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Chapter 1

Introduction

One can argue that in practical applications most operators are unbounded.
Unfortunately, unbounded operators is a relatively technical and complicated
subject, and for that reason this is a topic avoided in many presentations of
the theory of operators, or postponed to its later parts. To my knowledge, in
most mathematics departments of the world it does not belong to the standard
curriculum, except maybe for some rudimentary elements. Most courses of func-
tional analysis limit themselves to bounded operators, which are much cleaner
and easier to discuss.

Of course, in physics departments unbounded operators do not belong to
the standard curriculum either. However, implicitly, they appear very often in
physics courses.

These lecture notes grew out of a course “Mathematics of quantum theory”
given at Faculty of Physics, University of Warsaw. The aim of the course was
not only to give a general theory of unbounded operators, but also to illustrate it
with many interesting examples. These examples often allow us to compute ex-
actly various quantities of interest. Often, they are related to special functions,
group symmetries, etc.

Hilbert spaces constitute the most useful class of topological vector spaces,
and also the most regular one. Therefore, the setting of most of this text is that
of Hilbert spaces. Only a small part of the material is presented in the more
general setting of Banach spaces. In particular, we try to avoid speaking about
duals of Banach spaces, Banach space adjoints, etc. This is motivated by our
desire to reduce the amount of “abstract nonsense”, which many students do
not like, and those who do like, do not have time to study seriously applications.
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Chapter 2

Banach spaces

2.1 Vector spaces

Let K denote the field C or R.
If the vector space X over K is isomorphic to Kn, we say that X is of a finite

dimension and its dimension is n.
If A ⊂ X , then SpanA denotes the set of finite linear combinations of ele-

ments of A. Clearly, SpanA is a subspace of X .
Let L(X ,Y) denote the set of linear transformations from X to Y and

L(X ) := L(X ,X ). For A ∈ L(X ,Y), KerA denotes the kernel of A and RanA
the range of A. A is injective iff KerA = {0}.

If A is bijective, then A−1 ∈ L(Y,X ).

2.2 Norms and seminorms

Definition 2.1 Let X be a vector space over K. X 3 x 7→ ‖x‖ ∈ R is called a
seminorm iff

1) ‖x‖ ≥ 0

2) ‖λx‖ = |λ|‖x‖,

3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If in addition
4) ‖x‖ = 0 ⇐⇒ x = 0,

then it is called a norm.

If X is a space with a seminorm, then N := {x ∈ X : ‖x‖ = 0} is a linear
subspace. Then on X/N we define

‖x+N‖ := ‖x‖,

which is a norm on X/N .

11



If ‖ · ‖ is a norm, then
d(x, y) := ‖x− y‖

defines a metric.
Let ‖ · ‖1 and ‖ · ‖2 be two norms on X . They are equivalent iff there exist

c1, c2 > 0 such that
c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1.

The equivalence of norms is an equivalence relation. If ‖ · ‖1 and ‖ · ‖2 are
equivalent, then the corresponding metrics are equivalent.

Theorem 2.2 (1) All norms on a finite dimensional vector space are equiv-
alent.

(2) Finite dimensional vector spaces are complete.

(3) Every finite dimensional subspace of a normed space is closed.

For r > 0, (X )r denotes the closed ball in X of radius r, that is (X )r := {x ∈
X : ‖x‖ ≤ r}.

If V ⊂ X , then Vcl will denote the closure of V, Vo its interior.

2.3 Banach spaces

Definition 2.3 X is a Banach space if it has a norm and is complete.

Definition 2.4 Let xi, i ∈ I, be a family of vectors in a normed space. Then

∑
i∈I

xi = x ⇐⇒ ∀
ε>0

∃
I0∈2Ifin

∀
I0⊂I1∈2Ifin

∥∥∥∥∥∑
i∈I1

xi − x

∥∥∥∥∥ < ε.

We say then that
∑
i∈I

xi is convergent to x.

Clearly, ∥∥∥∥∥∑
i∈I

xi

∥∥∥∥∥ ≤∑
i∈I
‖xi‖.

If cn ∈ R and
∑
i∈I

ci is convergent, then only a countable number of terms

cn 6= 0.

Theorem 2.5 1) Let X be a Banach space, xi ∈ X and∑
i∈I
‖xi‖ <∞.

Then there exists ∑
i∈I

xi.



2) Conversely, if X is a normed space such that

∞∑
n=1

‖xn‖ <∞

implies the convergence of
∞∑
n=1

xn,

then X is a Banach space.

Proof. 1) Since only a countable number of terms xn is different from zero,
the nonzero terms can be treated as a usual sequence indexed by integers. Let

yN :=

N∑
n=1

xn.

For n ≤ m

‖yn − ym‖ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

‖xi‖ →n,m→∞ 0.

Hence (yN ) is Cauchy and therefore convergent.
2) Let (xn) be a Cauchy sequence in X . By induction we can find a subse-

quence (xnj ) of the sequence (xn) such that

‖xnj+1
− xnj‖ < 2−n.

By assumption,
∞∑
j=1

(xnj+1
− xnj )

is convergent. The mth partial sum equals xnm+1−xn1 . Hence xnj is convergent
to some x ∈ X . Since (xn) was Cauchy, it also has to be convergent to x. 2

Theorem 2.6 Let X0 be a normed space. Then there exists a unique up to an
isometry Banach space X , such that X0 ⊂ X and X0 is dense in X . X is called
the completion of X0 and is denoted X cpl

0 .

2.4 Bounded operators

Let X and Y be normed spaces. An operator A : X → Y is called bounded iff
there exists a number C such that

‖Ax‖ ≤ C‖x‖, x ∈ X . (2.1)



We define the norm of A:

‖A‖ := inf{C : ‖Ax‖ ≤ C‖x‖, x ∈ X},

or

‖A‖ := sup
x6=0

‖Ax‖
‖x‖

= sup
‖x‖≤1

‖Ax‖.

The set of operators such that ‖A‖ < ∞ is denoted B(X ,Y). We write
B(X ) := B(X ,X ).

Theorem 2.7 The following conditions are equivalent:
1. A is bounded;
2. A is uniformly continuous;
3. A is continuous;
4. A is continuous in one point.

Proof. 1 ⇒ 2 ⇒ 3 ⇒ 4 is obvious. Clearly, 4. holds ⇐⇒ A is continuous at
0. Let us show that it implies the boundedness of A.

Suppose A is not bounded. Then there exists a sequence (xn) such that
‖xn‖ = 1 and

‖Axn‖ ≥ n.

Then

lim
n→∞

xn√
n

= 0, lim
n→∞

∥∥∥∥A xn√
n

∥∥∥∥ =∞.

Thus A is not continuous at 0. 2

Example 2.8 A linear operator from Cm to Cn can be defined by a matrix
[aij ].

(1) If Cm is equipped with the norm ‖ · ‖1 and Cn with the norm ‖ · ‖∞, then
‖A‖ = max{|aij |}.

(2) If Cm is equipped with the norm ‖ · ‖∞ and Cn with the norm ‖ · ‖1, then
‖A‖ ≤

∑
i,j |aij |.

(3) If Cm is equipped with the norm ‖ · ‖1 and Cn with the norm ‖ · ‖1, then
‖A‖ = maxj{

∑
i |aij |}.

(4) If Cm is equipped with the norm ‖ · ‖∞ and Cn with the norm ‖ · ‖∞, then
‖A‖ = maxi{

∑
j |aij |}.

Proposition 2.9 All linear operators on a finite dimensional space are bounded.

Theorem 2.10 If Y is a Banach space, then B(X ,Y) is a Banach space.
Besides, if A ∈ B(X ,Y) and B ∈ B(Y,Z), then

‖BA‖ ≤ ‖B‖‖A‖.



Proof. Clearly, B(X ,Y) is a normed space. Let us show that it is complete.
Let (An) be a Cauchy sequence in B(X ,Y). Then (Anx) is a Cauchy sequence
in Y. Define

Ax := lim
n→∞

Anx.

Obviously, A is linear.
Fix n. Clearly,

(A−An)x = lim
m→∞

(Am −An)x.

Hence
‖(A−An)x‖

= lim
m→∞

‖(Am −An)x‖ ≤ ‖x‖ lim
m→∞

‖(Am −An)‖.

Thus,
‖A−An‖ ≤ lim

m→∞
‖Am −An‖.

Therefore, by the Cauchy condition,

lim
n→∞

‖A−An‖ = 0.

Thus the sequence An is convergent to A. 2

Theorem 2.11 Let X ,Y be Banach spaces and X0 a dense subspace of X . Let

A0 ∈ B(X0,Y). Then there exists a unique A ∈ B(X ,Y) such that A
∣∣∣
X0

= A0.

Moreover, ‖A‖ = ‖A0‖.

Theorem 2.12 Let X , Y be normed spaces. Let A : X → Y be bounded, X0

dense in X and RanA dense in Y. Then AX0 is dense in Y.

Proof. Let y ∈ Y and ε > 0. There exists y1 ∈ RanA such that ‖y − y1‖ <
ε/2. Let x1 ∈ X such that Ax1 = y1. Then there exists x0 ∈ X0 such that
‖x− x0‖ < ‖A‖−1ε/2. Hence

‖y −Ax0‖ ≤ ‖y − y0‖+ ‖A(x1 − x0)‖ < ε.

2

2.5 Continuous embedding

Let Y,X be Banach spaces. Suppose that Y ⊂ X . (We do not assume that
the norms agree on Y). We say that Y is continuously embedded in X iff the
embedding is continuous. Equivalently, for some C,

‖y‖X ≤ C‖y‖Y , y ∈ Y.

Proposition 2.13 Let Y,X be Banach spaces with Y continuously embedded
in X . Let V be dense in Y, and let Y be dense in X . Then V is dense in X .



2.6 Direct sum of Banach spaces

If X ,Y are Banach spaces and π is an arbitrary norm in R2, then X⊕Y becomes
a Banach space if we equip it with the norm

‖(x, y)‖π = π(‖x‖, ‖y‖).

All these norms in X ⊕ Y are equivalent and generate the product topology.
Thus (xn, yn)→ (x, y) is equivalent to xn → x, yn → y.

For instance, we can take

‖x, y‖1 := ‖x‖+ ‖y‖.

If X , Y are Hilbert spaces, we will usually prefer

‖x, y‖2 :=
√
‖x‖2 + ‖y‖2.

2.7 Vector valued functions

For continuous ]a, b[3 t 7→ v(t) ∈ X we can define the Riemann integral. It has
all the usual properties, for instance,∥∥∥∥∥

∫ b

a

v(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖v(t)‖dt,

if A ∈ B(X ,Y), then

A

∫ b

a

v(t)dt =

∫ b

a

Av(t)dt.

Let ]a, b[3 t 7→ v(t) ∈ X . The (norm) derivative of v(t) is defined as

d

dt
v(t0) := lim

h→0

v(t0 + h)− v(t0)

h
.

It has all the usual properties, for instance,

d

dt
Av(t0) := A

d

dt
v(t0),

d

dt

∫ t

a

v(s)ds = v(t).

We assume now that K = C. Let Ω be an open subset of C. We say that
Ω 3 z 7→ v(z) ∈ X is analytic iff for any z0 ∈ Ω there exists

d

dz
v(z0) := lim

h→0

v(z0 + h)− v(z0)

h
.



Theorem 2.14 (1) Let x0, x1, · · · ∈ X and r−1 := lim supn→∞ ‖xn‖
1
n . Then

v(z) :=

∞∑
n=0

xnz
n, z ∈ C

is absolutely uniformly convergent for |z| < r1 < r and divergent for |z| > r.
In B(0, r) it is analytic

(2) Ω 3 z 7→ v(z) ∈ X is analytic iff around any z0 ∈ Ω we can develop it into
a power series. Its radius of convergence equals(

lim sup
n→∞

∥∥∥v(n)(z0)

n!

∥∥∥ 1
n

)−1

.

(3) If v is analytic on Ω, continuous on Ωcl and z0 ∈ Ω, then

v(z0) =
1

2πi

∫
∂Ω

v(z)dz.





Chapter 3

Partial operators on Banach
spaces

3.1 Relations

One of the problems with unbounded operators is confusing terminology used
in their theory. In particular, they are not true operators, which is usually used
as one of synonyms of the word function–they are a special kind of relations
sometimes called partial operators. Therefore, in order to be precise and clear,
before starting to discuss unbounded operators, it is helpful to reexamine the
concepts of a function and relation.

Let X,Y be sets. R is called a relation iff R ⊂ Y ×X. We will also say that
R is a relation from X to Y . We will sometimes write R : X → Y . Note that
there is a problem with the order of X and Y . We chose the order Y × X to
have a more transparent picture for the composition of relations. However, the
usual order in the literature is X × Y . To be consistent with the literature, we
introduce also the graph of R:

GrR := {(x, y) ∈ X × Y : (y, x) ∈ R}.

An example of a relation is the identity

1lX := {(x, x) : x ∈ X} ⊂ X ×X.

Introduce the projections

Y ×X 3 (y, x) 7→ πY (y, x) := y ∈ Y,

Y ×X 3 (y, x) 7→ πX(y, x) := x ∈ X.

and the flip

Y ×X 3 (y, x) 7→ τ(y, x) := (x, y) ∈ X × Y.
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The domain of R is defined as DomR := πXR, its range is RanR = πYR,
its inverse is R−1 := τR ⊂ X × Y . If S ⊂ Z × Y , then the superposition of S
and R is defined as

S ◦R := {(z, x) ∈ Z ×X : ∃y∈Y (z, y) ∈ S, (y, x) ∈ R}. (3.1)

If X0 ⊂ X, then the restriction of R to X0 is defined as

R
∣∣∣
X0

:= R ∩ Y×X0.

If, moreover, Y0 ⊂ Y , then

R
∣∣∣
X0→Y0

:= R ∩ Y0×X0.

We say that a relation R is injective, if πX(R ∩ {y} ×X) is one-element for
any y ∈ RanR. We say that R is surjective if RanR = Y .

We say that a relation R is coinjective, if πY (R∩Y×{x}) is one-element for
any x ∈ DomR. We say that R is cosurjective if DomR = X.

Proposition 3.1 a) If R, S are coinjective, then so is S ◦R.
b) If R, S are cosurjective, then is S ◦R.

In a basic course of set theory we learn that a coinjective cosurjective relation
is called a function. One also introduces many synonyms of this word, such as
a transformation, an operator, a map, etc.

The composition of transformations is a transformation. We say that a
transformation R is bijective iff it is injective and surjective. The inverse of a
transformation is a transformation iff it is bijective.

Proposition 3.2 Let R ⊂ Y ×X and S ⊂ X ×Y be transformations such that
R ◦ S = 1lY and S ◦R = 1lX . Then S and R are bijections and S = R−1.

In what follows we will need a weaker concept than a function: A coinjective
relation will be called a partial function (or a partial transformation, operator,
etc).

In the sequel, if R is a partial function, instead of writing (y, x) ∈ R we will
write y = R(x), or perhaps (x, y) ∈ GrR.

A superposition of partial transformations is a partial transformation. The
inverse of a partial transformation is a partial transformation iff it is injective.

3.2 Linear partial operators

Let X ,Y be vector spaces. We say that R : X → Y is a linear partial operator
if DomR is a linear subspace of X and R : DomR → Y is a linear operator in
the usual sense.



Proposition 3.3 (1) V ⊂ X ⊕Y is a graph of a certain linear partial operator
iff V is a linear subspace and (0, y) ∈ V implies y = 0.

(2) A linear partial operator A is injective iff (x, 0) ∈ GrA implies x = 0.

From now on by an “operator” we will mean a “linear partial operator”. To
say that A : X → Y is a true operator we will write DomA = X or that it is
everywhere defined. Note however that by writing A ∈ L(X ,Y) or A ∈ B(X ,Y)
we will still imply that DomA = X .

As before, for operators we will write Ax instead of A(x) and AB instead of
A ◦B. We define the kernel of an operator A:

KerA := {x ∈ DomA : Ax = 0}.

Suppose that A,B are two operators X → Y. Then by A+B we will mean
the obvious operator with domain DomA ∩DomB.

3.3 Closed operators

Let X ,Y be Banach spaces. Recall that X ⊕ Y can viewed as a Banach space
equipped eg. with a norm

‖(x, y)‖1 := ‖x‖+ ‖y‖.

Theorem 3.4 Let A : X → Y be an operator. The following conditions are
equivalent:

(1) GrA is closed in X ⊕ Y.

(2) If xn → x, xn ∈ DomA and Axn → y, then x ∈ DomA and y = Ax.

(3) DomA with the norm

‖x‖A := ‖x‖+ ‖Ax‖.

is a Banach space.

Proof. The equivalence of (1), (2) and (3) is obvious, if we note that

DomA 3 x 7→ (x,Ax) ∈ GrA

is a bijection. 2

Definition 3.5 An operator satisfying the above conditions is called closed.

Theorem 3.6 If A is closed and injective, then so is A−1.

Proof. The flip τ : X ⊕ Y → Y ⊕X is continuous. 2

Proposition 3.7 If A is a closed operator, then KerA is closed.



3.4 Bounded operators as closed operators

For any operator A from X to Y we can define its norm

‖A‖ := sup
‖x‖=1, x∈DomA

‖Ax‖. (3.2)

We say that A is bounded if ‖A‖ < ∞. As already defined before, B(X ,Y)
denotes all bounded everywhere defined operators from X to Y.

Proposition 3.8 A bounded operator A is closed iff DomA is closed.

If A : X → Y is closed, then A ∈ B(DomA,Y).
Let us quote without a proof a well known theorem:

Theorem 3.9 (Closed graph theorem) Let A : X → Y be a closed opera-
tor with DomA = X . Then A is bounded.

Proposition 3.10 Let ξ be a densely defined linear form. The following con-
ditions are equivalent:

(1) ξ is closed.

(2) ξ is everywhere defined and bounded.

(3) ξ is everywhere defined and Kerξ is closed.

3.5 Closable operators

Theorem 3.11 Let A : X → Y be an operator. The following conditions are
equivalent:

(1) There exists a closed operator B such that B ⊃ A.

(2) (GrA)cl is the graph of an operator.

(3) (0, y) ∈ (GrA)cl ⇒ y = 0.

(4) (xn) ⊂ DomA, xn → 0, Axn → y implies y = 0.

Definition 3.12 An operator A satisfying the conditions of Theorem 3.11 is
called closable. If the conditions of Theorem 3.11 hold, then the operator whose
graph equals (GrA)cl is denoted by Acl and called the closure of A.

Proof of Theorem 3.11 To show (2)⇒(1) it suffices to take as B the
operator Acl. Let us show (1)⇒(2). Let B be a closed operator such that
A ⊂ B. Then (GrA)cl ⊂ (GrB)cl = GrB. But (0, y) ∈ GrB ⇒ y = 0, hence
(0, y) ∈ (GrA)cl ⇒ y = 0. Thus (GrA)cl is the graph of an operator. 2

As a by-product of the above proof, we obtain

Proposition 3.13 If A is closable, B closed and A ⊂ B, then Acl ⊂ B.



Proposition 3.14 Let A be bounded. Then A is closable, DomAcl = (DomA)cl

and ‖Acl‖ = ‖A‖.

Proposition 3.15 If A is a closable operator, then (KerA)cl ⊂ KerAcl

Example 3.16 Let V be a subspace in X and x0 ∈ X\V. Define the linear
functional w such that Domw = V + Cx0, Kerw = V and 〈w|x0〉 = 1. Then w
is closable iff x0 6∈ Vcl. In particular, if V is dense, then w is nonclosable.

3.6 Essential domains

Let A be a closed operator. We say that a linear subspace D is an essential
domain of A iff D is dense in DomA in the graph topology. In other words, D
is an essential domain for A, if (

A
∣∣∣
D

)cl

= A.

Theorem 3.17 (1) If A ∈ B(X ,Y), then a linear subspace D ⊂ X is an
essential domain for A iff it is dense in X (in the usual topology).

(2) If A is closed, has a dense domain and D is its essential domain, then D
is dense in X .

(2) follows from the following fact:

Proposition 3.18 Let V ⊂ X be Banach spaces with ‖x‖X ≤ ‖x‖V . Then a
dense subspace in V is dense in X .

3.7 Perturbations of closed operators

Definition 3.19 Let B, A : X → Y. We say that B is bounded relatively to
A iff DomA ⊂ DomB and there exist constants a, b such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ DomA. (3.3)

The infimum of a satisfying (3.3) is called the A-bound of B. If DomA 6⊂
DomB the A-bound of B is set +∞.

In other words: the A-bound of B equals

a1 := inf
c>0

sup
x∈DomA\{0}

‖Bx‖
‖Ax‖+ c‖x‖

.

In particular, if B is bounded, then its A-bound equals 0.
If A is unbounded, then its A-bound equals 1.
In the case of Hilbert spaces it is more convenient to use the following con-

dition to define the relative boundedness:



Theorem 3.20 The A-bound of B equals

a1 = inf
c>0

sup
x∈DomA\{0}

(
‖Bx‖2

‖Ax‖2 + c‖x‖2

)1/2

. (3.4)

Proof. For any ε > 0 we have(
‖Ax‖2 + c2‖x‖2

) 1
2 ≤ ‖Ax‖+ c‖x‖

≤
(
(1 + ε2)‖Ax‖2 + c2(1 + ε−2)‖x‖2

) 1
2 .

2

Theorem 3.21 Let A be closed and let B be bounded relatively to A with the
A-bound less than 1. Then A+B with the domain DomA is closed. All essential
domains of A are essential domains of A+B.

Proof. We know that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖

for some a < 1 and b. Hence

‖(A+B)x‖+ ‖x‖ ≤ (1 + a)‖Ax‖+ (1 + b)‖x‖

and

(1− a)‖Ax‖+ ‖x‖ ≤ ‖Ax‖ − ‖Bx‖+ (1 + b)‖x‖ ≤ ‖(A+B)x‖+ (1 + b)‖x‖.

Hence the norms ‖Ax‖+ ‖x‖ and ‖(A+B)x‖+ ‖x‖ are equivalent on DomA.
2

In particular, every bounded operator with domain containing DomA is
bounded relatively to A.

Proposition 3.22 Suppose that X = Y. Then we have the following seemingly
different definition of the A-bound of B:

a1 := inf
µ∈C

inf
c>0

sup
x∈DomA\{0}

‖Bx‖
‖(A− µ)x‖+ c‖x‖

. (3.5)

Proof. It is obvious that (3.5)≤(3.4). To see the converse inequality, it suffices
to note that

‖Ax‖+ c‖x‖ ≤ ‖(A− µ)x‖+ (|µ|+ c)‖x‖.

2



Theorem 3.23 Suppose that A,C are two operators with the same domain
DomA = DomC = D satisfying

‖(A− C)x‖ ≤ a(‖Ax‖+ ‖Cx‖) + b‖x‖

for some a < 1. Then

(1) A is closed on D iff C is closed on D.

(2) D is an essential domain of Acl iff it is an essential domain of Ccl.

Proof. Define B := C − A and F (t) := A + tB with the domain D. For
0 ≤ t ≤ 1, we have

‖Bx‖ ≤ a(‖Ax‖+ ‖Cx‖) + b‖x‖

= a (‖(F (t)− tB)x‖+ ‖(F (t) + (1− t)B)x‖) + b‖x‖

≤ 2a‖F (t)x‖+ a‖Bx‖+ b‖x‖

Hence

‖Bx‖ ≤ 2a

1− a
‖F (t)x‖+

b

1− a
‖x‖.

Therefore, if |s| < 1−a
2a and t, t + s ∈ [0, 1], then F (t + s) is closed iff F (t) is

closed. 2

3.8 Invertible operators

Let X , Y be vector spaces and A ∈ L(X ,Y). We say that A is invertible if A is
bijective. Then clearly A−1 ∈ L(Y,X ).

If X ,Y are finite dimensional, then A ∈ L(X ,Y) can be invertible only if
X and Y are of the same dimension. We can thus assume that X ' Y ' Kn
and assume that A is given by a square matrix [Aij ]. Then one of facts of basic
linear algebra says that A is invertible iff det[Aij ] 6= 0 iff KerA = {0}.

Suppose now that X ,Y be Banach spaces.

Theorem 3.24 Let A ∈ B(X ,Y). If A is invertible, then A−1 ∈ B(Y,X ).

Proof. A ∈ B(X ,Y) implies that A is closed. Hence so is A−1. Therefore, by
Thm 3.9, A−1 is bounded. 2

Let A be an operator from X to Y.

Theorem 3.25 (Closed range theorem) Let A be closed. Then the follow-
ing conditions are equivalent:

(1) For some c > 0
‖Ax‖ ≥ c‖x‖, x ∈ DomA. (3.6)

(2) A is injective and RanA is closed.



Proof. (1)⇒(2): The injectivity is obvious. Let yn ∈ RanA and yn → y. Let
Axn = yn. Then xn is a Cauchy sequence. Hence there exists limn→∞ xn := x.
But A is closed, hence Ax = y. Therefore, RanA is closed.

(1)⇐(2): By Thm 3.9, A−1 is a bounded operator from RanA to X . 2

Proposition 3.26 Let A be closable and suppose that for some c > 0 (3.6)
holds. Then (3.6) holds for Acl as well.

Definition 3.27 We say that an operator A is invertible (or boundedly invert-
ible) iff A−1 ∈ B(Y,X ).

Note that we do not demand that A be densely defined. Note also that
Definition 3.27 is consistent with the definition of invertibilty for bounded op-
erators.

Theorem 3.28 Let A be an operator. The following conditions are equiva-
lent:

(1) A is invertible.

(2) A is closed, injective and RanA = Y.

(3) A is closable, for some c > 0, ‖Ax‖ ≥ c‖x‖ and RanA = Y.

(4) A is closed, for some c > 0, ‖Ax‖ ≥ c‖x‖ and RanA is dense in Y.

Moreover, if these conditions are true then

‖A−1‖ =
(

max{c : ‖Ax‖ ≥ c‖x‖}
)−1

. (3.7)

The following criterion for the invertibility is obvious:

Proposition 3.29 Let C ∈ B(Y,X ) be such that RanC ⊂ DomA and

AC = 1l, CA = 1l
∣∣∣
DomA

.

Then A is invertible and C = A−1.

Theorem 3.30 Let A be invertible and DomB ⊃ DomA.

(1) B has the A-bound ≤ ‖BA−1‖.
(2) If ‖BA−1‖ < 1, then A + B with the domain DomA is closed, invertible

and

(A+B)−1 =

∞∑
j=0

(−1)jA−1(BA−1)j .

(3) ‖(A+B)−1‖ ≤ ‖A−1‖(1− ‖BA−1‖)−1.

(4) ‖A−1 − (A+B)−1‖ ≤ ‖A−1BA−1‖(1− ‖BA−1‖)−1.



Proof. By the estimate

‖Bx‖ ≤ ‖BA−1‖‖Ax‖, x ∈ DomA,

we see that B has the A-bound ≤ ‖BA−1‖. This proves (1).
Assume now that ‖BA−1‖ < 1. Let

Cn :=

n∑
j=0

(−1)jA−1(BA−1)j .

Then lim
n→∞

Cn =: C exists.

Let y ∈ Y. Clearly, lim
n→∞

Cny = Cy.

(A+B)Cny = y + (−1)n(BA−1)n+1y → y.

But A+B is closed, hence Cy ∈ Dom(A+B) and (A+B)Cy = y.
Let x ∈ DomA. Then

Cn(A+B)x = x+ (−1)nA−1(BA−1)nBx→ x.

Hence C(A+B)x = x.
By Prop. 3.29, A+B is invertible and C = (A+B)−1, which proves (2). 2

As a corollary of Thm 3.30 we note that invertible elements form an open
subset of B(X ,Y) on which the inverse is a continuous function.

Theorem 3.31 Let A and C be invertible and DomC ⊃ DomA. Then

C−1 −A−1 = C−1(A− C)A−1.

3.9 Product of operators

Let B be an operator from X to Y and A an operator from Y to Z. Then we
define its product as an operator from X to Z with the domain

DomAB := {x ∈ DomB : Bx ∈ DomA},

and for x ∈ DomAB, ABx := A(Bx). (Note that this is a special case of (3.1)).

Proposition 3.32 1. Let A be closed and S bounded. Then AS is closed.

2. Suppose in addition that S is invertible. Let a subspace D ⊂ DomA be
dense in the norm ‖ · ‖A. Then S−1D is dense in DomAS in the norm
‖ · ‖AS.



Proof. (1): Let (un) ⊂ DomAS and ASun → v, un → u. Set wn := Sun.
Then (wn) ⊂ DomA, Awn → v, wn → Su. Hence, Su ∈ DomA and ASu =
lim
n→∞

Awn = v. Therefore, AS is closed.

(2): Let u ∈ DomAS. Then Su ∈ DomA. Hence there exists (vn) ⊂ D with
vn → Su and Avn → ASu. Set un := S−1vn ∈ S−1D. Then ASun → ASu and
un → u. Hence un → u in ‖ · ‖AS . 2

Proposition 3.33 1. Let A be closed and T be invertible. Then TA is
closed.

2. Suppose in addition that T is bounded. Let a subspace D ⊂ DomA be dense
in the norm ‖ · ‖A. Then D is dense in DomTA in the norm ‖ · ‖TA.

Proof. (1): Let (un) ⊂ DomTA and TAun → v, un → u. Then Aun → T−1v.
Hence u ∈ DomA andAu = T−1v. Hence u ∈ DomTA and TAu = v.Therefore,
TA is closed.

(2): Let u ∈ DomTA. Let (un) ⊂ D with Aun → u, un → u. Then
TAun → Tu. Hence un → u in ‖ · ‖TA. 2



Chapter 4

Spectral theory of operators
on Banach spaces

4.1 Spectrum

Let A be an operator on X . We define the resolvent set of A as

rsA := {z ∈ C : z1l−A is invertible }.

We define the spectrum of A as spA := C\rsA.
We say that x ∈ X is an eigenvector of A with eigenvalue z ∈ C iff x ∈

DomA, x 6= 0 and Ax = zx. The set of eigenvalues is called the point spectrum
of A and denoted sppA. Clearly, sppA ⊂ spA.

Let C ∪ {∞} denote the Riemann sphere (the one-point compactification of
C). The extended resolvent set is defined as rsextA := rsA ∪ {∞} if A ∈ B(X )
and rsextA := rsA, if A is unbounded. The extended spectrum is defined as

spextA = C ∪ {∞}\rsextA.

If A ∈ B(X ), we set (∞−A)−1 = 0.

Theorem 4.1 (1) If rsA is nonempty, then A is closed.

(2) If z0 ∈ rsA, then
{
z : |z − z0| < ‖(z0 −A)−1‖−1} ⊂ rsA.

(3) ‖(z −A)−1‖ ≥ (dist(z, spA))
−1

.

(4) If A is bounded, then {|z| > ‖A‖} is contained in rsA.

(5) spextA is a compact subset of C ∪ {∞}.
(6) If z1, z2 ∈ rsA, then

(z1 −A)−1 − (z2 −A)−1 = (z2 − z1)(z1 −A)−1(z2 −A)−1.
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(7) If z ∈ rsA, then
d

dz
(z −A)−1 = −(z −A)−2.

(8) (z −A)−1 is analytic on rsextA.

(9) (z − A)−1 cannot be analytically extended to a larger subset of C ∪ {∞}
than rsext(A).

(10) spext(A) 6= ∅
(11) Ran (z −A)−1 does not depend on z ∈ rsA and equals DomA.

(12) Ker(z −A)−1 = {0}.

Proof. (1): If λ ∈ rs(A), then λ−A is invertible, hence closed. λ−A is closed
iff A is closed.

(2): For |z− z0| < ‖(z0−A)−1‖−1, we have ‖(z− z0)(z0−A)−1‖ < 1 Hence,
by Theorem 3.30, z −A = z0 −A+ z − z0 is invertible.

By (2), dist(z0, spA) ≥ ‖(z0 −A)−1‖−1. This implies (3).

(4): We check that
∞∑
n=0

z−n−1An is convergent for |z| > ‖A‖ and equals

(z −A)−1.
(5): By (2), spextA ∩ C = spA is closed in C. For bounded A, spextA is

bounded by (4). For unbounded A, ∞ ∈ spextA. So in both cases, spextA is
closed in C ∩ {∞}.

(6) follows from Thm 3.31. Note that it implies the continuity of the resol-
vent.

(7) follows from (6).
(8) follows from (7).
(9) follows from (3).
(10): For bounded A, (z − A)−1 is an analytic function tending to zero at

infinity. Hence it cannot be analytic everywhere, unless it is zero, which is
impossible. For unbounded A, ∞ ∈ spextA.

(11) follow from (6).
(12) is an obvious property of the inverse of an invertible operator. 2

Proposition 4.2 Suppose that rsA is non-empty and DomA is dense. Then
DomA2 is dense.

Proof. Let z ∈ rsA. (z − A)−1 is a bounded operator with a dense range and
DomA is dense. Hence (z −A)−1 DomA is dense. We will show that

(z −A)−1 DomA ⊂ DomA2. (4.1)

Indeed, obviously (z − A)−1 DomA ⊂ DomA. But A(z − A)−1 DomA =
(z −A)−1ADomA ⊂ DomA. Hence (4.1) is true. 2

Proposition 4.3 Let A and B be operators on X with A ⊂ B, A 6= B. Then
rsA ⊂ spB, and hence rsB ⊂ spA.



Proof. Let λ ∈ rsA. Let x ∈ DomB\DomA. We have Ran (λ − A) = X ,
hence there exists y ∈ DomA such that (λ−A)y = (λ−B)x. Hence (λ−B)y =
(λ−B)x. But x 6= y. Hence λ 6∈ rsB. 2

4.2 Spectral radius

Spectral radius of A ∈ B(X ) is defined as

srA := sup
λ∈spA

|λ|.

Lemma 4.4 Let a sequence of reals (cn) satisfy

cn + cm ≥ cn+m.

Then
lim
n→∞

cn
n

= inf
cn
n
.

Proof. Fix m ∈ N. Let n = mq + r, r < m. We have

cn ≤ qcm + cr.

So
cn
n
≤ qcm

n
+
cr
n
.

Hence
lim sup
n→∞

cn
n
≤ cm

m
.

Thus,

lim sup
n→∞

cn
n
≤ inf

cm
m
.

2

Theorem 4.5 Let A ∈ B(X ). Then

lim
n→∞

‖An‖ 1
n (4.2)

exists and equals srA. Besides, srA ≤ ‖A‖.

Proof. Let
cn := log ‖An‖.

Then
cn + cm ≥ cn+m

Hence there exists
lim
n→∞

cn
n
.



Consequently, there exists

r := lim
n→∞

‖An‖1/n.

By the Cauchy criterion, the series

∞∑
n=0

Anz−1−n. (4.3)

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check
that (4.3) equals (z −A)−1. 2

4.3 Examples

Example 4.6 Consider l2(Z) with the canonical basis ej , j ∈ Z, and the oper-
ator U defined by

Uej = ej+1.

Then spU = {|z| = 1} and sppU = ∅.

Proof. Indeed, ‖U‖ = ‖U−1‖ = 1,

(z − U)−1 =

{∑∞
j=0 z

−j−1U j , |z| > 1,∑∞
j=0 z

jU−1−j , |z| < 1.

Therefore, {|z| = 1} ⊃ spU .
Suppose that a sequence v satisfies Uv = zv. Then vj = czj . However such

v is not square integrable. Hence sppU = ∅.
For 1

2 < t < 1 and |z| = 1 set

vtz =

√
t−1 − t
t−1 + t

∞∑
j=−∞

zjt|j|ej .

Then ‖vtz‖ = 1

‖(z − U)vtz‖ ≤ max
(
t−1 − 1, (1− t)

)
‖vtz‖ ≤ 2(1− t)‖vtz‖.

Hence (z − U) is not invertible. Therefore, {|z| = 1} ⊂ spU . 2

In what follows we consider l2(1, 2, . . . ) with the canonical basis e1, e2, . . . .

Example 4.7 Let the operator T defined by

Tej :=

{
ej−1, j ≥ 2,

0, j = 1.
.

Then spT = {|z| ≤ 1} and sppT = {|z| < 1}.



Proof. ‖T‖ = 1,

(z − T )−1 =

∞∑
j=0

z−j−1T j , |z| > 1.

Therefore, {|z| < 1} ⊃ spT .
For |z| < 1 set

wz :=
√
|z|−2 − 1

∞∑
j=1

zjej .

Then ‖wz‖ = 1 and (z − T )wz = 0. Therefore, {|z| < 1} ⊂ sppT ⊂ spT . Using
the fact that the spectrum is closed we obtain {|z| ≤ 1} ⊂ spT .

We easily check that every eigenvector of T is proportional to wz for some
|z| < 1. Therefore, sppT = {|z| < 1}. 2

Example 4.8 Let the operator S defined by

Sej = ej+1.

Then spS = {|z| < 1}.

Proof. ‖S‖ = 1, and we prove that {|z| ≤ 1} ⊃ spS the same way as for T .
Let w ∈ l2(1, 2, . . . ) and let vz be as above. We check that

(vz|(z − S)w) = ((z − T )vz|w) = 0.

Hence (z − S) is not invertible. Using the fact that the spectrum is closed we
obtain {|z| ≤ 1} ⊂ spT . 2

Example 4.9 Let (dn) be a sequence convergent to 0. Let the operator D be
defined by

Den = dnen.

Set N := SD. Then spN = {0}. If all dn are nonzero, then sppN = ∅.

Proof. We have
‖Nn‖ = sup

j
|dj+n−1 · · · dj |.

Let c := sup |dj |. Let ε > 0. We can find n0 such that for j > n0 |dj | ≤ ε. Then

‖Nn‖1/n ≤ ε(n−n0)/ncn0/n.

Therefore,
lim sup
n→∞

‖Nn‖1/n ≤ ε.

By the arbitrariness of ε > 0, this implies lim
n→∞

‖Nn‖1/n = 0. 2

We say that an operator N is nilpotent if for some n we have Nn = 0. Its
degree of nilpotence is the smallest number n ∈ {0, 1, . . . } such that Nn = 0.



We say that an operator N is quasinilpotent if spN = {0}, or equivalently

lim
n→∞

‖Nn‖1/n = 0.

Clearly, every nilpotent operator is quasinilpotent. Moreover, if N is nilpotent,
then sppN = {0}, because RanNn−1 ⊂ KerN , where n is the degree of the
nilpotence of N .

4.4 Functional calculus

Let K ⊂ C be compact. By Hol(K) let us denote the set of analytic functions
on a neighborhood of K. It is a commutative algebra.

More precisely, let H̃ol(K) be the set of pairs (f,D), where D is an open
subset of C containing K and f is an analytic function on D. We introduce
the relation (f1,D1) ∼ (f2,D2) iff f1 = f2 on a neighborhood of K contained

D1 ∩ D2. We set Hol(K) := H̃ol(K)/ ∼.

Definition 4.10 Let A ∈ B(X ). Let f ∈ Hol(spA). Let γ be a contour in a
domain of f that encircles spA counterclockwise. We define

f(A) :=
1

2πi

∫
γ

(z −A)−1f(z)dz (4.4)

Clearly, the definition is independent of the choice of the contour.

Theorem 4.11
Hol(spA) 3 f 7→ f(A) ∈ B(X ) (4.5)

is a linear map satisfying

(1) fg(A) = f(A)g(A);

(2) 1(A) = 1l;

(3) id ∈ Hol(spA) for id(z) = z and id(A) = A.

(4) If λ ∈ rsA and fλ(z) = (λ − z)−1, then fλ ∈ Hol(spA) and fλ(A) =
(λ−A)−1;

(5) If f(z) :=
∑∞
n=0 fnz

n is an analytic function defined by a series absolutely
convergent in a disk of radius greater than srA, then

f(A) =

∞∑
n=0

fnA
n;

(6) (Spectral mapping theorem). spf(A) = f(spA)

(7) g ∈ Hol(f(spA))⇒ g ◦ f(A) = g(f(A)),

(8) ‖f(A)‖ ≤ cγ,A supz∈γ |f(z)|.



Proof. It is clear that f → f(A) is linear. Let us show that it is multiplicative.
Let f1, f2 ∈ Hol(spA). Choose a contour γ2 around the contour γ1, both in the
domains of f1 and f2.

(2πi)−2
∫
γ1
f1(z1)(z1 −A)−1dz1

∫
γ2
f2(z2)(z2 −A)−1dz2

= (2πi)−2
∫
γ1

∫
γ2
f1(z1)f2(z2)

(
(z1 −A)−1 − (z2 −A)−1

)
(z2 − z1)−1dz1dz2

= (2πi)−2
∫
γ1
f1(z1)(z1 −A)−1dz1

∫
γ2

(z2 − z1)−1f2(z2)dz2

+(2πi)−2
∫
γ2
f2(z2)(z2 −A)−1dz2

∫
γ1

(z1 − z2)−1f1(z1)dz1.

But ∫
γ1

(z1 − z2)−1f1(z1)dz1 = 0,∫
γ2

(z2 − z1)−1f2(z2)dz2 = 2πif2(z1).

Thus
f1(A)f2(A) = f1f2(A). (4.6)

From the formula

(z −A)−1 =

∞∑
n=0

z−n−1An, |z| > sr(A),

we obtain 1(A) = 1l and id(A) = A.
Let λ ∈ rsA. From the formula

(z −A)−1 =

∞∑
n=0

(λ− z)n

(λ−A)n+1

we obtain fλ(A) = (λ−A)−1.
Let us prove the spectral mapping theorem. First we will show

spf(A) ⊂ f(spA). (4.7)

If µ 6∈ f(spA), then the function z 7→ f(z) − µ 6= 0 on spA. Therefore, z 7→
(f(z) − µ)−1 belongs to Hol(spA). Thus f(A) − µ is invertible and therefore,
µ 6∈ spf(A). This implies (4.7).

Let us now show
spf(A) ⊃ f(spA). (4.8)

Let µ 6∈ spf(A). This clearly implies that µ− f(A) is invertible.
If µ does not belong to the image of f , then of course it does not belong to

f(spA). Let us assume that µ = f(λ). Then the function

z 7→ g(z) := (f(z)− µ)(λ− z)−1

belongs to Hol(spA). Hence g(A) is well defined as an element of B(X ). Like-
wise, z 7→ (µ−f(z))−1 belongs to Hol(sp(A)), and so we can define (µ−f(A))−1.
Clearly, g(z)(f(z)−µ)−1 = (λ−z)−1. Hence, g(A)(f(λ)−f(A))−1 = (λ−A)−1.
Hence λ 6∈ spA. Thus µ 6∈ f(spA). Consequently, (4.8) holds.



Let us show now (7). Let γ be a contour around sp(A) and γ̃ around
g(sp(A)). Notice that if w 6∈ f(spA), then the function z 7→ (w − f(z))−1

is analytic on a neighborhood of sp(A) and

(w − f(A))−1 =
1

2πi

∫
γ

(w − f(z))−1(z −A)−1dz.

We compute

g(f(A))

= 1
2πi

∫
γ̃
g(w)(w − f(A))−1dw

= 1
(2πi)2

∫
γ̃

∫
γ
g(w)(w − f(z))−1(z −A)−1dwdz

= 1
(2πi)2

∫
γ
(z −A)−1dz

∫
γ̃
g(w)(w − f(z))−1dw

= 1
2πi

∫
γ
g(f(z))(z −A)−1dz.

2

Note that one can also define functional calculus for an unbounded operator
A having nonempty resolvent set. One needs to consider functions holomorphic
on a neighborhood of spextA inside C∪ {∞}. Thm 4.11 is then valid except for
(3), and (2) needs to be replaced by 1(A) = 0.

4.5 Idempotents

P ∈ L(X ) is called an idempotent if P 2 = P . Then X is the direct sum of
X1 := RanP and X2 := KerP . We then say that P is the projection onto X1

along X2.

Theorem 4.12 Let P ∈ L(X ) be an idempotent. Then P ∈ B(X ) iff RanP
and KerP are closed subspaces of X . If this is the case, spP = {0, 1} and

(z − P )−1 = (z − 1)−1P + z−1(1− P ).

Proof. Let P be bounded. The kernel of a bounded operator is obviously
closed. Hence KerP and RanP = Ker(1l− P ) are closed.

Let X1 := KerP and X2 := RanP be closed. Consider X = X1⊕X2 endowed
with the norm ‖x‖0 := ‖x1‖+‖x2‖. Clearly, ‖·‖0 makes X into a Banach space.
Let J denote the identity on X , where in the domain we use the norm ‖ · ‖0 and
in the image the norm ‖ · ‖. Obviously ‖x‖ ≤ ‖x‖0, and hence J is bounded. It
is also bijective. Hence J−1 is bounded. Therefore, there exists c such that

‖x‖0 ≤ c‖x‖.

Therefore, ‖P‖ ≤ c. 2

Theorem 4.13 Let P,Q ∈ B(X ) be idempotents such that sr(P − Q)2 < 1.
Then there exists an invertible U ∈ B(X ) such that P = UQU−1.



Proof. Set

Ũ := QP + (1−Q)(1− P ), Ṽ := PQ+ (1− P )(1−Q).

We have
QŨ = ŨP, P Ṽ = Ṽ Q.

We also have
Ṽ Ũ = Ũ Ṽ = 1−R,

R = (P −Q)2 = P +Q− PQ−QP.
We check that P and Q commute with R (note in particular that PR = P −
PQP , etc.).

Set c := srR < 1. Then on sp(1−R) ⊂ B(1, c), the function z 7→ z
1
2 is well

defined. Hence we can introduce the function

(1−R)−1/2

(which can be defined by a convergent power series). We set

U := Ũ(1−R)−1/2 = (1−R)−1/2Ũ , V := Ṽ (1−R)−1/2 = (1−R)−1/2Ṽ .

So UV = V U = 1, or V = U−1 and

Q = UPU−1.

Proposition 4.14 Let t 7→ P (t) be a differentiable function with values in
idempotents. Then

PṖP = 0.

Proof.
d

dt
P =

d

dt
P 2 = ṖP + PṖ .

Hence PṖP = 2PṖP . 2

4.6 Spectral idempotents

Let Ω be a subset of B ⊂ C. Ω will be called an isolated subset of B, if
Ω ∩ (B\Ω)cl = ∅ and Ωcl ∩ (B\Ω) = ∅ (or Ω is closed and open in the relative
topology of B).

If B is in addition closed, then Ω is isolated iff both Ω and (B\Ω)cl are closed
in C∪{∞}.

Let Ω be an isolated subset of spA. It is easy to see that we can find open
non-intersecting neighbohoods of Ω and spA\Ω. Hence

1lΩ(z) :=

{
1 z belongs to a neighborhood of Ω,

0 z belongs to a neighborhood of spA\Ω.



defines an element of Hol(spA).
Clearly, 1l2Ω = 1lΩ. Hence 1lΩ(A) is an idempotent.
If γ is a counterclockwise contour around Ω outside of spA\Ω then

1lΩ(A) =
1

2πi

∫
γ

(z −A)−1dz

This operator will be called the spectral idempotent of the operator A onto Ω.

sp
(
A
∣∣
Ran 1Ω(A)

)
= spA ∩ Ω.

If Ω1 and Ω2 are two isolated subsets of spA, then

1lΩ1
(A)1lΩ2

(A) = 1lΩ1∩Ω2
(A)

4.7 Isolated eigenvalues

Assume now that λ is an isolated point of spA. Set

P := 1lλ(A), N := (A− λ)P.

Definition 4.15 We say that λ is a semisimple eigenvalue if N = 0. If Nn = 0
and Nn−1 6= 0, then we say that λ is nilpotent of degree n. It is easy to see that
if A ∈ L(X ), then the degree of nilpotence of λ is less than or equal to dimP .

Proposition 4.16 The operator N is quasinilpotent, satisfies PN = NP = N
and can be written as

N = f(A), f(z) := (z − λ)1lλ(z). (4.9)

Besides,

(z −A)−1P = (z − λ)−1P +

∞∑
j=1

N j(z − λ)−j+1.

and (z −A)−1(1− P ) is analytic in the neighborhood of λ. If N is nilpotent of
degree n, then there exist δ > 0 and C such that

‖(z −A)−1‖ ≤ C|z − λ|−n, z ∈ B(λ, δ). (4.10)

Proof. Clearly, AP = A1λ(A) and λP = λ1λ(A). This shows (4.9). Then note
that f(z) = 0 for z ∈ spA. Hence spN = {0}.

Using the Laurent series expansion we get

(z −A)−1 =

∞∑
n=−∞

Cn(z − λ)n,



where

Cn =
1

2πi

∫
γ

(z −A)−1(z − λ)−n−1dz.

Clearly, C−1 = P and C−2 = N . Besides, by Theorem 4.11 we obtain

C−1−nC−1−m = C−1−n−m.

2

4.8 Spectral theory in finite dimension

Suppose that X is finite dimensonal of dimension d and A ∈ L(X ). Then spA
has at most d elements. Let spA = {λ1, . . . , λn}.

We say that A is diagonalizable iff

A =

n∑
j=1

λj1lλj (A).

It is well known that in a finite dimension for every A ∈ L(X ), there exist
unique diagonalizable D and nilpotent N satisfying DN = ND such that A =
D +N . Let m be the degree of nilpotence of N .

In fact, define two functions on a neighborhood of spA: d(z) is equal to λi on
a neighborhood of λi ∈ spA and n(z) = z − λi on a neighborhood of λi ∈ spA.
Both d and n belong to Hol(spA). Clearly, and D := d(A) and N := n(A)
satisfy the above requirements.

Clearly then N =
∑n
j=1Nj with Nj = PjNPj also nilpotent. Let mj be the

degree of nilpotence of Nj . We have

f(A) =
∑m
k=0 f

(k)(D)N
k

k!

=
∑n
j=1

∑mj
k=0 f

(k)(λj)
Nkj
k! .

4.9 Functional calculus for several commuting
operators

Let K ⊂ Cn be compact. By Hol(K) let us denote the set of analytic functions
on a neighborhood of K. It is a commutative algebra.

Let X be a Banach space.

Definition 4.17 Let A1, . . . , An ∈ B(X ) commute with one another. Let F ∈
Hol(spA1 × · · · × spAn). Let γ1, . . . , γn be contours such that γ1 × · · · × γn lies
in the domain of F and each γj encircles spAj counterclockwise. We define

F (A1, . . . , An) :=
1

(2πi)n

∫
γ1

dz1 · · ·
∫
γn

dzn(z1−A1)−1 · · · (zn−An)−1F (z1, . . . , zn).

(4.11)
Clearly, the definition is independent of the choice of the contour.



Theorem 4.18

Hol(spA1 × · · · × spAn) 3 F 7→ F (A1, . . . , An) ∈ B(X ) (4.12)

is a linear map satisfying

(1) FG(A1, . . . , An) = F (A1, . . . , An)G(A1, . . . , An);

(2) 1(A1, . . . , An) = 1l;

(3) idj(A1, . . . , An) = Aj, for idj(z1, . . . , zn) := zj;

(4) If F (z1, . . . , zn) :=
∞∑

m1,...,mn=0
Fm1,...,,mnz

m1
1 · · · zmnn is an analytic function

defined by a series absolutely convergent in a neighborhood of B(srA1) ×
· · · × B(srAn), then

F (A1, . . . , An) =

∞∑
m1,...,mn=0

Fm1,...,,mnA
m1
1 · · ·Amnn ;

(5) (Weak version of the spectral mapping theorem). spF (A1, . . . , An) ⊂ F (spA1, . . . , spAn)

(6) g ∈ Hol(F (spA1 × · · · × spAn))⇒ g ◦ F (A1, . . . , An) = g(F (A1, . . . , An)),

(7) ‖F (A1, . . . , An)‖ ≤ cγ,A1,...,An supz∈γ |f(z)|.

Proof. The proof is essentially the same as that of Theorem 4.11. Let us
show for instance the weak version of the spectral mapping theorem. Let µ 6∈
F (spA1, . . . , spAn). Then the function (z1, . . . , zn) 7→ F (z1, . . . , zn) − µ 6= 0
on spA1 × · · · × spAn. Therefore, (z1, . . . , zn) 7→ (F (z1, . . . , zn)− µ)−1 belongs
to Hol(spA1 × · · · × An). Thus F (A1, . . . , An) − µ is inverible and therefore,
µ 6∈ spF (A1, . . . , , An). 2

4.10 Examples of unbounded operators

Example 4.19 Let I be an infinite set and let (ai)i∈I be a complex sequence.
Let Cc(I) be the space of sequences with a finite number of non-zero elements.
Define the operator

Cc(I) 3 x 7→ Ax ∈ Cc(I)

by the formula

(Ax)i = aixi.

For 1 ≤ p < ∞ let us treat Cc(I) as a subspace of the Banach space Lp(I), or
C∞(I), so that A is a densely defined (partial) operator. The closure of A has
the domain

DomAcl := {(xi)i∈I ∈ Lp(I) :
∑
i∈I |aixi|p <∞} (4.13)



We then have
spp(Acl) = {ai : i ∈ I},

spAcl = {ai : i ∈ I}cl.

A is bounded iff the sequence ai is bounded.

Proof. To prove this let D be the rhs of (4.13) and x ∈ D. Then there
exists a countable set I1 such that i 6∈ I1 implies xi = 0. We enumerate the
elements of I1: i1, i2, . . . . Define xn ∈ Cc(I) setting xnij = xij for j ≤ n and
xni = 0 for the remaining indices. Then limn→∞ xn = x and Axn → Ax. Hence,
{(x,Ax) : x ∈ D} ⊂ (GrA)cl.

If xn belongs to (4.13) and (xn, Axn) → (x, y), then xni → xi and aix
n
i =

(Axn)i → yi. Hence yi = aixi. Using that y ∈ Lp(I) we see that x belongs to
(4.13). 2

Example 4.20 Let p−1 + q−1 = 1, 1 < p ≤ ∞ and let (wi)i∈I be a sequence
that does not belong to Lq(I). Let Cc(I) be as above. Define

Lp(I) ⊃ Cc(I) 3 x 7→ 〈w|x〉 :=
∑
i∈I

xiwi ∈ C.

Then 〈w| is non-closable.

Proof. It is sufficient to assume that I = N and define vni := |wi|q
wi(

∑n
i=1 |wi|q)

,

i ≤ n, vni = 0, i > n. Then 〈w|vn〉 = 1 and ‖vn‖p = (
∑n
i=1 |wi|q)

− 1
q → 0.

Hence (0, 1) belongs to the closure of the graph of the operator. 2

4.11 Pseudoresolvents

Definition 4.21 Let Ω ⊂ C be open. Then the continuous function

Ω 3 z 7→ R(z) ∈ B(X )

is called a pseudoresolvent if

R(z1)−R(z2) = (z2 − z1)R(z1)R(z2). (4.14)

Evidently, if A is a closed operator and Ω ⊂ rsA, then Ω 3 z 7→ (z − A)−1 is a
pseudoresolvent.

Proposition 4.22 Let Ω 3 z 7→ Rn(z) ∈ B(X ) be a sequence of pseudoresol-
vents and R(z) := s− lim

n→∞
Rn(z). Then R(z) is a pseudoresolvent.

Theorem 4.23 Let Ω 3 z 7→ R(z) ∈ B(X ) be a pseudoresolvent. Then

(1) R := RanR(z) does not depend on z ∈ Ω.

(2) N := KerR(z) does not depend on z ∈ Ω.



(3) R(z) is an analytic function and

d

dz
R(z) = −R(z)2.

(4) R(z) is a resolvent of a certain operator A iff N = {0}. The operator A is
uniquely defined and closed. Its domain is R. For any z ∈ Ω and y ∈ R,

Ay = −R(z)−1y + zy.

Proof. Let us prove (4)⇐. Fix z1 ∈ Ω. IfN = {0}, then every element ofR can
be uniquely represented as R(z1)x, x ∈ X . Define AR(z1)x := −x+ z1R(z1)x.
By formula (4.14) we check that the definition of A does not depend on z1. 2



Chapter 5

One-parameter semigroups
on Banach spaces

5.1 (M,β)-type semigroups

Let X be a Banach space.

Definition 5.1 [0,∞[3 t 7→ W (t) ∈ B(X ) is called a strongly continuous one-
parameter semigroup iff

(1) W (0) = 1l;

(2) W (t1)W (t2) = W (t1 + t2), t1, t2 ∈ [0,∞[;

(3) lim
t↘0

W (t)x = x, x ∈ X ;

(4) for some t0 > 0, ‖W (t)‖ < M , 0 ≤ t ≤ t0.

As a side remark we note that (4) can be removed from the above definition.

Proposition 5.2 (4) follows from Def. 5.1 (2) and (3).

Proof. Suppose that t0 > 0 and

sup{‖W (t)‖ : 0 ≤ t ≤ t0} =∞. (5.1)

Below, we will show that this implies the exitence of a sequence (sn) such that

sn → 0, and ‖W (sn)‖ → ∞ (5.2)

But by (2) we have s− lim
n→∞

W (sn) = 1l. This is impossible by the Banach-

Steinhaus Theorem (the Uniform Boundedness Principle).
Indeed, by (5.1) we can find a sequence (tn) in [0, t0] such that ‖W (tn)‖ →

∞. In addition, we can assume that either tn ↘ t∞ or tn ↗ t∞.

43



In the first case

‖W (tn − t∞)‖ ≥ ‖W (tn)‖
‖W (t∞)‖

converges to ∞. Hence sn := tn − t∞ satisfies (5.2).

In the second case, we can assume in addition that ‖W (tn+1)‖
‖W (tn)‖ →∞. Conse-

quently,

‖W (tn+1 − tn)‖ ≥ ‖W (tn+1)‖
‖W (tn)‖

converges to ∞. Hence sn := tn+1 − tn satisfies (5.2). 2

Theorem 5.3 Let W (t) e a strongly continuous semigroup. Then

(1) There exist constants M , β such that

‖W (t)‖ ≤Meβt; (5.3)

(2) [0,∞[×X 3 (t, x) 7→W (t)x ∈ X is a continuous function.

Proof. By (4), for t ≤ nt0 we have ‖W (t)‖ ≤ Mn. Hence, ‖W (t)‖ ≤
M exp( tt0 logM). Therefore, (5.3) is satisfied.

Let tn → t and xn → x. Then

‖W (tn)xn −W (t)x‖ ≤ ‖W (tn)xn −W (tn)x‖+ ‖W (tn)x−W (t)x‖

≤Meβtn‖xn − x‖+Meβmin(tn,t)‖W (|t− tn|)x− x‖.

2

We say that the semigroup W (t) is (M,β)-type, if the condition (5.3) is
satisfied.

Clearly, if W (t) is (M,β)-type, then W (t)e−βt is (M, 0)-type. Since W (0) =
1l, no semigroups (M,β) exist for M < 1.

5.2 Generator of a semigroup

Let W (t) be a strongly continuous one-parameter semigroup.

Definition 5.4 We define

DomA := {x ∈ X : there exists lim
t↘0

t−1(W (t)x− x)},

Ax := lim
t↘0

t−1(W (t)x− x), x ∈ DomA.

Theorem 5.5 (1) A is a closed densely defined operator;

(2) W (t) DomA ⊂ DomA and W (t)A = AW (t);



(3) If W1(t), W2(t) are two different semigroups and A1, A2 are defined as
above, then A1 6= A2.

A will be called the generator of W (t). If W (t) is the semigroup generated
by A, then we will write W (t) =: etA.

Proof of Theorem 5.5 (2). Let x ∈ DomA. Then

s−1(W (s)− 1l)W (t)x = W (t)s−1(W (s)− 1l)x. (5.4)

But
W (t) lim

s↘0
s−1(W (s)− 1l)x = W (t)Ax

Hence lim
s↘0

of the left hand side of (5.4) exists. Hence W (t)x ∈ DomA and

AW (t)x = W (t)Ax. 2

Lemma 5.6 For x ∈ X put

Btx := t−1

∫ t

0

W (s)xds.

Then

(1) s− lim
t↘0

Bt = 1l.

(2) BtW (s) = W (s)Bt.

(3) For x ∈ DomA, ABtx = BtAx.

(4) If x ∈ X , then Btx ∈ DomA,

ABtx = t−1(W (t)x− x). (5.5)

(5) If lim
t↘0

ABtx exists, then x ∈ DomA and lim
t↘0

ABtx = Ax.

Proof. (1) follows by

Btx− x = t−1

∫ t

0

(W (s)x− x)ds →
t↘0

0.

(2) is obvious. (3) is proven as Theorem 5.5 (2). To prove (4) we note that

u−1(W (u)− 1l)Btx = t−1(W (t)− 1l)Bux →
u↘0

t−1(W (t)x− x),

where first we use a simple identity, and then we apply (1). (5) follows from
(4). 2

Proof of Theorem 5.5 (1) The density of DomA follows by Lemma 5.6 (1)
and (3).



Let us show that A is closed. Let xn →
n→∞

x and Axn →
n→∞

y. By (5.5),

BtA = ABt is bounded. Hence,

Bty = lim
n→∞

BtAxn = lim
n→∞

ABtxn = ABtx.

Thus,
y = lim

t↓0
Bty = lim

t↓0
ABtx. (5.6)

By Lemma 5.6 (5), x ∈ DomA and (5.6) equals Ax. 2

Proposition 5.7 Let W (t) be a semigroup and A its generator. Then, for any
x ∈ DomA there exists a unique solution of

[0,∞[3 t 7→ x(t) ∈ DomA,
d

dt
x(t) = Ax(t), x(0) = x. (5.7)

(for t = 0 the derivative is right-sided). The solution is given by x(t) = W (t)x.

Proof. Let us show that x(t) := W (t)x solves (5.7), both for the left and right
derivative. Let u > 0, in the latter case, assume also u ≤ t. We have

u−1(W (t+ u)x−W (t)x) = W (t)u−1(W (u)− 1)x →
u↓0

W (t)Ax = AW (t)x,

u−1(W (t− u)x−W (t)x) = W (t− u)u−1(W (u)− 1)x →
u↓0

W (t)Ax = AW (t)x.

Let us show now the uniqueness. Let t 7→ x(t) ∈ DomA solve (5.7). Let
y(s) := W (t− s)x(s). Then

d

ds
y(s) = W (t− s)Ax(s)−AW (t− s)x(s) = 0

Hence y(s) does not depend on s. At s = t it equals x(t), and at s = 0 it equals
W (t)x. 2

Proof of Theorem 5.5 (3) By Prop. 5.7 (2), W (t) is uniquely determined by
A on DomA. But W (t) is bounded and DomA is dense, hence W (t) is uniquely
determined. 2

5.3 One-parameter groups

Definition 5.8 R 3 t 7→ W (t) ∈ B(X ) is called a strongly continuous one-
parameter group iff

(1) W (0) = 1l;

(2) W (t1)W (t2) = W (t1 + t2), t1, t2 ∈ R;

(3) lim
t→0

W (t)x = x, x ∈ X ;



(4) for some t0 > 0, ‖W (t)‖ < M , |t| ≤ t0.

Proposition 5.9 (1) Let R 3 t 7→W (t) be a strongly continuous one-parameter
group. If A is the generator of the semigroup [0,∞[3 t 7→ W (t), then −A
is the generator of the semigroup [0,∞[3 t 7→W (−t)..

(2) Conversely, let A and −A be generators of s.c. semigroups. Then

W (t) :=

{
etA t ≥ 0,
et(−A), t ≤ 0.

is a s.c. group.

Proof. (1) is immediate. To prove (2) it suffices to show that

e−tAetA = 1l. (5.8)

But if v ∈ DomA = Dom(−A), then

∂te
−tAetAv = e−tA(−A+A)etAv = 0,

which proves (5.8). 2

A will be called the generator of the group R 3 t 7→ W (t). Note that it can
be defined as in Def.5.4, where the derivative is both-sided.

5.4 Norm continuous semigroups

Theorem 5.10 (1) If A ∈ B(X ), then R 3 z 7→ etA =
∞∑
n=0

tn

n!A
n is a norm

continuous group and A is its generator.

(2) If a one-parameter semigroup W (t) is norm continuous, then its generator
is bounded.

Proof. (1) follows by the functional calculus.
Let us show (2). W (t) is norm continuous, hence lim

t→0
Bt = 1l. Therefore, for

0 < t < t0
‖Bt − 1l‖ < 1.

Hence Bt is then invertible.
We know that for x ∈ DomA

t−1(W (t)− 1l)x = BtAx.

For 0 ≤ t < t0 we can write this as

Ax = t−1B−1
t (W (t)− 1)x.

Hence ‖Ax‖ ≤ c‖x‖. 2



5.5 Essential domains of generators

Theorem 5.11 Let W (t) be a strongly continuous one-parameter semigroup
and let A be its generator. Let D ⊂ DomA be dense in X and W (t)D ⊂ D,
t > 0. Then D is dense in DomA in the graph topology—in other words, D is
an essential domain of A.

We will write ‖x‖A := ‖Ax‖+ ‖x‖ for the graph norm.

Lemma 5.12 (1) For x ∈ X , ‖Btx‖A ≤ (Ct−1 + 1)‖x‖;
(2) For x ∈ DomA, lim

t↘0
‖Btx− x‖A = 0;

(3) W (t) is a strongly continuous semi-group on DomA equipped with the graph
norm.

(4) If D̃ is a closed subspace in DomA invariant wrt W (t), then it is invariant
also wrt Bt.

Proof. (1) follows by Lemma 5.6 (3).
(2) follows by Lemma 5.6 (1) and because B(t) commutes with A.
(3) follows from the fact that W (t) is a strongly continuous semigroup on

X , preserves DomA and commutes with A.
To show (4), note that Btx is defined using an integral involving W (s)x.

W (s)x depends continuously on s in the topology of DomA, as follows by (3).
Hence this integral (as Riemann’s integral) is well defined. Besides, Btx belongs
to the closure of the space spanned by W (s)x, 0 ≤ s ≤ t. 2

Proof of Theorem 5.11. Let x ∈ DomA, xn ∈ D and xn →
n→∞

x in X . Let D̃

be he closure of D in DomA. Then Btxn ∈ D̃, by Lemma 5.12 (4). By Lemma
5.12 (1) we have

‖Btxn −Btx‖A ≤ Ct‖xn − x‖.

Hence Btx ∈ D̃. By Lemma 5.12 (2)

‖Btx− x‖A→
t↓0

0.

Hence, x ∈ D̃. 2

5.6 Operators of (M,β)-type

Theorem 5.13 Let A be a densely defned operator. Then the following con-
ditions are equivalent:

(1) [β,∞[⊂ rs(A) and

‖(x−A)−m‖ ≤M |x− β|−m, m = 1, 2, . . . , x ∈ R, x > β



(2) {z ∈ C : Rez > β} ⊂ rs(A) and

‖(z −A)−m‖ ≤M |Rez − β|−m, m = 1, 2, . . . , z ∈ C, Rez > β.

Proof. It suffices to prove (1)⇒(2). Let (1) be satisfied. It suffices to assume
that β = 0. Let z = x+ iy. Then for t > 0

(z −A)−m = (x+ t−A)m(1l + (iy − t)(x+ t−A)−1)−m

=
∞∑
j=0

(x+ t−A)−m−j(iy − t)j
(
−m
j

)
.

Using the fact that
∣∣∣ ( −m

j

) ∣∣∣ = (−1)j
(
−m
j

)
we get

‖(z −A)−m‖ ≤M
∞∑
j=0

|x+ t|−m−j(−1)j |iy − t|j
(
−m
j

)
= M |x+ t|m

(
1− |iy−t|x+t

)−m
= M(x+ t− |iy − t|)−m →

t→∞
Mx−m.

2

Definition 5.14 We say that an operator A is (M,β)-type, iff the conditions
of Theorem 5.13 are satisfied.

Obviously, if A is of (M,β)-type, then A− β is of (M, 0)-type.

5.7 The Hille-Philips-Yosida theorem

Theorem 5.15 If W (t) is a semigroup of (M,β)-type, then its generator A is
also of (M,β)-type. Besides,

(z −A)−1 =

∫ ∞
0

e−tzW (t)dt, Rez > β.

Proof. Set

R(z)x :=

∫ ∞
0

e−ztW (t)xdt.

Let y = R(z)x. Then

u−1(W (u)− 1l)y

= −u−1ezu
∫ u

0

e−ztW (t)xdt+ u−1(ezu − 1)

∫ ∞
0

e−ztW (t)xdt →
u↘0
−x+ zy.



Hence y ∈ DomA and (z −A)R(z)x = x.
Suppose now that x ∈ Ker(z − A). Then xt := eztx ∈ DomA satisfies

d
dtxt = Axt. Hence xt = W (t)x. But ‖xt‖ = eRezt‖x‖, which is impossible.

By the formula

(z −A)−m =

∫ ∞
0

· · ·
∫ ∞

0

e−z(t1+···+tm)W (t1 + · · ·+ tm)dt1 · · · dtm

we get the estimate

‖(z −A)−m‖ ≤
∫ ∞

0

· · ·
∫ ∞

0

Me−(z−β)(t1+···+tm)dt1 · · · dtm = M |z − β|−m.

2

Theorem 5.16 If A is an operator of (M,β)-type, then it is the generator of
a semigroup of (M,β)-type.

To simplify, let us assume that β = 0 (which does not restrict the generality).
Then we have the formula

etA = s− lim
n→∞

(
1l− t

n
A

)−n
,

∥∥∥∥∥etAx−
(

1l− t

n
A

)−n
x

∥∥∥∥∥ ≤M t2

2
‖A2x‖, x ∈ DomA2.

Proof. Set

Vn(t) :=

(
1l− t

n
A

)−n
.

Let us first show that
s− lim

t↓0
Vn(t) = 1l. (5.9)

To prove (5.9) it suffices to prove that

s− lim
s↓0

(1l− sA)−1 = 1l. (5.10)

We have (1l− sA)−1 − 1l = (s−1 −A)−1A. Hence for x ∈ DomA

‖(1l− sA)−1x− x‖ ≤Ms−1‖Ax‖,

which proves (5.10).
Let us list some other properties of Vn(t): for Ret > 0, Vn(t) is holomorphic,

‖Vn(t)‖ ≤M and

d

dt
Vn(t) = A

(
1l− t

n
A

)−n−1

.



To show that Vn(t)x is a Cauchy sequence for x ∈ Dom(A2), we compute

Vn(t)x− Vm(t)x = lims↓0 Vn(t− s)Vm(s)x− lims↑t Vn(t− s)Vm(s)x

= limε↓0
∫ t−ε
ε

d
dsVn(t− s)Vm(s)x

= limε↓0
∫ t−ε
ε

(
− V ′n(t− s)Vm(s) + Vn(t− s)V ′m(s)

)
x

= limε↓0
∫ t−ε
ε

(
s
n −

t−s
m

) (
1l− t−s

n A
)−n−1 (

1l− s
nA
)−m−1

A2x.

Hence for x ∈ Dom(A2)

‖Vn(t)x− Vm(t)x‖ ≤ ‖A2x‖
∫ t

0
| sm −

t−s
n |M

2ds

= M2( 1
n + 1

m ) t
2

2 .

By the Proposition 4.2, Dom(A2) is dense in X . Therefore, there exists a limit
uniform on [0, t0]

s− lim
n→∞

Vn(t) =: W (t),

which depends strongly continuously on t.
Finally, let us show that W (t) is a semigroup with the generator A. To this

end it suffices to show that for x ∈ DomA

d

dt
W (t)x = AW (t)x. (5.11)

But x ∈ DomA

Vn(t+ u)x = Vn(t)x+

∫ t+u

t

A
(

1l− s

n
A
)−1

Vn(s)xds

Hence passing to the limit we get

W (t+ u)x = W (t)x+

∫ t+u

t

AW (s)xds.

This implies (5.11). 2

5.8 Semigroups of contractions and their gener-
ators

Theorem 5.17 Let A be a closed operator on X . Then the following condi-
tions are eqivalent:

(1) A is a generator of a semigroup of contractions, i.e. ‖etA‖ ≤ 1, t ≥ 0.

(2) The operator A is of (1, 0)-type.



(3) ]0,∞[⊂ rs(A) and

‖(µ−A)−1‖ ≤ µ−1, µ ∈ R, µ > 0,

(4) {z ∈ C : Rez > 0} ⊂ rs(A) and

‖(z −A)−1‖ ≤ |Rez|−1, z ∈ C, Rez > 0.

Proof. The equivalence of (1) and (2) is a special case of Theorems 5.15
and 5.16. The implications (2)⇒(3) and (2)⇒(4) are obvious, the converse
implications are easy. 2



Chapter 6

Hilbert spaces

6.1 Scalar product spaces

Let V be a vector space.

V × V 3 (v, y) 7→ (v|y) ∈ C

is called a scalar product if

(v|y + z) = (v|y) + (v|z), (v|λy) = λ(v|y),

(v + y|z) = (v|z) + (y|z), (λv|y) = λ(v|y),

(v|v) ≥ 0,

(v|v) = 0⇒ v = 0.

Theorem 6.1 (The hermitian property.)

(v|y) = (y|v).

Proof. We use the polarization identity:

(v|y) = 1
4

∑3
n=0(−i)n(v + iny|v + iny),

(y|v) = 1
4

∑3
n=0 in(v + iny|v + iny).

2

We define

‖v‖ :=
√

(v|v)

Theorem 6.2 (The parallelogram identity.)

2(‖v‖2 + ‖y‖2) = ‖v + y‖2 + ‖v − y‖2.
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Theorem 6.3 (The Schwarz inequality.)

|(v|y)| ≤ ‖v‖‖y‖

Proof.

0 ≤ (v + ty|v + ty) = ‖v‖2 + t(v|y) + t(v|y) + ‖y‖2|t|2.

We set t = − (v|y)
‖y‖2 and we get

0 ≤ ‖v‖2 − |(v|y)|2

‖y‖2
.

2

Theorem 6.4 (The triangle inequality.)

‖v + y‖ ≤ ‖v‖+ ‖y‖

Proof.
‖v + y‖2 = ‖v‖2 + (v|y) + (y|v) + ‖y‖2 ≤ (‖v‖+ ‖y‖)2.

2

Hence ‖ · ‖ is a norm.

6.2 The definition and examples of Hilbert spaces

Definition 6.5 A space with a scalar product is called a Hilbert space if it is
complete.

Example 6.6 Let I be an arbitrary set of indices. Then L2(I) denotes the
space of families (vi)i∈I with values in C indexed by I such that∑

i∈I
|vi|2 <∞

equipped with the scalar product

(v|w) =
∑
i∈I

viwi.

The Schwarz inequality guarantees that the scalar product is well defined.

Example 6.7 Let (X,µ) be a space with a measure. Then L2(X,µ) equipped
with the scalar product

(v|w) :=

∫
v(x)w(x)dµ(x)

is a Hilbert space.

Theorem 6.8 Let V0 be a space equipped with a scalar product (but not nec-

essarily complete). Let Vcpl
0 be its completion (see Theorem 2.6). Then there

exists a unique scalar product on Vcpl
0 , which is compatible with the norm on

Vcpl
0 . Vcpl

0 with this scalar product is is a Hilbert space.



6.3 Complementary subspaces

Suppose that (for the time being) V is a space with a scalar product (not
necessarily complete).

If A ⊂ V, then A⊥ denotes

A⊥ := {v ∈ V : (v|z) = 0, z ∈ A}.

Proposition 6.9 (1) A⊥ is a closed subspace.

(2) A ⊂ B ⇒ A⊥ ⊃ B⊥

(3) (A⊥)⊥ ⊃ Span(A)cl

Proof. 1. and 2. are obvious. To prove 3. we note that (A⊥)⊥ ⊃ A. But
(A⊥)⊥ is a closed subspace by 1. Hence it contains the least closed subspace
containing A, or Span(A)cl. 2

Suppose that V is Hilbert space.

Theorem 6.10 Let W be a closed subspace of V. Then W⊥ is a closed sub-
space and

W ⊕W⊥ = V, (W⊥)⊥ =W.

Proof. Let
inf
w∈W

‖v − w‖ =: d.

Then there exists a sequence yn ∈ W such that

lim
n→∞

‖v − yn‖ = d.

Then using first the parallelogram identity and then 1
2 (yn + ym) ∈ W we get

‖yn − ym‖2 = 2‖yn − v‖2 + 2‖ym − v‖2 − 4‖v − 1
2 (yn + ym)‖2

≤ 2‖yn − v‖2 + 2‖ym − v‖2 − 4d2 → 0.

Therefore, (yn) is a Cauchy sequence and hence

lim
n→∞

yn =: y.

Clearly, y ∈ W and it is an element closest to v. We set z := v − y. We will
show that z ∈ W⊥. Let w ∈ W. Then

‖z‖2 = ‖v − y‖2 ≤ ‖v − (y + tw)‖2

= ‖z − tw‖2 = ‖z‖2 − t(w|z)− t(w|z) + |t|2‖w‖2.

We set t = (w|z)
‖w‖2 . We get

0 ≤ −|(w|z)|
2

‖w‖2
.



Thus (w|z) = 0. This shows that Span(W ∪W⊥) = V.
W ∩W⊥ = {0} is obvious. This implies the uniqueness of the pair y ∈ W,

z ∈ W⊥. This ends the proof of V =W ⊕W⊥.
Let us show now that (W⊥)⊥ ⊂ W. Let v ∈ (W⊥)⊥. Then v = y+ z, where

y ∈ W, z ∈ W⊥. But (z|v) = 0 and (z|y) = 0. We have

(v|z) = (y|z) + (z|z).

Hence (z|z) = 0, or z = 0, therefore v ∈ W 2

Corollary 6.11

A⊥
⊥

= Span(A)
cl

Proof.

Span(A)cl⊥⊥ ⊃ A⊥⊥ ⊃ Span(A)
cl

follows by Proposition 6.9.

Span(A)cl⊥⊥ = Span(A)cl

follows by Proposition 6.10. 2

6.4 Orthonormal basis

Assume for the time being that V is a space with a scalar product.

Definition 6.12 A ⊂ V\{0} is an orthogonal system iff e1, e2 ∈ A, e1 6= e2

implies (e1|e2) = 0. A ⊂ V is na orthonormal system if it is orthogonal and if
e ∈ A, then ‖e‖ = 1.

Theorem 6.13 Let (e1, . . . , eN ) be an orthonormal system. We then have the
Pythagoras Theorem

‖v‖2 =

N∑
n=1

|(v|en)|2 + ‖v −
N∑
n=1

(en|v)en‖2

and the Bessel inequality:

‖v‖2 ≥
N∑
n=1

|(v|en)|2.

Assume now that V is a Hilbert space.

Definition 6.14 A maximal orthonormal system is called an orthonormal ba-
sis.



Theorem 6.15 Let {ei}i∈I be an orthonormal system. It is an orthonormal
basis iff one of the following conditions holds:

(1) {ei : i ∈ I}⊥ = {0}.
(2) (Span{ei : i ∈ I})cl = V

Theorem 6.16 Every orthonormal system can be completed to an orthonormal
basis.

Proof. Let B denote the family of all orthonormal systems ordered by inclusion.
Let {Ai : i ∈ I} ⊂ B be a subset linearly ordered. Then

∪i∈IAi

is also an orthonormal system. It is also an upper bound of the set {Ai : i ∈ I}.
Hence we can apply the Kuratowski-Zorn lemma. 2

The definition of an orthogonal basis is similar. From an orthogonal basis
(wi)i∈I we can construct an orthonormal basis {‖wi‖−

1
2wi}i∈I .

Theorem 6.17 Let (ei)i∈I be an orthonormal basis. Then

(1)

v =
∑
i∈I

(ei|v)ei, (6.1)

and
‖v‖2 =

∑
i∈I
|(v|ei)|2.

(2) If

v =
∑
i∈I

λiei,

then λi = (ei|v).

Proof. By the Bessel inequality, a finite number of coefficients is greater than
ε > 0. Hence a countable number of coefficients is non-zero. Let us enumerate
the non-zero coefficients (ein |v), n = 1, 2, . . . By the Bessel inequality, we get

∞∑
i=1

|(ei|v)|2 ≤ ‖v‖2.

Set

vN :=

N∑
n=1

(ei|v)ei,

Then for N < M

‖vM − vM‖2 =

M∑
i=N+1

|(ei|v)|2.



Hence by the completeness of V we get the convergence of vN and thus the
convergence of the series. Besides, the vector

v −
∑
i∈I

ei(ei|v)

is orthogonal to the basis. Hence it is zero. This proves 1. 2

Theorem 6.18 Let B1 and B2 be orthonormal bases in V. Then they have
the same cardinality.

Proof. First we prove this for finite B1 or B2.

For any y ∈ B1 there exists a countable number of x ∈ B2 such that (x|y) 6=
0. For every x ∈ B2 we will find y ∈ B1 such that (x|y) 6= 0. Hence there exists
a function f : B2 → B1 such that the preimage of every set is countable. Hence

|B2| ≤ |B1 × N| = max(|B1|,ℵ0).

Similarly we check that

|B1| ≤ max(|B2|,ℵ0).

2

Definition 6.19 The cardinality of this basis is called the dimension of the
space.

Definition 6.20 We say that a linear operator U : V1 → V2 is unitary iff it is
a bijection and

(Uw|Uv) = (w|v), v, w ∈ V1.

We say that the Hilbert spaces V1 and V2 are isomorphic iff there exists a unitary
operator from V1 to H2.

Theorem 6.21 Two Hilbert spaces are isomorphic iff they have the same di-
mension.

Proof. Let {xi : i ∈ I} be an orthonormal basis in V. It suffices to show that
V is isomorphic to L2(I). We define the unitary operator

(Uv)i := (xi|v).

2



6.5 The Riesz Lemma

Let V∗ denote the space of antilinear bounded functionals on V.

Theorem 6.22 (The Riesz Lemma) The formula

〈Cv|x〉 := (x|v)

defines a linear isometry from V onto V∗.

Proof. Isometricity:
‖Cv‖ = sup

‖x‖≤1

|(x|v)| ≤ ‖v‖.

It suffices to take x = v
‖v‖ to get the equality.

Surjectivity: Let w ∈ V∗ and W := Kerw. If W = V, then w = C0. If not,
then let x0 ∈ W⊥, ‖x0‖ = 1. Set

v := x0〈w|x0〉.

We will prove that w = Cv.
An arbitrary y can be represented as

y =

(
y − 〈w|y〉
〈w|x0〉

x0

)
+
〈w|y〉
〈w|x0〉

x0

The first term belongs to W. Hence

〈Cv|y〉 = (y|v) =

(
〈w|y〉
〈w|x0〉

x0|x0〈w|x0〉

)
= 〈w|y〉.

2

The space V∗ has a natural structure of a Hilbert space:

(Cv|Cx) := (v|x), v, x ∈ V,

so that C is a unitary map from V to V∗.

6.6 Quadratic forms

Let V,W be complex vector spaces.

Definition 6.23 a is called a sesquilinear form on W ×V iff it is a map

W ×V 3 (w, v) 7→ a(w, v) ∈ C

antilinear wrt the first argument and linear wrt the second argument.



If a is a form, then we define λa by (λa)(w, v) := λa(w, v). and a∗ by
a∗(v, w) := a(w, v). If a1 and a2 are forms, then we define a1 + a2 by (a1 +
a2)(w, v) := a1(w, v) + a2(w, v).

Suppose that V = W. We will write a(v) := a(v, v). We will call it a
quadratic form. The knowledge of a(v) determines a(w, v):

a(w, v) =
1

4
(a(w + v) + ia(w − iv)− a(w − v)− ia(w + iv)) . (6.2)

Suppose now that V,W are Hilbert spaces. A form is bounded iff

|a(w, v)| ≤ C‖w‖‖v‖.

Proposition 6.24 (1) If A ∈ B(V,W), then (w|Av) is a bounded sesquilinear
form on W ×V.

(2) Let a be a bounded sesquilinear form on W×V. Then there exists a unique
operator A ∈ B(V,W) such that

a(w, v) = (w|Av).

Proof. (1) is obvious. To show (2) note that w 7→ a(w, v) is an antilinear
functional on W. Hence there exists η ∈ W such that a(w, v) = (w|η). We put
Av := η.

We will often identify bounded sesquilinear forms, bounded quadratic forms
and bounded operators.

Theorem 6.25 Suppose that D,Q are dense linear subspaces of V,W and a
is a bounded sesquilinear form on D ×Q. Then there exists a unique extension
of a to a bounded form on V ×W.

6.7 Adjoint operators

Definition 6.26 Let A ∈ B(V,W). Then the operator A∗ given (uniquely) by
the formula

(A∗w|v) := (w|Av)

is called the (hermitian) conjugate of A.

Note that the definition is correct, because a(w, v) := (w|Av) is a bounded
sesquilinear form, and hence so is a∗; and A∗ is the operator associated with a∗.



Theorem 6.27 The hermitian conjugation has the following properties

1) ‖A∗‖ = ‖A‖

2) (λA)∗ = λA∗

3) (A+B)∗ = A∗ +B∗,

4) (AB)∗ = B∗A∗,

5) A∗∗ = A,

6) (RanA)⊥ = KerA∗, hence (KerA∗)⊥ = (RanA)cl;

7) (RanA∗)⊥ = KerA, hence (KerA)⊥ = (RanA∗)cl;

8) A is invertible ⇔ A∗ is invertible ⇔ ‖Av‖ ≥ C‖v‖ and ‖A∗v‖ ≥ C‖v‖, moreover,

(A−1)∗ = (A∗)−1.

9) spA∗ = spA.

6.8 Numerical range

Definition 6.28 Let t be a quadratic form on X . The numerical range of t is
defined as

Num t := {t(x) ∈ C : x ∈ X , ‖x‖ = 1}.

Theorem 6.29 (1) In a two-dimensional space the numerical range is always
an elipse together with its interior.

(2) Num t is a convex set.

(3) Num(αt + β1l) = αNum(t) + β.

(4) Num t∗ = Num t.

(5) Num(t + s) ⊂ Num t + Num s.

Proof. (1) We write t = tR + itI, where tR, tI are self-adjoint. We diagonalize

tI. Thus if

[
t11 t12

t21 t22

]
is the matrix of t, then t12 = t21. By multiplying one

of the basis vectors with a phase factor we can guarantee that t12 = t21 is real.
Now t is given by a matrix of the form

c

[
1 0
0 1

]
+

[
λ µ
µ −λ

]
+ i

[
γ 0
0 −γ

]
Any normalized vector up to a phase factor equals v = (cosα, eiφ sinα) and

t(v)− c = λ cos 2α+ µ cosφ sin 2α+ iγ cos 2α =: x+ iy. (6.3)



Now it is an elementary exercise to check that x+ iy are given by (6.3), iff they
satisfy

(γx− λy)2 + µ2y2 ≤ γ2µ2.

(2) follows immediately from (1). 2

Let V be a Hilbert space. If A is an operator on V, then the numerical range
of A is defined as the numerical range of the form v 7→ (v|Av), that is

NumA := {(v|Av) ∈ C : v ∈ V, ‖v‖ = 1}.

Theorem 6.30 Let A ∈ B(V). Then

(1) spA ⊂ (NumA)cl.

(2) For z 6∈ (NumA)cl,

‖(z −A)−1‖ ≤ dist(z,NumA)−1.

Proof. Let (z0 6∈ NumA)cl. Recall that Num(A) is convex. Hence, replacing
A wih αA + β we can assume that z0 = iν with ν = dist(z,Num(A)) and
NumA ⊂ {Imz ≤ 0}. Now

‖(z0 −A)v‖2 = (Av|Av) + iν(v|Av)− iν(Av|v) + |ν|2‖v‖2

= (Av|Av)− 2νIm(v|Av) + |ν|2‖v‖2

≥ |ν|2‖v‖2.

Next, NumA∗ ⊂ {Imz ≥ 0}.

‖(z0 −A∗)v‖2 = (A∗v|A∗v)− iν(v|A∗v) + iν(A∗v|v) + |ν|2‖v‖2

= (A∗v|A∗v)− 2νIm(v|Av) + |ν|2‖v‖2

≥ |ν|2‖v‖2.

Hence z0 −A is invertible and z ∈ rsA. 2

6.9 Self-adjoint operators

Theorem 6.31 Let A ∈ B(V). The following conditions are equivalent:

(1) A = A∗.

(2) (Aw|v) = (w|Av), w, v ∈ V.
(3) (w|Av) = (v|Aw), w, v ∈ V.

(4) (v|Av) ∈ R.



Proof. (1)⇔(2)⇔(3)⇒(4) is obvious. To show (4)⇒(3) we use the polarization
identity:

(w|Av) = 1
4

∑3
j=0(−i)j(w + ijv|A(w + ijv)),

(v|Aw) = 1
4

∑3
j=0(−i)j(v + ijw|A(v + ijw))

= 1
4

∑3
j=0(−i)j(w + ijv|A(w + ijv)).

2

Definition 6.32 An operator A ∈ B(V) satisfying the conditions of Theorem
6.31 is called self-adjoint.

An operator A ∈ B(V) such that

(v|Av) ≥ 0, v ∈ V,

is called a positive operator.

By Theorem 6.31, positive operators are self-adjoint.
Clearly, if A ∈ B(V), then A is self-adjoint iff NumA ⊂ R and positive iff

NumA ⊂ [0,∞[.

Theorem 6.33 Let A be self-adjoint. Then spA ⊂ R.

Proof. This fact is a special case of Thm 15.1 (2). For those who omitted that
theorem, we give the argument.

Let µ 6= 0, µ, λ ∈ R. We have

‖(A− (λ+ iµ))v‖2 = ‖(A− λ)v‖2 + µ2‖v‖2 ≥ µ2‖v‖2.

Besides, (A− (λ+ iµ))∗ = A− (λ− iµ). Hence

‖(A− (λ+ iµ))∗v‖2 = ‖(A− λ)v‖2 + µ2‖v‖2 ≥ µ2‖v‖2.

So A− (λ+ iµ) is invertible. 2.

Theorem 6.34 The operator A∗A is positive and

‖A∗A‖ = ‖A‖2. (6.4)

Proof. A∗A is positive because

(v|A∗Av) = ‖Av‖2 ≥ 0.

To show (6.4) we note that

‖A‖2 = ‖A∗‖‖A‖ ≥ ‖A∗A‖ ≥ sup
‖v‖=1

(v|A∗Av)

= sup
‖v‖=1

‖Av‖2 = ‖A‖2.

2



Lemma 6.35 Let A be self-adjoint. Then

‖A‖ = sup
‖v‖≤1

|(v|Av)|.

Proof. Let w, v ∈ V. We will show first that

|(w|Av)| ≤ 1

2
(‖w‖2 + ‖v‖2) sup

‖y‖≤1

(y|Ay). (6.5)

Replacing w with eiαw we can suppose that (w|Av) is positive. Then

(w|Av) =
1

2
((w|Av) + (v|Aw))

=
1

4
((w + v|A(w + v)− (w − v|A(w − v)))

≤ 1

4

(
‖v + w‖2 + ‖v − w‖2

)
sup
‖y‖=1

|(y|Ay)|

=
1

2

(
‖v‖2 + ‖w‖2

)
sup
‖y‖=1

|(y|Ay)|

Hence (6.5) is true. Therefore,

‖A‖ = sup
‖v‖=‖w‖=1

|(w|Av)| ≤ sup
‖y‖=1

|(y|Ay)|.

2

Theorem 6.36 If A is self-adjoint, then

(NumA)cl = ch(spA), (6.6)

where ch denotes the convex hull.

Proof. Step 1. Let A be self-adjoint and

− inf(spA) = sup(spA) =: a. (6.7)

Clearly, ch(spA) = [−a, a] and a = ‖A‖. By Lemma 6.35, (NumA)cl ⊂ [−a, a].
Hence, (NumA)cl ⊂ ch(spA). The converse inclusion follows from Theorem
15.1.

Step 2. Let A be self-adjoint. Let a− := inf(spA), a+ := sup(spA). Then
Ã := A− 1

2 (a− + a+) is self-adjoint and satisfies (6.7). Hence (6.6) holds for Ã.
Hence (6.6) holds for A as well. 2



6.10 Orthoprojections

Theorem 6.37 Let P ∈ B(V) be an idempotent. The following conditions are
equivalent:

(1) P is self-adjoint.

(2) KerP = (RanP )⊥.

An idempotent P satisfing these conditions with RanP = W will be called the
orthoprojection onto W.

If (wi)i∈I is an orthogonal basis in W, then

Pv =
∑
i∈I

(wi|v)

‖wi‖2
wi.

Proposition 6.38 (Gramm-Schmidt ortogonalization) Let y1, y2, . . . be a
linearly independent system. Let Pn be a projection onto the (n-dimensional)
space Span{y1, . . . , yn}. Then

wn := (1− Pn−1)yn

is an orthogonal system. An equivalent definition:

w1 = y1, wn := yn −
n−1∑
j=1

(wj |yn)

‖wj‖2
wj .

Theorem 6.39 Let P ∗ = P and P 2 = P 3. Then P is an orthoprojection.

Proof. (P 2 − P )∗(P 2 − P ) = 0, hence P = P 2. 2

6.11 Isometries and partial isometries

Definition 6.40 An operator U is called a partial isometry if U∗U and are
UU∗ orthoprojections.

Theorem 6.41 U is a partial isometry iff U∗U is an orthoprojection.

Proof. We check that (UU∗)3 = (UU∗)2. 2

Proposition 6.42 If U is a partial isometry, then UU∗ is an orthoprojection
onto RanU and U∗U is the orthoprojection onto (KerU)⊥.

Proof. It is easy to see that for any operator A we have KerA = KerA∗A.
Therefore,

KerU = KerU∗U, (6.8)

KerU∗ = KerUU∗, (6.9)



(6.8) means that U∗U is the orthoprojection onto (KerU)⊥. (6.9) means that
UU∗ is the orthoprojection with the kernel (KerU∗)⊥.

Let us prove that RanU = RanUU∗. Indeed, ⊂ is obvious. ⊃ follows from
the fact that UU∗ is a projection: v ∈ RanUU∗ iff v = UU∗v. Now the range
of an orthoprojection is always closed. Hence (KerU∗)⊥ = RanU . 2

Proposition 6.43 Let U ∈ B(V) be a partial isometry. Set V1 := (KerU)⊥,
V2 := RanU . Let Ii : Vi → V be the embeddings. Define W ∈ B(V1,V2) by

Wv = Uv, v ∈ V1.

Then W is unitary and U = I2WI∗1 .

Theorem 6.44 Let U ∈ B(V,W). The following properties are equivalent:
1) U∗U = 1l,
2) (Uv|Uw) = (v|w), v, w ∈ V,
3) U is an isometry, that means ‖Uv‖ = ‖v‖.

Definition 6.45 An operator U satisfying the properties of Theorem 6.44 is
called a linear isometry.

Proof. 1)⇔2) is obvious, and so is2)⇒3). 3)⇒2) follows by the polarization
identity:

(Uw|Uv) = 1
4

∑3
j=0(−i)j(Uw + ijUv|Uw + ijUv),

(w|v) = 1
4

∑3
j=0(−i)j(v + ijw|v + ijw).

2

6.12 Unitary operators

Theorem 6.46 Let U ∈ B(V,W). The following properties are equivalent:
1) U∗U = UU∗ = 1l;
2) U is a surjective isometry;
3) U is bijective and U∗ = U−1.

Definition 6.47 An operator satisfing the properties of Theorem 6.46 is called
unitary.

Proposition 6.48 Let V be finite dimensional and V ∈ B(V) isometric. Then
V is unitary.

Proof. We have dim KerV + dim RanV = dimV. KerV = {0}, since V
is isometric. Hence dim RanV = dimV. But V is finite dimensional, hence
RanV = V. 2

Example 6.49 Let (ei), i = 1, 2, . . . be the canonical basis in L2(N). Put

Tei := ei+1.

Then T is isometric but not unitary. It is called the unitalateral shift.



6.13 Normal operators

Let A ∈ B(V,W). We say that A is normal if AA∗ = A∗A.

Theorem 6.50 Let A ∈ B(V) be normal. Then

sr(A) = ‖A‖.

Proof. We compute using twice (6.4):

‖A2‖2 = ‖A2∗A2‖ = ‖(A∗A)2‖ = ‖A∗A‖2 = ‖A‖4.

Thus ‖A2n‖ = ‖A‖2n . Hence, using the formula (4.2) for the spectral radius of

A we get ‖A2n‖2−n = ‖A‖. 2

Note that selfadjoint and unitary operators are normal. However, the set of
normal operators is much more complicated than the set of self-adjoint opera-
tors, which is a real vector space, and the set of unitary operators, which is a
group.

Theorem 6.51 (1) U is unitary iff U is normal and spU ⊂ {z : |z| = 1}.
(2) A is self-adjoint iff A is normal and spA ⊂ R.

Proof. (1)⇒: Clearly, U is normal.
U is an isometry, hence spU ⊂ {|z| ≤ 1}.
U−1 is also an isometry, hence spU−1 ⊂ {|z| ≤ 1}. This implies spU ⊂

{|z| ≥ 1}.
(1)⇐: Clearly, srU = 1. Likewise, using the spectral mapping theorem (Thm

4.11 (6)) we see that srU−1 = 1. Hence, by Thm 6.50 and the normality of U
and U−1 we have ‖U‖ = ‖U−1‖ = 1. Thus

‖v‖ = ‖U−1Uv‖ ≤ ‖Uv‖ ≤ ‖v‖.

So, ‖v‖ = ‖Uv‖. This means that U is an invertible isometry.
(2)⇒ was proven in Theorem 6.33.
(2)⇐: Let A be normal and spA ⊂ R. We can find λ > 0 such that λ‖A‖ < 1.

Hence 1 + iλA is invertible. It is easy to check that U := (1− iλA)(1 + iλA)−1

is normal. By the spectral mapping theorem, spU ⊂ {|z| = 1}. Hence, by (1),
it is unitary. Now

A = −iλ−1(1− U)(1 + U)−1 = −iλ−1(U∗U − U)(UU∗ + U)−1

= iλ−1(1− U∗)(1 + U∗)−1 = A∗.

2

Theorem 6.52 (Fuglede) Let A,B ∈ B(V) and let B be normal. Then
AB = BA implies AB∗ = B∗A.



Proof. For λ ∈ C, the operator U(λ) := eλB
∗−λB = e−λBeλB

∗
is unitary.

Moreover, A = eλBAe−λB . Hence

e−λB
∗
AeλB

∗
= U(−λ)AU(λ) (6.10)

is a uniformly bounded analytic function. Hence is constant. Differentiating it
wrt λ we get [A,B∗] = 0. 2

6.14 Normal operators as multiplication opera-
tors

In finite dimensions we have the following elementary characterization of self-
adjoint/unitary/normal operators.

Theorem 6.53 (1) Suppose that V is a finite dimensional Hilbert space and
B ∈ B(V). Let spB = {b1, . . . , bk}. Then B is normal iff 1lbj (B) are
orthogonal projections and

B =

k∑
j=1

bj1lbj (B).

(2) B is self-adjoint iff bj ∈ R.

(3) B is unitary iff |bj | = 1.

Example 6.54 Let I be a set and let (bi)i∈I be a bounded complex sequence.
Define the operator B on l2(I) by

(Bx)i := bixi, i ∈ I.

We then have

spp(B) = {bi : i ∈ I},
spB = {bi : i ∈ I}cl,

‖B‖ = sup{|bi| : i ∈ I}.

B is normal. B is self-adjoint iff bi are real for all i ∈ I. B is unitary iff |bi| = 1
for all i ∈ I.

Note that Thm 6.53 can be reformulated as follows: If the dimension of
a Hilbert space is n < ∞, then a normal/self-adjoint/unitary is always uni-
tarily eqivalent to an operator of the form described in Example (6.54) with
I = {1, . . . , n}. If the dimension of a Hilbert space is infinite, normal/self-
adjoint/unitary operators can be nonequivalent to an operator from Example
(6.54). In the following example we show a more general form of such opera-
tors. In Chapter 7 we will show that in an arbtrary dimension every normal/self-
adjoint/unitary operator is unitary equivalent to that described in example 6.55.



Example 6.55 Let (X,F , µ) be a space with a σ-finite measure and f ∈ L∞(X).
Define the operator Tf on L2(X,µ) by

(Tfx)(t) := f(t)x(t).

We then have

spp(Tf ) = {z : µ(f−1{z}) > 0},
spTf =

{
z : µ

(
f−1

{
w ∈ C : |w − z| < ε

})
> 0, for all ε > 0

}
,

‖Tf‖ = ‖f‖∞.

Tf is normal. Tf is self-adjoint iff f(x) are real for almost all x ∈ X. Tf is
unitary iff |f(x)| = 1 for almost all x ∈ X.

Remark 6.56 The σ-finiteness of the measure is needed only for the charac-
terization of the point spectrum. More generally, it is enough to assume that
the measure is sum-finite, with the same conclusions.

The following two facts are obvious for operators of the form of Ex. 6.55.
For general normal operators, the only way I know to prove them is to pass
through the spectral theorem, which will be proven in the next chapter.

Proposition 6.57 Let A ∈ B(V) be normal and α, β ∈ C. Then

sp(αA+ βA∗) = {αz + βz : z ∈ spA}.

Theorem 6.58 If A ∈ B(V) is normal, then

(NumA)cl = ch(spA). (6.11)

Note that Thm 6.58 is a generalization of Thm 11.2.

6.15 Convergence

Let (Aj) be a sequence of operators in B(V,W).

(1) We say that (Aj) is norm convergent to A iff lim
j→∞

‖Aj − A‖ = 0. In this

case we write
lim
j→∞

Aj = A.

(2) We say that (Aj) is strongly convergent to A iff lim
j→∞

‖Ajv − Av‖ = 0,

v ∈ V. In this case we write

s− lim
j→∞

Aj = A.



(3) We say that (Aj) is weakly convergent to A iff lim
j→∞

|(w|Ajv)−(w|Av)| = 0,

v ∈ V, w ∈ W. In this case we write

w− lim
j→∞

Aj = A.

Theorem 6.59 Let (Uj) be a sequence of unitary operators

(1) If (Uj) is norm convergent, then its limit is unitary.

(2) If (Uj) is strongly convergent, then its limit is isometric.

(3) If (Uj) is weakly convergent, then its limit is a contraction.

Theorem 6.60 (1) Norm convergence implies strong convergence.

(2) Strong convergence implies weak convergence.

(3) Let (An) be a weakly convergent sequence of operators in B(V). Then it is
uniformly bounded.

(4) If (An) is a norm convergent sequence, then so is (An)∗ and(
lim
n→∞

An
)∗

= lim
n→∞

An.

(5) If (An) is a weakly convergent sequence, then so is (An)∗ and(
w− lim

n→∞
An
)∗

= w− lim
n→∞

An.

(6) If (An) and (Bn) are norm convergent sequences, then so is AnBn and

lim
n→∞

An lim
n→∞

Bn = lim
n→∞

AnBn.

(7) If (An) and (Bn) are strong convergent sequences, then so is (AnBn) and(
s− lim

n→∞
An

)(
s− lim

n→∞
Bn

)
= s− lim

n→∞
AnBn.

Proof. (3) follows from the uniform boundedness principle. 2

Theorem 6.61 Let (Aj) be a sequence of operators in B(V) weakly convergent
to A. Then

NumA ⊂
⋂
k

( ⋃
j>k

NumAj

)cl

.

In particular, if Aj are self-adjoint, then so is A; if Aj are positive, then so is
A.



Remark 6.62 So far in this subsection we could almost everywhere replace
the term “sequence “ by “net”. The exceptions are Thm 6.60 (3), which is in
general not true for nets, and Thm 6.60 (7), where we need to assume that (An)
is uniformly bounded.

Example 6.63 In L2(N), let (e1, e2, . . . ) be the canonical basis. Set

Unej = ej+1, j = 1, . . . , n− 1;

Unen = e1;

Unej = ej , j = n+ 1, . . . ;

Uej = ej+1, j = 1, . . . .

Then Un are unitary, s− lim
n→∞

Un = U is not. Moreover. spUn = {exp(i2π/n) :

j = 1, . . . , n} and spU = {|z| ≤ 1}.

Example 6.64 In L2(Z), let ei, i ∈ Z be the canonical basis. Set Unej = ej+n,
j ∈ Z. Then Un are unitary, w− lim

n→∞
Un = 0. Moreover, spUn = {|z| = 1},

spU = {0}.

6.16 Monotone convergence of selfadjoint oper-
ators

Theorem 6.65 (1) Let {Aλ : λ ∈ Λ} be a family of self-adjoint operators,
which is uniformly bounded. Then there exists the smallest self-adjoint
operator A such that Aλ ≤ A. We will denote it lub{Aλ : λ ∈ Λ} (lub
stands for the least upper bound).

(2) If (An) is an increasing bounded sequence of self-adjoint operators, then

lub{An : n = 1, 2, . . . } = s− lim
n
An.

Proof. Let ‖Aλ‖ ≤ c. For each v ∈ V, (v|Aλv) is bounded by c‖v‖2. Hence it
has a supremum. Thus we can define a(v) := supλ(v|Aλv).

Let (v, w) 7→ a(v, w) be defined by the polarization identity. Let v, w ∈ V.
We can find a sequence (An) in the family {Aλ : λ ∈ Λ} such that

(v + ijw|An(v + ijw)) → a(v + ijw), j = 0, 1, 2, 3.

Then we see that
a(v, w) = lim

n→∞
(v|Anw). (6.12)

Thus (v, w) 7→ a(v, w) is a sesquilinear form. It is clearly bounded by c. Hence
it defines a unique bounded operator A. It is evident that A is the smallest
self-adjoint operator greater than An. This ends the proof of (1).



Let us prove (2). Since A−An ≥ 0, we have

(A−An)2 = (A−An)
1
2 (A−An)(A−An)

1
2 ≤ ‖A−An‖(A−An).

Besides, ‖A−An‖ ≤ 2c. Now

‖(A−An)v‖2 = (v|(A−An)2v) ≤ ‖A−An‖(v|(A−An)v)→ 0.

2



Chapter 7

Spectral theorems

7.1 Continuous functional calculus for self-adjoint
and unitary operators

Let X be a compact Hausdorff space. The space of continuous functions on X
with the norm ‖ ·‖∞ is denoted by C(X). It is a complete normed commutative
∗-algebra.

Remark 7.1 C(X) is a commutative C∗-algebra. Note, however, that we will
not use the theory of C∗-algebras. Compact Hausdorff spaces that we will use
will be typically subsets of Rn.

In Sect. 4.4 we introduced a calculus for holomorphic functions of an arbi-
trary bounded operator on a Banach space. We will see that the holomorphic
calculus extends to continuous functions for normal operators.

Let B be normal. Obviously

(z1 −B)(z2 −B∗) = (z2 −B∗)(z1 −B).

We multiply this with (z2 − B∗)−1(z1 − B)−1 from the left and with (z1 −
B)−1(z2 −B∗)−1 from the right obtaining

(z1 −B)−1(z2 −B∗)−1 = (z2 −B∗)−1(z1 −B)−1.

So f(B) is normal for f ∈ Hol
(
sp(B)

)
. By the spectral mapping theorem,

spf(B) = f(sp(B)). Therefore, by Thm 6.50,

‖f(B)‖ = srf(B) = sup{|f(z)| : z ∈ spB} = ‖f‖∞.

We first restrict ourselves to self-adjoint and unitary operators. We postpone
the treatment of general normal operators to later sections.

Theorem 7.2 Let A ∈ B(V) be self-adjoint. Then there exists a unique con-
tinuous unital homomorphism

C(sp(A)) 3 f 7→ f(A) ∈ B(V) (7.1)
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such that

(1) id(A) = A if id(x) = x, x ∈ sp(A).
Moreover, we have

(2) f(A)∗ = f∗(A), where f∗(x) := f(x), x ∈ spA.

(3) If f ∈ Hol(sp(A)), then f(A) coincides with f(A) defined in (4.4).

(4) sp(f(A)) = f(sp(A)).

(5) g ∈ C(f(sp(A)))⇒ g ◦ f(A) = g(f(A)).

(6) ‖f(A)‖ = ‖f‖∞.

(7) f(A) are normal.

Proof. Clearly, (7.18) is uniquely defined on polynomials. Let f ∈ C(spA).
There exists a sequence fn of polynomials such that ‖fn − f‖∞ → 0. Noting
that ‖fn(A)−fm(A)‖ = ‖fn−fm‖∞, we check that fn(A) is a Cauchy sequence.
We set

f(A) := lim
n→∞

fn(A).

We easily check that the definition of f(A) does not depend on the choice of the
sequence and verify all the properties described in the theorem. 2

An almost identical theorem is true for unitary operators, with almost the
same proof (where instead of usual polynomials we need to use polynomials in
z and z−1).

Theorem 7.3 Let U ∈ B(V) be unitary. Then there exists a unique continu-
ous homomorphism

C(sp(U)) 3 f 7→ f(U) ∈ B(V) (7.2)

such that

(1) id(U) = U if id(z) = z, z ∈ sp(A).
Moreover, we have

(2) f(U)∗ = f∗(U), where f∗(z) := f(z), z ∈ spU .

and properties analogous to (3)-(7) of the previous theorem.

Remark 7.4 Theorem 7.3 has a generalization (Thm 7.26) to an arbitrary nor-
mal operator B. However, this requires a more complicated proof, which will be
given in later sections. What is easy and follows by an essentially the same
proof is a weaker statement obtained from Theorem 7.3 by replacing C(spB)
with Chol(B).

Here we use the following notation: If K is a compact subset of C, then
Chol(K) denotes the completion of Hol(K) in C(K). Note that if K is a subset
of a line or a circle, then Chol(K) = C(K). This simplifies functional calculus
for self-adjoint and unitary operators.



7.2 Projector valued measures

Let (X,F) be a set with a σ-field. Let V be a Hilbert space. We say that

F 3 D 7→ P (D) ∈ Proj(V) (7.3)

is an orthoprojection valued measure (PVM) on V iff

(1) P (∅) = 0;

(2) IfD1, D2, · · · ∈ F are disjoint, andD =
∞
∪
i=1

Di, then P (D) = s− lim
n→∞

n∑
j=1

P (Dj).

We call P (X) the support of the orthoprojection valued measure (7.3).

Theorem 7.5 For any D,C ∈ F we have

P (D)P (C) = P (D ∩ C).

Proof. First consider the case D ∩ C = ∅. By (2)

P (D ∪ C) = P (D) + P (C).

Hence P (D) + P (C) is an orthoprojection. Hence
(
P (D) + P (C)

)2
= P (D) +

P (C). This implies

P (D)P (C) + P (C)P (D) = 0. (7.4)

Multiplying from both sides by P (C) we get 2P (C)P (D)P (C) = 0 Multiplying
(7.4) from the left by P (C) we get P (C)P (D) = −P (C)P (D)P (C). Thus
P (C)P (D) = 0.

Next consider the case D ⊂ C. Then

P (C) = P (D) + P (C\D).

Using P (D)P (C\D) = 0 we see that P (C)P (D) = P (D).
Finally, consider arbitrary D,C. Then

P (D)P (C) =
(
P (D\C) + P (D ∩ C)

)(
P (C\D) + P (D ∩ C)

)
= P (D ∩ C).

2

Theorem 7.6 Let F 3 D 7→ P (D) be a PVM and let L∞(X) denote the space
of bounded measurable functions on X. Then there exists a unique contractive
∗-homomorphism

L∞(X) 3 f 7→
∫
f(x)dP (x) ∈ B(V) (7.5)

such that
∫

1D(x)dP (x) = P (D), D ∈ F .



Proof. If f is an elementary function, that is a finite linear combination of
characteristic functions of measurable sets

f =

n∑
j=1

λj1Dj ,

then clearly ∫
f(x)dP (x) =

n∑
j=1

λjP (Dj).

For such functions the multiplicativity of (7.5) is obvious.
Then we use the fact that elementary functions are dense in L∞(X) in the

supremum norm. 2

For any w ∈ V we define its spectral measure as

F 3 D 7→ µw(D) := (w|P (D)w)

is a finite measure. Clearly, we have

Theorem 7.7 For any f ∈ L∞(X),∫
f(x)dµw(x) =

(
w|
∫
f(x)dP (x)w

)
.

Here is a version of the Lebesgue dominated convergence theorem for spectral
integrals:

Theorem 7.8 If fn → f pointwise, |fn| ≤ c, then

s− lim
n→∞

∫
fn(x)dP (x) =

∫
f(x)dP (x).

Proof. ∥∥∥(∫ f(x)dP (x)− f(x)dP (x)
)
v
∥∥∥2

=

∫
dµv(x)|f(x)− fn(x)|2. (7.6)

Now |f(x) − fn(x)|2 ≤ 4c2, lim
n→∞

|f(x) − fn(x)|2 = 0 and the measure dµv is

finite. Hence (7.6) converges to zero by the Lebesgue dominated convergence
theorem. 2

Theorem 7.9 Let (X1,F1, P1) and (X2,F2, P2) be two spectral measures. Then
there exsts a unique measure (X1 ×X2,F1 ⊗F2, P1P2) such that

(P1P2)(D1 ×D2) = P1(D1)P2(D2).



7.3 Continuous and singular PVM’s

Let F 3 D 7→ P (D) be a PVM on V.
Assume that all one-element sets (and hence all countable sets) belong to

F . We say that F 3 D 7→ P (D) is continuous iff P ({x}) = 0 for all x ∈ X. It
is pure point if P (D) =

∑
x∈D

P{x}.

For any PVM D 7→ P (D) we set

Pp :=
∑
x∈X

P{x}, Pc := 1l− Pp.

Then

F 3 D 7→ Pc(D) := PcP (D),

F 3 D 7→ Pp(D) := PpP (D)

are respectively continuous and pure point. They are called respectively the
continuous and pure point part of the measure D 7→ P (D).

Theorem 7.10 Suppose that V is separable. Then there exists a countable set
I ⊂ X, such that Pp = P (I).

Fix a measure µ on (X,F). We say that D 7→ P (D) is µ-singular if

P (D) = sup{P (C) : C ⊂ D, µ(C) = 0}, D ∈ F .

We say that P is µ-continuous if

µ(D) = 0 ⇒ P (D) = 0. (7.7)

For any PVM D 7→ P (D) we set

Pµs := sup{P (N) : µ(N) = 0}, Pµc := 1l− Pµs.

Then

F 3 D 7→ Pµc(D) := PµcP (D),

F 3 D 7→ Pµs(D) := PµsP (D)

are respectively absolutely continuous and the singular part of D 7→ P (D).

Theorem 7.11 Suppose that V is separable. Then there exists a set N ∈ I,
such that Ps = P (N).

Remark 7.12 If µ is the counting measure then Pµs = Pp, Pµc = Pc.

Remark 7.13 We say that I ⊂ F is an ideal if I is countably additive and
C ∈ F , D ∈ I and C ⊂ D implies C ∈ I. If µ is a measure then the family of
measure zero sets is an ideal of F . Obviously, the decomposition of D 7→ P (D)
into its µ-continuous and µ-singular part does not need a measure, but only an
ideal.



The most important application of the above concepts is when µ is the
Lebesgue measure. Then one-element sets are contained in the σ-field and have
measure zero. In this case one says simply singular instead of µ-singular and
absolutely continuous instead of µ-continuous. Instead of Pµc one writes Pac

and instead of Pµs one writes Ps Clearly,

Pp ≤ Ps, Pc ≤ Pac.

We set
Psc := PsPc,

Thus
1l = Pp + Psc + Pac

gives a decomposition of our PVM in its pure point part, singular continuous
part and absolutely continuous part.

7.4 Projector valued Riesz-Markov theorem

Let X be a compact Hausdorff space, V a Hilbert space and γ : C(X)→ B(V)
a unital ∗-homomorphism.

We define the upper orthoprojection valued measure associated with γ as
follows. For any open U ⊂ X we define

P up
U := sup{γ(f) : 0 ≤ f ≤ 1U , f ∈ C(X)}.

For any D ⊂ X we set

P up
D := inf{P up

U : U is open , D ⊂ U}.

We define the lower orthoprojection valued measure associated with γ as
follows. For any closed C ⊂ X we define

P low
C := inf{γ(f) : 1C ≤ f, f ∈ C(X)}.

For any D ⊂ X we set

P low
D := sup{P low

C : C is closed , C ⊂ D}.

We say that D ⊂ X is γ-measurable if P up
D = P low

D . The family of γ-
measurable sets is denoted Fγ . For such sets D we set PD = P up

D = P low
D .

Theorem 7.14 (1) P up
D and P low

D are orthoprojections for any D ⊂ X.

(2) Fγ is a σ-field containing Borel sets.

(3) Fγ 3 D 7→ PD ∈ Proj(V) is an orthoprojection valued measure with support
1l.

(4) C(X) ⊂ L∞(X) and if f ∈ C(X), then γ(f) =
∫
f(x)dP (x).



7.5 Alternative approaches to the orthoprojec-
tion valued Riesz-Markov theorem

One can construct the spectral integral directly from γ as follows.
We define the upper integral as follows. If f is a lower semicontinuous

function on X, we set∫ up

f(x)dP (x) := sup{γ(g) : g ∈ C(X), g ≤ f}.

If f is an arbitrary function, we set∫ up

f(x)dP (x) := inf

{∫ up

g(x)dP (x) : g is lower semicontinuous and f ≤ g
}
.

We define the lower integral as follows. If f is a upper semicontinuous
function on X, we set∫ low

f(x)dP (x) := inf{γ(g) : g ∈ C(X), f ≤ g}.

If f is an arbitrary function, we set∫ low

f(x)dP (x) := sup

{∫ low

g(x)dP (x) : g is upper semicontinuous and g ≤ f

}
.

Theorem 7.15 A function f on X is Fγ-measurable iff∫ up

f(x)dP (x) =

∫ low

f(x)dP (x) (7.8)

and then (7.8) equals ∫
f(x)dP (x).

One can also construct the spectral integral using the Riesz-Markov for usual
measures. For any w ∈ V,

C(X) 3 f 7→ (w|γ(f)w)

is a positive functional on X. By the Riesz-Markov theorem it defines a unique
Radon measure on X, which we will call µw.

Theorem 7.16 If f is γ-measurable, then it is measurable for measure µw for
any w ∈ V, and then,(

w
∣∣∣ ∫ f(x)dP (x) w

)
=

∫
f(x)dµw(x).



7.6 Spectral theorem for bounded Borel func-
tions

If A ∈ B(V) is a self-adjoint operator, then we have the unital ∗-homomorphism

C(sp(A)) 3 f 7→ f(A) ∈ B(V).

Applying the projection valued Riesz-Markov Theorem we obtain a PVM D 7→
P (D). The σ-field of measurable sets contains all Borel subsets of sp(A). By
Theorem 7.6 we can define for f ∈ L∞(sp(A)

f(A) :=

∫
f(x)dP (x).

In particular,

P (D) = 1D(A),

for the characteristic function of a Borel set D. Thus, we do not need the
notation PD, instead we will write 1D(A).

Thus we can extend the spectral theorem from continuous to bounded Borel
functions:

Theorem 7.17 Let A ∈ B(V) be self-adjoint. Then there exists a unique
continuous unital homomorphism

C(sp(A)) 3 f 7→ f(A) ∈ B(V) (7.9)

such that

(1) id(A) = A if id(x) = x, x ∈ sp(A).

(2) If fn → f pointwise, |fn| ≤ c, then

s− lim
n→∞

∫
fn(A) =

∫
f(A).

Moreover, we have

(3) f(A)∗ = f∗(A).

(4) If f ∈ C(sp(A)), then f(A) coincides with f(A) defined in (7.2).

(5) sp(f(A)) ⊂ f(sp(A)).

(6) g ∈ L∞(f(sp(A)))⇒ g ◦ f(A) = g(f(A)).

(7) ‖f(A)‖ ≤ ‖f‖∞.

(8) f(A) are normal.

We can define the projections 1ac(A), 1sc(A), 1p(A). Note that 1p(A) is the
projection onto the closed span of eigenvectors of A.



7.7 Spectral theorem in terms of L2 spaces

Theorem 7.18 Let A ∈ B(V) be a self-adjoint operator. Then there exists
a family of Radon measures µi, i ∈ I, on spA and a unitary operator U :
⊕
i∈I

L2(spA,µi)→ V such that

(
U∗AUψ

)
i
(x) = xψi(x).

Proof. Step 1. If v ∈ V, the cyclic subspace for v is defined as Vv := {f(A)v :
f ∈ C(spA)}cl. Note that Vv is a closed linear subspace invariant wrt f(A) and
V⊥v is also invariant wrt f(A).

We easily see that there exists a family of nonzero vectors {vi : i ∈ I} such
that V = ⊕

i∈I
Vvi .

Step 2. Let µi be the spectral measure for the vector vi. The unitary
operator U is defined by Uf :=

∑
i∈I f(A)vi. 2

Remark 7.19 An essentially identical theorem is true if we replace the self-
adjoint operator A by a unital ∗-homomorphism γ : C(X)→ B(V) for a compact
set X.

7.8 Ideals in commutative C∗-algebras

Let Y be a closed subset of X. Let CY (X) denote the set of functions vanishing
on Y .

We view C(X) as a commutative C∗-algebra.

Theorem 7.20 (1) CY (X) is a closed ideal of C(X).

(2)

C(X)/CY (X) 3 F + CY (X) 7→ F
∣∣∣
Y
∈ C(Y ) (7.10)

is an isometric ∗-homomorphism.

The following theorem describes a kind of a converse to above theorem:

Theorem 7.21 Let N be a closed ideal of C(X). Set

Y :=
⋂
F∈N

F−1(0)

or, equivalently,

x 6∈ Y ⇔ there exists H ∈ N such that H(x) 6= 0.

Then Y is closed and N = CY (X).



7.9 Spectrum of a ∗-homomorphisms of C(X)

Let X be a compact Hausdorff space. Let V be a Hilbert space and γ : C(X)→
B(V) be a unital ∗-homomorphism. That means, γ(FG) = γ(F )γ(G), γ(1) = 1l
and γ(F ) = γ(F )∗.

Proposition 7.22 γ is a contraction.

Proof. Let z 6∈ F (X). Then (z − F )−1 ∈ C(X). Thus γ((z − F )−1) is the
inverse of z − γ(F ). Thus spγ(F ) ⊂ F (X), and hence srγ(F ) ≤ ‖F‖∞.

Clearly, γ(F ) is normal, and hence ‖γ(F )‖ = srγ(F ). 2

Clearly, Kerγ is a closed ideal of C(X). We define the spectrum of the
homomorphism γ as the closed subset of X associated with Kerγ, that is

spγ =
⋂

F∈Kerγ

F−1(0). (7.11)

Equivalently,

x 6∈ spγ ⇔ there exists H such that γ(H) = 0 and H(x) 6= 0.

Clearly, spγ is a closed subset of X and Kerγ = Cspγ(X). Using the identifi-
cation (7.10), we see that there exists a a unique unital ∗-isomorphism γred :
C(spγ)→ B(V) such that

γ(F ) = γred

(
F
∣∣∣
spγ

)
, F ∈ C(X)

Obviously, γred is injective. γ is injective iff spγ = X iff γ = γred.

Theorem 7.23 (1) γ is injective iff it is isometric.

(2) γred is isometric.

(3) Let F ∈ C(X). Then F (spγ) = spγ(F ).

Proof. We first show (3).
F (spγ) ⊂ spγ(F ): Suppose that z 6∈ sp(γ(F )). If z 6∈ F (X), there is nothing

to prove. Let x0 ∈ X such that F (x0) = z. Let

Uc :=
{
x ∈ X : |F (x)− z| < c

∥∥(z − γ(F )
)−1∥∥−1

}
.

Let c < 1. There exists H ∈ C(X) such that suppH ⊂ Uc and H(x0) = 1.
Choose c1 such that c < c1 < 1. We can find G ∈ C(X), 0 ≤ G ≤ 1, G = 1 on
Uc and suppG ⊂ Uc1 . Then

‖γ(G)‖ ≤ ‖(z − γ(F ))−1‖‖γ((z − F )G)‖
≤ ‖(z − γ(F ))−1‖‖(z − F )G‖∞ ≤ c1 < 1. (7.12)



But γ(H) = Γ(HGn) = γ(H)γ(Gn) and γ(Gn)→ 0 by (7.12). Hence, γ(H) = 0.
Hence x 6∈ spγ.

Let z 6∈ F (spγ): Z := {x ∈ X : F (x) = z} is a closed subset of X disjoint
from spγ. Hence, there exists a function G ∈ C(X) such that G = 1 on spγ
and G = 0 on a neighborhood of Z. Clearly, G− 1 ∈ Cspγ(X), hence γ(G) = 1.
Now G(z − F )−1 ∈ C(X). We have

γ(z − F )γ((z − F )−1G) = γ(G) = 1.

Hence γ((z − F )−1G) is the inverse of z − γ(F ). This means that z 6∈ spγ(F ).
Thus (3) is proven.

By (3), srγ(F ) = ‖F
∣∣
spγ
‖∞. By the normality of γ(F ), ‖γ(F )‖ = srγ(F ).

This proves (2).
(1) follows from (2). 2

7.10 Commuting self-adjoint operators

Suppose that {A1, . . . , An} is a family of commuting self-adjoint operators in
B(V). Clearly, if fi ∈ C(sp(Ai)), i = 1, . . . , n, then fi(Ai) commute with
one another. The joint spectrum of this family, denoted by sp(A1, . . . , An) is
the subset of sp(A1) × · · · × sp(An) defined as follows: (x1, . . . , xn) does not
belong to sp(A1, . . . , An) iff there exist functions fi ∈ C(spAi), with fi(xi) 6= 0,
j = 1, . . . , n such that f1(A1) · · · fn(An) = 0.

Theorem 7.24 (1) There exists a unique continuous unital ∗-homomorphism

C(sp(A1, . . . , An) 3 g 7→ g(A1, . . . , An) ∈ B(V) (7.13)

such that if idj(zi : i ∈ I) = zj, then

idj(A1, . . . , An) = Aj .

(2) (7.13) is injective and satisfies

‖g(A1, . . . , An)‖ = ‖g‖∞.

(3) g(A1, . . . , An)∗ = g∗(A1, . . . , An), where g∗(x1, . . . , xn) := g(x1, . . . , xn).

Proof. First we show that there exists a unique unital ∗-homomorphism

C
(

sp(A1 × · · · × sp(An)
)
3 F 7→ F (A1, . . . , An) ∈ B(V) (7.14)

that satisfies (1), and (3), and instead of (2) satisfies

‖F (A1, . . . , An)‖ ≤ ‖F‖. (7.15)



Indeed, on holomorphic functions we define (7.14) in the obvious way. By the
weak spectral mapping theorem of Theorem 4.18,

spF (A1, . . . , An) ⊂ F (spA1 × · · · ×An).

Hence, srF (A1, . . . , An) ≤ ‖F‖∞. But F (A1, . . . , An) is normal and hence
‖F (A1, . . . , An)‖ = srF (A1, . . . , An). This proves (7.15) for holomorphic func-
tions. By the Stone-Weierstrass Theorem, polynomials are dense in continuous
functions, therefore we can extend the definition of (7.14) to

C
(

sp(A1 × · · · × sp(An)
)

.

Thus we have a unital ∗-homomorphism from C
(

sp(A1 × · · · × sp(An)
)

to B(V). We easily see that sp(A1, . . . , An) is precisely the spectrum of this
homomorphism, as defined in (7.11). Therefore, we can reduce (7.14), obtaining
the isometric ∗-homomorphism (7.13). 2

7.11 Functional calculus for a single normal op-
erator

Let B be a normal operator. Then BR := 1
2 (B+B∗) and BI := 1

2i (B−B
∗) are

commuting self-adjoint operators. Therefore, we can define the joint spectrum
sp(BR, BI) and the homomorphism

C
(
sp(BR, BI)

)
3 f 7→ f(BR, BI) ∈ B(V). (7.16)

Clearly, B = BR + iBI. Define

R2 3 (x, y) 7→ j(x, y) := x+ iy ∈ C. (7.17)

Proposition 7.25 We have

j(sp(BR, BI)) = spB.

Proof. Let (x0, y0) 6∈ sp(BR, BI). The function

(x, y) 7→ (x0 + iy0 − x− iy)−1

is continuous outside of (x0, y0). In particular, it belongs to C
(
sp(BR, BI)

)
.

Hence

(x0 + iy0 −BR − iBI)−1 = (x0 + iy0 −B)−1

is well defined by Theorem 7.24. Therefore, x0 + iy0 6∈ sp(B).
Let x0 + iy0 6∈ spB. Suppose that (x0, y0) ∈ sp(BR, BI). Let 0 < c < 1

f ∈ C(sp(BR, BI)) with f(x0, y0) = 1, ‖f‖∞ = 1 and

{f 6= 0} ⊂
{

(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < c2‖(x0 + iy0 −B)−1‖−2
}



Clearly,
‖f(BR, BI)(x0 + iy0 −B)‖ ≤ c‖(x0 + iy0 −B)−1‖−1.

Hence,

‖f(BR, BI)‖ ≤ ‖f(BR, BI)(x0 + iy0 −B)‖‖(x0 + iy0 −B)−1‖ ≤ c
< 1 ≤ ‖f‖∞.

But the functional calculus on the joint spectrum is isometric, hence this is a
contradiction. Thus, (x0, y0) 6∈ sp(BR, BI). 2

Theorem 7.26 Let B ∈ B(V) be normal. Then there exists a unique contin-
uous homomorphism

C(sp(B)) 3 f 7→ f(B) ∈ B(V) (7.18)

such that

(1) id(B) = B if id(z) = z, z ∈ sp(B).

(2) f(B)∗ = f∗(B), where f∗(z) := f(z), z ∈ spB.
Moreover, we have

(3) If f ∈ Hol(sp(B)), then f(B) coincides with f(B) defined in (4.4).

(4) sp(f(B)) = f(sp(B)).

(5) g ∈ C(f(sp(B)))⇒ g ◦ f(B) = g(f(B)).

(6) ‖f(B)‖ = ‖f‖∞.

(7) f(B) are normal.

Proof. For g ∈ C(spB), using the functional calculus (7.16) and the map
(7.17), we set

g(B) := g ◦ j(ReB, ImB).

2

7.12 Functional calculus for a family of commut-
ing normal operators

Suppose that B1, . . . , Bn is a family of commuting normal operators in B(V).
Set BR

i := 1
2 (Bi + B∗i ) and BI

i := 1
2i (Bi − B

∗
i ). Then by the Fuglede theorem,

BR
1 , B

I
1, . . . , B

R
n , B

I
n is a family of commuting self-adjoint operators. Thus we

have the ∗-homomorphism

C
(
sp(BR

1 , B
I
i , . . . B

R
n , B

I
n) 3 G 7→ G(BR

1 , B
I
1, . . . , B

R
n , B

I
n) ∈ B(V) (7.19)

We define

sp(B1, . . . , Bn)

:= {x1 + iy1, . . . , xn + iyn : (x1, y1, . . . , xn, yn) ∈ sp(BR
1 , B

I
i , . . . B

R
n , B

I
n).

We obtain:



Theorem 7.27 Let {Bi : i ∈ I} be a family of commuting normal operators
in a B(V). Then

(1) {(z1, . . . , zn) ∈ spB1 × · · · × spBn does not belong to sp(B1, . . . , Bn) iff
there exist functions f1 ∈ C(spB1),. . . , fn ∈ C(sp(Bn) with fi(zi) 6= 0,
j = 1, . . . , n such that f1(B1) · · · fn(Bn) = 0.

(2) There exists a unique continuous unital ∗-homomorphism

C(sp(B1, . . . , Bn) 3 g 7→ g(B1, . . . , Bn) ∈ B(V) (7.20)

such that if idj(zi : i ∈ I) = zj, then

idj(Bi : i ∈ I) = Bj .

(3) (7.20) is injective and satisfies

‖g(B1, . . . , Bn)‖ = ‖g‖∞.

Example 7.28 Let (X,F , µ) be a space with a measure. Let f : X → Cn a
Borel function. We say that (z1, . . . , zn) ∈ Cn belongs to the essential range of
f , denoted (z1, . . . , zn) ∈ essRan f , iff for any neighborhood U of (z1, . . . , zn)
we have µ(f−1(U)) 6= 0. Note that if f : X → C is Borel, then ‖f‖∞ =
sup{|f(x)| : x ∈ essRan f}.

Let f ∈ L∞(X). Then

L2(X) 3 h 7→ Tfh := fh ∈ L2(X)

is a bounded normal operator with spTf = essRan f and ‖Tf‖ = ‖f‖∞. The
operator Tf is self-adjoint iff essRan f ⊂ R. It is unitary iff essRan f ⊂ {|z| =
1}.

Suppose that (f1, . . . , fn) is a family of functions in L∞(X). Clearly, the
operators Tfi are normal operators commuting with one another. We have

sp(Tf1
, . . . , Tfn} = essRan (f1, . . . , fn).



Chapter 8

Compact operators

8.1 Finite rank operators

This subsection can be viewed as an elementary introduction to compact oper-
ators.

Definition 8.1 An operator K ∈ B(X ,Y) is called a finite rank operator iff
dim RanK <∞.

Theorem 8.2 Let K ∈ B(X ,Y) be a finite rank operator. Then

dim RanK = dimX/KerK.

Proof. Let y1, . . . , yn be a basis in RanK. We can find x1, . . . , xn ∈ X such
that Kxi = yi. Then Span{x1, . . . , xn} ∩ KerK = {0}. Assume that z ∈ X.
Then Kz =

∑
ciyi. Thus z −

∑
cixi ∈ KerK. Hence z ∈ Span{x1, . . . , xn} +

KerK. 2

Theorem 8.3 Let K ∈ B(X ) be a finite rank operator. Then spK = sppK.
Moreover, spessK = ∅ if dimX <∞, otherwise spessK = {0}.

Proof. Using the fact that dimX/KerK is finite, we can find a finite di-
mensional subspace Z such that X = KerK ⊕ Z. Z1 := Z + RanK is also
finite dimensional. We have KZ1 ⊂ Z1. We can find a subspace Z2 such that
Z1 ⊕Z2 = X . Obviously, Z2 ⊂ KerK. 2

8.2 Compact operators on Banach spaces

Let X , Y be Banach spaces.
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Definition 8.4 K ∈ B(X ,Y) is called a compact operator iff for any bounded
sequence x1, x2, · · · ∈ X we can find a convergent subsequence from the sequence
Kx1,Kx2, · · · ∈ Y.

Equivalent definition: if (X )1 denotes the unit ball in X , then (K(X )1)
cl

is a compact set. The set of compact operators from X to Y will be denoted
B∞(X ,Y).

Theorem 8.5 (1) Let K be a compact operator. Let (xi)i∈I be a bounded net
weakly convergent to x. Then lim

i∈I
Kxi = Kx. (K is weak-norm continuous

on the unit ball).

(2) Let K be a compact operator. Let (xn) be a sequence weakly convergent to
x. Then lim

n→∞
Kxn = Kx.

(3) If A is bounded, K is compact, then AK and KA are compact.

(4) If Kn are compact and limn→∞Kn = K, then K is compact.

(5) If K is finite rank, then K is compact.

Proof. (1) Let (xi)i∈I be a bounded net weakly convergent to x. Then
w− limi∈I Kxi = Kx (because K is bounded). Hence, if Kxi is convergent
in norm, its only limit can be Kx.

Suppose that Kxi is not convergent. Then there exists a subnet xij such
that ‖Kxij −Kx‖ > ε > 0. By compactness, we can choose a subsubnet xijm
such that Kxijm is convergent. But it can be convergent only to Kx, which is
impossible.

(3) is obvious, if we note that A maps a ball into a ball and a convergent
sequence onto a convergent sequence.

(4) Let x1, x2, . . . be a bounded sequence so that ‖xn‖ ≤ C. Below we will
construct a double sequence xn,k such that, for any n, xn+1,1, xn+1,2, . . . is a
subsequence of xn,1, xn,2, . . . and

‖Kxn,m −Kxn,k‖ < (min(m, k, n))−1.

Eventually, the sequence xn,n is a subsequence of xn such that Kxn,n satisfies
the Cauchy condition.

Suppose that we have constructed xn,m up to the index n. We can find N
such that ‖K −KN‖ < 1

3C(n+1) . We put xn+1,m = xn,m for m = 1, . . . n. For

m > n, we choose xn+1,m as the subsequence of xn,m such that ‖KNxn+1,m −
KNxn+1,k‖ < 1

3(n+1) for k,m > n. Then for m > n

‖Kxn+1,m −Kxn+1,k‖ ≤ ‖Kxn+1,m −KNxn+1,m‖+ ‖KNxn+1,m −KNxn+1,k‖

+‖KNxn+1,k −Kxn+1,k‖ ≤ 2C
C3(n+1) + 1

3(n+1) = (n+ 1)−1.

(5) follows by the compactness of the ball in a finite dimensional space
RanK. 2

Note that B∞(X) is a closed ideal of B(X ).



8.3 Compact operators on a Hilbert space

Theorem 8.6 Let X , Y be Hilbert spaces and K ∈ B(X ,Y). TFAE:

(1) K is compact (i.e. (K(X )1)cl is compact).

(2) K maps bounded weakly convergent nets onto norm convergent sequences
(K is weak-norm continuous on the unit ball).

(3) K(X )1 is compact.

(4) Let (xn) be a sequence weakly convergent to x. Then lim
n→∞

Kxn = Kx.

(5) If |K| := (K∗K)1/2, then spess|K| ⊂ {0}.
(6) There exist orthonormal systems x1, x2, · · · ∈ X and y1, y2, · · · ∈ Y and a

sequence of positive numbers k1, k2, . . . convergent to zero such that

K =

∞∑
n=1

kn|yn)(xn|.

(7) There exists a sequence of finite rank operators Kn such that Kn → K.

Proof. (1)⇒(2), by Theorem 8.5, is true even in Banach spaces.
(2)⇒(3). In a Hilbert space (X )1 is weakly compact. The image of a compact

set under a continuous map is compact.
(3)⇒(1) is obvious.
(2)⇒(4) is obvious.
(4)⇒(5). Suppose (5) is not true. This means that for some ε > 0,

Ran 1l[ε,∞[(|K|) is infinite dimensional. Let x1, x2, . . . be an infinite orthonormal
system in Ran 1[ε,∞[(A). Then xn goes weakly to zero, but ‖Kxn‖ ≥ ε.

(5)⇒(6). Let x1, x2, . . . be an orthonormal system of eigenvectors of |K|
with eigenvalues kn. Then set yn := k−1

n Kxn.
(6)⇒(7). It suffices to set Kε := K1[ε,∞[(|K|). Then

‖K −Kε‖ = ‖|K|1[0,ε](|K|)‖ ≤ ε.

(7)⇒(1), by Theorem 8.5, is true for Banach spaces. 2

(1)⇒(6) is sometimes called the Hilbert-Schmidt Theorem.

Corollary 8.7 (Schauder) Let X , Y be Hilbert spaces and K ∈ B∞(X ,Y).
Then K∗ ∈ B∞(Y,X ).

Proof. It follows immediately from Theorem 8.6 (7).

8.4 The Fredholm alternative

Theorem 8.8 (Analytic Fredholm Theorem) Let V be a Hilbert space, Ω ⊂
C is open and connected. Let Ω 3 z 7→ A(z) ∈ B∞(V) be an analytic function.
Let S := {z ∈ Ω : 1−A(z) is not invertible } Then either



(1) S = Ω, or

(2) S is discrete in Ω. Moreover, for z ∈ S, Ker(1 − A(z)) 6= {0} and the
coefficients at the negative powers of the Laurent expansion of (1−A(z))−1

are of finite rank. In particular, the residuum is of finite rank.

Proof. Let z0 ∈ Ω. We can find a finite rank operator F with ‖A(z0)− F‖ <
1/2. Let ε > 0 with ‖A(z)−A(z0)‖ < 1/2 for |z−z0| < ε. Thus ‖A(z0)−F‖ < 1
for |z − z0| < 1.

Set G(z) := F (1 + F −A(z))−1. We have

(1−G(z))(1 + F −A(z)) = 1−A(z).

Thus 1−A(z) is invertible iff 1−G(z) is invertible and Ker(1−A(z)) = {0} iff
Ker(1−G(z)) = {0}.

Let P be the orthoprojection onto RanF . Set

G0(z) := G(z)P = PG(z)P,

G1(z) := G(z)(1− P ) = PG(z)(1− P ).

Then
1−G(z) = 1−G0(z)−G1(z) = (1−G1(z))(1−G0(z)),

and (1−G1(z))−1 = 1 +G1(z). Hence, 1−G(z) is invertible iff 1−G0(z) is and
Ker(1−G(z)) = {0} iff Ker(1−G0(z)) = {0}. Since G0(z) is an analytic function
in a fixed finite dimensional space, 1−G0(z) is invertible iff det(1−G0(z)) 6= 0
iff Ker(1−G0(z)) = {0}. Thus S = {z ∈ Ω : det(1−G0(z)) 6= 0}.

Now we have

(1−A(z))−1 = (1 + F −A(z))−1(1−G0(z))−1(1 +G0(z)).

The first and third factor on the rhs are analytic in the neighborhood of z0.
Suppose that the middle term has a singularity at z0. Then it is a pole of the
order at most dim RanF and all the coefficients at the negative powers of its
Laurent expansion are finite rank. 2

Corollary 8.9 (Riesz-Schauder) Let K be a compact operator on a Hilbert
space. Then spessK = {0} if the space is infinite dimensional and spessK = ∅
otherwise.

Proof. We apply the Analytic Fredholm Theorem to 1− z−1K. 2

8.5 Positive trace class operators

Let {vi}i∈I be an orthonormal basis of a Hilbert space V. Let A ∈ B(V) and
A ≥ 0. Define

TrA :=
∑
i∈I

(vi|Avi). (8.1)



Theorem 8.10 (8.1) does not depend on the basis.

Proof. First note that if Aα ∈ B(V) is an increasing net, then∑
i∈I

(vi|Avi) = sup
α

∑
i∈I

(vi|Aαvi). (8.2)

Let {vi : i ∈ I} and {wj : j ∈ J} are orthonormal bases. Assume that
c <

∑
i∈I

(vi|Avi). By (8.2), we can find a finite subset J0 ⊂ J such that if P0 is

the projection onto Span{wj : j ∈ J0}, then

c ≤
∑
i∈I

(vi|P0AP0vi).

Now ∑
i∈I

(vi|P0AP0vi) =
∑
i∈I

∑
j,k∈J0

(vi|wj)(wj |Awk)(wk|vi)

=
∑
j∈J0

(wj |Awj) ≤
∑
j∈J

(wj |Awj).
(8.3)

Above we used the fact that for any j, k∑
i∈I
|(vi|wj)(wj |Awk)(wk|vi)| ≤ ‖A‖,

which together with the finiteness of J0 imples that the second sum in (8.3) is
absolutely convergent, and also∑

i∈I
(vi|wj)(wk|vi) = δj,k.

This shows ∑
i∈I

(vi|Avi) ≤
∑
j∈J

(wj |Awj).

Of course, we can reverse the argument. 2

We will write B1
+(V) for the set of A ∈ B+(V) such that TrA <∞.

Theorem 8.11 (1) If A,B ∈ B+(V), then Tr(A + B) = TrA + TrB. If
λ ∈ [0,∞[, then TrλA = λTrA, where 0∞ = 0.

(2) Let B ∈ B(V,W). Then TrB∗B = TrBB∗.

(3) If A ∈ B1
+(V), and B ∈ B(W,V). Then B∗AB ∈ B1

+(W) and TrB∗AB ≤
‖B‖2TrA.

(4) If A ∈ B1
+(V), then A is compact.

(5) Let (Ai i ∈ I) be an increasing net in B+(V) and A = lubAi. Then

TrA = sup{TrAi : i ∈ I}.

(6) TrA =
∑∞
n=1 sn(A).



Proof. (2) Let (vi) and (wj) be bases of V and W. Then

TrB∗B =
∑
i

∑
j(v|B∗wj)(wj |Bvi)

=
∑
j

∑
i(wj |Bvi)(vi|B∗wj) = TrBB∗,

where all the terms in the sum are positive, which justifies the exchange of the
order of summation.

(3) By (2), we have TrB∗AB = TrA1/2BB∗A1/2. Besides A1/2BB∗A1/2 ≤
‖B‖2A.

(4) If A has continuous spectrum, then there exists an infinite dimensional
orthoprojection P and ε > 0 such that A ≥ εP . Then TrA ≥ εTrP =∞.

Hence A has just point spectrum. We have TrA =
∑
i∈I

ai, where ai are

eigenvalues of A (counting their multiplicities). 2

8.6 Hilbert-Schmidt operators

For A ∈ B(V,W) set

‖A‖2 := (TrA∗A)
1
2 = (TrAA∗)

1
2 .

B2(V,W) denotes the set of operators with a finite norm ‖A‖2. Clearly,

‖A‖2 =

( ∞∑
n=1

sn(A)2

)1/2

.

If (vi)i∈I and (wj)j∈J are bases in V and W, then

‖A‖2 =
∑
i∈I

∑
j∈J
|(wj |Avi)|2. (8.4)

B2(V,W) is equipped with the scalar product

(A|B)2 =
∑
i∈I

∑
j∈J

(wj |Avi)(wj |Bvi), (8.5)

where we used (vi)i∈I and (wj)j∈J orthonormal bases in V and W.

Proposition 8.12 Let A,B ∈ B2(V,W). Then (8.5) is finite and does not
depend on a choice of bases.

Proof. Clearly, (8.4) is the norm for (8.5). Hence the finiteness of (8.5) follows
by the Schwarz inequality: |(A|B)2| ≤ ‖A‖2‖B‖2.

Next note that, for any v ∈ V,

‖(A+ ikB)v‖2 ≤ 2‖Av‖2 + 2‖Bv‖2.



Therefore,
‖(A+ ikB)‖22 ≤ ‖A‖22 + ‖B‖22.

Hence if A, B are Hilbert-Schmidt, then so are A + ikB. Then we note that
(8.5) equals

(A|B)2 :=

3∑
k=0

ik

4
Tr(A+ ikB)∗(A+ ikB), (8.6)

which is basis independent. 2

Remark 8.13 In the next subsection we extend the notion of trace and (8.6)
will be written simply as TrA∗B.

Theorem 8.14 (1) If A ∈ B2(V,W), then A is compact.

(2) B2(V,W) is a Hilbert space.

(3) If {vi}i∈I is a basis in V and {wj}j∈J is a basis in W, then |wj)(vi| is a
basis in B2(V,W).

(4) B2(V,W) 3 A 7→ A∗ ∈ B2(W,V) is a unitary map.

(5) If A ∈ B2(V,W) and B ∈ B(W,X ), then BA ∈ B2(V,X ).

(6) If (X,µ) and (Y, ν) are spaces with measurs and V = L2(X,µ), W =
L2(Y, ν), then every operator A ∈ B2(V,W) has the integral kernel A(·, ·) ∈
L2(Y ×X, ν ⊗ µ), ie.

(w|Av) =

∫ ∫
w(y)A(y, x)v(x)dµ(y)dµ(x)

The transformation B2(V,W) 3 A 7→ A(·, ·) ∈ L2(Y ×X, ν⊗µ) that to an
operator associates its integral kernel is unitary.

Proof. (1) The operator A∗A is trace class, hence is compact. We can represent
A∗A as

A∗A =

∞∑
j=1

bj |vj)(vj |,

with bj → 0.
If we set wj := Avj , then

A =

∞∑
j=1

aj |wj)(vj |,

with |aj |2 = bj . Hence, aj → 0.
Let us show (2) and (3). Set Eji := |wj)(vi|. We first check that it is an

orthonormal system. If A ∈ B2(V,W) is orthogonal to all Eji, then all its
matrix elements are zero. Hence A = 0.

Then we check that if aji belongs to L2(J × I), then
∑
j∈J, i∈I ajiEji is the

integral kernel of an operator in B2(V,W). Hence, B2(V,W) is isomorphic to



L2(J×I). Hence it is a Hilbert space and {Eij : i ∈ I, j ∈ J} is its orthonormal
basis. This proves (2) and (3), 2

Theorem 8.15 Suppose that f, g ∈ L∞(Rd) converge to zero at infinity. Then
the operator g(D)f(x) is compact.

Proof. Let

fn(x) :=

{
f(x), |x| < n
0 |x| ≥ n,

gn(ξ) :=

{
g(ξ), |ξ| < n
0 |ξ| ≥ n,

g(D)f(x) = F∗g(x)Ff(x).

‖g(x)Ff(x)− gn(x)Ffn(x)‖ ≤ ‖(g(x)− gn(x))Ff(x)‖

+‖gn(x)F(f(x)− fn(x)‖ → 0.

It suffices to show the compactness of gn(x)Ffn(x). But its integral kernel
equals

(2π)−
1
2dgn(x)e−ixyfn(y),

which is square integrable . 2

8.7 Trace class operators

Lemma 8.16 Let A+, A
′
+ ∈ B1

+(V), A−, A
′
− ∈ B+(V) satisfy A+ − A− =

A′+ −A′−. Then

TrA+ − TrA− = TrA′+ − TrA′−.

Proof. Clearly, A+ +A′− = A− +A′+ ∈ B+(V). Thus

TrA+ + TrA′− = Tr(A+ +A′−) = Tr(A− +A′+) = TrA− + TrA′+.

2

By Lemma 8.16, we can uniquely extend the definition of trace as a function
with values in [−∞,∞] to operators in Bsa(V) that admit a decomposition
A = A+−A−, where A+, A− ∈ B+(V) and either B+ or B− belongs to B1

+(V),
by setting

Tr(A+ −A−) := TrA+ − TrA−.

We define B1(V) := SpanB1
+(V). Clearly, B+(V) ∩B1(V) = B1

+(V).
Obviously, Tr is well defined and finite on B1(V).



Theorem 8.17 Let A ∈ B1(V). Then for any orthonormal basis (vi) in V,

TrA =
∑
i∈I

(vi|Avi), (8.7)

where the above series is absolutely convergent.

Proof. Let A = A+−A−, where A+, A− ∈ B1
+(V). Then for any orthonormal

basis
∑
i∈I(vi|A±vi) is finite, hence absolutely convergent. Thus (8.7) is the

sum of two absolutely convergent series, and hence, absolutely convergent. 2

Theorem 8.18 B,C ∈ B2(V,W) implies B∗C ∈ B1(V) and (B|C)2 = TrB∗C =
TrCB∗.

Proof. We know that B + i−kC ∈ B2(V,W). Hence B∗C ∈ B1(V) follows
immediately from (8.6). (B|C)2 = TrB∗C = TrCB∗ also follows from (8.6).

Theorem 8.19 If A ∈ B1(V) and B ∈ B(V), then AB,BA ∈ B1(V) and

TrAB = TrBA.

Proof. It suffices to assume that A ∈ B1
+(V). A1/2 and BA1/2 belong to B2(V).

Hence, using Theorem 8.18, we obtain

TrBA = Tr(BA1/2)A1/2 = TrA1/2(BA1/2)

= Tr(A1/2B)A1/2 = TrA1/2(A1/2B) = TrAB.

2

Theorem 8.20 TFAE

(1) A ∈ B1(V).

(2) |A| ∈ B1
+(V).

(3) There exist B,C ∈ B2(V,W) such that A = B∗C.

(4)
∞∑
n=1

sn(A) <∞.

(5) For any orthonormal basis (vi) in V,∑
i∈I
|(vi|Avi)| <∞.

Proof. Let A = U |A| be the polar decomposition of A.
(1)⇒(2). Let A ∈ B1(V). Then U∗A = |A| ∈ B1(V). Since |A| ∈ B+(V),

this also means that A ∈ B1
+(V).

(1)⇐(2). Let A ∈ B(V) with A ∈ B1(V). Then A = U |A| shows that
A ∈ B1(V).



(2)⇒(3). A = U |A|1/2|A|1/2 with U |A|1/2, |A|1/2 ∈ B2(V).
(2)⇐(3) is Theorem 8.18.
(1)⇒(5). Write A = A1 + iA1 − A3 − iA4, with Ai ∈ B1(V). We have∑

(vi|Akvi) <∞. Thus (vi|Avi) is a linear combination of 4 absolutely conver-
gent series.

(1)⇐(5). First assume that A is self-adjoint. Then A = A+ − A− with
A+A− = A−A+ = 0 and A+, A− ∈ B+(V). We have the decomposition V =
Ran 1]−∞,0[A) ⊕ KerA ⊕ Ran 1]0,∞[A). Let (v−1 , v

−
2 , . . . , v

0
1 , v

0
2 , . . . , v

+
1 , v

+
2 , . . . )

be a basis that respects this decomposition. Then we compute that

∞ >
∑

ε=−,0,+

∑
i

|(vεi |Avεi )| = TrA+ + TrA−.

Thus A+, A− ∈ B1
+(V). Hence A ∈ B1(V).

If A is not necessarily self-adjoint, then consider ReA := 1
2 (A + A∗), A :=

1
i2 (A−A∗). Then∑

|(vi|ReAvi)|+
∑
|(vi|ImAvi)| ≤ 2

∑
|(vi|Avi)| <∞

Thus (5) is satisfied for ReA, ImA, and hence ReA, ImA ∈ B1(V). But A =
ReA+ iImA. 2

For A ∈ B1(V) we set

‖A‖1 := Tr|A| =
∞∑
n=1

sn(A).

Theorem 8.21 (1) If A ∈ B1(V), B ∈ B(V), then

‖AB‖1 ≤ ‖A‖1‖B‖, ‖BA‖1 ≤ ‖A‖1‖B‖.

(2) B1(V) is a Banach algebra.

Proof. (1) Let BA = W |BA| be the polar decomposition of BA and A = U |A|
be the polar decomposition of A. Note that BU |A|1/2 ∈ B2(V). Thus

Tr|BA| = TrW ∗BU |A|1/2|A|1/2| ≤ ‖W ∗BU |A|1/2‖2‖|A|1/2‖2.

Now
‖|A|1/2‖2 = (Tr|A|)1/2,

‖W ∗BU |A|1/2‖2 ≤ ‖W ∗BU‖‖|A|1/2‖2 ≤ ‖B‖(Tr|A|)1/2.

(2) Let us prove the subadditivity. Let A,B ∈ B1(V) and A+B = W |A+B|
be the polar decomposition of A+B. Then, using |A+B| = W ∗(A+B),

‖A+B‖1 = TrW ∗(A+B)

≤ |TrW ∗A|+ TrW ∗B| ≤ ‖W ∗‖Tr|A|+ ‖W ∗‖Tr|B| = Tr|A|+ Tr|B|.



Thus B1(V) is a normed space.
Using ‖A‖ ≤ ‖A‖1 we see, that (1) implies

‖AB‖1 ≤ ‖A‖1‖B‖1.

Thus B1(V) is a normed algebra.
Let An be a Cauchy sequence in the ‖·‖1 norm. Then it is also Cauchy in the

‖ · ‖ norm. Thus there exists lim
n→∞

An =: A ∈ B(V). Let A−An = Un|A−An|
be the polar decomposition of A−An. Let P be a finite projection. Clearly, for
fixed n, ‖Am −An‖1 is a Cauchy sequence and thus lim

m→∞
‖Am −An‖1 exists.

‖P |A−An|P‖1 = TrPU∗(A−An)P

= lim
m→∞

TrPU∗(Am −An)P ≤ lim
m→∞

‖Am −An‖1.

Since P was arbitrary,

‖A−An‖1 ≤ lim
m→∞

‖Am −An‖1 → 0.

Hence B1(V) is complete. 2

Theorem 8.22 Let x1, x2, . . . and y1, y2, . . . be sequences of vectors with
∞∑
n=1
‖xn‖2 <

∞,
∞∑
n=1
‖yn‖2 <∞. Then

∞∑
n=1
|yn)(xn| is trace class.

Proof. Let e1, e2, . . . be an orthonormal system. Define A :=
∞∑
n=1
|xn)(en|,

B :=
∞∑
n=1
|yn)(en|. Then TrA∗A =

∑
‖xn‖2 and TrB∗B =

∑
‖yn‖2. Hence

A,B are Hilbert-Schmidt. But C = BA∗. 2





Chapter 9

Unbounded operators on
Hilbert spaces

9.1 Graph scalar product

Let V, W be Hilbert spaces. Let A : V → W be an operator with domain
DomA. It is natural to treat DomA as a space with the graph scalar product

(v1|v2)A := (v1|v2) + (Av1|Av2).

Clearly, DomA is a Hilbert space with the graph scalar product iff A is closed.

9.2 The adjoint of an operator

Definition 9.1 Let A : V → W have a dense domain. Then w ∈ DomA∗, iff
the functional

DomA 3 v 7→ (w|Av)

is bounded (in the topology of V). Hence there exists a unique y ∈ V such that

(w|Av) = (y|v), v ∈ V.

The adjoint of A is then defined by setting

A∗w = y.

Theorem 9.2 Let A : V → W have a dense domain. Then

(1) A∗ is closed.

(2) DomA∗ is dense in W iff A is closable.

(3) (RanA)⊥ = KerA∗.

(4) DomA ∩ (RanA∗)⊥ ⊃ KerA.
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Proof. Let j : V ⊕ W → W ⊕ V, j(v, w) := (−w, v). Note that j is unitary.
We have

GrA∗ = j(GrA)⊥.

Hence GrA∗ is closed. This proves (1).
Let us prove (2).

w ∈ (DomA∗)⊥ ⇔ (0, w) ∈ (GrA∗)⊥ = j(GrA)⊥⊥

⇔ (w, 0) ∈ (GrA)⊥⊥ = (GrA)cl.

Proof of (3):

w ∈ KerA∗ ⇔ (A∗w|v) = 0, v ∈ V

⇔ (A∗w|v) = 0, v ∈ DomA

⇔ (w|Av) = 0, v ∈ DomA

⇔ w ∈ (RanA)⊥.

Proof of (4)

v ∈ KerA ⇔ (w|Av) = 0, w ∈ W

⇒ (w|Av) = 0, w ∈ DomA∗

⇔ (A∗w|v) = 0, w ∈ DomA∗

⇔ v ∈ (RanA∗)⊥.

Theorem 9.3 Let A : V → W be closable with a dense domain. Then

(1) A∗ is closed with a dense domain.

(2) A∗ = (Acl)∗.

(3) (A∗)∗ = Acl

(4) (RanA)⊥ = KerA∗. Hence A∗ is injective iff RanA is dense.

(5) (RanA∗)⊥ = KerA. Hence A is injective iff RanA∗ is dense.

Proof. (1) was proven in Theorem 9.2.
To see (2) note that

GrA∗ = j(GrA)⊥ = j((GrA)cl)⊥ = GrAcl∗.

To see (3) we use

Gr (A∗∗) = j−1
(
j(GrA)⊥

)⊥
= (GrA)⊥⊥ = (GrA)cl.

(4) is proven in Theorem 9.2.
To prove (5) note that in the second line of the proof of Theorem 9.2 (4) we

can use the fact that DomA∗ is dense in W to replace ⇒ with ⇔. 2



9.3 Inverse of the adjoint operator

Theorem 9.4 Let A be densely defined, closed, injective and with a dense
range. Then

(1) A−1 is densely defined, closed, injective and with a dense range.

(2) A∗ is densely defined, closed, injective and with a dense range.

(3) (A∗)−1 = (A−1)∗.

Proof. (1) and (2) sum up previously proven facts.
To prove (3), recall the maps τ, j : V ⊕W →W ⊕ V. We have

GrA∗ = j(GrA)⊥, GrA−1 = τ(GrA).

Hence
GrA−1∗ = j(τ(GrA))⊥ = τ−1(j(GrA)⊥) = GrA∗−1.

2

Theorem 9.5 Let A : V → W be densely defined and closed. Then the follow-
ing conditions are equivalent:

(1) A is invertible.

(2) A∗ is invertible.

(3) For some c > 0, ‖Av‖ ≥ c‖v‖, v ∈ V and ‖A∗w‖ ≥ c‖v‖, w ∈ W.

Proof. (1)⇒(2). Let A be invertible. Then A−1 ∈ B(W,V). Hence, A−1∗ ∈
B(V,W).

Clearly, the assumptions of Theorem 9.4 are satisfied, and hence A∗−1 =
A−1∗. Therefore, A∗−1 ∈ B(V,W).

(1)⇐(2). A∗ is also densely defined and closed. Hence the same arguments
as above apply.

It is obvious that (1) and (2) imply (3). Let us prove that (3)⇒(1). ‖A∗v‖ ≥
c‖v‖ implies that KerA∗ = {0}. Hence (RanA)⊥ is dense. This together with
‖Av‖ ≥ c‖v‖ implies that RanA =W, and consequently, A is invertible. 2

Theorem 9.6 Let A : V → W be a densely defined and

‖Av‖ ≥ c‖v‖, v ∈ DomA

Then the following are equivalent:

(1) A is invertible.

(2) A is closable and RanA =W.

(3) A is closed and RanA is dense in W.

(4) A is closed and KerA∗ = {0}.

Theorem 9.7 Let A : V → W be densely defined and closed. Then spext(A) =
spext(A∗).



9.4 The adjoint of a product of operators

Proposition 9.8 (1) Let A,B be densely defined operators, so that BA is also
densely defined. Then

(BA)∗ ⊃ A∗B∗. (9.1)

(2) Suppose that A is densely defined and B is bounded everywhere defined.
Then BA is densely defined and

(BA)∗ = A∗B∗. (9.2)

Proof. (1): Let u ∈ DomA∗B∗. Then

u ∈ DomB∗, (B∗u|v) = (u|Bv), v ∈ DomB,

B∗u ∈ DomA∗, (A∗B∗u|w) = (B∗u|Aw), w ∈ DomA.

Hence, if
w ∈ DomA, Aw ∈ DomB, (9.3)

then
(A∗B∗u|w) = (u|BAw). (9.4)

But (9.3) means that w ∈ DomBA. Hence, by (9.4) u ∈ Dom(BA)∗ and

(A∗B∗u|w) =
(
(BA)∗u|w

)
, (9.5)

which means A∗B∗u = (BA)∗u.
(2): (See eg. Dereziński-Gérard). It is obvious that BA is densely defined.

Let u ∈ Dom(BA)∗. This means that

|(u|BAw)| ≤ c‖w‖, w ∈ DomBA = DomA. (9.6)

Using the boundedness of B, we can write

(u|BAw) = (B∗u|Aw), (9.7)

and hence (9.6) implies

|(B∗u|Aw)| ≤ c′‖w‖, w ∈ DomA. (9.8)

Hence, B∗u ∈ DomA∗ and

(A∗B∗u|w) = (B∗u|Aw). (9.9)

Therefore, u ∈ DomA∗B∗ and

(A∗B∗u|w) = (u|BAw). (9.10)

This means that A∗B∗u = (BA)∗u. 2



Proposition 9.9 (1) Let A be closed and densely defined. Let C be bounded
and everywhere defined. Assume also that AC is densely defined. Then

(AC)∗ =
(
C∗A∗

)cl
. (9.11)

(2) If A be closed and densely defined. Let C be bounded and invertible. Then
AC is densely defined and

(AC)∗ = C∗A∗. (9.12)

Proof. (1): A∗ and C∗ satisfy the assumptions of Prop. 9.8 (2). Hence(
C∗A∗

)∗
= A∗∗C∗∗ = AC. (9.13)

Now AC is densely defined. Hence(
C∗A∗

)cl
=
(
C∗A∗

)∗∗
= (AC)∗. (9.14)

(2): C is invertible. Hence by Prop. 3.33 (1), C∗A∗ is already closed. 2

9.5 Numerical range and maximal operators

Let T be an operator on V. Then we will write Num(T ) := Numt, where t is
the quadratic form defined by T :

t(v) := (v|Tv), v ∈ Dom v.

In other words, NumT = {(v|Tv) : v ∈ DomT, ‖v‖ = 1}.

Theorem 9.10 (1) ‖(z − T )v‖ ≥ dist(z,NumT )‖v‖, v ∈ DomT .

(2) If T is a closed operator and z ∈ C\(NumT )cl, then z − T has a closed
range.

(3) If z ∈ rsT\(NumT )cl, then ‖(z − T )−1‖ ≤ |dist(z,NumT )|−1.

(4) Let ∆ be a connected component of C\(NumT )cl. Then either ∆ ⊂ spT or
∆ ⊂ rsT .

Proof. To prove (1), take z 6∈ (NumT )cl. Recall that NumT is convex. Hence,
replacing T wih αT + β for appropriate α, β ∈ C, we can assume that z = iν
and ν = dist(iν,NumT ). Then,

0 ∈ (NumT )cl ⊂ {Imz ≤ 0}.

Thus

‖(iν − T )v‖2 = (Tv|Tv)− iν(v|Tv) + iν(Tv|v) + |ν|2‖v‖2

= (Tv|Tv)− 2νIm(v|Tv) + |ν|2‖v‖2

≥ |ν|2‖v‖2.



(1) implies (2) and (3).
Let z0 ∈ rsT\NumT . By (3), if r = dist(z0,NumT ), then {|z − z0| < r} ⊂

rsT . This proves (4). 2

Definition 9.11 An operator T is called maximal, if spT ⊂ (NumT )cl.

Clearly, if T is a maximal operator, and z 6∈ (NumT )cl, then

‖(z − T )−1‖ ≤ (dist(z,NumT ))−1.

If T is bounded, then T is maximal.

Theorem 9.12 Suppose that T is an operator and ∆i are the connected com-
ponents of C\(NumT )cl. Then the following conditions are necessary and suffi-
cient for T to be maximal:

(1) For all i, there exists zi ∈ ∆i such that zi 6∈ spT ;

(2) T is closable and, for all i, there exists zi ∈ ∆i such that Ran (zi−T ) = V.

(3) T is closed and, for all i, there exists zi ∈ ∆i such that Ran (zi − T ) is
dense in V.

(4) T is closed and, for all i, there exists zi ∈ ∆i such that Ker(zi−T ∗) = {0}.

If K is a closed convex subset of C, then C\K is either connected or has two
connected components.

9.6 Dissipative operators

Definition 9.13 We say that an operator A is dissipative iff

Im(v|Av) ≤ 0, v ∈ DomA.

Equivalently, A is dissipative iff NumA ⊂ {Imz ≤ 0}.

Definition 9.14 A is maximally dissipative or m-dissipative iff A is dissipative
and

spA ⊂ {Imz ≤ 0}.

Theorem 9.15 Let A be a densely defined operator. Then the following con-
ditions are equivalent:

(1) −iA is the generator of a strongly continuous semigroup of contractions.

(2) A is maximally dissipative.

Proof. (1) ⇒(2): We have

Re(v|e−itAv) ≤ |(v|e−itAv)| ≤ ‖v‖2.



Hence, for v ∈ DomA,

Im(v|Av) = Re(v| − iAv)

= Re lim
t↗0

t−1
(
(v|e−itAv)− ‖v‖2

)
≤ 0.

Hence A is dissipative.
We know that the generators of contraction semigroups satisfy {Rez > 0} ⊂

rs(−iA).
(2)⇒(1): Let Rez > 0. We have

‖v‖‖(z + iA)v‖ ≥ |(v|(z + iA)v)|

≥ Re(v|(z + iA)v) ≥ Rez‖v‖2.

Hence, noting that z ∈ rs(−iA), we obtain ‖(z + iA)−1‖ ≤ Rez−1. Therefore,
−iA is an operator of the type (1, 0), and hence generator of a contraction
semigroup. 2

Theorem 9.16 Let A be densely defined and dissipative. Then the following
conditions are sufficient and necessary for A to be maximally dissipative:

(1) A is closable and there exists z+ with Imz+ > 0 and Ran (z+ −A) = V.

(2) A is closed and there exists z+ with Imz+ > 0 and Ran (z+ − A) dense in
V.

(3) A is closed and there exists z+ with Imz+ > 0 and Ker(z+ −A∗) = {0}.

9.7 Hermitian operators

Definition 9.17 An operator A : V → V is hermitian iff

(Aw|v) = (w|Av), w, v ∈ DomA.

Equivalently, A is hermitian iff

(Av|v) = (v|Av), v ∈ DomA,

iff NumA ⊂ R iff A and −A are dissipative.
If in addition A is densely defined, then it is hermitian iff A ⊂ A∗.

Remark 9.18 In a part of literature the term “symmetric” is used instead of
“hermitian”.

Theorem 9.19 Let A be densely defined and hermitian. Then A is closable.
Besides, one of the following possibilities is true:

(1) spA ⊂ R.

(2) spA = {Imz ≥ 0}.



(3) spA = {Imz ≤ 0}.
(4) spA = C.

Proof. A is closable because A ⊂ A∗ and A∗ is closed.
We know that NumA ⊂ R. If NumA 6= R, then C\(NumA)cl is connected.

Hence then we have the possibilities (1) or (4).
If NumA = R, then C\(NumA)cl consists of two connected components,

{Imz > 0} and {Imz < 0}. Hence then we have the possibilities (1), (2), (3)
and (4). 2

Theorem 9.20 Let A be a densely defined operator. Then the following con-
ditions are equivalent:

(1) −iA is the generator of a strongly continuous semigroup of isometries.

(2) A is hermitian and spA ⊂ {Imz ≤ 0}.

Proof. (1)⇒(2): For v ∈ DomA,

0 = ∂t(e
−itAv|e−itAv)

∣∣∣
t=0

= i(Av|v)− i(v|Av).

Hence A is hermitian.
Isometries are contractions. Hence, by Thm 5.17, spA ⊂ {Imz ≤ 0}.
(2)⇒(1): By Thm 9.10, ‖(z + iA)−1‖ ≤ |Rez|−1, Rez > 0. Hence, by Thm

5.17, e−itA is the generator of a strongly continuous contractive semigroup.
For v ∈ DomA,

∂t(e
−itAv|e−itAv) = i(Ae−itAv|e−itAv)− i(e−itAv|Ae−itAv) = 0.

Hence, for v ∈ DomA, ‖e−itAv‖2 = ‖v‖2. By density of DomA, e−itA is a group
of isometries. 2

Theorem 9.21 Let A be densely defined and hermitian. Then the following
conditions are equivalent to spA ⊂ {Imz ≤ 0}:
(1) There exists z+ with Imz+ > 0 and z+ 6∈ spA.

(2) There exists z+ with Imz+ > 0 and Ran (z+ −A) = V.

(3) A is closed and there exists z+ with Imz+ > 0 and Ran (z+ − A) dense in
V.

(4) A is closed and there exists z+ with Imz+ > 0 and Ker(z+ −A∗) = {0}.

9.8 Self-adjoint operators

Definition 9.22 Let A be a densely defined operator on V. A is self-adjoint iff
A∗ = A.



In other words, A is self-adjoint if for w ∈ W there exists y ∈ V such that

(y|v) = (w|Av), v ∈ DomA,

then w ∈ DomA and Aw = y.

Theorem 9.23 Every self-adjoint operator is hermitian and closed. If A ∈
B(V), then it is self-adjoint iff it is hermitian.

Theorem 9.24 Let A be densely defined hermitian. Then the following con-
ditions are necessary and sufficient for A to be self-adjoint:

(1) spA ⊂ R.

(2) There exist z± with ±Imz± > 0 such that z± 6∈ spA.

(3) There exist z± with ±Imz± > 0 such that Ran (z± −A) = V.

(4) A is closed and there exist z± with ±Imz± > 0 such that Ran (z± − A) is
dense in V.

(5) A is closed and there exist z± with ±Imz± > 0 such that Ker(z± − A∗) =
{0}.

Theorem 9.25 Let A be densely defined and hermitian. Then the following
conditions are sufficient for A to be self-adjoint:

(1) There exists z0 ∈ R such that z0 6∈ spA.

(2) There exists z0 ∈ R such that Ran (z0 −A) = V.

(3) A is closed and there exists z0 ∈ R such that Ran (z0 −A) is dense in V.

(4) A is closed and there exists z0 ∈ R such that Ker(z0 −A∗) = {0}.

Theorem 9.26 (Stone Theorem) Let A be an operator. Then the following
conditions are equivalent:

(1) −iA is the generator of a strongly continuous group of unitary operators.

(2) A is self-adjoint.

Proof. To prove (1)⇒(2), suppose that R 7→ U(t) is a strongly continuous
unitary group. Let −iA be its generator. Then [0,∞[3 t 7→ U(t), U(−t) are
semigroups of isometries with the generators −iA and iA. By Theorem 9.20, A
is hermitian and spA ⊂ {Imz ≥ 0} ∩ {Imz ≤ 0} = R. Hence A is self-adjoint.

(2)⇒(1): By Theorem 9.20, ∓iA generate semigroups of isometries e∓itA.
By (5.8), e±itA is the inverse of e∓itA. Hence these isometries are unitary. 2

9.9 Spectral theorem

Definition 9.27 Recall that B ∈ B(V) is called normal if B∗B = BB∗.



Let us recall one of the versions of the spectral theorem for bounded normal
operators.

Let X be a Borel subset of C. Let M(X) denote the space of measurable
functions on X with values in C. For f ∈ M(X) we set f∗(x) := f(x), x ∈ X.
In particular, the function X 3 z 7→ id(z) := z belongs to M(X).
L∞(X) will denote the space of bounded measurable functions on X.

Theorem 9.28 Let B be a bounded normal operator on V. Then there exists
a unique linear map

L∞(spB) 3 f 7→ f(B) ∈ B(V)

such that 1(B) = 1l, id(B) = B, fg(B) = f(B)g(B),
f(B)∗ = f∗(B), ‖f(B)‖ ≤ sup |f |,
if fn → f pointwise and |fn| ≤ c then s− lim

n→∞
fn(B)→ f(B).

Above, all functions f, fn, g ∈ L∞(spB).

Theorem 9.29 Let B be a bounded normal operator B. Let f ∈M(spB). Set

fn(x) :=

{
f(x) |f(x)| ≤ n,
0, |f(x)| > n.

Dom(f(B)) = {v ∈ V : sup ‖fn(B)v‖ <∞}.

Then for v ∈ DomB there exists the limit

f(B)v := lim
n→∞

fn(B)v,

which defines a closed normal operator.

Let now A be a (possibly unbounded) self-adjoint operator on V.

Theorem 9.30 Then U := (A+ i)(A− i)−1 is a unitary operator with

spU = (spextA+ i)(spextA− i)−1.

Proof. Using the fact that A is hermitian, for v ∈ DomA we check that

‖(A± i)v‖2 = ‖Av‖2 + ‖v‖2.

Therefore, (A ± i) : DomA → V are isometric. Using Ran (A ± i) = V we see
that they are unitary. Hence so is (A+ i)(A− i)−1.

The location of the spectrum of U follows from

(z − U)−1 = (A− i)−1(z − 1)−1
(
A− i(z + 1)(z − 1)−1

)−1

.

2

U is unitary, hence normal. If f is a measurable function on spA, we define

f(A) := g(U),

where g(z) = f(i(z + i)(z − 1)−1).



Theorem 9.31 The map

M(spA) 3 f 7→ f(A) ∈ B(V)

is linear and satisfies 1(A) = 1l, id(A) = A, fg(A) = f(A)g(A),
f(A)∗ = f(A), ‖f(A)‖ ≤ sup |f |,
where f, g ∈M(spA),

Definition 9.32 A possibly unbounded densely defined operator A is called nor-
mal if DomA = DomA∗ and

‖Av‖2 = ‖A∗v‖, v ∈ DomA.

One can extend Thm 9.31 to normal unbounded operators in an obvious
way.

Proposition 9.33 Let A be normal. Then the closure of the numerical range
is the convex hull of its spectrum.

Proof. We can write A =
∫
λdE(λ), where E(λ) is a spectral measure. Then

for ‖v‖ = 1, (v|Av) is the center of mass of the measure (v|dE(λ)v). 2

9.10 Essentially self-adjoint operators

Definition 9.34 An operator A : V → V is essentially self-adjoint iff Acl is
self-adjoint.

Theorem 9.35 (1) Every essentially self-adjoint operator is hermitian and
closable.

(2) A is essentially self-adjoint iff A∗ is self-adjoint.

Theorem 9.36 Let A be hermitian. Then the following conditions are neces-
sary and sufficient for A to be essentially self-adjoint:

(1) There exists z+ with Imz+ > 0 and z− with Imz− < 0 such that Ran (z+−
A) and Ran (z− −A) are dense in V.

(2) There exists z+ with Imz+ > 0 and z− with Imz− < 0 such that Ker(z+ −
A∗) = {0} and Ker(z− −A∗) = {0}.

Theorem 9.37 Let A be hermitian. Let z0 ∈ R\NumA. Then the following
conditions are sufficient for A to be essentially self-adjoint:

(1) Ran (z0 −A) is dense in V.

(2) Ker(z0 −A∗) = {0}.



9.11 Rigged Hilbert space

Let V be a Hilbert space with the scalar product (·|·). Suppose that T is a
self-adjoint operator on V with T ≥ c0 > 0. Then DomT can equipped with
the scalar product

(Tv|Tw), v, w ∈ DomT

is a Hilbert space embedded in V. We will prove a converse construction, that
leads from an embedded Hilbert space to a positive self-adjoint operator.

Let V∗ denote the space of bounded antilinear functionals on V. The Riesz
lemma says that V∗ is a Hilbert space naturally isomorphic to V.

Suppose that W is a Hilbert space contained and dense in V. We assume
that for c0 > 0

(w|w)W ≥ c0(w|w), w ∈ W. (9.15)

Of course, W∗ is also a Hilbert naturally isomorphic to W. However, we do not
want to use this isomorphism.

Let J : W → V denote the embedding. By (9.15), it is bounded. Clearly
J∗ : V → W∗ (where we use the identification V ' V∗). We have KerJ∗ =
(Ran J)⊥ = {0} and (Ran J∗)⊥ = KerJ = {0}. Hence J∗ is a dense embedding
of V in W∗. Thus we obtain a triplet of Hilbert spaces, sometimes called a
rigged Hilbert space

W ⊂ V ⊂ W∗.

Theorem 9.38 There exists a unique positive injective self-adjoint operator T
on V such that DomT =W and

(w1|w2)W = (Tw1|Tw2), w1, w2 ∈ W. (9.16)

Proof. Without loss of generality we will assume that c0 = 1.
For v ∈ V, w ∈ W, we have

|(w|v)| ≤ ‖w‖‖v‖ ≤ ‖w‖W‖v‖.

By the Riesz lemma, there exists A : V → W such that

(w|v) = (w|Av)W , (9.17)

We treat A as an operator from V to V. A is bounded, because

‖Av‖2 ≤ ‖Av‖2W = (Av|Av)W = (Av|v) ≤ ‖Av‖‖v‖.

A is positive, (and hence in particular self-adjoint) because

(Av|v) = (Av|Av)W ≥ 0.

A has a zero kernel, because Av = 0 implies

0 = (w|Av)V = (w|v), v ∈ DomW,



and W is dense.
Thus T := A−1/2 defines a positive self-adjoint operator ≥ 1l. We have

(w|y)W = (w|T 2y), w ∈ W, y ∈ DomT 2 = RanA.

Using the lemma below, with two embedded Hilbert spaces W and DomT hav-
ing a common dense subspace DomT 2, we obtain W = DomT and the equality
(9.16). 2

Lemma 9.39 Let W+,W− be two Hilbert spaces embedded in a Hilbert space
V. Suppose that their norms satisfy

‖w‖ ≤ ‖w‖+, w ∈ W+, ‖w‖ ≤ ‖w‖−, w ∈ W−.

Let D ⊂ W+ ∩W− be dense both in W+ and in W−. Suppose ‖ · ‖+ = ‖ · ‖− in
D. Then W+ =W− and ‖ · ‖+ = ‖ · ‖−.

Proof. Let w+ ∈ W+. There exists (wn) ⊂ D such that ‖wn − w+‖+ → 0.
This implies ‖wn − w+‖ → 0.

Besides wn is Cauchy in W− Hence there exists w− ∈ W− such that ‖wn −
w−‖− → 0. This implies ‖wn − w−‖ → 0. Hence w+ = w−. Besides, ‖w+‖+ =
lim ‖wn‖+ = lim ‖wn‖− = ‖w−‖−.

Thus W+ ⊂ W− and in W+ the norm ‖ · ‖+ coincides with the norm ‖ · ‖−.
2

By functional calculus for self-adjoint operators we can define S := T 2.
Clearly, T =

√
S and

(v|Sw) = (v|w)W , v ∈ Dom
√
S, w ∈ DomS.

We will say that the operator S is associated with the sesquilinear form (·|·)W .

9.12 Polar decomposition

Let A be a densely defined closed operator. Let S + 1 be the positive operator
associated with the sesquilinear form

(Av|Aw) + (v|w), v, w ∈ DomA.

Theorem 9.40 S = A∗A.

In order to prove this theorem, introduce V1 = (1l + T )−1V and V−1 = (1l +
T )V, so that V1 = DomA and V−1 = V∗1 . Denote by A(1) the operator A treated
as an operator V1 → V. Clearly, A(1) is bounded, and so is A∗(1) : V → V−1.

Proposition 9.41 (1) DomA∗ = {v ∈ V : A∗(1)v ∈ V}.

(2) On DomA∗ the operators A∗ and A∗(1) coincide.



(3) DomT 2 = {v ∈ DomA : Av ∈ DomA∗}
(4) For v ∈ DomT 2, T 2v = A∗Av.

Proof. (1). Let w ∈ V. We have

w ∈ DomA∗ ⇔ |(w|Av)| ≤ C‖v‖, v ∈ DomA. (9.18)

But DomA = V1 and (w|Av) = (A∗(1)w|v). Hence, (9.18) is equivalent to

|(A∗(1)w|v)| ≤ C‖v‖, v ∈ DomA, (9.19)

which means A∗(1)w ∈ V.

In the proof of (3) we will use the operators T(1) and T ∗(1) defined analogously
as A(1) and A∗(1). We have

T ∗(1)T(1) = A∗(1)A(1). (9.20)

In fact, for v, w ∈ V1

(w|T ∗(1)T(1)v) = (T(1)w|T(1)v) = (A(1)w|A(1)v) = (w|A∗(1)A(1)v).

Now

DomT 2 = {v ∈ V1 : T ∗(1)T(1)v ∈ V} by spectral theorem

= {v ∈ V1 : A∗(1)A(1)v ∈ V} by (9.20)

= {v ∈ V1 : A(1)v ∈ DomA∗} by (1).

2

Theorem 9.42 Let A be closed. Then there exist a unique positive operator
|A| and a unique partial isometry U such that KerU = KerA and A = U |A|.
We have then RanU = RanAcl.

Proof. The operator A∗A is positive. By the spectral theorem, we can then
define

|A| :=
√
A∗A.

On Ran |A| the operator U is defined by

U |A|v := Av.

It is isometric, because

‖|A|v‖2 = (v||A|2v) = (v|A∗Av) = ‖Av‖2,

and correctly defined. We can extend it to (Ran |A|)cl by continuity. On
Ker|A| = (Ran |A|)cl, we extend it by putting Uv = 0. 2



9.13 Scale of Hilbert spaces I

Let A be a positive self-adjoint operator on V with A ≥ 1. We define the family
of Hilbert spaces Vα, α ∈ R as follows.

For α ≥ 0, we set Vα := RanA−α = DomAα with the scalar product

(v|w)α := (v|A2αw).

Clearly, for 0 ≤ α ≤ β we have the embedding Vα ⊃ Vβ .

For α ≤ 0 we set Vα := V∗−α, If α ≤ β ≤ 0 we have a natural inclusion
Vα ⊃ Vβ .

Note that we have the identification V = V∗, hence both definitions give
V0 = V.

Thus we obtain

Vα ⊃ Vβ , for any α ≤ β. (9.21)

Note that for α ≤ 0 V is embedded in Vα and for v, w ∈ V

(v|w)α =
(
v|A2αw

)
.

Moreover, V is dense in Vα.

Sometimes we will use a different notation: A−αV = Vα.

By restriction or extension, we can reinterpret the operator Aβ as a unitary
operator

Aβ(−α) : AαV → Aα+βV.

If B is a self-adjoint operator, then we will use the notation 〈B〉 := (1 +
B2)1/2. Clearly, B gives rise to a bounded operator

B(α) : 〈B〉−αV → 〈B〉−α+1V.

Thus every self-adjoint operator can be interpreted in many ways, depending
on β we choose. The standard choice corresponding to β = 1

B(1) : DomB = 〈B〉−1V → V

can be called the “operator interpretation”.

Another interpretation is often useful:

B(1/2) : 〈B〉−1/2V → 〈B〉1/2V,

the “form interpretation”. One often introduces the form domain Q(B) :=
〈B〉−1/2V. We obtain a sesquilinear form

Q(B)×Q(B) 3 (v, w) 7→ (v|B(1/2)w).



9.14 Scale of Hilbert spaces II

We will write A > 0 if A is positive, self-adjoint and KerA = {0}. One can
generalize the definition of the scale of spaces AαV to the case A > 0.

Set V+ := Ran 1l[1,∞[(A), V− := Ran 1l[0,1[(A). Let A± := A
∣∣∣
V±

. Then

A+ ≥ 1 and A−1
− ≥ 1. Hence we can define the scales of spaces Aα+V+, Aα−V− :=

(A−1
− )−αV−, α ∈ R. We set

AαV := Aα+V+ ⊕Aα−V−. (9.22)

If A is not bounded away from zero, then the scale (9.22) does not have the
nested property (9.21). However, for any α, β ∈ R, AαV ∩AβV is dense in AαV.
Again, we have a family of unitary operators

Aβ(α) : AαV → Aα+βV.

9.15 Complex interpolation

Let us recall a classic fact from complex analysis:

Theorem 9.43 (Three lines theorem) Suppose that a function {0 ≤ Rez ≤
1} 3 z 7→ f(z) ∈ C is continuous, bounded, analytic in the interor of its domain,
and satisfies the bounds

|f(is)| ≤ c0,

|f(1 + is)| ≤ c1, s ∈ R. (9.23)

Then
|f(t+ is)| ≤ c1−t0 ct1, t ∈ [0, 1], s ∈ R. (9.24)

Theorem 9.44 Let A > 0 on V, B > 0 on W. Consider an operator C :
V ∩A−1V → W ∩B−1W that satisfies

‖Cv‖ ≤ c0‖v‖,
‖BCv‖ ≤ c1‖Av‖, v ∈ V ∩A−1V.

(In other words, C is bounded as an operator V → W with the norm ≤ c0 and
A−1V → B−1W with the norm ≤ c1.) Then, for 0 ≤ t ≤ 1,

‖BtCv‖ ≤ c1−t0 ct1‖Atv‖, (9.25)

and so C extends to a bounded operator

C : A−tV → B−tW,

with the norm ≤ c1−t0 ct1.



Proof. Let w ∈ W ∩ B−1W and v ∈ V ∩ A−1V. The vector valued functions
z 7→ Bzw and z 7→ Azv are bounded on {0 ≤ Rez ≤ 1}, and hence so is

f(z) := (Bzw|CAzv)

We have

|f(is)| ≤ c0‖w‖‖v‖,
|f(1 + is)| ≤ c1‖w‖‖v‖, s ∈ R.

Hence,
|f(t)| ≤ c1−t0 ct1‖w‖‖v‖, t ∈ [0, 1].

This implies (9.25), by the density of W ∩B−1W. 2

9.16 Relative operator boundedness

Let A be a closed operator and B an operator with DomB ⊃ DomA. Recall
that the (operator) A-bound of B is

a1 := inf
ν>0

sup
v 6=0, v∈DomA

(
‖Bv‖2

‖Av‖2 + ν2‖v‖2

) 1
2

. (9.26)

In a Hilbert space

‖Av‖2 + ν2‖v‖2 = ‖(A∗A+ ν2)1/2v‖2.

Therefore, (9.26) can be rewritten as

a1 = inf
ν>0
‖B(A∗A+ ν2)−1/2‖. (9.27)

If, moreover, A is self-adjoint, then, using the unitarity of (A2+ν2)−1/2(±iν−A),
we can rewrite (9.27) as

a1 = inf
ν 6=0
‖B(iν −A)−1‖. (9.28)

Using Prop. 3.22 we obtain

a1 = inf
z∈rsA

‖B(z −A)−1‖. (9.29)

Theorem 9.45 (Kato-Rellich) Let A be self-adjoint, B hermitian. Let B be
A-bounded with the A−bound < 1. Then

(1) A+B is self-adjoint on DomA.

(2) If A is essentally self-adjoint on D, then A + B is essentially self-adjoint
on D.

Proof. Clearly, A+B is hermitian on DomA. Moreover, for some ν, ‖B(±iν−
A)−1‖ < 1. Hence, iν −A−B and −iν −A−B are invertible. 2



9.17 Relative form boundedness

Assume first that A is a positive self-adjoint operator. Let B be a bounded
operator from DomA1/2 = (1l + A)−1/2V to (1l + A)1/2V. Note that B defines
a bounded quadratic form on Q(B) := (1l +A)−1/2V

Q(B) 3 u, v 7→ (u|Bv).

Let us assume that this form is hermitian, that is

(u|Bv) = (v|Bu).

Definition 9.46 We say that B is form-bounded relatively to A iff there exist
constants a, b such that

|(v|Bv)| ≤ a(v|Av) + b(v|v), v ∈ DomA1/2. (9.30)

The infimum of a satisfying (9.30) is called the A-bound of B.

In other words: the A-form bound of B equals

a2 := inf
c>0

sup
v∈DomA1/2\{0}

(v|Bv)

(v|Av) + c(v|v)
.

This can be rewritten as

a2 = inf
c>0
‖(A+ c)−1/2B(A+ c)−1/2‖.

Theorem 9.47 A is a positive self-adjoint operator. Let B have the form
A-bound less than 1. Then

R(µ) :=

∞∑
j=0

(µ−A)−1/2
(
(µ−A)−1/2B(µ−A)−1/2

)j
(µ−A)−1/2

is convergent for large negative µ. Moreover, R(z) is a resolvent of a self-adjoint
bounded from below operator, which will be called the form sum of A and B and
denoted, by the abuse of notation, A+B. We have Dom |A+B| 12 = Dom |A| 12 .

We can generalize the concept of the form boundedness to the context of not
necessarily positive operators as follows. Let A be a self-adjoint operator. Let
B be a bounded operator from 〈A〉−1/2V to 〈A〉1/2V. We assume that the form
given by B is hermitian.

Definition 9.48 The improved form A-bound of B is

a′2 := inf
ν>0,µ

‖(A− µ)2 + ν2)−
1
4B((A− µ)2 + ν2)−

1
4 ‖. (9.31)

(9.31) can be rewritten as

a′2 = inf
ν>0,µ

‖(µ+ iν −A)−
1
2B(µ+ iν −A)−

1
2 ‖. (9.32)



Theorem 9.49 Let A be a self-adjoint operator. Let B have the improved A-
form bound less than 1. Then there exists open subsets in the upper and lower
complex half-plane such that the series

R(z) :=

∞∑
j=0

(z −A)−1/2
(
(z −A)−1/2B(z −A)−1/2

)j
(z −A)−1/2

is convergent. Moreover, R(z) is a resolvent of a self-adjoint operator, which
will be called the form sum of A and B and denoted, by the abuse of notation,
A+B.

The form boundedness is stronger than the operator boundedness. Indeed,
suppose that B is a hermitian operator on V with DomB ⊃ DomA and

‖B
(
(A− µ)2 + ν2

)1/2‖ ≤ a.
This means that B is bounded as an operator

(
(A − µ)2 + ν2

)−1/2V → V and

as an operator V →
(
(A− µ)2 + ν2

)1/2V, in both cases with norm ≤ a. By the

complex interpolation, it is bounded as an operator
(
(A − µ)2 + ν2

)−1/4V →(
(A − µ)2 + ν2

)1/4V with norm ≤ a. In particular, we have a′2 ≤ a1, where a1

is the operator A-bound and a′2 is the improved form A-bound.

9.18 Discrete and essential spectrum

Let X be a Banach space and A ∈ B(X ). We say that e ∈ spA belongs to the
discrete spectrum of A if it is an isolated point of spA and dim 1l{e}(A) < ∞.
The discrete spectrum is denoted by spd(A). The essential spectrum is defined
as

spessA := spA\spdA.

Assume now that H is a Hilbert space and A is an operator on H. Then

Theorem 9.50 Let A be self-adjoint and λ ∈ spA. Then

(1) λ ∈ spdA iff there exists ε > 0 such that dim 1l[λ−ε,λ+ε](A) <∞.

(2) λ ∈ spess(A) iff for every ε > 0 we have dim 1l[λ−ε,λ+ε](A) =∞.

Theorem 9.51 Let A be normal and λ ∈ spA. Then

(1) λ ∈ spdA iff there exists ε > 0 such that dim 1lB(λ,ε)(A) <∞.

(2) λ ∈ spess(A) iff for every ε > 0 we have dim 1lB(λ,ε)(A) =∞.

Proposition 9.52 Let A be a normal operator and λ ∈ C. Then the following
are equivalent:

(1) λ ∈ spess(A).



(2) There exists a sequence of vectors (vn) such that w− lim
n→∞

vn = 0, ‖vn‖ = 1

and lim
n→∞

‖(H − λ)vn‖ = 0.

Proof. Fix ε > 0 and set Pε := 1lB(λ,ε)(A). Then

‖(1− Pε)vn‖ ≤ ε−1‖(A− λ)vn‖ → 0. (9.33)

Thus, after dropping a finite number of elements of the sequence, we can assume
that ‖(1 − Pε)vn‖ < 1

2 , and hence ‖Pεvn‖ > 1
2 . Set wn := 1

‖Pεvn‖Pεvn. Then

‖wn‖ = 1, wn ∈ RanPε, w− lim
n→∞

wn = 0.

Suppose that RanPε is finite dimensional. Then {w ∈ RanPε | ‖w‖ = 1} is
compact. Hence, passing to a subsequence, we can assume that wn is convergent
(in norm). But it is weakly convergent to 0. So it is convergent in norm to 0.
But this is in contradiction with ‖wn‖ = 1. 2

9.19 The mini-max and max-min principle

We will need the following lemma:

Lemma 9.53 Let X ,Y be finite dimensional subspaces. Then

dimX ∩ Y⊥ ≥ dimX − dimY. (9.34)

Proof. It is well-known that

dimX + dimW = dim(X +W) + dimX ∩W. (9.35)

Assume for a moment that X ,W are contained in a finite dimensional space
V. Then

dimY⊥ = dimV − dimY. (9.36)

Hence, setting W = Y⊥, we obtain

dimX ∩ Y⊥ = dimX + dimY⊥ − dim(X + Y⊥) (9.37)

≥ dimX + dimY⊥ − dimV = dimX − dimY. (9.38)

But enlarging V only makes Y⊥ bigger. 2

If H is self-adjoint, we will write

inf H := inf sp(H), supH := sup sp(H). (9.39)

Let H be a bounded from below self-adjoint operator on a Hilbert space V.
It is easy to see that

inf H = inf{(v|Hv) : ‖v‖ = 1, v ∈ V}. (9.40)



For an operator H on V and W, a closed subspace W of V, we will write
HW := I∗WH

∣∣
W , where IW denotes the embedding of W into V. Then if H is

bounded and self-adjoint, then so is HW . If H is only bounded from below,
then so is HW .

(9.40) allows us to compute the ground state energy of a Hamiltonian. Let
us extend (9.40) to next eigenvalues. We define

µn(H) := inf
{

supHL L is an n-dim. subspace of V
}
, n = 1, 2, . . . ;

Σ(H) := inf spess(H),

N(H) := dim 1l]−∞,Σ[(H)

Theorem 9.54 µn(H) for n ≤ N are the consecutive eigenvalues of H, count-
ing the multiplicity. For n > N(H) we have µn(H) = Σ(H).

Proof. Let a ∈ sp(H). Let W := Ran 1l]−∞,a[(H), X := Ran 1l]−∞,a](H), Let
n ∈ N satisfy

dimW < n ≤ dimX . (9.41)

and dimL = n. Then

dimL ∩W⊥ ≥ dimL − dimW > 1. (9.42)

Hence there exists w ∈ L ∩W⊥, ‖w‖ = 1. So

supHL ≥ (w|Hw) ≥ a. (9.43)

On the other hand, if L is n-dimensional and W ⊂ L ⊂ X , then supHL = a.
Hence µn = a. 2

Theorem 9.55 (The Rayleigh-Ritz method) We have

µn(H) ≤ µn(HW).

Proof.

µn(H) = inf{supHL : dimL = n} (9.44)

≤ inf{supHL : dimL = n, L ⊂ W} (9.45)

≤ inf{sup(HW)L : dimL = n, L ⊂ W} = µn(HW). (9.46)

2

Theorem 9.56 (1) Let H ≤ G. Then µn(H) ≤ µn(G).

(2) |µn(H)− µn(G)| ≤ ‖H −G‖.
Remark 9.57 The theorems of this subsection remain true if the operators are
only bounded from below (but not necessarily bounded). In this case, if v does
not belong to the form domain of A, then we set (v|Av) =∞. Hence, if L is not
contained in the form domain of A, then supAL =∞, and the above theorems
remain true.

Notice also that if D is an essential domain for the quadratic form generated
by A, then

µn(A) := inf{supAL : L is an n-dim. subspace of D}.



9.19.1 Weyl Theorem on essential spectrum

Theorem 9.58 Suppose H0, H are self-adjoint and for all z ∈ C\R,

(z −H)−1 − (z −H0)−1

is compact. Then spess(H) = spess(H0).

Proof. We have for z0 ∈ C\R and r < Imz0,

(z0 −H)−n =
1

2πin!

∫
∂K(z0,r)

(z0 − z)−n(z −H)−1dz. (9.47)

Hence

(z0−H)−n−(z0−H0)−n =
1

2πin!

∫
∂K(z0,r)

(z0−z)−n
(

(z−H)−1−(z−H0)−1
)

dz

is compact as well. But every f ∈ Cc(R) can be approximated in the supremum
norm by linear combinations of (z0 − H)−n, (z0 − H)−n, n = 1, 2, . . . . Hence
f(H)− f(H0) is compact.

In particular, let λ 6∈ spess(H). Then there exists f ∈ Cc(R), f(λ) 6= 0 such
that f(H) is compact. But f(H)− f(H0) is compact. Hence f(H0) is compact.
Hence λ 6∈ spess(H0). Therefore, spess(H0) ⊂ spess(H). 2

9.20 Singular values of an operator

Let A be a bounded operator on a Hilbert space V. We define for n = 1, 2, . . .

sn(A) := sup{inf{(‖Av‖ : ‖v‖ = 1, v ∈ L} : L n-dim. subspace of V}.

Clearly, for |A| := (A∗A)1/2,

sn(A) = sn(|A|) = −µn(−|A|),

and s1(A) = ‖A‖.

9.21 Convergence of unbounded operators

Recall that lim denotes the norm convergence and s− lim the strong convergence
(of bounded operators). Recall also that C∞(R) denotes the space of continuous
functions on R vanishing at infinity and Cb(R) the space of bunded functions
on R.

Let (An) be a sequence of (possibly unbounded) operators. We say that

(1) An → A in the norm resolvent sense if for z ∈ C\R

lim
n→∞

(z −An)−1 = (z −A)−1;



(2) An → A in the strong resolvent sense if for z ∈ C\R

s− lim
n→∞

(z −An)−1 = (z −A)−1;

Theorem 9.59 (1) An → A in the norm resolvent sense iff for any f ∈
C∞(R) we have lim

n→∞
f(An) = f(A).

(2) An → A in the strong resolvent sense iff for any g ∈ Cb(R) we have
s− lim

n→∞
g(An) = g(A).

Proof. The ⇐ implications are obvious. Let us prove the other implications.
(1): Let z0 ∈ C\R, k = 1, 2, . . . , and r < Imz0. We have

(z0 −A)−k =
1

2πik!

∫
∂K(z0,r)

(z0 − z)−k(z −A)−1dz, (9.48)

and similarly with A replaced by An. Hence lim
n→∞

(z0 − An)−k = (z0 − A)−k.

Likewise, lim
n→∞

(z0−An)−k = (z0−A)−k. Now, by the Stone-Weierstrass Theo-

rem, linear combinations of x 7→ (z0−x)−k and x 7→ (z0−x)−k with k = 1, 2, . . .
are dense in C∞(R) in the supremum norm. This easily implies (1).

(2): We first prove (2) for g ∈ C∞(R), following the proof of (1).
Let g ∈ Cb(R), v ∈ V and ε > 0. We can find f ∈ C∞(R) such that

‖(f(A)− 1)v‖ < ε

4‖g‖∞
.

Since f, gf ∈ C∞(R), we can also find n0 such that for n > n0

‖(g(A)f(A)− g(An)f(An))v‖ < ε

4
,

‖(f(A)− f(An))v‖ < ε

4‖g‖∞
.

Now

‖g(A)v − g(An)v‖ ≤‖g(A)(f(A)− 1)v‖+ ‖g(A)f(A)− g(An)f(An)v‖
+ ‖g(An)(f(An)− f(A))v‖+ ‖g(An)(f(A)− 1)v‖ < ε.

This proves (2). 2





Chapter 10

Positive forms

10.1 Quadratic forms

Let V,W be complex vector spaces.

Definition 10.1 a is called a sesquilinear form on W ×V iff it is a map

W ×V 3 (w, v) 7→ a(w, v) ∈ C

antilinear wrt the first argument and linear wrt the second argument.

If λ ∈ C, then λ can be treated as a sesquilinear form λ(w, v) := λ(w|v). If
a is a form, then we define λa by (λa)(w, v) := λa(w, v). and a∗ by a∗(v, w) :=
a(w, v). If a1 and a2 are forms, then we define a1 + a2 by (a1 + a2)(w, v) :=
a1(w, v) + a2(w, v).

Suppose that V = W. We will write a(v) := a(v, v). We will call it a
quadratic form. The knowledge of a(v) determines a(w, v):

a(w, v) =
1

4
(a(w + v) + ia(w − iv)− a(w − v)− ia(w + iv)) . (10.1)

Suppose now that V,W are Hilbert spaces. A form is bounded iff

|a(w, v)| ≤ C‖w‖‖v‖.
Proposition 10.2 (1) Let a be a bounded sesquilinear form on W ×V. Then

there exists a unique operator A ∈ B(V,W) such that

a(w, v) = (w|Av).

(2) If A ∈ B(V,W), then (w|Av) is a bounded sesquilinear form on W ×V.

Proof. (2) is obvious. To show (1) note that w 7→ a(w|v) is an antilinear
functional on W. Hence there exists η ∈ W such that a(w, v) = (w|η). We put
Av := η.

Theorem 10.3 Suppose that D,Q are dense linear subspaces of V,W and a
is a bounded sesquilinear form on D ×Q. Then there exists a unique extension
of a to a bounded form on V ×W.

123



10.2 Sesquilinear quasiforms

Let V,W be complex spaces. We say that t is a sesquilinear quasiform onW×V
iff there exist subspaces Doml t ⊂ W and Domr t ⊂ V such that

Domlt×Domrt 3 (w, v) 7→ t(w, v) ∈ C

is a sesquilinear map. From now on by a sesquilinear form we will mean a
sesquilinear quasiform.

We define a form t∗ with the domains Doml t
∗ := Domr t, Domr t

∗ := Doml t,
by the formula t∗(v, w) := t(w, v). If t1 are t2 forms, then we define t1 + t2 with
the domain Doml(t1 + t2) := Doml t1 ∩ Doml t1, Domr(t1 + t2) := Domr t1 ∩
Domr t1 by (t1 + t2)(w, v) := t1(w, v) + t2(w, v). We write t1 ⊂ t2 if Doml t1 ⊂
Doml t2, Domr t1 ⊂ Domr t2, and t1(w, v) = t2(w, v), w ∈ Doml t1, v ∈ Domr t1.

From now on, we will usually assume that W = V and Doml t = Domr t
and the latter subspace will be simply denoted by Dom t. We will then write
t(v) := t(v, v), v ∈ Dom t.

The numerical range of the form t is defined as

Numt := {t(v) : v ∈ Dom t, ‖v‖ = 1}.

We proved that Numt is a convex set.
With every operator T on V we can associate the form

t1(w, v) := (w|Tv), w, v ∈ DomT.

Clearly, Numt1 = NumT . If T is self-adjoint, we will however prefer to associate
a different form to it, see Theorem 10.11.

The form t is bounded iff Numt is bounded. Equivalently, |t(v)| ≤ c‖v‖2.
t is hermitian iff Numt ⊂ R. An equivalent condition: t(w, v) = t(v, w).
A form t is bounded from below, if there exists c such that

Numt ⊂ {z : Rez > c}.

A form t is positive if Numt ⊂ [0,∞[. In this section we develop the basics
of the theory of positive forms.

Note that many of the concepts and facts about positive forms generalize
to hermitian bounded from below forms. In fact, if t is bounded from below
hermitian, then for some c ∈ R we have a positive form t + c. We leave these
generalizations to the reader.

10.3 Closed positive forms

Let s be a positive form.

Definition 10.4 We say that s is a closed form iff Dom s with the scalar prod-
uct

(w|v)s := (s + 1)(w, v), w, v ∈ Dom s, (10.2)

is a Hilbert space. We will then write ‖v‖s :=
√

(v|v)s.



Clearly, the scalar product (10.2) is equivalent with

(s + c)(w, v), w, v ∈ Dom s,

for any c > 0.

Theorem 10.5 The form s is closed iff for any sequence (vn) in Dom s, if
vn → v and s(vn − vm)→ 0, then v ∈ Dom s and s(vn − v)→ 0.

Example 10.6 Let A be an operator. Then

(Aw|Av), w, v ∈ DomA,

is a closed form iff A is closed.

10.4 Closable positive forms

Let s be a positive form.

Definition 10.7 We say that s is a closable form iff there exists a closed form
s1 such that s ⊂ s1.

Theorem 10.8 (1) The form s is closable⇔ for any sequence (vn) ⊂ Dom s,
if vn → 0 and s(vn − vm)→ 0, then s(vn)→ 0.

(2) If s is closable, then there exists the smallest closed form s1 such that
s ⊂ s1. We will denote it by scl.

(3) Nums is dense in Numscl

Proof. (1) ⇒ follows immediately from Theorem 10.5.
To prove (1) ⇐, define s1 as follows: v ∈ Dom s1, iff there exists a se-

quence (vn) ⊂ Dom s such that vn → v and s(vn − vm) → 0. From s(vn) ≤
(
√
s(v1) +

√
s(vn − v1))2 it follows that

(
s(vn)

)
is bounded. From |s(vn) −

s(vm)| ≤
√
s(vn − vm)

(√
s(vn) +

√
s(vn)

)
it follows that

(
s(vn)

)
is a Cauchy

sequence. Hence we can set s1(v) := lim
n→∞

s(vn)

To show that the definition is correct, suppose that (wn) ∈ Dom s, wn → v
and s(wn−wm)→ 0. Then s(vn−wn− (vm−wm))→ 0 and vn−wn → 0. By
the hypothesis we get s(vn − wn) → 0. Hence, lim

n→∞
s(vn) = lim

n→∞
s(wn). Thus

the definition of s1 does not depend on the choice of the sequence vn. It is clear
that s1 is a closed form containing s. Hence s is closable.

To prove (2) note that the form s1 constructed above is the smallest closed
form containg s. 2

Example 10.9 Let A be an operator. Then

(Aw|Av), w, v ∈ DomA,

is closable iff A is a closable operator. Then

(Aclw|Aclv), w, v ∈ DomAcl

is its closure.



Definition 10.10 We say that a linear subspace Q is an essential domain of

the form s if
(
s
∣∣∣
Q×Q

)cl

= s.

10.5 Operators associated with positive forms

Let S be a self-adjoint operator. We define the form s as follows:

s(v, w) := (|S|1/2v|sgn(S)|S|1/2w), v, w ∈ Dom s := Dom |S|1/2.

We will say that s is the form associated with the operator S.

Theorem 10.11 (1) NumS is dense in Nums.

(2) If S is positive, then s is a closed positive form and DomS is its essential
domain.

The next theorem describes the converse construction. It follows immedi-
ately from Thm 9.41.

Theorem 10.12 (Lax-Milgram Theorem) Let s be a densely defined closed
positive form. Then there exists a unique positive self-adjoint operator S such
that

s(v, w) := (S1/2v|S1/2w), v, w ∈ Dom s := DomS1/2.

Proof. By Thm 9.38 applied to Dom s there exists a positive self-adjoint op-
erator T such that

s(v, w) := (Tv|Tw), v, w ∈ Dom s := DomT.

We set S := T 2. 2

We will say that S is the operator associated with the form s.

10.6 Perturbations of positive forms

Theorem 10.13 Let t1 and t2 be positive forms.

(1) t1 + t2 is also a positive form.

(2) If t1 and t2 are closed, then t1 + t2 is closed as well.

(3) If t1 and t2 are closable, then t1 + t2 is closable as well and (t1 + t2)cl ⊂
tcl
1 + tcl

2 .

Definition 10.14 Let p, t be hermitian forms. Let t be positive. We say that
p is t-bounded iff Dom t ⊂ Dom p and

b := inf
c>0

sup
v∈Dom t

|p(v)|
t(v) + c‖v‖2

<∞.

The number b is called the t-bound of p.



Theorem 10.15 Let t be positive and let p be t-bounded with the t-bound < 1.
Then

(1) The form t + p (with the domain Dom t) is bounded from below.

(2) t is closed ⇔ t + p is closed.

(3) t is closable ⇔ t + p is closable, and then Dom(t + p)cl = Dom tcl.

Proof. Let us prove (1). For some b < 1, we have

(t + p)(v) ≥ t(v)− |p(v)| ≥ (1− b)t(v)− c‖v‖2. (10.3)

This proves that t + p is bounded from below.
To see (2) and (3), note that (10.3) and

(1 + b)t(v) + c‖v‖2 ≥ (t + p)(v)

prove that the norms ‖ · ‖t and ‖ · ‖t+p are equivalent. 2

10.7 Friedrichs extensions

Theorem 10.16 Let T be a positive densely defined operator. Then the form

t(w, v) := (w|Tv), w, v ∈ Dom t := DomT

is closable.

Proof. Suppose that wn ∈ DomT , wn → 0, lim
n,m→∞

t(wn − wm) = 0. Then

|t(wn)| ≤ |t(wn − wm, wn)|+ |t(wm, wn)|

≤
√

t(wn)
√
t(wn − wm) + (wm|Twn).

For any ε > 0 there exists N such that for n,m > N we have t(wn −wm) ≤ ε2.
Besides, lim

m→∞
(wm|Twn) = 0. Therefore, for n > N ,

|t(wn)| ≤ ε|t(wn)|1/2.

Hence t(wn)→ 0. 2

Thus there exists a unique postive self-adjoint operator TFr associated with
the form tcl. The operator TFr is called the Friedrichs extension of T .

Clearly, DomT is then essential form domain of TFr. However in general it
is not an essential operator domain of TFr. The theorem says nothing about
essential operator domains.

For example, consider any open Ω ⊂ Rd. Note that C∞c (Ω) is dense in
L2(Ω). The equation

(f | −∆g) =

∫
∇f(x)∇g(x)dx, f ∈ C∞c (Ω)



shows that −∆ on C∞c (Ω) is a positive operator. Its Friedrichs extension is
called the laplacian on Ω with the Dirichlet boundary conditions.

If V is any positive bounded from below function we can consider ∆ + V (x)
and define its Friedrichs extension.



Chapter 11

Non-maximal operators

11.1 Defect indices

If V is a finite dimensional Hilbert space and V1,V2 its two subspaces such that
V1 ∩ V2 = {0}, then we have the following obvious inequalities:

dimV1 + dimV2 ≤ dimV,
dimV1 ≤ dimV⊥2 ,
dimV2 ≤ dimV⊥1 .

If dimV = ∞, then clearly the first inequality loses its interest. However the
other two inequalities, which are still true, may be interesting.

Let A be an operator on a Hilbert space V.

Theorem 11.1 dim Ran (z − A)⊥ = dim Ker(z − A∗) is a constant function
on connected components of C\(NumA)cl.

Proof. Let us show that if |z − z1| < dist(z,NumA), then

Ran (z −A) ∩ Ran (z1 −A)⊥ = {0}. (11.1)

Let w ∈ Ran (z −A). Then there exists v ∈ DomA such that

w = (z −A)v

and ‖v‖ ≤ c‖w‖, where c =
(
dist(z,NumA)

)−1
. If moreover, w ∈ Ran (z1 −

A)⊥ = Ker(z1 −A∗), then

0 =
(
(z1 −A∗)w|v

)
=
(
w|(z −A)v

)
+ (z1 − z)(w|v)

= ‖w‖2 + (z − z1)(w|v).
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But ∣∣‖w‖2 + (z1 − z)(w|v)
∣∣ ≥ (1− |z1 − z|c)‖w‖2 > 0,

which is a contradiction and completes the proof of (11.1).

Now (11.1) implies that dim Ran (z −A)⊥ ≤ dim Ran (z1 −A)⊥. 2

11.2 Extensions of hermitian operators

Let A be closed hermitian.

Theorem 11.2 The so-called deficiency indices of A

n± := dim Ker(z −A∗), z ∈ C±

do not depend on z. Then A possesses a self-adjoint extension iff n+ = n−.
Moreover, one of the following possibilities is true:

(1) NumA 6= R.

(i) spA ⊂ R, n+ = n− = 0 and A is self-adjoint.

(ii) spA = C, n+ = n− > 0.

(2) NumA = R.

(i) spA ⊂ R, n+ = n− = 0, A is self-adjoint.

(ii) spA = {Imz ≥ 0}, n+ > 0, n− = 0, A is not self-adjoint.

(iii) spA = {Imz ≤ 0}, n+ = 0, n− > 0, A is not self-adjoint.

(iv) spA = C, n+ > 0, n− > 0, A is not self-adjoint.

Proof. The existence of self-adjoint extensions for n+ = n− follows from The-
orem 11.4.

The remaining statements are essentially a special case of Theorem 11.1. 2

Definition 11.3 Define on DomA∗ the following scalar product:

(v|w)A∗ := (v|w) + (A∗v|A∗w)

and the following antihermitian form:

[v|w]A∗ := (A∗v|w)− (v|A∗w).

The A∗−closedness and the A∗−orthogonality is defined using the scalar product
(·|·)A∗ .

Theorem 11.4 (1) Every closed extension of A is a restriction of A∗ to an
A∗−closed subspace in DomA∗ containing DomA.



(2)

DomA∗ = DomA⊕Ker(A∗ + i)⊕Ker(A∗ − i)

and the components in the above direct sum are A∗-closed, A∗−orthogonal
and

(w0 ⊕ w+ ⊕ w−|v0 ⊕ v+ ⊕ v−)A∗ = (w0|v0) + (Aw0|Av0) + 2(w+|v+) + 2(w−|v−),

[w0 ⊕ w+ ⊕ w−|v0 ⊕ v+ ⊕ v−]A∗ = 2i(w+|v+)− 2i(w−|v−).

Proof. (1) is obvious. In (2) the A∗−orthogonality and the A∗−closedness are
easy.

Let w ∈ DomA∗ and

w ⊥A∗ DomA⊕Ker(A∗ + i).

In particular, for v ∈ DomA we have

0 = (A∗w|A∗v) + (w|v) = (A∗w|Av) + (w|v).

Hence A∗w ∈ DomA∗ and

A∗A∗w = −w.

Therefore,

(A∗ + i)(A∗ − i)w = 0.

Thus

(A∗ − i)w ∈ Ker(A∗ + i). (11.2)

If y ∈ Ker(A∗ + i), then

i(y|(A∗ − i)w) = (A∗y|A∗w) + (y|w) = (y|w)A∗ = 0

In particular, by (11.2) we can set y = (A∗ − i)w. We get w ∈ Ker(A∗ − i). 2

DomA belongs to the kernel of the antisymmetric form [·, ·]A∗ . Therefore,
in what follows we restrict this form to

Vdef := Ker(A∗ + i)⊕Ker(A∗ − i).

We will write

Zper := {v ∈ Vdef : [z, v]A∗ = 0, z ∈ Z}.

We will say that a subspace Z of Vdef is A∗−isotropic iff [·|·]A∗ vanishes on Z
and A∗-Lagrangian if Zper = Z.

Every A∗−closed subspace of V containing DomA is of the form DomA⊕Z,
where Z ⊂ Vdef . If

A ⊂ B ⊂ A∗,

then the subspace Z corresponding to B will be denoted by ZB .



Theorem 11.5 (1) We have

ZB∗ = (ZB)per.

(2) B is hermitian iff ZB is A∗−isotropic iff there exists a partial isometry
U : Ker(A∗ + i)→ Ker(A∗ − i) such that

Z := {w+ ⊕ Uw+ : w+ ∈ RanU∗U}.

(3) B is self-adjoint iff ZB is A∗-Lagrangian iff there exists a unitary U :
Ker(A∗ + i)→ Ker(A∗ − i) such that

Z := {w+ ⊕ Uw+ : w+ ∈ Ker(A∗ + i)}.

11.3 Extension of positive operators

(This subsection is based on unpublished lectures of S.L.Woronowicz).

Theorem 11.6 Let V = V0 ⊕ V1 and

B =

[
B00 B01

B10 B11

]
be an operator in B(V) with B11 invertible. Then B is positive iff B11 ≥ 0,
B01 = B∗10 and B00 ≥ B01B

−1
11 B10.

Proof. Let v0 ∈ V0, v1 ∈ V1. For vz =

[
v0

v1

]
. Then

0 ≤ (v|Bv) = (v0B00v0) + (v0|B01v1) + (v1|B10v0) + (v1|B11v1)

=
(
v0|(B00 −B01B

−1
11 B10)v0

)
+ ‖B−1/2

11 B10v0 +B
1/2
11 v1‖2

This proves ⇒.
Let us prove ⇐. The necessity of B11 ≥ 0 is obvious. Given v0, we can

choose v1 = −B−1
11 B10v0. This shows that B00−B01B

−1
11 B10 has to be positive.

2

Suppose that G is hermitian, positive and closed. We would like to describe
its positive self-adjoint extensions. Thus we are looking for positive self-adjoint
H such that G ⊂ H.

The operator G+ 1l is injective and has a closed range. Define V1 := RanG
and set V0 := V⊥1 , so that V = V0 ⊕ V1. Let A ∈ B(V1,V) be the left inverse of
G+ 1l. We can write it as

A =

[
A01

A11

]
We are looking for a bounded operator

(1l +H)−1 = B =

[
B00 B01

B10 B11

]
∈ B(V)



that extends A and 0 ≤ B ≤ 1l. Clearly, B11 = A11, B01 = A01, B10 = A∗01. By
Theorem 11.6,

B00 ≥ B01B
−1
11 B10,

1l00 −B00 ≥ B01(1l11 −B11)−1B10.

Thus we can choose any B00 ∈ B(V0) satisfying

1l00 −A01(1l11 −A11)−1A∗01 ≥ B00 ≥ A01A
−1
11 A

∗
01.

This condition has two extreme solutions: The smallest A01A
−1
11 A

∗
01 yields

the largest extension, called the Friedrichs extension HFr. The largest 1l00 −
A01(1l11 − A11)−1A∗01, gives the smallest positive extension, called the Krein
extension HKr. We have the following formula for both extensions:

(1l +HFr)−1

:=
(
A

1/2
11 +A01A

−1/2
11

)(
A

1/2
11 +A01A

−1/2
11

)∗
,

1l− (1l +HKr)−1

:=
(
(1l11 −A11)1/2 −A01(1l11 −A11)−1/2

)(
(1l11 −A11)1/2 −A01(1l11 −A11)−1/2

)∗
.





Chapter 12

Aronszajn-Donoghue
Hamiltonians and their
renormalization

12.1 Construction

Recall that the operators (h| and |h) are defined by

H 3 v 7→ (h|v := (h|v) ∈ C,

C 3 α 7→ |h)α := αh ∈ H.
(12.1)

In particular, |h)(h| equals the orthogonal projection onto h times ‖h‖2.
Let H0 be a self-adjoint operator on H, h ∈ H and λ ∈ R.

Hλ := H0 + λ|h)(h|, (12.2)

is a rank one perturbation of H0. We will call (12.2) the Aronszajn Donoghue
Hamiltonian.

We would like to describe how to define the Aronszajn-Donoghue Hamilto-
nian if h is not necessarily a bounded functional on H. It will turn out that it
is natural to consider 3 types of h:

I. h ∈ H, II. h ∈ 〈H0〉1/2H \ H, III. h ∈ 〈H0〉H \ 〈H0〉1/2H, (12.3)

where 〈H0〉 := (1 +H2
0 )1/2.

Clearly, in the case I Hλ is self-adjoint on DomH0. We will see that in
the case II one can easily define Hλ as a self-adjoint operator, but its domain
is no longer equal to DomH0. In the case III, strictly speaking, the formula
(12.2) does not make sense. Nevertheless, it is possible to define a renormalized
Aronszajn-Donoghue Hamiltonian. To do this one needs to renormalize the
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parameter λ. This procedure resembles the renormalization of the charge in
quantum field theory. In this case usually the parameter λ looses its meaning,
so we will abandon the notation Hλ. Instead, one can label the Hamiltonian by
various parameters, which we will put in brackets.

Lemma 12.1 In Case I with λ 6= 0, the resolvent of H equals

R(z) := (z −H)−1

= (z −H0)−1 − g(z)−1(z −H0)−1|h)(h|(z −H0)−1, (12.4)

where

g(z) := −λ−1 + (h|(z −H0)−1h). (12.5)

defined for z 6∈ spH0.

Proof. We have

R(z)− (z −H0)−1 = λR(z)|h)(h|(z −H0)−1

= λ(z −H0)−1|h)(h|R(z). (12.6)

Hence the range of (12.6) is C(z −H0)−1h, and the kernel is {(z −H0)−1h}⊥.
Therefore, (12.6) has the form

−g(z)−1(z −H0)−1|h)(h|(z −H0)−1 (12.7)

for some complex function g(z). Thus it remains to determine g(z) in (12.4).
We insert (12.4) into

λ(z −H0)−1|h)(h|R(z) = −g(z)−1(z −H0)−1|h)(h|(z −H0)−1,

and we obtain the formula for g, sometimes called Krein’s formula. 2

For λ = 0, clearly

R0(z) = (z −H0)−1. (12.8)

The following theorem describes how to define the Aronszajn-Donoghue
Hamiltonian also in cases II and III:

Theorem 12.2 Assume that:
(A) h ∈ 〈H0〉1/2H, λ ∈ R ∪ {∞}. Let Rλ(z) be given by (12.8) or (12.4) with
gλ(z) given by (12.5),
or
(B) h ∈ 〈H0〉H, γ ∈ R. Let R(γ)(z) be given by (12.4) where g(γ)(z) is the
solution of {

∂zg(γ)(z) = −
(
h|(z −H0)−2h

)
,

1
2

(
g(γ)(i) + g(γ)(−i)

)
= γ.

(12.9)

Then, for z ∈ C\spH0 such that g(z) 6= 0



(1) z 7→ R(z) is a pseudoresolvent (a function with values in bounded operators
that fulfill the first resolvent formula);

(2) KerR(z) = {0}, unless h ∈ H and λ =∞;

(3) RanR(z) is dense in H, unless h ∈ H and λ =∞;

(4) R(z)∗ = R(z).

Hence, except for the case h ∈ H, λ =∞, there exists a unique densely defined
self-adjoint operator H such that R(z) is the resolvent of H.

The initial condition in (12.9) can be called the renormalization condition. It is
easy to solve (12.9) obtaining

g(γ)(z) = γ +
(
h|
(
(z −H0)−1 +H0(1 +H2

0 )−1
)
h
)
.

If g(β) = 0 and β 6∈ spH0, then H has an eigenvalue at β, and the corre-
sponding eigenprojection is

1{β}(H) = (h|(β −H0)−2h)−1(β −H0)−1|h)(h|(β −H0)−1.

In Case I and II the function R ∪ {∞} 3 λ 7→ Hλ is increasing.
In Case III we rename H0 as H(∞).

12.2 Cut-off method

Another way to define H for the case h ∈ 〈H0〉H is the cut-off method. For
Λ > 0 we define

hΛ := 1l[−Λ,Λ](H0)h, (12.10)

where 1l[−Λ,Λ](H0) is the spectral projection for H0 onto [−Λ,Λ] ⊂ R. Note that
hΛ ∈ H.

We fix the running coupling constant by

−λ−1
Λ := γ + (hΛ|H0(1 +H2

0 )−1hΛ)

and set the cut-off Hamiltonian to be

HΛ := H0 + λΛ|hΛ)(hΛ|. (12.11)

Then the resolvent for HΛ is given by

RΛ(z) = (z −H0)−1 − gΛ(z)−1(z −H0)−1|hΛ)(hΛ|(z −H0)−1, (12.12)

where
gΛ(z) := −λ−1

Λ +
(
hΛ|(z −H0)−1hΛ

)
. (12.13)

Note that λΛ is chosen in such a way that the renormalization condition

1

2
(gΛ(i) + gΛ(−i)) = γ. (12.14)

holds. The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Theorem 12.3 Assume that h ∈ 〈H0〉H. Then lim
k→∞

RΛ(z) = R(z).



12.3 Extensions of hermitian operators

Let H0 be as above and h ∈ 〈H0〉H\H. (Thus we consider jointly Case II and
III.) Define Hmin to be the restriction of H0 to

Dom(Hmin) := {v ∈ Dom(H0) = 〈H0〉−1H : (h|v) = 0}.

Then Hmin is a closed densely defined Hermitian operator. Set Hmax := H∗min.
Then for any z0 ∈ rsH0

Dom(Hmax) = Span
(

DomH0 ∪ {(z0 −H0)−1h}
)
.

Note that Ker(Hmax ± i) is spanned by

v± := (±i−H0)−1h.

Thus the deficiency indices of Hmin are (1, 1).
The operators H(γ) described in the previous subsection are self-adjoint ex-

tensions of Hmin. To obtain H(γ) it suffices to increase the domain of Hmin by
adding the vector

γ + (h|H0(1 +H2
0 )−1h)

γ − i(h|(1 +H2
0 )−1h)

(i−H0)−1h− γ + (h|H0(1 +H2
0 )−1h)

γ + i(h|(1 +H2
0 )−1h)

(i +H0)−1h,

If H(γ) has an eigenvalue β outside of spH0, then instead we can add the vector

(β −H0)−1h.

12.4 Positive H0

Let us consider the special case H0 > 0.
Clearly, g is analytic on C\[0,∞[. g restricted to ] −∞, 0[ is a decreasing

function (in all cases I, II and III). Therefore, H can possess at most one negative
eigenvalue.

We distinguish subcases of Cases I, II and III
Case I iff h ∈ H;

Case Ia iff h ∈ DomH
−1/2
0 ;

Case Ib iff h 6∈ DomH
−1/2
0 .

Case II iff h ∈ (1 +H0)1/2H, h 6∈ H;

Case IIa iff (1 +H0)−1/2h ∈ Dom(1 +H0)1/2H
−1/2
0 ;

Case IIb iff (1 +H0)−1/2h 6∈ Dom(1 +H0)1/2H
−1/2
0 .

Case II iff h ∈ (1 +H0)H, h 6∈ (1 +H0)1/2H;

Case IIIa iff (1 +H0)−1h ∈ Dom(1 +H0)1/2H
−1/2
0 ;

Case IIIb iff (1 +H0)−1h 6∈ Dom(1 +H0)1/2H
−1/2
0 .



In Case Ia and IIa we set

λKr := −(h|H−1
0 h)−1. (12.15)

Note that λKr is negative. (In all other cases one could interpret (h|H−1
0 h) as

+∞, and therefore one can then set λKr := 0). We have

lim
x→−∞

g(x) = −λ−1, g(0) = −λ−1 + λ−1
Kr .

Therefore, Hλ is positive for λKr ≤ λ ≤ ∞. For λ < λKr, Hλ has a single
negative eigenvalue β, which is the solution of

λ(h|(H0 − β)−1h) = −1. (12.16)

In Case IIa HλKr
is the Krein extension of Hmin and H∞ is the Friedrichs

extension.
In Case Ib and IIb we have

lim
x→−∞

g(x) = −λ−1, g(0) = −∞.

Hλ is positive for 0 ≤ λ ≤ ∞. For λ < 0, Hλ has a single negative negative
eigenvalue β, which is the solution of (12.16). In Case IIb H0 is the Krein
extension of Hmin and H∞ is its Friedrichs extension.

In Case III we will use two kinds of parameters, always putting them in
brackets. In particular, it is natural to rename H0 and call it H(∞). It is the
Friedrichs extension of Hmin.

In Case IIIa we have

lim
x→−∞

g(x) =∞, g(0) =: γ0,

where γ0 is a real number that can be used to parametrize H, so that

g(z) = γ0 −
(
h|(H0 − z)−1H−1

0 h
)
z.

H(γ0) is an increasing function of γ0 ∈ R∪{∞}. It is positive for 0 ≤ γ0. It has
a single negative eigenvalue at β solving

γ0 = (h|(H0 − β)−1H−1
0 h)β

for γ0 < 0. The Krein extension corresponds to γ0 = 0.
In Case IIIb

lim
x→−∞

g(x) =∞, g(0) = −∞.

A natural way to parametrize the Hamiltonian is by g(z0) for some fixed z0 ∈
]−∞, 0[, say γ−1 := g(−1). This yields

g(z) = γ−1 −
(
h|(H0 − z)−1(H0 + 1)−1h

)
(z + 1).

H is an increasing function of γ−1 ∈ R ∪ {∞}. The Krein extension is H(∞)

(and coincides with the Friedrichs extension).
H(γ−1) has a single negative eigenvalue β for all γ−1 ∈ R. β is an increasing

function of γ−1.
If we use the cut-off method in Case III, then λΛ ↗ 0. Thus we should think

of λ as infinitesimally small negative.





Chapter 13

Friedrichs Hamiltonians
and their renormalization

13.1 Construction

Let H0 be again a self-adjoint operator on the Hilbert space H. Let ε ∈ R and
h ∈ H. The following operator on the Hilbert space C ⊕ H is often called the
Friedrichs Hamiltonian:

G :=

[
ε (h|
|h) H0

]
. (13.1)

We would like to describe how to define the Friedrichs Hamiltonian if h is
not necessarily a bounded functional on H. It will turn out that it is natural to
consider 3 types of h:

I. h ∈ H, II. h ∈ 〈H0〉1/2H \ H, III. h ∈ 〈H0〉H \ 〈H0〉1/2H, (13.2)

Clearly, in case I G is self-adjoint on C⊕DomH0. We will see that in case II
one can easily define G as a self-adjoint operator, but its domain is no longer C⊕
DomH0. In case III, strictly speaking, the formula (13.1) does not make sense.
Nevertheless, it is possible to define a renormalized Friedrichs Hamiltonian. To
do this one needs to renormalize the parameter ε. This procedure resembles the
renormalization of mass in quantum field theory.

Let us first consider the case h ∈ H. As we said earlier, the operator G with
DomG = C ⊕ DomH0 is self-adjoint. It is well known that the resolvent of G
can be computed exactly. In fact, for z 6∈ spH0 define the analytic function

f(z) := ε+ (h|(z −H0)−1h). (13.3)
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Then for z ∈ C\spH0, f(z) 6= z the resolvent Q(z) := (z −G)−1 is given by

Q(z) =

[
0 0
0 (z −H0)−1

]
(13.4)

+
(
z − f(z)

)−1
[

1l (h|(z −H0)−1

(z −H0)−1|h) (z −H0)−1|h)(h|(z −H0)−1

]
.

Theorem 13.1 Assume that:
(A) h ∈ 〈H0〉1/2H, ε ∈ R. Let Q(z) be given by (13.4) with f(z) defined by
(13.3),
or
(B) h ∈ 〈H0〉H, γ ∈ R. Let Q(z) be given by (13.4) with f(z) defined by{

∂zf(z) = −
(
h|(z −H0)−2h

)
,

1
2

(
f(i) + f(−i)

)
= γ.

(13.5)

Then for all z ∈ C\spH0, f(z) 6= z :

(1) Q(z) is a pseudoresolvent;

(2) KerQ(z) = {0};
(3) RanQ(z) is dense in C⊕H;

(4) Q(z)∗ = Q(z).

Therefore, there exists a unique densely defined self-adjoint operator G such that
Q(z) = (z −G)−1.

Proof. Let z ∈ C\spH0, f(z) 6= z. It is obvious that Q(z) is bounded and
satisfies (4). We easily see that both in the case (A) and (B) the function f(z)
satisfies

f(z1)− f(z2) = −(z1 − z2)(h|(z1 −H0)−1(z2 −H0)−1|h). (13.6)

Direct computations using (13.6) show the first resolvent formula.
Let (α, f) ∈ C⊕H be such that (α, f) ∈ KerQ(z). Then

0 = (z − f(z))−1
(
α+ (h|(z −H0)−1f)

)
, (13.7)

0 = (z −H0)−1f + (z −H0)−1h(z − f(z))−1
(
α+ (h|(z −H0)−1f)

)
. (13.8)

Inserting (13.7) into (13.8) we get 0 = (z − H0)−1f and hence f = 0. Now
(13.7) implies α = 0, so KerQ(z) = {0}.

Using (2) and (4) we get (RanQ(z))⊥ = KerQ(z)∗ = KerQ(z) = {0}. Hence
(3) holds. 2

It is easy to solve (13.5):

f(z) := γ +
(
h|((z −H0)−1 +H0(1 +H2

0 )−1)h
)

= γ +
(
h|( i−z

2(z−H0)(i−H0) −
i+z

2(z−H0)(−i−H0) )h
) (13.9)



13.2 The cut-off method

Let h ∈ 〈H0〉H and γ ∈ R. We can also use the cut-off method. For all Λ > 0
we define hΛ as in (12.10), that is hΛ := 1l[−Λ,Λ](H0)h,. We set

εΛ := γ + (hΛ|H0(1 +H2
0 )−1hΛ).

For all Λ > 0, the cut-off Friedrichs Hamiltonian

GΛ :=

[
εΛ (hΛ|
|hΛ) H0

]
is well defined and we can compute its resolvent, QΛ(z) := (z −GΛ)−1:

QΛ(z) =

[
0 0
0 (z −H0)−1

]
(13.10)

+
(
z − fΛ(z)

)−1
[

1 (hΛ|(z −H0)−1

(z −H0)−1|hΛ) (z −H0)−1|hΛ)(hΛ|(z −H0)−1

]
.

where
fΛ(z) := εΛ + (hΛ|(z −H0)−1hΛ). (13.11)

Note that εΛ is chosen such a way that the following renormalization condition
is satisfied: 1

2 (fΛ(i) + fΛ(−i)) = γ.

Theorem 13.2 Assume that h ∈ 〈H0〉H. Then lim
k→∞

QΛ(z) = Q(z), where

Q(z) is given by (13.4) and f(z) is given by (13.9). If H0 is bounded from
below, then lim

k→∞
εΛ =∞.

Proof. The proof is obvious if we note that lim
k→∞

‖(z−H0)−1h−(z−H0)−1hΛ‖ =

0 and lim
k→∞

fΛ(z) = f(z). 2

Thus the cut-off Friedrichs Hamiltonian is norm resolvent convergent to the
renormalized Friedrichs Hamiltonian.

13.3 Eigenvectors and resonances

Let β 6∈ spH0, If β = f(β) = 0 thenG has an eigenvalue at β. The corresponding
eigenprojection equals

1lβ(G) = (1+(h|(β−H0)−2|h))−1

[
1 (h|(β −H0)−1

(β −H0)−1|h) (β −H0)−1|h)(h|(β −H0)−1

]
.

It may happen that C\spH0 3 z 7→ f(z) extends to an analytic multivalued
function accross some parts of spH0. Then so does the resolvent (z − G)−1

sandwiched between a certain class of vectors, in particular, between

w :=

[
1
0

]
(13.12)



(
w
∣∣(z −G)−1w

)
= (z − f(z))−1.

It may happen that we obtain a solution of

f(β) = β

in this non-physical sheet of the complex plane. This gives a pole of the resolvent
called a resonance.

Suppose that we replace h with λh and ε with ε0 + λ2α and assume that we
have Case I or II with λ small.

Then if ε0 6∈ spH0, we have an approximate expression for the eigenvalue for
small λ:

ελ = ε0 + λ2α+ λ2(h|(ε0 −H0)−1h) +O(λ4).

If ε0 ∈ spH0, then the eigenvalue typically disappears and we obtain an approx-
imate formula for the resonance:

ελ = ε0 + λ2α+ λ2(h|(ε0 + i0−H0)−1h) +O(λ4)

= ε0 + λ2α+ λ2(h|P(ε0 −H0)−1h)− λ2iπ(h|δ(H0)h) +O(λ4).

Suppose now that ε0 = 0. Then we have the weak coupling limit:

lim
λ↘0

(w|e−i t
λ2Gλw) = exp

(
−itα+ it(h|P(H−1

0 )h)− tπ(h|δ(H0)h)
)
.

13.4 Dissipative semigroup from a Friedrichs Hamil-
tonian

Consider L2(R), ε ∈ R, λ ∈ C and

H0v(k) := kv(k), v ∈ L2(R), k ∈ R.

Then R 3 k 7→ 1(k) = 1 does not belong to 〈H0〉1/2L2(R), however it belongs
to 〈H0〉L2(R). We will see that

G =

[
ε λ(1|

λ|1) H0

]
(13.13)

is a well defined Friedrichs Hamiltonian without renormalizing λ, even though
it is only type III.

Set 1Λ(k) := 1l[−Λ,Λ](k). We approximate (13.13) by

GΛ =

[
ε λ(1Λ|

λ|1Λ) H0

]
(13.14)

Note that (13.14) has a norm resolvent limit, which can be denoted (13.13). In
fact,

f(z) = ε+ lim
Λ→∞

∫ −Λ

Λ

|λ|2

z − k
dk =

{
ε− iπ|λ|2 Imz > 0,
ε+ iπ|λ|2 Imz < 0.



If w is the distinguished vector (13.12), then(
w|(z −G)−1w

)
= (z − ε± iπ|λ|2)−1, ±Imz > 0,(

w|e−itGw
)

= e−iεt−π|λ|2|t|.





Chapter 14

Convolutions and Fourier
transformation

14.1 Introduction to convolutions

In this chapter notes X will denote the space Rd equipped with the Lebesgue
measure.

Let us recall two estimates, which we will often use, whose validity is not
restricted to Rd:

The Hölder inequality Let 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1:∫
|f(x)g(x)|dx ≤ ‖f‖p‖g‖q,

The generalized Minkowski inequality(∫
dy

∣∣∣∣∫ f(x, y)d x

∣∣∣∣p)
1
p

≤
∫

dx

(∫
|f |p(x, y)dy

) 1
p

If g, h are functions on Rd, then their convolution is formally defined by

g ∗ h(x) :=

∫
g(x− y)h(y)dy,

provided this makes sense. In what follows we will give a number of conditions
when the convolution is well defined.

14.2 Modulus of continuity

Lemma 14.1 For 1 ≤ p <∞, f ∈ Lp(X), set

ωp,f (y) :=

(∫
|f(x+ y)− f(x)|pdx

) 1
p

;
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and for p =∞, f ∈ C∞(Rn)

ω∞,f (y) := sup
x
|f(x+ y)− f(x)|.

Then ωp,f (y) is bounded and

lim
y→0

ωp,f (y) = 0.

Proof. The boundedness follows from the Minkowski inequality. In fact,
ωp,f (y) ≤ 2‖f‖p.

The convergence to zero is obvious for f ∈ Cc(Rn). But Cc is dense in Lp

for 1 ≤ p <∞ and in C∞. 2

14.3 The special case of the Young inequality
with 1

p + 1
q = 1

Theorem 14.2 Let 1 < p, q <∞, 1
p + 1

q = 1, f ∈ Lp, g ∈ Lq. Then

f ∗ g ∈ C∞.

If f ∈ L1, g ∈ L∞, then f ∗ g is uniformly continuous.

Proof. By the Hölder inequality, f ∗ g(x) is defined for all x and depends
continuously on f ∈ Lp(X) and g ∈ Lq(X). Moreover,

f ∗ g(x1)− f ∗ g(x2)

=
∫

(f(x1 − y)− f(x2 − y))g(y)dy

≤
(∫
|f(x1 − y)− f(x2 − y)|pdy

) 1
p ‖g‖q

= ωp,f (x1 − x2)‖g‖q.

Hence f ∗ g is uniformly continuous.
For f ∈ Cc(X) obviously f ∗ g ∈ Cc(X). If p, q < ∞, then Cc(X) is dense

in Lp(X), Lq(X). Hence for such p, q, f ∗ g belongs to the closure of Cc(X) in
L∞(X), which is C∞(X). 2

14.4 Convolution by an L1 function

Theorem 14.3 Let g ∈ Lp(X) and h ∈ L1(X). Then g ∗ h is well defined
almost everywhewre and

‖g ∗ h‖p ≤ ‖h‖1‖g‖p.



Proof. In the generalized Minkowski inequality set X = Y = Rn and f(x, y) =
h(y)g(x− y). 2

Theorem 14.4 Let φ ∈ L1(Rn) and
∫
φ(x)dx = 1. Set

φε(x) := ε−nφ(ε−1x), ε > 0.

Then
lim
ε→0
‖f ∗ φε − f‖p = 0, f ∈ Lp(Rn), 1 ≤ p <∞,

lim
ε→0
‖f ∗ φε − f‖∞ = 0, f ∈ C∞(Rn).

Proof.

f ∗ φε(x)− f(x) =

∫
(f(x− y)− f(x))φε(y)dy.

‖f ∗ φε(x)− f(x)‖p

≤
∫

dy
(∫
|f(x− y)− f(x)|pdx

) 1
p |φε(y)|

=
∫
ωp,f (y)φε(y)dy =

∫
ωp,f (εy)φ(y)dy →ε→0 0.

2

14.5 The Young inequality

Theorem 14.5 Let 1 ≤ p, q, r ≤ ∞, 1
p + 1

q + 1
r = 2, f, g, h ∈M+(X) (positive,

measurable functions on X). Then∫ ∫
f(x)g(x− y)h(y)dxdy ≤ Cp,r,n‖f‖p‖g‖q‖h‖r.

Proof. Let 1
p + 1

p′ = 1, 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1. Set

α(x, y) := f(x)p/r
′
g(x− y)q/r

′
,

β(x, y) := g(x− y)q/p
′
h(y)r/p

′
,

γ(x, y) := f(x)p/q
′
h(y)r/q

′
.

Then∫ ∫
f(x)g(x− y)h(y)dxdy =

∫ ∫
f(x)p(2−

1
q−

1
r )g(x− y)q(2−

1
p−

1
r )h(y)r(2−

1
p−

1
q )

=
∫ ∫

f(x)
p( 1
q′+

1
r′ )g(x− y)

q( 1
p′+

1
r′ )h(y)

r( 1
p′+

1
q′ )

=
∫ ∫

α(x, y)β(x, y)γ(x, y)dxdy ≤ ‖α‖r′‖β‖p′‖γ‖q′ ,

where in the last step we used the Hölder inequality noting that 1
r′ +

1
p′ +

1
q′ = 1.

Finally,

‖α‖r′ = (
∫ ∫

f(x)pg(x− y)qdxdy)1/r′ = ‖f‖p/r
′

p ‖g‖q/r
′

q .

2



Corollary 14.6 If 1
q + 1

r = 1 + 1
s , h ∈ Lr(X), g ∈ Lq(X), then for almost all x

y 7→ g(x− y)h(y)

belongs to L1(X) and

g ∗ h(x) =

∫
g(x− y)h(y)dy

belongs to Ls(X) and
‖g ∗ h‖s ≤ ‖g‖q‖h‖r. (14.1)

Proof. We know that for f ∈ Lp(X), 1
p + 1

s = 1 we have∫
|f(x)|dx

∫
|g(x− y)h(y)|dy ≤ ‖f‖p‖g‖q‖h‖r <∞.

Hence for a.a x

|f(x)|
∫
|g(x− y)h(y)|dy <∞.

Hence for a.a. x ∫
|g(x− y)h(y)|dy <∞.

From
|
∫
f(x)g ∗ h(x)dx| ≤ ‖f‖p‖g‖q‖h‖r.

we obtain (14.1). 2

14.6 Fourier transformation on L1 ∪ L2(Rd)

For
f ∈ L1(Rd)

we define its Fourier transform as

Ff(ξ) = f̂(ξ) :=

∫
e−ixξf(x)dx.

We also introduce the following notation:

f̌(x) := f(−x), τyf(x) := f(x− y), ρaf(x) := f(ax)

Theorem 14.7 (1) ‖f̂‖∞ ≤ ‖f‖1;

(2) ˆ̌f(ξ) =
ˇ̂
f(ξ) =

∫
eixξf(x)dx.

(3) f̂ =
ˇ̂
f ;

(4) ρ̂af(x) = a−df̂(a−1x);



(5) τ̂yf(ξ) = e−iyξ f̂(ξ);

(6)
(
feiη·)̂ (ξ) = f̂(ξ − η).

Example 14.8 (1) f(x) = e−
x2

2 , f̂(ξ) = (2π)
n
2 e−

x2

2 .

(2) f(x) = e−εxxαθ(x), f̂(ξ) = Γ(α+1)
(ε+iξ)α+1 , Reε > 0.

(3) f(x) = χ[−1,1](x), f̂(ξ) = 2 sin ξ
ξ .

(4) f(x) = e−|x|, f̂ = 1
1+ξ2 .

Theorem 14.9 (The Riemann-Lebesgue Lemma) If f ∈ L1, then f̂ ∈
C∞.

Proof. We know that the Fourier transformation is continuous from L1 to L∞.
C∞ is a closed subspace of L∞.

Combinations of characteristic functions of intervals are dense in L1. Their
Fourier transforms, which we computed explicitly, belong to C∞. 2

Theorem 14.10 Let f, g ∈ L1. Then

(1)
∫
f̂(ξ)g(ξ)dξ =

∫
f(x)ĝ(x)dx.

(2) (fĝ)̌̂ =
ˇ̂
f ∗ g.

(3) (f ∗ g)ˆ = f̂ ĝ.

Proof. (2) For fη(x) = f(x)eixη, we have f̂η(ξ) =
ˇ̂
f(η − ξ). Hence∫

f̂η(ξ)g(ξ)dξ =
ˇ̂
f ∗ g(η).

Besides, ∫
fη(x)ĝ(x)dx = (hĝ)̌̂(η)

Therefore, it suffices to apply (1). 2

Theorem 14.11 (Parseval) Let g, ĝ ∈ L1. Then

ˇ̂
ĝ = (2π)dg.

Proof. Let

φε(x) := e−
εx2

2 .

We have
0 ≤ φε ≤ 1, lim

ε→0
φε = 1.

Using that ĝ ∈ L1, by the Lebesgue Theorem we obtain

φεĝ → ĝ



in the sense of L1. Therefore,

(φεĝ)̂(x)→ ˆ̂g(x), (φεĝ)̌̂(x)→ ˇ̂
ĝ(x),

in the sense of L∞

Moreover, ∫
φ(ξ) = (2π)d, φ̂ε(ξ) =

(
2π

ε

) d
2

e−
ξ2

2ε .

Using that g ∈ L1 we obtain

φ̂ε ∗ g → (2π)dg

in the sense of L1.
Finally, we use

φ̂ε ∗ g =
ˇ̂
φε ∗ g = (φεĝ)̂̌. (14.2)

(14.2) converges to
ˇ̂
ĝ in the sense of L∞ and to (2π)dg in the sense of L1. It is

easy to see that these two functions have to coincide. 2

Theorem 14.12 Let f ∈ L1, f̂ ≥ 0 and let f be continuous at 0. Then f̂ ∈ L1

and we have ∫
f̂(ξ)dξ = (2π)df(0)

Proof. If φε is as in the proof of the Parseval Theorem, then∫
φε(ξ)f̂(ξ)dξ =

∫
φ̂ε(x)f(x)dx.

The left hand side is increasing and converges to
∫
f̂(ξ)dξ. The right hand side

goes to (2π)df(0). By the Fatou Lemma, f̂ is integrable. 2

Theorem 14.13 Let f ∈ L1 ∩ L2. Then

‖f̂‖2 = (2π)
d
2 ‖f‖2.

Proof. The function h := f̌ ∗ f belongs to L1 as the convolution of functions
from L1 and is continuous as the convolution of functions from L2. Besides,

ĥ =
(
f̌ ∗ f

)̂
=

ˆ̌
ff̂ = f̂ f̂ ≥ 0.

Hence, by Theorem 14.12, ĥ ∈ L1 and

(2π)dh(0) =

∫
ĥ(ξ)dξ.



Finally,

(2π)d
∫
|f(x)|ddx = (2π)dh(0) =

∫
ĥ(ξ)dξ =

∫
|f̂(ξ)|2dξ.

2

Let f ∈ L2. Then for any sequence fn ∈ L1 ∩ L2 such that

lim
n→∞

fn = f

in L2, there exists limn→∞ f̂n = f̂ . The operator

f 7→ (2π)−
d
2 f̂

is unitary.

Theorem 14.14 If f ∈ L1 and xf ∈ L1, then f̂ ∈ C1 and

∂ξ f̂(ξ) = (xf)ˆ(ξ).

Proof. We use the theorem about differentiation of an integral depending on
a parameter. 2

14.7 Tempered distributions on Rd

Typical spaces of functions (measures) on Rd are

C∞(X), Lp(X), Ch(X).

where Ch(X) denotes Borel complex charges of finite variation. We have

C#
∞(X) = Ch(X), Lp(X)# = Lq(X), p1 + q−1 + 1, 1 ≤ p <∞.

We have a bilinear and sesquilinear forms

〈a, b〉 =

∫
a(x)b(x)dx, (a, b) =

∫
a(x)b(x)dx.

Lemma 14.15

‖f‖∞ ≤ C‖(1 + |x|)−pf‖1 + C‖∂x1 . . . ∂xdf‖1, p > d

‖f‖q ≤ C‖(1 + |x|)−kf‖p,
1

q
<
k

d
+

1

p
.

Theorem 14.16 The following set does not depend on 1 ≤ p ≤ ∞:

∩
α,m>0

{f : ‖∂α(1 + |x|2)m/2f‖p <∞}. (14.3)



The space S(Rd) is defined as (14.3). It is a Frechet space.
For the dual of S(Rd) we will use the traditional notation S ′(Rd).

Example 14.17 Elements of S ′(X) satisfying

|〈v, φ〉| ≤ C‖xmφ‖∞

have the form

〈v, φ〉 =

∫
φ(x)dµ

for a certain Borel charge µ for which there exists m such that µ(1 + |x|)−m ∈
Ch(X).

The operator ∂ is continuous on S(X). For v ∈ S)(X) we define ∂v ∈ S ′(X)
by

〈v, ∂φ〉 = −〈∂v, φ〉.

Theorem 14.18 Any v ∈ S ′(X) has the form∑
α<N

∂αxµα

for some Borel charge µ such that for some m we have µ(1 + |x|)−m ∈ Ch(X).

Proof. For some α, β,

〈v, φ〉 ≤ C
∑

|α|,|β|≤N

‖xα∂βxφ‖∞.

Introduce the locally compact space

X̃ =
∏

|α|,|β|≤N

X

and the map

S(X) 3 φ 7→ j(φ) =
⊕∑

|α|,|β|≤N

xα∂βφ ∈ C∞(X̃)

Any distribution v determines a bounded functional on j(S(X)). By the Hahn-
Banach Theorem, this functional can be extended to a bounded functional ṽ on
C∞(X̃). By the Riesz-Markov Theorem, there exists a finite Borel charge on X̃
Such that

ṽ(φα,β) =
∑

|α|,|β|≤N

∫
φ(x)dηα,β(x).

2

Clearly, S(X) ⊂ L1(X). Hence the Fourier transform is defined on S(X).



Theorem 14.19 If φ ∈ S(X), then φ̂ ∈ S(X).

Recall that for ψ ∈ S(X), φ ∈ S(X) we have

〈ψ, φ̂〉 = 〈ψ̂, φ〉.

For v ∈ S ′(X) we define

〈v̂, φ〉 := 〈v, φ̂〉, φ ∈ S(X).

Clearly, L1(X) ∪ L2 ⊂ S ′(X) and the Fourier transformation previously
defined coincides with the presently defined on L1(X) ∪ L2.

Theorem 14.20
ˇ̂
v̂ = (2π)dv, v ∈ S ′(X), (14.4)

14.8 Spaces of sequences

Below we list a couple of typical spaces of sequences indexed by Zd:

L1(Zd) ⊂ Lp(Zd) ⊂ Lq(Zd) ⊂ C∞(Zd) ⊂ L∞(Zd), p ≤ q

We have

C∞(Zd)# = L1(Zd), Lp(Zd)# = Lq(Zd), p−1 + q−1 = 1, 1 ≤ p <∞.

We have natural bilinear and sesquilinear forms:

〈a|b〉 =
∑

anbn, (a|b) =
∑

anbn.

Lemma 14.21
‖a‖p ≤ ‖a‖q, p ≥ q,

‖a‖q ≤ ‖(1 + n)−ka‖p,
1

q
<
k

d
+

1

p
.

Theorem 14.22 The following set does not depend on 1 ≤ p ≤ ∞:

∩
m>0
{a : ‖(1 + |n|2)m/2a‖p <∞}.

The above space is a Frechet space, which will be denoted S(Zd).

Theorem 14.23 The space dual to S(Zd), denoted S ′(Zd), equals

∪
m>0
{a : ‖(1 + |n|2)−m/2a‖p <∞}.

Theorem 14.24 S(Zd) is dense in S ′(Zd).



14.9 The oscillator representation of S(X) and
S ′(X)

For simplicity, we discuss X = R.

Lemma 14.25

lim
n→∞

∥∥∥∥∥∥eixξe−
x2

2 −
n∑
j=0

(ixξ)j

j!
e−

x2

2

∥∥∥∥∥∥ = 0

Proof. ∣∣∣∣∣∣eixξe− x2

2 −
n∑
j=0

(ixξ)j

j!
e−

x2

2

∣∣∣∣∣∣ ≤ ξn+1xn+1

(n+ 1)!
e−

x2

2 .

Hence the norm of the difference is estimated by∫
ξ2(n+1)x2(n+1)

((n+ 1)!)2
e−x

2

dx = ξ2(n+1)

∫ ∞
0

sn+ 1
2 e−sds

((n+ 1)!)2
=
ξ2(n+1)Γ(n+ 1

2 )

((n+ 1)!)2
.

2

Theorem 14.26 Linear combinations of

xne−
x2

2 (14.5)

are dense in L2(R).

Proof. Let f be orthogonal to the space spanned by (14.5). Then for any ξ∫
f(x)eixξe−

x2

2 dx = 0.

Hence, the Fourier transform of fe−
x2

2 is zero. Therefore, f = 0 almost every-
where. 2

Let

A∗ :=
1√
2

(
x− d

dx

)
, A :=

1√
2

(
x+

d

dx

)
φn := π−

1
4 (n!)−

1
2 (A+)ne−

x2

2 = (22n!)−
1
2 (−1)nπ−

1
4 e

x2

2 ∂nx e−x
2

N := A∗A+AA∗ = x2 +D2.

Theorem 14.27 φn is an orthonormal basis obtained by the Gramm-Schmidt

orthonormalization of xne−
x2

2 . They are eigenvectors of N and F :

Nφn =

(
n+

1

2

)
φn, Fφn = in(2π)dφn.



Theorem 14.28 Suppose that for v ∈ S ′(R)

vn := 〈v, φn〉

Then there exists m such that

|vn| ≤ C(1 + n)m,

or, in other words, (vn) ∈ S ′(N). The map

S ′(R) 3 v → (vn) ∈ S ′(N)

is an isomorphism. v ∈ S(R), iff

|vn| ≤ C(1 + n)−m, m = 0, 1, . . .

The map
S(R) 3 v → (vn) ∈ S(N)

is an isomorphism and

S(R) = ∩∞n=0 Dom(Nn).

Proof. Clearly, the seminorms ‖Nmφ‖ can be estimated by linear combinations
of seminorms ‖φ‖α,β,2. Hence,

S(R) ⊃ ∩∞n=0 Dom(Nn).

To show the inverse estimate note first that ‖φ‖α,β,2 can be bounded by

(φ,A\1 . . . A
\
nφ),

where A\i = A or A\i = A∗. After commuting we can estimate them by linear
combinations

(φAk, A+mφ)

≤ 1
2‖A

+kφ‖2 + 1
2‖A

+mφ‖2

≤ C
∑max{k,m}
j=1 ‖N jφ‖2.

Hence
S(R) ⊂ ∩∞n=0 Dom(Nn).

2

Corollary 14.29 (The Schwartz Kernel Theorem) Every continuous bilin-
ear functional

S(X1)× S(X2) 3 (φ, ψ) 7→ T (φ, ψ)

has the form
〈T, φ⊗ ψ〉

for some T ∈ S ′(X1 ×X2)



Proof. We have
〈T, φ⊗ ψ〉 =

∑
tk,mφk ⊗ ψm,

where
|tk,m| ≤ (1 + |k|)n(1 + |m|)n.

Hence,
|tk,m| ≤ (1 + |k|+ |m|)2n.

2

14.10 Convolution of distributions

Theorem 14.30 The following space does not depend on 1 ≤ p ≤ ∞:⋂
α

⋃
mα

{f ∈ C∞(Rd) : ‖(1 + |x|)−mαDαf‖p <∞}. (14.6)

The space (14.6), which is an inductive limit of Frechet space, is denoted
O(Rd). Its dual space, for which we will use the traditional notation O′(Rd), is
called the space of rapidly decreasing distributions.

We have the inclusions

S ⊂ O ⊂ S ′, S ⊂ O′ ⊂ S ′

Example 14.31 If µ is a Borel charge and for any m∫
(1 + |x|)m|dµ|(x) <∞,

then µ ∈ O′.

Clearly, if f ∈ O, then
S 3 φ 7→ fφ ∈ S (14.7)

is continuous. For v ∈ S ′ we define fv ∈ S ′ as the adjoint of (14.7), that is

〈v, fφ〉 = 〈fv, φ〉.

The operator ∂ is continuous also on O and O′.
For φ ∈ S we define

φ̌(x) := φ(−x).

Clearly,
〈ψ, φ̌〉 = 〈ψ̌, φ〉

For v ∈ S ′ we introduce
〈v, φ̌〉 = 〈v̌, φ〉

Note that for φ, ψ, χ ∈ S we have

〈χ, ψ ∗ φ〉 = 〈χ ∗ ψ̌, φ〉.

For v ∈ S ′, ψ ∈ S we define

〈v ∗ ψ, φ〉 := 〈v, ψ̌ ∗ φ〉.



Theorem 14.32 For v ∈ S ′, φ ∈ S we define

φy(x) := φ(x− y).

Then

v ∗ φ(x) := 〈v, (φ̌)−x〉.

and

v ∗ ψ ∈ O. (14.8)

Proof. Let us show (14.8):

|∂αx v ∗ φ(x)| = |〈v|∂αy φ̌−x〉|

≤ C‖yn∂α+γ
y φ−x‖∞

≤ C(1 + |x|)n‖yn∂α+γ
y φ‖∞.

2

Hence we can extend the definition of the convolution as follows. Let w ∈ S ′,
v ∈ O′. Then

〈v ∗ w, φ〉 := 〈v, w̌ ∗ φ〉, φ ∈ S.

Using the convolution we can easily show that S is dense in S ′.

Theorem 14.33 If v ∈ O′, then v̂ ∈ O.

Proof. Note first that

∂βξ v̂(ξ) = 〈v, xβe−iξ·〉.

We know that

|〈v, φ〉| ≤
∑
|α|≤N

‖(1 + x2)−
|β|
2 ∂αxφ‖∞.

Hence,

|∂βξ v̂(ξ)| ≤
∑
|α|≤N

|ξ|α.

2

Theorem 14.34

(v ∗ w)ˆ = v̂ŵ, v ∈ S ′, w ∈ O′ (14.9)



Proof. First prove (14.9) for w ∈ S. Let φ ∈ S. Then

〈(v ∗ w)ˆ, φ〉

= 〈v ∗ w, φ̂〉

= 〈v, w̌ ∗ φ̂〉

= (2π)−d〈v, (w̌ ∗ φ̂)
ˇ̂
ˆ〉

= (2π)−d〈ˆ̌v, ˆ̌w
ˆ̂
φ〉

= 〈ˆ̌v, ˆ̌wφ̌〉

= 〈ˆ̌v ˇ̂w, φ̌〉

= 〈v̂ŵ, φ〉.

Then we assume that v ∈ S ′, w ∈ O′ and we repeat the same reasoning. 2

14.11 The Hardy-Littlewood-Sobolev inequality

Let θ denote the Heaviside function, that is

θ(t) :=

{
0 t < 0,
1 t > 0.

Let 0 ≤ λ ≤ n. Then

|x|−λθ(|x| − 1) ∈ Lp(X), ∞ ≥ p > n

λ
,

|x|−λθ(1− |x|) ∈ Lp(X), 1 ≤ p < n

λ
.

Theorem 14.35 1 < p, r < ∞, 0 < λ < n, 1
p + λ

n + 1
r = 2, f, h ∈ M+(X).

Then ∫ ∫
f(x)|x− y|−λh(y)dxdy ≤ Cn,λ,r‖f‖p‖h‖r.

Corollary 14.36 If λ
n + 1

r = 1 + 1
s , h ∈ Lr(X), then for almost all x

y 7→ |x− y|−λh(y)

belongs to L1(X) and

x 7→
∫
|x− y|−λh(y)dy

belongs to Ls(X) and for g(x) = |x|−λ,

‖g ∗ h‖s ≤ Cn,λ,r‖h‖r. (14.10)



Proof of Theorem 14.35 We will write g(x) := |x|−λ. Set

v(a) :=

∫
1{f>a}(x)dx, w(b) :=

∫
1{h>b}(x)dx, u(c) :=

∫
1{g>c}(x)dx.

Note that
u(c) = Cnc

−n/λ, u−1(t) = C̃nt
−λ/n.

We can assume that

1 = ‖f‖pp = p

∫ ∞
0

ap−1v(p)da, 1 = ‖h‖rr = r

∫ ∞
0

br−1w(b)db

Now

I :=
∫ ∫

f(x)g(x− y)h(y)dxdy =
∫ ∫ ∫ ∫ ∫

1{f>a}(x)1{h>b}(y)1{g>c}(x− y)dxdydadbdc

=
∫ ∫ ∫

w(b)≤v(a)

dadbdy1{h>b}(y)
∫ ∫

dcdx1{f>a}(x)1{g>c}(x− y)

+
∫ ∫ ∫

w(b)≥v(a)

dadbdx1{f>a}(x)
∫ ∫

dcdy1{h>b}(y)1{g>c}(x− y).

Now∫ ∫
dcdx1{f>a}(x)1{g>c}(x− y) ≤

∫ ∫
v(a)≥u(c)

dcdx1{f>a}(x) +
∫ ∫

v(a)≤u(c)

dcdx1{g>c}(x− y)

= v(a)
∫ u−1(v(a))

0
dc+

∫∞
u−1(v(a))

u(c)dc

= v(a)u−1(v(a)) + cn,λ(u−1(v(a)))1−n/λ

= cn,λv(a)1−λ/n.

Therefore,

I ≤ cn,λ
∫ ∫

w(b)≤v(a)

dadbw(b)v(a)1−λ/n + cn,λ
∫ ∫

w(b)≥v(a)

dadbv(a)w(b)1−λ/n

= cn,λ
∫ ∫

dadbmin
(
w(b)v(a)1−λ/n, v(a)w(b)1−λ/n

)
≤ cn,λ

∫∞
0

dav(a)
∫ ap/r

0
dbw(b)1−λ/n + cn,λ

∫∞
0

dbw(b)
∫ br/p

0
dav(a)1−λ/n

Now setting m := (r − 1)(1− λ/n), we get∫ ap/r
0

w(b)1−λ/ndb =
∫ ap/r

0
w(b)1−λ/nbmb−mdb

≤
( ∫ ap/r

0
w(b)br−1db

)1−λ/n( ∫ ap/r
0

b−mn/λdb
)λ/n

≤ C
( ∫∞

0
w(b)br−1db

)1−λ/n
ap−1.

Hence

I ≤ cn,λ,r
∫
v(a)ap−1da

( ∫∞
0
w(b)br−1db

)1−λ/n

+cn,λ,r
∫∞

0
w(b)br−1db

( ∫
v(a)ap−1da

)1−λ/n
= 2cn,λ,r



14.12 Self-adjointness of Schrödinger operators

The following lemma is a consequence of the Hölder inequality:

Lemma 14.37 Let 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1
r . Then the operator of mul-

tiplication by V ∈ Lp(Rd) is bounded as a map Lq(Rd) → Lr(Rd) with norm
equal to ‖V ‖q.

The following two lemmas follow from the Hardy-Littlewood-Sobolev in-
equality:

Lemma 14.38 The operator (1l −∆)−1 is bounded from L2(Rd) to Lq(Rd) in
the following cases:

(1) For d = 1, 2, 3 if 1
∞ ≤

1
q ≤

1
2 .

(2) For d = 4 if 1
∞ < 1

q ≤
1
2 .

(3) For d ≥ 5 if 1
2 −

2
d ≤

1
q ≤

1
2 .

Lemma 14.39 The operator (1l−∆)−
1
2 is bounded from L2(Rd) to Lq(Rd) in

the following cases:

(1) For d = 1 if 1
∞ ≤

1
q ≤

1
2 .

(2) For d = 2 if 1
∞ < 1

q ≤
1
2 .

(3) For d ≥ 3 if 1
2 −

1
d ≤

1
q ≤

1
2 .

Proposition 14.40 Let V ∈ Lp + L∞(Rd),where

(1) for d = 1, 2, 3, p = 2,

(2) for d = 4, p > 2,

(3) for d ≥ 5, p = d
2 .

Then the −∆-bound of V is zero. Hence −∆+V (x) is self-adjoint on Dom(−∆).

Proof. We need to show that

lim
c→∞

V (x)(c−∆)−1 = 0, (14.11)

where (14.11) is understood as an operator on L2(Rd).
For any ε > 0 we can write V = V∞+Vp, where V∞ ∈ L∞(Rd), Vp ∈ Lp(Rd)

and ‖Vp‖p ≤ ε. Now

V (x)(c−∆)−1 = V∞(x)(c−∆)−1 + Vp(x)(c−∆)−1.

The first term has the norm ≤ ‖V∞‖∞c−1. Consider the second term. Let

1

q
+

1

p
=

1

2

‖Vp(x)Lq→L2 = ‖Vp‖p ≤ ε, and ‖(c−∆)−1
L2→Lq‖ is uniformly finite for c > 1 by

Lemma 14.39. 2



Proposition 14.41 Let V ∈ Lp + L∞(Rd),where

(1) for d = 1, p = 1,

(2) for d = 2, p > 1,

(3) for d ≥ 3, p = d
2 .

Then the form −∆-bound of V is zero. Hence −∆ + V (x) can be defned in the
sense of the form sum with the form domain Dom(

√
−∆).

Proof. We need to show that

lim
c→∞

(c−∆)−1/2V (x)(c−∆)−1/2 = 0, (14.12)

where (14.12) is understood as an operator on L2(Rd). For any ε > 0 we can
write V = V∞ + Vp, where V∞ ∈ L∞(Rd), Vp ∈ Lp(Rd) and ‖Vp‖p ≤ ε. Now

(c−∆)−1/2V (x)(c−∆)−1/2 = (c−∆)−1/2V∞(x)(c−∆)−1/2

+
(
|Vp(x)|1/2(c−∆)−1/2

)∗
sgnVp(x)|Vp(x)|1/2(c−∆)−1/2.

The first term has the norm ≤ ‖V∞‖∞c−1. Consider the second term. Let

1

q
+

2

p
=

1

2
.

‖|Vp(x)|1/2
Lq(Rd)→L2(Rd)

‖ =
√
‖Vp‖p ≤

√
ε and ‖(c−∆)

−1/2
L2→Lq‖ is uniformly finite

for c > 1 by Lemma 14.39. 2





Chapter 15

Momentum in one
dimension

15.1 Distributions on R
The space of distributions on R is denoted D′(R). Note that L1

loc(R) ⊂ D′(R).
Obviously C(R) ⊂ L1

loc(R).
For every T ∈ D′(R), one can define its support, which is a closed subset of

R. Clearly, if T ∈ L1
loc(R), then suppT in the sense of L1

loc and D′ coincide.

Proposition 15.1 (1) Let g ∈ L1
loc(R). Then∫ x

0

g(y)dy =: f(x) (15.1)

is a continuous function and f ′ = g, where we use the derivative in the
distributional sense.

(2) If g ∈ Lp(R) with 1 ≤ p, then g ∈ L1
loc(R) and so f(x) defined in (15.1) is

a continuous function.

(3) If f ′ = g ∈ C(R), then f ∈ C1(R) and f ′ = g is true in the classical sense.

(4) The differentiation does not increase the support of a distribution.

We will consider sometimes L1
loc functions defined on closed subsets of R,

eg. [0,∞[. Clearly, L1
loc[0,∞[⊂ L1

loc(R), hence we know what it means to take
the distributional derivative of elements of L1

loc[0,∞[.
θ will denote the Heavyside function.

15.2 Momentum on the line

Consider the Hilbert space L2(R).
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The equation

U(t)f(x) := f(x− t), f ∈ L2(R), t ∈ R,

defines a unitary strongly continuous group.
The momentum operator p is defined on the domain

Dom p := {f ∈ L2(R) : f ′ ∈ L2(R)}

by

pf(x) :=
1

i
∂xf(x), f ∈ Dom p. (15.2)

Its graph scalar product is

(f |g)p =

∫ ∞
−∞

(
f(x)g(x) + f ′(x)g′(x)

)
dx.

Theorem 15.2 (1) U(t) = e−itp.

(2) p is a self-adjoint operator.

(3) C∞c (R) is an essential domain of p.

(4) sp p = R, sppp = ∅.
(5) The integral kernel of (z − p)−1 equals

R(z, x, y) =

{
−iθ(x− y)eiz(x−y), Imz > 0,
+iθ(y − x)eiz(x−y), Imz < 0.

Proof. (1): Let U(t) = etA.
Let f ∈ DomA. Then for any φ ∈ C∞c (R)

(φ|Af)← 1

t
(φ|U(t)f − f) =

1

t

∫ (
φ(x+ t)− φ(x)

)
f(x)dx

→
∫
φ′(x)f(x)dx = −

∫
φ(x)f ′(x)dx

Therefore, Af = −∂xf (in the distributional sense). Thus, f ∈ Dom p and
Af = −ipf .

Let f ∈ Dom p, which means f ∈ L2, g := f ′ ∈ L2. Then f ∈ C(R) and

1

t

(
f(x− t)− f(x)

)
=

1

t

∫ x

x−t
g(y)dy = jt ∗ g → g, (15.3)

where we jt :=

{
1/t, y ∈ [−t, 0],

0 y 6∈ [−t, 0],
and (15.3) is understood in the L2 sense.

Therefore, f ∈ DomA.
(2): p is self-adjoint because −ip generates a unitary group.



(3): C∞c (R) is a dense subspace of L2(R) left invariant by U(t). Therefore,
it is an essential domain.

(5): For Imz > 0

(z − p)−1 = −i

∫ ∞
0

eiztU(t)dt.

Hence

(z − p)−1f(x) = −i

∫ ∞
0

eiztf(x− t)dt = −i

∫ ∞
−∞

ei(x−y)zθ(x− y)f(y)dy.

For Imz < 0 we can use

(z − p)−1∗ = (z − p)−1.

(4): Let k ∈ R. Consider fε,k =
√
πεe−εx

2+ikx. Then ‖fε,k‖ = 1, fε,k ∈
Dom p and (k − p)fε,k → 0 as ε→ 0. Hence k ∈ spp.

Suppose that f ∈ Dom p and pf = kf . The only solution is f = ceikx, which
does not belong to L2(R). Hence sppp = ∅. 2

Proposition 15.3 Dom p ⊂ C∞(R) and Dom p 3 f 7→ f(x) ∈ C is a continu-
ous functional.

Proof. Dom p = Ran (i−p)−1. Now (i−p)−1 is the convolution with−iθ(x)e−|x|,
which belongs to L2(R). The convolution of two L2(R) functions belongs to
C∞(R). 2

Proposition 15.4 (1) The spaces

{f ∈ Dom p : f(x) = 0, x < 0}, (15.4)

{f ∈ Dom p : f(x) = 0, x > 0}. (15.5)

are mutually orthogonal in Dom p.

(2) The orthogonal complement of the direct sum of (15.4) and (15.5) is spanned
by e−|x|.

Proof. (2): We easily check the orthogonality of e−|x| to (15.4) and (15.5).

Let f ∈ L2
1(R). Set f±(x) := θ(±x)

(
f(x)− f(0)e−|x|

)
. Then

f(x) = f(0)e−|x| + f−(x) + f+(x).

2



15.3 Momentum on the half-line

Consider the Hilbert space L2([0,∞[).
Define the semigroups

U←(t)f(x) := f(x+ t), t ≥ 0.

U→(t)f(x) :=

{
f(x− t), x ≥ t ≥ 0.

0, t > x,

If we embed L2[0,∞[ in L2(R), then, for t ≥ 0,

U←(t) = 1l[0,∞[(x)U(−t)1l[0,∞[(x),

U→(t) = 1l[0,∞[(x)U(t)1l[0,∞[(x).

Define pmax by

pmaxf(x) :=
1

i
∂xf(x),

f ∈ Dom pmax := {f ∈ L2[0,∞[ : f ′ ∈ L2[0,∞[}. (15.6)

The graph scalar product of pmax is

(f |g)pmax
=

∫ ∞
0

(
f(x)g(x) + f ′(x)g′(x)

)
dx,

Dom pmax ⊂ C[0,∞[, and for x ∈ [0,∞[

Dom pmax 3 f 7→ f(x)

is a continuous functional.
Define the operator pmin as the restriction of pmax to the domain

Dom pmin := {f ∈ Dom pmax : f(0) = 0}.

If we embed L2[0,∞[ in L2(R), then

Dom pmax = {1l[0,∞[f : f ∈ Dom p},
Dom pmin = {f ∈ Dom p : f(x) = 0, x < 0}.

Theorem 15.5 (1) We have U←(t) = eitpmax and U→(t) = e−itpmin .

(2) pmin ⊂ pmax, p
∗
min = pmax, p∗max = pmin; the operators pmin and −pmax are

m-dissipative (in particular, they are closed); the operator pmin is hermi-
tian.

(3) Dom pmin is a subspace of Dom pmax of codimension 1 and its orthogonal
complement is spanned by 1l[0,∞[(x)e−x.

(4) C∞c ([0,∞[) is an essential domain of pmax and C∞c (]0,∞[) is an essential
domain of pmin.



(5) sppmax = spppmax = {Imz ≥ 0}, sppmin = {Imz ≤ 0}, spppmin = ∅,

pmaxeizx = zeizx, eizx ∈ Dom pmax, Imz > 0; (15.7)

(6) The integral kernels of (z − pmax)−1 and (z − pmin)−1 are equal

Rmax(z, x, y) = iθ(y − x)eiz(x−y), Imz < 0.

Rmin(z, x, y) = −iθ(x− y)eiz(x−y), Imz > 0.

15.4 Momentum on an interval I

Consider the Hilbert space L2([−π, π]).

Define pmax as an operator with domain

Dom pmax := {f ∈ L2[−π, π] : f ′ ∈ L2[−π, π]}

pmaxf(x) :=
1

i
∂xf(x), f ∈ Dom pmax. (15.8)

Note that the graph scalar product for pmax is

(f |g)pmax
=

∫ π

−π

(
f(x)g(x) + f ′(x)g′(x)

)
dx, f, g ∈ Dom pmax,

C[−π, π] ⊂ Dom pmax, and for x ∈ [−π, π]

Dom pmax 3 f 7→ f(x)

is a continuous functional. Define the operator pmin as the restriction of pmax

to the domain

Dom pmin := {f ∈ Dom pmax : f(−π) = f(π) = 0}.

Theorem 15.6 (1) Neither pmax nor pmin generate a semigroup.

(2) pmin ⊂ pmax, p
∗
min = pmax, p∗max = pmin; the operators pmin and pmax are

closed; the operator pmin is hermitian.

(3) C∞([−π, π]) is an essential domain of pmax and C∞c (]−π, π[) is an essential
domain of pmin.

(4) sppmax = spppmax = C, sppmin = C, spppmin = ∅,

pmaxeizx = zeizx, z ∈ C, (15.9)



15.5 Momentum on an interval II

Let κ ∈ C. Define the family of groups on L2([−π, π]) by

Uκ(t)φ(x) = ei2πnκφ(x− t), −(2n− 1)π < x− t < −(2n+ 1)π, n ∈ Z.

Let the operator pκ be defined as the restriction of pmax to

Dom pκ = {f ∈ Dom pmax : ei2πκf(−π) = f(π)}.

Theorem 15.7 (1) Uκ(t) = e−itpκ .

(2) ‖Uκ(t)‖ = e2πnImκ, 2π(n− 1) < t ≤ 2πn, n ∈ Z.

(3) The semigroup [0,∞[3 t 7→ Uκ(t) is of type (1, 0) for Imκ ≤ 0 and of type
(e2πImκ, Imκ) for Imκ ≥ 0.

(4) p∗κ = pκ, pκ = pκ+1; pmin ⊂ pκ ⊂ pmax. Operators pκ are closed. For
κ ∈ R they are self-adjoint.

(5) {f ∈ C∞([−π, π]) : ei2πκf(−π) = f(π)} is an essential domain of pκ.

(6) sppκ = spppκ = Z + κ,

pκei(n+κ)x = (n+ κ)ei(n+κ)x, n ∈ Z.

(7) The integral kernel of (z − pκ)−1 equals

Rκ(z, x, y) =
1

2 sinπ(z − κ)

(
e−i(z−κ)πeiz(x−y)θ(x− y) + ei(z−κ)πeiz(x−y)θ(y − x)

)
.

(8) The operators pκ are similar to one another up to an additive constant:

Dom pκ = eiκx Dom p0, pκ = eiκxp0e−iκx + κ. (15.10)

15.6 Momentum on an interval III

Define the contractive semigroups on L2([−π, π]):

U←(t)f(x) :=

{
f(x+ t), |x+ t| ≤ π,
0 |x+ t| > π.

U→(t)f(x) :=

{
f(x− t), |x− t| ≤ π,
0 |x− t| > π.

.

Let the operator p±i∞ be defined as the restriction of pmax to

Dom p±i∞ = {f ∈ Dom pmax : f(±π) = 0}.

Theorem 15.8 (1) U←(t) = eitp+i∞ and U→(t) = e−itp−i∞ .

(2) p∗±i∞ = p∓i∞; pmin ⊂ p±i∞ ⊂ pmax. Operators p±i∞ are closed.

(3) spp±i∞ = ∅.
(4) The integral kernel of (z − p±i∞)−1 equals

R±i∞(z, x, y) = ±ieiz(x−y±π)θ(±y ∓ x), z ∈ C.



Chapter 16

Laplacian

16.1 Sobolev spaces in one dimension

For α ∈ R let 〈p〉−αL2(R) be the scale of Hilbert spaces associated with the
operator p. It is called the scale of Sobolev spaces. We will focus in the case
α ∈ N.

Theorem 16.1 (1)

〈p〉−nL2(R) = {f ∈ L2(R) : f (n) ∈ L2(R)}.

(2) 〈p〉−nL2(R) ⊂ Cn−1(R) and 〈p〉−nL2(R) 3 f 7→ f (j)(x) for j = 0, . . . , n−1
are continuous functionals depending continuously on x ∈ R.

Proof. We use induction. The step n = 1 was proven before.
Suppose that we know that 〈p〉−nL2(R) ⊂ Cn(R). Let f ∈ 〈p〉−(n+1)L2(R).

Then (i − p)f = g ∈ 〈p〉−nL2(R). Clearly, 〈p〉−n−1L2(R) ⊂ 〈p〉−nL2(R), hence
f ∈ Cn−1(R). Likewise, g ∈ Cn−1(R), by the induction assumption. Now
pf = −g + if ∈ Cn−1(R). Hence, by Prop. 15.3 (3) f ∈ Cn(R). 2

16.2 Laplacian on the line

Define the form d by

d(f, g) :=

∫
f ′(x)g′(x)dx, f, g ∈ Dom d := 〈p〉−1L2(R).

The operator p2 on L2(R) will be denoted −∆. Thus

−∆f(x) = −∂2
xf(x), f ∈ Dom(−∆) = 〈p〉−2L2(R).

Theorem 16.2 (1) −∆ is a positive self-adjoint operator.
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(2) spp(−∆) = ∅.

(3) sp(−∆) = [0,∞[.

(4) The integral kernel of (k2 −∆)−1, for Rek > 0, is

R(k, x, y) =
1

2k
e−k|x−y|.

(5) The integral kernel of et∆ is

K(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t .

(6) The form d is closed and associated with the operator −∆.

(7) {f ∈ C2(R) ∩ L2(R) : f ′, f ′′ ∈ L2(R)} is contained in Dom(−∆) and on
this set

−∆f(x) = −∂2
xf(x).

(8) C∞c (R) is an essential domain of −∆.

Proof. (4) Let Rek > 0. Then

(ik − p)−1(x, y) = −iθ(x− y)e−k|x−y|, (−ik − p)−1(x, y) = iθ(y − x)e−k|x−y|.

Now
(k2 −∆)−1 = (ik − p)−1(−ik − p)−1

= (−2ik)−1
(
(ik − p)−1 − (−ik − p)−1

)
.

(16.1)

The integral kernel of (16.1) equals (2k)−1e−k|x−y|.

(5) We have

et∆ = (2πi)−1

∫
γ

(z −∆)−1etzdz,

where γ is a contour of the form e−iα]0,∞[∪eiα[0,∞[ bypassing 0, where π/2 <
α < π. Hence

et∆(x, y) = (2πi)−1

∫
γ̃

e−k|x−y|+tk
2

dk

where γ̃ is a contour of the form e−iα/2[0,∞[∪eiα/2[0,∞[. We put k = iu and
obtain

et∆(x, y) = (2πi)−1

∫ ∞
−∞

e−iu|x−y|−tu2

idu

2



16.3 Laplacian on the halfline I

Consider the space L2([0,∞[). Define −∆max by

−∆maxf = −∂2
xf, f ∈ Dom

(
−∆max

)
:= {1l[0,∞[f : f ∈ 〈p〉−2L2(R)}.

Likewise, define −∆min as the restriction of −∆max to

Dom
(
−∆min

)
:= {f ∈ 〈p〉−2L2(R) : f(x) = 0, x < 0}.

(Both Dom
(
−∆max

)
and Dom

(
−∆min

)
are defined using the space L2(R). It

is easy to see that they are contained in L2([0,∞[).)

Theorem 16.3 (1) −∆∗min = −∆max, −∆min ⊂ −∆max.

(2) The operators −∆min and −∆max are closed and −∆min is hermitian.

(3) spp(−∆max) = C\[0,∞[, spp(−∆min) = ∅

−∆maxeikx = k2eikx, Imk > 0, eikx ∈ Dom(−∆max).

(4) sp(−∆max) = C, sp(−∆min) = C.

(5) −∆min =
(
pmin

)2
, −∆max =

(
pmax

)2
.

16.4 Laplacian on the halfline II

Let µ ∈ C ∪ {∞}. Let −∆µ be the restriction of −∆max to

Dom(−∆µ) = {f ∈ Dom(−∆max) : µf(0) = f ′(0)}. (16.2)

(If µ =∞, these are the Dirichlet boundary conditions, that means f(0) = 0, if
µ = 0, these are the Neumann boundary conditions, that means f ′(0) = 0).

Define also the form dµ as follows. If µ ∈ R, then

dµ(f, g) := µf(0)g(0) +

∫
f ′(x)g′(x)dx, f, g ∈ Dom dµ := Dom pmax.

For µ =∞,

d∞(f, g) :=

∫
f ′(x)g′(x)dx, f, g ∈ Dom d∞ := Dom pmin.

Theorem 16.4 (1) −∆min ⊂ −∆µ ⊂ −∆max.

(2) −∆∗µ = −∆µ.

(3) The operator −∆µ is a generator of a group. For µ ∈ R ∪ {∞} it is
self-adjoint.

(4) spp(−∆µ) =

{
{−µ2}, Reµ < 0;
∅, otherwise;

−∆µeµx = −µ2eµx, Reµ < 0, eµx ∈ Dom(−∆µ).



(5) sp(−∆µ) =

{
{−µ2} ∪ [0,∞[, Reµ < 0,

[0,∞[, otherwise.

(6) −∆0 = p∗maxpmax, −∆∞ = p∗minpmin.

(7) The forms dµ are closed and associated with the operator −∆µ.

(8) Let Rek > 0. The integral kernel of (k2 −∆µ)−1 is equal

Rµ(k, x, y) =
1

2k
e−k|x−y| +

1

2k

(k − µ)

(k + µ)
e−k(x+y),

in particular, for the Dirichlet boundary conditions,

R∞(k, x, y) =
1

2k
e−k|x−y| − 1

2k
e−k(x+y),

and for the Neumann boundary conditions

R0(k, x, y) =
1

2k
e−k|x−y| +

1

2k
e−k(x+y).

(9) The semigroups et∆µ have the integral kernel

Kµ(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t + (2π)−1

∫ ∞
−∞

iu− µ
iu+ µ

e−iu(x+y)−tu2

du,

In particular, in the Dirichlet case

K∞(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t − (4πt)−
1
2 e−

(x+y)2

4t ,

and in the Neumann case

K0(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t + (4πt)−
1
2 e−

(x+y)2

4t .

The group eit∆µ for µ ∈ R ∪ {∞} describes a quantum particle with a
potential well or bump at the end of the halfline.

The semigroup et∆µ for µ ∈ R describes the diffusion with a sink or source
at the end of the halfline. Note that et∆µ preserves the pointwise positivity. If
pt = et∆µp0, 0 < a < b, then

∂t

∫ b

a

pt(x)dx = p′(b)− p′(a).

∂t

∫ a

0

pt(x)dx = p′(a)− µp(0).

Thus at 0 there is a sink of p with the rate µ.



16.5 Neumann Laplacian on a halfline with the
delta potential

On L2([0,∞[) we define the cosine transform

UNf(k) :=
√

2/π

∫ ∞
0

cos kxf(x)dx, k ≥ 0.

Note that UN is unitary and U2
N = 1.

Let ∆N be the Laplacian on L2([0,∞[) with the Neumann boundary condi-
tion. Clearly,

−UN∆NU
∗
N = k2.

Let |δ)(δ| be the quadratic form given by

(f1|δ)(δ|f2) = f1(0)f2(0),

Note that it can be formally written as∫ ∞
0

f(x)δ(x)g(x)dx,

and thus is interpreted as a “potential”.
Let (1| denote the functional on L2([0,∞[) given by

(1|g) =

∫ ∞
0

g(k)dk.

Using δ(x) = π−1
∫∞

0
cos kxdx we deduce that

UN|δ)(δ|U∗N = π−1|1)(1|.

Then
UN (−∆N + λ|δ)(δ|)U∗N = k2 + λπ−1|1)(1|

is an example of an Aronszajn-Donoghue Hamiltonian of type IIb, because∫ ∞
0

1dk =∞,
∫ ∞

0

1

1 + k2
dk <∞,

∫ ∞
0

1

k2
dk =∞.

16.6 Dirichlet Laplacian on a halfline with the
δ′ potential

On L2([0,∞[) we define the sine transform

UDf(k) :=
√

2/π

∫ ∞
0

sin kxf(x)dx, k ≥ 0.

Note that UD is unitary and U2
D = 1



Let ∆D be the Laplacian on L2([0,∞[) with the Dirichlet boundary condi-
tion. Clearly,

−UD∆DU
∗
D = k2.

Using −δ′(x) = π−1
∫∞

0
sin kxdx we deduce that

UD|δ′)(δ′|U∗D = π−1|k)(k|.

Here |δ′)(δ′| is the quadratic form given by

(f1|δ′)(δ′|f2) = f ′1(0)f ′2(0),

and (k| is the functional on L2([0,∞[) given by

(k|g) =

∫ ∞
0

kg(k)dk.

Thus
UD (−∆D + λ|δ′)(δ′|)U∗ = k2 + λπ−1|k)(k|

is an example of an Aronszajn-Donoghue Hamiltonian of type IIIa, because∫ ∞
0

k2

1 + k2
dk =∞,

∫ ∞
0

k2

(1 + k2)2
dk <∞,

∫ ∞
0

k2

(1 + k2)k2
dk <∞.

16.7 Laplacian on L2(Rd) with the delta poten-
tial

On L2(Rd) we consider the unitary operator U = (2π)d/2F , where F is the
Fourier transformation. Note that U is unitary.

Let ∆ be the usual Laplacian. Clearly,

−U∆U∗ = k2.

Let |δ)(δ| be the quadratic form given by

(f1|δ)(δ|f2) = f1(0)f2(0).

Note that again it can be also written as∫
f(x)δ(x)g(x)dx,

and thus is interpreted as a “potential”. Let (1| denote the functional on L2(Rd)
given by

(1|g) =

∫
g(k)dk.

Using δ(x) = (2π)−d
∫

eikxdx we deduce that

U |δ)(δ|U∗ = (2π)−d|1)(1|.



Consider
U (−∆ + λ|δ)(δ|)U∗ = k2 + λ(2π)−d|1)(1|

as an example of an Aronszajn-Donoghue Hamiltonian. We compute:∫
ddk

1 + k2
<∞ ⇔ d = 1,∫

ddk

(1 + k2)2
<∞ ⇔ d = 1, 2, 3,∫

ddk

k2(1 + k2)
<∞ ⇔ d = 3.

Thus

(1) for d = 1 it is of type IIb, so it can be defined in the form sense using the
parameter λ (as we have already seen),

(2) for d = 2 it is of type IIIb. It can be renormalized.

(3) for d=3 it is of type IIIa. It can be renormalized.

(4) for d ≥ 4 there is no nontrivial renormalization procedure.

Consider dimension d = 2. Let us compute the resolvent for z = −p2. We
have

g(−p2) = γ−1 + (p2 − 1)
(1|(H0 + p2)−1(H0 + 1)−1|1)

(2π)2

= γ−1 + (p2 − 1)

∫
d2k

(2π)2(k2 + p2)(k2 + 1)
= γ−1 +

ln p2

4π
.

Using that the Fourier transform of k 7→ 1
k2+p2 equals x 7→ 2πK0(p|x|), where

K0 is the 0th MacDonald function, we obtain the following expression for the
integral kernel of (p2 +H)−1:

1

2π
K0(p|x− y|) +

K0(p|x|)K0(p|y|)
(2π)2(γ−1 + ln p2

4π )
. (16.3)

In the physics literature one usually introduces the parameter a = eγ−1/2π called
the scattering length. There is a bound state K0(|x|/a) with eigenvalue −a−2.

Note that
{f ∈ (1−∆)−1L2(R2) : f(0) = 0} (16.4)

is a closed subspace of (1−∆)−1L2(R2). The domain of H is spanned by (16.4)
and

(−a−2 −∆)−1|1), (16.5)

which is in L2(R2)\(1 − ∆)−1L2(R2). In the position representation (16.5) is
x 7→ 2πK0(|x|/a) Around r ∼ 0 we have the asymptotics K0(r) ' − log(r/2)−
γ. Therefore, the domain of H contains functions that behave at zero as
C
(

log(|x|/2a) + γ
)
.



Consider dimension d = 3. Let us compute the resolvent for z = −p2. We
have

g(−p2) = γ0 + p2 (1|(H0 + p2)−1H−1
0 |1)

(2π)3

= γ0 + p2

∫
d3k

(2π)3(k2 + p2)k2
= γ0 +

p

4π

Using that the Fourier transform of k 7→ 1
k2+p2 equals x 7→ 2π2 ep|x|

|x| , we obtain

the following expression for the integral kernel of (p2 +H)−1:

e−p|x−y|

4π|x− y|
+

e−p|x|e−p|y|

(4π)2(γ0 + p
4π )|x||y|

. (16.6)

In the physics literature one usually introduces the parameter a = −(4πγ0)−1

called the scattering length.

{f ∈ (1−∆)−1L2(R3) : f(0) = 0} (16.7)

is a closed subspace of (1−∆)−1L2(R3). The domain of H is spanned by (16.7)

(aeiπ/4 − i)(i−∆)−1|1) + (ae−iπ/4 + i)(−i−∆)−1|1) (16.8)

In the position representation (±i−∆)−1|1) equals x 7→ 2π2 exp(e±iπ/4|x|)
|x| . There-

fore, the Hamiltonian with the scattering length a has the domain whose ele-
ments around zero behave as C(1− a/|x|).

For a > 0 there is a bound state e−|x|/a

|x| with eigenvalue −a−2. To get the

domain, instead of (16.8), we can adjoin this bound state to (16.7).
Note that the Hamiltonian is increasing wrt γ0 ∈] − ∞,∞]. It is also in-

creasing wrt a separately on [−∞, 0] and ]0,∞]. At 0 the monotonicity is lost.
a = 0 corresponds to the usual Laplacian.

The following theorem summarizes a part of the above results.

Theorem 16.5 Consider −∆ on C∞c (Rd\{0})
(1) It has the defficiency index (2, 2) for d = 1.

(2) It has the defficiency index (1, 1) for d = 2, 3.

(3) It is essentially self-adjoint for d ≥ 4.

(4) For d = 1 its Friedrichs extension is −∆D and its Krein extension is −∆.

(5) For d = 2 its Friedrichs and Krein extension is −∆.

(6) For d = 3 its Friedrichs extension is −∆ an its Krein extension corresponds
to a =∞.

Let us sketch an alternative approach. The Laplacian in d dimensions written
in spherical coordinates equals

∆ = ∂2
r +

d− 1

r
∂r +

∆LB

r2
,



where ∆LB is the Laplace-Beltrami operator on the sphere. For d ≥ 2, the
eigenvalues of ∆LB are −l(l + d − 2), for l = 0, 1, . . . . For d = 1 instead of the
Laplace-Beltrami operator we consider the parity operator with the eigenvalues
±1. We will write l = 0 for parity +1 and l = 1 for parity −1. Hence the radial
part of the operator is

∂2
r +

d− 1

r
∂r −

l(l + d− 2)

r2
.

The indicial equation of this operator reads

λ(λ+ d− 2)− l(l + d− 2) = 0.

It has the solutions λ = l and λ = 2− l − d.
For l ≥ 2 only the solutions behaving as rl around zero are locally square

integrable, the solutions behaving as r2−1−d have to be discarded. For l = 0, 1
we have the following possible square integrable behaviors around zero:

l = 0 l = 1 l ≥ 2
d = 1 r0, r1 r0, r1 −−
d = 2 r0, r0 ln r r1 rl

d = 3 r0, r−1 r1 rl

d ≥ 4 r0 r1 rl

In dimension d = 1 in both parity sectors we have non-uniqueness of boundary
conditions. In dimensions d = 2, 3 this non-uniqueness appears only in the
spherically symmetric sector. There is no nonuniqueness in higher dimensions.

16.8 Approximating delta potentials by separa-
ble potentials

Set 1Λ(k) := 1l[0,Λ](|k|). The Laplacian with a delta potential can be conve-
niently approximated by a separable potential

−∆ +
λ

(2π)d
|1Λ)(1Λ|. (16.9)

In dimension d = 1 and d = 2 (16.9) has a (single) negative bound state iff
λ < 0.

Clearly, in dimension d = 1 (16.9) converges to −∆+λδ in the norm resolvent
sense for all λ ∈ R.

In dimension d = 2 it is easy to check that

−∆−
(
γ−1 + π log(1 + Λ2)

)−1|1Λ)(1Λ| (16.10)

converges to −∆(γ−1) for all γ−1 ∈ R.



In dimension d = 3 (16.9) has a (single) negative bound state for all λ
(2π)3 <

−(Λ4π)−1. It is easy to check that

−∆−
(
γ0 + 4πΛ

)−1|1Λ)(1Λ| (16.11)

converges to −∆(γ0) for all γ0 ∈ R.



Chapter 17

Orthogonal polynomials

17.1 Orthogonal polynomials

Let −∞ ≤ a < b ≤ ∞. Let ρ > 0 be a fixed positive integrable function on ]a, b[
called a weight. Let x denote the generic variable in R.

We will denote by Pol the space of complex polynomials of the real variable.
We assume that ∫ b

a

|x|nρ(x)dx <∞, n = 0, 1, . . . . (17.1)

Then Pol is contained in L2([a, b], ρ).
The monomials 1, x, x2, . . . form a linearly independent sequence in L2([a, b], ρ).

Applying the Gram-Schmidt orthogonalization to this sequence we obtain the
orthogonal polynomials P0, P1, P2, . . . . Note that degPn = n. There exist a
simple criterion that allows us to check whether this is an orthogonal basis.

Theorem 17.1 Suppose that there exists ε > 0 such that∫ b

a

eε|x|ρ(x)dx <∞.

Then Pol is dense in L2([a, b], ρ). Therefore, P0, P1, . . . form an orthogonal
basis of L2([a, b], ρ).

Proof. Let h ∈ L2([a, b], ρ). Then for |Imz| ≤ ε
2∫ b

a

|ρ(x)h(x)eixz|dx ≤

(∫ b

a

ρ(x)eε|x|dx

) 1
2
(∫ b

a

ρ(x)|h(x)|2dx

) 1
2

<∞.

Hence, for |Imz| ≤ ε
2 we can define

F (z) :=

∫ b

a

ρ(x)e−izxh(x)dx.
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F is analytic in the strip {z ∈ C : |Imz| < ε
2}. Let (xn|h) = 0, n = 0, 1, . . . .

Then
dn

dzn
F (z)

∣∣∣
z=0

= (−i)n
∫ b

a

xnρ(x)h(x)dx = (−i)n(xn|h) = 0.

But an analytic function vanishing with all derivatves at one point vanishes in
its whole (connected) domain. Hence F = 0 in the whole strip, and in particular

on the real line. Hence ĥ = 0. Applying the inverse Fourier transformation we
obtain h = 0.

Therefore, there are no nonzero vectors orthogonal to Pol. 2

17.2 Classical orthogonal polynomials

We will classify the so called classical orthogonal polynomials, that is orthogonal
polynomials that are eigefunctions of a certain second order differential operator.
We will show that all classical orthogonal polynomials essentially fall into one
of the following 3 classes:



(1) Hermite polynomials Hn(x) = (−1)n

n! ex
2

∂xe−x
2

, which form an orthogonal

basis in L2(R, e−x2

) and satisfy

(∂2
x − 2x∂x + 2n)Hn(x) = 0.

(2) Laguerre polynomials Lαn(x) = 1
n!e

x∂nx e−xxn+α , which form an orthogonal
basis in L2(]0,∞[, e−xxα) for α > −1 and satisfy

(x∂2
x + (α+ 1− x)∂x + n)Lαn(x) = 0.

(3) Jacobi polynomials Pα,βn (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β∂nx (1 − x)α+n(1 +
x)β+n, which form an orthogonal basis in L2(]− 1, 1[, (1− x)α(1 + x)β) for
α, β > −1 and satisfy

(1− x2)∂2
x + (β − α− (α+ β + 2)x)∂x + n(n+ α+ β + 1)Pα,βn (x) = 0.

An important role in the proof is played by unbounded operators. More pre-
cisely, we use the fact that eigenvectors of hermitian operators with distinct
eigenvalues are orthogonal.

Note that the proof is quite elementary – it has been routinely used in
courses for physics students of 2nd year of University of Warsaw. In particular,
one does not need to introduce the concept of a self-adjoint or essentially self-
adjoint operator: one can limit oneself to the concept of a hermitian operator,
which is much less technical and acceptable for students without sophisticated
mathematical training.

17.3 Reminder about hermitian operators

In this chapter we will need some minimal knowledge about hermitian operators.
In order to make it essentially self-contained, we recall that an operator A is
hermitian if

(w|Av) = (Aw|v), v, w ∈ DomA.

Theorem 17.2 Let A be a hermitian operator.

(1) If v ∈ DomA is its eigenvector with eigenvalue λ, that is Av = λv, then
λ ∈ R.

(2) If λ1 6= λ2 are its eigenvalues with eigenvectors v1 and v2, then v1 is
orthogonal to v2.

Proof. To prove (1), we note that

λ(v|v) = (v|Av) = (Av|v) = λ(v|v).

then we divide by (v|v) 6= 0.
Proof of (2):

(λ1 − λ2)(v1|v2) = (Av1|v2)− (v1|Av2) = (v1|Av2)− (v1|Av2) = 0.

2



Remark 17.3 In finite dimension we can always find an orthonormal basis
consisting of eigenvectors of a hermitian operators. In infinite dimension this
is not always the case. If it happens then the operator is essentially self-adjoint.

17.4 2nd order differential operators

A general 2nd order differential operator without a 0th order term can be written
as

C := σ(x)∂2
x + τ(x)∂x, (17.2)

for some functions σ(x) and τ(x).
It is often convenient to rewrite C in a different form. Let ρ(x) satisfy

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x). (17.3)

We have then
C = ρ(x)−1∂xρ(x)σ(x)∂x. (17.4)

The form (17.4) of the operator C is convenient for the study of its hermiticity.
To simplify the exposition, in the remaining part of this subsection we will

assume that a = 0 and b = ∞, which will illustrate the two possible types of
endpoints. The generalization to arbitrary a < b will be obvious.

Theorem 17.4 Assume (17.1). Suppose also that

(1) ρ and σ are real differentiable functions on ]0,∞[ and ρ > 0;

(2) at the boundaries of the interval we have

σ(0)ρ(0) = 0,

lim
x→∞

σ(x)ρ(x)|x|n = 0, n = 0, 1, 2, . . . .

Then C as an operator on L2([0,∞[, ρ) with domain Pol is hermitian.

Proof.

(g|Cf) =

∫ ∞
0

ρ(x)g(x)ρ(x)−1∂xσ(x)ρ(x)∂xf(x)dx

= lim
R→∞

∫ R

0

g(x)∂xσ(x)ρ(x)∂xf(x)dx

= lim
R→∞

g(x)ρ(x)σ(x)f ′(x)
∣∣∣R
0
− lim
R→∞

∫ R

0

(∂xg(x))σ(x)ρ(x)∂xf(x)dx

= − lim
R→∞

g′(x)ρ(x)σ(x)f(x)
∣∣∣R
0

+ lim
R→∞

∫ R

0

(∂xρ(x)σ(x)∂xg(x))f(x)dx

=

∫ ∞
0

ρ(x)(ρ(x)−1∂xσ(x)ρ(x)∂xg(x))f(x)dx = (Cg|f).

2

Self-adjoint operators of the form (17.4) are often called Sturm-Liouville
operators.



17.5 Hypergeometric type operators

We are looking for 2nd order differential operators whose eigenfunctions are
polynomials. This restricts severely the form of such operators.

Theorem 17.5 Let

C := σ(z)∂2
z + τ(z)∂z + η(z) (17.5)

Suppose there exist polynomials P0, P1, P2 of degree 0, 1, 2 respectively, satisfying

CPn = λnPn.

Then

(1) σ(z) is a polynomial of degree ≤ 2,

(2) τ(z) is a polynomial of degree ≤ 1,

(3) η(z) is a polynomial of degree ≤ 0 (in other words, it is a number).

Proof. CP0 = η(z)P0, hence deg η = 0.
CP1 = τ(z)P ′1 + ηP1, hence deg τ ≤ 1.
CP2 = σ(z)P ′′2 + τ(z)P ′2(z) + ηP2, hence deg σ ≤ 2. 2

Clearly, the number η can be included in the eigenvalue. Therefore, it is
enough to consider operators of the form

C := σ(z)∂2
z + τ(z)∂z, (17.6)

where deg σ ≤ 2 and deg τ ≤ 1. We will show that for a large class of (17.6)
there exists for every n ∈ N a polynomial Pn of degree n that is an eigenfunction
of (17.6).

The eigenvalue equation of (17.6), that is equations of the form(
σ(z)∂2

z + τ(z)∂z + λ)f(z) = 0,

will be called hypergeometric type equations. Solutions of these equations will
be called hypergeometric type functions. Polynomial solutions will be called
hypergeometric type polynomials.

17.6 Generalized Rodrigues formula

Some of the properties of hypergeometric type polynomials can be introduced
in a unified way. Let ρ satisfy

σ(z)∂zρ(z) = (τ(z)− σ′(z)) ρ(z). (17.7)

Note that ρ can be expressed by elementary functions.



Let us fix σ. We will however make explicit the dependence on ρ. The
operator C(ρ) can be written as

C(ρ) = ρ−1(z)∂zσ(z)ρ(z)∂z (17.8)

= ∂zρ
−1(z)σ(z)∂zρ(z)− τ ′ + σ′′. (17.9)

The following is a generalization of the Rodrigues formula, originally given
in the case of Legendre polynomials:

Pn(ρ; z) :=
1

n!
ρ−1(z)∂nz σ

n(z)ρ(z) (17.10)

=
1

2πi
ρ−1(z)

∫
[0+]

σn(z + t)ρ(z + t)t−n−1dt. (17.11)

Theorem 17.6 Pn is a polynomial, typically of degree n, more precisely its
degree is given as follows:

(1) If σ′′ = τ ′ = 0, then degPn = 0.

(2) If σ′′ 6= 0 and − 2τ ′

σ′′ + 1 = m is a positive integer, then

degPn =

{
n, n = 0, 1, . . . ,m;
n−m− 1, n = m+ 1,m+ 2, . . . .

(3) Otherwise, degPn = n.

We have (
σ(z)∂2

z + τ(z)∂z
)
Pn(ρ; z) = (nτ ′ + n(n− 1)

σ′′

2
)Pn(ρ; z), (17.12)

(σ(z)∂z + τ(z)− σ′(z))Pn(ρ; z) = (n+ 1)Pn+1(ρσ−1; z), (17.13)

∂zPn(ρ; z) =

(
τ ′ + (n− 1)

σ′′

2

)
Pn−1(ρσ; z),(17.14)

ρ(z + tσ(z))

ρ(z)
=

∞∑
n=0

tnPn(ρσn; z). (17.15)

Proof. Introduce the following creation and annihilation operators:

A+(ρ) := σ(z)∂z + τ(z) = ρ−1(z)∂zρ(z)σ(z),

A− := ∂z.

Note that

C(ρ) = A+(ρ)A−

= A−A+(ρσ−1)− τ ′ + σ′′.

Hence

C(ρ)A+(ρ) = A+(ρ)A−A+(ρ)

= A+(ρ)
(
C(ρσ) + τ ′

)
.



Therefore, if C(ρσn)F0 = λ0F0, then

C(ρ) A+(ρ) · · ·A+(ρσn−1)F0

=
(
λ0 + nτ ′ + n(n− 1)

σ′′

2

)
A+(ρ) · · ·A+(ρσ−1)F0.

Using

A+(ρ) = ρ−1(z)∂zρ(z)σ(z),

A+(ρσ) = ρ−1(z)σ−1(z)∂zρ(z)σ2(z),

· · · = · · ·
A+(ρσn−1) = ρ−1(z)σ−(n−1)∂zρ(z)σn(z),

we obtain

A+(ρ) · · ·A+(ρσn−1)F0 = ρ(z)−1∂nz ρ(z)σn(z)F0(z).

Take F0 = 1, for which λ0 = 0. We then obtain (17.12). 2

17.7 Classical orthogonal polynomials as eigen-
functions of a Sturm-Liouville operator

We are looking for −∞ ≤ a < b ≤ ∞ and weights ]a, b[3 x 7→ ρ(x) with the
following properties: There exist polynomials P0, P1, . . . satisfying degPn = n
which form an orthogonal basis of L2(]a, b[, ρ) and are eigenfunctions of a certain
2nd order differential operator C := σ(x)∂2

x + τ(x)∂x, that is, for some λn ∈ R(
σ(x)∂2

x + τ(x)∂x + λn
)
Pn(x) = 0. (17.16)

In particular, we want C to be hermitian on Pol.
We know that one has to satisfy the following conditions:

(1) For any n ∈ N ∫ b

a

ρ(x)|x|ndx <∞, (17.17)

which guarantees that Pol ⊂ L2(]a, b[, ρ).

(2) σ has to be a polynomial of degree at most 2 and τ a polynomial of degree
at most 1. (See Thm 17.5).

(3) The weight ρ has to solve

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x), (17.18)

to be positive, σ has to be real. (See Thm 17.4 (1)).

(4) We have to check the boundary conditions



(i) If an endpoint, say, a is a finite number, we check whether ρ(a)σ(a) =
0.

(ii) If an endpoint is infinite, say a = −∞, then

lim
x→−∞

|x|nσ(x)ρ(x) = 0, n = 0, 1, 2, . . . .

(see Thm 17.4 (2).)

We will find all weighted spaces L2(]a, b[, ρ) satisfying the conditions (1)-(4).
It will turn out that in all cases the condition∫ b

a

eε|x|ρ(x)dx <∞ (17.19)

for some ε > 0 will hold, which will guarantee that we obtain an orthogonal
basis (see Thm 17.1).

We will simplify our answers to standard forms

(1) by changing the variable x 7→ αx+ β for α 6= 0;

(2) by dividing (both the differential equation and the weight) by a constant.

As a result, we will obtain all classical orthogonal polynomials.

17.8 Classical orthogonal polynomials for deg σ =
0

We can assume that σ(x) = 1.
If deg τ = 0, then

C = ∂2
y + c∂y.

It is easy to discard this case.
Hence deg τ = 1. Thus

C = ∂2
y + (ay + b)∂y.

Let us set x =
√
|a|
2

(
y + b

a

)
. We obtain

C = ∂2
x + 2x∂x, a > 0; (17.20)

C = ∂2
x − 2x∂x, a < 0. (17.21)

Thus ρ(x) = e±x
2

.

σ(x)ρ(x) = e±x
2

is never zero, hence the only possible interval is ]−∞,∞[.

If a > 0, we have ρ(x) = ex
2

, which is impossible because of (4ii).

If a < 0, we have ρ(x) = e−x
2

and the interval ]−∞,∞[ is admissible, and
even satisfes (17.19). We obtain Hermite polynomials



17.9 Classical orthogonal polynomials for deg σ =
1

We can assume that σ(y) = y.
If deg τ = 0, then

C = y∂2
y + c∂y

Such a C always decreases the degree of a polynomial. Therefore, if P is a
polynomial and CP = λP , then λ = 0. Hence P (x) = x−c. Therefore, we do
not obtain polynomials of all degrees as eigenfunctions.

Thus deg τ = 1. Hence, for b 6= 0,

y∂2
y + (a+ by)∂y. (17.22)

After rescaling, we obtain the operator:

C = −x∂2
x + (−α− 1 + x)∂x.

We compute: ρ = xαe−x. ρ(x)σ(x) = xα+1e−x is zero only for x = 0
i α > −1. The interval [−∞, 0] is eliminated by (4ii). The interval [0,∞]
is admissible for α > −1, and even it satisfies 17.19. We obtain Laguerre
polynomials.

17.10 Classical orthogonal polynomials for deg σ =
2,
σ has a double root

We can assume that σ(x) = x2.
If τ(0) = 0, then

C = x2∂2
x + cx∂x.

xn are eigenfunctions of this operator, but the weight ρ(x) = xc−2 is not good.
Let us assume now that τ(0) 6= 0. After rescaling we can suppose that

τ(x) = 1 + (γ + 2)x.

This gives ρ(x) = e−
1
xxγ . The only point where ρ(x)σ(x) = e−

1
xxγ+2 can be

zero is x = 0. Hence the only possible intervals are ] −∞, 0[ and ]0,∞[. Both
are eliminated by (4ii).

17.11 Classical orthogonal polynomials for deg σ =
2,
σ has two roots

If both roots are imaginary, it suffices to assume that σ(x) = 1 + x2. We can
suppose that τ(x) = a + (b + 2)x. Then ρ(x) = ea arctan x(1 + x2)b. σ(x)ρ(x) is



nowhere zero and therefore the only admissble interval is [−∞,∞]. This has to
be rejected, because lim|x|→∞ ρ(x)|x|n(1 + x2) =∞ for large enough n.

Thus we can assume that the roots are real. It suffices to assume that
σ(x) = 1− x2. Let

τ(x) = β − α− (α+ β − 2)x,

which corresponds to the operator

(1− x2)∂2
x + (β − α− (α+ β − 2)x∂x,

We obtain ρ(x) = |1−x|β |1+x|α. (4ii) eliminates the intervals ]−∞,−1[ and
]1,∞[. There remains only the interval [−1, 1], which satisfies (4i) for α, β > −1.
We obtain Jacobi polynomials.
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