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On the Domains of Bessel Operators

Jan Dereziński and Vladimir Georgescu

Abstract. We consider the Schrödinger operator on the halfline with the
potential (m2− 1

4
) 1
x2 , often called the Bessel operator. We assume that m

is complex. We study the domains of various closed homogeneous realiza-
tions of the Bessel operator. In particular, we prove that the domain of its
minimal realization for |Re(m)| < 1 and of its unique closed realization
for Re(m) > 1 coincide with the minimal second-order Sobolev space. On
the other hand, if Re(m) = 1 the minimal second-order Sobolev space
is a subspace of infinite codimension of the domain of the unique closed
Bessel operator. The properties of Bessel operators are compared with
the properties of the corresponding bilinear forms.
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1. Introduction

1.1. Overview of Closed Realizations of the Bessel Operator

The Schrödinger operator on the half-line given by the expression

Lα := − d2

dx2
+

(
α − 1

4

) 1
x2

(1.1)

is often called the Bessel operator. The name is justified by the fact that its
eigenfunctions and many other related objects can be expressed in terms of
Bessel-type functions.

There exists a large literature devoted to self-adjoint realizations of (1.1)
for real α. The theory of closed realizations of (1.1) for complex α is also
interesting. Let us recall the basic elements of this theory, following [6,9].

For any complex α, there exist two most obvious realizations of Lα: the
minimal Lmin

α , and the maximal Lmax
α . The complex plane is divided into two

regions by the parabola defined by
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3292 J. Dereziński, V. Georgescu Ann. Henri Poincaré

α = (1 + iω)2, ω ∈ R, (1.2)

(or, if we write α = αR + iαI, by αR +
√

α2
R + α2

I = 2). To the right of this
parabola, that is, for |Re

√
α| ≥ 1, we have Lmin

α = Lmax
α . For |Re

√
α| < 1,

that is to the left of (1.2), D(Lmin
α ) has codimension 2 inside D(Lmax

α ). The
operators D(Lmin

α ) and D(Lmax
α ) are homogeneous of degree −2.

Let us note that in the region |Re
√

α| < 1 the operators Lmin
α and Lmax

α

are not the most important realizations of Lα. Much more useful are closed
realizations of Lα situated between Lmin

α and Lmax
α , defined by boundary con-

ditions near zero. (Among these realizations, the best known are self-adjoint
ones corresponding to real α and real boundary conditions.) All of this is
described in [9].

Among these realizations for α �= 0 only two, and for α = 0 only one, are
homogeneous of degree −2. All of them are covered by the holomorphic family
of closed operators Hm, introduced in [6] and defined for Re(m) > −1 as the
restriction of Lmax

m2 to functions that behave as x
1
2+m near zero. Note that

Lmin
m2 = Hm = Lmax

m2 , Re(m) ≥ 1; (1.3)

Lmin
m2 � Hm � Lmax

m2 , |Re(m)| < 1. (1.4)

1.2. Main Results

Our new results give descriptions of the domains of various realizations of Lα

for α ∈ C. First of all, we prove that for |Re
√

α| < 1 the domain of Lmin
α does

not depend on α and coincides with the minimal 2nd order Sobolev space

H2
0(R+) := {f ∈ H2(R+) | f(0) = f ′(0) = 0}, (1.5)

where
H2(R+) := {f ∈ L2(R+) | f ′′ ∈ L2(R+)} (1.6)

is the (full) second-order Sobolev space. We also show that

{α | |Re
√

α| < 1} � α �→ Lmin
α (1.7)

is a holomorphic family of closed operators.
We find the constancy of the domain of the minimal operator quite sur-

prising and interesting. It contrasts with the fact that D(Lmax
α ) for |Re

√
α| < 1

depends on α. Similarly, D(Hm) for |Re(m)| < 1 depends on m.
The holomorphic family Lmin

α for |Re
√

α| < 1 consists of operators whose
spectrum covers the whole complex plane. Therefore, the usual approach to
holomorphic families of closed operators based on the study of the resolvent is
not available.

We also study Hm for Re(m) ≥ 1 (which by (1.3) coincides with Lmin
m2 and

Lmax
m2 ). We prove that for Re(m) > 1 its domain also coincides with H2

0(R+).
The most unusual situation occurs in the case Re(m) = 1. In this case, we
show that the domain of Hm is always larger than H2

0(R+) and depends on m.
Specifying to real α, the main result of our paper can be summarized as

follows: Let Lmin
α be the closure in L2(R+) of the operator −∂2

x + α− 1
4

x2 with
domain C∞

c (R+).
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(1) If α < 1 then Lmin
α is Hermitian (symmetric) but not self-adjoint and its

domain is H2
0(R+).

(2) If α = 1 then Lmin
α is self-adjoint and H2

0(R+) is a dense subspace of
infinite codimension of its domain.

(3) If α > 1 then Lmin
α is self-adjoint with domain H2

0(R+).

As a side remark, let us mention two open problems about Bessel opera-
tors.

OpenProblem 1.1.

1. Can the holomorphic family Hm be extended beyond Re(m) > −1? (Prob-
ably not).

2. Can the holomorphic family Lmin
α (hence also Lmax

α ) be extended beyond
|Re

√
α| < 1? (Probably not).

Question 1 has already been mentioned in [6]. We hope that both questions
can be answered by methods of [10].

1.3. Bilinear Bessel Forms

With every operator T on a Hilbert space H, one can associate the sesquilinear
form

(f |Tg), f, g ∈ D(T ). (1.8)

One can try to extend (1.8) to a larger domain. If T is self-adjoint, there is
a natural extension to the so-called form domain of T , Q(T ) := D(

√|T |).
Interpreting T as a bounded map from Q(T ) to its anti-dual, we obtain the
sesquilinear form

(f |Tg), f, g ∈ Q(T ), (1.9)

which extends (1.8).
We would like to have a similar construction for Bessel operators, includ-

ing non-self-adjoint ones. Before we proceed, we should realize that identities
involving non-self-adjoint operators do not like complex conjugation. There-
fore, instead of sesquilinear forms it is more natural to use bilinear forms.

Our analysis of bilinear Bessel forms is based on the pair of formal fac-
torizations of the Bessel operator

−∂2
x +

(
m2 − 1

4

) 1
x2

=
(
∂x +

1
2 + m

x

)(
− ∂x +

1
2 + m

x

)
(1.10)

=
(
∂x +

1
2 − m

x

)(
− ∂x +

1
2 − m

x

)
. (1.11)

In Theorems 8.2 and 8.3, for each Re(m) > −1 we interpret (1.10) and (1.11)
as factorizations of the Bessel operator Hm into two closed 1st order opera-
tors. They define natural bilinear forms, which we call Bessel forms. For each
Re(m) > −1, the corresponding Bessel form is unique, except for Re(m) = 0,
m �= 0, when the two factorizations yield two distinct Bessel forms.
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Instead of H2
0(R+), the major role is now played by the minimal 1st order

Sobolev space

H1
0(R+) := {f ∈ H1(R+) | f(0) = 0}, (1.12)

subspace of the (full) 1st order Sobolev space

H1(R+) := {f ∈ L2(R+) | f ′ ∈ L2(R+)}. (1.13)

Note that H1
0(R+) is the domain of Bessel forms for Re(m) > 0.

The analysis of Bessel forms and their factorizations shows a variety of
behaviors depending on the parameter m. In particular, there is a kind of a
phase transition at Re(m) = 0. Curiously, in the analysis of the domain of
Bessel operators the phase transition occurs elsewhere: at Re(m) = 1.

1.4. Comparison with Literature

The fact that D(Lmin
α ) does not depend on α for real α ∈ [0, 1[ was first proven

in [1], see also [2,3]. Actually, the arguments of [1] are enough to extend the
result to complex α such that |α − 1

4 | < 3
4 . The proof is based on the bound

‖Q‖ = 3
4 of the operator Q on L2(R+) given by the integral kernel

Q(x, y) =
1
x2

(x − y)θ(x − y), (1.14)

where θ is the Heaviside function. Our proof is quite similar. Instead of (1.14),
we consider for |Re(m)| < 1 the operator Qm2 with the kernel

Qm2(x, y) =
1

2mx2
(x

1
2+my

1
2−m − x

1
2−my

1
2+m)θ(x − y). (1.15)

Note that Q 1
4

coincides with (1.14). We prove that the norm of Qm2 is the in-
verse of the distance of m2 to the parabola (1.2). A simple generalization of the
Kato–Rellich Theorem to closed operators implies our result about D(Lmin

α ).
In the paper [6] on page 567 it is written “If m �= 1/2, then D(Lmin

m ) �=
H2

0.” (In that paper Lmin
m2 was denoted Lmin

m ). This sentence was not formulated
as a proposition, and no proof was provided. Anyway, in view of the results of
[3] and of this paper, this sentence was wrong.

The analysis of Bessel forms in the self-adjoint case, that is for real m >
−1, is well known—it is essentially equivalent to the famous Hardy inequality.
This subject is discussed, e.g., in the monograph [4] and in a recent interesting
paper [11] about a refinement of the one-dimensional Hardy’s inequality. The
latter paper contains in particular many references about factorizations of
Bessel operators in the self-adjoint case.

Results about Bessel forms and their factorizations for complex param-
eters are borrowed to a large extent from [6]. We include them in this paper,
because they provide an interesting complement to the analysis of domains of
Bessel operators.
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2. Basic Closed Realizations of the Bessel Operator

The main topic of this preliminary section are closed homogeneous realizations
of Lα. We recall their definitions following [6,9].

We will denote by R+ the open positive half-line, that is ]0,∞[. We will
use L2(R+) as our basic Hilbert space. We define Lmax

α to be the operator
given by the expression Lα with the domain

D(Lmax
α ) = {f ∈ L2(R+) | Lαf ∈ L2(R+)}.

We also set Lmin
α to be the closure of the restriction of Lmax

α to C∞
c (R+).

We will often write m for one of the square roots of α, that is, α = m2.
It is easy to see that the space of solutions of the differential equation

Lαf = 0 (2.1)

is spanned for α �= 0 by x
1
2+m, x

1
2−m, and for α = 0 by x

1
2 , x

1
2 log x. Note

that both solutions are square integrable near 0 iff |Re(m)| < 1. This is used
in [6] to show that we have

D(Lmax
α ) = D(Lmin

α ) + Cx
1
2+mξ + Cx

1
2−mξ, |Re

√
α| < 1, α �= 0; (2.2)

D(Lmax
0 ) = D(Lmin

0 ) + Cx
1
2 ξ + Cx

1
2 log(x)ξ, α = 0; (2.3)

D(Lmax
α ) = D(Lmin

α ), |Re
√

α| ≥ 1. (2.4)

Above (and throughout the paper) ξ is any C∞
c [0,∞[ function such that ξ = 1

near 0.
Following [6], for Re(m) > −1 we also introduce another family of closed

realizations of Bessel operators: the operators Hm are defined as the restric-
tions of Lmax

m2 to

D(Hm) := D(Lmin
m2 ) + Cx

1
2+mξ. (2.5)

We will use various basic concepts and facts about one-dimensional Schrö
-dinger operators with complex potentials. We will use [8] as the main refer-
ence, but clearly most of them belong to the well-known folklore. In particular,
we will use two kinds of Green’s operators. Let us recall this concept, following
[8]. Let L1

c(R+) be the set of integrable functions of compact support in R+.
We will say that an operator G : L1

c(R+) → AC1(R+) is a Green’s operator of
Lα if for any g ∈ L1

c(R+)
LαGg = g. (2.6)

3. The Forward Green’s Operator

Let us introduce the operator G→
α defined by the kernel

G→
α (x, y) :=

1
2m

(
x

1
2+my

1
2−m − x

1
2−my

1
2+m

)
θ(x − y), α �= 0; (3.1)

G→
0 (x, y) := x

1
2 y

1
2 log

(x

y

)
θ(x − y), α = 0. (3.2)
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Note that G→
α is a Green’s operator in the sense of (2.6). Besides,

suppG→
α g ⊂ suppg + R+, (3.3)

which is why it is sometimes called the forward Green’s operator.
Unfortunately, the operator G→

α is unbounded on L2(R+). To make it
bounded, for any a > 0 we can compress it to the finite interval [0, a], by
introducing the operator Ga→

α with the kernel

Ga→
α (x, y) := 1[0,a](x)G→

α (x, y)1[0,a](y). (3.4)

It is also convenient to consider the operator Lα restricted to [0, a]. One of
its closed realizations is defined by the zero boundary condition at 0 and no
boundary conditions at a (see [8] Def. 4.14). It will be denoted La

α,0. By Prop.
7.3 of [8], we have Ga→

α = (La
α,0)

−1, and hence,

D(La
α,0) = Ga→

α L2[0, a]. (3.5)

Now we can describe the domain of Lmin
α with the help of the forward Green’s

operator.

Proposition 3.1. Suppose that f ∈ D(Lmax
α ). Then the following statements

are equivalent:

1. f ∈ D(Lmin
α ).

2. For some a > 0 and ga ∈ L2[0, a] we have f
∣∣∣
[0,a]

= G→
α ga

∣∣∣
[0,a]

.

3. For all a > 0 there exists ga ∈ L2[0, a] such that f
∣∣∣
[0,a]

= G→
α ga

∣∣∣
[0,a]

.

Proof. The boundary space ([8] Def. 5.2) of Lα is trivial at ∞ (see [8] Prop.
5.15). Therefore, for any a > 0 we have

f ∈ D(Lmin
α ) ⇔ f

∣∣∣
[0,a]

∈ D(La
α,0). (3.6)

Hence it is enough to apply (3.5). �

Define the operator Qα := 1
x2 G→

α . Its integral kernel is

Qα(x, y) =
1

2m
(x− 3

2+my
1
2−m − x− 3

2−my
1
2+m)θ(x − y), α �= 0; (3.7)

Q0(x, y) := x− 3
2 y

1
2 log

(x

y

)
θ(x − y), α = 0. (3.8)

Proposition 3.2. Assume that |Re
√

α| < 1. Then the operator Qα is bounded
on L2(R+), and

‖Qα‖ =
1

dist
(
α, (1 + iR)2

) (3.9)

Proof. Introduce the unitary operator U : L2(R+) → L2(R) given by

(Uf)(t) := e
t
2 f(et). (3.10)
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Note that if an operator K has the kernel K(x, y), then UKU−1, has the kernel
e

t
2 K(et, es)e

s
2 . Therefore, for any α the operator UQαU−1 has the kernel

1
2m

(e−(t−s)(1−m) − e−(t−s)(1+m))θ(t − s), α �= 0; (3.11)

e−(t−s)(t − s)θ(t − s), α = 0. (3.12)

Thus, it is the convolution by the function

t → 1
2m

(e−t(1−m) − e−t(1+m))θ(t), α �= 0; (3.13)

t →e−ttθ(t), α = 0. (3.14)

Assume now that |Re
√

α| < 1. Then the function (3.13) is integrable, and
we can apply the Fourier transformation defined by (Fu)(ω) = (2π)−1/2

∫
e−iωt

u(t) dt. After this transformation, the operator UQαU−1 becomes the multi-
plication wrt the Fourier transform of (3.13) or (3.14), that is

ω �→ 1
(1 + iω)2 − m2

. (3.15)

Thus the norm of UQαU−1, and hence also of Qα, is the supremum of the
absolute value of (3.15). �

Remark 3.3. The operator Qα belongs to the class of operators analyzed in
[17] on p. 271, which goes back to Hardy–Littlewood–Polya [13] p. 229.

Proposition 3.2 for α = 1
4 is especially important and simple. This case

was noted in cf. [6, p. 566] and [1, Lemma 2.2]. It can be written as

g(x) := x−2

∫ x

0

(x − y)f(y)dy ⇒ ‖g‖ ≤ 4
3
‖f‖. (3.16)

One can remark that (3.16) is essentially equivalent to the one-dimensional
version of the classical Rellich’s inequality, see e.g., [4, (6.1.1)]:

∫ ∞

0

|u|2
x4

dx ≤ 16
9

∫ ∞

0

|u′′|2dx, u ∈ C∞
c (R+), (3.17)

where we identify f = u′′ and g = u
x2 .

The proof of the following proposition uses only the simple estimate
(3.16).

Proposition 3.4. D(Lmax
α ) ∩ D(Lmax

β ) = H2
0(R+) if α �= β.

Proof. We have f ∈ D(Lmax
α ) if and only if f ∈ L2(R+) and −f ′′ + (α −

1/4)x−2f ∈ L2(R+); hence, if we also have f ∈ D(Lmax
β ) then (α − β)x−2f ∈

L2(R+) and since α �= β we get x−2f ∈ L2(R+) hence f ′′ ∈ L2(R+). Recall
that f, f ′′∈L2(R+) implies f∈H1(R+) and ‖f ′‖2L2(R+) ≤ ‖f‖2L2(R+)‖f ′′‖2L2(R+).
It follows that f is absolutely continuous and f(x) = a +

∫ x

0
f ′(y)dy for some
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constant a and f ′ is absolutely continuous and f ′(x) = b+
∫ x

0
f ′′(y)dy for some

constant b, then

f(x) = a + bx +
∫ x

0

∫ y

0

f ′′(z)dzdy = a + bx + x2g(x),

g(x) := x−2

∫ x

0

(x − y)f ′′(y)dy.

Then, by (3.16)

‖g‖L2(R+) ≤ 4
3
‖f ′′‖L2(R+). (3.18)

Thus x−2f(x) = ax−2 + bx−1 + g(x) where g ∈ L2(R+), so
∫ 1

0
|x−2f(x)|2dx <

∞ if and only if a = b = 0, so that f(x) =
∫ x

0
(x − y)f ′′(y)dy and f ′(x) =∫ x

0
f ′′(y)dy, hence f ∈ H2

0(R+).
Reciprocally, if f ∈ H2

0(R+) then x−2f ∈ L2(R+) with ‖x−2f‖L2(R+) ≤
4
3‖f ′′‖L2(R+) by (3.16), hence f ∈ D(Lmax

α ) for all α. �

4. Domain of Bessel Operators for |Re(m)| < 1

Below we state the first main result of our paper (which is an extension of a
result of [1]).

Theorem 4.1. If |Re
√

α| < 1, then D(Lmin
α ) = H2

0(R+). Moreover,{
α ∈ C | |Re

√
α| < 1

} � α �→ Lmin
α (4.1)

is a holomorphic family of closed operators.

The proof of this theorem is based on the following lemma.

Lemma 4.2. Let |Re
√

α| < 1 and f ∈ D(Lmin
α ). Then

‖x−2f‖ ≤ 1
dist

(
α, (1 + iR)2

)‖Lmin
α f‖. (4.2)

Proof. Let a > 0. Set g := Lmin
α f , fa := f

∣∣∣
[0,a]

, ga := g
∣∣∣
[0,a]

. Let Ga→
α be as in

(3.4). As in the proof of Prop. 3.1,

fa = Ga→
α ga. (4.3)

So

‖x−2f‖ = lim
a→∞ ‖x−2fa‖ (4.4)

= lim
a→∞ ‖x−2Ga→

α ga‖ = ‖Qαg‖ ≤ 1
dist

(
α, (1 + iR)2

)‖g‖. (4.5)

�
Proof of Theorem 4.1. We can cover the region on the lhs of (4.1) by disks
touching the boundary of this region, that is, (1.2). Inside each disk, we apply
Thm A.1 and Lemma 4.2. We obtain in particular, that if |Re

√
αi| < 1, i = 1, 2,

then D(Lmin
α1

) = D(Lmin
α2

). But clearly D(Lmin
1
4

) = H2
0(R+). �
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Theorem 4.3. We have

D(Lmax
α ) = H2

0 + Cx
1
2+mξ + Cx

1
2−mξ, |Re

√
α| < 1, α �= 0; (4.6)

D(Lmax
α ) = H2

0 + Cx
1
2 ξ + Cx

1
2 log(x)ξ, α = 0. (4.7)

Besides,

D(Lmax
α1

) �= D(Lmax
α2

), α1 �= α2, |Re
√

αi| < 1, i = 1, 2. (4.8)

Furthermore, {
α ∈ C | |Re

√
α| < 1

} � α �→ Lmax
α (4.9)

is a holomorphic family of closed operators.

Proof. Using D(Lmin
α ) = H2

0, (2.2) and (2.3) can be now rewritten as (4.6) and
(4.7).

Clearly, x
1
2+mξ and x

1
2 log(x)ξ do not belong to H2

0(R+) (because their
second derivatives are not square integrable). Therefore, D(Lmax

α ) �= H2
0(R+).

This together with Proposition 3.4 implies (4.8).
We have (Lmin

α )∗ = Lmax
α . Therefore, to obtain the holomorphy we can

use Proposition A.2. �

The most important holomorphic family of Bessel operators is

{m ∈ C | Re(m) > −1} � m �→ Hm. (4.10)

Its holomorphy has been proven in [6]. Using arguments similar to those in
the proof of Theorem 4.3, we obtain a closer description of this family in the
region |Re(m)| < 1.

Theorem 4.4. We have

D(Hm) = H2
0 + Cx

1
2+mξ, |Re(m)| < 1. (4.11)

Besides, if m1 �= m2 and |Re(mi)| < 1, i = 1, 2, then D(Hm1) �= D(Hm2).

5. Two-Sided Green’s Operator

For any m ∈ C, m �= 0, let us introduce the operator Gm with the kernel

Gm(x, y) :=
1

2m

(
x

1
2+my

1
2−mθ(y − x) + x

1
2−my

1
2+mθ(x − y)

)
. (5.1)

Recall that θ is the Heaviside function. (5.1) is one of Green’s operators of
Lm2 in the sense of (2.6), Following [8], we will call it the two-sided Green’s
operator.

The operator Gm is not bounded on L2(R+) for any m ∈ C. However, at
least for Re(m) > −1, it is useful in the L2 setting.

Proposition 5.1. Let Re(m) > −1, m �= 0 and a > 0.
1. If g ∈ L2[0, a], then

f(x) = Gmg(x) =
∫ ∞

0

Gm(x, y)g(y)dy (5.2)

is well defined, belongs to ∈ AC1]0,∞[ and Lαf = g.
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2. Conversely, if f ∈ AC1]0,∞[, Lαf = g ∈ L2[0, a], then there exist c+, c−
such that

f(x) = c+x
1
2+m + c−x

1
2−m + Gmg(x), m �= 0. (5.3)

Proof. Note first that Re(m) > −1 implies x
1
2+m is locally in L2. Using this,

the proof of the first part of the proposition is a straightforward computation
done, in a more general setting, in [8], see §2.7 and Definition 2.10 there. For
the second part, note that Lα(f−Gmg) = 0 by the first part of the proposition,
and that the two functions x

1
2±m give a basis of the nullspace of Lα. �

Let us introduce the operator Zm := 1
x2 Gm with the kernel

Zm(x, y) =
1

2m

(
x− 3

2+my
1
2−mθ(y − x) + x− 3

2−my
1
2+mθ(x − y)

)
. (5.4)

Proposition 5.2. Let Re(m) > 1. Then Zm is bounded and

‖Zm‖ =
1

dist
(
m2, (1 + iR)2

) (5.5)

Proof. If U is given by (3.10), then UZmU−1 has the kernel
1

2m

(
e−(m−1)(s−t)θ(s − t) + e−(m+1)(s−t)θ(t − s)

)
. (5.6)

If Re(m) > 1, after the Fourier transformation (defined as in the proof of
Proposition 3.2) it becomes the multiplication by the function

ω �→ 1
2m

(
1

(m − 1 − iω)
+

1
1 + m + iω)

)
=

1
m2 − (1 + iω)2

, (5.7)

whose supremum is the right-hand side of (5.5). �

6. Domain of Bessel Operators for Re(m) > 1

For Re(m) ≥ 1, there is a unique closed Bessel operator. We will see in the
following theorem that its domain is again the minimal 2nd order Sobolev
space, except at the boundary Re(m) = 1, cf. Sect. 7.

Theorem 6.1. Let Re(m) > 1. Then D(Hm) = H2
0(R+).

Proof. We know that H2
0(R+) ⊂ D(Lmax

m2 ) for any m. But for Re(m) > 1 we
have Lmax

m2 = Hm. This proves the inclusion H2
0(R+) ⊂ D(Hm).

Let us prove the converse inclusion. Let f ∈ D(Hm). It is enough to
assume that f ∈ L2[0, 1]. Let g := Hmf . Then g ∈ L2[0, 1]. By Prop. 5.1, we
can write

f(x) = c+x
1
2+m +c−x

1
2−m +

x
1
2+m

2m

∫ 1

x

y
1
2−mg(y)dy+

x
1
2−m

2m

∫ x

0

y
1
2+mg(y)dy.

(6.1)
For x > 1 we have

f(x) = c+x
1
2+m + x

1
2−m

(
c− +

1
2m

∫ 1

0

y
1
2+mg(y)dy

)
, (6.2)
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hence c+ = 0. We have, for x → 0,
∣∣∣∣x

1
2+m

∫ 1

x

y
1
2−mg(y)dy

∣∣∣∣ ≤ x

∫ 1

0

|g(x)|dy → 0; (6.3)
∣∣∣∣x

1
2−m

∫ x

0

y
1
2+mg(y)

∣∣∣∣ dy ≤ x

∫ x

0

|g(y)|dy → 0. (6.4)

x
1
2−m is not square integrable near zero. Hence c− = 0. Thus

f(x) =
x

1
2+m

2m

∫ 1

x

y
1
2−mg(y)dy +

x
1
2−m

2m

∫ x

0

y
1
2+mg(y)dy. (6.5)

By (6.3) and (6.4), limx→0 f(x) = 0. Now

f ′(x) =
( 12 + m)x− 1

2+m

2m

∫ 1

x

y
1
2−mg(y)dy +

( 12 − m)x− 1
2−m

2m

∫ x

0

y
1
2+mg(y)dy,

(6.6)∣∣∣∣x− 1
2−m

∫ x

0

y
1
2+mg(y)dy

∣∣∣∣ ≤
∫ x

0

|g(y)|dy → 0, (6.7)
∣∣∣∣x− 1

2+m

∫ 1

x

y
1
2−mg(y)dy

∣∣∣∣ ≤
∫ ε

0

|g(y)|dy + x− 1
2+Re(m)

∫ 1

ε

y
1
2−Re(m)|g(y)|dy.

(6.8)

For any ε > 0, the second term on the right of (6.8) goes to zero. The first, by
making ε small, can be made arbitrarily small. Therefore (6.8) goes to zero.
Thus limx→0 f ′(0) = 0.

Finally

f ′′(x) + g(x) =
(m2 − 1

4 )x− 3
2+m

2m

∫ 1

x

y
1
2−mg(y)dy

+
(m2 − 1

4 )x− 3
2−m

2m

∫ x

0

y
1
2+mg(y)dy (6.9)

=
(
m2 − 1

4

)
Zmg(x). (6.10)

By Proposition 5.2 Zm is bounded. Hence f ′′ ∈ L2(R+). Therefore, f ∈
H2

0(R+). �

7. Domain of Bessel Operators for Re(m) = 1

In this section, we treat the most complicated situation concerning the domain
of Hm, namely the case Re(m) = 1. By (1.3), we then have Hm = Lmin

m2 = Lmax
m2 .

We prove the following theorem.

Theorem 7.1. Let Re(m) = 1.
1. H2

0(R+) is a dense subspace of D(Hm) of infinite codimension.
2. If ξ is a C2

c [0,∞[ function equal 1 near zero, then x
1
2+mξ ∈ D(Hm) but

x
1
2+mξ �∈ H2

0(R+).
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3. If Re(m′) = 1 and m �= m′, then D(Hm) ∩ D(Hm′) = H2
0(R+).

By (1.3), it is clear that H2
0(R+) ⊂ D(Hm) and x

1
2+mξ ∈ D(Hm). The

density of H2
0(R+) in D(Hm) is a consequence of Hm = Lmin

m2 . The last assertion
of the theorem is a special case of Proposition 3.4. In the rest of this section,
we construct an infinite dimensional vector subspace V of D(Hm) such that
V ∩ (H2

0(R+) + Cx
1
2+mξ

)
= {0}, which will finish the proof of the theorem.

Let us study the behavior at zero of the functions in D(Hm). For functions
in the subspace H2

0(R+) + Cx
1
2+mξ this is easy, cf. the next lemma, but this

is not so trivial for the other functions.

Lemma 7.2. If f = f0 + cx
1
2+mξ ∈ H2

0(R+) + Cx
1
2+mξ then

c = lim
x→0

x− 1
2−mf(x). (7.1)

Proof. If f0 ∈ H2
0(R+) then f0(x) =

x∫
0

(x − y)f ′′
0 (y)dy. Therefore,

√
3|f0(x)| ≤

x
3
2 ‖f ′′

0 ‖L2[0,x] and since Re(m+ 1
2 ) = 3

2 we get limx→0 x−m− 1
2 f0(x) = 0, which

implies (7.1). �
Let a > 0. Let Ga

m be the operator Gm compressed to the interval [0, a].
Its kernel is

Ga
m(x, y) = 1[0,a](x)Gm(x, y)1[0,a](y). (7.2)

We will write La,max
α for the maximal realization of operator Lα on L2[0, a].

Lemma 7.3. Let Re(m) > −1. Then Ga
m is a bounded operator on L2[0, a]. If

g ∈ L2[0, a], then Ga
mg ∈ D(La,max

m2 ) and La,max
m2 Ga

mg = g. Consequently, Ga
m

is injective.

Proof. We check that (7.2) belongs to L2
(
[0, a] × [0, a]

)
. This proves that Ga

m

is Hilbert Schmidt, hence bounded. Ga
m is a right inverse of La,max

m2 , because
Gm is a right inverse of Lm2 (see Proposition 5.1). �
Lemma 7.4. Let Re(m) = 1. Let g ∈ L2[0, a] and f = Ga

mg. Then

lim
x→0

(
2mx− 1

2−mf(x) −
∫ a

x

y
1
2−mg(y)dy

)
= 0. (7.3)

Therefore, if

lim
x→0

∫ a

x

y
1
2−mg(y)dy (7.4)

does not exist, then f = Ga
mg �∈ H2

0(R+) + Cx
1
2+mξ.

Proof. We have

2mx− 1
2−mf(x) =

∫ a

x

y− 1
2−mg(y)dy + x−2m

∫ x

0

y
1
2+mg(y)dy. (7.5)

Since Re(m) = 1, the absolute value of the second term on the right hand side
is less than

x− 1
2

∫ x

0

(y/x)
3
2 |g(y)|dy ≤ x− 1

2

∫ x

0

|g(y)|dy ≤ ‖g‖L2[0,x]
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This proves (7.3). If f = Ga
mg ∈ H2

0(R+) + Cx
1
2+mξ, then by (7.3) and (7.1)

there exists (7.4). This proves the second statement of the lemma. �

Lemma 7.5. Let Re(m) = 1. There exists an infinite dimensional subspace
V ⊂ D(Hm) such that

V ∩ (H2
0(R+) + Cx

1
2+mξ

)
= {0}. (7.6)

Proof. For each τ ∈]12 , 1[ let gτ ∈ C2(]0, 1]), for 0 < x < 1
2 given by

gτ (x) = x− 3
2+m

(
ln(1/x)

)−τ

and arbitrary on [12 , 1]. Then for x < 1
2 , we have

|gτ (x)|2 = x−1
(
ln(1/x)

)−2τ = (2τ − 1)−1 d
dx

(
ln(1/x)

)1−2τ
.

Hence
∫ 1

2

0

|gτ (x)|2dx = (2τ − 1)−1(ln 2)1−2τ ,

and gτ ∈ L2[0, 1]. Moreover, if x < 1
2 then

x
1
2−mgτ (x) = x−1

(
ln(1/x)

)−τ = (τ − 1)−1 d
dx

(
ln(1/x)

)1−τ
.

Hence
∫ 1

2

x

y− 1
2 gτ (y)dy = (τ − 1)−1(ln 2)1−τ+(1 − τ)−1

(
ln(1/x)

)1−τ→∞ as x → 0.

Let G be the vector subspace of L2[0, 1] generated by the functions gτ with
1
2 < τ < 1. Note that each finite set {gτ | τ ∈ A} with A ⊂] 12 , 1[ finite is linearly
independent. Indeed, if

∑
τ∈A cτgτ = 0 and σ = min A and τ �= σ then gτ (x)

gσ(x)
=(

ln(1/x)
)σ−τ → 0 as x → 0 so we get cσ = 0, etc. Moreover, for each not zero

g =
∑

τ∈A cτgτ ∈ G (with cτ �= 0) we have limx→0

∣∣∣∣
∫ 1

x
y− 1

2 g(y)dy

∣∣∣∣ = ∞.

Indeed, we may assume cσ = 1, and then,
∫ 1

2

x

y− 1
2 g(y)dy = (1 − σ)−1

(
ln(1/x)

)1−σ

+
∑
τ∈A

cτ (τ − 1)−1(ln 2)1−τ +
∑
τ �=σ

cτ (1 − τ)−1
(
ln(1/x)

)1−τ
,

and the first term on the right-hand side tends to +∞ more rapidly than all
the other, hence

∣∣∣∣∣
∫ 1

2

x

y− 1
2 g(y)dy

∣∣∣∣∣ ≥ 1
2(1 − σ)

(
ln(1/x)

)1−σ

if x is small enough.
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Finally, let ϕ ∈ C∞
c [0,∞[ equal 1 on [0, 1]. Let us define V as the space of

functions on R+ of the form f = ϕGmg with g ∈ G. By Lemma 7.3, Gm1[0,1](x)
is injective. Hence V is infinite dimensional and it satisfies (7.6) by Lemma 7.4.

�

8. Bilinear Forms Associated with Bessel Operators

As noted in the introduction, in this section we will avoid complex conjugation.
Thus in the place of the usual sesquilinear scalar product

(f |g) :=
∫ ∞

0

f(x)g(x)dx, (8.1)

we will prefer to use the bilinear product

〈f |g〉 :=
∫ ∞

0

f(x)g(x)dx, (8.2)

Clearly, (8.2) is well defined for f, g ∈ L2(R+). Instead of the usual adjoint
T ∗, we will use the transpose T#, defined with respect to (8.2), see [8].

An important role will be played by the first-order operators given by the
formal expression

Aρ := ∂x − ρ

x
. (8.3)

A detailed analysis of (8.3) has been done in [6], where the notation was slightly
different: Aρ := −i(∂x − ρ

x ). Let us recall the main points of that analysis.
In the usual way, we define two closed realizations of Aρ: the minimal

and the maximal one, denoted Amin
ρ , resp. Amax

ρ . The following theorem was
(mostly) proven in Section 3 of [6]. For the proof of the infinite codimensionality
assertion in 6 see the proof of Lemma 3.9 there (where γ is arbitrary > 1

2 ).

Theorem 8.1. 1. Amin
ρ ⊂ Amax

ρ .
2. Amin#

ρ = −Amax
−ρ , Amax#

ρ = −Amin
−ρ .

3. Amin
ρ and Amax

ρ are homogeneous of degree −1.
4. Amin

ρ = Amax
ρ iff |Re(ρ)| ≥ 1

2 . If this is the case, we will often denote
them simply by Aρ

5. If Re(ρ) �= 1
2 , then D(Amin

ρ ) = H1
0.

6. If Re(ρ) = 1
2 , then H1

0 + Cxρξ is a dense subspace of D(Aρ) of infinite
codimension.

7. If |Re(ρ)| < 1
2 , then D(Amax

ρ ) = H1
0 + Cxρξ �= H1

0.
8. If Re(ρ),Re(ρ′) ∈] − 1

2 , 1
2 ] and ρ �= ρ′ then D(Amax

ρ ) �= D(Amax
ρ′ ).

Now let us describe possible factorizations of Hm into operators of the
form Amin

ρ and Amax
ρ . On the formal level, they correspond to one of the fac-

torizations (1.10) and (1.11).

Theorem 8.2. 1. For Re(m) > −1 we have

〈f |Hmg〉 = 〈Amax
1
2+mf |Amax

1
2+mg〉, f ∈ D(Amax

1
2+m), g ∈ D(Amax

1
2+m) ∩ D(Hm).

(8.4)
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Moreover,

D(Hm) =
{
f ∈ D(Amax

1
2+m) | Amax

1
2+mf ∈ D(Amin

− 1
2−m)

}
, (8.5)

Hmf = −Amin
− 1

2−mAmax
1
2+mf, f ∈ D(Hm). (8.6)

2. For Re(m) > 0 we have

〈f |Hmg〉 = 〈Amin
1
2−mf |Amin

1
2−mg〉, f ∈ D(Amin

1
2−m), g ∈ D(Amin

1
2−m) ∩ D(Hm).

(8.7)
Moreover,

D(Hm) =
{

f ∈ D(Amin
1
2−m) | Amin

1
2−mf ∈ D(Amax

− 1
2+m)

}
, (8.8)

Hmf = −Amax
− 1

2+mAmin
1
2−mf, f ∈ D(Hm). (8.9)

The factorizations described in Theorem 8.2 can be used to define bilinear
forms corresponding to Hm. For details of the proof, we refer again to [6],
especially pages 571–574 and 577.

Theorem 8.3. The following bilinear forms are extensions of

〈f |Hmg〉 = 〈Hmf |g〉, f, g ∈ D(Hm), (8.10)

to larger domains:

1. For 1 ≤ Re(m),

〈A 1
2+mf |A 1

2+mg〉 = 〈A 1
2−mf |A 1

2−mg〉, f, g ∈ H1
0. (8.11)

2. For 0 < Re(m) < 1,

〈A 1
2+mf |A 1

2+mg〉 = 〈Amin
1
2−mf |Amin

1
2−mg〉, f, g ∈ H1

0. (8.12)

3. For Re(m) = 0,

〈A 1
2+mf |A 1

2+mg〉, f, g ∈ D(A 1
2+m) ⊃ H1

0 + Cx
1
2+mξ, (8.13)

〈A 1
2−mf |A 1

2−mg〉, f, g ∈ D(A 1
2−m) ⊃ H1

0 + Cx
1
2−mξ. (8.14)

4. For −1 < Re(m) < 0,

〈Amax
1
2+mf |Amax

1
2+mg〉, f, g ∈ H1

0 + Cx
1
2+mξ. (8.15)

Note that for Re(m) > 0 both factorizations yield the same quadratic
form. This is no longer true for Re(m) = 0, m �= 0, when there are two
distinct quadratic forms with distinct domains corresponding to Hm. Finally,
for −1 < m < 0, and also for m = 0, we have a unique factorization.

Let us finally specialize Theorem 8.3 to real m. The following theorem is
essentially identical with Thm 4.22 of [6].

Theorem 8.4. For real −1 < m, the operators Hm are positive and self-adjoint.
The corresponding sesquilinear form can be factorized as follows:
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1. For 1 ≤ m,

(
√

Hmf |
√

Hmg) = (A 1
2+mf |A 1

2+mg)=(A 1
2−mf |A 1

2−mg),

f, g ∈ Q(Hm) = H1
0. (8.16)

Hm is essentially self-adjoint on C∞
c (R+).

2. For 0 < m < 1,

(
√

Hmf |
√

Hmg) = (A 1
2+mf |A 1

2+mg) = (Amin
1
2−mf |Amin

1
2−mg),

f, g ∈ Q(Hm) = H1
0. (8.17)

Hm is the Friedrichs extension of Lm2 restricted to C∞
c (R+).

3. For m = 0,

(
√

H0f |
√

H0g) = (A 1
2
f |A 1

2
g), f, g ∈ Q(H0) = D(A 1

2
) � H1

0 + Cx
1
2 ξ.

(8.18)

H0 is both the Friedrichs and Krein extension of L0 restricted to C∞
c (R+).

4. For −1 < m < 0,

(
√

Hmf |
√

Hmg) = (Amax
1
2+mf |Amax

1
2+mg), f, g ∈ Q(Hm) = H1

0 + Cx
1
2+mξ.

(8.19)

Hm is the Krein extension of Lm2 restricted to C∞
c (R+).
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A Holomorphic Families of Closed Operators and the
Kato-Rellich Theorem

In this appendix, we describe a few general concepts and facts from the oper-
ator theory, which we use in our paper.

The definition (or actually a number of equivalent definitions) of a holo-
morphic family of bounded operators is quite obvious and does not need to be
recalled. In the case of unbounded operators, the situation is more subtle.

Suppose that Θ is an open subset of C, H is a Banach space, and Θ �
z �→ H(z) is a function whose values are closed operators on H. We say that
this is a holomorphic family of closed operators if for each z0 ∈ Θ there exists a
neighborhood Θ0 of z0, a Banach space K and a holomorphic family of bounded
operators Θ0 � z �→ A(z) ∈ B(K,H) such that RanA(z) = D(H(z)) and

Θ0 � z �→ H(z)A(z) ∈ B(K,H)

is a holomorphic family of bounded operators.
The following theorem is essentially a version of the well-known Kato–

Rellich Theorem generalized from self-adjoint to closed operators:

Theorem A.1. Suppose that A is a closed operator on a Hilbert space H. Let
B be an operator D(A) → H such that

‖Bf‖ ≤ c‖Af‖, f ∈ D(A). (A.1)

Then for |z| < 1
c the operator A + zB is closed on D(A) and

{
z ∈ C | |z| < c−1

} � z �→ A + zB (A.2)

is a holomorphic family of closed operators.

Proof. We easily check that the norms
√‖f‖2 + ‖Af‖2 and√‖f‖2 + ‖(A + zB)f‖2 are equivalent for |z| < 1

c . Let H0 be the closure
of D(A) in H. The restriction of A to H0 is densely defined, so that we can
define A∗. The operator (A∗A + 1)− 1

2 is unitary from H0 to D(A). Clearly, it
is bounded in the sense of H0. Now

C � z �→ (A + zB)(A∗A + 1)− 1
2 (A.3)

is obviously a polynomial of degree 1 with values in bounded operators (hence
obviously a holomorphic family). �

Let us also quote the following fact proven by Bruk [5], see also [10]:

Proposition A.2. If z �→ A(z) is a holomorphic family of closed operators, then
so is z �→ A(z)∗.
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