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A Hamiltonian defined as a polynomial in creation and annihilation op-
erators is considered. After a minimization of its expectation value over
pure Gaussian states, the Hamiltonian is Wick-ordered in creation and
annihilation operators adapted to the minimizing state. It is shown that
this procedure eliminates from the Hamiltonian terms of degrees 1 and
2 that do not preserve the particle number, and leaves only the terms
that can be interpreted as quasiparticles excitations. We propose to call
this fact Beliaev’s Theorem, since to our knowledge it was mentioned for
the first time in a paper by Beliaev from 1959.

1. Introduction

Various phenomena in many-body quantum physics are explained with help

of quasiparticles. Unfortunately, we are not aware of a rigorous definition

of this concept, except for some very special cases.
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A typical situation when one speaks about quasiparticles seems to be

the following: Suppose that the Hamiltonian of a system can be written as

H = H0 + V , where H0 is in some sense dominant and V is a perturbation

that in first approximation can be neglected. Suppose also that

H0 = B +
∑

i

ωib
∗
i bi, (1.1)

where B is a number, operators b∗i /bi satisfy the standard canonical com-

mutation/anticommutation relations (CCR/CAR) and the Hilbert space

contains a state annihilated by bi (the Fock vacuum for bi). We then say

that the operators b∗i /bi create/annihilate a quasiparticle.

Of course, the above definition is very vague.

In our paper we describe a simple theorem that for many Hamiltonians

gives a natural decomposition H = H0 + V with H0 of the form (1.1), and

thus suggests a possible definition of a quasiparticle. Our starting point is a

fairly general Hamiltonian H defined on a bosonic or fermionic Fock space.

For simplicity we assume that the 1-particle space is finite dimensional.

With some technical assumptions, the whole picture should be easy to gen-

eralize to the infinite dimensional case. We assume that the Hamiltonian

is a polynomial in creation and annihilation operators a∗i /ai, i = 1, . . . , n.

(This is a typical assumption in Many Body Quantum Physics and Quan-

tum Field Theory.)

An important role in Many Body Quantum Physics is played by the

so-called Gaussian states, called also quasi-free states. Gaussian states can

be pure or mixed. The former are typical for the zero temperature, whereas

the latter for positive temperatures. In our paper we do not consider mixed

Gaussian states.

Pure Gaussian states are obtained by applying Bogoliubov transforma-

tions to the Fock vacuum state (given by the vector Ω annihilated by ai’s).

Pure Gaussian states are especially convenient for computations.

We minimize the expectation value of the Hamiltonian H with respect

to pure Gaussian states, obtaining a state given by a vector Ω̃. By applying

an appropriate Bogoliubov transformation, we can replace the old creation

and annihilation operators a∗i , ai by new ones b∗i , bi, which are adapted

to the “new vacuum” Ω̃, i.e., that satisfy biΩ̃ = 0. We can rewrite the

Hamiltonian H in the new operators and Wick order them, that is, put b∗i
on the left and bi on the right. The theorem that we prove says that

H = B +
∑

ij

Dijb
∗
i bj + V,
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where V has only terms of the order greater than 2. In particular, H does

not contain terms of the type b∗i , bi, b
∗
i b

∗
j , or bibj. It is thus natural to

set H0 := B +
∑

ij Dijb
∗
i bj . Dij is a hermitian matrix. Clearly, it can be

diagonalized, so that H0 acquires the form of (1.1).

We present several versions of this theorem. First we assume that the

Hamiltonian is even. In this case it is natural to restrict the minimization to

even pure Gaussian states. In the fermionic case, we can also minimize over

odd pure Gaussian states. In the bosonic case, we consider also Hamiltoni-

ans without the evenness assumption, and then we minimize with respect

to all pure Gaussian states.

The procedure of minimizing over Gaussian states is widely applied in

practical computations and is known under many names. In the fermionic

case in the contex of nuclear physics it often goes under the name of the

Hartree-Fock-Bogoliubov method [11]. It is closely related to the Bardeen-

Cooper-Schrieffer approximation used in superconductivity [1] and the

Fermi liquid theory developed by Landau [10]. In the bosonic case it is

closely related to the Bogoliubov approximation used in the theory of su-

perfluidity [4], see also [12, 5]. In both bosonic and fermionic cases it is often

called the mean-field approach [8].

The fact that we describe in our paper is probably very well known,

at least on the intuitive level, to many physicists, especially in condensed

matter theory. One can probably say that it summarizes in abstract terms

one of the most widely used methods of contemporary quantum physics.

The earliest reference that we know to a statement similar to our main

result is formulated in a paper of Beliaev [2]. Beliaev studied fairly general

fermionic Hamiltonians by what we would nowadays call the Hartree-Fock-

Bogoliubov approximation. In a footnote on page 10 he writes:

The condition H20 = 0 may be easily shown to be exactly equivalent to the

requirement of a minimum “vacuum” energy U . Therefore, the ground state

of the system in terms of new particles is a “vacuum” state. The excited

states are characterized by definite numbers of new particles, elementary

excitations.

Therefore, we propose to call the main result of our paper Beliaev’s Theo-

rem.

The proof of Beliaev’s Theorem is not difficult, especially when it is

formulated in an abstract way, as we do. Nevertheless, in concrete sit-

uations, when similar computations are performed, consequences of this

result may often appear somewhat miraculous. The authors of this work

witnessed it several times: the authors themselves, or their colleagues, after
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tedious computations and numerous mistakes watched the unwanted terms

disappear [5, 6]. As we show, these terms have to disappear by a general

argument.
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2. Preliminaries

2.1. 2nd quantization

We will consider in parallel the bosonic and fermionic case.

Let us describe our notation concerning the 2nd quantization. We will

always assume that the 1-particle space is C
n. (It is easy to extend our

analysis to the infinite dimensional case.) The bosonic Fock space will be

denoted Γs(C
n) and the fermionic Fock space Γa(C

n). We use the notation

Γs/a(C
n) for either the bosonic or fermionic Fock space. Ω ∈ Γs/a(C

n)

stands for the Fock vacuum. If r is an operator on Cn, then Γ(r) stands for

its 2nd quantization, that is

Γ(r) :=

(

∞
⊕

n=0
r⊗n

)

∣

∣

∣

Γs/a(Cn)
.

a∗i , ai denote the standard creation and annihilation operators on Γs/a(C
n),

satisfying the usual canonical commutation/anticommutation relations.

2.2. Wick quantization

Consider an arbitrary polynomial on Cn, that is a function of the form

h(z, z) :=
∑

α,β

hα,βz
αzβ, (2.1)

where z = (z1, . . . , zn) ∈ C
n, z denotes the complex conjugate of

z and α = (α1, . . . , αn) ∈ (N ∪ {0})n represent multiindices. In the
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bosonic/fermionic case we always assume that the coefficients hα,β are sym-

metric/antisymmetric separately in the indices of z and z.

We write |α| = α1 + · · ·+ αn. We say that h is even if the sum in (2.1)

is restricted to even |α|+ |β|.

The Wick quantization of (2.1) is the operator on Γs/a(C
n) defined as

h(a∗, a) :=
∑

α,β

hα,β(a
∗)αaβ . (2.2)

In the fermionic case, (2.2) defines a bounded operator on Γa(C
n). In the

bosonic case, (2.2) can be viewed as an operator on
⋂

n>0
DomNn ⊂ Γs(C

n),

where

N =

n
∑

i=1

a∗i ai

is the number operator.

2.3. Bogoliubov transformations

We will now present some basic well known facts about Bogoliubov transfor-

mations. For proofs and additional information we refer to [3] (see also [7],

[9]). We will often use the summation convention of summing with respect

to repeated indices.

Operators of the form

Q = θija
∗
i a

∗
j + hkla

∗
kal + θijajai ±

1

2
hkk, (2.3)

where h is a self-adjoint matrix, will be called quadratic Hamiltonians.

In the bosonic/fermionic case we can always assume that θ is symmet-

ric/antisymmetric. (The term ± 1
2hkk, with the sign depending on the

bosonic/fermionic case, means that Q is the Weyl quantization of the cor-

responding quadratic expression.) The group generated by operators of the

form eiQ, where Q is a quadratic Hamiltonian, is called the metaplectic

(Mp) group in the bosonic case and the Spin group in the fermionic case.

In the bosonic case, the group generated by Mp together with

ei(yia
∗

i+yiai), yi ∈ C, i = 1, . . . , n, is called the affine mataplectic (AMp)

group.

In the fermionic case, the group generated by operators yia
∗
i +yiai with

∑

|yi|
2 = 1 (which are unitary) is called the Pin group. Note that Spin is

a subgroup of Pin of index 2.
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In the bosonic case, consider U ∈ AMp. It is well known that

UaiU
∗ = pijaj + qija

∗
j + ξi, Ua∗iU

∗ = pija
∗
j + qijaj + ξi (2.4)

for some matrices p and q and a vector ξ.

In the fermionic case, consider U ∈ Pin. Then

UaiU
∗ = pijaj + qija

∗
j , Ua∗iU

∗ = pija
∗
j + qijaj (2.5)

for some matrices p and q.

The maps (2.4) and (2.5) are often called Bogoliubov transformations.

Bogoliubov transformations can be interpreted as automorphism of the cor-

responding classical phase space. Let us describe briefly this interpretation.

Consider the space Cn ⊕Cn. It has a distinguished 2n-dimensional real

subspace consisting of vectors (z, z) = ((zi)i=1,...,n, (zi)i=1,...,n), which we

will call the real part of Cn ⊕ Cn, and which can be interpreted as the

classical phase space. The real part of Cn⊕Cn is equipped with a symplectic

form

(z, z)ω(z′, z′) := Im(z|z′), (2.6)

and a scalar product

(z, z) · (z′, z′) := Re(z|z′). (2.7)

Consider the bosonic case. Note that the transformation (2.4), viewed

as a map on the real part of Cn ⊕ C
n given by the matrix

[

p q

q p

]

and the

vector

[

ξ

ξ

]

, preserves the symplectic form (2.6) – in other words, it belongs

to ASp, the affine symplectic group. More precisely, it is easily checked that

in this way we obtain a 2-fold covering homomorphism of AMp onto ASp.

In the fermionic case there is an analogous situation. The transformation

(2.5), viewed as a map on the real part of Cn ⊕ Cn given by the matrix
[

p q

q p

]

, preserves the scalar product (2.7) – in other words, it belongs to O,

the orthogonal group. More precisely, it is easily checked that in this way

we obtain a 2-fold covering homomorphism of Pin onto O.

2.4. Pure Gaussian states

We will use the term pure state to denote a normalized vector modulo a

phase factor. In particular, we will distinguish between a pure state and its

vector representative.
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On Fock spaces we have a distinguished pure state called the (Fock)

vacuum state, corresponding to Ω. States given by vectors of the form UΩ,

where U ∈ Mp or U ∈ Spin, will be called even pure Gaussian states. The

family of even pure Gaussian states will be denoted by Gs/a,0.

In the bosonic case, states given by vectors of the form UΩ where

U ∈ AMp will be called Gaussian pure states. The family of bosonic pure

Gaussian states will be denoted by Gs.

In the fermionic case, states given by vectors of the form UΩ, where U ∈

Pin will be called fermionic pure Gaussian states. The family of fermionic

pure Gaussian states is denoted Ga.

Fermionic pure Gaussian states that are not even will be called odd

fermionic pure Gaussian states. The family of odd fermionic pure Gaussian

states is denoted Ga,1.

One can ask whether pure Gaussian states have natural vector repre-

sentatives (that is, whether one can naturally fix the phase factor of their

vector representatives). In the bosonic case this is indeed always possible.

If c = [cij ] is a symmetric matrix satisfying ‖c‖ < 1, then the vector

det(1− c∗c)1/4e
1

2
cija

∗

i a
∗

jΩ (2.8)

defines a state in Gs,0 (see [13]). If θ = [θij ] is a symmetric matrix satisfying

c = i tanh
√
θθ∗

√
θθ∗

θ, then (2.8) equals

eiXθΩ (2.9)

with

Xθ := θija
∗
i a

∗
j + θijajai. (2.10)

Each state in Gs,0 is represented uniquely as (2.8) (or equivalently as

(2.9)). In particular, (2.9) provides a smooth parametrization of Gs,0 by

symmetric matrices.

The manifold of fermionic even pure Gaussian states is more compli-

cated. We will say that a fermionic even pure Gaussian state given by Ψ is

nondegenerate if (Ω|Ψ) 6= 0 (if it has a nonzero overlap with the vacuum).

Every nondegenerate fermionic even pure Gaussian state can be represented

by a vector

det(1 + c∗c)−1/4e
1

2
cija

∗

i a
∗

jΩ, (2.11)

where c = [cij ] is an antisymmetric matrix. If θ = [θij ] is an antisymmetric

matrix satisfying c = i tan
√
θθ∗

√
θθ∗

θ, ‖θ‖ < π/2, then (2.11) equals

eiXθΩ (2.12)
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with

Xθ := θija
∗
i a

∗
j + θijajai. (2.13)

Vectors (2.11) are natural representatives of their states. It is easy to see

that only nondegenerate fermionic pure Gaussian states possess natural

vector representatives.

Not all even fermionic pure Gaussian states are nondegenerate. Slater

determinants with an even nonzero number of particles are examples of

even Gaussian pure states that are not nondegenerate.

Nondegenerate pure Gaussian states form an open dense subset of Ga,0

containing the Fock state (corresponding to c = θ = 0). In particular, (2.11)

provides a smooth parametrization of a neighborhood of the Fock state in

Ga,0 by antisymmetric matrices.

The fact that each even bosonic/nondegenerate fermionic pure Gaussian

state can be represented by a vector of the form (2.8)/(2.11) goes under

the name of the Thouless Theorem. (See [14]; this name is used eg. in the

monograph by Ring and Schuck [11].) The closely related fact saying that

these vectors can be represented in the form (2.9)/(2.12) is sometimes called

the Ring-Schuck Theorem.

By definition, the group AMp/Pin acts transitively on Gs/a. In other

words, for any Ω̃ ∈ Gs/a we can find U ∈ AMp/Pin such that Ω̃ = UΩ.

Such a U is not defined uniquely – it can be replaced by UΓ(r), where r is

unitary on Cn.

Clearly, if we set

bi := UaiU
∗, b∗i := Ua∗iU

∗, (2.14)

then biΩ̃ = 0, i = 1, . . . , n, and they satisfy the same CCR/CAR as ai,

i = 1, . . . , n. If h is a polynomial of the form (2.1), then we can Wick

quantize it using the transformed operators:

h(b∗, b) =
∑

α,β

hα,β(b
∗)αbβ .

Obviously, Uh(a∗, a)U∗ = h(b∗, b).

3. Main Result

As explained in the introduction, we think that the following result should

be called Beliaev’s Theorem.

Theorem 3.1: Let h be a polynomial on C
n and H := h(a∗, a) its Wick

quantization. We consider the following functions:
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(1) (bosonic case, even pure Gaussian states) Gs,0 ∋ Φ 7→ (Φ|HΦ);

(2) (bosonic case, arbitrary pure Gaussian states) Gs ∋ Φ 7→ (Φ|HΦ);

(3) (fermionic case, even pure Gaussian states) Ga,0 ∋ Φ 7→ (Φ|HΦ);

(4) (fermionic case, odd pure Gaussian states) Ga,1 ∋ Φ 7→ (Φ|HΦ).

In (1), (3) and (4) we assume in addition that the polynomial h is even.

For a vector Ω̃ representing a pure Gaussian state, let U ∈ AMp/Pin

satisfy Ω̃ = UΩ. Set bi = UaiU
∗ and suppose that h̃ is the polynomial

satisfying H = h̃(b∗, b). Then the following statements are equivalent:

(A) Ω̃ represents a stationary point of the function defined in (1)–(4).

(B)

h̃(b∗, b) = B +Dijb
∗
i bj + terms of higher order in b’s.

Proof: Let us prove the case (2), which is a little more complicated than

the remaining cases. Let us fix U ∈ AMp so that Ω̃ = UΩ. Clearly, we can

write

H = h̃(b∗, b) = B +Kibi +Kib
∗
i +Oijb

∗
jb

∗
i +Oijbibj +Dijb

∗
i bj

+ terms of higher order in b’s. (3.1)

We know that in a neighborhood of Ω̃ arbitrary pure Gaussian states are

parametrized by a symmetric matrix θ and a vector y:

θ 7→ Ueiφ(y)eiXθΩ,

where Xθ := θija
∗
i a

∗
j + θijajai and φ(y) = yia

∗
i + yiai. We get

(Ueiφ(y)eiXθΩ|HUeiφ(y)eiXθΩ) = (eiφ(y)eiXθΩ|U∗h̃(b∗, b)Ueiφ(y)eiXθΩ)

= (Ω|e−iXθe−iφ(y)h̃(a∗, a)eiφ(y)eiXθΩ). (3.2)

Now

e−iXθe−iφ(y)
h̃(a∗, a)eiφ(y)eiXθ = B − i(θijOij − θijOij)− i(yiKi − yiKi)

+ terms containing ai or a
∗
i +O(‖θ‖2, ‖y‖2).

Therefore, (3.2) equals

B − i(θijOij − θijOij)− i(yiKi − yiKi) +O(‖θ‖2, ‖y‖2). (3.3)

Since vectors y and matrices θ are independent variables, (3.3) is stationary

at Ω̃ if and only if [Oij ] is a zero matrix and [Ki] is a zero vector. This ends

the proof of part (2).
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To prove (3) and (4) we note that, for U ∈ Pin, the neighborhood of

Ω̃ = UΩ in the set of fermionic pure Gaussian states is parametrized by

antisymmetric matrices θ:

θ 7→ UeiXθΩ,

where again Xθ := θija
∗
i a

∗
j + θijajai. Therefore, it suffices to repeat the

above proof with yi = Ki = 0, i = 1, . . . , n.

The proof of (1) is similar.

Proposition 3.2: In addition to the assumptions of Theorem 3.1 (2), sup-

pose that Ω̃ corresponds to a minimum. Then the matrix [Dij ] is positive.

Proof: Using that O and K are zero, we obtain

e−iφ(y)h̃(a∗, a)eiφ(y) = B + yiDijyj

+ terms containing ai or a
∗
i +O(‖y‖3).

Therefore, (3.2) equals

B + yiDijyj +O(‖y‖3). (3.4)

Hence the matrix [Dij ] is positive.

Note that in cases (1), (3) and (4) the matrix [Dij ] does not have to be

positive.

References

1. Bardeen, J., Cooper, L. N., Schrieffer, J. R., Theory of superconductivity,
Phys. Rev. 108 (1957) 1175.

2. Beliaev, S. T., Effect of pairing correlations on nuclear properties, Mat. Fys.
Medd. Dan. Vid. Selsk. 31, no. 11 (1959).

3. Berezin, F. A., The Method of Second Quantization, Academic Press, New
York, 1966.

4. Bogoliubov, N. N., J. Phys. (USSR) 9, 23 (1947); J. Phys (USSR) 11, 23
(1947), reprinted in D. Pines, The Many-Body Problem (New York, W.A.
Benjamin 1962).
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