*(\omega) 1_{k'}(K) v(\omega) 1_k(K)$$
$$= \nu^* \nu.$$

The generator of a c.p. Markov semigroup that arises in the reduced weak coupling limit, called sometimes the Davies generator is

$$M(A) = -i(\Upsilon A - A\Upsilon^*) + \nu^* A \otimes 1\nu, \qquad A \in B(\mathcal{K}).$$

Recall that given $(\Upsilon, \nu, \mathfrak{h})$ we can define the space \mathcal{Z}_{R} and the Langevin dynamics $\mathrm{e}^{-\mathrm{i}tZ}$ on the space $\mathcal{Z} := \mathcal{K} \otimes \Gamma_{\mathrm{s}}(\mathcal{Z}_{\mathrm{R}})$. Recall that

$$\mathcal{Z}_{\mathrm{R}} = \bigoplus_{\omega} \mathfrak{h}_{\omega} \otimes L^2(\mathbb{R}).$$

We will need the renormalizing Hamiltonian on \mathcal{Z}

$$Z_{\rm ren} := E + d\Gamma(\bigoplus_{\omega} \omega).$$

69. Scaling

For $\lambda > 0$, we define the family of partial isometries $J_{\lambda,\omega} : \mathfrak{h}_{\omega} \otimes L^2(\mathbb{R}) \to \mathfrak{h}_{\omega} \otimes L^2(I_{\omega})$:

$$(J_{\lambda,\omega}g_{\omega})(y) = \begin{cases} \frac{1}{\lambda}g_{\omega}(\frac{y-\omega}{\lambda^2}), & \text{if } y \in I_{\omega}; \\ 0, & \text{if } y \in \mathbb{R} \backslash I_{\omega} \end{cases}$$

We set $J_{\lambda} : \mathcal{Z}_{\mathrm{R}} \to \mathcal{H}_{\mathrm{R}}$, defined for $g = (g_{\omega})$ by $J_{\lambda}g := \sum_{\omega} J_{\lambda,\omega}g_{\omega}.$

Note that J_{λ} are partial isometries and

s-
$$\lim_{\lambda \searrow 0} J_{\lambda}^* J_{\lambda} = 1.$$

70. Extended weak coupling limit

(Inspired by Accardi-Frigerio-Lu). Theorem.

$$\mathbf{e}^* - \lim_{\lambda \searrow 0} \mathbf{e}^{\mathrm{i}\lambda^{-2}tZ_{\mathrm{ren}}} \Gamma(J_{\lambda}^*) \, \mathbf{e}^{-\mathrm{i}\lambda^{-2}tH_{\lambda}} \, \Gamma(J_{\lambda}) = \mathbf{e}^{-\mathrm{i}tZ}$$

Theorem. (Convergence of the interaction picture). $s^* - \lim_{\lambda \searrow 0} \Gamma(J_{\lambda}^*) e^{i\lambda^{-2}tH_0} e^{-i\lambda^{-2}(t-t_0)H_{\lambda}} e^{i\lambda^{-2}t_0H_0} \Gamma(J_{\lambda})$ $= e^{itZ_0} e^{-i(t-t_0)Z} e^{-it_0Z_0}.$

71. Asymptotics of correlation functions

Corrolary Let $A_{\ell}, \ldots, A_1 \in B(\mathcal{Z})$ and $t, t_{\ell}, \ldots, t_1, t_0 \in \mathbb{R}$. Then

$$s^{*} - \lim_{\lambda \searrow 0} I_{\mathcal{K}}^{*} e^{i\lambda^{-2}tH_{0}} e^{-i\lambda^{-2}(t-t_{\ell})H_{\lambda}} e^{-i\lambda^{-2}t_{\ell}H_{0}}$$
$$\times \Gamma(J_{\lambda})A_{\ell}\Gamma(J_{\lambda}^{*}) \cdots \Gamma(J_{\lambda})A_{1}\Gamma(J_{\lambda}^{*})$$
$$e^{i\lambda^{-2}t_{1}H_{0}} e^{-i\lambda^{-2}(t_{1}-t_{0})H_{\lambda}} e^{-i\lambda^{-2}t_{0}H_{0}} I_{\mathcal{K}}$$

$$= I_{\mathcal{K}}^{*} e^{itZ_{0}} e^{-i(t-t_{\ell})Z} e^{-it_{\ell}Z_{0}} A_{\ell}$$

... $A_{1} e^{it_{1}Z_{0}} e^{-i(t_{1}-t_{0})Z} e^{-it_{0}Z_{0}} I_{\mathcal{K}}$

72. CANONICAL COMMUTATION RELATIONS
Let \mathcal{Y} be a real vector space equipped with an antisymmetric form ω . (We call \mathcal{Y} a symplectic space if ω is nondegenerate). Let $U(\mathcal{H})$ denote the set of unitary operators on a Hilbert space \mathcal{H} . We say that

 $\mathcal{Y} \ni y \mapsto W^{\pi}(y) \in U(\mathcal{H})$

is a representation of the CCR over ${\mathcal Y}$ in ${\mathcal H}$ if

 $W^{\pi}(y_1)W^{\pi}(y_2) = e^{-\frac{1}{2}y_1\omega y_2}W^{\pi}(y_1 + y_2), \quad y_1, y_2 \in \mathcal{Y}.$ This implies the canonical commutation relation in the Weyl form

$$W^{\pi}(y_1)W^{\pi}(y_2) = e^{-iy_1\omega y_2} W^{\pi}(y_2)W^{\pi}(y_1).$$

Let $\mathcal{Y} \ni y \mapsto W^{\pi}(y)$ be a representation of the CCR. We say that $\Psi_0 \in \mathcal{H}$ is cyclic if $\operatorname{Span}\{W^{\pi}(y)\Psi : y \in \mathcal{Y}\}$ is dense in \mathcal{H} . Clearly,

 $\mathbb{R} \ni t \mapsto W^{\pi}(ty) \in U(\mathcal{H})$

is a 1-parameter group. We say that a representation of the CCR) is regular if this group is strongly continuous for each $y \in \mathcal{Y}$.

75. Field operators

Assume that $y \mapsto W^{\pi}(y)$ be a regular representation of the CCR.

$$\phi^{\pi}(y) := -\mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t} W^{\pi}(ty) \Big|_{t=0}$$

 $\phi^{\pi}(y)$ will be called the field operator corresponding to $y \in \mathcal{Y}$. We have Heisenberg canonical commutation relation

$$[\phi^{\pi}(y_1), \phi^{\pi}(y_2)] = \mathrm{i}y_1 \omega y_2$$

We can extend the definition of field operators to the complexification $\mathbb{C}\mathcal{Y}$ of \mathcal{Y} :

$$\phi(y_{\mathrm{R}} + \mathrm{i} y_{\mathrm{I}}) = \phi(y_{\mathrm{R}}) + \mathrm{i} \phi(y_{\mathrm{I}}).$$

76. Quasi-free representations

Let $\mathcal{Y} \ni y \mapsto W^{\pi}(y)$ be a representation of the CCR. We say that $\Psi \in \mathcal{H}$ is a quasi-free vector iff there exists a quadratic form η such that

$$(\Psi|W(y)\Psi) = \exp(-\frac{1}{4}y\eta y).$$

Note that η is necessarily positive, that is $y\eta y \ge 0$ for $y \in \mathcal{Y}$.

A representation is called quasi-free if there exists a cyclic quasi-free vector in \mathcal{H} .

It is easy to see that quasi-free representations are regular. Therefore, in a quasi-free representation we can define the corresponding field operators, denoted $\phi(y)$.

77. Correlation functions

Theorem. Let $\Psi \in \mathcal{H}$. Suppose we are given a regular representation of the CCR

$$\mathcal{Y} \ni y \mapsto \mathrm{e}^{\mathrm{i}\phi(y)} \in U(\mathcal{H}).$$

Then the following statements are equivalent:

(1) For any $n = 1, 2, ..., y_1, ..., y_n \in \mathcal{Y}, \Psi \in \text{Dom}(\phi(y_1) \cdots \phi(y_n))$, and

$$(\Psi|\phi(y_1)\cdots\phi(y_{2m-1})\Psi) = 0;$$

$$(\Psi|\phi(y_1)\cdots\phi(y_{2m})\Psi)$$

$$= \sum_{\sigma\in\text{Pairings}(2m)} \prod_{j=1}^m (\Psi|\phi(y_{\sigma(2j-1)})\phi(y_{\sigma(2j)})\Psi).$$

(2) Ψ is a quasi-free vector.

78. Conjugate Hilbert space

Let \mathcal{Z} be a (complex) Hilbert space. The space conjugate to \mathcal{Z} is a Hilbert space $\overline{\mathcal{Z}}$ equipped with an antilinear map

$$\mathcal{Z} \ni z \mapsto \overline{z} \in \mathcal{Z}$$

such that $(\overline{z}_1|\overline{z}_2) = \overline{(z_1|z_2)}$. We will write $\overline{\overline{z}} = z$.

Natural model of a conjugate space: take $\overline{Z} = Z$ as a real vector space; $\overline{z} = z$; the new multiplication by the imaginary unit changes the sign:

$$i \overline{\cdot} z := -i \cdot z.$$

79. <u>Symplectic space</u> built on a complex Hilbert space

For a Hilbert space \mathcal{Z} we define

$$\mathcal{Y} = \operatorname{Re}(\mathcal{Z} \oplus \overline{\mathcal{Z}}) := \{(z, \overline{z}) : z \in \mathcal{Z}.\}.$$

 ${\mathcal Y}$ is equipped with symplectic form

$$(z,\overline{z})\omega(w,\overline{w}) = 2\mathrm{Im}(z|w).$$

Note that $\mathbb{C}\mathcal{Y}$ can be identified with $\mathcal{Z}\oplus\overline{\mathcal{Z}}$.

80. Creation/annihilation operators

Suppose that

$$\operatorname{Re}(\mathcal{Z} \oplus \overline{\mathcal{Z}}) \ni y \mapsto W(y) \in U(\mathcal{H}).$$

is a regular representation of the CCR. For $z \in \mathcal{Z} \subset \mathbb{C}\mathcal{Y}$ we introduce creation/annihilation operators

$$a(z) := \phi(0, \overline{z}), \quad a^*(z) = \phi(z, 0).$$

They satisfy the usual relations

$$[a(z_1), a(z_2)] = 0, \quad [a(z_1), a(z_2)] = 0, [a(z_1), a^*(z_2)] = (z_1|z_2).$$

81. Identifying a symplectic space with a Hilbert space

Often we identify \mathcal{Y} with \mathcal{Z} by

$$\mathcal{Z} \ni z \mapsto \frac{1}{\sqrt{2}}(z,\overline{z}) \ni \mathcal{Y}$$

so that $z\omega w = \operatorname{Im}(z|w)$. Then

$$\phi(w) = \frac{1}{\sqrt{2}} (a^*(w) + a(w)),$$

$$a^*(w) = \frac{1}{\sqrt{2}} (\phi(w) - i\phi(w)),$$

$$a(w) = \frac{1}{\sqrt{2}} (\phi(w) + i\phi(w)).$$

82. <u>REPRESENTATIONS OF THE CCR</u> <u>IN FOCK SPACES</u>

83. Fock representation of the CCR

Let \mathcal{Z} be a Hilbert space and consider the creation/annihilation operators acting on the Fock space $\Gamma_s(\mathcal{Z})$. Then

$$\phi(w) := \frac{1}{\sqrt{2}} \left(a^*(w) + a(w) \right)$$

are self-adjoint and

$$\operatorname{Re}(\mathcal{Z} \oplus \overline{\mathcal{Z}}) \simeq \mathcal{Z} \ni z \mapsto \exp \mathrm{i}\phi(w)$$

is a regular representation of the CCR called the Fock representation. We have

$$(\Omega | e^{i\phi(w)} \Omega) = e^{-\frac{1}{4}(w|w)}.$$
$$a(z)\Omega = 0.$$

It is an example of a quasi-free representation.

84. Double Fock space

Let \mathcal{Z} be a Hilbert space and consider the Fock space $\Gamma_{s}(\mathcal{Z} \oplus \overline{\mathcal{Z}})$. We have creation/annihilation operators $a^{*}(z_{1}, z_{2}), a(z_{1}, z_{2})$, satisfying

$$\begin{bmatrix} a^*(z_1, \overline{z}_2), a^*(w_1, \overline{w}_2) \end{bmatrix} = \begin{bmatrix} a(z_1, \overline{z}_2), a(w_1, \overline{w}_2) \end{bmatrix} = 0, \\ \begin{bmatrix} a(z_1, \overline{z}_2), a^*(w_1, \overline{w}_2) \end{bmatrix} = (z_1 | w_1) + \overline{(z_2 | w_2)}.$$

The antiunitary involution

$$\mathcal{Z} \oplus \overline{\mathcal{Z}} \ni (z_1, \overline{z}_2) \mapsto \epsilon(z_1, \overline{z}_2) := (z_2, \overline{z}_1) \in \mathcal{Z} \oplus \overline{\mathcal{Z}},$$

will be useful. Note that

$$\Gamma(\epsilon)a(z_1,\overline{z}_2)\Gamma(\epsilon) = a(z_2,\overline{z}_1),$$

$$\Gamma(\epsilon)a^*(z_1,\overline{z}_2)\Gamma(\epsilon) = a^*(z_2,\overline{z}_1).$$

85. <u>Parametrization of Araki-Woods</u> representation of the CCR

Fix a self-adjoint operator γ on \mathcal{Z} satisfying $0 \leq \gamma \leq 1$, $\operatorname{Ker}(\gamma - 1) = \{0\}$. We will also use a positive operator ρ on \mathcal{Z} called the 1-particle density related to γ by

$$\gamma := \rho (1+\rho)^{-1}, \quad \rho = \gamma (1-\gamma)^{-1}.$$

86. Left Araki-Woods representation of the CCR

 $\mathcal{Z} \supset \operatorname{Dom}(\rho^{\frac{1}{2}}) \ni z \mapsto W_{\gamma,l}(z) \in U(\Gamma_{s}(\mathcal{Z} \oplus \overline{\mathcal{Z}}))$ is a regular representation of the CCR, called the left Araki-Woods representation, where

$$\begin{split} a_{\gamma,l}^{*}(z) &:= a^{*} \Big((\rho+1)^{\frac{1}{2}} z, 0 \Big) + a \Big(0, \overline{\rho}^{\frac{1}{2}} \overline{z} \Big), \\ a_{\gamma,l}(z) &:= a \Big((\rho+1)^{\frac{1}{2}} z, 0 \Big) + a^{*} \Big(0, \overline{\rho}^{\frac{1}{2}} \overline{z} \Big), \\ \phi_{\gamma,l}(z) &:= 2^{-\frac{1}{2}} (a_{\gamma,l}^{*}(z) + a_{\gamma,l}(z)), \quad W_{\gamma,l}(z) := e^{i\phi_{\gamma,l}(z)} . \end{split}$$

In fact, $W_{\gamma,l}(z_{1}) W_{\gamma,l}(z_{2}) = e^{-\frac{i}{2} \text{Im}(z_{1}|z_{2})} W_{\gamma,l}(z_{1}+z_{2}).$ We will write $\mathfrak{M}_{\gamma,l}^{\text{AW}}$ for the von Neumann algebra generated by $W_{\gamma,l}(z).$

 \mathbf{W}

W

87. Right Araki-Woods representation of the CCR

 $\overline{\mathcal{Z}} \supset \text{Dom}(\overline{\rho^2}) \ni z \mapsto W_{\gamma,r}(z) \in U(\Gamma_s(\mathcal{Z} \oplus \overline{\mathcal{Z}}))$ is a regular representation of the CCR, called the right Araki-Woods representation, where

$$\begin{split} a^*_{\gamma,\mathrm{r}}(\overline{z}) &:= a^* \Big(0, (\rho+1)^{\frac{1}{2}} z \Big) + a \Big(\overline{\rho}^{\frac{1}{2}} \overline{z}, 0 \Big), \\ a_{\gamma,\mathrm{r}}(\overline{z}) &:= a \Big(0, (\rho+1)^{\frac{1}{2}} z \Big) + a^* \Big(\overline{\rho}^{\frac{1}{2}} \overline{z}, 0 \Big), \\ \phi_{\gamma,\mathrm{r}}(\overline{z}) &:= 2^{-\frac{1}{2}} (a^*_{\gamma,\mathrm{r}}(\overline{z}) + a_{\gamma,\mathrm{r}}(\overline{z})), \quad W_{\gamma,\mathrm{r}}(\overline{z}) := \mathrm{e}^{\mathrm{i}\phi_{\gamma,\mathrm{r}}(\overline{z})} \,. \\ \mathbf{In \ fact}, \ W_{\gamma,\mathrm{r}}(\overline{z}_1) W_{\gamma,\mathrm{r}}(\overline{z}_2) &= \mathrm{e}^{\frac{\mathrm{i}}{2}\mathrm{Im}(z_1|z_2)} W_{\gamma,\mathrm{l}}(\overline{z}_1 + \overline{z}_2). \ \mathbf{We \ will} \\ \mathbf{write} \ \mathfrak{M}^{\mathrm{AW}}_{\gamma,\mathrm{r}} \ \mathbf{for \ the \ von \ Neumann \ generated \ by \ W_{\gamma,\mathrm{r}}(\overline{z}). \end{split}$$

88. Araki-Woods representation of the CCR as a quasi-free representation

The vacuum Ω is a bosonic quasi-free vector for $W_{\gamma,l}$. Its expectation value for the Weyl operators is equal to

$$\left(\Omega|W_{\gamma,\mathbf{l}}(z)\Omega\right) = \exp\left(-\frac{1}{4}(z|z) - \frac{1}{2}(z|\rho z)\right)$$

and the "two-point functions" are equal to

$$\begin{aligned} &\left(\Omega | a_{\gamma,l}^*(z_1) a_{\gamma,l}(z_2) \Omega\right) = (z_2 | \rho z_1), \\ &\left(\Omega | a_{\gamma,l}^*(z_1) a_{\gamma,l}^*(z_2) \Omega\right) = 0, \\ &\left(\Omega | a_{\gamma,l}(z_1) a_{\gamma,l}(z_2) \Omega\right) = 0. \end{aligned}$$

89. Araki-Woods representation of the CCR and von Neumann algebras $and \nabla C(c) = a^{AW}$ of a Hence $\Gamma(c) \mathfrak{m}^{AW} \Gamma(c) = \mathfrak{m}^{AW}$

 $\Gamma(\epsilon)a_{\gamma,l}^{AW}\Gamma(\epsilon) = a_{\gamma,r}^{AW}$, etc. Hence, $\Gamma(\epsilon)\mathfrak{M}_{\gamma,l}^{AW}\Gamma(\epsilon) = \mathfrak{M}_{\gamma,r}^{AW}$. $\mathfrak{M}_{\gamma,l}^{AW}$ is a factor. If $\gamma = 0$, then it is of type I. If γ has some continuous spectrum, it is of type III.

Proposition. Ker $\gamma = \{0\}$ iff Ω is a cyclic vector for $\mathfrak{M}_{\gamma,l}^{AW}$ iff Ω is a separating vector for $\mathfrak{M}_{\gamma,l}^{AW}$ iff $(\Omega|\cdot\Omega)$ is a faithful state on $\mathfrak{M}_{\gamma,l}^{AW}$. In this the case, the Tomita-Takesaki theory yields the modular conjugation $J = \Gamma(\epsilon)$ and the modular operator $\Delta = \Gamma(\gamma \oplus \overline{\gamma}^{-1})$. 90. <u>Araki-Woods representation of the CCR</u> and free dynamics

Let h be a positive self-adjoint operator on $\mathcal Z$ commuting with γ and

$$\tau^t(W_{\gamma,\mathbf{l}}(z)) := W_{\gamma,\mathbf{l}}(\mathrm{e}^{\mathrm{i}th} z).$$

Then $t \mapsto \tau^t$ extends to a W^* -dynamics on $\mathfrak{M}_{\gamma,l}^{AW}$ and

$$L = \mathrm{d}\Gamma(h \oplus (-\overline{h}))$$

is its Liouvillean, that means

$$\tau^{t}(A) = e^{itL} A e^{-itL}, \quad A \in \mathfrak{M}_{\gamma,l}^{AW},$$
$$L\Omega = 0.$$

 $(\Omega|\cdot\Omega)$ is a (τ,β) -KMS state iff $\gamma = e^{-\beta h}$, or equivalently, the density satisfies the Planck law $\rho = (e^{\beta h} - 1)^{-1}$.

91. Confined Bose gas

Assume that γ (and equivalently ρ) is trace class. Then $\Gamma(\gamma)$ is trace class with

$$\mathrm{Tr}\Gamma(\gamma) = \det(1-\gamma)^{-1} = \det(1+\rho).$$

Define the state ω_{γ} on the W^* -algebra $B(\Gamma_s(\mathcal{Z}))$ given by the density matrix

$$\Gamma(\gamma)/\mathrm{Tr}\Gamma(\gamma).$$

Then

$$\omega_{\gamma}(W(z)) = \exp\left(-\frac{1}{4}(z|z) - \frac{1}{2}(z|\rho z)\right)$$

Thus we obtain the same expectation values as for the Araki-Woods representation. 92. <u>Confined Bose gas</u> in terms of a Araki-Woods representations

There exists a unitary operator

 $R_{\gamma}: \Gamma_{\mathrm{s}}(Z) \otimes \Gamma_{\mathrm{s}}(\overline{\mathcal{Z}}) \to \Gamma_{\mathrm{s}}(\mathcal{Z} \oplus \overline{\mathcal{Z}})$

(a Bogoliubov transformation) such that

$$W_{\gamma,l}(z) = R_{\gamma}W(z) \otimes 1R_{\gamma}^{*},$$

$$\mathfrak{M}_{\gamma,l}^{AW} = R_{\gamma} B(\Gamma_{s}(\mathcal{Z})) \otimes 1 R_{\gamma}^{*}$$

93. SMALL SYSTEM IN CONTACT

WITH BOSE GAS

94. <u>Small quantum system</u> in contact with Bose gas at zero density

Hilbert space of the small quantum system: $\mathcal{K} = \mathbb{C}^n$. The Hamiltonian of the small system: K. The free Pauli-Fierz Hamiltonian:

$$H_{\rm fr} := K \otimes 1 + 1 \otimes \int |\xi| a^*(\xi) a(\xi) d\xi.$$

$$\mathbb{R}^d \ni \xi \mapsto v(\xi) \in B(\mathcal{K})$$

describes the interaction:

$$V := \int v(\xi) \otimes a^*(\xi) \mathrm{d}\xi + \mathrm{ho}$$

The full Pauli-Fierz Hamiltonian: $H := H_{fr} + \lambda V$. The Pauli-Fierz system at zero density:

$$\left(B(\mathcal{K}\otimes\Gamma_{\mathrm{s}}(L^{2}(\mathbb{R}^{d})),\mathrm{e}^{\mathrm{i}tH}\cdot\mathrm{e}^{-\mathrm{i}tH}\right)$$

95. Small quantum system in contact with Bose gas at density ρ .

The algebra of observables of the composite system:

$$\mathfrak{M}_{\gamma} := B(\mathcal{K}) \otimes \mathfrak{M}_{\gamma, \mathbf{l}}^{\mathrm{AW}} \subset B\left(\mathcal{K} \otimes \Gamma_{\mathrm{s}}(L^{2}(\mathbb{R}^{d}) \oplus L^{2}(\mathbb{R}^{d}))\right).$$

The free Pauli-Fierz semi-Liouvillean at density ρ :

$$L_{\mathrm{fr}}^{\mathrm{semi}} := K \otimes 1 + 1 \otimes \left(\int |\xi| a_{\mathrm{l}}^*(\xi) a_{\mathrm{l}}(\xi) \mathrm{d}\xi - \int |\xi| a_{\mathrm{r}}^*(\xi) a_{\mathrm{r}}(\xi) \mathrm{d}\xi \right).$$

The interaction: $V_{\gamma} := \int v(\xi) \otimes a_{\gamma,l}^*(\xi) d\xi + hc.$ The full Pauli-Fierz semi-Liouvillean at density ρ :

$$L_{\gamma}^{\text{semi}} := L_{\text{fr}}^{\text{semi}} + \lambda V_{\gamma}.$$

The Pauli-Fierz W^* -dynamical system at density ρ :

$$(\mathfrak{M}_{\gamma}, \tau_{\gamma}), \text{ where } \tau_{\gamma,t}(A) := \mathrm{e}^{\mathrm{i}tL_{\gamma}^{\mathrm{semi}}} A \,\mathrm{e}^{-\mathrm{i}tL_{\gamma}^{\mathrm{semi}}}$$

96. Relationship between the dynamics at zero density and at density ρ .

Set $\gamma = 0$ (equivalently, $\rho = 0$). $\mathfrak{M}_0 \simeq B(\mathcal{K} \otimes \Gamma_{\mathrm{s}}(L^2(\mathbb{R}^d)) \otimes 1.$ $L_0^{\mathrm{semi}} \simeq H \otimes 1 - 1 \otimes \int |\xi| a_{\mathrm{r}}^*(\xi) a_{\mathrm{r}}(\xi) \mathrm{d}\xi.$ $\tau_0 t(A \otimes 1) = \mathrm{e}^{\mathrm{i}tH} A \,\mathrm{e}^{-\mathrm{i}tH} \otimes 1.$

If we formally replace $a_{l}(\xi)$, $a_{r}(\xi)$ with $a_{\gamma,l}(\xi)$, $a_{\gamma,r}(\xi)$ (the CCR do not change!) then \mathfrak{M}_{0} , L_{0}^{semi} , τ_{0} transform into \mathfrak{M}_{γ} , L_{γ}^{semi} , τ_{γ} . In the case of a finite number of degrees of freedom this can be implemented by a unitary Bogoliubov transformation. $(\mathfrak{M}_{\gamma}, \tau_{\gamma})$ can be viewed as a thermodynamical limit of $(\mathfrak{M}_{0}, \tau_{0})$.

97. Thermal reservoirs

Theorem. If $\gamma = e^{-\beta|\xi|}$, then

- 1. In the reduced weak coupling limit we obtain a c.p. Markov semigroup satisfying the Detailed Balance Condition wrt the state given by the density matrix $e^{-\beta K}/Tr e^{-\beta K}$;
- 2. For any λ there exists a normal KMS state for the W^* -dynamical system τ_{γ} ; Araki, D.-Jakšić-Pillet
- 3. Under some conditions on the interaction saying that it is sufficiently regular and effective, there exists $\lambda_0 > 0$ such that for $0 < |\lambda| < \lambda_0$, this state is a unique normal stationary state (Jakšić-Pillet, D-Jakšić, Bach-Fröhlich-Sigal, Fröhlich-Merkli).

98. Standard representation of \mathfrak{M}_{γ} .

Often one uses the so-called standard representation: $\pi:\mathfrak{M}_{\gamma}\to B(\mathcal{K}\otimes\overline{\mathcal{K}}\otimes\Gamma_{\mathrm{s}}(L^{2}(\mathbb{R}^{d})\oplus L^{2}(\mathbb{R}^{d})),$ $\pi(A \otimes B) = A \otimes 1 \otimes B,$ $J\Phi_1 \otimes \overline{\Phi}_2 \otimes \Psi = \Phi_2 \otimes \overline{\Phi}_1 \otimes \Gamma(\epsilon) \Psi.$ The free Pauli-Fierz Liouvillean: $L_{\rm fr} := K \otimes 1 \otimes 1 - 1 \otimes \overline{K} \otimes 1$ $+1 \otimes 1 \otimes \int (|\xi| (a_1^*(\xi)a_1(\xi) - a_1^*(\xi)a_1(\xi))) d\xi,$ $\pi(V_{\gamma}) = \int v(\xi) \otimes 1 \otimes a_{\gamma,l}^*(\xi) \mathrm{d}\xi + \mathrm{hc},$ $J\pi(V_{\gamma})J = \int 1 \otimes \overline{v}(\xi) \otimes 1 \otimes a_{\gamma,\mathbf{r}}^*(\xi) \mathrm{d}\xi + \mathrm{hc.}$ The full Pauli-Fierz Liouvillean at density ρ :

$$L_{\gamma} = L_{\rm fr} + \lambda \pi(V_{\gamma}) - \lambda J \pi(V_{\gamma}) J.$$