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Basic classical mechanics — phase space R?? with generic variables
(xivpj)'
Basic quantum mechanics — Hilbert space L?*(RY) with self-adjoint

o . h 0 '
operators I, p; 1= 7775, where h is a small parameter.

A linear transformation which to a complex function b on R??
associates an operator Op®(b) on L?*(R?) is often called

a quantization of the symbol b.



Desirable properties:

p*(1) = 1, Op*(zi) = &:, Op*(py) = Dj;
2) eh( =T UDOp® (b)eh =) = Op* (b(- — y, - — w)).
3) 5(Op*(b)Op*(c) + Op*(c)Op*(b)) = Op*(be);

(
(
(3) 2
(4) [(Op*(b), Op*(c)] ~ ihODP*({b, c});



Let us strengthen the desirable property (1) to

Op*(f(z)) = f(z), Op*(g(p)) = 9(p)-

The so-called =, p-quantization is determined by the additional con-

dition

It is defined by

i(z—y)p

(O™ 0)0) @) = ) [ dp [ dyblo.pe T V()




In terms of its distributional kernel one can write

i(z—y)p

Op*(b)(z,y) = (2nh) / dpb(z, p)e"T

We also have the closely related p, x-quantization,

i(z—y)p

Op*(b)(, y) = (2mh) ™ / dpb(y,ple 7

We have

Op™*(b)" = Op”*(b).



The Weyl quantization (or the Weyl-Wigner-Moyal quantization)

is a compromise between the two above quantizations:

_ T + i(r—y)
O (8)(z.9) = (271) " [ apb(* 2 p)e 7

If Op(b) = B, the function b is often called the Wigner function

or the Weyl symbol of the operator B:

b(x,p) = /B(x + g, x — g)&ufpdz.

We have



Hermann Weyl Eugene Wigner



Fix a normalized vector U € L?*(RY). Define
Wiy = enHNG e RY @ RY,

sometimes called the family of coherent states associated with W.

We have a continuous decomposition of identity

2k / 1 00) (T |y = 1



Let b be a function on te phase space. We define its contravariant

quantization by

OpCt(b) — (27rh)d/ |\If(x’p))(\11(x,p)|b(aj,p)da:dp.

If B = Op™(b), then b is called the contravariant symbol of B.

Let b > 0. Then Op“'(b) > 0.



Let B € B(H). Then we define its covariant symbol by

b, p) = (Yp)| BV ap))
B is then called the covariant quantization of b and is denoted by
Op®(b) = B.

Let Op“(b) > 0. Then b > 0.



Introduce complex coordinates

a;, — (27;&)_1/2(332 —+ 1p2>,

af = (2h) "V —ipy).

and operators
0, = (2h) 1/2(:1:Z +1ip;),

i = (2h) V25 — ipy).



Consider a polynomial function on the phase space:

’UJ(:I;‘, p) — Z w@,ﬁxapﬁ'
a,f

It is easy to describe the x, p and p, x quantizations of w in terms

of ordering the positions and momenta:

Opx,p<w> — Zw&,ﬁjjaﬁﬁ7
o,

Op?*(w) = Zw@,ﬁﬁﬁfo‘.
o,ff

The Weyl quantization amounts to the full symmetrization of z;

and p;.



We can also rewrite the polynomial in terms of a;, a’. Thus we

obtain
w(z,p) = Z "Jj%ga*’ya‘s =:w(a™, a).
v,0
Then we can introduce the Wick quantization
Opa*,a(w) — Z ’LD%(;CALWaﬁ
v,0

and the anti-Wick quantization

Opa,a* <’UJ> — Z wﬂy,&&éd*w-
V7,0



Consider the Gaussian vector {)(x) = (Wﬁ)_%e_%ﬁ’;. It is killed

by the annihilation operators:
a;$) = 0.

Theorem

(1) The Wick quantization coincides with the covariant quantiza-

tion for Gaussian coherent states.

(2) The anti-Wick quantization coincides with the contravariant

quantization for Gaussian coherent states.



For Gaussian states one uses several alternative names of the co-

variant and contravariant symbol of an operator.

For contravariant symbol: anti-Wick symbol, Glauber-Sudarshan

function, P-function.

For covariant symbol: Wick symbol, Husimi or Husimi-Kano func-

tion, Q-function.

We will use the terms Wick/anti-Wick quantization/symbol.
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5 most natural quantizations in the Berezin diagram:

p,x

quantization

ih
e%D«T'DP

—

anti-Wick

quantization

Weyl-Wigner
quantization
le—%w%w@
Wick

quantization

ih
e%Dx'Dp

—

L, P

quantization



The z,p- and p,x quantizations are invariant wrt the group
G L(RY) of linear transformations of the configuration space.

The Wick and anti-Wick quantizations are invariant wrt the uni-
tary group U(C?), generated by all harmonic oscillators whose
ground state is the given Gaussian state.

The Weyl-Wigner quantization is invariant with respect to the

symplectic group Sp(R*?).



For Op(b)Op(c) = Op(d) we have

ih(DpleQ—Dxlez)b(xl,pl)C(sza p2) ’

Xr = T1 = T2,

d(z,p) = e

P = P1 = P2

where D, := 10,. Often one denotes d by b * c. It is called the

i

star or the Moyal product of b and c.



Consequences:
* (Op(BIOD(e) + Op(cIOp(E)) = Op(be) + O(F).

Op(b),Op(c)] = ihOp({b, c}) + O(R?),

if suppbNsuppc =10, then Op(b)Op(c) = O(h™).



Let h be a nice function. Let x(t), p(t) solve the Hamilton equa-
tions with the Hamiltonian h and the initial conditions z(0), p(0).
Then 7,(2(0), p(0)) = (z(t), p(t)) defines a symplectic transforma-

tion. Formally,

—it

o7 OPMOp(1)er M) = Op(b o 1) + O(R2).

Under various assumptions this asymptotics can be made rigorous,

and then it is called the Egorov Theorem.



If A is a quadratic polynomial, the transformation 7 is linear and

. . it
there is no error term in the Egorov Theorem. The operators P
generate a group, which is the double covering of the symplectic

group called the metaplectic group.



If b, c € L*(R??), then (rigorously)

TrOp(b)*Op(c) = (QWh)d/b(a:,p)c(a:,p)dxdp.

Setting b = 1 we obtain (heuristically)

TrOp(c) = (27Th)d/c(x,p)dxdp.



Formally, Op(b)" = Op(b") + O(K?). Hence for polynomial func-

tions
7(Op(b)) = Op(f o b+ O(?)).

One can expect this to be true for a larger class of nice functions.

Consequently,

Tef(Op(b)) = TrOp(f o b+ O(h?))

— (27h) ™! / £ (b(z,p))dzdp + O(A"2).



For a bounded from below self-adjoint operator H set

NM(H) = TI‘I[]_OO”LL](H),

which is the number of eigenvalues < 1 of H counting multiplicity.
Then setting f = Ij_, ,j, we obtain

N,(Op(h)) = (2wh)™* / dzdp + O(h™1?).

h(z,p)<p

In practice the error term O(h~%2) may be too optimistic and one

gets something worse (but hopefully at least o(h~%)).



For example, if V' — 1 > 0 outside a compact set, then

N, (—=R*A+V(z))

d
~ (21h) e, / Viz) — pltde + ofh)
V(z)<p

which is often called the Weyl asymptotics.



Aspects of quantization.

Fundamental formalism
— used to define a quantum theory from a classical theory;

— underlying the emergence of classical physics from quantum physics.

Technical parametrization
— of operators used to prove theorems about PDE's;

— of observables in quantum optics and signal processing.



Elements of quantization should belong to standard curriculum!

Example: standard courses at

FACULTY OF PHYSICS, UNIVERSITY OF WARSAW.

Quantum Mechanics 1. (nonrelativistic theory);
Quantum Mechanics 1%. (quantization, quantum information);
Quantum Mechanics 2A (relativistic theory);

Quantum Mechanics 2B (many body theory);



