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Chapter 1

Introduction

One can argue that in practical applications most operators are unbounded.
Unfortunately, unbounded operators is a relatively technical and complicated
subject, and for that reason this is a topic avoided in many presentations of
the theory of operators, or postponed to its later parts. To my knowledge, in
most mathematics departments of the world it does not belong to the standard
curriculum, except maybe for some rudimentary elements. Most courses of func-
tional analysis limit themselves to bounded operators, which are much cleaner
and easier to discuss.

Of course, in physics departments unbounded operators do not belong to
the standard curriculum either. However, implicitly, they appear very often in
physics courses.

These lecture notes grew out of a course “Mathematics of quantum theory”
given at Faculty of Physics, University of Warsaw. The aim of the course was
not only to give a general theory of unbounded operators, but also to illustrate it
with many interesting examples. These examples often allow us to compute ex-
actly various quantities of interest. Often, they are related to special functions,
group symmetries, etc.

Hilbert spaces constitute the most useful class of topological vector spaces,
and also the most regular one. Therefore, the setting of most of this text is that
of Hilbert spaces. Only a small part of the material is presented in the more
general setting of Banach spaces. In particular, we try to avoid speaking about
duals of Banach spaces, Banach space adjoints, etc. This is motivated by our
desire to reduce the amount of “abstract nonsense”, which many students do
not like, and those who do like, do not have time to study seriously applications.






Chapter 2

Banach spaces

2.1 Vector spaces

Let K denote the field C or R.

If the vector space X over K is isomorphic to K", we say that X is of a finite
dimension and its dimension is n.

If A C X, then SpanA denotes the set of finite linear combinations of ele-
ments of A. Clearly, SpanA is a subspace of X.

Let L(X,)Y) denote the set of linear transformations from X to ) and
L(X):=L(X,X). For A € L(X,Y), KerA denotes the kernel of A and Ran A
the range of A. A is injective iff KerA = {0}.

If A is bijective, then A~! € L(Y, X).

2.2 Norms and seminorms

Definition 2.1 Let X be a vector space over K. X 3 x + ||z| € R is called a

seminorm iff
1) [lz]l = 0

2) [[Azll = Al
3) llz +yll < =l + llyll-

If in addition
4) ||z =0 < = =0,

then it is called a norm.

If X is a space with a seminorm, then N := {x € X : ||z|| = 0} is a linear
subspace. Then on X /N we define

[z + N = [l=[l,

which is a norm on X' /N

11



If || - || is a norm, then
d(z,y) = [lz = yl|

defines a metric.
Let || - || and || - ||]2 be two norms on X. They are equivalent iff there exist
c1, o > 0 such that
ciflzlly < llzfls < eoflz(ls-

The equivalence of norms is an equivalence relation. If || - ||; and || - |2 are
equivalent, then the corresponding metrics are equivalent.

Theorem 2.2 (1) All norms on a finite dimensional vector space are equiv-
alent.

(2) Finite dimensional vector spaces are complete.

(3) Every finite dimensional subspace of a normed space is closed.
For r > 0, (X), denotes the closed ball in X of radius r, that is (X), := {x €
X |z <}

If V € &, then V! will denote the closure of V, V? its interior.
2.3 Banach spaces
Definition 2.3 X is a Banach space if it has a norm and is complete.
Definition 2.4 Let x;, i € I, be a family of vectors in a normed space. Then

E r; — X

i€l

in:x<:> v 3 v <e.

icl e>01ye2L TocI;e2l

fin

fin

We say then that Y x; is convergent to x.
iel

Clearly,

>

icl

<3 il

icl

If ¢, € R and Y ¢; is convergent, then only a countable number of terms
=
cn # 0.
Theorem 2.5 1) Let X be a Banach space, x; € X and
Z ;]| < oc.
il

Then there exists

S

iel



2) Conversely, if X is a normed space such that

o0
> ]l < oo
n=1
implies the convergence of
o0
>
n=1
then X is a Banach space.

Proof. 1) Since only a countable number of terms z,, is different from zero,
the nonzero terms can be treated as a usual sequence indexed by integers. Let

N
YN = Z L.

n=1
For n <m
m m
1=n+1 1=n+1

Hence (yn) is Cauchy and therefore convergent.
2) Let (x,) be a Cauchy sequence in X. By induction we can find a subse-
quence (z,,) of the sequence (z,) such that

||xnj+1 — Tny H <27

By assumption,
(oo}
Z(xnj+1 - xnj)

J=1

is convergent. The mth partial sum equals zy,,, ,, —2»,. Hence z,; is convergent
to some z € X. Since (z,) was Cauchy, it also has to be convergent to z. O

Theorem 2.6 Let Xy be a normed space. Then there exists a unique up to an
isometry Banach space X, such that Xy C X and Xy is dense in X. X is called
the completion of Xy and is denoted Xgpl.

2.4 Bounded operators

Let X and Y be normed spaces. An operator A : X — ) is called bounded iff
there exists a number C' such that

|Al| < Cllz]l, = € X. (2.1)



We define the norm of A:
Al :==inf{C : ||Az| < C|z||, = € X},

or
[[Az||

|A]] :=sup ©—= = sup |Az].
a0 12l jep<
The set of operators such that [|A| < oo is denoted B(X,Y). We write
B(X) := B(X, X).

Theorem 2.7 The following conditions are equivalent:
1. A is bounded;

2. A is uniformly continuous;

8. A is continuous;

4. A is continuous in one point.

Proof. 1 = 2= 3 = 4 is obvious. Clearly, 4. holds <= A is continuous at
0. Let us show that it implies the boundedness of A.

Suppose A is not bounded. Then there exists a sequence (x,) such that
|lzn| =1 and

|Az,| > n.
Then
. T . Tn ||
s =0 T}L%Hf‘ﬁ = oo

Thus A is not continuous at 0. O

Example 2.8 A linear operator from C™ to C" can be defined by a matrix
[aij]-
(1) If C™ is equipped with the norm || - ||1 and C™ with the norm || - ||, then
[A]l = max{]as;]}-
(2) If C™ is equipped with the norm || - |0 and C™ with the norm || - |1, then
[A] < Z” |ai;].
(3) If C™ is equipped with the norm || - |1 and C™ with the norm || - |1, then
[Al} = max; {3 ai;|}-
(4) If C™ is equipped with the norm || - ||oo and C™ with the norm || - || oo, then

[ Al = max; {3 [ai;|}-
Proposition 2.9 All linear operators on a finite dimensional space are bounded.

Theorem 2.10 If Y is a Banach space, then B(X,)) is a Banach space.
Besides, if A€ B(X,Y) and B € B(), Z), then

IBA < [|BI[[|All



Proof. Clearly, B(X,)) is a normed space. Let us show that it is complete.
Let (A,,) be a Cauchy sequence in B(X,)). Then (A,z) is a Cauchy sequence
in ). Define

Ar:= lim A,x.

n—roo

Obviously, A is linear.
Fix n. Clearly,
(A— A,z = lim (A, — A,)zx.

m—00
Hence
(A= Ap)z||
= Jim_[[(Ap — Al < [lo] im (A — Al
Thus,

JA = Aul < Tim Ay — AL
Therefore, by the Cauchy condition,
nlgréo |A— A,| =0.
Thus the sequence A,, is convergent to A. O

Theorem 2.11 Let X,) be Banach spaces and Xy a dense subspace of X. Let
Ao € B(Xy,Y). Then there exists a unique A € B(X,)) such that A‘X = Ap.

0
Moreover, |A| = || Aol|

Theorem 2.12 Let X, YV be normed spaces. Let A : X — Y be bounded, X,
dense in X and Ran A dense in ). Then AXy is dense in ).

Proof. Let y € Y and € > 0. There exists y; € Ran A such that ||y — y1]| <
€/2. Let 1 € X such that Az; = y;. Then there exists xg € Ay such that
|z — zo|| < ||A||~te/2. Hence

ly = Azoll < lly = yoll + [[A(z1 — zo)[| <.

2.5 Continuous embedding

Let Y, X be Banach spaces. Suppose that Y C X. (We do not assume that
the norms agree on ))). We say that ) is continuously embedded in X iff the
embedding is continuous. Equivalently, for some C,

lyllx < Cllylly, ve.

Proposition 2.13 Let Y, X be Banach spaces with )Y continuously embedded
i X. LetV be dense in Y, and let Y be dense in X. Then V is dense in X.



2.6 Direct sum of Banach spaces

If X, are Banach spaces and 7 is an arbitrary norm in R?, then X @) becomes
a Banach space if we equip it with the norm

1@, )llx = w(ll]l, [lyl])-

All these norms in X @ ) are equivalent and generate the product topology.
Thus (2, yn) — (x,y) is equivalent to x, — =, yn — y.
For instance, we can take

syl = Nzl + llyll-

If X, YV are Hilbert spaces, we will usually prefer

1z, yll2 = V[ ]? + [ly[[>-

2.7 Vector valued functions

For continuous ]a,b[> ¢t — v(t) € X we can define the Riemann integral. It has
all the usual properties, for instance,

| /az@dt

A/abv(t)dt - /ab Av(t)dt.

Let ]a,b[> t — v(t) € X. The (norm) derivative of v(¢) is defined as

b
< / lo(t) dt,

if Ae B(X,)), then

v(to +h) — v(to) .

f’U(to) = }{L}H%)

dt h
It has all the usual properties, for instance,
d d
—Av(tg) == A—v(t
q Avtto) = Agulto),

%/ v(s)ds = v(t).

We assume now that K = C. Let €2 be an open subset of C. We say that
Q35 z—v(z) € X is analytic iff for any zy €  there exists




Theorem 2.14 (1) Let zo,x1,--- € X and r~' := limsup,_, . ||z, ||*. Then
o0
v(z) == anz", zeC
n=0

is absolutely uniformly convergent for |z| < r1 <r and divergent for |z| > r.
In B(0,r) it is analytic

(2) Q3 2z v(z) € X is analytic iff around any zy € Q we can develop it into
a power series. Its radius of convergence equals

(n) 1N~
(lim sup H v (|ZO) H ">
n!

n—oo

(3) If v is analytic on Q, continuous on Q% and zy € Q, then

v(zp) = % /agv(z)dz.






Chapter 3

Partial operators on Banach
spaces

3.1 Relations

One of the problems with unbounded operators is confusing terminology used
in their theory. In particular, they are not true operators, which is usually used
as one of synonyms of the word function-they are a special kind of relations
sometimes called partial operators. Therefore, in order to be precise and clear,
before starting to discuss unbounded operators, it is helpful to reexamine the
concepts of a function and relation.

Let X,Y be sets. R is called a relation iff R C'Y x X. We will also say that
R is a relation from X to Y. We will sometimes write R : X — Y. Note that
there is a problem with the order of X and Y. We chose the order Y x X to
have a more transparent picture for the composition of relations. However, the
usual order in the literature is X x Y. To be consistent with the literature, we
introduce also the graph of R:

GrR:={(z,y) e X XY : (y,z) € R}.
An example of a relation is the identity
Ix :={(z,z) : z€ X} C X xX.
Introduce the projections
Y XX >3 (y,z) = 7y(y,z) =y €Y,

Y x X535 (y,z) ~» rx(y,z) =z € X.

and the flip
Y x X3 (y,x)—7(y,x):=(x,y) € X xY.

19



The domain of R is defined as Dom R := mx R, its range is Ran R = ny R,
its inverseis R™':=TR C X x Y. If S C Z x Y, then the superposition of S
and R is defined as

SoR:={(z,z) € Zx X : Jyey (z,y) €85, (y,z) € R}. (3.1)
If Xy C X, then the restriction of R to Xg is defined as

R‘ — RNY xXo.
Xo

If, moreover, Yy C Y, then

R‘ — RN Yox Xo.
Xo—Yo

We say that a relation R is injective, if mx (RN {y} x X) is one-element for
any y € Ran R. We say that R is surjective if Ran R =Y.

We say that a relation R is coinjective, if my (RNY x{x}) is one-element for
any x € Dom R. We say that R is cosurjective if Dom R = X.

Proposition 3.1 a) If R, S are coinjective, then so is S o R.
b) If R, S are cosurjective, then is S o R.

In a basic course of set theory we learn that a coinjective cosurjective relation
is called a function. One also introduces many synonyms of this word, such as
a transformation, an operator, a map, etc.

The composition of transformations is a transformation. We say that a
transformation R is bijective iff it is injective and surjective. The inverse of a
transformation is a transformation iff it is bijective.

Proposition 3.2 Let RCY x X and S C X XY be transformations such that
RoS=1y and SoR=1x. Then S and R are bijections and S = R™'.

In what follows we will need a weaker concept than a function: A coinjective
relation will be called a partial function (or a partial transformation, operator,
etc).

In the sequel, if R is a partial function, instead of writing (y,z) € R we will
write y = R(x), or perhaps (z,y) € Gr R.

A superposition of partial transformations is a partial transformation. The
inverse of a partial transformation is a partial transformation iff it is injective.

3.2 Linear partial operators
Let X', )Y be vector spaces. We say that R: X — ) is a linear partial operator

if Dom R is a linear subspace of X and R : Dom R — ) is a linear operator in
the usual sense.



Proposition 3.3 (1) V C X®Y is a graph of a certain linear partial operator
iff V is a linear subspace and (0,y) € V implies y = 0.

(2) A linear partial operator A is injective iff (x,0) € Gr A implies © = 0.

From now on by an “operator” we will mean a “linear partial operator”. To
say that A : X — ) is a true operator we will write Dom A = X’ or that it is
everywhere defined. Note however that by writing A € L(X,Y) or A € B(X,))
we will still imply that Dom A = X.

As before, for operators we will write Az instead of A(x) and AB instead of
Ao B. We define the kernel of an operator A:

KerA := {z € DomA : Az = 0}.

Suppose that A, B are two operators X — ). Then by A + B we will mean
the obvious operator with domain Dom A N Dom B.

3.3 Closed operators

Let X,) be Banach spaces. Recall that X & ) can viewed as a Banach space
equipped eg. with a norm

1z )l = Nzl + llyll-

Theorem 3.4 Let A : X — Y be an operator. The following conditions are
equivalent:

(1) GrA is closed in X ® Y.
(2) If v, = x, x, € Dom A and Ax,, — vy, then © € Dom A and y = Ax.
(3) Dom A with the norm

lalla =l + |z,
is a Banach space.
Proof. The equivalence of (1), (2) and (3) is obvious, if we note that
DomA >z — (z,Ax) € Gr A

is a bijection. O

Definition 3.5 An operator satisfying the above conditions is called closed.
Theorem 3.6 If A is closed and injective, then so is A™L.

Proof. Theflip7: X ®Y — Y & X is continuous. O

Proposition 3.7 If A is a closed operator, then KerA is closed.



3.4 Bounded operators as closed operators
For any operator A from X to ) we can define its norm

IA]} = sup [RER (3.2)
[|z||=1, z€Dom A

We say that A is bounded if ||A]| < oco. As already defined before, B(X,))
denotes all bounded everywhere defined operators from X to ).

Proposition 3.8 A bounded operator A is closed iff Dom A is closed.

If A: X — Y is closed, then A € B(Dom A4,)).
Let us quote without a proof a well known theorem:

Theorem 3.9 (Closed graph theorem) Let A: X — Y be a closed opera-
tor with Dom A = X. Then A is bounded.

Proposition 3.10 Let & be a densely defined linear form. The following con-
ditions are equivalent:

(1) & is closed.
(2) € is everywhere defined and bounded.
(3) ¢ is everywhere defined and Ker€ is closed.

3.5 Closable operators

Theorem 3.11 Let A: X — Y be an operator. The following conditions are
equivalent:

(1) There exists a closed operator B such that B D A.
(2) (Gr A)< is the graph of an operator.

(3) (0,y) € (GrA)! = y=0.

(4) (x,) C DomA, x, — 0, Az, — y implies y = 0.

Definition 3.12 An operator A satisfying the conditions of Theorem 3.11 is
called closable. If the conditions of Theorem 3.11 hold, then the operator whose
graph equals (Gr A)! is denoted by A and called the closure of A.

Proof of Theorem 3.11 To show (2)=-(1) it suffices to take as B the
operator A, Let us show (1)=(2). Let B be a closed operator such that
A C B. Then (GrA)® c (GrB)® = GrB. But (0,y) € Gr B = y =0, hence
(0,y) € (Gr A)®" = y =0. Thus (Gr A)° is the graph of an operator. O

As a by-product of the above proof, we obtain

Proposition 3.13 If A is closable, B closed and A C B, then A C B.



Proposition 3.14 Let A be bounded. Then A is closable, Dom A = (Dom A)°!
and || A% = ||A].

Proposition 3.15 If A is a closable operator, then (KerA)®' C KerA®!

Example 3.16 Let V be a subspace in X and xy € X\V. Define the linear
functional w such that Domw =V + Cxg, Kerw =V and (w|xg) = 1. Then w
is closable iff xo & V'. In particular, if V is dense, then w is nonclosable.

3.6 Essential domains

Let A be a closed operator. We say that a linear subspace D is an essential
domain of A iff D is dense in Dom A in the graph topology. In other words, D
is an essential domain for A, if
cl
() =
D

Theorem 3.17 (1) If A € B(X,)), then a linear subspace D C X is an
essential domain for A iff it is dense in X (in the usual topology).

(2) If A is closed, has a dense domain and D is its essential domain, then D
is dense in X.

(2) follows from the following fact:

Proposition 3.18 Let V C X be Banach spaces with ||z||x < ||lz|lv. Then a
dense subspace inV is dense in X.

3.7 Perturbations of closed operators

Definition 3.19 Let B, A: X — ). We say that B is bounded relatively to
A iff Dom A C Dom B and there exist constants a, b such that

|Bz| < al|Az| + bl|z|, = € Dom A. (3.3)

The infimum of a satisfying (3.3) is called the A-bound of B. If Dom A ¢
Dom B the A-bound of B is set +00.

In other words: the A-bound of B equals

a = inf sup 7||Bx||
c>0 z€Dom A\{0} ||A.’IJ|| + CH.’EH

In particular, if B is bounded, then its A-bound equals 0.

If A is unbounded, then its A-bound equals 1.

In the case of Hilbert spaces it is more convenient to use the following con-
dition to define the relative boundedness:



Theorem 3.20 The A-bound of B equals

1/2
. | B|* )
a; = inf sup ( . 3.4

>0 zenom A\ {0} \ [[Az[|* + ||z (34)

Proof. For any € > 0 we have

N

1
(Al + ¢*||=*) [ Az]| + cfjz]|

((1 + )| Az|]? + (1 + 6_2)||x||2)§ )

IN

Theorem 3.21 Let A be closed and let B be bounded relatively to A with the
A-bound less than 1. Then A+ B with the domain Dom A is closed. All essential
domains of A are essential domains of A+ B.

Proof. We know that
|Bz|| < al|Az|| + bf|z||

for some a < 1 and b. Hence
1(A+ B)z| + [lz]| < (1 +a)|Az| + (1 + b) ||
and
(1 =a)[|Az| + [[=[| < |Az| — [ Bz|| + (1 + b)[|z|| < [|(A + B)z[| + (1 + b)||=].

Hence the norms ||Az|| + ||z|| and ||(A + B)x|| + ||=|| are equivalent on Dom A.
O

In particular, every bounded operator with domain containing Dom A is
bounded relatively to A.

Proposition 3.22 Suppose that X = ). Then we have the following seemingly
different definition of the A-bound of B:

B
a1 := inf inf sup 1Bz

. 3.5
bLind o5 o TA= wal + <] (3:5)

Proof. It is obvious that (3.5)<(3.4). To see the converse inequality, it suffices
to note that

[Az|| + cllz] < (A = pzll + (ul + e)[J]]-



Theorem 3.23 Suppose that A,C are two operators with the same domain
Dom A = Dom C = D satisfying

I(A = O)zl| < a([|Az|| + |Cz|)) + bll«]

for some a < 1. Then
(1) A is closed on D iff C is closed on D.

(2) D is an essential domain of A iff it is an essential domain of C.

Proof. Define B := C — A and F(t) := A + tB with the domain D. For
0 <t<1, we have

Bzl < a(||Az|| + [[Cx[]) + bl|z]]
= a([[(F(t) —tB)z| + [(F(t) + (1 — 1) B)z[|) + bl|z|
< 2af|F(t)z]| + a|| Bz|| + bl

Hence
B2l < 22 |F(t)e] +
“1—-a
Therefore, if |s| < 1% and ¢,t + s € [0,1], then F(t + s) is closed iff F(t) is
closed. O

——al.

3.8 Invertible operators

Let X, Y be vector spaces and A € L(X,Y). We say that A is invertible if A is
bijective. Then clearly A=! € L(Y, X).

If X, are finite dimensional, then A € L(X,)) can be invertible only if
X and Y are of the same dimension. We can thus assume that X ~ )Y ~ K"
and assume that A is given by a square matrix [A;;]. Then one of facts of basic
linear algebra says that A is invertible iff det[A4;;] # 0 iff KerA = {0}.

Suppose now that X', ) be Banach spaces.

Theorem 3.24 Let A € B(X,Y). If A is invertible, then A= € B(Y, X).

Proof. A € B(X,Y) implies that A is closed. Hence so is A~!. Therefore, by
Thm 3.9, A~! is bounded. O

Let A be an operator from X to ).

Theorem 3.25 (Closed range theorem) Let A be closed. Then the follow-
ing conditions are equivalent:

(1) For some ¢ >0
|Az|| > c||z||, 2 € Dom A. (3.6)

(2) A is injective and Ran A is closed.



Proof. (1)=(2): The injectivity is obvious. Let y,, € Ran A and y,, — y. Let
Az, = ypn. Then x, is a Cauchy sequence. Hence there exists lim,,_,o T, := .
But A is closed, hence Az = y. Therefore, Ran A is closed.

(1)<(2): By Thm 3.9, A~! is a bounded operator from Ran A to X. O

Proposition 3.26 Let A be closable and suppose that for some ¢ > 0 (3.6)
holds. Then (3.6) holds for A" as well.

Definition 3.27 We say that an operator A is invertible (or boundedly invert-
ible) iff A=t € B(Y, X).

Note that we do not demand that A be densely defined. Note also that
Definition 3.27 is consistent with the definition of invertibilty for bounded op-
erators.

Theorem 3.28 Let A be an operator. The following conditions are equiva-
lent:

(1) A is invertible.

(2) A is closed, injective and Ran A = ).

(3) A is closable, for some ¢ > 0, |Az| > c||z|| and Ran A = Y.

(4) A is closed, for some ¢ > 0, ||Az| > c||z|| and Ran A is dense in ).

Moreover, if these conditions are true then

J474 = (maxfe : [|Aa] > clal}}) (3.7)

The following criterion for the invertibility is obvious:

Proposition 3.29 Let C € B(),X) be such that Ran C C Dom A and

AC =1, CA=1

DomA‘

Then A is invertible and C = A~1L.

Theorem 3.30 Let A be invertible and Dom B D Dom A.
(1) B has the A-bound < |BA™L||.

(2) If |BA7Y| < 1, then A + B with the domain Dom A is closed, invertible
and

(A+B)"' = i(—l)jA‘l(BA‘l)j.
j=0
() [(A+B)~H <A@ - [[BAY) .

4) A7 = (A+B) M| < [[ATIBAT (1 - [|BATY)



Proof. By the estimate
|Bx|| < |[BA7![[[|Az]|, « € Dom 4,
we see that B has the A-bound < ||[BA~!||. This proves (1).
Assume now that ||[BA™!|| < 1. Let
Coi=Y (-1JAY(BAT').
§=0

Then lim C,, =: C exists.

n—oo

Let y € Y. Clearly, lim C,y = Cy.
n—oo

(A+B)Chy =y + (1) (BA™H" Ty — .

But A + B is closed, hence Cy € Dom(A + B) and (A+ B)Cy =y.
Let © € Dom A. Then

Co(A+ Bz =z+ (-1)"A " (BA™")"Bx — x.

Hence C(A+ B)x = x.
By Prop. 3.29, A+ B is invertible and C = (A + B)~!, which proves (2). O

As a corollary of Thm 3.30 we note that invertible elements form an open
subset of B(X,)) on which the inverse is a continuous function.

Theorem 3.31 Let A and C be invertible and Dom C D Dom A. Then

cl-Al=ctAa-C)A™.

3.9 Product of operators

Let B be an operator from X to ) and A an operator from ) to Z. Then we
define its product as an operator from X to Z with the domain

Dom AB := {x € Dom B : Bz € Dom A},
and for x € Dom AB, ABx := A(Bx). (Note that this is a special case of (3.1)).

Proposition 3.32 1. Let A be closed and S bounded. Then AS is closed.

2. Suppose in addition that S is invertible. Let a subspace D C Dom A be
dense in the norm || - ||a. Then S™'D is dense in Dom AS in the norm

- llas-



Proof. (1): Let (u,) C Dom AS and ASu, — v, u, — u. Set w, := Suy.
Then (w,) C Dom A, Aw,, — v, w, — Su. Hence, Su € Dom A and ASu =

lim Aw, = v. Therefore, AS is closed.
n—roo

(2): Let u € Dom AS. Then Su € Dom A. Hence there exists (v,) C D with
vp, — Su and Av,, — ASu. Set u,, := S~ v, € S™'D. Then ASu,, — ASu and
un, — u. Hence u,, = win || - ||as. O

Proposition 3.33 1. Let A be closed and T be invertible. Then TA is
closed.

2. Suppose in addition that T is bounded. Let a subspace D C Dom A be dense
in the norm || - ||a. Then D is dense in Dom T A in the norm || - ||7a.

Proof. (1): Let (u,) C DomTA and T Au,, — v, u,, — u. Then Au, — T~ 'v.
Hence v € Dom A and Au = T~ 'v. Hence u € Dom T'A and T Au = v.Therefore,
TA is closed.

(2): Let v € DomTA. Let (u,) C D with Au,, — u, u, — u. Then
T Au,, — Tu. Hence u,, > win || - ||ra. O



Chapter 4

Spectral theory of operators
on Banach spaces

4.1 Spectrum
Let A be an operator on X. We define the resolvent set of A as
rsA:={z€C : z1 - A is invertible }.

We define the spectrum of A as spA := C\rsA.

We say that © € X is an eigenvector of A with eigenvalue z € C iff z €
Dom A, x # 0 and Ax = zz. The set of eigenvalues is called the point spectrum
of A and denoted sp,A. Clearly, sp,A C spA.

Let CU{oo} denote the Riemann sphere (the one-point compactification of
C). The extended resolvent set is defined as 1s***A := rsA U {0} if A € B(X)
and 1s®™* A := rsA, if A is unbounded. The extended spectrum is defined as

sp™A = CU {oo}\rs™ A.
If A€ B(X), weset (oo — A)~! = 0.

Theorem 4.1 (1) IfrsA is nonempty, then A is closed.
(2) If 29 € 134, then {z )z —z0) < |[(z0 — A)7H| 71} C rsA.

If A is bounded, then {|z| > ||Al|} is contained in rsA.
sp®*' A is a compact subset of CU {oo}.
If z1, 29 € 18A, then

(1 —A) = (—A) = (2 —21) (21 — A) " Hzg — AL

29



(7) If z € 1A, then
d

dz
(8) (2 — A)~! is analytic on rs®*A.

(9) (2 — A)~! cannot be analytically extended to a larger subset of C U {oo}
than rs**(A).

(10) sp™(4) £0
(11) Ran(z — A)~! does not depend on z € 1sA and equals Dom A.
(12) Ker(z — A)~1 = {0}.

(z— A= —(z— A)2.

Proof. (1): If A € rs(A), then A — A is invertible, hence closed. A — A is closed
iff A is closed.

(2): For |z — 20| < [[(20 — A)71|| 71, we have ||(z — 20) (20 — A)~!|| < 1 Hence,
by Theorem 3.30, z — A = 2z — A+ z — zg is invertible.

By (2), dist(z0,spA) > ||(z0 — A)~Y| 7. This implies (3).

(4): We check that > z7"71A" is convergent for |2| > ||A| and equals

n=0
(z—A)~L

(5): By (2), sp™*ANC = spA is closed in C. For bounded A, sp®*'A is
bounded by (4). For unbounded A, oo € sp™'A. So in both cases, sp®™'A is
closed in C N {oo}.

(6) follows from Thm 3.31. Note that it implies the continuity of the resol-
vent.

(7) follows from (6).
(8) follows from (7).

(9) follows from (3).

(10): For bounded A, (z — A)~! is an analytic function tending to zero at
infinity. Hence it cannot be analytic everywhere, unless it is zero, which is
impossible. For unbounded A, co € sp®™'A.

(11) follow from (6).

(12) is an obvious property of the inverse of an invertible operator. O

Proposition 4.2 Suppose that rsA is non-empty and Dom A is dense. Then
Dom A? is dense.

Proof. Let z € 1sA. (z — A)~! is a bounded operator with a dense range and
Dom A is dense. Hence (z — A)~! Dom A is dense. We will show that

(z— A)"! Dom A C Dom A%, (4.1)

Indeed, obviously (2 — A)"*Dom A C Dom A. But A(z — A)"'Dom A =
(2 — A)"*ADom A C Dom A. Hence (4.1) is true. O

Proposition 4.3 Let A and B be operators on X with A C B, A # B. Then
rsA C spB, and hence rsB C spA.



Proof. Let A € rsA. Let + € Dom B\ Dom A. We have Ran (A — A4) = X,
hence there exists y € Dom A such that (A— A)y = (A— B)z. Hence (A—B)y =
(A= B)z. But # # y. Hence A € rsB. O

4.2 Spectral radius
Spectral radius of A € B(X) is defined as

stA:= sup |A|
A€spA

Lemma 4.4 Let a sequence of reals (cy,) satisfy

Cp + Cm 2 Crgm-

Then

. Cn . oCn
lim — = inf —.
n—oo n n

Proof. Fix m € N. Let n = mq + r, r < m. We have

ch S qcm + CT'

0
5 Cn qdCm Cr
— < — + —.
n n n
Hence c .
limsup & < 2.
n—oo N m
Thus,
. c . .c
limsup — < inf —=.
n—o00 m
O

Theorem 4.5 Let A € B(X). Then

lim ||A™* (4.2)

n—oo

exists and equals stA. Besides, stA < || A]l.

Proof. Let

cn = log | A"
Then

Cn + Cm Z Cn—i—m

Hence there exists

lim —.
n—oo n



Consequently, there exists
r:= lim HA"||1/".
n—oo

By the Cauchy criterion, the series

oo

> oArzT (4.3)

n=0

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check
that (4.3) equals (z — A)~%. O

4.3 Examples

Example 4.6 Consider 1?(Z) with the canonical basis €j, j € Z, and the oper-
ator U defined by
Uej = €541

Then spU = {|z| = 1} and sp,U = 0.

Proof. Indeed, |U] = U7} =1,

POl VE > 1
(coU) = {20t U L
D=0 XU, 2l < L

Therefore, {|z| =1} D spU.

Suppose that a sequence v satisfies Uv = zv. Then v; = ¢z/. However such
v is not square integrable. Hence sp,U = 0.

For £ <t <1and |z| =1 set

=1 &
EETPVR
Then [[vi] =1
I(z = U)ozl < max (¢71 = 1, (1 = 1)) ozl < 2(1 = &)]vz]-

Hence (z — U) is not invertible. Therefore, {|z| =1} C spU. O

In what follows we consider [%(1,2,...) with the canonical basis ey, ea, . . ..

Example 4.7 Let the operator T defined by

. > 2
Te; = -1 j._ T
0, j=1

Then spT = {|z| < 1} and sp,T = {[z] < 1}.



Proof. ||T] =1,

(z=T)"'=> 27777, |2 > 1.
j=0

Therefore, {|z| < 1} D spT.
For |z| < 1 set

oo
w, :=+/|z|72 = Iszej.
j=1

Then [|w.| =1 and (z — T)w, = 0. Therefore, {|z| < 1} C sp,T' C spT. Using
the fact that the spectrum is closed we obtain {|z| < 1} C spT.

We easily check that every eigenvector of T is proportional to w, for some
|z| < 1. Therefore, sp, T = {|z| < 1}. O

Example 4.8 Let the operator S defined by
Sej = €541
Then spS = {|z| < 1}.

Proof. ||S|| =1, and we prove that {|z] < 1} D spS the same way as for 7.
Let w € [?(1,2,...) and let v, be as above. We check that

(v:](z = S)w) = ((Z = T)v,|w) = 0.
Hence (z — S) is not invertible. Using the fact that the spectrum is closed we

obtain {|z| <1} C spT. O

Example 4.9 Let (d,) be a sequence convergent to 0. Let the operator D be
defined by
De,, = d,e,.

Set N := SD. Then spN = {0}. If all d,, are nonzero, then sp,N = 0.

Proof. We have
[IN™|| = sup |djyn—1--djl.
J

Let ¢ :=sup|d,;|. Let e > 0. We can find ng such that for j > ng |d;| < e. Then

”NnHl/n < e(nfno)/ncno/n'

Therefore,
limsup || N ||V/™ < e.

n—oo

By the arbitrariness of ¢ > 0, this implies lim [|[N"||'/" = 0. O
n— oo

We say that an operator N is nilpotent if for some n we have N™ = 0. Its
degree of nilpotence is the smallest number n € {0,1,...} such that N™ = 0.



We say that an operator N is quasinilpotent if spN = {0}, or equivalently

lim |[N"|*/" =0

n—oo

Clearly, every nilpotent operator is quasinilpotent. Moreover, if N is nilpotent,
then sp, N = {0}, because Ran N"~! C KerN, where n is the degree of the
nilpotence of N.

4.4 Functional calculus

Let K C C be compact. By Hol(K) let us denote the set of analytic functions
on a neighborhood of K /.vIt is a commutative algebra.

More precisely, let Hol(K) be the set of pairs (f,D), where D is an open
subset of C containing K and f is an analytic function on D. We introduce
the relation (f1,D1) ~ (f2,D2) iff fi = fo on a neighborhood of K contained

Dy N Dy. We set Hol(K) := Hol(K)/ ~.

Definition 4.10 Let A € B(X). Let f € Hol(spA). Let v be a contour in a
domain of f that encircles spA counterclockwise. We define

(z— A" f(2)dz (4.4)

Clearly, the definition is independent of the choice of the contour.

Theorem 4.11
Hol(spA) > f — f(A) € B(X) (4.5)

s a linear map satisfying

(1) fg(A) = f(A)g(A);

(2) 1(4) =

(3) id e Hol(spA) forid(z) = z and id(A) = A.
(4)

4) If X € rsA and fr(z) = (A — 2)71, then f\ € Hol(spA) and fr(A) =
(A—A)~!

(5) If f(2) := Zflozo fnz™ is an analytic function defined by a series absolutely
convergent in a disk of radius greater than srA, then

= faA
n=0

(6) (Spectral mapping theorem). spf(A) = f(spA)
(7) g € Hol(f(spA)) = g o f(A) = g(f(A)),
8) [IF (A < ey,asup.e, [f(2)].



Proof. It is clear that f — f(A) is linear. Let us show that it is multiplicative.
Let f1, f2 € Hol(spA). Choose a contour -, around the contour ~y;, both in the
domains of f; and f.

(27i)~ f fi(z1)(z1 — A)~tdz fw fo(z2)(22 — A)~tdzs

= (27i) 2 f% fvz fi(z1) fa(z2) ((21 — A)7F = (22 — A)71) (22 — 21) " 'dzrdz,
(2mi)~ f fi(z1)(z1 — A7tz J,, (22 = 21) " fo(22)d2o
+(27i)~ f fa(22)(z2 — A)~tdz fyl(zl — 29) 7 fi(21)d2.

But

[, (1 = 22) 7 fi(z1)dz = 0,

f72 zp — 21) " fa(z2)dzy = 2mifa(21).
Thus

f1(A) f2(A) = f1f2(A). (4.6)
From the formula
(z—A) = Z ZLAT 2| > sr(A),
n=0

we obtain 1(A) = 1 and id(A) = A.
Let A € rsA. From the formula

S

we obtain fy(4) = (A — A)~?
Let us prove the spectral mapping theorem. First we will show

spf(A) C f(spA). (4.7)

If u & f(spA), then the function z — f(z) — u # 0 on spA. Therefore, z —
(f(2) — pu)~! belongs to Hol(spA). Thus f(A) — p is invertible and therefore,

w & spf(A). This implies (4.7).

Let us now show
spf(A) D f(spA). (4.8)

Let u & spf(A). This clearly implies that u — f(A) is invertible.
If 1 does not belong to the image of f, then of course it does not belong to
f(spA). Let us assume that g = f()). Then the function

2o g(2) = (f(2) =)A= 2) 7

belongs to Hol(spA). Hence g(A) is well defined as an element of B(X'). Like-
wise, z — (u— f(2))~! belongs to Hol(sp(A)), and so we can define (u— f(A))~!.
Clearly, g()(f()— )" = (A—2)~1. Hence, g(A)(F(\)— f(4)) " = (A\—A4)~!
Hence A\ & spA. Thus p & f(spA). Consequently, (4.8) holds.



Let us show now (7). Let v be a contour around sp(A) and 4 around
g(sp(A)). Notice that if w ¢ f(spA), then the function z — (w — f(z))~!
is analytic on a neighborhood of sp(A) and

(w— FAN" = — [ (w— f(2)" (2 — A)1d.

2mi o

We compute

~—

9(f(4)
= om J5 9(w)(w — f(A) " dw

= @m2 f:y ffy gw)(w — f(2))" !z — A)"'dwdz
= @z J,(z = A) 7z L g(w)(w = f(2)) " dw
= 5w J, 9(F(2))(z — A) M=

_ e

—

O

Note that one can also define functional calculus for an unbounded operator
A having nonempty resolvent set. One needs to consider functions holomorphic
on a neighborhood of sp®*'A inside CU {oo}. Thm 4.11 is then valid except for
(3), and (2) needs to be replaced by 1(A4) = 0.

4.5 Idempotents

P € L(X) is called an idempotent if P2 = P. Then X is the direct sum of
Xy := Ran P and X, := KerP. We then say that P is the projection onto X}
along Xs.

Theorem 4.12 Let P € L(X) be an idempotent. Then P € B(X) iff Ran P
and KerP are closed subspaces of X. If this is the case, spP = {0,1} and

(z=P)'=(-1)7"P+z7'(1-P).

Proof. Let P be bounded. The kernel of a bounded operator is obviously
closed. Hence KerP and Ran P = Ker(1 — P) are closed.
Let X} := KerP and X5 := Ran P be closed. Consider X = X7 ¢ X5 endowed

with the norm ||z||p := ||x1]|+]|z2]]. Clearly, |- |lo makes X into a Banach space.
Let J denote the identity on X', where in the domain we use the norm || - ||o and
in the image the norm || - ||. Obviously ||z|| < ||z|lo, and hence J is bounded. Tt

is also bijective. Hence J~! is bounded. Therefore, there exists ¢ such that
lzllo < cfl]-

Therefore, ||P] < c. O

Theorem 4.13 Let P, € B(X) be idempotents such that st(P — Q)? < 1.
Then there exists an invertible U € B(X) such that P = UQU 1.



Proof. Set
U=QP+(1-Q)(1-P), V=PQ+(1-P)(1-Q).

We have R R R R
QU =UP, PV =VQ.
We also have L o
VU=UV =1-R,
R=(P-Q)?=P+Q—-PQ—-QP.

We check that P and @ commute with R (note in particular that PR = P —
PQP, etc.).

Set ¢ := stR < 1. Then on sp(1 — R) C B(1,¢), the function z — 27 is well
defined. Hence we can introduce the function

(1-R)~1/2
(which can be defined by a convergent power series). We set
U=U1-R"V?=01-R™VU, V=VA-R™Y2=01-R)"?V.
SoUV=VU=1,or V=U""and
Q=UprU %

Proposition 4.14 Let t — P(t) be a differentiable function with values in
idempotents. Then

PPP=0.
Proof. d d
—P=—P?>=PP+ PP.
@ +

Hence PPP = 2PPP. O

4.6 Spectral idempotents

Let © be a subset of B C C.  will be called an isolated subset of B, if
QN (B\Q) =0 and QN (B\Q) = 0 (or Q is closed and open in the relative
topology of B).

If B is in addition closed, then  is isolated iff both 2 and (B\Q)<! are closed
in CU{oo}.

Let © be an isolated subset of spA. It is easy to see that we can find open
non-intersecting neighbohoods of 2 and spA\Q2. Hence

l2) 1z belongs to a neighborhood of €2,
Ql\z) =
0 z belongs to a neighborhood of spA\Q.



defines an element of Hol(spA).
Clearly, 12, = 1. Hence Ig(A) is an idempotent.
If  is a counterclockwise contour around 2 outside of spA\2 then

1n(4) = ! /(Z—A)*ldz

~ 2mi

This operator will be called the spectral idempotent of the operator A onto 2.

sp<A|Ran1Q(A)) =spANQ.
If Q1 and 5 are two isolated subsets of spA, then

]191 (A> HQ2 (A) = IlQlﬂQQ (A)

4.7 Isolated eigenvalues
Assume now that A is an isolated point of spA. Set
P:=1,(A), N:=(A-)NP.

Definition 4.15 We say that \ is a semisimple eigenvalue if N = 0. If N* =0
and N"~1 £ 0, then we say that X is nilpotent of degree n. It is easy to see that
if A€ L(X), then the degree of nilpotence of A is less than or equal to dim P.

Proposition 4.16 The operator N is quasinilpotent, satisfies PN = NP = N
and can be written as

N =f(A), [f(z)=(z=M(2). (4.9)

Besides,
(z—A) T P=(z= NP+ > NI(z— NI
j=1
and (z — A)~1(1 — P) is analytic in the neighborhood of \. If N is nilpotent of
degree n, then there exist 6 > 0 and C such that
I(z = A7 < Clza =A™, z€B(X39). (4.10)

Proof. Clearly, AP = A15(A) and AP = A15(A). This shows (4.9). Then note
that f(z) = 0 for z € spA. Hence spN = {0}.
Using the Laurent series expansion we get

(z—A)' =) Culz— N,

n=—oo



where )
Cp=— /(z —A) N z=N)"""ldz.
2mi J,
Clearly, C_y = P and C_5 = N. Besides, by Theorem 4.11 we obtain
C—l—no—l—m = O—l—n—nL-

4.8 Spectral theory in finite dimension

Suppose that X is finite dimensonal of dimension d and A € L(X). Then spA
has at most d elements. Let spA = {A1,..., A, }.
We say that A is diagonalizable iff

A=) "N\, (A).
j=1

It is well known that in a finite dimension for every A € L(X), there exist
unique diagonalizable D and nilpotent N satisfying DN = ND such that A =
D + N. Let m be the degree of nilpotence of N.

In fact, define two functions on a neighborhood of spA: d(z) is equal to A; on
a neighborhood of \; € spA and n(z) = z — A; on a neighborhood of \; € spA.
Both d and n belong to Hol(spA). Clearly, and D := d(A) and N := n(A)
satisfy the above requirements.

Clearly then N = 37| N; with N; = P;NP; also nilpotent. Let m; be the
degree of nilpotence of N;. We have

f(A) =i, O (D) Ir
=25 it f® ()\j)%"c-

4.9 Functional calculus for several commuting
operators

Let K C C™ be compact. By Hol(K) let us denote the set of analytic functions
on a neighborhood of K. It is a commutative algebra.
Let X be a Banach space.

Definition 4.17 Let Ay,..., A, € B(X) commute with one another. Let F €
Hol(spA; X --- x spA,,). Let v1,...,7n be contours such that y1 X -+ X vy, lies
in the domain of F' and each v; encircles spA; counterclockwise. We define

F(Al,...,An) :ﬁ/ dzl/ dzn(zl_Al)_l"'(Zn_An)_lF(Zl,...,Zn).
b (4.11)

n

Clearly, the definition is independent of the choice of the contour.



Theorem 4.18
Hol(spA; X --- xspAy) 2 F — F(Ay,...,Ap) € B(X) (4.12)

18 a linear map satisfying
(1) FG(Ay,...,A,) = F(Ay,..., A,)G(A, ..., Ay);
(2) 1(44,...,4,) =1;
(3) id; (A1, ..., An) = A;, forid;(z1,...,2n) == 2j;

(4) If F(z1,...,2,) :i= S Foyomn 20 2 is an analytic function

mi,...,m,=0 "
defined by a series absolutely convergent in a neighborhood of B(srAp) x
-+ X B(srA,), then

F(Al,...,An) = Z le,...,,mnATl"'Aan;

mi,...,mpy=0

(5) (Weak version of the spectral mapping theorem). spF (A1, ..., A,) C F(spA,...

(6) g€ HOI(F(SpAl X X SpAn)) = gOF(Ala <. aAn) = g(F(A17 . 'aAn))7
(1) 1F(Ar, - An)ll < ey.a4,..,4, sUD.e, [f(2)]-

Proof. The proof is essentially the same as that of Theorem 4.11. Let us
show for instance the weak version of the spectral mapping theorem. Let pu &
F(spAi,...,spAy,). Then the function (z1,...,2,) — F(2z1,...,2n) — 4 # 0
on spAj x --- x spA,. Therefore, (z1,...,2,) = (F(21,...,2,) — p)~ ! belongs
to Hol(spA; x -+ x A,). Thus F(A4;,...,A,) — u is inverible and therefore,
pe&spF(Ay,...,,Ay). O

4.10 Examples of unbounded operators

Example 4.19 Let I be an infinite set and let (a;);er be a complex sequence.
Let C.(I) be the space of sequences with a finite number of non-zero elements.
Define the operator

C(I)s2x— Az e C.(I)

by the formula
(A.T)Z = a;X;.

For 1 <p < oo let us treat Co(I) as a subspace of the Banach space LP(I), or
Coo(I), so that A is a densely defined (partial) operator. The closure of A has
the domain

Dom A := {(z;)ier € LP(I) : > ;cq laszi|P < oo} (4.13)

,SPAy)



We then have .
spp(A) = {a; : i €1},

spA = {a; : i€ I}
A is bounded iff the sequence a; is bounded.

Proof. To prove this let D be the rhs of (4.13) and € D. Then there
exists a countable set I7 such that ¢ € I; implies z; = 0. We enumerate the
elements of Iy: i1,ig,.... Define 2" € C.(I) setting 9:2 = z;; for j < n and
z}' = 0 for the remaining indices. Then lim,,_,o 2" = x and Az™ — Az. Hence,
{(z,Az) : € D} C (Gr A)°.

If ™ belongs to (4.13) and (2", Az™) — (z,y), then 2} — z; and a2} =
(Az™); — y;. Hence y; = a;z;. Using that y € LP(I) we see that x belongs to
(4.13). O

Example 4.20 Let p~' + ¢ 1 =1, 1 < p < 0o and let (w;);er be a sequence
that does not belong to LI(I). Let C.(I) be as above. Define

LP(I) D C.(I) 3 z — (w|x) := inwi eC.
iel
Then (w| is non-closable.

|w;|?

Proof. It is sufficient to assume that I = N and define v}’ := s~ 1o,
(T Tw

i <mn, v’ =0,i>n Then (wp") =1 and [o"|, = >, lw;|9) "7 — 0.
Hence (0, 1) belongs to the closure of the graph of the operator. O

4.11 Pseudoresolvents
Definition 4.21 Let  C C be open. Then the continuous function
23 z— R(z) € B(X)
is called a pseudoresolvent if
R(z1) — R(z2) = (22 — z1)R(21)R(22). (4.14)

Evidently, if A is a closed operator and Q C 1sA, then 23 2+ (2 — A)"!is a
pseudoresolvent.

Proposition 4.22 Let 2 3 z — R,(z) € B(X) be a sequence of pseudoresol-
vents and R(z) :=s— lim R, (z). Then R(z) is a pseudoresolvent.
n—oo

Theorem 4.23 Let Q3 z — R(z) € B(X) be a pseudoresolvent. Then
(1) R :=RanR(z) does not depend on z € .
(2) N :=KerR(z) does not depend on z € Q.



(3) R(z) is an analytic function and

d
gR(z) = —R(2)%

(4) R(2) is a resolvent of a certain operator A iff N'={0}. The operator A is
uniquely defined and closed. Its domain is R. For any z € Q and y € R,

Ay = —R(2) 'y + zy.

Proof. Let us prove (4)<. Fix z; € Q. If N = {0}, then every element of R can
be uniquely represented as R(z1)x, x € X. Define AR(z1)x := —x + z1R(z1)x.
By formula (4.14) we check that the definition of A does not depend on z;. O



Chapter 5

One-parameter semigroups
on Banach spaces

5.1 (M, ()-type semigroups
Let X be a Banach space.

Definition 5.1 [0,00[> t — W (t) € B(X) is called a strongly continuous one-
parameter semigroup iff

(1) W(0) = 1;

(2) W(t)W(t2) = Wty +t2), t1,t2 € [0,00[;

(3) th( Je=z,xz€X;
)

(4) for someto >0, [W(t)|]| <M, 0<t<tp.
As a side remark we note that (4) can be removed from the above definition.
Proposition 5.2 (4) follows from Def. 5.1 (2) and (3).
Proof. Suppose that ¢ty > 0 and
sup{||[W#)|| : 0 <t <tg} = o0. (5.1)
Below, we will show that this implies the exitence of a sequence (s,,) such that
$n— 0, and ||[W(s,)|| = oo (5.2)

But by (2) we have s— ILm W(s,) = 1. This is impossible by the Banach-
Steinhaus Theorem (the Uniform Boundedness Principle).

Indeed, by (5.1) we can find a sequence (¢,) in [0, %] such that [|[W(t,)| —
0o. In addition, we can assume that either ¢, \, tso or t, Mt
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In the first case
W @)l

(W (teo)

converges to co. Hence s,, 1= t,, — to satisfies (5.2).

W (tn = too)ll = W)l

In the second case, we can assume in addition that W — 00. Conse-

quently,
(W (tns1)]l

W ()|

converges to co. Hence s, := t, 41 — t,, satisfies (5.2). O

W (tns1 = tn)ll =

Theorem 5.3 Let W(t) e a strongly continuous semigroup. Then
(1) There exist constants M, 8 such that

W (b < Me™; (5.3)

(2) [0,00[xX > (t,z) — W (t)x € X is a continuous function.

Proof. By (4), for t < nty we have |[W(¢t)|] < M™. Hence, |[W(t)| <
Mexp(% log M). Therefore, (5.3) is satisfied.
Let t,, — t and x,, — x. Then

W (tn)zn = W)zl < |[[W(th)x, — W(ta)zll + [[W(tn)z — W (t)z||

< M [y, — al| + MeP ™ot [ ([t - to)a — 2.

We say that the semigroup W(t) is (M, B)-type, if the condition (5.3) is
satisfied.

Clearly, if W (t) is (M, B)-type, then W (t)e=5t is (M, 0)-type. Since W(0) =
1, no semigroups (M, ) exist for M < 1.
5.2 Generator of a semigroup

Let W(t) be a strongly continuous one-parameter semigroup.

Definition 5.4 We define

DomA := {xe€X : there exists }1\1"% YW (t)r — )},
Az = limt ' (W(t)z —2z), 2 € Dom A.
N0

Theorem 5.5 (1) A is a closed densely defined operator;
(2) W(t)Dom A C Dom A and W (t)A = AW (t);



(3) If Wi(t), Wal(t) are two different semigroups and Ay, A2 are defined as
above, then Ay # As.

A will be called the generator of W (t). If W (t) is the semigroup generated
by A, then we will write W (t) =: et4.

Proof of Theorem 5.5 (2). Let € Dom A. Then
sTHW(s) — )W () = W(t)s H(W(s) — ). (5.4)
But

W (t) ?\r‘% sTHW(s) — M)z = W(t)Ax

Hence 1{% of the left hand side of (5.4) exists. Hence W (t)z € Dom A and
AW (t)x = W (t)Az. O

Lemma 5.6 For x € X put
t
Bix = til/ W (s)xds.
0

Then
(1) s— lim B, = 1.

(2) B ( ) = W(s)B.
(3) For x € Dom A, AB;x = B;Ax.
(4) If x € X, then Byx € Dom A,

ABix =t Y (W (t)x — x). (5.5)

(5) If lim AB.x exists, then x € Dom A and lim AB;x = Ax.
£\,0 N0
Proof. (1) follows by
o
Bix—x=t /0 (W(s)x — x)ds 75§>00.

(2) is obvious. (3) is proven as Theorem 5.5 (2). To prove (4) we note that

u Y (W (u) — 1)Byx =t~ (W(t) — 1)B,x zot*I(W(t)m — ),

where first we use a simple identity, and then we apply (1). (5) follows from
(4). O

Proof of Theorem 5.5 (1) The density of Dom A follows by Lemma 5.6 (1)
and (3).



Let us show that A is closed. Let z, — « and Az, — y. By (5.5),
n— oo n— 00
B;A = AB; is bounded. Hence,

Byy = lim B;Ax, = lim AB;x, = AB;x.
n—o0 n— oo

Thus,
= lim Byy = lim AB;x. 5.6
y=lim By =lim AByx (5.6)

By Lemma 5.6 (5), x € Dom A and (5.6) equals Az. O

Proposition 5.7 Let W (t) be a semigroup and A its generator. Then, for any
x € Dom A there exists a unique solution of

[0,00[> t — z(t) € Dom A, (t) = Az(t), =(0) ==z. (5.7)

aﬁv
(for t = 0 the derivative is right-sided). The solution is given by x(t) = W (t)x.

Proof. Let us show that x(t) := W (¢)x solves (5.7), both for the left and right
derivative. Let u > 0, in the latter case, assume also u < t. We have

uwTW(t+uw)z —W(tz) = Wu ' (W(u) -1z 1Z>0 W(t)Ax = AW (t)x,
uw Wt —uwr —W(t)z) = W(t—uwu (W) —1)z J)O W(t)Ax = AW (t)x.

Let us show now the uniqueness. Let ¢t — () € Dom A solve (5.7). Let
y(s) := W(t — s)z(s). Then

d

£y(s) =W(t—s)Azx(s) — AW (t — s)z(s) =0

Hence y(s) does not depend on s. At s =t it equals z(t), and at s = 0 it equals
W(t)xz. O

Proof of Theorem 5.5 (3) By Prop. 5.7 (2), W(¢) is uniquely determined by
A on Dom A. But W (¢) is bounded and Dom A is dense, hence W (¢) is uniquely
determined. O

5.3 Omne-parameter groups

Definition 5.8 R 3 ¢t — W(t) € B(X) is called a strongly continuous one-
parameter group iff

(1) W(0) = 1;
(2) W(tl)W(tQ) = W(tl + tg), t17t2 S R,’
(3) }LI% Wt ==z, v € X;



(4) for some to >0, |[W(H)|| < M, |t| <to.

Proposition 5.9 (1) LetR >t — W(t) be astrongly continuous one-parameter
group. If A is the generator of the semigroup [0,00[> t — W(t), then —A
is the generator of the semigroup [0,00[> t — W (—t)..

(2) Conversely, let A and —A be generators of s.c. semigroups. Then

etA t>0,
W(t) = { et(_A) t < 0

1S @ S.Cc. group.
Proof. (1) is immediate. To prove (2) it suffices to show that
e et = 1. (5.8)
But if v € Dom A = Dom(—A), then
e ety = e (A + A)ev =0,
which proves (5.8). O

A will be called the generator of the group R >t — W (t). Note that it can
be defined as in Def.5.4, where the derivative is both-sided.

5.4 Norm continuous semigroups

oo
Theorem 5.10 (1) If A € B(X), then R 3 2z et = Zo LA™ is a norm
n=
continuous group and A is its generator.
(2) If a one-parameter semigroup W (t) is norm continuous, then its generator
is bounded.
Proof. (1) follows by the functional calculus.
Let us show (2). W (t) is norm continuous, hence }in}) B; = 1. Therefore, for
—
0<t<ty
1B, -1 < 1.
Hence B; is then invertible.
We know that for z € Dom A
YW (t) — )z = B;Ax.
For 0 <t < ty we can write this as

Az =t7'B;*(W(t) — 1)z

Hence ||Az| < ¢||z||. O



5.5 Essential domains of generators

Theorem 5.11 Let W(t) be a strongly continuous one-parameter semigroup
and let A be its generator. Let D C Dom A be dense in X and W (t)D C D,
t > 0. Then D is dense in Dom A in the graph topology—in other words, D is
an essential domain of A.

We will write ||z||4 := ||Az|| + ||z|| for the graph norm.

Lemma 5.12 (1) Forx € X, || Byz|ja < (Ct~ 1 +1)||z|);
(2) For x € Dom A, lim || Bz — z||4 = 0;
N0
(3) W (t) is a strongly continuous semi-group on Dom A equipped with the graph
norm.

(4) If D is a closed subspace in Dom A invariant wrt W (t), then it is invariant
also wrt By.

Proof. (1) follows by Lemma 5.6 (3).

(2) follows by Lemma 5.6 (1) and because B(t) commutes with A.

(3) follows from the fact that W(t) is a strongly continuous semigroup on
X, preserves Dom A and commutes with A.

To show (4), note that B;x is defined using an integral involving W (s)z.
W (s)x depends continuously on s in the topology of Dom A, as follows by (3).
Hence this integral (as Riemann’s integral) is well defined. Besides, B;x belongs
to the closure of the space spanned by W(s)z, 0 < s <t. O

Proof of Theorem 5.11. Let € Dom A4, z, € D and #, — x in X. Let D
n—oo

be he closure of D in Dom A. Then By, € D, by Lemma 5.12 (4). By Lemma
5.12 (1) we have
| Bizn — Bix|la < Cillwn, — .

Hence B;z € D. By Lemma 5.12 (2)

|| Bsx — xHAt_u>)O'

Hence, z € D. O

5.6 Operators of (M, 3)-type

Theorem 5.13 Let A be a densely defned operator. Then the following con-
ditions are equivalent:

(1) [B,0[C rs(A) and

l(z =A™ <Mlz-p5"", m=1,2,..., z€R, z>p



(2) {zeC : Rez> g} Crs(A4) and

lz—A)™|| <MRez—p3]"™, m=1,2,..., z€C, Rez> 5.

Proof. It suffices to prove (1)=(2). Let (1) be satisfied. It suffices to assume
that 8 = 0. Let 2 =z +iy. Then for t > 0

(z—A)™ =(r+t—AmM+ (iy—t)(z+t—A)~H™m™

_ é(x = Ay — 1) ( o ) .

Using the fact that ‘ ( 7jm ) ‘ = (—-1)/ ( i;.n ) we get

=) <3 S o+l —ap ()
3=0

_ m liy—t) ™"
= Mo+t (1 - L)

=Mz +t—liy—t)™ — Mz—™.
t—o0
O

Definition 5.14 We say that an operator A is (M, B)-type, iff the conditions
of Theorem 5.13 are satisfied.
Obviously, if A is of (M, 8)-type, then A — 3 is of (M, 0)-type.

5.7 The Hille-Philips-Yosida theorem

Theorem 5.15 If W(t) is a semigroup of (M, B)-type, then its generator A is
also of (M, B)-type. Besides,

(z—A) ' = /OO e W(t)dt, Rez > 3.
0

Proof. Set

R(z)x := /000 e *'W (t)xdt.

Let y = R(z)z. Then

u”H (W (u) — D)y

/ e FW (t)adt +u™ (e* — 1)/ e FW (t)xdt N + zy.
0 0 u

—1ezu



Hence y € Dom A and (2 — A)R(2)z = z.

Suppose now that z € Ker(z — A). Then z; := e*z € Dom A satisfies
L2, = Azy. Hence z, = W (t)z. But ||z¢|| = ef¢**||z||, which is impossible.

By the formula

o0 o0
(z—A)™™ = / . / e—z(t1+‘..+tm)W(t1 4+ tm)dtl coodtyy,
0 0
we get the estimate

Iz = A)™) < / / Me(G=tt=+t)dg, . dt, = Mz — B~

O

Theorem 5.16 If A is an operator of (M, B)-type, then it is the generator of
a semigroup of (M, B)-type.

To simplify, let us assume that § = 0 (which does not restrict the generality).
Then we have the formula

t —n
et =s— lim (11 - A) 7
n—00 n

t N\ " 12
ety — (]1 - A) T —
n

<M 5 |A%z|, = € Dom AZ.

Proof. Set B
Vi (t) = (]1— tA) .

n

Let us first show that
s—ltlirgl Vo(t) = 1 (5.9)
To prove (5.9) it suffices to prove that

S— 1%1(]1 —sA)t=1. (5.10)

We have (1 —sA)™t — 1= (57! - A)~1A. Hence for z € Dom A
(1 - sA)" e —af < Ms™| Az]],

which proves (5.10).
Let us list some other properties of V,,(t): for Ret > 0, V;,(¢) is holomorphic,
IVa(@®)] < M and

d n —n—1
-a(s-ta) "



To show that V,,(¢)x is a Cauchy sequence for x € Dom(A?), we compute
Vo()x =V, () =limg o Vi, (t — $)Vin(s)z — limgyy Vi, (8 — 8)Vin(s)x
= lim¢yo f;ie %Vn(t —8)Vim(s)x
= limeyo [ (= Vit = 5)Vin(s) + Valt = 9)Vi(s) )

=lim. | fet_é (% — ﬂ) (1-t24) -t (1- %A)_m_1 Az,

m

Hence for € Dom(A?)
IVa(O)z = V()| < | A%]| [ |2 — &2 M3ds

= M2(L 4 Lye

n m

By the Proposition 4.2, Dom(A?) is dense in X. Therefore, there exists a limit
uniform on [0, to]
s— lim V,(t) =: W(t),
n—oo

which depends strongly continuously on t.
Finally, let us show that W(t) is a semigroup with the generator A. To this
end it suffices to show that for z € Dom A

d
gW(t)x = AW (t)x. (5.11)

But x € Dom A

Hence passing to the limit we get
t+u
W(t+u)x =W(t)x + / AW (s)xds.
t

This implies (5.11). O

5.8 Semigroups of contractions and their gener-
ators

Theorem 5.17 Let A be a closed operator on X. Then the following condi-
tions are eqivalent:

(1) A is a generator of a semigroup of contractions, i.e. ||e*4| <1, t > 0.

(2) The operator A is of (1,0)-type.



(3) ]0,00[C rs(A) and
(=AM <p™ peR, >0,
(4) {z€C : Rez >0} Crs(A) and
I(z—A)7Y < |Rez|™', z€C, Rez>0.
Proof. The equivalence of (1) and (2) is a special case of Theorems 5.15

and 5.16. The implications (2)=(3) and (2)=(4) are obvious, the converse
implications are easy. O



Chapter 6

Hilbert spaces

6.1 Scalar product spaces
Let V be a vector space.
VXV (vy)— (vy) eC
is called a scalar product if
(vly +2) = (vly) + (vlz),  (v|Ay) = A(vly),
(v+ylz ) (vl2) + (ylz),  (Wly) = Avly),
(vfv) =
(vjv) =0=v=0.
Theorem 6.1 (The hermitian property.)
(vly) = (ylv).
Proof. We use the polarization identity:
(wly) = § 300 (—D)" (v + i"ylo + i"y),
(o) = 1 X p—pim(v +i"ylv +i"y).

We define
[0l == v/ (v]v)
Theorem 6.2 (The parallelogram identity.)
2([vll* + llyll*) = llo +ylI* + o = ylI*.
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Theorem 6.3 (The Schwarz inequality.)

[l < [lollllyll
Proof.

0 < (v+tylo+ty) = [ol* + t(vly) +t(vly) + Iy

We set t = — ?‘Zlﬁ’g) and we get

|(vly)I?

0 < HU”z - Hy||2

O

Theorem 6.4 (The triangle inequality.)
o+ yll < vl + [yl
Proof.
lo+yl* = [[ol* + (vly) + (ylo) + [yl < (ol + llyl)?.
O

Hence || - || is a norm.

6.2 The definition and examples of Hilbert spaces

Definition 6.5 A space with a scalar product is called a Hilbert space if it is
complete.

Example 6.6 Let I be an arbitrary set of indices. Then L2(I) denotes the
space of families (v*);c; with values in C indexed by I such that

Z [vf|? < oo
iel
equipped with the scalar product
(vJw) = viw'.
i€l
The Schwarz inequality guarantees that the scalar product is well defined.

Example 6.7 Let (X,p) be a space with a measure. Then L?(X, i) equipped
with the scalar product

(ohe) = [ ola)u(e)d(z)
18 a Hilbert space.

Theorem 6.8 Let Vy be a space equipped with a scalar product (but not nec-
essarily complete). Let Vgpl be its completion (see Theorem 2.6). Then there
exists a unique scalar product on VSPI, which is compatible with the norm on

VP VP with, this scalar product is is a Hilbert space.



6.3 Complementary subspaces

Suppose that (for the time being) V is a space with a scalar product (not
necessarily complete).
If A CV, then A+ denotes

At ={veV : (v]z)=0, z¢c A}
Proposition 6.9 (1) At is a closed subspace.
(2) AcB = At > Bt
(3) (A%)* > Span(A)!
Proof. 1. and 2. are obvious. To prove 3. we note that (A+)% > A. But

(A+)L is a closed subspace by 1. Hence it contains the least closed subspace
containing A, or Span(A). O

Suppose that V is Hilbert space.

Theorem 6.10 Let W be a closed subspace of V. Then W= is a closed sub-
space and
wewt=y, Wwht=w.

Proof. Let

inf |lv—wl| =:d.
wew

Then there exists a sequence y,, € W such that
lim [jv —y,| =d.
n—oo
Then using first the parallelogram identity and then 3 (y, 4+ ym) € W we get
190 = yml® = 2llyn = vl + 2llym — vl = 4llv = 5(yn + ym) |
<2lly, — U”2 +2[lym — ’U”2 —4d*> — 0.
Therefore, (y,) is a Cauchy sequence and hence

lim g, =:¥.

n—oo

Clearly, y € W and it is an element closest to v. We set z := v — y. We will
show that z € W*. Let w € W. Then

1217 = llv = ylI* < llo = (y + tw)|®

= llz = tw|]* = |[2[* — H(wl|2) — t(w]z) + [t ||w]]*.

We set t = hﬁl‘fg. We get

2
o lwlo)
o]




Thus (w|z) = 0. This shows that Span(W U W) = V.

W N W+ = {0} is obvious. This implies the uniqueness of the pair y € W,
z € W', This ends the proof of V =W & W+,

Let us show now that (W+)+ Cc W. Let v € (W)L, Then v = y+ 2, where
y €W, z € Wt. But (z|v) = 0 and (z|y) = 0. We have

(v]z) = (yl2) + (2]2).
Hence (z]z) = 0, or z = 0, therefore v € W O
Corollary 6.11
ALt = Span(A)

Proof. N
Span(A)ClL S5 AL S Span(A)“

follows by Proposition 6.9.

L
Span(A)ClJ' = Span(A4)“

follows by Proposition 6.10. O

6.4 Orthonormal basis
Assume for the time being that V is a space with a scalar product.

Definition 6.12 A C V\{0} is an orthogonal system iff e1,ea € A, e1 # ey
implies (e1lea) = 0. A CV is na orthonormal system if it is orthogonal and if
e € A, then |e|]| = 1.

Theorem 6.13 Let (ey,...,en) be an orthonormal system. We then have the
Pythagoras Theorem

N N
[oll> =" I@len)? + lv = (enlv)enl?
n=1 n=1

and the Bessel inequality:

N
[v]> = [(v]en) .
n=1

Assume now that V is a Hilbert space.

Definition 6.14 A mazimal orthonormal system is called an orthonormal ba-
SiS.



Theorem 6.15 Let {e;}icsr be an orthonormal system. It is an orthonormal
basis iff one of the following conditions holds:

(1) {e; : i€}t ={0}.
(2) (Spanfe; : i €I} =V

Theorem 6.16 FEvery orthonormal system can be completed to an orthonormal
basis.

Proof. Let B denote the family of all orthonormal systems ordered by inclusion.
Let {A; : i € I} C B be a subset linearly ordered. Then

UierA;
is also an orthonormal system. It is also an upper bound of the set {A4; : i € I'}.
Hence we can apply the Kuratowski-Zorn lemma. O

The definition of an orthogonal basis is similar. From an orthogonal basis
. 1
(w;);er we can construct an orthonormal basis {||w;||~2w; }ier.

Theorem 6.17 Let (e;);cr be an orthonormal basis. Then
(1)
v="> (eiv)es, (6.1)

iel
and
vl = [(w]es)]*.
iel
(2) If

v = Z /\iei,

iel
then A\; = (e;]v).
Proof. By the Bessel inequality, a finite number of coefficients is greater than

€ > 0. Hence a countable number of coefficients is non-zero. Let us enumerate
the non-zero coefficients (e;, |v), n =1,2,... By the Bessel inequality, we get

o0

Y ledo)® < Jlolf®.
i=1

Set

Then for N < M



Hence by the completeness of V we get the convergence of vy and thus the
convergence of the series. Besides, the vector

v — Zei(ei\v)

el

is orthogonal to the basis. Hence it is zero. This proves 1. O

Theorem 6.18 Let By and By be orthonormal bases in V. Then they have
the same cardinality.

Proof. First we prove this for finite By or Bs.

For any y € B there exists a countable number of x € Bs such that (z]y) #
0. For every x € By we will find y € B; such that (x|y) # 0. Hence there exists
a function f : By — Bj such that the preimage of every set is countable. Hence

|B2| < lBl X Nl = max(|Bl|,N0).

Similarly we check that
| B1| < max(| Bz, Ro).

Definition 6.19 The cardinality of this basis is called the dimension of the
space.

Definition 6.20 We say that a linear operator U : Vi — Vs is unitary iff it is
a bijection and

(Uw|Uv) = (w|v), v,w € V.

We say that the Hilbert spaces Vi and Vs are isomorphic iff there exists a unitary
operator from Vy to Hs.

Theorem 6.21 Two Hilbert spaces are isomorphic iff they have the same di-
mension.

Proof. Let {z; : ¢ € I} be an orthonormal basis in V. It suffices to show that
V is isomorphic to L?*(I). We define the unitary operator

(Uv); := (2;]v).



6.5 The Riesz Lemma
Let V* denote the space of antilinear bounded functionals on V.
Theorem 6.22 (The Riesz Lemma) The formula
(Culz) := (x|v)
defines a linear isometry from V onto V*.

Proof. Isometricity:
[Cv]| = sup [(z[v)] < v].
lzll<1

It suffices to take z = ﬁ to get the equality.

Surjectivity: Let w € V* and W := Kerw. If W =V, then w = C0. If not,
then let 2o € W, ||lzo = 1. Set

v = zo{wl|xg).

We will prove that w = Cwv.
An arbitrary y can be represented as

(,_EW, )\, @,
= (y (wlao) 0>+<w|$0> ’

The first term belongs to WW. Hence

(Coly) = (4lv) = (onxo<wxo>>=<w|y>.
(wlo)

The space V* has a natural structure of a Hilbert space:
(Cv|Cx) := (v]z), v,z €V,

so that C is a unitary map from V to V*.

6.6 Quadratic forms

Let V, W be complex vector spaces.

Definition 6.23 a is called a sesquilinear form on W x V iff it s a map
W x V3 (w,v)— alw,v) eC

antilinear wrt the first argument and linear wrt the second argument.



If a is a form, then we define Aa by (Aa)(w,v) := Aa(w,v). and a* by
a*(v,w) := a(w,v). If a; and ay are forms, then we define a; + ay by (a3 +
az)(w,v) := a1 (w,v) + ag(w, v).

Suppose that V = W. We will write a(v) := a(v,v). We will call it a
quadratic form. The knowledge of a(v) determines a(w, v):

(a(w +v) +ia(w — iv) — a(lw — v) — ia(w + iv)). (6.2)

o~ =

a(w,v) =

Suppose now that V, W are Hilbert spaces. A form is bounded iff
la(w, v)| < Cllwl|]lv]].
Proposition 6.24 (1) If A € B(V, W), then (w|Av) is a bounded sesquilinear
form on W x V.

(2) Let a be a bounded sesquilinear form on W x V. Then there exists a unique
operator A € B(V, W) such that

a(w,v) = (w|Av).

Proof. (1) is obvious. To show (2) note that w — a(w,v) is an antilinear
functional on W. Hence there exists n € W such that a(w,v) = (w|n). We put
Av :=1.

We will often identify bounded sesquilinear forms, bounded quadratic forms
and bounded operators.

Theorem 6.25 Suppose that D, Q are dense linear subspaces of V,W and a
1s a bounded sesquilinear form on D x Q. Then there exists a unique extension
of a to a bounded form on V x W.

6.7 Adjoint operators

Definition 6.26 Let A € B(V,W). Then the operator A* given (uniquely) by
the formula

(A*w|v) := (w|Av)

is called the (hermitian) conjugate of A.

Note that the definition is correct, because a(w,v) := (w|Av) is a bounded
sesquilinear form, and hence so is a*; and A* is the operator associated with a*.



Theorem 6.27 The hermitian conjugation has the following properties

D [lA7 = ||A||

2) (M ) 4

3) (A ) = A"+ B*,

4) (AB ) = B*A*,

5) A™ = A,

6) (Ran A)t = KerA*, hence (KerA*)! = (RanA)%;

7) (Ran A*)+ = KerA, hence (KerA)t = (Ran A*)<;

8) A is invertible < A* s invertible < ||Av|| > C||v|| and ||A*v|| > C||v||, moreover,

(A—l)* — (A*)fl.
9) spA* = spA.

6.8 Numerical range

Definition 6.28 Let t be a quadratic form on X. The numerical range of t is
defined as
Numt:={t(z) eC : z € X, |z|| =1}.

Theorem 6.29 (1) In a two-dimensional space the numerical range is always
an elipse together with its interior.

(2
(3
(4
(5

Numt is a conver set.
Num(at + 1) = aNum(t) + 5.
Numt* = Num t.

P N NN

Num(t+s) C Numt+ Nums.

Proof. (1) We write t = tg + it;, where tg, t; are self-adjoint. We diagonalize
t . . - . .
. Thus if [ ' tu ] is the matrix of t, then t15 = t5;. By multiplying one
21 t22
of the basis vectors with a phase factor we can guarantee that t1o = t9; is real.
Now t is given by a matrix of the form

SRR VY

Any normalized vector up to a phase factor equals v = (cos , €' sin ) and

t(v) — ¢ = Acos2a + pcos gpsin 2a + iy cos 2a =: x + iy. (6.3)



Now it is an elementary exercise to check that x + iy are given by (6.3), iff they
satisfy

(yo — M) + 1Py < Pp’.
(2) follows immediately from (1). O

Let V be a Hilbert space. If A is an operator on V), then the numerical range
of A is defined as the numerical range of the form v — (v|Av), that is

NumA := {(v|Av) € C : v eV, |v]| =1}

Theorem 6.30 Let A € B(V). Then
(1) spA C (NumA).
(2) For z ¢ (NumA)“,

|(z = A)7Y| < dist(z, NumA)~!.

Proof. Let (2o € NumA)°!. Recall that Num(A) is convex. Hence, replacing
A wih @A + 8 we can assume that zg = v with v = dist(z, Num(A)) and
NumA C {Imz < 0}. Now

(70 — AYol = (Av|Av) + iv(v] Av) — iv(Afo) + [v]? o]
— (Ao]Av) — 20Tm(v] Av) + v 2 o]
> |vf[lv]*.
Next, NumA* C {Imz > 0}.
1o — A")v[|* = (A*0|A™0) —iv(v|A*v) + v (A%v]v) + [v]?|v]®
= (A*v|A*v) — 2vIm(v|Av) + |v|?||v||?
> |vf?|lvf|?.

Hence zg — A is invertible and z € rsA. O

6.9 Self-adjoint operators

Theorem 6.31 Let A € B(V). The following conditions are equivalent:
(1) A= A*.
2) (Awlv) = (w|Av), w,v € V.

(2)
(3) (w]Av) = (v|Aw), w,v € V.
(4) (v|Av) € R.



Proof. (1)<(2)<(3)=-(4) is obvious. To show (4)=-(3) we use the polarization
identity:
(w]Av) = § 325 (—1) (w + Fo|A(w + Pv)),

([Aw) = 552 (=1)i (v + w|A(v + iw))
= 15 (—1) (w + v A(w + i7v)).

O

Definition 6.32 An operator A € B(V) satisfying the conditions of Theorem
6.31 is called self-adjoint.
An operator A € B(V) such that

(v|Av) >0, veV,
18 called a positive operator.

By Theorem 6.31, positive operators are self-adjoint.
Clearly, if A € B(V), then A is self-adjoint iff NumA C R and positive iff
NumA C [0, cof.

Theorem 6.33 Let A be self-adjoint. Then spA C R.

Proof. This fact is a special case of Thm 15.1 (2). For those who omitted that
theorem, we give the argument.
Let p # 0, pu, A € R. We have

1A = A+ im)ol® = (A = Nol® + p?[lv]|* > p?[lv]>.
Besides, (A — (A +iu))* = A— (A —iu). Hence
1A = (A +i) o))* = (A = Mol + p2[lv]® = p?[lv]*.

So A — (A +ip) is invertible. O.

Theorem 6.34 The operator A* A is positive and
|AAll = || A]1%. (6.4)
Proof. A*A is positive because
(v|A* Av) = || Av|* > 0.
To show (6.4) we note that

1A = Al Al > |A*A] > sup (v]A"Av)

llvll=1

sup [ Av|* = | AJI*.

lloll=1



Lemma 6.35 Let A be self-adjoint. Then
JAll = sup |(v|Av)].

lvll<1

Proof. Let w,v € V. We will show first that

[(w]Av)| < 5 (lwl|* + [[0]|*) sup (y[Ay). (6.5)

llyll<1

DN =

Replacing w with e’®w we can suppose that (w|Av) is positive. Then

1
(wldv) = 5((w|Av) + (o] Aw))
1
= 5 (w+olA(w +v) = (w —v|A(w - v)))
1
< S (v +w]?+llv—wl|?) sup |(y|Ay)|
4 lyll=1
1
= 5 (Il + wl?) sup |(y|Ay)l
2 lyll=1
Hence (6.5) is true. Therefore,
[All = sup  |(w]Av)[ < sup [(y|Ay)|.
[vll=llwl=1 llyll=1
O
Theorem 6.36 If A is self-adjoint, then
(NumA)® = ch(spA), (6.6)

where ch denotes the convex hull.
Proof. Step 1. Let A be self-adjoint and
—inf(spA) = sup(sp4) =: a. (6.7)

Clearly, ch(spA) = [~a,a] and a = ||A||. By Lemma 6.35, (NumA)®' C [~a, a].
Hence, (NumA)®' C ch(spA). The converse inclusion follows from Theorem
15.1.

Step 2. Let A be self-adjoint. Let a_ := inf(spA), ay := sup(spA). Then
A:=A—L(a_ +ay) is self-adjoint and satisfies (6.7). Hence (6.6) holds for A.
Hence (6.6) holds for A as well. O



6.10 Orthoprojections

Theorem 6.37 Let P € B(V) be an idempotent. The following conditions are
equivalent:

(1) P is self-adjoint.
(2) KerP = (Ran P)*.
An idempotent P satisfing these conditions with Ran P = W will be called the

orthoprojection onto W.

If (w;);er is an orthogonal basis in W, then

iel

Proposition 6.38 (Gramm-Schmidt ortogonalization) Letyi,ys,... bea
linearly independent system. Let P, be a projection onto the (n-dimensional)
space Span{y1,...,yn}. Then

Wp = (1 - Pnfl)yn

is an orthogonal system. An equivalent definition:

T (wjlyn)
w1 = Y1, W, 1= ynfz HZ)H?; W -
j=1 "7

Theorem 6.39 Let P* = P and P? = P3. Then P is an orthoprojection.

Proof. (P? — P)*(P? — P) =0, hence P = P?. O

6.11 Isometries and partial isometries

Definition 6.40 An operator U is called a partial isometry if U*U and are
UU* orthoprojections.

Theorem 6.41 U is a partial isometry iff U*U is an orthoprojection.
Proof. We check that (UU*)3 = (UU*)2. O
Proposition 6.42 If U is a partial isometry, then UU* is an orthoprojection

onto RanU and U*U is the orthoprojection onto (KerU)L.

Proof. It is easy to see that for any operator A we have KerA = KerA*A.
Therefore,

KerlU = KerU*U, (6.8)
KerU* = KerUU", (6.9)



(6.8) means that U*U is the orthoprojection onto (KerU)L. (6.9) means that
UU* is the orthoprojection with the kernel (KerlU*)*.

Let us prove that RanU = Ran UU*. Indeed, C is obvious. D follows from
the fact that UU™ is a projection: v € RanUU™* iff v = UU*v. Now the range
of an orthoprojection is always closed. Hence (KerU*)* = RanU. O

Proposition 6.43 Let U € B(V) be a partial isometry. Set V; := (KerU)=,
Vo :=RanU. Let I; : V; = V be the embeddings. Define W € B(V1,Vs) by

Wov=Uv, ve.
Then W is unitary and U = LW IT.
Theorem 6.44 Let U € B(V,W). The following properties are equivalent:

) UU =1,
2) (Uv|Uw) = (vjw), v,w eV,
3) U is an isometry, that means |Uv]|| = ||v].

Definition 6.45 An operator U satisfying the properties of Theorem 6.44 is
called a linear isometry.

Proof. 1)&2) is obvious, and so is2)=-3). 3)=-2) follows by the polarization
identity:

(Uw|Uv) =337 (-1 (Uw + ¥ Uv|Uw +¥Uv),

(wv) %Z?ZO(—i)j(v+ijw|v+ijw).

6.12 Unitary operators

Theorem 6.46 Let U € B(V,W). The following properties are equivalent:
1H)UU=U0U*=1;

2) U is a surjective isometry;

3) U is bijective and U* = UL,

Definition 6.47 An operator satisfing the properties of Theorem 6.46 is called
unitary.

Proposition 6.48 Let V be finite dimensional and V € B(V) isometric. Then
V' is unitary.

Proof. We have dimKerV + dimRanV = dimV. KerV = {0}, since V

is isometric. Hence dimRanV = dim)V. But V is finite dimensional, hence

RanV =V. O

Example 6.49 Let (e;), i =1,2,... be the canonical basis in L*(N). Put
Tei = €41

Then T is isometric but not unitary. It is called the unitalateral shift.



6.13 Normal operators

Let A € B(V,W). We say that A is normal if AA* = A*A.
Theorem 6.50 Let A € B(V) be normal. Then

sr(A) = [|A]l.

Proof. We compute using twice (6.4):
1A%]? = [| A% A%]| = [I(A*4)%]| = [|A*A]]* = || A]I*.

Thus ||A?"|| = ||A||*". Hence, using the formula (4.2) for the spectral radius of
A we get |A%"]27" = ||A|l. O

Note that selfadjoint and unitary operators are normal. However, the set of
normal operators is much more complicated than the set of self-adjoint opera-
tors, which is a real vector space, and the set of unitary operators, which is a

group.

Theorem 6.51 (1) U is unitary iff U is normal and spU C {z : |z| = 1}.
(2) A is self-adjoint iff A is normal and spA C R.

Proof. (1)=-: Clearly, U is normal.

U is an isometry, hence spU C {|z| < 1}.

U~! is also an isometry, hence spU~! C {|z| < 1}. This implies spU C
{12 > 1}.

(1)<: Clearly, stU = 1. Likewise, using the spectral mapping theorem (Thm
4.11 (6)) we see that stU~! = 1. Hence, by Thm 6.50 and the normality of U
and U~! we have ||U]| = ||[U~!|| = 1. Thus

lol = U= U] < U] < loll.

So, ||v|| = ||Uv||. This means that U is an invertible isometry.

(2)= was proven in Theorem 6.33.

(2)<=: Let A be normal and spA C R. We can find A > 0 such that M| 4| < 1.
Hence 1+ iAA is invertible. It is easy to check that U := (1 —iXA)(1 +iXA)~!
is normal. By the spectral mapping theorem, spU C {|z| = 1}. Hence, by (1),
it is unitary. Now

A=—iAN1(1-U)1+U)"! =-I\"Y(UU-U)UU*+U)"!
=N (1 - UN)(1+ U = A

O

Theorem 6.52 (Fuglede) Let A,B € B(V) and let B be normal. Then
AB = BA implies AB* = B*A.



Proof. For A € C, the operator U(}\) = ABTAB — oABeAB" g unitary.
Moreover, A = e*B Ae=*B. Hence
e T AN = U(=N)AU(N) (6.10)

is a uniformly bounded analytic function. Hence is constant. Differentiating it
wrt A we get [A, B*] =0. O

6.14 Normal operators as multiplication opera-
tors

In finite dimensions we have the following elementary characterization of self-
adjoint/unitary /normal operators.

Theorem 6.53 (1) Suppose thatV is a finite dimensional Hilbert space and
B € B(V). Let spB = {b1,...,bx}. Then B is normal iff 1,,(B) are
orthogonal projections and

k
B =Y bl (B).
j=1

(2) B is self-adjoint iff b; € R.
(3) B is unitary iff |b;| = 1.

Example 6.54 Let I be a set and let (b;)icr be a bounded complex sequence.
Define the operator B on I*(I) by

(BSU)z = bil'i, i€ l.
We then have

spp(B) = {b; @ iel},
spB = {b; : ieI},
Bl = sup{|b;] : i€ I}.

B is normal. B is self-adjoint iff b; are real for alli € I. B is unitary iff |b;| = 1
forallieI.

Note that Thm 6.53 can be reformulated as follows: If the dimension of
a Hilbert space is n < oo, then a normal/self-adjoint/unitary is always uni-
tarily eqivalent to an operator of the form described in Example (6.54) with
I ={1,...,n}. If the dimension of a Hilbert space is infinite, normal/self-
adjoint/unitary operators can be nonequivalent to an operator from Example
(6.54). In the following example we show a more general form of such opera-
tors. In Chapter 7 we will show that in an arbtrary dimension every normal /self-
adjoint/unitary operator is unitary equivalent to that described in example 6.55.



Example 6.55 Let (X, F, p) be a space with a o-finite measure and f € L>=(X).
Define the operator Ty on L*(X, u) by

(Tyz)(t) == f(t)z(t).
We then have

spp(Tr) = {z: u(f~H{z}) >0},
spTy = {z: ,u(f_l{wE(C :lw—z| <€}) >0, forall e>0},
ITell = M1 flloo-

Ty is normal. Ty is self-adjoint iff f(x) are real for almost all x € X. Ty is
unitary iff |f(x)] =1 for almost all v € X.

Remark 6.56 The o-finiteness of the measure is needed only for the charac-
terization of the point spectrum. More generally, it is enough to assume that
the measure is sum-finite, with the same conclusions.

The following two facts are obvious for operators of the form of Ex. 6.55.
For general normal operators, the only way I know to prove them is to pass
through the spectral theorem, which will be proven in the next chapter.

Proposition 6.57 Let A € B(V) be normal and o, 8 € C. Then

sp(aA + BA*) ={az+ pZ: z € spA}.

Theorem 6.58 If A € B(V) is normal, then

(NumA)“' = ch(spA). (6.11)

Note that Thm 6.58 is a generalization of Thm 11.2.

6.15 Convergence

Let (A;) be a sequence of operators in B(V,W).
(1) We say that (A;) is norm convergent to A iff lim [|4; — Al| = 0. In this
j—o00
case we write

Jj—o0o
(2) We say that (A;) is strongly convergent to A iff lim ||A;jv — Av|| = 0,
Jj—o0
v € V. In this case we write

S— hrn Aj = A.

J—00



(3) We say that (A;) is weakly convergent to A iff lim |(w|A4;v)—(w|Av)| =0,
j—oo

v eV, w e W. In this case we write

w— lim A4; = A.

J]—0

Theorem 6.59 Let (U;) be a sequence of unitary operators
(1) If (U;) is norm convergent, then its limit is unitary.
(2) If (U;) is strongly convergent, then its limit is isometric.

(3) If (U;) is weakly convergent, then its limit is a contraction.

Theorem 6.60 (1) Norm convergence implies strong convergence.
(2) Strong convergence implies weak convergence.

(3) Let (Ay) be a weakly convergent sequence of operators in B(V). Then it is
uniformly bounded.

(4) If (A,) is a norm convergent sequence, then so is (Ap)* and

( lim Anfk = lim A,,.

n—oo n— oo

*

(5) If (An) is a weakly convergent sequence, then so is (Ap)* and

(W— lim An)* =w— lim A,.
n—oo n—oo

(6) If (An) and (By) are norm convergent sequences, then so is A, B, and

lim A, lim B, = lim A,B,.
n—oo n—oo n—oo

(7) If (A,) and (B,,) are strong convergent sequences, then so is (A, By) and

(s— lim An) (s— lim Bn> =s— lim A, B,.

n—0o0 n—oo n— oo

Proof. (3) follows from the uniform boundedness principle. O

Theorem 6.61 Let (A;) be a sequence of operators in B(V) weakly convergent

to A. Then 1
NumA C ﬂ ( U NumAj)C )
ko >k

In particular, if A; are self-adjoint, then so is A; if A; are positive, then so is

A.



Remark 6.62 So far in this subsection we could almost everywhere replace
the term “sequence “ by “net”. The exceptions are Thm 6.60 (3), which is in
general not true for nets, and Thm 6.60 (7), where we need to assume that (A,,)
s uniformly bounded.

Example 6.63 In L%(N), let (eq,ea,...) be the canonical basis. Set

Unej:6j+1, j:].,...77’L—1;
Unen = e1;
Unej =ej, j=n+1,...;

U6j=€j+1, ]21,

Then U, are unitary, s— lim U, = U is not. Moreover. spU, = {exp(i27/n) :
n—0o0
j=1,...,n} and spU = {|z| < 1}.

Example 6.64 In L*(Z), let e;, i € Z be the canonical basis. Set Upej = €j4n,
j € Z. Then U, are unitary, w— lim U, = 0. Moreover, spU, = {|z| = 1},
n—oo

spU = {0}.

6.16 Monotone convergence of selfadjoint oper-
ators

Theorem 6.65 (1) Let {Ay : A € A} be a family of self-adjoint operators,
which is uniformly bounded. Then there exists the smallest self-adjoint
operator A such that Ay < A. We will denote it lub{Ayx : X € A} (lub
stands for the least upper bound).

(2) If (A,) is an increasing bounded sequence of self-adjoint operators, then

lub{4,, : n=1,2,...} =s—lim A,.

Proof. Let ||A)| < c. For each v € V, (v|A)v) is bounded by c||v||?. Hence it
has a supremum. Thus we can define a(v) := sup, (v|4A\v).

Let (v,w) — a(v,w) be defined by the polarization identity. Let v,w € V.
We can find a sequence (4,,) in the family {4 : X\ € A} such that

(v +Vw|A, (v +Pw) — a(v+iw), j=0,1,2,3.

Then we see that
a(v,w) = lim (v|A,w). (6.12)
n—oo
Thus (v, w) — a(v,w) is a sesquilinear form. It is clearly bounded by c¢. Hence
it defines a unique bounded operator A. It is evident that A is the smallest
self-adjoint operator greater than A,. This ends the proof of (1).



Let us prove (2). Since A — A,, > 0, we have
(A= Ap)? = (A= An)7 (A= A,)(A— 4,)7 < A= A [[(A- 4,).
Besides, ||A — A, || < 2¢. Now

I(A = An)vl* = (vI(A — Ap)?v) < [|A = Ap|(v](A = Ap)v) = 0.



Chapter 7

Spectral theorems

7.1 Continuous functional calculus for self-adjoint
and unitary operators
Let X be a compact Hausdorff space. The space of continuous functions on X

with the norm || - ||o is denoted by C(X). It is a complete normed commutative
x-algebra.

Remark 7.1 C(X) is a commutative C*-algebra. Note, however, that we will
not use the theory of C*-algebras. Compact Hausdorff spaces that we will use
will be typically subsets of R™.

In Sect. 4.4 we introduced a calculus for holomorphic functions of an arbi-
trary bounded operator on a Banach space. We will see that the holomorphic
calculus extends to continuous functions for normal operators.

Let B be normal. Obviously

(21 — B)(Z2 — B*) = (32 — B*)(z1 — B).

We multiply this with (Zo — B*)7(2; — B)~! from the left and with (z; —
B)~!(zy — B*)~! from the right obtaining

(21 — B)71(52 — B*)71 = (EQ — B*)71(21 — B)il.

So f(B) is normal for f € Hol(sp(B)). By the spectral mapping theorem,
spf(B) = f(sp(B)). Therefore, by Thm 6.50,

[f(B)|l = stf(B) = sup{|f(2)| : z €spB} = |fllce-

We first restrict ourselves to self-adjoint and unitary operators. We postpone
the treatment of general normal operators to later sections.

Theorem 7.2 Let A € B(V) be self-adjoint. Then there exists a unique con-
tinuous unital homomorphism

C(sp(4)) 3 f = f(A) € B(V) (7.1)
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such that
(1) id(A) = A ifid(x) = z, z € sp(A).
Moreover, we have
f(A)* = f*(A), where f*(z) := f(x), z € spA.
3) If f € Hol(sp(A)), then f(A) coincides with f(A) defined in (4.4).

4) sp(f(A)) = f(sp(4)).

(2)
3)
(4)
(5) g € C(f(sp(A))) = go f(A) = g(f(A)).
(6) |
(7)

6) LA (A = 11/ lloo-

7) f(A) are normal.

Proof. Clearly, (7.18) is uniquely defined on polynomials. Let f € C(spA).
There exists a sequence f,, of polynomials such that ||f, — f|lcc — 0. Noting
that || fn(A) = fin (A)]] = || fr— finllco, We check that f,,(A) is a Cauchy sequence.
We set

f(A):= lim f,(A).
We easily check that the definition of f(A) does not depend on the choice of the
sequence and verify all the properties described in the theorem. O

An almost identical theorem is true for unitary operators, with almost the
same proof (where instead of usual polynomials we need to use polynomials in
z and 27 1),

Theorem 7.3 Let U € B(V) be unitary. Then there exists a unique continu-
ous homomorphism

C(sp(U)) > f = f(U) € B(V) (7.2)
such that

(1) id(U) =U ifid(z) = z, z € sp(A).
Moreover, we have

(2) f(U)* = f*(U), where f*(z) := m, z € spU.

and properties analogous to (3)-(7) of the previous theorem.

Remark 7.4 Theorem 7.3 has a generalization (Thm 7.26) to an arbitrary nor-
mal operator B. However, this requires a more complicated proof, which will be
given in later sections. What is easy and follows by an essentially the same
proof is a weaker statement obtained from Theorem 7.3 by replacing C(spB)
with Ch01<B).

Here we use the following notation: If K is a compact subset of C, then
Chol(K) denotes the completion of Hol(K) in C(K). Note that if K is a subset
of a line or a circle, then Cpo(K) = C(K). This simplifies functional calculus
for self-adjoint and unitary operators.



7.2 Projector valued measures
Let (X, F) be a set with a o-field. Let V be a Hilbert space. We say that
F 3D — P(D) € Proj(V) (7.3)

is an orthoprojection valued measure (PVM) on V iff
(1) P(0) =0
(2) If Dy, Dy, --- € F aredisjoint, and D = ile D;, then P(D) = s— lim Z P(D

n—)oo
We call P(X) the support of the orthoprojection valued measure (7.3).
Theorem 7.5 For any D,C € F we have
P(D)P(C)=P(DnNCQC).
Proof. First consider the case DN C = {. By (2)
P(DuUC)=P(D)+ P(C).
Hence P(D) + P(C) is an orthoprojection. Hence (P(D) + P(C’))2 = P(D)+
P(C). This implies
P(D)P(C) + P(C)P(D) = 0. (7.4)
Multiplying from both sides by P(C') we get 2P(C)P(D)P(C) = 0 Multiplying
(7.4) from the left by P(C) we get P(C)P(D) = —P(C)P(D)P(C). Thus
P(C)P(D) = 0.
Next consider the case D C C. Then
P(C) = P(D)+ P(C\D).

Using P(D)P(C\D) = 0 we see that P(C)P(D) = P(D).
Finally, consider arbitrary D,C. Then

P(D)P(C) = (P(D\C)+ P(DNC))(P(C\D)+ P(DNC)) =P(DNC).

Theorem 7.6 Let F > D+ P(D) be a PVM and let L(X) denote the space
of bounded measurable functions on X. Then there exists a unique contractive
x-homomorphism

LX) 5 f o / F@)dP(x) € BOY) (7.5)

such that [1p(z)dP(z) = P(D), D € F.

;).



Proof. If f is an elementary function, that is a finite linear combination of
characteristic functions of measurable sets

f= Z Ailp;,
j=1

then clearly

[ f@ap@) = 3" AP0y,

For such functions the multiplicativity of (7.5) is obvious.
Then we use the fact that elementary functions are dense in £>°(X) in the
supremum norm. O

For any w € V we define its spectral measure as
F 3D py(D) := (w|P(D)w)
is a finite measure. Clearly, we have

Theorem 7.7 For any f € L2(X),

[ H@natn) = (ul [ r@apw).

Here is a version of the Lebesgue dominated convergence theorem for spectral
integrals:

Theorem 7.8 If f, — [ pointwise, |f,| < ¢, then

s— lim [ fn(z)dP(z) :/f(:v)dP(w).

n— oo

Proof.
([ @) - swart)|
- / A (2)] £ () — Ful) (7.6)

Now |f(x) — fu(2)]? < 4%, lim |f(z) — fau(x)]?> = 0 and the measure du, is
n— oo

finite. Hence (7.6) converges to zero by the Lebesgue dominated convergence

theorem. O

Theorem 7.9 Let (X1, F1,P1) and (Xa, Fa, P2) be two spectral measures. Then
there exsts a unique measure (X1 X Xo, F1 @ Fa, P1 Ps) such that

(Plpg)(Dl X Dg) = Pl(Dl)PQ(DQ)



7.3 Continuous and singular PVM’s

Let F 2 D+~ P(D) be a PVM on V.
Assume that all one-element sets (and hence all countable sets) belong to
F. We say that F 5 D — P(D) is continuous iff P({z}) =0 for all x € X. It
is pure point if P(D) = > Py
z€D
For any PVM D — P(D) we set

Py:=Y Py, Po:=1-P,
reX

Then

F>D +— PJ(D):=PP(D),
F>D — P,(D):=P,P(D)

are respectively continuous and pure point. They are called respectively the
continuous and pure point part of the measure D — P(D).

Theorem 7.10 Suppose that V is separable. Then there exists a countable set
I C X, such that P, = P(I).

Fix a measure p on (X, F). We say that D — P(D) is p-singular if
P(D)=sup{P(C) : CC D, u(C)=0}, DeF.
We say that P is p-continuous if
w(D)=0 = P(D)=0. (7.7)
For any PVM D +— P(D) we set
Py :=sup{P(N) : u(N) =0}, Pyue:=1- P.
Then

F3D = Pu(D):= P,P(D),
F3D = Py(D):=P,P(D)

are respectively absolutely continuous and the singular part of D — P(D).

Theorem 7.11 Suppose that V is separable. Then there exists a set N € T,
such that P; = P(N).

Remark 7.12 If ju is the counting measure then P,y = Py, Py = F..

Remark 7.13 We say that Z C F is an ideal if T is countably additive and
CeF,Del and C C D impliesC € Z. If n is a measure then the family of
measure zero sets is an ideal of F. Obuviously, the decomposition of D +— P(D)

into its p-continuous and p-singular part does not need a measure, but only an
ideal.



The most important application of the above concepts is when p is the
Lebesgue measure. Then one-element sets are contained in the o-field and have
measure zero. In this case one says simply singular instead of u-singular and
absolutely continuous instead of p-continuous. Instead of P,. one writes Py
and instead of P,s one writes Py Clearly,

PpSPsv chpac-

We set
Py := FP,

Thus
1=PF,+ P+ Pic

gives a decomposition of our PVM in its pure point part, singular continuous
part and absolutely continuous part.

7.4 Projector valued Riesz-Markov theorem

Let X be a compact Hausdorff space, V a Hilbert space and v : C(X) — B(V)
a unital *-homomorphism.

We define the upper orthoprojection valued measure associated with v as
follows. For any open U C X we define

PP = suply(f) 1 0< f <1y, feC(X)}.
For any D C X we set
P :=inf{P;® : Uisopen, D CU}.

We define the lower orthoprojection valued measure associated with ~ as
follows. For any closed C' C X we define

PEY = f{y(f) : 1o < f, feC(X)}.
For any D C X we set
P .= sup{P¥™ : Cis closed , C' C D}.

We say that D C X is y-measurable if P’ = PSY. The family of -
measurable sets is denoted F,. For such sets D we set Pp = Py’ = P}DOW.

Theorem 7.14 (1) P’ and PXY are orthoprojections for any D C X.
(2) F, is a o-field containing Borel sets.

(3) Fy 2 D Pp € Proj(V) is an orthoprojection valued measure with support
1.

(4) C(X) C L>®(X) and if f € C(X), theny(f) = [ f(z)dP(z).



7.5 Alternative approaches to the orthoprojec-
tion valued Riesz-Markov theorem

One can construct the spectral integral directly from v as follows.
We define the upper integral as follows. If f is a lower semicontinuous
function on X, we set

/ ¥ F@)dP(@) = supfrg) < g€ C(X), g<f}.

If f is an arbitrary function, we set
up up
/ f(z)dP(z) := inf {/ g(x)dP(x) : g is lower semicontinuous and f < g} .

We define the lower integral as follows. If f is a upper semicontinuous
function on X, we set

low

f(x)dP(z) :=inf{y(g) : g€ C(X), f<g}

If f is an arbitrary function, we set

low

low
f(@)dP(z) := sup {/ g(z)dP(x) : g is upper semicontinuous and g < f} .
Theorem 7.15 A function f on X is F-measurable iff

up low
/ f@dP@) = [ fz)dP() (7.8)

and then (7.8) equals
[ t@ar.

One can also construct the spectral integral using the Riesz-Markov for usual
measures. For any w € V,

C(X) 3 f = (wh(fw)

is a positive functional on X. By the Riesz-Markov theorem it defines a unique
Radon measure on X, which we will call p,,.

Theorem 7.16 If f is y-measurable, then it is measurable for measure i, for
any w € V, and then,

(u] [ fnr@) ) = [ s@auo).



7.6 Spectral theorem for bounded Borel func-
tions

If A € B(V) is a self-adjoint operator, then we have the unital x-homomorphism
C(sp(4)) > f = f(A) € B(V).
Applying the projection valued Riesz-Markov Theorem we obtain a PVM D —

P(D). The o-field of measurable sets contains all Borel subsets of sp(A4). By
Theorem 7.6 we can define for f € £>°(sp(A)

- [ f@)p@)

P(D) =1p(A),

In particular,

for the characteristic function of a Borel set D. Thus, we do not need the
notation Pp, instead we will write 1p(A).

Thus we can extend the spectral theorem from continuous to bounded Borel
functions:

Theorem 7.17 Let A € B(V) be self-adjoint. Then there exists a unique
continuous unital homomorphism

C(sp(A)) > f = f(A) € B(V) (7.9)
such that
(1) id(A) = A ifid(z) = z, x € sp(A).
(2) If fn — [ pointwise, |fn| < ¢, then

st [ fa(4) = [ 1)

Moreover, we have
(3) f(A)" = f*(A).
(4) If f € C(sp(A)), then f(A) coincides with f(A) defined in (7.2).
(5) sp(f(A4)) C f(sp(A4)).
(6) g € L>(f(sp(A))) = go f(A) =g(f(A)).
(M) |
(8)

) AN < 1 lloo-

8) f(A) are normal.

We can define the projections 1,c(A), 1sc(A4), 1,(A). Note that 1,(A) is the
projection onto the closed span of eigenvectors of A.



7.7 Spectral theorem in terms of L? spaces

Theorem 7.18 Let A € B(V) be a self-adjoint operator. Then there exists
a family of Radon measures w;, © € I, on spA and a unitary operator U :
@ L2%(spA, u;) — V such that

iel

(U AUW), (x) = 2t (x).

Proof. Step 1. If v € V, the cyclic subspace for v is defined as V,, := {f(A)v :
f € C(spA)}°. Note that V), is a closed linear subspace invariant wrt f(A) and
Vb is also invariant wrt f(A).

We easily see that there exists a family of nonzero vectors {v; : ¢ € I'} such

that V= @ V,,.
i€l
Step 2. Let u; be the spectral measure for the vector v;. The unitary
operator U is defined by Uf :=_,.; f(A)v;. O

Remark 7.19 An essentially identical theorem is true if we replace the self-
adjoint operator A by a unital x-homomorphism v : C(X) — B(V) for a compact
set X.

7.8 Ideals in commutative C*-algebras

Let Y be a closed subset of X. Let Cy (X) denote the set of functions vanishing
onY.
We view C(X) as a commutative C*-algebra.

Theorem 7.20 (1) Cy(X) is a closed ideal of C(X).

(2)
C(X)/Cy(X) 3 F+Cy(X) = F| € C(Y) (7.10)

s an isometric *-homomorphism.
The following theorem describes a kind of a converse to above theorem:

Theorem 7.21 Let N be a closed ideal of C(X). Set

Y= () F0)

Fen

or, equivalently,
x &Y & there exists H € M such that H(x) # 0.

Then Y is closed and Mt = Cy (X).



7.9 Spectrum of a x*-homomorphisms of C(X)

Let X be a compact Hausdorff space. Let V be a Hilbert space and ~ : C(X )
B(V) be a unital *-homomorphism. That means, v(FG) = v(F)vy(G), v(1) =

and (F) = y(F)".
Proposition 7.22 ~ is a contraction.

Proof. Let z ¢ F(X). Then (z — F)~! € C(X). Thus v((z — F)~1) is the
inverse of z — y(F'). Thus spy(F) C F(X), and hence sry(F) < ||F||sc-
Clearly, v(F') is normal, and hence ||y(F)| = sry(F). O

Clearly, Kervy is a closed ideal of C'(X). We define the spectrum of the
homomorphism v as the closed subset of X associated with Kerv, that is

spy = ﬂ F~40). (7.11)
FeKery

Equivalently,
xr ¢ spy & there exists H such that v(H) = 0 and H(z) # 0.

Clearly, spy is a closed subset of X and Kery = Cs,(X). Using the identifi-
cation (7.10), we see that there exists a a unique unital x-isomorphism ~,eq :
C(spy) — B(V) such that

V(F) = Yred (F

) , FeC(X)
spY
Obviously, Yeq is injective. -y is injective iff spy = X iff 7 = Ypeq-

Theorem 7.23 (1) ~ is injective iff it is isometric.
(2) Yrea 1s isometric.
(3) Let F € C(X). Then F(spy) = spy(F).

Proof. We first show (3).
F(spy) C spy(F): Suppose that z & sp(y(F)). If z ¢ F(X), there is nothing
to prove. Let xy € X such that F(zg) = z. Let

U := {x €X : |[F(x)—z|< cH(z—v(F))_lH_l}.

Let ¢ < 1. There exists H € C(X) such that suppH C U, and H(zg) = 1.
Choose ¢; such that ¢ < ¢; < 1. We can find G € C(X),0<G<1,G=1on
U. and suppG C U,,. Then

(@] 1z =Y (ENTH vz = F)G)]
Iz =y (FENTH Iz = F)Glloo < e1 < 1. (7.12)

<
<



Buty(H) =T(HG") = v(H)y(G™) and v(G™) — 0 by (7.12). Hence, v(H) = 0.
Hence x ¢ sp~y.

Let z ¢ F(spy): Z:={x € X : F(x) =z} is a closed subset of X disjoint
from spy. Hence, there exists a function G € C(X) such that G = 1 on spy
and G = 0 on a neighborhood of Z. Clearly, G — 1 € Cspy(X), hence v(G) = 1.
Now G(z — F)™1 € C(X). We have

Yz = F)y((z = F)7'G) = 4(G) = 1.
Hence v((z — F)71G) is the inverse of z — «(F). This means that z ¢ spy(F).
Thus (3) is proven.
By (3), st(F) = ||, |- By the normality of (F), [7(F)|| = st9(F).

This proves (2).
(1) follows from (2). O

7.10 Commuting self-adjoint operators

Suppose that {A41,...,A,} is a family of commuting self-adjoint operators in

B(V). Clearly, if f; € C(sp(4;)), i = 1,...,n, then f;(A;) commute with

one another. The joint spectrum of this family, denoted by sp(A,...,A,) is

the subset of sp(A;) x -+ x sp(A,,) defined as follows: (z1,...,z,) does not

belong to sp(41, ..., Ay) iff there exist functions f; € C(spA;), with f;(x;) # 0,

j=1,...,nsuch that fi(A;)--- fn(A,) =0.

Theorem 7.24 (1) There exists a unique continuous unital x-homomorphism
C’(sp(Al,...,An)SgHg(Al,...,An)GB(V) (713)

such that if idj(z; : i € I) = z;, then

idj(Al, ey An) = Aj-
(2) (7.13) is injective and satisfies
lg(Ar, -, An) [ = llgloo-

(3) 9(Ar,..., An)" = g™ (Ar, ..., An), where g™ (1, ... @n) = g(@1,. .., 2Zn).

Proof. First we show that there exists a unique unital *-homomorphism
c(s,p(A1 X Sp(An)> S F s F(Ay,...,Ay) € B(V) (7.14)
that satisfies (1), and (3), and instead of (2) satisfies

IP(Ar,..., Al < IIF]. (7.15)



Indeed, on holomorphic functions we define (7.14) in the obvious way. By the
weak spectral mapping theorem of Theorem 4.18,

SpF(Al,...,An) CF(SpAl X e XAn)

Hence, stF(A1,...,An) < ||Flleo. But F(Ai,...,A,) is normal and hence
|1E(A1, ..., Ap)|| = stF(Ay,...,A,). This proves (7.15) for holomorphic func-
tions. By the Stone-Weierstrass Theorem, polynomials are dense in continuous
functions, therefore we can extend the definition of (7.14) to

c(sp(A1 X oo sp(An)>.
Thus we have a unital *-homomorphism from C’(sp(/h X e X sp(An)>

to B(V). We easily see that sp(Ay,...,A,) is precisely the spectrum of this
homomorphism, as defined in (7.11). Therefore, we can reduce (7.14), obtaining
the isometric *-homomorphism (7.13). O

7.11 Functional calculus for a single normal op-
erator

Let B be a normal operator. Then B® := 1(B+ B*) and B' := 1 (B — B*) are
commuting self-adjoint operators. Therefore, we can define the joint spectrum
sp(BR, B") and the homomorphism

C(sp(BY¥,BY) > f+— f(B%, B") € B(V). (7.16)
Clearly, B = B® 4 iB'. Define
R? 3 (z,y) = j(z,y) =z +iy € C. (7.17)
Proposition 7.25 We have
i(sp(BY, BY)) = spB.
Proof. Let (zg,y0) € sp(B®, B!). The function
(z,y) = (20 +iyo — = —iy) ™!

is continuous outside of (xg,yo). In particular, it belongs to C’(sp(BR,BI)).
Hence
(zo +iyo — BR —iBY) ™! = (29 +iyo — B)™*

is well defined by Theorem 7.24. Therefore, xg + iyg & sp(B).
Let zo +iyo & spB. Suppose that (z9,%0) € sp(BR, B'). Let 0 < ¢ < 1
f € C(sp(BR}, BY)) with f(x0,50) = 1, ||f|lec = 1 and

{f#0}C{(z,y) eR® : (z—20)* + (y — w0)* < | (zo +iyo — B)~'||7%}



Clearly,
I£(B®, BY) (2o + iyo — B)|| < ¢ll(zo +iyo — B) |7

Hence,

IF(B™BYII < [IF(B", B)(wo +iyo — B)llll(xo +iyo — B) ' < ¢

< T[Sl

But the functional calculus on the joint spectrum is isometric, hence this is a
contradiction. Thus, (x9,%0) & sp(BY, BY). O

Theorem 7.26 Let B € B(V) be normal. Then there exists a unique contin-
uous homomorphism

C(sp(B)) > f— f(B) € B(V) (7.18)
such that
(1) id(B) = B ifid(z) = z, z € sp(B).
(2) f(B)" = f*(B), where f*(z) := f(2), z € spB.

Moreover, we have
(3) If f € Hol(sp(B)), then f(B) coincides with f(B) defined in (4.4).
(4) sp(f(B)) = f(sp(B)).
(5) g € C(f(sp(B))) = go f(B) = g(f(B))-
6) 1FB)Il = [ flloo-
(7) f(B) are normal.

Proof. For g € C(spB), using the functional calculus (7.16) and the map
(7.17), we set

g(B) :==goj(ReB,ImB).
O

7.12 Functional calculus for a family of commut-
ing normal operators

Suppose that By,..., B, is a family of commuting normal operators in B(V).
Set BR := 1(B; + By) and B} := 2 (B; — B}). Then by the Fuglede theorem,
BR. Bl ... ,BR Bl is a family of commuting self-adjoint operators. Thus we

have the *-homomorphism
C(sp(BY, B},...BY,B) 5 G+ G(BY, Bl,...,By,BL) € B(V)  (7.19)
We define
sp(Bi1, ..., By)
= Az Fiyn, .. Te Fiyn 0 (@11, 0, un) € sp(BR, BY ... BR B,
We obtain:



Theorem 7.27 Let {B; : i € I} be a family of commuting normal operators
in a B(V). Then

(1) {(z1,...,2n) € spB1 X --- x spB,, does not belong to sp(B1,...,B,) i
there exist functions f1 € C(spB1),..., fn € C(sp(Bn) with fi(z;) # 0,
j=1,...,n such that f1(B1) - fn(Bn) =0.

(2) There ezists a unique continuous unital x-homomorphism
C(sp(Bi,...,Bn) 39— g(B1,...,B,) € B(V) (7.20)
such that if id;(z; : i € I) = z;, then
id;(B; : iel)=B;,.
(3) (7.20) is injective and satisfies

lg(Bus-- - Bu)ll = [l

Example 7.28 Let (X, F,u) be a space with a measure. Let f : X — C" a
Borel function. We say that (z1,...,2,) € C" belongs to the essential range of
f, denoted (z1,...,2,) € essRan f, iff for any neighborhood U of (z1,...,2n)
we have pu(f~Y(U)) # 0. Note that if f : X — C is Borel, then ||f]|e =
sup{|f(z)| : « € essRan f}.

Let f € L*>°(X). Then

L*(X) 3 hw Tih:= fh € L*(X)

is a bounded normal operator with spTy = essRan f and ||T¢|| = ||flloc- The
operator Ty is self-adjoint iff essRan f C R. It is unitary iff essRan f C {|z| =
1}.

Suppose that (fi,...,fn) is a family of functions in L (X). Clearly, the
operators Ty, are normal operators commuting with one another. We have

sp(Ty,,.... Ty, } =essRan (f1,..., fn).



Chapter 8

Compact operators

8.1 Finite rank operators

This subsection can be viewed as an elementary introduction to compact oper-
ators.

Definition 8.1 An operator K € B(X,)Y) is called a finite rank operator iff
dim Ran K < co.

Theorem 8.2 Let K € B(X,)) be a finite rank operator. Then

dim Ran K = dim X /KerK.
Proof. Let y1,...,y, be a basis in Ran K. We can find z1,...,z, € X such
that Kz; = y;. Then Span{xi,...,z,} NKerK = {0}. Assume that z € X.

Then Kz = > ¢;y;. Thus z — > ¢;x; € KerK. Hence z € Span{xy,...,z,} +
KerK. O

Theorem 8.3 Let K € B(X) be a finite rank operator. Then spK = sp,K.
Moreover, spo K =0 if dim X < oo, otherwise sp. K = {0}.

Proof. Using the fact that dim X /KerK is finite, we can find a finite di-
mensional subspace Z such that X = KerK & Z. Z; := Z 4+ Ran K is also

finite dimensional. We have K Z; C Z;. We can find a subspace Z5 such that
Z1 @ Z9 = X. Obviously, Z, C KerK. O

8.2 Compact operators on Banach spaces

Let X', Y be Banach spaces.
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Definition 8.4 K € B(X,)) is called a compact operator iff for any bounded
sequence x1,xa,--- € X we can find a convergent subsequence from the sequence
Kz, Kag,--- € ).

Equivalent definition: if (X); denotes the unit ball in X, then (K(X);)%
is a compact set. The set of compact operators from X to Y will be denoted

By (X,)).

Theorem 8.5 (1) Let K be a compact operator. Let (x;);er be a bounded net
weakly convergent to x. Then hrrIl Kz; = Kz. (K is weak-norm continuous
1€

on the unit ball).

(2) Let K be a compact operator. Let (x,,) be a sequence weakly convergent to
z. Then lim Kz, = Kz.

n—oo

(3) If A is bounded, K is compact, then AK and KA are compact.
(4) If K,, are compact and lim,,_,~ K, = K, then K is compact.
(5) If K is finite rank, then K is compact.

Proof. (1) Let (x;);cr be a bounded net weakly convergent to x. Then
w—lim;e; Kz; = Kz (because K is bounded). Hence, if Kz; is convergent
in norm, its only limit can be Kx.

Suppose that Kz; is not convergent. Then there exists a subnet z;; such
that ||[Kx;, — Kz| > € > 0. By compactness, we can choose a subsubnet z;,
such that Kz;, is convergent. But it can be convergent only to Kz, which is
impossible.

(3) is obvious, if we note that A maps a ball into a ball and a convergent
sequence onto a convergent sequence.

(4) Let z1,x2,... be a bounded sequence so that ||z, || < C. Below we will
construct a double sequence x,, ;, such that, for any n, ,411,Tnt1,2,... is a
subsequence of x,, 1,Zp2,... and

| K2pm — Kxp | < (min(m, k,n))~"t.

Eventually, the sequence z, , is a subsequence of z,, such that Kz, ,, satisfies
the Cauchy condition.

Suppose that we have constructed z, ,, up to the index n. We can find N
such that |K — Ky|| < m We put Zp41,m = Tp,m for m=1,...n. For
m > n, we choose Tp+1,m as the subsequence of z,, ,,, such that || Knxp41,m —
Kntpt1 x| < m for k,m > n. Then for m > n

HK‘rn+1,m - Kxn—i—l,k” S ||K1:n+1,m - KNIn—&-l,mH + ||Kan+1,m - KNIn+1,k||
2C 1 _
HIENTnt1k — Kontkll < mateqny + 3pmy = (0 + D70

(5) follows by the compactness of the ball in a finite dimensional space
Ran K. O

Note that B (X) is a closed ideal of B(X).



8.3 Compact operators on a Hilbert space

Theorem 8.6 Let X, ) be Hilbert spaces and K € B(X,Y). TFAE:
(1) K is compact (i.e. (K(X)1) is compact).
(2) K maps bounded weakly convergent nets onto norm convergent sequences

(K is weak-norm continuous on the unit ball).

3) K(X)y is compact.

n—oo

)

4) Let (x,) be a sequence weakly convergent to . Then lim Kz, = Kx.
)
)

(
(
(5) If K| = (K*K)1V2, then sp,, | K| C {0}.
(

6) There exist orthonormal systems x1,xs, -+ € X and y1,y2,--- € Y and a

sequence of positive numbers ky, ks, ... com}ergent to zero such that

n=1

(7) There exists a sequence of finite rank operators K, such that K, — K.

Proof. (1)=-(2), by Theorem 8.5, is true even in Banach spaces.

(2)=(3). In a Hilbert space (X); is weakly compact. The image of a compact
set under a continuous map is compact.

(3)=(1) is obvious.

(2)=(4) is obvious.

(4)=(5). Suppose (5) is not true. This means that for some € > 0,
Ran T (| K]) is infinite dimensional. Let 21,5, ... be an infinite orthonormal
system in Ran 1} oo[(A4). Then z,, goes weakly to zero, but ||Kz,[| > .

(5)=(6). Let z1,z2,... be an orthonormal system of eigenvectors of |K|
with eigenvalues k,,. Then set y,, :=k,, 'Kz,.

(6)=(7). It suffices to set K, := K1 [(|K][). Then

1K = K| = [[[K[1p,q (KD < e

(7)=(1), by Theorem 8.5, is true for Banach spaces. O
(1)=(6) is sometimes called the Hilbert-Schmidt Theorem.

Corollary 8.7 (Schauder) Let X, Y be Hilbert spaces and K € By (X,)).
Then K* € Boo (), X).

Proof. It follows immediately from Theorem 8.6 (7).

8.4 The Fredholm alternative

Theorem 8.8 (Analytic Fredholm Theorem) LetV be a Hilbert space, 2 C
C is open and connected. Let Q3 z — A(z) € By (V) be an analytic function.
Let S:={z€Q :1— A(z) is not invertible } Then either



(1) S=9Q, or

(2) S is discrete in Q. Moreover, for z € S, Ker(1 — A(z)) # {0} and the
coefficients at the negative powers of the Laurent expansion of (1— A(z))™*
are of finite rank. In particular, the residuum is of finite rank.

Proof. Let 2o € Q. We can find a finite rank operator F' with [|A(z) — F|| <
1/2. Let € > 0 with || A(z) — A(z0)|| < 1/2 for |z —z| < €. Thus ||A(z0)—F|| < 1
for |z — zo| < 1.

Set G(z) := F(1+ F — A(2))~!. We have

(1-GE)1+F—A(z) =1 A(2).

Thus 1 — A(z) is invertible iff 1 — G(%) is invertible and Ker(1 — A(z)) = {0} iff
Ker(1 — G(z)) = {0}.
Let P be the orthoprojection onto Ran F'. Set
Go(z) =G(2)P = PG(z)P,
Gi1(z) =G(z)(1-P) =PG(z)(1-P).
Then
1-G(2) =1—-Go(z) — Gi(z) = (1 = G1(2))(1 — Go(2)),

and (1—G1(2))™! = 14+ G1(2). Hence, 1 — G(z) is invertible iff 1 — Go(z) is and
Ker(1-G(z)) = {0} iff Ker(1—Gp(z)) = {0}. Since Gy(z) is an analytic function
in a fixed finite dimensional space, 1 — Go(2) is invertible iff det(1 — Go(z)) # 0
iff Ker(1 — Go(z)) = {0}. Thus S = {z € Q : det(1 — Go(z)) # 0}.

Now we have
(1-A(z) " = (14 F = A(2)) (1 = Go(2)) (1 + Go(2)).

The first and third factor on the rhs are analytic in the neighborhood of zj.
Suppose that the middle term has a singularity at zy. Then it is a pole of the
order at most dim Ran F' and all the coefficients at the negative powers of its
Laurent expansion are finite rank. O

Corollary 8.9 (Riesz-Schauder) Let K be a compact operator on a Hilbert
space. Then spoK = {0} if the space is infinite dimensional and sp. K = 0
otherwise.

Proof. We apply the Analytic Fredholm Theorem to 1 — z~'K. O

8.5 Positive trace class operators

Let {v;}ier be an orthonormal basis of a Hilbert space V. Let A € B(V) and

A > 0. Define
TrA = (vi|Avy). (8.1)
i€l



Theorem 8.10 (8.1) does not depend on the basis.

Proof. First note that if A, € B(V) is an increasing net, then
> (vil Avi) = sup > (vi| Aqvi). (8.2)
il el

Let {v; : i € I} and {w; : j € J} are orthonormal bases. Assume that
¢ < Y (vi]Av;). By (8.2), we can find a finite subset Jy C J such that if Py is
iel
the projection onto Span{w; : j € Jo}, then

C S Z(UAP()AP(]UJ

el
Now
Yo (ilPoAPovi) =0 > (vilwy)(wj|Awg ) (wg|vi)
el i€l j,keJy (83)
= > (wjlAw;) < > (wj|Awy).
j€Jo JjeJ

Above we used the fact that for any j, k

D 1 wilwy) (w;| Aw) (wi o) < [ A,

iel

which together with the finiteness of Jy imples that the second sum in (8.3) is
absolutely convergent, and also

> (wilw)) (wi|vi) = 6 4.

i€l
This shows
D (Wil Av) < (w)]Awy).
iel jeJ

Of course, we can reverse the argument. O
We will write B (V) for the set of A € B (V) such that TrA < oo.
Theorem 8.11 (1) If A,B € B.(V), then Tr(A+ B) = TrA + TrB. If
A € [0,00[, then TrtAA = ATrA, where Oco = 0.
(2) Let B € B(V,W). Then TtB*B = TtBB*.

(3) ﬁf ﬂf BL(V), and B € BOW,V). Then B*AB € BL(W) and TrB*AB <
B|>TrA.

(4) If A € BL(V), then A is compact.
(5) Let (A; i € I) be an increasing net in By (V) and A =1ubA;. Then

TrA =sup{Tr4; : i €I}.

(6) TrA =377 sn(A).



Proof. (2) Let (v;) and (w;) be bases of V and W. Then
TtB*B =3, %, (v|B*w;)(w;|Bv;)
= Zj Zi(wﬂBvi)(UﬂB*’wj) = TrBB*,

where all the terms in the sum are positive, which justifies the exchange of the
order of summation.

(3) By (2), we have TrB*AB = TrAY/?2BB*A'/2. Besides AY/2BB*A'/? <
|B]2A.

(4) If A has continuous spectrum, then there exists an infinite dimensional
orthoprojection P and € > 0 such that A > eP. Then TrA > eTrP = oc.

Hence A has just point spectrum. We have TrA = > a;, where a; are
iel
eigenvalues of A (counting their multiplicities). O

8.6 Hilbert-Schmidt operators
For A € B(V, W) set
4]l := (TrA*A)? = (TrAA")?.

B2(V, W) denotes the set of operators with a finite norm ||A||2. Clearly,

o 1/2
IAll2 = <Z Sn(A)2> :
n=1
If (vi)ier and (w;);es are bases in V and W, then

1Az =D Iyl Avy) . (8.4)

iel jeJ

B%(V, W) is equipped with the scalar product

(A1B)2 =Y > (wy]Avi)(w;|Buy), (8.5)

i€l jeJ
where we used (v;);er and (w;);es orthonormal bases in V and W.

Proposition 8.12 Let A,B € B2*(V,W). Then (8.5) is finite and does not
depend on a choice of bases.

Proof. Clearly, (8.4) is the norm for (8.5). Hence the finiteness of (8.5) follows
by the Schwarz inequality: |(A|B)a| < ||All2]| B2
Next note that, for any v € V,

I(A +i*B)ol|* < 2||Av]* + 2| Bu]]*.



Therefore,
I(A+1*B)3 < [1AI3 + [IB]3-

Hence if A, B are Hilbert-Schmidt, then so are A + i*B. Then we note that
(8.5) equals

3
(A|B)s ZIZH (A+i*B)* (A +i*B), (8.6)
k=0
which is basis independent. O

Remark 8.13 In the next subsection we extend the notion of trace and (8.6)
will be written simply as TrA*B

Theorem 8.14 (1) If A € B*(V,W), then A is compact.

(2) B%(V,W) is a Hilbert space.

(3) If {vi}icr is a basis in V and {w;}jcs is a basis in W, then |w;)(vi| is a
basis in B2(V,W).

B2V, W) > A~ A* € B2(W,V) is a unitary map.
If Ae B2V, W) and B € BOW, X), then BA € B2(V, X).

If (X,u) and (Y,v) are spaces with measurs and V = L*(X,u), W =
L2(Y,v), then every operator A € B*(V, W) has the integral kernel A(-,) €
L2(Y x X,v® u), ie

(wlao) = [ [t (2)dp(y)dpu(z)

The transformation B2(V,W) 3 A A(-,-) € L*(Y x X,v® u) that to an
operator associates its integral kernel is unitary.

—~ o~ o~
S Ot
T —

Proof. (1) The operator A* A is trace class, hence is compact. We can represent
A*A as
o0
ATA =Y b)) (g1,
j=1
If we set w; := Awvj, then

A= "ajlw;) (v,
j=1

with |a;j|? = b;. Hence, a; — 0.

Let us show (2) and (3). Set Ej; := |w;)(v;]. We first check that it is an
orthonormal system. If A € B?(V,W) is orthogonal to all Ej;, then all its
matrix elements are zero. Hence A = 0.

Then we check that if a;; belongs to L?(J x I), then > jer icr @ik s the
integral kernel of an operator in B?(V,W). Hence, B2(V,W) is isomorphic to



L?(JxI). Hence it is a Hilbert space and {E;; : i € I,j € J} is its orthonormal
basis. This proves (2) and (3), O

Theorem 8.15 Suppose that f,g € L>(R?) converge to zero at infinity. Then
the operator g(D) f(x) is compact.

Proof. Let
f(x), x| <n

fnl@) = { 0 | > n,

_ [ oo, ld<n
= § €l > n,

g(D)f(x) = F*g(x)F f(x).
lg(@)Ff(x) = gn(x)Ffu(x)l < l(g(x) = gn(2))Ff()]
+|gn () F(f(x) — frn(z)]| = 0.

It suffices to show the compactness of g,(x)F f,(x). But its integral kernel
equals

(2m) " 2g, (2)e 71 f (y),

which is square integrable . O

8.7 'Trace class operators

Lemma 8.16 Let Ay, A, € Bi(V), A_,A_ € B,(V) satisfy Ay — A_ =
Al — A" Then
TrA; — TrA_ = TrA!, — TrA”.

Proof. Clearly, A, + A" = A_+4 A/, € B{(V). Thus

TrA, + TrA” = Tr(A; + A" ) = Tr(A_ + A) = TrA_ + TrA’,.

By Lemma 8.16, we can uniquely extend the definition of trace as a function
with values in [—o00,00] to operators in Bg, (V) that admit a decomposition
A=A, —A_, where Ay, A_ € B{(V) and either B} or B_ belongs to B (V),
by setting

Tr(A;y — A_):=TrA, — TrA_.

We define B'(V) := SpanB1 (V). Clearly, B, (V)N BY(V) = BL(V).
Obviously, Tr is well defined and finite on B(V).



Theorem 8.17 Let A € BY(V). Then for any orthonormal basis (v;) in V),

TrA = Z(vi|Avi), (8.7)

iel
where the above series is absolutely convergent.

Proof. Let A=Ay —A_, where A_,A_ € B} (V). Then for any orthonormal
basis ;. ;(vi|A+v;) is finite, hence absolutely convergent. Thus (8.7) is the
sum of two absolutely convergent series, and hence, absolutely convergent. O

Theorem 8.18 B,C € B*(V,W) implies B*C € B*(V) and (B|C)y = TrB*C =
TrCB*.

Proof. We know that B + i *C ¢ B?(V,W). Hence B*C € B'(V) follows
immediately from (8.6). (B|C)e = TrB*C = TrC'B* also follows from (8.6).

Theorem 8.19 If A€ BY(V) and B € B(V), then AB,BA € BY(V) and
TrAB = TrBA.

Proof. It suffices to assume that A € B} (V). AY/2? and BAY? belong to B2(V).
Hence, using Theorem 8.18, we obtain

TrBA = Tr(BAY?)AY2 = TrA'Y/2(BAY/?)
Tr(AY2B)AY2 =TrAY?(AY2?B) = TrAB.

O

Theorem 8.20 TFAE

) Ae BY(V).

2) |Al € BL(V).

3) There exist B,C € B*(V,W) such that A= B*C.
)

) F

(1
(
(
(4

ﬁMg

) sn(4) < o0.

(5) For any orthonormal basis (v;) in V,

Z [(v;| Av;)| < o0.

el

Proof. Let A = U|A| be the polar decomposition of A.

(1)=(2). Let A € BY(V). Then U*A = |A| € BL(V). Since |A| € B4 (V),
this also means that A € BY (V).

(1)<=(2). Let A € B(V) with A € BY(V). Then A = U|A| shows that
Ae B(V).



A =U|AM?|A|Y? with U|A|Y/2,|A|Y? € B2(V).
is Theorem 8.18.

Write A = Al + 1A1 — A3 — iA4, with Ai S Bl(V) We have
< 0o. Thus (v;|Av;) is a linear combination of 4 absolutely conver-

(2)=(
(2)<=(

(D)=(
> (vi| Agv;
gent series.

(1)<=(5). First assume that A is self-adjoint. Then A = A, — A_ with
AyA_ =A_A, =0and A;,A_ € B4(V). We have the decomposition V =
Ran1j_, 0jA) @ KerA @ Ran1jg jA). Let (vi,vy,... Y v ud )
be a basis that respects this decomposition. Then we compute that

00> > N (5| AvE)| = TrAy + TrA_.

e=—,0,4+ i

3).
3
=(9).

\/\/\/\/

Thus A, A_ € BL(V). Hence A € BY(V).
If A is not necessarily self-adjoint, then consider ReA := %(A + A*), A:
(A — A*). Then

Z |(v;|Redv;)| + Z [(v;|ImAv;)| < 22 [(vilAvy)| < 00

Thus (5) is satisfied for ReA, ImA, and hence Re4,ImA € BY(V). But A =
ReA +ilmA. O

For A € B1(V) we set

1A = Tr|Al =) su(A

Theorem 8.21 (1) If A€ BY(V), B € B(V), then

[AB|ly < [[A[lIBIl,  [BA[lx < [[All[IB]-

(2) BY(V) is a Banach algebra.

Proof. (1) Let BA = W|BA]| be the polar decomposition of BA and A = U|A]|
be the polar decomposition of A. Note that BU|A|'/? € B*(V). Thus

Tr| BA| = TeW* BU|A['Y?|A['?| < |[W* BUJA|"?||2 || A]']l2.

Now
IJA['2]]2 = (Tx| A|)}/2,
W= BU|AJ"?||5 < |[W*BU||[||A]"/?||2 < | BIl(Tr|A])*/>.

(2) Let us prove the subadditivity. Let A, B € B*(V) and A+ B = W|A+ B
be the polar decomposition of A 4+ B. Then, using |A + B| = W*(A + B),

A+ Bl =  TtW*(A+ B)

< TWFA|+ TeW*B| < |[W*|Te|A] + |W*||Tx| B = Tr|A| + Tx|B].



Thus BY(V) is a normed space.
Using ||A]| < ||A||1 we see, that (1) implies

[ABll < [|A[[1]|B]]x-

Thus B(V) is a normed algebra.
Let A,, be a Cauchy sequence in the ||-||; norm. Then it is also Cauchy in the
| - || norm. Thus there exists lim A, =: A€ B(V). Let A — A, = U,|A— A,|

n—

be the polar decomposition of A — A,,. Let P be a finite projection. Clearly, for

fixed n, ||An — Anll1 is a Cauchy sequence and thus lim ||A,, — A,]||1 exists.
m— o0

= lim TrPU*(A,, — 4,)P < lim ||Anm — Anl-

m—r oo m—roo

Since P was arbitrary,

JA= Al < lim [ Ay — Aulli 0.

Hence B'(V) is complete. O

o0
Theorem 8.22 Letxy,xa,... andyi,ys,... be sequences of vectors with . ||z,[|? <

n=1

o0 o0
o0, Y |lynll? < 0o. Then S |yn)(xnl| is trace class.
n=1 n=1

o0
Proof. Let ej,es,... be an orthonormal system. Define A := > |z,)(en],
n=1

B := Y |yn)(en]. Then TrA*A = Y |lz,||* and TrB*B = Y |jy,||>. Hence
n=1
A, B are Hilbert-Schmidt. But C' = BA*. O






Chapter 9

Unbounded operators on
Hilbert spaces

9.1 Graph scalar product

Let V, W be Hilbert spaces. Let A : ¥V — W be an operator with domain
Dom A. It is natural to treat Dom A as a space with the graph scalar product

(v1]v2) 4 = (v1|v2) + (Avy|Avy).

Clearly, Dom A is a Hilbert space with the graph scalar product iff A is closed.

9.2 The adjoint of an operator

Definition 9.1 Let A :V — W have a dense domain. Then w € Dom A*, iff
the functional
Dom A 35 v — (w|Av)

is bounded (in the topology of V). Hence there exists a unique y € V such that
(w|Av) = (ylv), veV.
The adjoint of A is then defined by setting
Afw =y.

Theorem 9.2 Let A:V — W have a dense domain. Then
(1) A* is closed.

(2) Dom A* is dense in W iff A is closable.

(3) (Ran A)* = KerA*.

(4) Dom AN (Ran A*)+ D KerA.
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Proof. Let j: VW - WaV, j(v,w) := (—w,v). Note that j is unitary.
We have

CGrA* = j(GrA)*.

Hence Gr A* is closed. This proves (1).
Let us prove (2).

w € (Dom A*)t & (0,w) € (Gr A*)* = j(Gr A)++
& (w,0) € (GrA)*++ = (Gr A)°l.
Proof of (3):
w € KerA* & (A*wlv) =0, veV
& (A*wl|v) =0, v e DomA
< (w]Av) =0, v € Dom A
& w e (Ran A)*.
Proof of (4)
veEKerAd & (wdv)=0, weW
= (w|Av) =0, w € Dom A*
& (A*wlv) =0, w € Dom A*
< v € (Ran A*)*.

Theorem 9.3 Let A:V — W be closable with a dense domain. Then
(1) A* is closed with a dense domain.

(3) (A*)* :Acl

(4) (Ran A)+ = KerA*. Hence A* is injective iff Ran A is dense.
(5) (Ran A*)* = KerA. Hence A is injective iff Ran A* is dense.

Proof. (1) was proven in Theorem 9.2.
To see (2) note that

GrA* = j(Gr A)* = j((Gr At = Gr A,
To see (3) we use
Gr (A™) = j7 (j(GrA)Y) " = (GrA)*t = (Gr A)°.

(4) is proven in Theorem 9.2.

To prove (5) note that in the second line of the proof of Theorem 9.2 (4) we
can use the fact that Dom A* is dense in W to replace = with <. O



9.3 Inverse of the adjoint operator

Theorem 9.4 Let A be densely defined, closed, injective and with a dense
range. Then

(1) A~ is densely defined, closed, injective and with a dense range.
(2) A* is densely defined, closed, injective and with a dense range.
(3) (A")t=(A1)"

Proof. (1) and (2) sum up previously proven facts.
To prove (3), recall the maps 7,j : VE&W — W@ V. We have

Qr A* = j(GrA)J‘, GrA™' =71(GrA).
Hence
GrA™" = j(r(GrA))" = 7' (j(GrA)*) = GrA™".
O

Theorem 9.5 Let A:V — W be densely defined and closed. Then the follow-
ing conditions are equivalent:

(1) A is invertible.
(2) A* is invertible.
(3) For some ¢ >0, |[Av|| > ¢||v|, v € V and ||[A*w]| > c|jv|, w € W.

Proof. (1)=(2). Let A be invertible. Then A~! € B(W,V). Hence, A~* €
BV, W).

Clearly, the assumptions of Theorem 9.4 are satisfied, and hence A*~1 =
A~ Therefore, A*~1 € B(V,W).

(1)<=(2). A* is also densely defined and closed. Hence the same arguments
as above apply.

It is obvious that (1) and (2) imply (3). Let us prove that (3)=(1). ||A*v| >
c||v|| implies that KerA* = {0}. Hence (Ran A)' is dense. This together with
||Av|| > c|jv|| implies that Ran A = W, and consequently, A is invertible. O

Theorem 9.6 Let A:V — W be a densely defined and
|Av|| > c|lv]|, v € Dom A

Then the following are equivalent:

(1) A is invertible.

(2) A is closable and Ran A = W.

(3) A is closed and Ran A is dense in W.
(4) A is closed and KerA* = {0}.

Theorem 9.7 Let A:V — W be densely defined and closed. Then sp®™*(A) =
Spext (A*)



9.4 The adjoint of a product of operators

Proposition 9.8 (1) Let A, B be densely defined operators, so that BA is also
densely defined. Then
(BA)* D A*B”. (9.1)

(2) Suppose that A is densely defined and B is bounded everywhere defined.
Then BA is densely defined and

(BA)* = A*B*. (9.2)

Proof. (1): Let u € Dom A*B*. Then

u € Dom B*,  (B*u|v) = (u|Bv), v € Dom B,
B*u € Dom A*, (A*B*u|w) = (B*u]Aw), w € Dom A.

Hence, if
w € Dom A, Aw € Dom B, (9.3)

then
(A*B*u|w) = (u|BAw). (9.4)

But (9.3) means that w € Dom BA. Hence, by (9.4) u € Dom(BA)* and
(A*B*ulw) = ((BA)*u|w), (9.5)
which means A*B*u = (BA)*u.
(2): (See eg. Derezinski-Gérard). It is obvious that BA is densely defined.
Let v € Dom(BA)*. This means that
|(u|BAw)| < ¢|jw||, w € Dom BA = Dom A. (9.6)
Using the boundedness of B, we can write
(u|BAw) = (B*u|Aw), (9.7
and hence (9.6) implies
|(B*u|Aw)| < ¢||w]|, w € Dom A. (9.8)
Hence, B*u € Dom A* and
(A*B*u|w) = (B*u|Aw). (9.9)
Therefore, u € Dom A* B* and
(A" B*u|w) = (u|BAw). (9.10)

This means that A*B*u = (BA)*u. O



Proposition 9.9 (1) Let A be closed and densely defined. Let C' be bounded
and everywhere defined. Assume also that AC is densely defined. Then

(AC)* = (C*A*)". (9.11)

(2) If A be closed and densely defined. Let C be bounded and invertible. Then
AC is densely defined and

(AC)* = C*A*. (9.12)
Proof. (1): A* and C* satisfy the assumptions of Prop. 9.8 (2). Hence
(C*A*)" = A C* = AC. (9.13)
Now AC is densely defined. Hence
(€A = (C*A%)™ = (AC)". (9.14)

(2): C is invertible. Hence by Prop. 3.33 (1), C*A* is already closed. O

9.5 Numerical range and maximal operators

Let T be an operator on V. Then we will write Num(7') := Numt, where t is
the quadratic form defined by T

t(v) := (v|Tv), v € Domuw.
In other words, NumT' = {(v|Tv) : v € DomT, |v| = 1}.

Theorem 9.10 (1) ||(z — T)v|| > dist(z, NumT)|jv|]|, v € DomT.

(2) If T is a closed operator and z € C\(NumT)%, then z — T has a closed
range.

(3) If z € rsT\(NumT), then ||(z — T)71| < |dist(z, NumT)|~*.

(4) Let A be a connected component of C\(NumT). Then either A C spT or
A CrsT.

Proof. To prove (1), take z ¢ (Num7').. Recall that Num7 is convex. Hence,
replacing T' wih oT + 8 for appropriate a, 8 € C, we can assume that z = iv
and v = dist(iv, NumT). Then,

0 € (Num7)® C {Imz < 0}.
Thus
I = T)ol* = (Tw|Tv) — iv(v|Tv) +iv(Tv]v) + V][]
= (Tw|Tw) — 2vIm(v|Tv) + |v|?||v]|?

> [y lo]|.



(1) implies (2) and (3).
Let 29 € rsT\NumT. By (3), if r = dist(zo, NumT'), then {|z — zo| < 7} C
rsT. This proves (4). O

Definition 9.11 An operator T is called maximal, if spT’ C (NumT).
Clearly, if T is a maximal operator, and z ¢ (Num7)°, then
(z —T)7 | < (dist(z, NumT)) .
If T is bounded, then T is maximal.

Theorem 9.12 Suppose that T is an operator and A; are the connected com-
ponents of C\(NumT). Then the following conditions are necessary and suffi-
cient for T to be maximal:

(1) For all i, there exists z; € A; such that z; & spT’;
(2) T is closable and, for alli, there exists z; € A; such that Ran (z; —T) = V.

(3) T is closed and, for all i, there exists z; € A; such that Ran (z; —T) is
dense in V.

(4) T is closed and, for alli, there exists z; € A; such that Ker(z; —T*) = {0}.

If K is a closed convex subset of C, then C\ K is either connected or has two
connected components.

9.6 Dissipative operators

Definition 9.13 We say that an operator A is dissipative iff
Im(v|Av) <0, v € Dom A.

Equivalently, A is dissipative iff NumA C {Imz < 0}.

Definition 9.14 A is maximally dissipative or m-dissipative iff A is dissipative
and
spA C {Imz < 0}.

Theorem 9.15 Let A be a densely defined operator. Then the following con-
ditions are equivalent:

(1) —iA is the generator of a strongly continuous semigroup of contractions.

(2) A is mazimally dissipative.
Proof. (1) =(2): We have

Re(vle™4v) < [(vle™0)| < [lo]|*.



Hence, for v € Dom A,
Im(v|Av) = Re(v| —iAv)
_ -1 —itAy) _ ([nl12) <
Re%g‘%t ((v]e™4v) — [Jv]|?) < 0.

Hence A is dissipative.
We know that the generators of contraction semigroups satisfy {Rez > 0} C

rs(—i4).
(2)=(1): Let Rez > 0. We have
[ollll(z +id)o] = [(v|(z +1i4)v)|
> Re(v|(z +1A)v) > Rez|v]?.
Hence, noting that z € rs(—iA), we obtain ||(z +i4)7!|| < Rez~!. Therefore,

—iA is an operator of the type (1,0), and hence generator of a contraction
semigroup. O

Theorem 9.16 Let A be densely defined and dissipative. Then the following
conditions are sufficient and necessary for A to be mazximally dissipative:

(1) A is closable and there exists zy with Imz; > 0 and Ran (z4 — A) = V.

(2) A is closed and there exists z4 with Imz; > 0 and Ran (z4 — A) dense in
V.

(3) A is closed and there exists z4 with Imz, > 0 and Ker(z; — A*) = {0}.

9.7 Hermitian operators
Definition 9.17 An operator A :V — V is hermitian iff
(Awlv) = (w]Av), w,v € Dom A.
Equivalently, A is hermitian iff
(Av|v) = (v|Av), v € Dom A,

iff NumA C R iff A and —A are dissipative.
If in addition A is densely defined, then it is hermitian iff A C A*.

Remark 9.18 In a part of literature the term “symmetric” is used instead of
“hermitian”.

Theorem 9.19 Let A be densely defined and hermitian. Then A is closable.
Besides, one of the following possibilities is true:

(1) spACR.
(2) spA = {Imz > 0}.



(3) spA = {Imz < 0}.
(4) spA=C.

Proof. A is closable because A C A* and A* is closed.

We know that NumA C R. If NumA # R, then C\(NumA)< is connected.
Hence then we have the possibilities (1) or (4).

If NumA = R, then C\(NumA)° consists of two connected components,
{Imz > 0} and {Imz < 0}. Hence then we have the possibilities (1), (2), (3)
and (4). O

Theorem 9.20 Let A be a densely defined operator. Then the following con-
ditions are equivalent:

(1) —iA is the generator of a strongly continuous semigroup of isometries.

(2) A is hermitian and spA C {Imz < 0}.
Proof. (1)=(2): For v € Dom A,

0 = dy (e tAyle~t4y) 0 i(Avjv) — i(v|Av).
t=

Hence A is hermitian.
Isometries are contractions. Hence, by Thm 5.17, spA C {Imz < 0}.
(2)=(1): By Thm 9.10, ||(z +i4)7!|| < |Rez|™!, Rez > 0. Hence, by Thm
5.17, e~ 1*4 is the generator of a strongly continuous contractive semigroup.
For v € Dom A,

Oy (e tAy|e ™t y) = i(Aeyle~y) — i(e ]| Aey) = 0.

Hence, for v € Dom A, [le"#4v||2 = |jv||2. By density of Dom A, e~"4 is a group

of isometries. O

Theorem 9.21 Let A be densely defined and hermitian. Then the following
conditions are equivalent to spA C {Imz < 0}:

(1) There exists zy with Imzy > 0 and z4 & spA.
(2) There exists z4 with Imz; > 0 and Ran (z4 — A) = V.

(3) A is closed and there exists z4 with Imzy > 0 and Ran (21 — A) dense in
V.

(4) A is closed and there exists z4 with Imzy > 0 and Ker(z; — A*) = {0}.

9.8 Self-adjoint operators

Definition 9.22 Let A be a densely defined operator on V. A is self-adjoint iff
A* = A.



In other words, A is self-adjoint if for w € W there exists y € V such that
(ylv) = (w]Av), v € Dom A,
then w € Dom A and Aw = y.

Theorem 9.23 FEvery self-adjoint operator is hermitian and closed. If A €
B(V), then it is self-adjoint iff it is hermitian.

Theorem 9.24 Let A be densely defined hermitian. Then the following con-
ditions are mecessary and sufficient for A to be self-adjoint:

(1) spACR.

(2) There exist z+ with £Imzy > 0 such that z4 & spA.

(3) There exist zy with £Imzy > 0 such that Ran (z4 — A) = V.
(4)

4) A is closed and there exist z4 with +Imzy > 0 such that Ran (24 — A) is
dense in V.

(5) A is closed and there exist zy with £Imzy > 0 such that Ker(zL — A*) =

{0}

Theorem 9.25 Let A be densely defined and hermitian. Then the following
conditions are sufficient for A to be self-adjoint:

(1) There exists zg € R such that zo & spA.

(2) There exists zp € R such that Ran (zg — A) = V.

(3) A is closed and there exists zo € R such that Ran (z9 — A) is dense in V.
(4) A is closed and there exists zg € R such that Ker(zg — A*) = {0}.

Theorem 9.26 (Stone Theorem) Let A be an operator. Then the following
conditions are equivalent:

(1) —iA is the generator of a strongly continuous group of unitary operators.
(2) A is self-adjoint.

Proof. To prove (1)=-(2), suppose that R — U(t) is a strongly continuous
unitary group. Let —iA be its generator. Then [0,00[> t — U(t),U(—t) are
semigroups of isometries with the generators —iA and iA. By Theorem 9.20, A
is hermitian and spA C {Imz > 0} N {Imz < 0} = R. Hence A is self-adjoint.
(2)=(1): By Theorem 9.20, FiA generate semigroups of isometries eTi*4,
By (5.8), e**4 is the inverse of eT*4, Hence these isometries are unitary. O

9.9 Spectral theorem

Definition 9.27 Recall that B € B(V) is called normal if B*B = BB*.



Let us recall one of the versions of the spectral theorem for bounded normal
operators.

Let X be a Borel subset of C. Let M(X) denote the space of measurable
functions on X with values in C. For f € M(X) we set f*(x) := f(z), z € X.
In particular, the function X 3 z + id(z) := z belongs to M(X).

L£>°(X) will denote the space of bounded measurable functions on X.

Theorem 9.28 Let B be a bounded normal operator on V. Then there exists
a unique linear map

L=(spB) 3 f = f(B) € B(V)

such that 1(B) = 1, id(B) = B, fg(B) = f(B)g(B),

f(B)" = f*(B), [[f(B)|| < sup|f],
if fn — f pointwise and |f,| < ¢ then s— nhﬁngo fn(B) = f(B).

Above, all functions f, fn,g € L (spB).
Theorem 9.29 Let B be a bounded normal operator B. Let f € M(spB). Set
f@) |f(@)] <n,
e [I@ 1@
0, [f(@)>n.
Dom(f(B)) = {veV : suplfu(B)v] < oo}
Then for v € Dom B there exists the limit
By = lim fu(B)v,
which defines a closed normal operator.

Let now A be a (possibly unbounded) self-adjoint operator on V.
Theorem 9.30 Then U := (A +1i)(A—1i)"! is a unitary operator with
spU = (sp™* A +1)(sp™*A — i)~ L.
Proof. Using the fact that A is hermitian, for v € Dom A we check that
I(A£1)v]* = [[Av]* + [lo]|*.

Therefore, (A +1) : Dom A — V are isometric. Using Ran (A +£1i) = V we see
that they are unitary. Hence so is (A +1)(A4 —i)~L.
The location of the spectrum of U follows from

(- 0) " = (A=) ) (A + ) 1)*1)_1.

U is unitary, hence normal. If f is a measurable function on spA, we define
f(4) = g(U),
where g(2) = f(i(z +1i)(z — 1)71).



Theorem 9.31 The map
M(spA) 5 [ f(A) € B(V)

is linear and satisfies 1(A) = 1, id(A) = A, fg(A) = f(A)g(A),

fA)* = f(A), [|f(A)] < suplf],
where f,g € M(spA),

Definition 9.32 A possibly unbounded densely defined operator A is called nor-
mal if Dom A = Dom A* and

|Av||* = |A*v||, v € Dom A.

One can extend Thm 9.31 to normal unbounded operators in an obvious
way.

Proposition 9.33 Let A be normal. Then the closure of the numerical range
1s the convex hull of its spectrum.

Proof. We can write A = [ AdE()\), where E()) is a spectral measure. Then
for ||v|| = 1, (v|Aw) is the center of mass of the measure (v|dE(\)v). O

9.10 Essentially self-adjoint operators

Definition 9.34 An operator A : V — V is essentially self-adjoint iff A is
self-adjoint.

Theorem 9.35 (1) Every essentially self-adjoint operator is hermitian and
closable.

(2) A is essentially self-adjoint iff A* is self-adjoint.

Theorem 9.36 Let A be hermitian. Then the following conditions are neces-
sary and sufficient for A to be essentially self-adjoint:

(1) There exists z4 with Imz; > 0 and z_ with Imz_ < 0 such that Ran (z4 —
A) and Ran (z_ — A) are dense in V.

(2) There exists zy with Imzy > 0 and z— with Imz_ < 0 such that Ker(Z; —
A*) = {0} and Ker(z_ — A*) = {0}.

Theorem 9.37 Let A be hermitian. Let zg € R\NumA. Then the following
conditions are sufficient for A to be essentially self-adjoint:

(1) Ran(zg — A) is dense in V.
(2) Ker(zo — A*) = {0}.



9.11 Rigged Hilbert space

Let V be a Hilbert space with the scalar product (-|]-). Suppose that T is a
self-adjoint operator on V with T' > ¢g > 0. Then Dom T can equipped with
the scalar product

(Tv|Tw), wv,w € DomT

is a Hilbert space embedded in V. We will prove a converse construction, that
leads from an embedded Hilbert space to a positive self-adjoint operator.

Let V* denote the space of bounded antilinear functionals on V. The Riesz
lemma says that V* is a Hilbert space naturally isomorphic to V.

Suppose that W is a Hilbert space contained and dense in V. We assume
that for ¢y > 0

(wlw)w > co(wlw), w e W. (9.15)

Of course, W* is also a Hilbert naturally isomorphic to YW. However, we do not
want to use this isomorphism.

Let J : W — V denote the embedding. By (9.15), it is bounded. Clearly
J* 'V — W* (where we use the identification V ~ V*). We have KerJ* =
(Ran J)* = {0} and (Ran J*)* = KerJ = {0}. Hence J* is a dense embedding
of V in W*. Thus we obtain a triplet of Hilbert spaces, sometimes called a
rigged Hilbert space

WwWcCcycw.

Theorem 9.38 There exists a unique positive injective self-adjoint operator T
on V such that DomT =W and

(wl‘wg)w = (T’UJ1|T’UJ2), w1, W2 S W (916)

Proof. Without loss of generality we will assume that ¢y = 1.
For v € V, w € W, we have

((wlo)| < wllo]l < fewlwlol.

By the Riesz lemma, there exists A : V — W such that
(w]o) = (w]Av)y, (9.17)
We treat A as an operator from V to V. A is bounded, because
JAv? < [ A0]3y = (Av[Av)w = (Aefo) < [ Au]llo].
A is positive, (and hence in particular self-adjoint) because
(Avjv) = (Av|Av)y > 0.

A has a zero kernel, because Av = 0 implies

0 = (w]Av)y = (w|v), v € Dom W,



and W is dense.
Thus T := A~'/2 defines a positive self-adjoint operator > 1. We have

(w|y)w = (w|T?), weW, yeDomT?=RanA.

Using the lemma below, with two embedded Hilbert spaces W and Dom T hav-
ing a common dense subspace Dom T2, we obtain YW = Dom T and the equality
(9.16). O

Lemma 9.39 Let Wi, W_ be two Hilbert spaces embedded in a Hilbert space
V. Suppose that their norms satisfy

wl| < w4, weWy, |wl]| <fw|-, weW-.
Let D C Wi NW_ be dense both in Wy and in W_. Suppose || ||+ =1 |- in
D. Then Wy =W_ and |- ||+ = |l--
Proof. Let wy € Wy. There exists (w,) C D such that ||w, — w4|+ — 0.
This implies ||w, —wy|| — 0.

Besides w,, is Cauchy in W_ Hence there exists w_ € W_ such that ||w,, —
w_||—= — 0. This implies ||w, —w_| — 0. Hence w; = w_. Besides, ||wi|+ =
tim -+ = lim - = [l -

Thus W4 € W_ and in W, the norm || - ||+ coincides with the norm || - ||—.
O

By functional calculus for self-adjoint operators we can define S := T72.

Clearly, T = /S and
(v|Sw) = (v|w)yw, v € DomVS, w e DomS.

We will say that the operator S is associated with the sesquilinear form (-|-)w.

9.12 Polar decomposition

Let A be a densely defined closed operator. Let S 4+ 1 be the positive operator
associated with the sesquilinear form

(Av|Aw) + (v|w), v, w € Dom A.
Theorem 9.40 S = A*A.

In order to prove this theorem, introduce V; = (1+7)7'V and V_; = (1+
T)V, so that V; = Dom A and V_; = V. Denote by A, the operator A treated
as an operator Vi — V. Clearly, A(;) is bounded, and so is Az‘l) V=V 4.

Proposition 9.41 (1) DomA*={veV : Al € V}.
(2) On Dom A* the operators A and Aj,) coincide.



(3) DomT? = {v € DomA : Av € Dom A*}
(4) Forv € DomT?, T?v = A* Av.

Proof. (1). Let w € V. We have
w € Dom A* & |(w]Av)| < Cljv|, v € Dom A. (9.18)
But Dom A =V and (w|Av) = (Af;yw|v). Hence, (9.18) is equivalent to
[(A{ywlv)| < Clv[|, v € Dom A, (9.19)

which means Az‘l)w e .

In the proof of (3) we will use the operators 7(;y and T(*l) defined analogously
as A¢y and A7,y. We have

(W’
T4 Tay = Al Aw).- (9.20)

In fact, for v,w € V;

(w|T()Tayv) = (TywlTnv) = (A w|Agyv) = (WA Ag)v).

Now
DomT? = {veV : T1yTayv € V} by spectral theorem
= {veWV : AfApyv €V} by (9.20)
= {veV : Aqyv € DomA*} by (1).
O

Theorem 9.42 Let A be closed. Then there exist a unique positive operator
|A| and a unique partial isometry U such that KerU = KerA and A = U|A|.
We have then RanU = Ran A°.

Proof. The operator A*A is positive. By the spectral theorem, we can then
define
|A] := VA*A.
On Ran|A| the operator U is defined by
U |Alv := Av.
It is isometric, because
I1AJv]* = (v]|A[v) = (v]A"Av) = [|Av|f?,

and correctly defined. We can extend it to (Ran|A|)¢! by continuity. On
Ker|A| = (Ran|A|)¢, we extend it by putting Uv = 0. O



9.13 Scale of Hilbert spaces I

Let A be a positive self-adjoint operator on V with A > 1. We define the family
of Hilbert spaces V,, a € R as follows.
For a > 0, we set V, := Ran A= = Dom A® with the scalar product

(vw)y = (v]A%*w).

Clearly, for 0 < o < 8 we have the embedding V, D V3.

For o < 0 we set V, = V*_, If « < g < 0 we have a natural inclusion
VoD Vg.

Note that we have the identification V = V*, hence both definitions give
Vo=V.

Thus we obtain
Vo D Vg, for any o < . (9.21)

Note that for @« < 0 V is embedded in V,, and for v,w € V
(v|w)a = (v|A**w).

Moreover, V is dense in V,,.
Sometimes we will use a different notation: A=V =V,.
By restriction or extension, we can reinterpret the operator A? as a unitary

operator
Ay A%V = APy,

If B is a self-adjoint operator, then we will use the notation (B) := (1 +
B?)'/2. Clearly, B gives rise to a bounded operator

Ba) : (B)™*V — (B)"*t1V.

Thus every self-adjoint operator can be interpreted in many ways, depending
on [ we choose. The standard choice corresponding to § =1

By :DomB = (B)"'V =V

can be called the “operator interpretation”.
Another interpretation is often useful:

B oy (B)7Y2V — (B)!/?,

the “form interpretation”. One often introduces the form domain Q(B) :=
(B)~1/2V. We obtain a sesquilinear form

Q(B) x Q(B) 3 (v,w) = (v[B(12)w).
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We will write A > 0 if A is positive, self-adjoint and KerA = {0}. One can
generalize the definition of the scale of spaces A*V to the case A > 0.

Set Vi := Ranl (A), V- := Ranlj;(A). Let AL := A o Then
+
Ay >1and A”" > 1. Hence we can define the scales of spaces ATV, A2V_ =

(AZH=V_, a € R. We set
AV = ATV, @ AYV_. (9.22)

If A is not bounded away from zero, then the scale (9.22) does not have the
nested property (9.21). However, for any o, 8 € R, AV N APV is dense in A*V.
Again, we have a family of unitary operators

AQ,) T A%V — APy,

9.15 Complex interpolation
Let us recall a classic fact from complex analysis:

Theorem 9.43 (Three lines theorem) Suppose that a function {0 < Rez <
1} 3 z = f(z) € C is continuous, bounded, analytic in the interor of its domain,
and satisfies the bounds

IfGs)] < co,
f(1+is)] < «a, seR (9.23)
Then
|f(t+is)| < cg ', te[o,1], s€R. (9.24)

Theorem 9.44 Let A > 0 on V, B > 0 on W. Consider an operator C :
VNA-YY = WnN B~'W that satisfies

[Cvl| < collv],
|BCv|| < cf|Av]|, veVvnA~Y.

(In other words, C is bounded as an operator ¥V — W with the norm < ¢y and
A=Y — B7IW with the norm < c¢1.) Then, for 0 <t <1,

IB*Col| < g~ "ci[| A%, (9.25)
and so C' extends to a bounded operator
C: A"V — B™'W,

with the norm < c(l]_tcﬁ.



Proof. Let w e WN B~ and v € VN A~1V. The vector valued functions
z — B*w and z — A%v are bounded on {0 < Rez < 1}, and hence so is

f(2) == (B*w|CA*v)
We have

£ (1s)]
|f(1 +1is)]

collwllv]l,
cllwllvl, s eR.

IAIA

Hence,
IfB)] < o' etllwlllvll, ¢ € [0,1].

This implies (9.25), by the density of W N B~'W. O

9.16 Relative operator boundedness

Let A be a closed operator and B an operator with Dom B D Dom A. Recall
that the (operator) A-bound of B is

Boll2 3
W W (= (%20
In a Hilbert space
1AV ]|? + vo]® = (A" A +v?) ! 202,

Therefore, (9.26) can be rewritten as

a) = 31;%||B(A*A+u2)‘1/2||. (9.27)
If, moreover, A is self-adjoint, then, using the unitarity of (A2+v2)~1/2(+iv—A),
we can rewrite (9.27) as

a; = ir;é% | B(iv — A)7Y. (9.28)

Using Prop. 3.22 we obtain
_ _ -1
a; = zle?sz IB(z—A)~*]. (9.29)

Theorem 9.45 (Kato-Rellich) Let A be self-adjoint, B hermitian. Let B be
A-bounded with the A—bound < 1. Then

(1) A+ B is self-adjoint on Dom A.

(2) If A is essentally self-adjoint on D, then A + B is essentially self-adjoint
on D.

Proof. Clearly, A+ B is hermitian on Dom A. Moreover, for some v, || B(+iv —
A)7Y| < 1. Hence, iv — A — B and —iv — A — B are invertible. O



9.17 Relative form boundedness

Assume first that A is a positive self-adjoint operator. Let B be a bounded
operator from Dom A2 = (14 A)~Y/2V to (14 A)'/2V. Note that B defines
a bounded quadratic form on Q(B) := (1 + A)~Y/2y

Q(B) > u,v — (u|Bv).

Let us assume that this form is hermitian, that is

(u|Bv) = (v|Bu).

Definition 9.46 We say that B is form-bounded relatively to A iff there exist
constants a, b such that

|(v|Bv)| < a(v]|Av) + b(v|v), v € Dom A2 (9.30)
The infimum of a satisfying (9.30) is called the A-bound of B.

In other words: the A-form bound of B equals
. (v|Bv)
as = inf sup —_—
>0 ,eDom A1/2\{0} (v|Av) + c(v[v)
This can be rewritten as

ay = inf [|(A+¢) "2 B(A+¢) 717

Theorem 9.47 A is a positive self-adjoint operator. Let B have the form
A-bound less than 1. Then

o0

R(p) =3 (n = A) 2 (= A) 2B = A)7V2) (o= 4)72

is convergent for large negative u. Moreover, R(z) is a resolvent of a self-adjoint
bounded from below operator, which will be called the form sum of A and B and
denoted, by the abuse of notation, A+ B. We have Dom |A+ B|z = Dom |A|z.

We can generalize the concept of the form boundedness to the context of not
necessarily positive operators as follows. Let A be a self-adjoint operator. Let
B be a bounded operator from (A)~1/2V to (A)!/2V. We assume that the form
given by B is hermitian.

Definition 9.48 The improved form A-bound of B is
ay = inf [(A—p)* +0%) IB((A - ) + ) 4| (9.31)
v s
(9.31) can be rewritten as

aly = Vi>rbfu||(u+iu—A)_%B(u—kiu—A)_%H. (9.32)



Theorem 9.49 Let A be a self-adjoint operator. Let B have the improved A-
form bound less than 1. Then there exists open subsets in the upper and lower
complez half-plane such that the series

R(z) =y (2= A)72((z = A)7V2B(z — A)7V2) (2 — 4)72
j=0
is convergent. Moreover, R(z) is a resolvent of a self-adjoint operator, which

will be called the form sum of A and B and denoted, by the abuse of notation,
A+ B.

The form boundedness is stronger than the operator boundedness. Indeed,
suppose that B is a hermitian operator on ¥ with Dom B D Dom A and

IB((A~pw?+v%) "% <a.

This means that B is bounded as an operator ((A —p)?+ VQ)_1/2V — V and
as an operator V — ((4 — p)* + V2)1/2V, in both cases with norm < a. By the

—1/4

complex interpolation, it is bounded as an operator ((A — )%+ y2) YV —

((A—p)?+ 1/2)1/4V with norm < a. In particular, we have a < a1, where a;
is the operator A-bound and a), is the improved form A-bound.

9.18 Discrete and essential spectrum

Let X be a Banach space and A € B(&X). We say that e € spA belongs to the
discrete spectrum of A if it is an isolated point of spA and dim I (A) < oco.
The discrete spectrum is denoted by spy(A). The essential spectrum is defined
as

SPess A := spA\spyA.

Assume now that H is a Hilbert space and A is an operator on H. Then

Theorem 9.50 Let A be self-adjoint and X\ € spA. Then
(1) X € spgA iff there exists € > 0 such that dim Njy_. y1(A) < co.
(2) A € 8pegs(A) iff for every e > 0 we have dim Iy _¢ x4q(A) = oo.

Theorem 9.51 Let A be normal and X\ € spA. Then
(1) X € spgA iff there exists € > 0 such that dim gy o (A) < .
(2) A € 8pegs(A) iff for every e > 0 we have dim Iy ) (A) = oo.

Proposition 9.52 Let A be a normal operator and A € C. Then the following
are equivalent:

(1) A € SPess(A4)-



(2) There exists a sequence of vectors (vy,) such that w— lim v, =0, |lv,|| =1
n— oo
and lim |[(H — Nv,|| =0.
n—roo

Proof. Fix e >0 and set P. := lg(y,)(A). Then

1= Poall < € [(A = Aoal| = 0. (9.33)
Thus, after dropping a finite number of elements of the sequence, we can assume
that [|[(1 — Pe)vn| < %, and hence ||Pov,| > 1. Set w, := HTlv,LHPEU”' Then
lwn| =1, w, € Ran P, w— lim w, = 0.
n—oo

Suppose that Ran P, is finite dimensional. Then {w € Ran P, | |Jw|| = 1} is
compact. Hence, passing to a subsequence, we can assume that w, is convergent
(in norm). But it is weakly convergent to 0. So it is convergent in norm to 0.
But this is in contradiction with ||w,| =1. O

9.19 The mini-max and max-min principle
We will need the following lemma:
Lemma 9.53 Let X)) be finite dimensional subspaces. Then
dim X NY+ > dim X — dim Y. (9.34)
Proof. It is well-known that
dim X + dim W = dim(X + W) + dim X N W. (9.35)

Assume for a moment that X', W are contained in a finite dimensional space
V. Then
dim Y+ = dimV — dim ). (9.36)

Hence, setting WW = Y+, we obtain
dim X N Y+ =dim X 4 dim Y+ — dim(X + Y*) (9.37)
> dim X + dim Y+ — dim V = dim X — dim Y. (9.38)
But enlarging V only makes Y1 bigger. O
If H is self-adjoint, we will write
inf H := inf sp(H), sup H :=supsp(H). (9.39)

Let H be a bounded from below self-adjoint operator on a Hilbert space V.
It is easy to see that

inf H = inf{(v|Hv) : |jv|]| =1, veV}. (9.40)



For an operator H on V and W, a closed subspace W of V, we will write
Hy = I;VH’W, where I,y denotes the embedding of W into V. Then if H is
bounded and self-adjoint, then so is Hyy. If H is only bounded from below,
then so is Hyy.

(9.40) allows us to compute the ground state energy of a Hamiltonian. Let
us extend (9.40) to next eigenvalues. We define

tn(H) := inf { sup H. L is an n-dim. subspace of V}, n=12...;
Y(H) :=infsp(H),
N(H) = dim Il],ooyg[(H)

Theorem 9.54 p,(H) forn < N are the consecutive eigenvalues of H, count-
ing the multiplicity. For n > N(H) we have p,(H) = X(H).

Proof. Let a € sp(H). Let W := Ranllj_ (H), & := Ranj_ ,(H), Let
n € N satisfy

dimW < n < dimX. (9.41)
and dim £ = n. Then
dim £ N W+ > dim £ — dim W > 1. (9.42)
Hence there exists w € LN W, ||w|| = 1. So
sup Hy > (w|Hw) > a. (9.43)

On the other hand, if £ is n-dimensional and W C £ C X, then sup H; = a.
Hence py, = a. O

Theorem 9.55 (The Rayleigh-Ritz method) We have
tn(H) < pn(Hyy).

Proof.
pn(H) =inf{sup H; : dimL =n} (9.44)
<inf{supH; : dimL=n, LC W} (9.45)
<inf{sup(Hw)z : dimL=n, L CW} = u,(Hw). (9.46)
O

Theorem 9.56 (1) Let H < G. Then pun(H) < pn(G).
(2) |pn(H) = pn(G) < [|1H = G|

Remark 9.57 The theorems of this subsection remain true if the operators are
only bounded from below (but not necessarily bounded). In this case, if v does
not belong to the form domain of A, then we set (v|Av) = co. Hence, if L is not
contained in the form domain of A, then sup Ay = oo, and the above theorems
remasin true.

Notice also that if D is an essential domain for the quadratic form generated
by A, then

pn(A) :=inf{sup Az : L is an n-dim. subspace of D}.



9.19.1 Weyl Theorem on essential spectrum

Theorem 9.58 Suppose Hy, H are self-adjoint and for all z € C\R,
(2= )™ = (2 — Hy)?
is compact. Then Spoy(H) = Spess(Ho)-

Proof. We have for zp € C\R and r < Imz,

1
(20— H)™ = — / (20— 2)~"(x — H)~'dz. (9.47)
271'171! BK(ZO,T)
Hence
(50— H)~" — (29— Ho)~" = — / (2 —z)7”<(sz)71—(sz )*l)dz
0 0 0 27in! OK (z0,r) 0 0

is compact as well. But every f € C.(R) can be approximated in the supremum
norm by linear combinations of (z9 — H)™™, (Zo — H)™™, n = 1,2,.... Hence
f(H) — f(Hp) is compact.

In particular, let A & spo(H). Then there exists f € C.(R), f(A) # 0 such
that f(H) is compact. But f(H)— f(Hy) is compact. Hence f(Hy) is compact.
Hence A & spo.(Ho). Therefore, spyes(Ho) C SPegs(H ). O

9.20 Singular values of an operator
Let A be a bounded operator on a Hilbert space V. We define for n = 1,2,...
sn(A) :=sup{inf{(||Av|| : |lv]| =1, ve€ L} : L n-dim. subspace of V}.
Clearly, for |A| := (A*A)1/2,
sn(A) = sn(|A]) = —pn(=[A]),

and s1(4) = ||A4]].

9.21 Convergence of unbounded operators

Recall that lim denotes the norm convergence and s— lim the strong convergence
(of bounded operators). Recall also that Co. (R) denotes the space of continuous
functions on R vanishing at infinity and C},(R) the space of bunded functions
on R.

Let (A,) be a sequence of (possibly unbounded) operators. We say that

(1) A, — A in the norm resolvent sense if for z € C\R

lim (z — A,) = (2 — A7

n— oo



(2) A, — A in the strong resolvent sense if for z € C\R

s— lim (z — A,) ' = (2 — A)71;

n—oo

Theorem 9.59 (1) A, — A in the norm resolvent sense iff for any f €
Coo(R) we have li_>m f(An) = f(A).

(2) A, — A in the strong resolvent sense iff for any g € CpL(R) we have
s— le g(A,) = g(A).

Proof. The < implications are obvious. Let us prove the other implications.
(1): Let z0 € C\R, k =1,2,..., and r < Imzy. We have

1
—A)7F = —2) Mz - A" A4
T I A
and similarly with A replaced by A,. Hence lim (z9 — A,) "% = (20 — A)~F.
n— oo

Likewise, lim (Zo — A,,) ™% = (2o — A)~*. Now, by the Stone-Weierstrass Theo-
n—oo

rem, linear combinations of z + (z0—2) % and & + (Zg—x) * with k =1,2,...
are dense in C(R) in the supremum norm. This easily implies (1).

(2): We first prove (2) for g € Coo(R), following the proof of (1).

Let g € Ch(R), v € V and € > 0. We can find f € Co(R) such that

I(f(A) = Dol < lle

Since f,gf € Cx(R), we can also find ng such that for n > ng
€
1(g(A)f(A) = g(An) F(An))oll < 7,

I(F(A) — f(A))]| < m

Now

lg(A)v = g(An)vll <[lg(A)(f(A) = Dol + [[g(A) f(A) — g(An) f(An)o]
+119(An)(f(An) = (Aol + lg(An)(f(A) = o[l <e.

This proves (2). O






Chapter 10

Positive forms

10.1 Quadratic forms

Let V, W be complex vector spaces.
Definition 10.1 a is called a sesquilinear form on W x V iff it is a map
WxV 3 (w,v)— alw,v) €C

antilinear wrt the first argument and linear wrt the second argument.

If A € C, then X can be treated as a sesquilinear form A(w,v) := A(w|v). If
a is a form, then we define Aa by (Aa)(w,v) := Aa(w,v). and a* by a*(v,w) :=
a(w,v). If a; and ay are forms, then we define a; + as by (a1 + a2)(w,v) =
ar(w, v) + as(w, v).

Suppose that V = W. We will write a(v) := a(v,v). We will call it a
quadratic form. The knowledge of a(v) determines a(w,v):

a(w,v) = % (a(w +v) +ia(w —iv) — a(w — v) —ia(w +iv)). (10.1)

Suppose now that V, W are Hilbert spaces. A form is bounded iff
|a(w, v)| < Cllwllf|v]].
Proposition 10.2 (1) Let a be a bounded sesquilinear form on W x V. Then
there exists a unique operator A € B(V, W) such that
a(w,v) = (w]Av).
(2) If Ae B(V,W), then (w]Av) is a bounded sesquilinear form on W x V.

Proof. (2) is obvious. To show (1) note that w — a(w|v) is an antilinear
functional on W. Hence there exists n € W such that a(w,v) = (w|n). We put
Av :=n.

Theorem 10.3 Suppose that D, Q are dense linear subspaces of V,W and a
1s a bounded sesquilinear form on D x Q. Then there exists a unique extension
of a to a bounded form onV x W.
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10.2 Sesquilinear quasiforms

Let V, W be complex spaces. We say that t is a sesquilinear quasiform on W xV
iff there exist subspaces Dom;t C W and Dom, t C V such that

Domyt x Dom,t 3 (w,v) — t(w,v) € C

is a sesquilinear map. From now on by a sesquilinear form we will mean a
sesquilinear quasiform.

We define a form t* with the domains Dom; t* := Dom, t, Dom, t* := Dom; t,
by the formula t*(v, w) := t(w, v). If t; are t; forms, then we define t; + t; with
the domain Domy(t; + t2) := Dom; t; N Domy t;, Dom,(t; + t2) := Dom, t; N
Dom, t; by (t; + t2)(w,v) := t1(w, v) + t2(w, v). We write t; C t3 if Domt; C
Domj ta, Dom, t; C Dom, to, and ¢ (w, v) = ta(w,v), w € Domy t;, v € Dom, ;.

From now on, we will usually assume that W = V and Dom;t = Dom, t
and the latter subspace will be simply denoted by Dom¢t. We will then write
t(v) := t(v,v), v € Dom t.

The numerical range of the form t is defined as

Numt := {t(v) : v € Domt, |v| =1}.

We proved that Numt is a convex set.
With every operator T on V we can associate the form

t1(w,v) == (w|Tv), w,v € DomT.

Clearly, Numt; = NumT'. If T is self-adjoint, we will however prefer to associate
a different form to it, see Theorem 10.11.

The form t is bounded iff Numt is bounded. Equivalently, [t(v)]| < c||v]*.

t is hermitian iff Numt C R. An equivalent condition: t(w,v) = t(v,w).

A form t is bounded from below, if there exists ¢ such that

Numt C {z : Rez > c}.

A form t is positive if Numt C [0, 00[. In this section we develop the basics
of the theory of positive forms.

Note that many of the concepts and facts about positive forms generalize
to hermitian bounded from below forms. In fact, if t is bounded from below
hermitian, then for some ¢ € R we have a positive form t + c¢. We leave these
generalizations to the reader.

10.3 Closed positive forms

Let s be a positive form.

Definition 10.4 We say that s is a closed form iff Dom s with the scalar prod-
uct
(wlv)s :== (s + 1)(w,v), w,v € Doms, (10.2)

is a Hilbert space. We will then write ||v||s := v/ (v|v)s.



Clearly, the scalar product (10.2) is equivalent with
(s + ¢)(w,v), w,v € Doms,
for any ¢ > 0.

Theorem 10.5 The form s is closed iff for any sequence (vy) in Doms, if
vy, = v and 5(vy, — V) — 0, then v € Doms and s(v, — v) — 0.

Example 10.6 Let A be an operator. Then
(Aw|Av), w,v € Dom A,

1s a closed form iff A is closed.

10.4 Closable positive forms

Let s be a positive form.

Definition 10.7 We say that s is a closable form iff there exists a closed form
51 such that s C s7.

Theorem 10.8 (1) The form s is closable < for any sequence (v,) C Doms,
if v, = 0 and s(v, — vyp,) — 0, then s(v,) — 0.

(2) If s is closable, then there exists the smallest closed form s such that
s C 1. We will denote it by sl

(3) Nums is dense in Nums®!

Proof. (1) = follows immediately from Theorem 10.5.

To prove (1) <, define s as follows: v € Domsj, iff there exists a se-
quence (v,) C Doms such that v, — v and s(v, — v;,) — 0. From s(v,) <
(v/5(v1) + v/s(v, —v1))? it follows that (s(v,)) is bounded. From |s(v,) —
5(vm)| < V/8(Un — vi) (V/5(vn) + /5(vy,)) it follows that (s(vy)) is a Cauchy
sequence. Hence we can set s1(v) := nh_{rgo 5(vp)

To show that the definition is correct, suppose that (w,) € Doms, w, — v
and s(w,, — wy,) — 0. Then s(v, — w, — (Vym —wy)) — 0 and v, —w, — 0. By
the hypothesis we get s(v, — w,) — 0. Hence, lim s(v,) = lim s(w,). Thus

n—oo n—oo
the definition of s; does not depend on the choice of the sequence v,,. It is clear
that s is a closed form containing s. Hence s is closable.

To prove (2) note that the form s; constructed above is the smallest closed
form containg s. O

Example 10.9 Let A be an operator. Then
(Aw|Av), w,v € Dom A,
18 closable iff A is a closable operator. Then
(A%w|A%), w,v € Dom A

1s its closure.



Definition 10.10 We say that a linear subspace Q is an essential domain of

cl
th ' (‘ —s.
e forms if (s QXQ) 5

10.5 Operators associated with positive forms

Let S be a self-adjoint operator. We define the form s as follows:
s(v,w) == (|S|*/?v|sgn(9)|S|?w), v,w € Doms := Dom|S|'/2.
We will say that s is the form associated with the operator S.

Theorem 10.11 (1) NumS is dense in Nums.

(2) If S is positive, then s is a closed positive form and Dom S is its essential
domain.

The next theorem describes the converse construction. It follows immedi-
ately from Thm 9.41.

Theorem 10.12 (Lax-Milgram Theorem) Lets be a densely defined closed
positive form. Then there exists a unique positive self-adjoint operator S such
that

s(v,w) == (8/20|SY?w), wv,w € Doms := Dom S'/2.

Proof. By Thm 9.38 applied to Dom s there exists a positive self-adjoint op-
erator 7" such that

s5(v,w) := (Tv|Tw), v,w € Doms :=DomT.
We set S:=T2 O

We will say that S is the operator associated with the form s.

10.6 Perturbations of positive forms

Theorem 10.13 Let t; and to be positive forms.

(1) t1 + t2 is also a positive form.

(2) If t1 and ty are closed, then t1 + to is closed as well.

(3) If1 t a?d ty are closable, then t; + ty is closable as well and (t; + t2)! C
£+ g,

Definition 10.14 Let p, t be hermitian forms. Let t be positive. We say that
p is t-bounded iff Domt C Domyp and

b:=inf sup [p(v)]

¢>0 yeDom t t(U) + CHUHQ

The number b is called the t-bound of p.



Theorem 10.15 Let t be positive and let p be t-bounded with the t-bound < 1.
Then

(1) The form t+p (with the domain Domt) is bounded from below.
(2) tis closed < t+p is closed.
(3) tis closable <> t+ p is closable, and then Dom(t + p)°' = Dom t°.

Proof. Let us prove (1). For some b < 1, we have
(t+p)(v) > t(v) = [p(v)] > (1 = b)t(v) — cflv]|*. (10.3)

This proves that t + p is bounded from below.
To see (2) and (3), note that (10.3) and

(1+0)t(v) + cllv]]* = (t+p)(v)

prove that the norms || - ||¢ and || - ||¢4, are equivalent. O

10.7 Friedrichs extensions

Theorem 10.16 Let T be a positive densely defined operator. Then the form
t(w,v) := (w|Tv), w,v € Domt:=DomT

s closable.

Proof. Suppose that w, € DomT, w, — 0, lim t(w, —w,,) = 0. Then

n,m—oo
[t(wn)| < [Hwn — wim, wn)| + [H(wn, wh)

S \/t(wn)\/t(wn - wm) + (wm|Twn)

For any € > 0 there exists N such that for n,m > N we have t(w,, — w,,) < €.

Besides, lim (wp,|Tw,) = 0. Therefore, for n > N,
m—r o0

[t(wn)] < eft(wn)|'/2.

Hence t(w,) — 0. O

Thus there exists a unique postive self-adjoint operator T associated with
the form t°'. The operator TF" is called the Friedrichs extension of T

Clearly, Dom T is then essential form domain of 7F". However in general it
is not an essential operator domain of 7%". The theorem says nothing about
essential operator domains.

For example, consider any open © C R?. Note that C>(f2) is dense in
L?(Q). The equation

(/] - Ag) = / Vi@ Vg(a)de, fe Q)



shows that —A on C°(2) is a positive operator. Its Friedrichs extension is
called the laplacian on €2 with the Dirichlet boundary conditions.

If V is any positive bounded from below function we can consider A + V()
and define its Friedrichs extension.



Chapter 11

Non-maximal operators

11.1 Defect indices

If V is a finite dimensional Hilbert space and V, Vs its two subspaces such that
V) NV, = {0}, then we have the following obvious inequalities:

dimV; +dimV, < dimV,
dimV, < dimVy,
dimV, < dimVi.

If dimV = oo, then clearly the first inequality loses its interest. However the
other two inequalities, which are still true, may be interesting.
Let A be an operator on a Hilbert space V.

Theorem 11.1 dimRan (z — A)t = dimKer(z — A*) is a constant function
on connected components of C\(NumA).

Proof. Let us show that if |z — 21| < dist(z, NumA), then
Ran (2 — A) NRan (z; — A)* = {0}. (11.1)
Let w € Ran (z — A). Then there exists v € Dom A such that
w=(z— A

and |jv|| < c|jw]||, where ¢ = (dist(z,NumA))fl. If moreover, w € Ran (z; —
A)t =Ker(z; — A*), then

0= (21— A%)uwlo)
= (w|(z — A)) + (21 — 2)(w|v)

= wl® + (z = z1)(wlo).
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But
lwll® + (21 = 2)(wlv)| > (1 = |21 = z[e) [lw]|* > 0,

which is a contradiction and completes the proof of (11.1).
Now (11.1) implies that dim Ran (z — A)* < dimRan (2; — A4)*. O

11.2 Extensions of hermitian operators
Let A be closed hermitian.
Theorem 11.2 The so-called deficiency indices of A

ny := dimKer(z — A¥), z € Cy

do not depend on z. Then A possesses a self-adjoint extension iff ny = n_.
Moreover, one of the following possibilities is true:

(1) NumA # R.

(i) spACR, ny =n_ =0 and A is self-adjoint.
(ii) spA=C, ny =n_ >0.

(2) NumA =R.

(i) spACR, ny =n_ =0, A is self-adjoint.

(ii) spA = {Imz > 0}, ny >0, n_ =0, A is not self-adjoint.
(iii) spA = {Imz <0}, ny =0, n_ > 0, A is not self-adjoint.
(iv) spA=C, ny >0, n_ >0, A is not self-adjoint.

Proof. The existence of self-adjoint extensions for ny = n_ follows from The-
orem 11.4.
The remaining statements are essentially a special case of Theorem 11.1. O
Definition 11.3 Define on Dom A* the following scalar product:
(v|w) ax == (vjw) + (A*v]|A*w)
and the following antihermitian form:
[v|w] ax := (A*v|w) — (v|A*w).

The A*—closedness and the A*—orthogonality is defined using the scalar product

() -

Theorem 11.4 (1) Every closed extension of A is a restriction of A* to an
A*—closed subspace in Dom A* containing Dom A.



(2)
Dom A* = Dom A @ Ker(A* +1) @ Ker(4* — i)

and the components in the above direct sum are A*-closed, A*—orthogonal
and

(wo ®wy ®w—_|vg vy Bv_)a- = (wolvo) + (Awo|Avo) + 2(wy vy) + 2(w—[v-),

[wo ® wi ® w_|vg ® vy O v_]ax

2i(wy |vg) — 2i(w_|v_).

Proof. (1) is obvious. In (2) the A*—orthogonality and the A*—closedness are
easy.
Let w € Dom A* and

w L g« Dom A @ Ker(A* +1).
In particular, for v € Dom A we have
0= (A"w|A™v) + (w|v) = (A*w|Av) + (w|v).
Hence A*w € Dom A* and
A*A*w = —w.

Therefore,
(A" +1)(A* —DHw = 0.

Thus
(A" —i)w € Ker(A" +1). (11.2)

If y € Ker(A* +1), then
i(yl(A* —Hw) = (A"y|A"w) + (y|lw) = (y|w)a- =0

In particular, by (11.2) we can set y = (A* — i)w. We get w € Ker(A* —i). O

Dom A belongs to the kernel of the antisymmetric form [-, ] 4«. Therefore,
in what follows we restrict this form to

Vet := Ker(A* +1) @ Ker(4" —1i).
We will write
ZP = {v € Vier : [7,0]ar =0, z€ Z}.

We will say that a subspace Z of Vye is A*—isotropic iff [-|-] 4~ vanishes on Z
and A*-Lagrangian if ZP* = Z.
Every A*—closed subspace of V containing Dom A is of the form Dom A& Z,
where Z C Vger. If
ACBC A,

then the subspace Z corresponding to B will be denoted by Zp.



Theorem 11.5 (1) We have
ZB* — (ZB)pEr.

(2) B is hermitian iff Zg is A*—isotropic iff there exists a partial isometry

U : Ker(A* +1i) — Ker(A* — i) such that

Z:={ws ®@Uwy : wy € RanUU}.

(3) B is self-adjoint iff Zg is A*-Lagrangian iff there exists a unitary U :

Ker(A* +1i) — Ker(A* —1i) such that

Z :={wy @Uw; : wy € Ker(A" +1)}.

11.3 Extension of positive operators
(This subsection is based on unpublished lectures of S.L.Woronowicz).

Theorem 11.6 Let V =V, ® Vi and

Boo  Bo1
B =
[ Bio B ]

be an operator in B(V) with Bi1 invertible. Then B is positive iff B11 > 0,
Boy = B3y and Boy > BoiB1,' Bio-

Proof. Let vg € Vy, v1 € V;. For v, = { ZO } Then
1

0 < (v|[Bv) = (voBoovo) + (vo|Bo1vi) + (vi|Biovo) + (v1|B11v1)
= (’()0|(B()0 — BOlBﬁlBlo)ﬂo) + ||B;11/2310’UO + 311{21)1”2

This proves =.

Let us prove <. The necessity of B;; > 0 is obvious. Given vy, we can
choose v1 = —BﬁlBlovo. This shows that By — BmBﬁlBlo has to be positive.
O

Suppose that G is hermitian, positive and closed. We would like to describe
its positive self-adjoint extensions. Thus we are looking for positive self-adjoint
H such that G C H.

The operator G + 1 is injective and has a closed range. Define V; := Ran G
and set Vo := Vi, so that V =V, @ V;. Let A € B(V1,V) be the left inverse of
G + 1. We can write it as

s [ Aoy }

All

We are looking for a bounded operator

By Boi

1+H)'=B=
(1+H) [310 By,



that extends A and 0 < B < 1. Clearly, Bll = 14117 B01 = A()l, BlO = A31 By
Theorem 11.6,

By
1o — Boo

Bo1 By Bio,
Bo1 (141 — B11) ™! By

(AVARAYS

Thus we can choose any By € B(V,) satisfying
Too — Ao1(Th1 — A1) T AGy > Boo > Aot Ary Agy.-

This condition has two extreme solutions: The smallest Aoy A7'Af, yields
the largest extension, called the Friedrichs extension HT". The largest oy —
Ap1 (137 — AH)*IA?H, gives the smallest positive extension, called the Krein
extension HXT. We have the following formula for both extensions:

(1+H™)!

( 1/2+A01A 1/2)(A1/2+A01A 1/2) ’
11— (1+ H5)™?

(T = A11)'? = Agr (Th1 — Apn)™2) (Mg — Ap)? = Aoy (T — Aga) ™27






Chapter 12

Aronszajn-Donoghue
Hamiltonians and their
renormalization

12.1 Construction
Recall that the operators (h| and |h) are defined by

H > v (hlv:= (h|v) € C,

(12.1)
Co>ar |h)a:=ah eH.
In particular, |h)(h| equals the orthogonal projection onto h times ||h?.
Let Hy be a self-adjoint operator on H, h € H and A € R.
H)\ = H0+/\‘h)(h|, (122)

is a rank one perturbation of Hy. We will call (12.2) the Aronszajn Donoghue
Hamiltonian.

We would like to describe how to define the Aronszajn-Donoghue Hamilto-
nian if A is not necessarily a bounded functional on H. It will turn out that it
is natural to consider 3 types of h:

LheH, ILhe(H)*H\H, L he (H)H\ (H)'*H, (12.3)

where (Hy) := (1 + HZ)'/2.

Clearly, in the case I H) is self-adjoint on Dom Hy. We will see that in
the case II one can easily define H) as a self-adjoint operator, but its domain
is no longer equal to Dom Hy. In the case III, strictly speaking, the formula
(12.2) does not make sense. Nevertheless, it is possible to define a renormalized
Aronszajn-Donoghue Hamiltonian. To do this one needs to renormalize the
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parameter . This procedure resembles the renormalization of the charge in
quantum field theory. In this case usually the parameter A\ looses its meaning,
so we will abandon the notation H). Instead, one can label the Hamiltonian by
various parameters, which we will put in brackets.

Lemma 12.1 In Case I with \ # 0, the resolvent of H equals

R(z) = (z—H)™"
= (2= Ho)™' = g(2)7 (= = Ho) ' |h)(hl(z — Ho)™!,  (12.4)
where
g(2) := =X"t + (h|(z — Ho)h). (12.5)
defined for z & spHy.
Proof. We have
R(z) = (= Ho)™' = AR(2)|h)(h|(z — Ho)™"
= Az — Ho) Yh)(h|R(2). (12.6)

Hence the range of (12.6) is C(z — Hp) 'k, and the kernel is {(z — Ho) " 'h}*.
Therefore, (12.6) has the form

—g(2)~"(z — Ho) " |h)(h|(z — Ho) ™" (12.7)

for some complex function g(z). Thus it remains to determine g(z) in (12.4).
We insert (12.4) into

Az = Ho) ) (|R(z) = —g(=)" (= — Ho) "' |)(h](z — Ho) ",

and we obtain the formula for g, sometimes called Krein’s formula. O

For A =0, clearly
Ro(z) = (z — Hy) ™. (12.8)

The following theorem describes how to define the Aronszajn-Donoghue
Hamiltonian also in cases II and III:

Theorem 12.2 Assume that:

(A) h € (H)Y?*H, A € RU{co}. Let Rx(2) be given by (12.8) or (12.4) with
g (z) given by (12.5),

or

(B) h € (Ho)H, v € R. Let R (z) be given by (12.4) where g(,)(z) is the
solution of

{ 6zg(’y)(z) = - (h|(2 - HO)izh) )
(12.9)

3 (900 () + 90 (1)) = -
Then, for z € C\spHy such that g(z) # 0



(1) z — R(z) is a pseudoresolvent (a function with values in bounded operators
that fulfill the first resolvent formula);

(2) KerR(z) = {0}, unless h € H and X = co;

(3) Ran R(z) is dense in H, unless h € H and A = oo,

(4) R(2)" = R(z).

Hence, except for the case h € H, A = oo, there exists a unique densely defined
self-adjoint operator H such that R(z) is the resolvent of H.

The initial condition in (12.9) can be called the renormalization condition. It is
easy to solve (12.9) obtaining

9 (2) =7+ (h|((z — Ho) ™' + Ho(1 + H3) " *)h).

If g(8) = 0 and 8 ¢ spHy, then H has an eigenvalue at 8, and the corre-
sponding eigenprojection is

Ligy (H) = (hl(8 — Ho)*h) ™ (8 — Ho) ™" [h)(hl(8 — Ho) ™.

In Case I and II the function R U {oo} 3 A — H) is increasing.
In Case IIT we rename Hy as H ().

12.2 Cut-off method

Another way to define H for the case h € (Hp)H is the cut-off method. For
A > 0 we define
hA = ]l[_A7A](H0) h, (1210)

where 1[_ aj(Ho) is the spectral projection for Hy onto [~A, A] C R. Note that
ha € H.
We fix the running coupling constant by

M=y (| Ho(1 4+ HE) thy)
and set the cut-off Hamiltonian to be
Hp = Ho + Ap|ha) (hal. (12.11)
Then the resolvent for Hy is given by

Ra(2) = (= = Ho) ™' — ga(2) "'z — Ho) '|ha)(hal(= — Ho) ™', (12.12)

where
ga(2) == =Ay" + (hal|(z — Ho) " 'ha) . (12.13)
Note that Ap is chosen in such a way that the renormalization condition
1 . .
5 (92 Q) +ga(=)) =7 (12.14)

holds. The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Theorem 12.3 Assume that h € (Ho)H. Then klim Ri(z) = R(z).
—00



12.3 Extensions of hermitian operators

Let Hy be as above and h € (Hop)H\H. (Thus we consider jointly Case II and
IT1.) Define Hy, to be the restriction of Hy to

Dom(Hpin) := {v € Dom(Hy) = (Ho) 'H : (h|v) = 0}.

Then Hpyi, is a closed densely defined Hermitian operator. Set Hyax 1= H i,
Then for any zg € rsHy

Dom(Hmax) = Span(DomHo U{(z0 — HO)_lh}).
Note that Ker(Hyax 1) is spanned by
vy = (Fi— Hy) ' h.

Thus the deficiency indices of Hy;, are (1,1).

The operators H () described in the previous subsection are self-adjoint ex-
tensions of H;,. To obtain H ) it suffices to increase the domain of Hyy;, by
adding the vector

v+ (h|Ho(1 4+ Hg) 'h)

1y 2 (B Ho(1+ HE)"'h)
v —i(h|(1+ H§)~'h)

v +i(h|(1+ H3)~'h)

If H(,) has an eigenvalue (3 outside of spHy, then instead we can add the vector

(i— Ho) (i+ Ho)~'h,

(8= Ho) 'h.

12.4 Positive H,

Let us consider the special case Hy > 0.
Clearly, g is analytic on C\[0,00[. g restricted to | — 0o, 0] is a decreasing
function (in all cases I, IT and III). Therefore, H can possess at most one negative

eigenvalue.
We distinguish subcases of Cases I, II and III
Case L'iff h € H,;

Case Ia iff h € Dom H(;l/Q;
Case Ib iff h ¢ Dom H0_1/2.

Case ILiff h € (1 + Ho)'/*H, h & H;
Case Ila iff (1 + Ho)~*%h € Dom(1 + H0)1/2H51/2;
Case ITb iff (14 HO)_l/Qh ¢ Dom(1 + H0)1/2H51/2_
Case ILiff h € (1 + Ho)H, h & (1 + Hy)'/?H;

Case ITTa iff (1 + Hy) 'h € Dom(1 + Ho)l/QH(;l/Q;
Case IITb  iff (14 Hy) 'h ¢ Dom(1 + H0)1/2H0*1/2.



In Case Ia and ITa we set
Mir := —(h|Hy'h)~L. (12.15)

Note that Ak, is negative. (In all other cases one could interpret (h|H 'h) as
+00, and therefore one can then set Ak, := 0). We have

lim_g(x) =271 g(0) = —A7 + g

Therefore, Hy is positive for Ag, < A < oo. For A < Ak, Hy has a single
negative eigenvalue 3, which is the solution of

MR|(Ho — B)"*h) = —1. (12.16)
In Case Ila H),, is the Krein extension of Hyi, and Hs is the Friedrichs
extension.
In Case Ib and IIb we have
lim g(z) = -A"1  ¢(0) = —oo0.

Tr—r—00
H) is positive for 0 < A < oo. For A < 0, Hy has a single negative negative
eigenvalue S, which is the solution of (12.16). In Case IIb Hj is the Krein
extension of Hy,;, and H is its Friedrichs extension.

In Case III we will use two kinds of parameters, always putting them in
brackets. In particular, it is natural to rename Hy and call it H.). It is the
Friedrichs extension of Hpiy,.

In Case Illa we have

lim g(z) =00, ¢(0) =: 70,

T—r—00

where 7 is a real number that can be used to parametrize H, so that
9(z) = 0~ (hl(Ho —2)" Hy 'h) 2.

H(,,) is an increasing function of o € RU{oc}. It is positive for 0 < 7. It has
a single negative eigenvalue at f solving

0 = (h|(Ho — 8) ' Hy ')
for 79 < 0. The Krein extension corresponds to g = 0.

In Case IIIb
lim g(z) =00, g¢(0)=—oc.

r—r—00
A natural way to parametrize the Hamiltonian is by g(zq) for some fixed 2o €
] — 00,0[, say v—1 := g(—1). This yields

9(z) = ~v-1— (h|(Ho—2)""(Ho +1)7"h) (z +1).

H is an increasing function of y_; € RU {oo}. The Krein extension is H .
(and coincides with the Friedrichs extension).

H(,_,) has a single negative eigenvalue 3 for all v_; € R. 8 is an increasing
function of ~v_j.

If we use the cut-off method in Case III, then Ay 0. Thus we should think
of A as infinitesimally small negative.






Chapter 13

Friedrichs Hamiltonians
and their renormalization

13.1 Construction

Let Hy be again a self-adjoint operator on the Hilbert space H. Let ¢ € R and
h € H. The following operator on the Hilbert space C @ H is often called the
Friedrichs Hamiltonian:

G = [ I’j) glO' ] (13.1)

We would like to describe how to define the Friedrichs Hamiltonian if h is
not necessarily a bounded functional on H. It will turn out that it is natural to
consider 3 types of h:

LheH, ILhe(H)*H\H, L he (H)H\ (H)'?H, (13.2)

Clearly, in case I G is self-adjoint on C@Dom Hy. We will see that in case 11
one can easily define G as a self-adjoint operator, but its domain is no longer C@
Dom Hy. In case III, strictly speaking, the formula (13.1) does not make sense.
Nevertheless, it is possible to define a renormalized Friedrichs Hamiltonian. To
do this one needs to renormalize the parameter e. This procedure resembles the
renormalization of mass in quantum field theory.

Let us first consider the case h € H. As we said earlier, the operator G with
Dom G = C @& Dom Hj is self-adjoint. It is well known that the resolvent of G
can be computed exactly. In fact, for z € spHy define the analytic function

f(2) == e+ (h|(z — Ho)"'h). (13.3)
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Then for z € C\spHy, f(2) # 2 the resolvent Q(z) := ( — G)~! is given by

0 0 ] (13.4)

Q(z) = 0 (Z—Ho)fl

. 1 (hl(z — Ho)™!
+(2- 2) l
(2 — Ho)"*h) (2 — Ho)"'[h)(h|(z — Ho) ™"

Theorem 13.1 Assume that:

(A) h € (Ho)'/*H, e € R. Let Q(z) be given by (13.4) with f(z) defined by
(13.3),

or

(B) h € (Hy)H, v € R. Let Q(z) be given by (13.4) with f(z) defined by

0-f(2) = = (hl(z = Ho)"h),
3(fQ) + f(=1) =
Then for all z € C\spHy, f(z) # z :
(1) Q(z) is a pseudoresolvent;
(2) KerQ(2) = {0};
(3) RanQ(z) is dense in C ® H;
(4) Q(2)" =Q(2).
Therefore, there exists a unique densely defined self-adjoint operator G such that
Q) = (- G)".

Proof. Let z € C\spHy, f(z) # z. It is obvious that Q(z) is bounded and
satisfies (4). We easily see that both in the case (A) and (B) the function f(z)
satisfies

f(z1) = f(z2) = —(21 — 22)(h|(z1 — Ho) (22 — Ho)~'|R). (13.6)

Direct computations using (13.6) show the first resolvent formula.
Let (o, f) € C® H be such that («, f) € Ker@Q(z). Then

0= (z= f(=) 7 (a+ (hl(z— Ho) ™) (13.7)

(13.5)

0= (2= Ho) " f+ (2= Ho)"'h(z = f(2)) " (a+ (Wl(z = Ho) ') (13.8)
Inserting (13.7) into (13.8) we get 0 = (z — Hp)~'f and hence f = 0. Now
(13.7) implies & = 0, so KerQ(z) = {0}.

Using (2) and (4) we get (Ran Q(z))* = KerQ(z)* = KerQ(z) = {0}. Hence
(3) holds. O

It is easy to solve (13.5):

f(2) = v+ (h|((z — Ho)~' + Ho(1 + H3)~")h)
(13.9)

= 7+ (h|(2(z—11;(:)?i—Ho) a Q(Z_H;Y(Z_i_HO))h)



13.2 The cut-off method

Let h € (Ho)H and v € R. We can also use the cut-off method. For all A > 0
we define hp as in (12.10), that is hp := T_ Aj(Ho) h,. We set

en =7+ (halHo(1 + H§) ™ ha).
For all A > 0, the cut-off Friedrichs Hamiltonian

| ea (Rl
e[ ]
is well defined and we can compute its resolvent, Qa(2) := (z — G) ™!
Qalz) = 8 (- (I)fo)*l 1 (13.10)
—1 1 (hal(z — Hp) ™t
+(2 = fa(2)
(2 — Ho)"'[ha) (2 — Ho)*[ha)(hal(z — Ho) ™!
where

fA(Z) = €p + (hA‘(Z — Ho)ilhA). (13.11)
Note that e, is chosen such a way that the following renormalization condition
is satisfied: 3 (fa(i) + fa(—i)) = 1.
Theorem 13.2 Assume that h € (Ho)H. Then klim Qa(z) = Q(z), where
— 00
Q(2) is given by (13.4) and f(z) is given by (18.9). If Hy is bounded from

below, then lim ey = oo.
k—o0

Proof. The proof is obvious if we note that klim |(z—Ho) *h—(2—Ho) " tha| =
edeel
0 and lim fa(z) = f(2). O
k—o0

Thus the cut-off Friedrichs Hamiltonian is norm resolvent convergent to the
renormalized Friedrichs Hamiltonian.

13.3 Eigenvectors and resonances
Let 8 & spHy, If 8 = f(B) = 0 then G has an eigenvalue at 3. The corresponding
eigenprojection equals

) . 1 (h|( — Hy) ™
16(G) = (1+(Al(6=Ho) ™ |R) 1[(5—H0>-1|h> (5 — Ho) W) (hI(5 — Ho)™" |

It may happen that C\spHy 3 z — f(z) extends to an analytic multivalued
function accross some parts of spHg. Then so does the resolvent (z — G)~*
sandwiched between a certain class of vectors, in particular, between

w = [ . ] (13.12)



(w](z = @) 'w) = (= — f(z)) 7

It may happen that we obtain a solution of

f(B)=p

in this non-physical sheet of the complex plane. This gives a pole of the resolvent
called a resonance.
Suppose that we replace h with Ak and € with ey + A2a and assume that we
have Case I or II with A small.
Then if € & spHy, we have an approximate expression for the eigenvalue for
small A:
ex = €0 + N2a + A2 (h|(eo — Hy)"*h) + O(\Y).

If g € spHy, then the eigenvalue typically disappears and we obtain an approx-
imate formula for the resonance:

ex = e+ a+ M (h|(eo +i0 — Ho)"'h) + O(\Y)
= e+ Na+ N (h|P(eo — Ho) 'h) — Min(h|6(Ho)h) + O(\Y).
Suppose now that g = 0. Then we have the weak coupling limit:

)l\i{%(w|e_ix%a*w) = exp (—ita + it(h|P(Hy )h) — tx(h|6(Ho)h)) .
13.4 Dissipative semigroup from a Friedrichs Hamil-
tonian

Consider L?(R), e € R, A € C and
Hov(k) := kv(k), ve L*R), keR.

Then R > k + 1(k) = 1 does not belong to (Hy)'/2L?*(R), however it belongs
to (Ho)L*(R). We will see that

G = { X|€1) A}(Iy } (13.13)

is a well defined Friedrichs Hamiltonian without renormalizing A, even though
it is only type III.
Set 15 (k) := Tj_p (k). We approximate (13.13) by

€ A(lal }

Gy = [ N (13.14)

Note that (13.14) has a norm resolvent limit, which can be denoted (13.13). In
fact,

—A A2 dk — e —ir[A|? Imz >0,
T\ e+imA? Imz <0.



If w is the distinguished vector (13.12), then

(w|(z—G)'w) = (z—exir|AP)"!, ZImz >0,

(w|e_itGw) _ e—iét—ﬂ'pxlzlt‘.






Chapter 14

Convolutions and Fourier
transformation

14.1 Introduction to convolutions

In this chapter notes X will denote the space R? equipped with the Lebesgue

measure.
Let us recall two estimates, which we will often use, whose validity is not

restricted to R%:
The Holder inequality Let 1 < p,q < oo, % + % =1

/ F@)e@)ldz < (£l

The generalized Minkowski inequality

(/dy]/ﬂx,y)d " ) < [ar (/W(M)dy);

If g, h are functions on R?, then their convolution is formally defined by

g% h(z) == / oz — y)h(y)dy,

provided this makes sense. In what follows we will give a number of conditions
when the convolution is well defined.
14.2 Modulus of continuity

Lemma 14.1 For 1 <p < oo, f € LP(X), set

ons®) = ([ 114 - sopas)”
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and for p =00, f € Cs(R™)

Woo £ (y) = sup |f(z +y) — f(2)]

Then wy, r(y) is bounded and

lim o, () = 0.

Proof. The boundedness follows from the Minkowski inequality. In fact,

wp, 1 (y) < 2| flp-
The convergence to zero is obvious for f € C.(R™). But C, is dense in L?

for1 <p<ooandin Cy. O

14.3 The special case of the Young inequality
with ]l? + % =1

Theorem 14.2 Let1 < p,q < oo, %—I— =1, feLP ge L9. Then

1

q
fxg€ Cxw.

If f € LY, g € L™, then f g is uniformly continuous.

Proof. By the Holder inequality, f * g(z) is defined for all x and depends
continuously on f € LP(X) and g € L4(X). Moreover,

frg(x1) — f*g(x2)

= [(f(z1 —y) = flz2 — y)g(y)dy

< ([1f(@r —y) — flaz —y)Fdy)* gl
= wp,r (21 — 22)||9]lq-

Hence f * g is uniformly continuous.

For f € C.(X) obviously f * g € C.(X). If p,q < oo, then C.(X) is dense
in LP(X), L9(X). Hence for such p,q, f * g belongs to the closure of C.(X) in
L>(X), which is Coo(X). D

14.4 Convolution by an L' function

Theorem 14.3 Let g € LP(X) and h € LY(X). Then g * h is well defined
almost everywhewre and

lg * llp < lIAll1llgllp-



Proof. In the generalized Minkowski inequality set X =Y = R” and f(z,y) =
h(y)g(z —y). O

Theorem 14.4 Let ¢ € L'(R") and [ ¢(z)dx = 1. Set
be(x) =€ "P(e ), € > 0.

Then

lim [1f 5 6 — fll, =0, f€IP(RY), 1<p< o,

i [|f % ¢ = flloo =0, f € Coo(R").

Proof.

f o belx) — f) = / (F(z — ) — F(2))e()dy.

If % (@) = F(@)]]

< [y ([1fz —y) — F@)Pdz)? |6 (y)]

= [wp,r(Y)be(y)dy = [wp, f(ey)d(y)dy —c—0 0.
O

14.5 The Young inequality

Theorem 14.5 Let1 < p,q,7 < oo, I%—&-%-i—% =2, f,9,h € M (X) (positive,
measurable functions on X ). Then

/ / F(@)g( — w)h(y)dady < Cprnll Flplalallill-

Proof. Let%—l—i:l, +L =1and 2+ =1. Set

i P
x,y) = fa)?/" g(x — )V,
\y) = gz — )P h(y) 7,
Y(z,y) = ()P hy) /7
Then
[ F@)g(z —yh(y)dady = [ [ fa)PC e Dgla —y)1@ 5= n(y) o)

= [ [a(z,y)B(x,y)v(z, y)dedy < |lafl 18]y 1V]lq

where in the last step we used the Holder inequality noting that % + ﬁ + % =1
Finally,

ol = ([ [ f(x)Pg(x — y)rdady) /™ = || FIE" ||g)2"™".



Corollary 14.6 If —|— =141 L he L"(X), g € LYX), then for almost all x

y = gz —y)h(y)

belongs to L*(X) and

g*h(z) = /g(ac —y)h(y)dy

belongs to L*(X) and
g * hlls < lgllqllll:- (14.1)

Proof. We know that for f € LP(X), ; 141 -1 we have

/u kh/Mx— Dy < 17l lgllallBl < oo.
Hence for a.a x
I/wx— Y)ldy < oo.

Hence for a.a. x
/|g x — y)|dy < oc.

From

| [ f(@)g *h(z)da| < [I£lpllgllq ]l
we obtain (14.1). O

14.6 Fourier transformation on L' U L*(RY)

For
feL'(RY

we define its Fourier transform as
Fi() = €)= [y

We also introduce the following notation:

f(@) = f(=x), mf(x):=f(x—y), paf(x):= f(ax)
Theorem 14.7 (1) Hf||oo <\Ifll1;
(2) f(&) = f(6) = [ e f(w)da
(3) f=71:
(4) paf(x) =a"4f(a" 2);



(5) 7 f(§) = e f();
(6) (fei) (&) = f(¢—m)

Example 14.8 (1) f(z) = e, flo) = (%)ge_%
(2) flx) =e"a0(x), f(&)= (Ff’}i}ﬂl Ree > 0.
() f(@) =xr1u(@), f&) = 2.

(4) flz)=¢c"lol f= 1+1§2‘

Theorem 14.9 (The Riemann-Lebesgue Lemma) If f € L', then fe
Coo.

Proof. We know that the Fourier transformation is continuous from L' to L.
C« is a closed subspace of L.

Combinations of characteristic functions of intervals are dense in L'. Their
Fourier transforms, which we computed explicitly, belong to Cy,. O

Theorem 14.10 Let f,g € L'. Then

(1) [ F(©g(&)de = [ f(2)g(z)da.

(2) (f9)=f*g.

(3) (f+g) = fg.

Proof. (2) For f,(z) = f(x)e*", we have f,(€) = f(n —¢). Hence

/ﬂ@M@%szmy

Besides,
[ hr@iteris = ki)

Therefore, it suffices to apply (1). O
Theorem 14.11 (Parseval) Let g, € L*. Then

g=(2m)%g.
Proof. Let

ex?

de(x):=e 2.
We have
0< ¢ <1, limep.=1.
e—0

Using that § € L', by the Lebesgue Theorem we obtain

b — 9



in the sense of L!. Therefore,

in the sense of L°°

Moreover,
Joo=eot do=(E) e F,

Using that g € L' we obtain
dex g — (2m)%

in the sense of L*.
Finally, we use

¢;e *g = ‘56 *g = (¢eg)c (14'2)

(14.2) converges to § in the sense of L and to (27)%g in the sense of L. It is
easy to see that these two functions have to coincide. O

Theorem 14.12 Let f € L', f > 0 and let f be continuous at 0. Then f eL!
and we have

/ F(€)de = (2n)2£(0)

Proof. If ¢. is as in the proof of the Parseval Theorem, then
[ oot = [ b s

The left hand side is increasing and converges to [ f (£)d¢. The right hand side
goes to (2m)?£(0). By the Fatou Lemma, f is integrable. O

Theorem 14.13 Let f € L' N L%, Then
; d
[fll2 = @2m)Z [ f]l2-

Proof. The function h := ?* f belongs to L' as the convolution of functions
from L' and is continuous as the convolution of functions from L?. Besides,

Hence, by Theorem 14.12, h € L! and

(27)%h(0) = / h(€)de.



Finally,

(2 / (@) dz = (2m)*h(0) = / h(€)de = / F©)[ae.

Let f € L2. Then for any sequence f,, € L' N L? such that

lim fn:f

n—oo

in L?, there exists lim, o0 fn = f The operator

f

wla.

[ (2m)”
is unitary.
Theorem 14.14 If f € L' and zf € L, then f € C* and
3 f(€) = (f)(©).

Proof. We use the theorem about differentiation of an integral depending on
a parameter. O

14.7 Tempered distributions on R?
Typical spaces of functions (measures) on R? are
Coo(X), LP(X), Ch(X).
where Ch(X) denotes Borel complex charges of finite variation. We have
C#(X)=Ch(X), LP(X)# = LYX), p'+q¢'+1, 1<p<oo.

We have a bilinear and sesquilinear forms

(a,b) = /a(x)b(a:)dx, (a,b) = /E(:c)b(x)dx.
Lemma 14.15

[flloe < NI+ [z flls + CllOz, - - Ouy fllr, p>d

1 k1
<A+ lzD"Ffllp, =< =+ -.
1£1lq I+ [z fllp . Sadty

Theorem 14.16 The following set does not depend on 1 < p < co:

0+ 0+ a2, < oo}, (143)

a,m>0



The space S(R?) is defined as (14.3). It is a Frechet space.
For the dual of S(R?) we will use the traditional notation S’(R%).

Example 14.17 Elements of S8'(X) satisfying

[(v, &) < Cllz™ ]|
have the form

(0.6) = [ ey

for a certain Borel charge u for which there exists m such that p(1+ |z|)~™ €
Ch(X).

The operator 9 is continuous on S(X). For v € §)(X) we define dv € §’'(X)
by
(v,09) = =(0v,9).

Theorem 14.18 Any v € §'(X) has the form
> o,
a<N

for some Borel charge p such that for some m we have p(1 + |x|)~™ € Ch(X).

Proof. For some «, 3,

,0)<C > [[2%0)¢]loo-

lal,|B|<N

Introduce the locally compact space

X= J] x

leel,|BI<N
and the map

D
S(X)3¢=j@)= Y, 179°¢eCu(X)

lal,[BI<N

Any distribution v determines a bounded functional on j(S(X)). By the Hahn-
Banach Theorem, this functional can be extended to a bounded functional v on
Coo(X). By the Riesz-Markov Theorem, there exists a finite Borel charge on X
Such that

(bap)= Y / () 5 (1),

lal,[BI<N

Clearly, S(X) C L'(X). Hence the Fourier transform is defined on S(X).



Theorem 14.19 If ¢ € S(X), then ¢ € S(X).
Recall that for ¢ € S(X), ¢ € S(X) we have
(%,6) = (¢, 9).
For v € §'(X) we define
(0, 9) = (v.9), ¢ € S(X).

Clearly, L'(X) U L? C 8&'(X) and the Fourier transformation previously
defined coincides with the presently defined on L'(X) U L2.

Theorem 14.20 B
b= (2m)%, veds'(X), (14.4)

14.8 Spaces of sequences
Below we list a couple of typical spaces of sequences indexed by Z¢:

LNz c LP(2%) € LY(Z%) € Coo(Z) € L®(Z%), p<¢q
We have

Coo(ZH# = LY (2%, LP(ZN* = LYZ%), p'+q =1, 1<p<oco.
We have natural bilinear and sesquilinear forms:
(alb) = anbn, (alb) = @nby.

Lemma 14.21
lall, < llallg: p =g

1 k1

<|(1 —k —< =4 -

lally < [[(1+n)""ally,  “at s
Theorem 14.22 The following set does not depend on 1 < p < co:

. 2\m/2
0 fa s 1+ 2l < oo,

The above space is a Frechet space, which will be denoted S(Z%).
Theorem 14.23 The space dual to S(Z?), denoted S'(Z4), equals

. 2\—m/2
U fa s [+ )l < oo,

Theorem 14.24 S(Z%) is dense in S'(Z%).



14.9 The oscillator representation of S(X) and
S'(X)

For simplicity, we discuss X = R.

Lemma 14.25
n
i _ (ng)ﬂ _a2 _
nh_)n;o e'se 2 Z 7l e 2|=0
7=0
Proof.
. 22 " (i J 22 n+1.n+1 22
e — Z (m,f) e 2| < e e 7.
= U (n+1)!

Hence the norm of the difference is estimated by

52 (n+1) ,.2(n+1) o0 ¢ntga—sds 52("+1)F(n+ %)

e T dr = 2(n+1 _
((n+1)! da = €57 /0 ((n+1)H)2 ((n+1)!)2

Theorem 14.26 Linear combinations of

%2

a"e” T (14.5)
are dense in L*(R).

Proof. Let f be orthogonal to the space spanned by (14.5). Then for any &

/f(a:)e”ge*%dx = 0.

.Lz .
Hence, the Fourier transform of fe™ = is zero. Therefore, f = 0 almost every-

where. O
1 d 1 d
Af = — - — A=— —
) =g (e )

Let
b = mE () H (AT = (2201)H (—1)P e T One "
N := A*A+ AA* = 22 + D2,

2

Theorem 14.27 ¢, is an orthonormal basis obtained by the Gramm-Schmidt

orthonormalization of x™e~ 2 . They are eigenvectors of N and F:

N¢, = (n + ;) b, Fon =i"(2m)%0,,.



Theorem 14.28 Suppose that for v € §'(R)

Un = (U, Pn)
Then there exists m such that

lvn| < C(1+n)™,
or, in other words, (v,) € §'(N). The map
S'(R) > v — (v,) € S'(N)
is an isomorphism. v € S(R), iff
lon] <C(14+n)"", m=0,1,...

The map
S(R)>v— (v,) € S(N)
s an isomorphism and

S(R) = N, Dom(N™).

Proof. Clearly, the seminorms || N ¢|| can be estimated by linear combinations
of seminorms ||¢||q,g,2. Hence,

S(R) D NyZyDom(N™).
To show the inverse estimate note first that ||¢|/q,5,2 can be bounded by

(6, A% ... AL g),

where Ag = A or AE = A*. After commuting we can estimate them by linear
combinations

(pAk, ATmep)
< L Athg|2 + L atmg|2
< oyt | N g2,

Hence
S(R) € NyZy Dom(N™).

O

Corollary 14.29 (The Schwartz Kernel Theorem) FEvery continuous bilin-
ear functional

S(X1) x 8(X2) 3 (¢, ¥) = T(9,)
has the form
(T, ¢ @)
for some T € §'(X1 x X3)



Proof. We have
(T,6@V) = thmbr @ hm,

where
Lkl < (14 |E)™ (1 + [m])™.
Hence,
[tkm| < (14 [K| + [m])?".
O

14.10 Convolution of distributions
Theorem 14.30 The following space does not depend on 1 < p < co:
ULF € C=®RY « [[(1+ [a) ™= D[, < oo} (14.6)

The space (14.6), which is an inductive limit of Frechet space, is denoted
O(R%). Tts dual space, for which we will use the traditional notation O'(R?), is
called the space of rapidly decreasing distributions.

We have the inclusions

Scocs8, Scocs
Example 14.31 If u is a Borel charge and for any m

/ (1+ o)™y () < oo,
then € O'.

Clearly, if f € O, then
S3¢— foeS (14.7)

is continuous. For v € &’ we define fv € &’ as the adjoint of (14.7), that is
(v, f9) = (fv,9).

The operator 9 is continuous also on O and O’.
For ¢ € S we define

o(z) := ¢(—x)
Clearly, 3 §

(1, 0) = (¥, 9)
For v € 8’ we introduce §

(v,0) = (0,9)

Note that for ¢,v, x € S we have
(G o) = (xx,9).
For v € &', ¢ € S we define
(vx1), ) = (0,9 x ).



Theorem 14.32 Forv e S, ¢ € S we define

Then

and

vk e 0. (14.8)
Proof. Let us show (14.8):

020 # o) = (010560
< Clly" a2t
< O(1+ J2))" |y 058 -

Hence we can extend the definition of the convolution as follows. Let w € &,
v e O'. Then

(0w, ) = (0,0 % ¢), PES.

Using the convolution we can easily show that S is dense in §’.
Theorem 14.33 Ifv e O, then 0 € O.

Proof. Note first that
0L0(€) = (v,2’e7i¢).

We know that
18]

(0, 0)] < > (1 +27)7 % 35 ¢llee

lo] <N

Hence,

lae)l < > Ll

|| <N

Theorem 14.34
(vxw) =i, veS, wed (14.9)



Proof. First prove (14.9) for w € S. Let ¢ € S. Then

Then we assume that v € &', w € O’ and we repeat the same reasoning. O

14.11 The Hardy-Littlewood-Sobolev inequality

Let 6 denote the Heaviside function, that is

0 t<0,
9(’5):{ 1 >0

Let 0 < A <n. Then
2] 20(J| = 1) € LP(X), o0 >p>

2] 20(1 — Jal) € L(X), 1<p<

Theorem 14.35 1<p,r<oo,0<)\<n,%+i+l=2, fih e Mi(X

n T

Then
/ / @)z — 5| hy)dady < Cor £l Il

Corollary 14.36 If 2 +1 =1+ 1 he L"(X), then for almost all x

y = |z =yl h(y)
belongs to LY (X) and
- / | =y~ h(y)dy

belongs to L*(X) and for g(x) = |x|=*,

).

lg* hlls < CrnrllAlls- (14.10)



Proof of Theorem 14.35 We will write g(z) := |z|~*. Set

v(a) ::/1{f>a}(:v)dx, w(b) ::/1{h>b}(x)dx, u(c) ::/1{g>c}(m)dx

Note that ~
u(c) = Cpe™™?, uw™i(t) = Cput=",

We can assume that

1= (£ =p/ " Lo(p)da, 1= |h|" = r/ b La(b)db
0 0
Now
= [ [ f@)gxz —y)hy)dedy = [ [ [ [ [1{rsa} (@) nsey ()1 gsey (@ — y)dzdydadbde
= [ JJ dadbdylinsn(y) [ [ dedalizsay(@)ligsey (@ —y)

wlby<ola)
+ [ [ [ dadbdxlyssey(z) [ [ dedylinsey (¥)1igse)(z —y)-
w(b)>v(a)
Now
J [ dedalppsay(@)lggsar(@—y) < [ [ dedalipsey(x)+ [ dedzlygsa(z—y)
v(a)>u(c) v(a)<u(c)
uw(v(a o
a) fo e de+ fu—l(v(a)) u(e)de
=v(a)u=(v(a)) + cn,x(ufl(v(a)))lfn/A
= coav(a)t=>m,
Therefore,
I <cpn [[ dadbw(b)o(a)' " +con [[ dadbu(a)w(b)' ="
w(b)<v(a) w(b)>v(a)

= ¢p,2 [ [dadbmin <w(b)v(a)1*)\/n7 v(a)w(b)lf)‘/">

00 p/T 00 r/p
< cny fydav(a) [y dbw (b)) + ¢ n [y dbw(b) fob dav(a)' ="

Now setting m := (r — 1)(1 — A/n), we get

aP/" aP/

S w) M = [0 w(b) M ey mdb

< ( “p/rw(b)bT‘ldb)l_A/n( ar/" b—m”//\db)A/n

0 0
I 1-X\/n
< C(fo w(b)br—ldb) a1
Hence
0o 1-\/n
I < cn)A’va(a)a”_lda(fo w(b)b’"‘ldb)

o 1-\/n
+enar Jo w(b)br’ldb(fv(a)apflda) =2Char



14.12 Self-adjointness of Schrodinger operators

The following lemma is a consequence of the Holder inequality:

Lemma 14.37 Let 1 < p,q < o0 and % + % = % Then the operator of mul-

tiplication by V € LP(R?) is bounded as a map LY(RY) — L"(R%) with norm
equal to |V,

The following two lemmas follow from the Hardy-Littlewood-Sobolev in-
equality:

Lemma 14.38 The operator (1 — A)~! is bounded from L*(R) to L4(R?) in
the following cases:

— e 1 1 1
(1) FOTd—1,2,3 ng Sa S§.
— e 1 1 1
(3) FordESif%—%géS%.

Lemma 14.39 The operator (1 — A)~2 is bounded from L2(R?) to L(R?) in
the following cases:

a1 1 1

e 1 1 1
(2) FOTd:22f5<5S§

r 1 1 1 1
(3) Ford>31if 3 —53< ;<3

Proposition 14.40 Let V € L? + L= (R%),where
(1) ford=1,2,3, p=2,
(2) ford=4,p>2,
d
(3) ford>5,p=73.
Then the —A-bound of V' is zero. Hence —A+V (z) is self-adjoint on Dom(—A).

Proof. We need to show that
lim V(z)(c—A)"t =0, (14.11)

c— 00
where (14.11) is understood as an operator on L?(R9).
For any € > 0 we can write V = Vi, +V,,, where Voo € L>(R?), V,, € LP(R?)
and ||Vp|l, <e. Now

V(z)(c=A)"" = Va(z)(c—A)H + Vp(z)(e—A)7h
The first term has the norm < ||V |/socc™!. Consider the second term. Let

1 1 1

q p 2

1Vo(2)passz2 = [[Vpllp <€, and ||(c — A)}2_, || is uniformly finite for ¢ > 1 by
Lemma 14.39. O



Proposition 14.41 Let V € LP + L>=(R%),where

(1) ford=1,p=1,

(2) ford=2,p>1,

(3) ford >3, p= g,

Then the form —A-bound of V is zero. Hence —A + V (x) can be defned in the
sense of the form sum with the form domain Dom(v/—A).

Proof. We need to show that

lim (¢ — A)7Y2V (z)(c — A)71/2 =0, (14.12)

c—00

where (14.12) is understood as an operator on L?(R?). For any ¢ > 0 we can
write V = Vo + V,, where Vo, € L®(R?), V,, € LP(R?) and ||V, ||, < e. Now

(c=A)2V(@)(e—A)"2 = (c— A PV(a)(c— )72
+(IVp(@)[V2(e = A)712) sV, (2) [V (@) /2 (e — &) 712,

The first term has the norm < ||V |[ooc™!. Consider the second term. Let

1/2 —1/2 . . .
Vo @) gy 2y | = VTVallp < Ve and [[(c = A) 272, || is uniformly finite
for ¢ > 1 by Lemma 14.39. O






Chapter 15

Momentum 1n one
dimension

15.1 Distributions on R

The space of distributions on R is denoted D’(R). Note that Ll (R) C D'(R).
Obviously C(R) C L{ .(R).
For every T € D'(R), one can define its support, which is a closed subset of

R. Clearly, if T € L (R), then suppT in the sense of L{. . and D’ coincide.

loc

Proposition 15.1 (1) Let g € L] (R). Then

loc

/0 " gy)dy = f(x) (15.1)

18 a continuous function and f' = g, where we use the derivative in the
distributional sense.

(2) If g € LP(R) with 1 < p, then g € LL _(R) and so f(x) defined in (15.1) is
a continuous function.

(3) If f' = g € C(R), then f € CL(R) and f' = g is true in the classical sense.

(4) The differentiation does not increase the support of a distribution.

We will consider sometimes L{ . functions defined on closed subsets of R,
eg. [0,00[. Clearly, L

L .10,00[C L (R), hence we know what it means to take
the distributional derivative of elements of L] [0, oo].
0 will denote the Heavyside function.

15.2 Momentum on the line

Consider the Hilbert space L?(R).
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The equation
Ut)f(x) = flz—1t), feLR), teR,

defines a unitary strongly continuous group.
The momentum operator p is defined on the domain

Domp:={f € L*(R) : f € L*(R)}

by )
pf(zx):= Y(‘?zf(x), f € Domp. (15.2)

Its graph scalar product is

oy = [ (Flgte) + T/ ()

—00

Theorem 15.2 (1) U(t) = e P,
(2) p is a self-adjoint operator.

(3) C°(R) is an essential domain of p.
(4) spp =R, sp,p=0.
(5) The integral kernel of (z — p)~* equals

[ —if(z — y)e*=Y) | Imz > 0,
R(z,z,y) = { +if(y — x)eiZ(a:—y)7 Imz < 0.

Proof. (1): Let U(t) = e'4.
Let f € Dom A. Then for any ¢ € C°(R)

©OlAp) < T@UWF ) = [ @@T0-3@) 1)

o /Wf(x)dx = —/Wf’(w)dx

Therefore, Af = —9,f (in the distributional sense). Thus, f € Domp and

Af = —ipf.
Let f € Dom p, which means f € L%, g := f’ € L. Then f € C(R) and

1 1 [* .
c(f@=0)—f@) = ;/ 9(W)dy = jixg — g, (15.3)
T—t
1/t —t,0
where we j;, := /ty e l=t0L and (15.3) is understood in the L? sense.
0 Yy ¢ [_tv 0}7

Therefore, f € Dom A.
(2): p is self-adjoint because —ip generates a unitary group.



(3): C2°(R) is a dense subspace of L?(R) left invariant by U(t). Therefore,
it is an essential domain.
(5): For Imz >0

Hence
(z—p) ' fla) = —i /0 e — )t = i / T 20 ) f(y)dy.
For Imz < 0 we can use
(z=p) " =(E-p7"

(4): Let k € R. Consider fop = /mee= t*=  Then |[fopll = 1, for €
Domp and (k —p)fer — 0 as e — 0. Hence k € spp.

Suppose that f € Domp and pf = kf. The only solution is f = ce**, which
does not belong to L?(R). Hence sppp = 0. O

Proposition 15.3 Domp C Co(R) and Domp > f — f(x) € C is a continu-
ous functional.

Proof. Domp = Ran (i—p)~!. Now (i—p)~! is the convolution with —if(z)e~ !l
which belongs to L?(R). The convolution of two L?(R) functions belongs to
Cw(R). O

Proposition 15.4 (1) The spaces

{f € Domp : f(x) =0, z <0}, (15.4)
{f €Domp : f(z)=0, z>0}. (15.5)

are mutually orthogonal in Dom p.

(2) The orthogonal complement of the direct sum of (15.4) and (15.5) is spanned
by e~ 1=l

Proof. (2): We easily check the orthogonality of e~ to (15.4) and (15.5).
Let f € L¥(R). Set fi(z):=0(£z)(f(z) — f(0)e~I*!). Then

f(x) = F0)e " + f_(2) + fi(2).



15.3 Momentum on the half-line

Consider the Hilbert space L([0, 0o]).
Define the semigroups

Uc(O)f(2) = fl@+1), t>0.
z—t), x>t>0.
U= () f(x) :={ Sl

0, t>,
If we embed L?[0,00] in L?(R), then, for ¢ > 0,

Uc(t) = Tjoeo(z)U (=)o 00((2),
U_(t) Lo, 00 () U () Ljg,00[ (2)-

Define ppax by

pmaxf(x) = %6xf(z)7

fe€Domppay = {f € L*0,00[: f € L*0,00[}.

The graph scalar product of pypax is

o = [ (F@io(0) + T @)
Dom ppax C C[0, 00[, and for = € [0, 00|

Dom pmax 2 f — f(x)

is a continuous functional.

Define the operator pnin as the restriction of pyax to the domain

Dompmin = {f S Dompmax : f(O) = 0}
If we embed L?[0, 00[ in L?(R), then

Dom puax = {ljo,c[f : f € Domp},
Domppmin, = {f €Domp : f(x)=0, = <O0}.

Theorem 15.5 (1) We have U, (t) = e'Pmax agnd U_,(t) = e~ 1Pmin,

(15.6)

(2) Pmin C Pmax, p:;lin = Pmax> p;knax = Pmin; the 0p€mt07’5 Pmin and —Pmax are
m-dissipative (in particular, they are closed); the operator pmin is hermi-

tian.

(3) Dom ppin is a subspace of Dom pyax of codimension 1 and its orthogonal

complement is spanned by T oo(x)e™".

(4) C°([0,00]) is an essential domain of pmax and C°(]0,00[) is an essential

domain of Pmin-



(5) SPPmax = SPpPmax = {Imz > 0}¢ SPPmin = {Imz < 0}; SPpPmin = 0,

Prmax€ ™ = 2e*¥ e*T ¢ Dom ppax, Imz > 0; (15.7)

e integral kernels of (2 — Pmax)” "~ and (z — Ppmin)~~ are equa
6) Th Lk Is of L and 1 [

Ruax (2,2, y) = i0(y — 2)e* %) Imz < 0.

Ruin(z,2,y) = —if(x — y)eiz(l"*y)7 Imz > 0.

15.4 Momentum on an interval I

Consider the Hilbert space L*([—,n]).
Define pyax as an operator with domain

Dom puax := {f € L?[—m, 7| : f € L?|—=, 7]}

P f () 1= %axf(a:» f € Dom pras. (15.8)

Note that the graph scalar product for pyax is

o) = | (@) + g @)z, 5.9 € Dom pe,

—T

C[—m, 7] C Dom pmax, and for x € [—m, 7]
Dom pyax 3 f +— f(2)

is a continuous functional. Define the operator pni, as the restriction of ppax
to the domain

Dom pin := {f € Domppax : f(—7) = f(7) =0}.

Theorem 15.6 (1) Neither pmax NOT Pmin generate a semigroup.

(2) Pmin C Pmax, p;lin = Pmax; P}knax = Pmin; the operators Pmin and Pmax are
closed; the operator pmin s hermitian.

(3) C°([—m,7]) is an essential domain of pmax and C°(|—m, w|) is an essential
domain of Pmin -

(4) SPPmax = SPpPmax = C, 8PPmin = C, spppmin = 0,

Pmaxe™” = ze**, 2z €C, (15.9)



15.5 Momentum on an interval I1

Let x € C. Define the family of groups on L?([—,7]) by
Uc(t)p(x) = 2™ p(x —t), —2n—)r<z—t<—2n+ 1)1, ncZ.
Let the operator p, be defined as the restriction of ppax to
Domp, = {f € Dompmax : €™ f(—7) = f()}.
Theorem 15.7 (1) U,(t) = e iPx.
(2) |Us(®)]| = e*>™Im= 27(n — 1) <t < 27n, n € Z.

(3) The semigroup [0,00[> t — Ug(t) is of type (1,0) for Imk < 0 and of type
(e2™mr Tmg) for Imk > 0.

(4) P} =Pr,  Pr =DPr+1; Pmin C P C Pmax. Operators p,, are closed. For
k € R they are self-adjoint.

(5) {f € C®([~m,7]) : 2™ f(—m) = f(m)} is an essential domain of p,.
(6) sppx = spyps = Z + K,

peel (TR — (n+ n)ei(”+“)$, n € 7Z.
(7) The integral kernel of (z — p.)~" equals

—i(z—k)7m jiz(z—y) _ i(z—r)m Jiz(z—y) o
Sema(e —n) (e e Oz —y)+e e 0y CE)) .

Ri(z,,y) = 2sin 7(

(8) The operators py, are similar to one another up to an additive constant:

Domp,, = e Dompy, p. = " poe™ " + k. (15.10)

15.6 Momentum on an interval III

Define the contractive semigroups on L?([—, 7]):

U (t)f(2) := { fla+t), Je+t<m

0 |z +t] > .
U () f(z) == { g(%t% |T:xitz|s\g>ﬂ7§.

Let the operator piis be defined as the restriction of pyax to
Dompiico = {f € Domppax : f(xmw) = 0}.
Theorem 15.8 (1) U, (t) = elP+i~ and U_,(t) = e~ iP-ic,
(2) Plioe = Picos Pmin C Dtico C Pmax. Operators piiso are closed.
(3) sppico = 0.
(4) The integral kernel of (z — p+iso) ' equals
Riioo(z,m,y) = £ie*@¥F0(+y T 2), 2z e C.



Chapter 16

Laplacian

16.1 Sobolev spaces in one dimension

For a € R let (p)~“L?*(R) be the scale of Hilbert spaces associated with the
operator p. It is called the scale of Sobolev spaces. We will focus in the case
aeN.

Theorem 16.1 (1)

(p) "LAR) = {f € L*R) : f™ e L*(R)}.

(2) (9 "L2(R) € C"N(R) and (p) " LA(R) 3 = fO() forj =0,...,n—1
are continuous functionals depending continuously on x € R.
Proof. We use induction. The step n = 1 was proven before.

Suppose that we know that (p) "L?(R) C C™(R). Let f € (p)~*TVL2(R).
Then (i—p)f = g € {p) "L*(R). Clearly, (p)"""1L*([R) C (p) "L*(R), hence
f € C"YR). Likewise, g € C" 1(R), by the induction assumption. Now
pf =—g+if € C"Y(R). Hence, by Prop. 15.3 (3) f € C*(R). O

16.2 Laplacian on the line
Define the form 0 by
o(1.9)i= [ Fl@g/(@)da. f.g € Domo = () LA (R).
The operator p? on L?(R) will be denoted —A. Thus
~Af(z) = =0;f(z), f€Dom(-A)= (p)*L*(R).
Theorem 16.2 (1) —A is a positive self-adjoint operator.
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(2) sp,(—A) =0.
(3) sp(=A) = [0, 0.
(4) The integral kernel of (k* — A)~Y, for Rek > 0, is

1
R(k7 Zz, y) = ﬂe_klz_yl .

(5) The integral kernel of et is

1 (@-y)?
It

K(t,z,y) = (4nt) " 2e

(6) The form 0 is closed and associated with the operator —A.

(7) {f € C](R)NLAR) : f',f" € L*(R)} is contained in Dom(—A) and on
this set

—Af(x) = =82 f(x).
(8) C°(R) is an essential domain of —A.
Proof. (4) Let Rek > 0. Then
(ik =)~ (2,y) = —i0(z — y)e M (—ik = p) 7@, y) = 0(y — w)e MY

Now
(k> =A)™" = (ik—p) ' (~ik—p)~!

= (=2ik) " ((ik —p) ' — (—ik —p)Y).

The integral kernel of (16.1) equals (2k)~te=*l=—vl,
(5) We have

(16.1)

et = (27i) ! /(z — A)lef?dz,
¥

where 7 is a contour of the form e~1%]0, co[Ue!*[0, oo[ bypassing 0, where /2 <
a < 7. Hence

em(x,y) _ (271’1)71 / efk\acfy|+tk2dk
v

where 7 is a contour of the form e~'*/2[0, co[Ue!®/2[0, co[. We put k = iu and
obtain

et (z,y) = (2mi) 7! / e lule—yl—tu?iq,,

— 00



16.3 Laplacian on the halfline I
Consider the space L%([0,00[). Define —Aax by
Amaxf = =02 f, f € Dom (= Apax) = {lp.off : [ € (p) 2 L*(R)}.
Likewise, define —Apy, as the restriction of —A ey to
Dom (— Awin) = {f € (0) 2L2(R) : f(z) =0, = <0},

(Both Dom ( — Amax) and Dom ( - Amin) are defined using the space L?(R). It
is easy to see that they are contained in L?([0, c0]).)

Theorem 16.3 (1) —A%. = —Amax;  —Amin C —Amax-

min

(2) The operators —Ampin and —Apax are closed and — Ay is hermitian.
(3) Spp(_Amax) - C\[O7 OO[; Spp(_Amin) = @

—Apmaxe™ = k2% Imk > 0, elf? ¢ Dom(—Anax)-

(4) Sp(_AmaX) = (C; Sp(_Amin) =C.
(5) _Amin = (pmin)Q’ _Amax = ( max)z-

16.4 Laplacian on the halfline II
Let € CU {oo}. Let —A,, be the restriction of —Apax to
Dom(—A,) = {f € Dom(—Apa.x) : wf(0)= f'(0)}. (16.2)

(If 4 = oo, these are the Dirichlet boundary conditions, that means f(0) = 0, if
p = 0, these are the Neumann boundary conditions, that means f/(0) = 0).
Define also the form 0, as follows. If ;1 € R, then

Dp,(f, ) - Mf /f l‘ dil?, f?g S Doma,u = Dompmax'

For p = oo,

= /f’(x)g’(w)dx, f,9 € Dom 0, := Dom ppip.

Theorem 16.4 (1) —Anin C —A, C —Apax.

(2) —A; = -Ap.

(3) The operator —A,, is a generator of a group. For p € RU {oo} it is
self-adjoint.

_ _ {_:U’2}7 Reu < 05
(4) spp(—Au) = { 0, otherwise;
—A et = —p%et” Rep <0, e € Dom(—A,).



5) sp(—A,) =
(5) sp( ) [0, oo, otherwise.

{ {—p2}U0,00[, Reu <0,
(6) _AO = pfrlaprIIaX7 _AOO = pfninpmiﬂ'
(7) The forms v, are closed and associated with the operator —A,,.

(8) Let Rek > 0. The integral kernel of (k* — A,)~" is equal

L ke LB ) ket
Ru(k,$,y) - 2I€e + 2% (k+ﬂ)e )

in particular, for the Dirichlet boundary conditions,

_ L kel L k()
Roo(k,l'7y) - 2]€e le )

and for the Neumann boundary conditions

O P e T )
Ro(k,z,y) = 57.¢ + 57 € .

(9) The semigroups e'®+ have the integral kernel

1 z—y)? © ju — .
Ky(ta,y) = (et) b 55 )t [ Bt otqy,

In particular, in the Dirichlet case

(z—y)2 1 (=+y)?
4t

Koo(t,z,y) = (4nt) " 2e™ & — (47t) " 7e ,

and in the Neumann case

-2 1 _ (zty)?
4t

Kolt,z,y) = (4rt)"Fe~ T 4 (4nt)"te

The group e'*®+ for y € R U {oco} describes a quantum particle with a
potential well or bump at the end of the halfline.

The semigroup e*®# for p € R describes the diffusion with a sink or source
at the end of the halfline. Note that e!®# preserves the pointwise positivity. If
pr = etPepg, 0 < a < b, then

b
) / pe(@)de = ' (b) — p'(a).

O /Oa pe(x)de = p'(a) — up(0).

Thus at 0 there is a sink of p with the rate p.



16.5 Neumann Laplacian on a halfline with the
delta potential

On L?(]0, 00[) we define the cosine transform

Unf(k) = \/Q/W/Ooo coskxf(x)dx, k>0.

Note that Uy is unitary and Ug = 1.
Let Ay be the Laplacian on L2([0, co[) with the Neumann boundary condi-
tion. Clearly,
~UnANUY, = K2,

Let |6)(0| be the quadratic form given by
(£116)(01f2) = f1(0)£2(0),

Note that it can be formally written as
| F@s@te)da,
0

and thus is interpreted as a “potential”.
Let (1| denote the functional on L?([0, co[) given by

(tlg) = [ gy,
0
Using 6(z) = n~! [ cos kzdz we deduce that
Un|6)(0|Ux = =~ H1)(1].

Then
Un (= + A8)(8]) Ust = k2 + Ar = 1)(1]

is an example of an Aronszajn-Donoghue Hamiltonian of type IIb, because

1dk = ———dk —dk = oc.
/ o [ pmit<s [ gpdieo

16.6 Dirichlet Laplacian on a halfline with the
0" potential

On L?([0, 0o[) we define the sine transform

Upf(k) = \/2/7r/0Oo sinkz f(z)dz, k>0.

Note that Up is unitary and U3 =1



Let Ap be the Laplacian on L?([0,00[) with the Dirichlet boundary condi-
tion. Clearly,
—UpApU; = k2.

Using —¢'(z) = 7! [, sin kzdz we deduce that

Upld")(&'|Up, = 7~ k) (k.
Here [6")(8’| is the quadratic form given by

(f116") (0" f2) = £1(0)£3(0),
and (k| is the functional on L?([0, co[) given by

(ko) = [ ko),

Thus
Up (—Ap + M) U* = k* + At k) (k|

is an example of an Aronszajn-Donoghue Hamiltonian of type IIla, because

o0 k2 [e’e) k2 o0 k2

16.7 Laplacian on L?*(RY) with the delta poten-
tial

On L?(RY) we consider the unitary operator U = (27)%2F, where F is the
Fourier transformation. Note that U is unitary.
Let A be the usual Laplacian. Clearly,

~UAU* = k.
Let |0)(d] be the quadratic form given by
(f116)(0]f2) = f1(0)f2(0).

Note that again it can be also written as
[ F@s@g(a)da.

and thus is interpreted as a “potential”. Let (1| denote the functional on L?(R%)
given by

(tlg) = [ g(hya.
Using §(z) = (27) ¢ [ e**dz we deduce that

Uls)(|u* = (2m)~1)(1l.



Consider
U(=A+ M) () U = k> + X(2n) "4 1) (1]

as an example of an Aronszajn-Donoghue Hamiltonian. We compute:

d
—— &S d=1
/1 k2<oo d ,

dk
/(1_~_I€2)2<OO = d:1,2,3,

dk
— & d=3.
/k2(1 k2)<oo 3

Thus

(1) for d =1 it is of type IIb, so it can be defined in the form sense using the
parameter A (as we have already seen),

(2) for d = 2 it is of type IIIb. It can be renormalized.
(3) for d=3 it is of type IIla. It can be renormalized.

(4) for d > 4 there is no nontrivial renormalization procedure.

Consider dimension d = 2. Let us compute the resolvent for z = —p?. We
have
1/(Ho +p*)~'(Ho+ 1)1
9(=p*) = 7+ - 1)( I )(QW()Q )

d2k In p?
= 4 21 / = v+
V-1 + (p ) (277')2(](12 +p2)(k2 + 1) V-1 +

47

Using that the Fourier transform of k +— kg—}rpz equals © — 2w Ko(p|z|), where
K is the Oth MacDonald function, we obtain the following expression for the
integral kernel of (p? + H)~%:

Ko(plz|)Ko(plyl)
(2m)2 (-1 + 22°)

. (16.3)

1
K _
o o(plr —yl) +

In the physics literature one usually introduces the parameter a = ¢7-1/27 called
the scattering length. There is a bound state Ko(|x|/a) with eigenvalue —a 2.
Note that

{fe(@—A)T"L*R?): f(0) =0} (16.4)

is a closed subspace of (1 —A)~!L?(R?). The domain of H is spanned by (16.4)
and

(—a2 = A) M), (16.5)
which is in L?(R?)\(1 — A)~!L?(R?). In the position representation (16.5) is
x +— 2nKo(|z|/a) Around r ~ 0 we have the asymptotics Ko(r) ~ —log(r/2) —
~. Therefore, the domain of H contains functions that behave at zero as

C(log(|z|/2a) + 7).



Consider dimension d = 3. Let us compute the resolvent for z = —p?. We
have

o (1/(Ho + p?) "' Hy ' [1)

— 2 —
g(—=p~) Yo +p (2n)?
B L2 / d3k B L P
I Y B G ST )y
Using that the Fourier transform of k +— ﬁ equals = — 272 em‘ , we obtain
the following expression for the integral kernel of (p? + H)~:
e~ Plz—yl e Plrle—plyl
+ ) 16.6
ine 3l P00+ Elell 1o
In the physics literature one usually introduces the parameter a = —(47yg)~*
called the scattering length.
{fe@—-2)"'L*(R%): f(0) =0} (16.7)
is a closed subspace of (1 —A)~"1L%(R3). The domain of H is spanned by (16.7)
(ae™* —1)(i — A) Y1) + (ae ™™t 1) (=i — A) 1) (16.8)

tin/
In the position representation (&i—A)~1|1) equals x QWQM. There-
fore, the Hamiltonian with the scattering length a has the domain whose ele-

ments around zero behave as C(1 — a/|z|).

~lzi/a
T
domain, instead of (16.8), we can adjoin this bound state to (16.7).

Note that the Hamiltonian is increasing wrt vy €] — 00, 00]. It is also in-
creasing wrt a separately on [—oo,0] and |0, 00]. At 0 the monotonicity is lost.
a = 0 corresponds to the usual Laplacian.

The following theorem summarizes a part of the above results.

Theorem 16.5 Consider —A on CZ(R¥\{0})
1) It has the defficiency index (2,2) for d =1.
It has the defficiency index (1,1) for d = 2,3.
It is essentially self-adjoint for d > 4.

)
)
4) For d =1 its Friedrichs extension is —Ap and its Krein extension is —A.
)
)

For a > 0 there is a bound state

with eigenvalue —a~2. To get the

For d = 2 its Friedrichs and Krein extension is —/\.

For d = 3 its Friedrichs extension is —A an its Krein extension corresponds
to a = oo.

Let us sketch an alternative approach. The Laplacian in d dimensions written
in spherical coordinates equals

d—

A—gzq i1y | Aue
T r I

r2’



where Appg is the Laplace-Beltrami operator on the sphere. For d > 2, the
eigenvalues of Ayp are —I(I4+d —2), for I =0,1,.... For d = 1 instead of the
Laplace-Beltrami operator we consider the parity operator with the eigenvalues
+1. We will write [ = 0 for parity +1 and [ = 1 for parity —1. Hence the radial
part of the operator is

d—1. I(+d—2
opy 471, MHd=2)

r r

The indicial equation of this operator reads
AMA+d—=2)—-1l(l4+d-2)=0.

It has the solutions A=land A=2—-1—d.

For [ > 2 only the solutions behaving as r* around zero are locally square
integrable, the solutions behaving as 72~1~¢ have to be discarded. For [ = 0,1
we have the following possible square integrable behaviors around zero:

l

| 1=0 |i=1]1>2]
d=1 r0 rl Ol ] ——
d=21770Inr | +! r
d=3| r0r7! rl rt
d>4 70 rt rt

In dimension d = 1 in both parity sectors we have non-uniqueness of boundary
conditions. In dimensions d = 2,3 this non-uniqueness appears only in the
spherically symmetric sector. There is no nonuniqueness in higher dimensions.

16.8 Approximating delta potentials by separa-
ble potentials

Set 1x(k) := Hjo,a(|k]). The Laplacian with a delta potential can be conve-
niently approximated by a separable potential

—A-i-#ul\)(l[\l. (16.9)

In dimension d = 1 and d = 2 (16.9) has a (single) negative bound state iff
A<0.

Clearly, in dimension d = 1 (16.9) converges to —A+\d in the norm resolvent
sense for all A € R.

In dimension d = 2 it is easy to check that

—A = (y_1 4+ 7log(1 4+ A%) " [14)(1a] (16.10)

converges to —A(,_, for all 7v_; € R.



In dimension d = 3 (16.9) has a (single) negative bound state for all ﬁ <
—(A4m)~t. Tt is easy to check that

—A — (Yo + 47A) T 1A) (14 (16.11)

converges to —A(,) for all 79 € R.



Chapter 17

Orthogonal polynomials

17.1 Orthogonal polynomials

Let —oco < a < b < 0. Let p > 0 be a fixed positive integrable function on |a, b[
called a weight. Let x denote the generic variable in R.

We will denote by Pol the space of complex polynomials of the real variable.
We assume that

b
/ |z|"p(z)dx < 00, n=0,1,.... (17.1)

Then Pol is contained in L?([a, b], p).

The monomials 1, x, 22, ... form a linearly independent sequence in L?([a, b], p).
Applying the Gram-Schmidt orthogonalization to this sequence we obtain the
orthogonal polynomials Py, Py, P5,.... Note that deg P, = n. There exist a
simple criterion that allows us to check whether this is an orthogonal basis.

Theorem 17.1 Suppose that there exists € > 0 such that

b
/ e“l?lp(z)da < oo.

Then Pol is dense in L?([a,b],p). Therefore, Py, Pi,... form an orthogonal
basis of L?([a,b], p).

Proof. Let h € L*([a,b], p). Then for |Imz| < §

1

b b 2 b
[ (e < ( / p(x)e”'dx> < / p<x>|h<x>|2dx) < oo,

Hence, for [Imz| < § we can define

[

b
F(2) ::/ p(x)e ¥ h(z)dx.
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F is analytic in the strip {z € C : [Imz| < §}. Let (2"|h) =0,n=0,1,....
Then
dn b
LRG| = / 2" plw)h(@)da = (=) (@"|h) = 0.
But an analytic function vanishing with all derivatves at one point vanishes in
its whole (connected) domain. Hence F' = 0 in the whole strip, and in particular
on the real line. Hence h = 0. Applying the inverse Fourier transformation we
obtain h = 0.
Therefore, there are no nonzero vectors orthogonal to Pol. O

17.2 Classical orthogonal polynomials

We will classify the so called classical orthogonal polynomials, that is orthogonal
polynomials that are eigefunctions of a certain second order differential operator.
We will show that all classical orthogonal polynomials essentially fall into one
of the following 3 classes:



(1) Hermite polynomials H, (x) = %eﬁ@xe*ﬁ , which form an orthogonal

basis in L?(R, e_zz) and satisfy
(0% — 220, + 2n)H,(z) = 0.

(2) Laguerre polynomials L% (x) = e*d%e"2"+*  which form an orthogonal

basis in L?(]0, co[,e~%z?®) for a > —1 and satisfy

(202 + (@ +1—2)0, +n)LE(x) = 0.

(3) Jacobi polynomials P8 (x) = (27}2; (1 —2)~%(1 +2)7Pon(1 — 2)*+t"(1 +

x)#*+" which form an orthogonal basis in L?(] — 1, 1[, (1 — 2)®(1 + x)?) for
a, f > —1 and satisfy

(1-22)2+(B—a—(a+B+2)x)0s +n(n+a+f+1)P2P(x) = 0.

An important role in the proof is played by unbounded operators. More pre-
cisely, we use the fact that eigenvectors of hermitian operators with distinct
eigenvalues are orthogonal.

Note that the proof is quite elementary — it has been routinely used in
courses for physics students of 2nd year of University of Warsaw. In particular,
one does not need to introduce the concept of a self-adjoint or essentially self-
adjoint operator: one can limit oneself to the concept of a hermitian operator,
which is much less technical and acceptable for students without sophisticated
mathematical training.

17.3 Reminder about hermitian operators

In this chapter we will need some minimal knowledge about hermitian operators.
In order to make it essentially self-contained, we recall that an operator A is
hermitian if

(w]Av) = (Aw|v), v, w € Dom A.
Theorem 17.2 Let A be a hermitian operator.

(1) If v € Dom A is its eigenvector with eigenvalue X, that is Av = Av, then
AeR.

(2) If M1 # Ao are its eigenvalues with eigenvectors v1 and va, then vy is
orthogonal to vs.

Proof. To prove (1), we note that
Avlv) = (v|Av) = (Av|v) = A(v|v).

then we divide by (v|v) # 0.
Proof of (2):

()\1 — )\2)(’[}1|’U2) = (A’U1|’U2) — (’U1|A”U2) = (’Ul‘A’UQ) — (’U1|AU2) =0.



Remark 17.3 In finite dimension we can always find an orthonormal basis
consisting of eigenvectors of a hermitian operators. In infinite dimension this
1s not always the case. If it happens then the operator is essentially self-adjoint.

17.4 2nd order differential operators

A general 2nd order differential operator without a Oth order term can be written

C:=o(x)0? + 1(x)0,, (17.2)

for some functions o(z) and 7(x).
It is often convenient to rewrite C in a different form. Let p(x) satisfy

o(x)p'(z) = (r(x) — o' (z))p(). (17.3)

We have then
C = p(x) ' 0pp(z)o(x)0,. (17.4)
The form (17.4) of the operator C is convenient for the study of its hermiticity.
To simplify the exposition, in the remaining part of this subsection we will

assume that a = 0 and b = oo, which will illustrate the two possible types of
endpoints. The generalization to arbitrary a < b will be obvious.

Theorem 17.4 Assume (17.1). Suppose also that
(1) p and o are real differentiable functions on |0, 00[ and p > 0;
(2) at the boundaries of the interval we have

a(0)p(0) = 0,
lim o(z)p(x)|z|™ 0, n=0,1,2,....
T—> 00

Then C as an operator on L*([0, 00|, p) with domain Pol is hermitian.

Proof.
wler) = / " p@)F(@)p(a) " 0,0 (@) ple) D f (@) da

R

= 9(z)0z0(x)p(2)0, f(x)dx
> Jo
— R R
— lim g(x)P(:c)o(x)f'(x)‘ — lim (029(x))o(2)p(2)8, f (z)dz

R—o0 0 R—oo [

+lim [ (Dup(2)o(2)Deg(@) f(a)de

= — lim Mp(:c)o(x)f(x)o A

R—o0

= /OOO p()(p(x) =1 0zo (x)p(2)02g(2)) f(x)dx = (Cylf)-

’ . ’

O

Self-adjoint operators of the form (17.4) are often called Sturm-Liouwville
operators.



17.5 Hypergeometric type operators

We are looking for 2nd order differential operators whose eigenfunctions are
polynomials. This restricts severely the form of such operators.

Theorem 17.5 Let
C:=0(2)0% 4+ 7(2)0. +n(z2) (17.5)
Suppose there exist polynomials Py, P, Py of degree 0, 1,2 respectively, satisfying
CP, =M\, P,.

Then
(1) o(2) is a polynomial of degree < 2,
(2) 7(z) is a polynomial of degree <1,

(3) n(2) is a polynomial of degree <0 (in other words, it is a number).

Proof. CPy =n(z)Py, hence degn = 0.
CP; = 7(2)P] + 1Py, hence deg 7 < 1.
CP, = 0(2) Py 4+ 7(2)Ps(2) + nPa, hence dego < 2. O

Clearly, the number 1 can be included in the eigenvalue. Therefore, it is
enough to consider operators of the form

C:=0(2)0? + 7(2)0., (17.6)

where dego < 2 and degT < 1. We will show that for a large class of (17.6)
there exists for every n € N a polynomial P,, of degree n that is an eigenfunction
of (17.6).

The eigenvalue equation of (17.6), that is equations of the form

(U(z)af +7(2)0, + N f(z) =0,

will be called hypergeometric type equations. Solutions of these equations will
be called hypergeometric type functions. Polynomial solutions will be called
hypergeometric type polynomials.

17.6 Generalized Rodrigues formula

Some of the properties of hypergeometric type polynomials can be introduced
in a unified way. Let p satisfy

0(2)0:p(2) = (7(2) = 0'(2)) p(2). (17.7)

Note that p can be expressed by elementary functions.



Let us fix 0. We will however make explicit the dependence on p. The
operator C(p) can be written as

Clp) = p Y2)0.0(2)p(2)0. (17.8)
D.p 1 (2)o(2)0.p(2) — 7" + 0. (17.9)

The following is a generalization of the Rodrigues formula, originally given
in the case of Legendre polynomials:

Palpiz) = p(2)000" (2)ol2) (17.10)
1

= —p Yz o™ (z + t)p(z + )t Ldt. 17.11

eI GV CR (7.11)

Theorem 17.6 P, is a polynomial, typically of degree n, more precisely its
degree is given as follows:
(1) If o’ =71 =0, then deg P, = 0.

(2) If 6" #0 and —25 +1 = m is a positive integer, then

ol

n, n=0,1,...,m;
degpn_{,I,L_/rn_l7 /rL:’]’]’L—’—]_”I’)”L-i-27

(3) Otherwise, deg P, = n.

We have
(0(2)02 +7(2)0.) Pu(p;2) = (n7’ +n(n— 1)%”)Pn(p; z), (17.12)
(0(2)0. +7(2) —0'(2)) Pu(p;2) = (n41)Pui1(pot;2), (17.13)
&ZPn(p; Z) = (T/ + (n — 1)0-2> Pnfl(pa; 291714)
petto()
e = ;t P (po™; 2). (17.15)

Proof. Introduce the following creation and annihilation operators:

AF(p) = a(2)0. +7(2) = p~M(2)0up(2)0(2),
A = 0,.
Note that
Clp) = At(p)A~
A AT (po™ =7 + .
Hence



Therefore, if C(po™)Fy = AoFo, then

Clp) A*(p)--- AT (po" ) Fy

1"

= ()\o+n7'+n(n—1)%)A+(p)-~-A+(pa_1)Fo.
Using
AT(p) = p7H(2)d.p(2)0(2),
At (po) = p H(2)07 (2)8:p(2)0%(2),
A (po™ ) = p ()0 D0, p(2)0" (2),
we obtain
A (p) - AT (po" N Fy = p(2)7102p(2)0" (2) Fo(2).

Take Fy = 1, for which A\g = 0. We then obtain (17.12). O

17.7 Classical orthogonal polynomials as eigen-

functions of a Sturm-Liouville operator
We are looking for —oo < a < b < oo and weights |a,b[> z — p(z) with the
following properties: There exist polynomials Py, P, ... satisfying deg P, = n

which form an orthogonal basis of L?(]a, b, p) and are eigenfunctions of a certain
2nd order differential operator C := o(2)d2 + 7(2)0,, that is, for some \,, € R

(0(2)02 4 7(2)05 + Ap) Pa(z) = 0. (17.16)

In particular, we want C to be hermitian on Pol.
We know that one has to satisfy the following conditions:

(1) For any n € N
b
/ p(x)|z|"dz < oo, (17.17)

which guarantees that Pol C L?(]a, b[, p).

(2) o has to be a polynomial of degree at most 2 and 7 a polynomial of degree
at most 1. (See Thm 17.5).

(3) The weight p has to solve

o(2)p () = (7(x) — o’ (@))p(x), (17.18)

to be positive, o has to be real. (See Thm 17.4 (1)).
(4) We have to check the boundary conditions



(i) If an endpoint, say, a is a finite number, we check whether p(a)o(a) =
0.

(ii) If an endpoint is infinite, say a = —oo, then

lim |z|"o(z)p(x) =0, n=0,1,2,....
Tr—r—00
(see Thm 17.4 (2).)

We will find all weighted spaces L?(]a, b[, p) satisfying the conditions (1)-(4).
It will turn out that in all cases the condition

b
/ e“?lp(z)dz < 0o (17.19)

for some ¢ > 0 will hold, which will guarantee that we obtain an orthogonal
basis (see Thm 17.1).
We will simplify our answers to standard forms

(1) by changing the variable x — ax + 8 for a # 0;
(2) by dividing (both the differential equation and the weight) by a constant.

As a result, we will obtain all classical orthogonal polynomials.

17.8 Classical orthogonal polynomials for dego =
0

We can assume that o(z) = 1.
If deg T = 0, then
C =0, +co,.

It is easy to discard this case.
Hence deg7 = 1. Thus

C =0, + (ay + b)d,.

Let us set ¢ = % (y + g) We obtain
C=0%+220,, a>0; (17.20)
C=0%-220,, a<0. (17.21)

2

Thus p(z) = e,
o(z)p(x) = et

If a > 0, we have p(z) = e*”, which is impossible because of (4ii).

is never zero, hence the only possible interval is | — oo, co].

If a < 0, we have p(z) = e~*" and the interval | — 0o, 0o[ is admissible, and
even satisfes (17.19). We obtain Hermite polynomials



17.9 Classical orthogonal polynomials for dego =
1

We can assume that o(y) = y.
If deg ™ = 0, then
C= yaj + c0y
Such a C always decreases the degree of a polynomial. Therefore, if P is a
polynomial and CP = AP, then A = 0. Hence P(z) = z~¢. Therefore, we do

not obtain polynomials of all degrees as eigenfunctions.
Thus deg T = 1. Hence, for b # 0,

Y0z + (a + by)o,. (17.22)
After rescaling, we obtain the operator:

C=—-20?+(~a—1+z)0,.

We compute: p = 2% %. p(x)o(z) = x°Tle™® is zero only for x = 0

i @ > —1. The interval [—o00,0] is eliminated by (4ii). The interval [0, o]
is admissible for « > —1, and even it satisfies 17.19. We obtain Laguerre
polynomials.

17.10 Classical orthogonal polynomials for dego =
2,
o has a double root

We can assume that o(z) = z2.

If 7(0) = 0, then
C = 2202 + cx0,.

2™ are eigenfunctions of this operator, but the weight p(x) = 2°~2 is not good.
Let us assume now that 7(0) # 0. After rescaling we can suppose that

2

r() =1+ (v +2)z.

This gives p(z) = e~ =2?. The only point where p(z)o(z) = e~ =272 can be
zero is © = 0. Hence the only possible intervals are | — oo, 0] and ]0, co[. Both
are eliminated by (4ii).

17.11 Classical orthogonal polynomials for dego =
2,
o has two roots

If both roots are imaginary, it suffices to assume that o(z) = 1 + 22. We can
suppose that 7(z) = a + (b + 2)z. Then p(z) = er®tan (1 4+ g2 o(z)p(z) is



nowhere zero and therefore the only admissble interval is [—oo, 0c]. This has to
be rejected, because im0 p(x)]x|™ (1 + 2*) = oo for large enough n.
Thus we can assume that the roots are real. It suffices to assume that
o(z) =1— 22 Let
T(z)=F—a—(a+ 8 —2)x,

which corresponds to the operator
(1 -2+ (8 —a— (a+ B —2)x0,,

We obtain p(z) = |1 —xz|?|14+x|*. (4ii) eliminates the intervals ] —oo, —1[ and
|1, 00[. There remains only the interval [—1, 1], which satisfies (4i) for o, 8 > —1.
We obtain Jacobi polynomials.
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