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1. Introduction

Throughout our paper, by the (quantum) harmonic oscillator, we mean the self-adjoint

operator on L2(Rd) de�ned as

H := −1 + x2, (1)

where 1 is the Laplacian and x2 =
∑d

i=1 x
2
i . The spectrum of H is

{d, d + 2, d + 4, . . .}.

The central object of our paper is the resolvent of H, that is, the operator (H − z)−1 de�ned

for z outside of the spectrum of H.

Another central concept of our paper is the Weyl symbol of an operator. Weyl symbol is

a natural parametrization of operators on L2(Rd), extensively used in PDE’s. It plays also an

important role in foundations of quantum mechanics, where it is usually called the Wigner
function, and can be used to express the semiclassical limit. For an introduction to the Weyl

quantization, we refer to Chap. 5 of [1], Chap. XVIII of [6], [7], [10] or Sec. 8.3 of [4].

It is a well-known fact that the Weyl symbol of a function of H is an another function (or

distribution) of x2+p2. This fact was, e.g., shown and discussed in [3] aswell as in recent paper
[2]. Therefore, the Weyl symbol of (H − z)−1 can be written as Fd,z(x2 + p2) for some Fd,z.

Our paper is devoted to a study of the properties of Fd,z. In particular, we give a few

explicit expressions for Fd,z—we present an integral formula, a power series expansion and

an expression in terms of con�uent-type functions. We also provide some estimates on the

derivatives of Fd,z. Some of our formulas simplify in the case z = 0, that is, for the inverse

of the harmonic oscillator. In particular, the Weyl symbol of the inverse can be expressed in

terms of Bessel-type functions.

CONTACTMaciej Karczmarczyk maciej.karczmarczyk@fuw.edu.pl Faculty of Physics, Department of Mathematical
Methods in Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland.
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1538 J. DEREZIŃSKI ANDM. KARCZMARCZYK

We �nd it interesting and potentially useful that the Weyl symbol of the resolvent of the

harmonic oscillator has an explicit description. With our formulas, we are able to study its

properties, deriving in particular rather precise bounds on its derivatives.

In the literature, we have not seen a study of the Weyl symbol of the resolvent of the

harmonic oscillator except for a recent paper [2], devoted to the inverse of the harmonic

oscillatorH−1. [2] contains a formula for the Weyl symbol ofH−1 in terms of a power series.

It also proves that its derivatives satisfy some estimates. The authors of [2] call them Gelfand-
Shilov bounds.

The results of our paper are stronger than those of [2]. First, we consider the more general

case of the resolvent (H − z)−1, whereas [2] is restricted to z = 0. Second, our explicit

representation in terms of Bessel-type function and in terms of an integral representation

is absent in [2]. Third, our bounds on the derivatives easily imply those proven in [2].

An interesting discussion of Weyl quantization of spherically symmetric symbols is con-

tained in a recent paper of Unterberger [9]. That paper contains in particular a formula for

the symbol of the nth spectral projection of the harmonic oscillator. We give an alternative

derivation of Unterberger’s formula, using our results about the resolvent as the starting point.

2. Weyl quantization

Let us recall the de�nition of the Weyl quantization, following, e.g., [4], [10], or [9]. If a is a
distribution in S ′(Rd ⊕ R

d), then its Weyl quantization is de�ned to be the operator Op(a)
from S(Rd) to S ′(Rd) such that

Op(a)8(x) = (2π)−d
∫

a
(x + y

2
, p

)

eip(x−y)8(y) dpdy. (2)

(If a is not integrable, the above formula is understood in distributional sense.) The distribu-

tion a is called the symbol of the operator Op(a).
Let us remark that in the literature one can �nd various classes of symbols. S ′(Rd ⊕ R

d),

that we use in our de�nition, is broad enough for our purposes. As noted in [2], one can de�ne

the Weyl quantization on more general classes of symbols: e.g., on the duals of the so-called

Gelfand-Shilov spaces.

The usual product of operators corresponds on the level of symbols to the so-called star

product ∗ (sometimes called theMoyal star). That means, if

(a ∗ b)(x, p) := e
i
2 (∂x1∂p2−∂p1∂x2 )a(x1, p1)b(x2, p2)

∣

∣

∣x:=x1=x2
p:=p1=p2

, (3)

then Op(a)Op(b) = Op(a ∗ b).

3. Symbol of the resolvent

For z ∈ C outside of the spectrum ofH, ad,z will denote the symbol of the harmonic oscillator,

that is,

Op(ad,z) = (H − z)−1. (4)

As discussed in the introduction, we can then de�ne Fd,z by

Fd,z(x
2 + p2) = ad,z(x, p). (5)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1539

Some properties of Fd,z can be simply derived with use of the integral representation

given by

Theorem 1. For Re (z) < d, the following formula holds:

Fd,z(ρ) =
∫ 1

0
(1 − s)

d−z
2 −1(1 + s)

d+z
2 −1e−sρ ds. (6)

Proof. It is well known that

e−tH = Op
(

(cosh t)−de−tgh t (x2+p2)
)

. (7)

(see e.g., [4, 8]). Hence,

(H − z)−1 =
∫ ∞

0
e−tH+tz dt (8)

= Op
(

∫ ∞

0
(cosh t)−de−tgh t (x2+p2)etz dt

)

(9)

= Op
(

∫ 1

0
(1 − s2)

d
2−1e−s(x2+p2)ez artgh s ds

)

, (10)

where at the endwemade the substitution tgh t = s. Using artgh s = 1
2 ln

1+s
1−s and the linearity

of the quantization, we obtain the �nal result.

Before stating the following theorem, let us recall the hypergeometric function

2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk

k!
,

where (a)k = Ŵ(a+k)
Ŵ(k) denotes the so-called Pochhammer symbol.

Theorem 2. The function Fd,z is entire analytic. It can be written as:

Fd,z(ρ) =
∞
∑

k=0

ck
ρk

k!
, (11)

where

ck =
Ŵ(k + 1)Ŵ(d−z

2 )

Ŵ(k + 1 + d−z
2 )

2F1
(

1 −
d + z

2
, k + 1; k + 1 +

d − z

2
; −1

)

, (12)

where 2F1(a, b; c; z) =
∑∞

k=0
(a)k(b)k

(c)k
zk

k! is the hypergeometric function.

Proof. Entire analyticity of Fd,z is obvious from (6).

Of course, ck = ∂kρFd,z(0). Di�erentiating the integral representation (6) and putting ρ = 0

results in

ck =
∫ 1

0
(1 − s)

d−z
2 −1(1 + s)

d+z
2 −1sk ds. (13)
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1540 J. DEREZIŃSKI ANDM. KARCZMARCZYK

Then we apply Euler’s formula, see e.g., [5], Subsection 3.7.6,

Ŵ(b)Ŵ(c − b)

Ŵ(c)
2F1(a, b; c; z) (14)

=
∫ 1

0
sb−1(1 − s)c−b−1(1 − zs)−a ds, for Re (c) > Re (b) > 0. (15)

Theorem 3. For ρ → ∞, we have

Fd,z(ρ) =
1

ρ
+ O

( 1

ρ2

)

. (16)

More generally, there exist d1 := 1, d2, d3, . . . such that for any n

Fd,z(ρ) =
n−1
∑

j=1

dj
ρj

+ O
( 1

ρn

)

. (17)

Proof. For 0 < a < 1, we write

Fd,z(ρ) =
(−1)n

ρn

∫ a

0
(1 − s)

d−z
2 −1(1 + s)

d+z
2 −1∂ns e

−sρ ds (18)

+
∫ 1

a
(1 − s)

d−z
2 −1(1 + s)

d+z
2 −1e−sρ ds. (19)

(19) is O(e−aρ). We integrate (18) n times by parts. The boundary terms at s = 0 have the

form
dj
ρj and the boundary terms at s = a are O( e

−aρ

ρj ), j = 1, . . . , n. The remaining integral is

O( 1
ρn ).

4. Con�uent-type functions and the harmonic oscillator

The harmonic oscillator is closely related to the con�uent equation. We devote this section to

this relationship.

First, recall that the con�uent di�erential operator is de�ned as:

x∂2x + (c − x)∂x − a, (20)

for a, c ∈ C. Among functions annihilated by (20), two are distinguished:

• The con�uent, 1F1 or Kummer’s function:

M(a, c; x) := 1F1(a; c; x) =
∞
∑

k=0

(a)k
(c)k

xk

k!
. (21)

Function (21) is the only solution behaving as 1 in the vicinity of 0.

• Tricomi’s function:

U(a, c; x) := x−a
2F0(a; a − c + 1;−;−x−1). (22)

Tricomi’s function is the only solution having the asymptotic behavior U(a, c; z) ∼ z−a at

+∞.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1541

If a is a nonpositive integer, then both Kummer’s and Tricomi’s functions are proportional to

Laguerre polynomials:

Lα
n(x) =

(α + 1)n

n!
M(−n;α + 1; x) (23)

=
(−1)n

n!
U(−n;α + 1; x). (24)

We will need Green’s function of the con�uent operator, that is, the integral kernel of its

inverse R(a; b; x, y). It should satisfy
(

x∂2x + (c − x)∂x − a
)

R(a; b; x, y) = δ(x − y), (25)

R(a; b; x, y)
(

y∂2y + (c − y)∂y − a
)

= δ(x − y). (26)

It can be checked by a straightforward calculation, using that− Ŵ(c)
Ŵ(a)y

−cey is theWronskian of

M and U, that

R(a; b; x, y) = −
Ŵ(a)

Ŵ(c)
yc−1e−y







M(a, c; x)U(a, c; y) for x < y,

U(a, c; x)M(a, c; y) for x > y.
(27)

We can transform the con�uent operator as follows:

4

x
e−

x
2
(

x∂2x + (c − x)∂x − a
)

e
x
2 (28)

= 4
(

∂2x +
c

x
∂x +

( c

2
− a

)1

x
−

1

4

)

(29)

= ∂2ρ +
c

ρ
∂ρ +

c − 2a

ρ
− 1, (30)

where we substituted x = 2ρ. Let R̃(a; c, ρ, η) denotes the resolvent of (30). Then, using the

fact that the kernel of an operator is a half-density in both variables, we obtain

R̃(a; c; ρ, η) (31)

= e−ρR(a; c; 2ρ, 2η)eηη (32)

= −
Ŵ(a)

Ŵ(c)
2c−1ηce−ρ−η







M(a, c; 2ρ)U(a, c; 2η) for ρ < η,

U(a, c; 2ρ)M(a, c; 2η) for ρ > η.
(33)

As we will see in the theorem below, the symbol of the resolvent of harmonic oscillator can

be expressed by Green’s function of the con�uent operator:

Theorem 4. The symbol Fd,z(ρ) has the representation

Fd,z(ρ) = 2d−1 Ŵ(d−z
2 )

(d − 1)!
e−ρ

(

M
(d − z

2
, d; 2ρ

)

∫ ∞

ρ

ηd−1e−ηU
(d − z

2
, d; 2η

)

dη

+ U
(d − z

2
, d; 2ρ

)

∫ ρ

0
ηd−1e−ηM

(d − z

2
, d; 2η

)

dη

)

. (34)
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1542 J. DEREZIŃSKI ANDM. KARCZMARCZYK

Proof. We would like to �nd the solution of 1 = (H − z)Op(ad,z). Using the formula (3) for

the Moyal star, we obtain

1 = (x2 + p2 − z) ∗ Fd,z(x
2 + p2)

=
(

x2 + p2 − z −
1

4
(12

x + 12
p)

)

Fd,z(x
2 + p2). (35)

Substitution of ρ = x2 + p2 leads us to the equation
(

− ∂2ρ −
d

ρ
∂ρ −

z

ρ
+ 1

)

Fd,z(ρ) =
1

ρ
. (36)

This leads us to

Fd,z(ρ) = −
∫ ∞

0
R̃
(d − z

2
; d; ρ, η

) 1

η
dη (37)

= 2d−1 Ŵ(d−z
2 )

(d − 1)!
e−ρ

(

M
(d − z

2
, d; 2ρ

)

∫ ∞

ρ

ηd−1e−ηU
(d − z

2
, d; 2η

)

dη (38)

+ U
(d − z

2
, d; 2ρ

)

∫ ρ

0
ηd−1e−ηM

(d − z

2
, d; 2η

)

dη

)

. (39)

Recall that M is analytic and its asymptotic behavior of M around zero is M(a, c; z) ∼ 1.

However, for integer c the function U(a; c; z) is not analytic at z = 0. It can be written as:

U(a, c; z) =
(−1)c

Ŵ(a − c + 1)Ŵ(c)

(

log(z)M(a, c; z) + D(a, c; z)
)

, (40)

where D(a, c; ·) is a meromorphic function of z with a pole of order c − 1. Thus, around

0 the function U(d−z
2 , d; x) diverges polynomially and logarithmically, see (40). Hence, (34)

suggests that Fd,z may have a logarithmic singularity at 0. However, we already know that Fd,z
is analytic.

Let us check that (34) implies the analyticy of Fd,z. Let us insert the representation (40) of

U into (34) and split the integration range:

(−1)d2−d+1 ·
Ŵ(d)2Ŵ

(

1 − d+z
2

)

Ŵ
(d−z

2

)
Fd,z(ρ)

= e−ρM

(

d − z

2
, d; 2ρ

)∫ 1

ρ

e−ηηd−1 log ηM

(

d − z

2
, d; 2η

)

dη

+ e−ρM

(

d − z

2
, d; 2ρ

)∫ 1

ρ

e−ηηd−1D

(

d − z

2
, d; 2η

)

dη

+ (−1)dŴ(d)Ŵ

(

1 −
d + z

2

)

e−ρM

(

d − z

2
, d; 2ρ

)∫ ∞

1
ηd−1e−ηU

(

d − z

2
, d; 2η

)

dη

+ e−ρ log ρM

(

d − z

2
, d; 2ρ

) ∫ ρ

0
ηd−1e−ηM

(

d − z

2
, d; 2η

)

dη

+ e−ρD

(

d − z

2
, d; 2ρ

) ∫ ρ

0
ηd−1e−ηM

(

d − z

2
, d; 2η

)

dη. (41)

D
ow

nl
oa

de
d 

by
 [

37
.2

49
.1

72
.4

7]
 a

t 1
3:

45
 1

4 
Ja

nu
ar

y 
20

18
 



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1543

A�er integrating the �rst integral by parts, the logarithms cancel out and we get the

following result:

(−1)d2−d+1 ·
Ŵ(d)2Ŵ

(

1 − d+z
2

)

Ŵ
(d−z

2

) Fd,z(ρ)

= −e−ρM

(

d − z

2
, d; 2ρ

) ∫ 1

ρ

1

η

(∫ η

0
e−rrd−1M

(

d − z

2
, d; 2r

)

dr

)

dη

+ e−ρM

(

d − z

2
, d; 2ρ

)∫ 1

ρ

e−ηηd−1D

(

d − z

2
, d; 2η

)

dη

+ (−1)dŴ(d)Ŵ

(

1 −
d + z

2

)

e−ρM

(

d − z

2
, d; 2ρ

)∫ ∞

1
ηd−1e−ηU

(

d − z

2
, d; 2η

)

dη

+ e−ρD

(

d − z

2
, d; 2ρ

)∫ ρ

0
ηd−1e−ηM

(

d − z

2
, d; 2η

)

dη. (42)

Now it su�ces to convince ourselves that Fd,z is analytic in the region ρ ∼ 0. Let us start

with analyzing the �rst summand. The inner integral behaves at least like η and so the outer

integral does not give elements proportional to logarithm (or worse). The second summand

consists of analytic functions times an integral behaving at zero at least like a constant. The

third one is an analytic function times a �nite number (the integral does not dependonρ). The

fourth summand is an integral behaving around zero like ρd, multiplied by analytic functions

and ρ−d+1, hence it is analytic as well.

5. Weyl symbol of spectral projections

Recall that the eigenvalues ofH are E0 := d, E1 := d + 2, E2 := d + 4, . . . Let Pn denotes the
spectral projection ofH onto En. In this section, we will compute the Weyl symbol of Pn. We

will see that it has a simple expression in terms of the Laguerre polynomial Ld−1
n . Thus, we

will reproduce a recent result of Unterberger [9], using the formula (34) as the main tool.

Theorem 5. The Weyl symbol of Pn is pn(x2 + p2), where

pn(ρ) = 2d(−1)ne−ρLd−1
n (2ρ). (43)

Proof. The resolvent (z − H)−1 has a pole at En and the corresponding residue is Pn, that is,

Pn = Res(z − H)−1
∣

∣

∣

z=En
. (44)

Therefore,

pn(ρ) = −ResFz,d(ρ)

∣

∣

∣

z=En
. (45)

All terms in (34) are analytic in z around En except for Ŵ
(d−z

2

)

, which has a �rst-order pole.

By the well-known properties of the Gamma function

− ResŴ

(

d − z

2

)

∣

∣

∣

z=En
=

(−1)n2

n!
. (46)

D
ow

nl
oa

de
d 

by
 [

37
.2

49
.1

72
.4

7]
 a

t 1
3:

45
 1

4 
Ja

nu
ar

y 
20

18
 



1544 J. DEREZIŃSKI ANDM. KARCZMARCZYK

Therefore,

−ResFd,z(ρ)

∣

∣

∣

z=En
=

2d(−1)n

n!(d − 1)!
e−ρ

(

M(−n, d; 2ρ)

∫ ∞

ρ

ηd−1e−ηU(−n, d; 2η) dη

+ U(−n, d; 2ρ)

∫ ρ

0
ηd−1e−ηM(−n, d; 2η) dη

)

.

Then we use (23) and (24) which lead us to

pn(ρ) =
2dn!

(d + n − 1)!
e−ρLd−1

n (2ρ)

∫ ∞

0
νd−1e−νLd−1

n (2ν)dν.

The calculation that
∫ ∞

0
νd−1e−νLd−1

n (2ν)dν = (−1)n
(d + n − 1)!

n!
(47)

is elementary a�er recalling that

Lα
n(x) =

1

n!
exx−α∂nx e

−xxn+α . (48)

6. Weyl symbol of the inverse

The inverse to harmonic oscillator is just the resolvent computed at the point z = 0.

Nevertheless, various properties of its symbol are simpler than in the general case, which is

the reason why we devote a separate section to the inverse.

Theorem 6. Putting z = 0 in (6) we see that the function Fd,0 can be represented by

Fd,0(ρ) =
∫ 1

0
(1 − t2)

d
2−1e−tρ dt. (49)

The integral representation (49) easily implies the series representation of the symbol Fd,0:

Theorem 7. Fd,0 can be represented by the following series:

Fd,0(ρ) =
d!!
d

[

α

∞
∑

k=0

(2k − 1)!!
(2k + d − 1)!!(2k)!

ρ2k −
∞
∑

k=1

(2k)!!
(2k + d)!!(2k + 1)!

ρ2k+1
]

, (50)

where α = π
2 for odd d and α = 1 for even d.

Proof. Write Fd,0(ρ) =
∑∞

n=0 cn
ρn

n! . By (49) we see that

cn = ∂nρFd,0(ρ)

∣

∣

∣

ρ=0
= (−1)n

∫ 1

0
(1 − t2)

d
2−1tn dt (51)

=
(−1)n

2

∫ 1

0
(1 − s)

d
2−1s

n+1
2 −1 ds =

(−1)n

2

Ŵ(d2 )Ŵ(n+1
2 )

Ŵ(d+n+1
2 )

, (52)
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where we set t2 = s and applied the integral formula for Euler’s Beta function. The relation
Ŵ(x+1)Ŵ(y)
Ŵ(x+y+1) = x

x+y
Ŵ(x)Ŵ(y)
Ŵ(x+y) leads to a recurrence, which gives for k ∈ N

c2k+1 = −
1

2
·

(2k)!!d!!
(2k + d)!!

Ŵ(d2 )

Ŵ(d2 + 1)
= −

d!!
d

·
(2k)!!

(2k + d)!!
, (53)

c2k =
1

2
·
(2k − 1)!!(d − 1)!!

(2k + d − 1)!!
Ŵ( 12 )Ŵ(d2 )

Ŵ( 1+d
2 )

=















π

2

(2k − 1)!!
(2k + d − 1)!!

for d odd,

(2k − 1)!!
(2k + d − 1)!!

for d even.

(54)

Note that the representation (50) can be found in [2], proven by a di�erent method.

7. Bessel-type functions and the harmonic oscillator

The modi�ed Bessel function Im and the MacDonald function Km, both solutions of the

modi�ed Bessel equation, can be represented by con�uent functionsM and U:

Im(z) =
( 12z)

me−z

Ŵ(1 + m)
M(m +

1

2
, 2m + 1; 2z),

(55)

Km(z) = π
1
2 (2z)me−zU(m +

1

2
, 2m + 1; 2z).

Setting z = 0 in (34) and using
Ŵ( d2 )

Ŵ(d) =
√

π21−d

Ŵ( d+1
2 )

, we can express the inverse of the harmonic

oscillator in terms of Bessel-type functions.

Theorem 8. Set m = d−1
2 . The function Fd,0 can be represented as:

Fd,0(ρ) = ρ−m
(

Km(ρ)

∫ ρ

0
ηmIm(η) dη + Im(ρ)

∫ ∞

ρ

ηmKm(η) dη

)

. (56)

Note that the authors of [2] ask the question whether it is possible to express the Weyl

symbol of the inverse of the harmonic oscillator in terms of known special functions. (56) is

our answer to this question.

8. Representation by elementary functions for even dimensions

It is well known that Bessel functions of odd parameters can be expressed in terms of

elementary functions. For instance, I 1
2
(x) =

√

2
πx sinh x and K 1

2
(x) =

√

π
2xe

−x. Therefore,

F2,0(ρ) =
1 − e−ρ

ρ
, (57)

which has also been calculated in [2] (see equation (0.3) in there). An even easier derivation

of this fact is to put d = 2 in (49) and integrate.
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1546 J. DEREZIŃSKI ANDM. KARCZMARCZYK

More generally, for even d the symbol of the inverse, Fd,0, can be represented by elementary

functions.

Theorem 9. For d = 2p, p = 1, 2, . . ., we get

Fd,0(ρ) =
p−1
∑

k=0

(

p − 1

k

)

(−1)k(2k)!ρ−2k−1
(

1 − p2k(ρ)e−ρ
)

, (58)

where pj(t) =
∑j

l=0
tl

l! is the partial Taylor expansion of et .

Proof. We compute:

Fd,0(ρ) =
∫ 1

0
(1 − t2)p−1e−tρ dt =

p−1
∑

k=0

(

p − 1

k

)

(−1)kρ−2k−1

∫ ρ

0
v2ke−v dv (59)

and then we use Lemma 1.

Lemma 1. For n = 0, 1, . . . , we have
∫ ρ

0
vne−vdv = (−1)nn!

(

pn(ρ)e−ρ − 1
)

. (60)

Proof. For n = 0, (60) is immediate. Then we use induction wrt n:
∫ ρ

0
vne−v dv = −ρne−ρ + n

∫ ρ

0
vn−1e−v dv. (61)

(58) was proven by a di�erent method in [2].

9. Bounds on derivatives of the symbol

The symbol of the resolvent is a well-behaved smooth function. Its derivatives satisfy bounds,

which we describe in the theorem below. They follow in a straightforward way from the

integral representation (6).

Theorem 10. Let Re (z) 6 0, n = 0, 1, 2, . . . and let α be a multi-index. Let 0 ≤ s ≤ 1. Then
the following bounds are true:

|∂nρFd,z(ρ)| 6 (n!)s(n + 1)s−1ρ−s(n+1), d ≥ 2; (62)

|∂nρF1,z(ρ)| 6 C(n!)s(n + 1)
s
2− 1

2 ρ−s(n+1). (63)

where C is a constant independent of n.

Proof. The case d ≥ 2 is simple. From (6) we get

|∂nρFd,z(ρ)| 6
∫ 1

0
(1 − t2)

d
2−1tne−tρ dt 6

∫ ∞

0
tne−tρ dt = n!ρ−n−1. (64)
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Next we estimate

|∂nρFd,z(ρ)| 6
∫ 1

0
(1 − t2)

d
2−1tne−tρ dt 6

∫ 1

0
tn dt =

1

n + 1
. (65)

Then we interpolate between (64) and (65) to obtain (62).

The case d = 1 is slightly more complicated.

|∂nρF1,z(ρ)| 6
∫ 1

0
(1 − t2)−

1
2 tne−tρ dt (66)

6

∫ 1
2

0
(1 − t2)−

1
2 tne−tρ dt +

∫ 1

1
2

(1 − t2)−
1
2 tne−tρ dt (67)

6

(

1 −
1

22

)− 1
2

∫ ∞

0
tne−tρ dt +

∫ 1

1
2

(1 − t2)−
1
2 e−

ρ
2 dt (68)

= C1n!ρ−n−1 + C2e
− ρ

2 ≤ Cn!ρ−n−1. (69)

Next, consider 0 < ǫ < 1:

|∂nρF1,z(ρ)| 6
∫ 1

0
(1 − t2)−

1
2 tn dt (70)

≤
∫ 1−ǫ

0
(2ǫ − ǫ2)−

1
2 tndt +

∫ 1

1−ǫ

(1 − t2)−
1
2 dt (71)

≤
C

2
√

ǫ(n + 1)
+

C
√

ǫ

2
. (72)

Setting ǫ := 1√
n+1

we obtain

|∂nρF1,z(ρ)| 6
C

√
n + 1

. (73)

Interpolating between (69) and (73), we obtain (63).

Note that the main result of [2] are the estimates (0.6), (0.7), and (0.8) for the symbol of the

inverse of the harmonic oscillator ad,0(x, p). The authors call them bounds of Gelfand–Shilov
type. Our Theorem 10 implies the bounds (0.6), (0.7), and (0.8) of [2].
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