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Consider a globally hyperbolic spacetime (M, g, ).

The Klein—Gordon operator with electromagnetic poten-
tial A, and a scalar potential (mass squared) Y is an
operator acting on functions on M given by

K o= || 1) (0, + Au(2)) 9" 912(x) (10 + Avla)) gl T(@)
+Y ().



We say that GG is a bisolution of K if
GK =KG=0.

We say that G is an inverse (Green’s function or a fun-
damental solution) if

GK =KG=1.

| will discuss how to define distinguished bisolutions and
inverses. | will call them propagators. (This word is often
used in this context in quantum field theory).



| will also discuss the problem of essential self-adjointness
of the Klein-Gordon operator K on L*(M) for curved
spacetimes. (Note that K is obviously Hermitian).

Note that the analogous problem of the essential self-
adjointness of the Laplace-Beltrami operator has a posi-
tive answer for large classes of Riemannian manifolds.



For generic Lorentzian manifolds the problem of self-
adjointness of K seems rather difficult and is almost ab-
sent from mathematical literature. It can be easily shown
for static spacetimes (Siemssen and D.). Recently, a
proof for asymptotically Minkowskian spaces was given
(Vasy).



On the other hand, in physical literature one can find
many places where the authors tacitly assume that the
Klein-Gordon operator is self-adjoint and write e.g.

i = —i/ooeitht
K 0 '

The method involving e'* has a name: it is called the
Fock-Schwinger proper time method.



Let me summarize what every student of QFT learns
about propagators on the Minkowski space R!:¢ for the

free Klein-Gordon operator
K = pupt +m?,

where p,, = —id,.



We have the following standard Green’s functions:

the forward/backward or advanced/retarded propagator
Gt .= :
(p? +m? F i0sgnp?)’
the Feynman/anti-Feynman propagator
M 1

GHT = (p? +m?2 Ti0)
The former have an obvious application to the Cauchy
problem.

The Feynman propagator equals the expectation values
of time-ordered products of fields and is used to evaluate
Feynman diagrams.



We have the following standard bisolutions:

the Pauli-dordan propagator
G = sgn(p")d(p” + m?),
and the positive/negative frequency bisolution
G/ ) = g(£p")5 (p? + m?).
The former expresses commutation relations of fields,
and hence it is often called the commutator function.

The positive frequency bisolution is the 2-point function
of the vacuum state.



It is well known that

e the forward propagator G,

¢ the backward propagator G,

e the Pauli-Jordan propagator GF .= Gt — G~.

are defined under very broad conditions on globally hy-

perbolic spaces. All of them have a causal support. We
will jointly call them classical propagators.



We are however more interested in “non-classical prop-
agators”, typical for quantum field theory. They are less
known to pure mathematicians and more difficult to de-
fine. They are

e the Feynman propagator G,
e the anti-Feynman propagator GF,

o the positive frequency bisolution G(+),

e the negative frequency bisolutions G(~).



There exists a well-known paper of Duistermat-Hormander,
which defined Feynman parametrices (a parametrix is an
approximate inverse in appropriate sense).

There exists a large literature devoted to the so-called
Hadamard states, which can be interpreted as bisolu-
tons with approximately positive frequencies. These are
however large classes of propagators. We would like to
have distinguished choices.



It is helpful to introduce a time variable ¢, so that the
spacetime is M = R x X. Assume that there are no
time-space cross terms so that the metric can be written

as
—qoo(t, :z_:’)th + gi;(t, f)dxida:j.

By conformal rescaling we can assume that gpg = 1, so

that, setting V := A", we have

K = (i0;+V)* + L,
_1 Loig _1
L = —|g|71(i0; + A;)|g|29" (i0; + Aj)|g| T +Y.



We rewrite the Klein-Gordon equation as a 1st order
equation given by
Ot +1B(t),

B(t) o W(t) 1
O\ L) Wt))

W(t) = V(1) + 4 lol(t) Bl (1)

where



Denote by U(t,t') the dynamics defined by B(t), that is

OU(t,t) = —iB()U(t, ),
Ult,t) = 1.

1 B
o [P R
Loy B2
Is a bisolution/inverse of 0; + iB(t), then Ey is a bisolu-
tion/inverse of K.

Note that if



The classical propagators can be easily expressed in
terms of the dynamics:

Y1) = U, ), By = —iG";
ET(t,t) =00t —thU(t 1), Ef, = —iG™;
E- ()= -0t —t)U(t,t), E =—-iG".



We introduce the charge matrix

- (1)

and the classical Hamiltonian
L(t) W<t>>

H(t) := QB(t) = (W(t) |

We will assume that H (t) is positive and invertible.



Assume now for a moment that the problem is static, so
that L, V, B, H do not depend on time ¢. Clearly,

Ut ) = o—i(t—t)B

The quadratic form H defines the so-called energy scalar
product. It is easy to see that B is Hermitian in this prod-
uct and has a gap in its spectrum around 0. Let I[1(+)
be the projections onto the positive/negative part of the
spectrum of B.



We define the positive and negative frequency bisolu-
tions and the Feynman and anti-Feynman inverse on the
level of 0 +iB(1):
E®(1,¢) = 4 (=1)Br )
EF(t,¢) =00t — ") e 1-0)B(H) g/ — 4y o= 1t=1)Byy(=)
EF (t,¢) = 0t — ') e {EB) gt — 4) e it=)B(+),



They lead to corresponding propagators on the level of

K:
+) . @(E)
G =B,
F -
G e —1E12,
F )
G e —1E12

They satisfy the relations
M =ict —iglo),
GF =ict) + ¢ = —ic) + Gt
GF = —ig 16t = —icH) y g



Nonclassical propagators are important in quantum field
theory, and they are often called 2-point functions, be-
cause they are vacuum expectation values of free fields:

G (z,y) = (d(2)o(y)2),
GF(z,y) = —i(QT(d(z)d(1))Q).

GY is used to evaluate Feynman diagrams.



It is easy to see that on a general spacetime the Klein-
Gordon operator K is Hermitian (symmetric) on C2°(M)
in the sense of the Hilbert space L?(M). In the static
case, using Nelson’'s Commutator Theorem one can show
that it is essentially self-adjoint.

Theorem. For s > 4, the operator G is bounded from
the space (t) “SL?(M) to (t)*L?(M). Besides, in the sense
of these spaces,

s— lim(K —ie) =G
e\,0



Let 0 < 0 < 7. Suppose we replace the metric g by
gp ‘= —6_21(9(1152 + gy

and the electric potential V by Vj := e V. This replace-
ment is called Wick rotation. The value 6 = 5 corre-
sponds to the Riemannian metric

2
g7‘(’/2 = dt” + gy-



The Wick rotated Klein-Gordon operator, which is elliptic
and even invertible:

Kyp=c¢ 20 +iV)?+ L,

Theorem. For s > L, we have

s— lim K, ' =G,
N

in the sense of operators from () ~*L?*(M) to (t)SL?(M).



Can one generalize non-classical propagators to non-
static spacetimes? We will assume that the spacetime is
close to being static and for large times it approaches a
static spacetime sufficiently fast.

In the non-static case we do not have a single energy
space, because the Hamiltonian depends on time. We
make technical assumptions that make possible to de-
fine a Hilbertizable energy space in which the dynamics
IS bounded.



One can define the incoming positive/negative frequency
bisolution by cutting the phase space with the projections
') onto the positive/negative part of the spectrum of

B(—00). H(_+) defines the vacuum state in the distant

past given by a vector (2_. It corresponds to a prepara-
tion of an experiment.



Analogously, one can define the outgoing positive/negative
bisolutions by using the projections Hiﬂ onto the posi-
tive/negative part of the spectrum of B(co). They corre-
spond to the vacuum state in the remote future given by
a vector €).. This vector is related to the future measur-

ments.



The projection H(fo)o can be transported by the dynamics
to any time ¢, obtaining the projection H<_+>(t). Similarly
we obtain the projection H@(t). Using the fact that the
dynamics is symplectic, one can show that for a large
class of spacetimes for all ¢t the subspaces

Ran H<_+) (t), Ran HSL_) ()

are complementary.



Define ngﬁ(t), Hga}f (t) to be the unique pair of projec-
tions corresponding to the pair of spaces

Ran 11 (t), Ran HS:> ()
The canonical Feynman propagator is defined as
EF (ty,t1) = 0(ty — 1)U (ta, )T (1))

—0(t1 — t2)Ul(ta, t1>H<<3;n>(t1)a



In a somewhat different setting, in the case of mass-
less Klein-Gordon operator G was considered before
by A.Vasy et al. A similar construction can be found in a
recent paper of Gerard-Wrochna.

Here is the physical meaning of the canonical Feynman
propagator: it is the expectation value of the time-ordered
product of fields between the in-vacuum and the out vac-
uum:

04T (3(2)0(9))2-)

e
G (2,y) (4 10)




Thus for a large class of asymptotically static space-
times one can show the existence of a distinguished
Feynman propagator. One can make a stronger coje-
jecture (perhaps only of academic interest):

Conjecture. For compactly supported perturbations of
static spacetimes the Klein-Gordon operator K is essen-
tially self-adjoint on C2°(M) and in the sense of opera-
tors from (t) ~SL?(M) to (t)SL*(M),
s— lim (K —ie)~! = G
e\,0

Apparently, in a recent paper of A. Vasy this conjecture
IS proven for asymptotically Minkowskian spaces.



