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Abstract

We compute the Weyl symbol of the resolvent of the harmonic oscillator
and study its properties.
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1 Introduction

Throughout our paper, by the (quantum) harmonic oscillator, we mean the self-
adjoint operator on L2(Rd) defined as

H := −∆ + x2, (1)

where ∆ is the Laplacian and x2 =
∑d

i=1 x
2
i . The spectrum of H is

{d, d+ 2, d+ 4, . . . }.

The central object of our paper is the resolvent of H, that is, the operator (H−z)−1

defined for z outside of the spectrum of H.
Another central concept of our paper is the Weyl symbol of an operator. Weyl

symbol is a very natural parametrization of operators on L2(Rd), extensively used
in PDE’s. It is plays also an important role in foundations of quantum mechanics,
where it is usually called the Wigner function, and can be used to express the

∗The financial support of the National Science Center, Poland, under the grant UMO-
2014/15/B/ST1/00126, is gratefully acknowledged.
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semiclassical limit. For an introduction to the Weyl quantization we refer the
reader to Chap. 5 of [1], Chap. XVIII of [7], [8], [11] or Sec. 8.3 of [4].

It is a well-known fact that the Weyl symbol of a function of H is an another
function (or distribution) of x2 +p2. This fact was e.g. shown and discussed in [3],
as well as in the recent paper [2]. Therefore, the Weyl symbol of (H − z)−1 can be
written as Fd,z(x

2 + p2) for some Fd,z.
Our paper is devoted to a study of the properties of Fd,z. In particular, we give

a few explicit expressions for Fd,z—we present an integral formula, a power series
expansion and an expression in terms of confluent-type functions. We also provide
some estimates on the derivatives of Fd,z. Some of our formulas simplify in the
case z = 0, that is, for the inverse of the harmonic oscillator. In particular, the
Weyl symbol of the inverse can be expressed in terms of Bessel-type functions.

We find it interesting and potentially useful that the Weyl symbol of the resol-
vent of the harmonic oscillator has an explicit description. With our formulas we
are able to study its properties, deriving in particular rather precise bounds on its
derivatives.

In the literature we have not seen a study of the Weyl symbol of the resolvent
of the harmonic oscillator except for a recent paper [2], devoted to the inverse of
the harmonic oscillator H−1. [2] contains a formula for the Weyl symbol of H−1 in
terms of a power series. It also proves that its derivatives satisfy some estimates.
The authors of [2] call them Gelfand-Shilov bounds.

The results of our paper are stronger than those of [2]. First, we consider the
more general case of the resolvent (H − z)−1, whereas [2] is restricted to z = 0.
Second, our explicit representation in terms of Bessel-type function and in terms
of an integral representation is absent in [2]. Third, our bounds on the derivatives
easily imply those proven in [2].

An interesting discussion of Weyl quantization of spherically symmetric symbols
is contained in a recent paper of Unterberger [10]. That paper contains in particular
a formula for the symbol of the nth spectral projection of the harmonic oscillator.
We give an alternative derivation of Unterberger’s formula, using our results about
the resolvent as the starting point.

2 Weyl quantization

Let us recall the definition of the Weyl quantization, following e.g. [4], [11] or [10].
If a is a distribution in S ′(Rd ⊕ Rd), then its Weyl quantization is defined to be
the operator Op(a) from S(Rd) to S ′(Rd) such that

Op(a)Φ(x) = (2π)−d
∫
a
(x+ y

2
, p
)

eip(x−y)Φ(y) dpdy. (2)

The distribution a is then called the symbol of the operator Op(a).
Let us remark that in the literature one can find various classes of symbols.

S ′(Rd ⊕ Rd), that we use in our definition, is broad enough for our purposes. As
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noted in [2], one can define the Weyl quantization on more general class of symbols:
e.g. on the dual of the so-called Gelfand-Shilov space.

The usual product of operators corresponds on the level of symbols to the
so-called star product ∗ (sometimes called the Moyal star). That means, if

(a ∗ b)(x, p) := e
i
2

(∂x1∂p2−∂p1∂x2 )a(x1, p1)b(x2, p2)
∣∣∣x:=x1=x2
p:=p1=p2

, (3)

then Op(a)Op(b) = Op(a ∗ b).

3 The symbol of the resolvent

For z ∈ C outside of the spectrum of H, ad,z will denote the symbol of the harmonic
oscillator, that is,

Op(ad,z) = (H − z)−1. (4)

As discussed in the introduction, we can then define Fd,z by

Fd,z(x
2 + p2) = ad,z(x, p). (5)

Some properties of Fd,z can be derived in an easy way with use of the integral
representation given by

Theorem 1. For Re (z) < d, the following formula holds:

Fd,z(ρ) =

1∫
0

(1− s)
d−z
2
−1(1 + s)

d+z
2
−1e−sρ ds. (6)

Proof. It is well known that

e−tH = Op
(

(cosh t)−de−tgh t (x2+p2)
)
. (7)

(see e.g. [9, 4]). Hence,

(H − z)−1 =

∞∫
0

e−tH+tz dt (8)

= Op
( ∞∫

0

(cosh t)−de−tgh t (x2+p2)etz dt
)

(9)

= Op
( 1∫

0

(1− s2)
d
2
−1e−s(x

2+p2)ez artgh s ds
)
, (10)

where at the end we made the substitution tgh t = s. Using artgh s = 1
2

ln 1+s
1−s and

the linearity of the quantization, we obtain the final result.
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Theorem 2. The function Fd,z is entire analytic. It can be written as

Fd,z(ρ) =
∞∑
k=0

ck
ρk

k!
, (11)

where

ck =
Γ(k + 1)Γ(d−z

2
)

Γ(k + 1 + d−z
2

)
2F1

(
1− d+ z

2
, k + 1; k + 1 +

d− z
2

; −1
)
, (12)

where 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
is the hypergeometric function.

Proof. Entire analyticity of Fd,z is obvious from (6).
Of course, ck = ∂kρFd,z(0). Differentiating the integral representation (6) and

putting ρ = 0 results in

ck =

1∫
0

(1− s)
d−z
2
−1(1 + s)

d+z
2
−1sk ds. (13)

Then we apply Euler’s formula, see e.g. [5], Subsection 3.7.6,

Γ(b)Γ(c− b)
Γ(c)

2F1(a, b; c; z) (14)

=

1∫
0

sb−1(1− s)c−b−1(1− zs)−a ds, for Re (c) > Re (b) > 0. (15)

Theorem 3. For ρ→∞, we have

Fd,z(ρ) =
1

ρ
+O

( 1

ρ2

)
. (16)

More generally, there exist d1 := 1, d2, d3, . . . such that for any n

Fd,z(ρ) =
n−1∑
j=1

dj
ρj

+O
( 1

ρn

)
. (17)

Proof. For 0 < a < 1, we write

Fd,z(ρ) =
(−1)n

ρn

∫ a

0

(1− s)
d−z
2
−1(1 + s)

d+z
2
−1∂ns e−sρ ds (18)

+

∫ 1

a

(1− s)
d−z
2
−1(1 + s)

d+z
2
−1e−sρ ds. (19)

(19) is O(e−aρ). We integrate (18) n times by parts. The boundary terms at s = 0

have the form
dj
ρj

and the boundary terms at s = a are O( e−aρ

ρj
), j = 1, . . . , n. The

remaining integral is O( 1
ρn

).
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4 Confluent-type functions and the harmonic os-

cillator

The harmonic oscillator is closely related to the confluent equation. We devote
this section to this relationship.

First, recall that the confluent differential operator is defined as

x∂2
x + (c− x)∂x − a, (20)

for a, c ∈ C. Among functions annihilated by (20), two are distinguished:

• The confluent, 1F1 or Kummer’s function:

M(a, c;x) := 1F1(a; c;x) =
∞∑
k=0

(a)k
(c)k

xk

k!
. (21)

It is the only solution behaving as 1 in the vicinity of 0.

• Tricomi’s function:

U(a, c;x) := x−a2F0(a; a− c+ 1;−;−x−1). (22)

Tricomi’s function is the only solution having the asymptotic behaviour
U(a, c; z) ∼ z−a at infinity.

If a is a nonpositive integer, then both Kummer’s and Tricomi’s functions are
proportional to Laguerre polynomials:

Lαn(x) =
(α + 1)n

n!
M(−n;α + 1;x) (23)

=
(−1)n

n!
U(−n;α + 1;x). (24)

We will need Green’s function of the confluent operator, that is, the integral
kernel of its inverse R(a; b;x, y). It should satisfy(

x∂2
x + (c− x)∂x − a

)
R(a; b;x, y) = δ(x− y), (25)

R(a; b;x, y)
(
y∂2

y + (c− y)∂y − a
)

= δ(x− y). (26)

It can be checked by a straightforward calculation, using that − Γ(c)
Γ(a)

y−cey is the
Wronskian of M and U , that

R(a; b;x, y) = −Γ(a)

Γ(c)
yc−1e−y

{
M(a, c;x)U(a, c; y) for x < y,

M(a, c; y)U(a, c;x) for y < x.
(27)
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We can transform the confluent operator as follows:

4

x
e−

x
2

(
x∂2

x + (c− x)∂x − a
)
e
x
2 (28)

= 4
(
∂2
x +

c

x
∂x +

( c
2
− a
)1

x
− 1

4

)
(29)

= ∂2
ρ +

c

ρ
∂ρ +

c− 2a

ρ
− 1, (30)

where we substituted x = 2ρ. Let R̃(a; c, ρ, η) denote the resolvent of (30). Then,
using the fact that the kernel of an operator is a halfdensity in both variables, we
obtain

R̃(a; c; ρ, η) (31)

= e−ρR(a; c; 2ρ, 2η)eηη (32)

= − Γ(a)

Γ(c)
2c−1ηce−ρ−η

{
M(a, c; 2ρ)U(a, c; 2η) for ρ < η,

M(a, c; 2η)U(a, c; 2ρ) for η < ρ.
(33)

As we will see in the theorem below, the symbol of the resolvent of harmonic
oscillator can be expressed by the Green’s function of the confluent operator:

Theorem 4. The symbol Fd,z(ρ) has the representation

Fd,z(ρ) =2d−1 Γ(d−z
2

)

(d− 1)!
e−ρ

(
M
(d− z

2
, d; 2ρ

) ∞∫
ρ

ηd−1e−ηU
(d− z

2
, d; 2η

)
dη

+ U
(d− z

2
, d; 2ρ

) ρ∫
0

ηd−1e−ηM
(d− z

2
, d; 2η

)
dη

)
.

(34)

Proof. We would like to find the solution of 1l = (H − z)Op(ad,z). Using the
formula (3) for the Moyal star, we obtain

1 = (x2 + p2 − z) ∗ Fd,z(x2 + p2)

=
(
x2 + p2 − z − 1

4
(∆2

x + ∆2
p)
)
Fd,z(x

2 + p2).
(35)

Substitution of ρ = x2 + p2 leads us to the equation(
− ∂2

ρ −
d

ρ
∂ρ −

z

ρ
+ 1
)
Fd,z(ρ) =

1

ρ
. (36)
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This leads us to

Fd,z(ρ) =−
∫ ∞

0

R̃
(d− z

2
; d; ρ, η

)1

η
dη (37)

=2d−1 Γ(d−z
2

)

(d− 1)!
e−ρ

(
M
(d− z

2
, d; 2ρ

) ∞∫
ρ

ηd−1e−ηU
(d− z

2
, d; 2η

)
dη (38)

+ U
(d− z

2
, d; 2ρ

) ρ∫
0

ηd−1e−ηM
(d− z

2
, d; 2η

)
dη

)
. (39)

Recall that M is analytic and its asymptotic behaviour of M around zero is
M(a, c; z) ∼ 1. However, for integer c the function U(a; c; z) is not analytic at
z = 0. It can be written as

U(a, c; z) =
(−1)c

Γ(a− c+ 1)Γ(c)

(
log(z)M(a, c; z) +D(a, c; z)

)
, (40)

where D(a, c; ·) is a meromorphic function of z with a pole of order c − 1. Thus,
around 0 the function U(d−z

2
, d;x) diverges polynomially and logarithmically, see

(40). Hence, (34) suggests that Fd,z may have a logarithmic singularity at 0.
However, we already know that Fd,z is analytic.

Let us check that (34) implies the analyticy of Fd,z. Let us insert the represen-
tation (40) of U into (34) and split the integration range:

(−1)d2−d+1 ·
Γ(d)2Γ(1− d+z

2
)

Γ(d−z
2

)
Fd,z(ρ)

=e−ρM
(d− z

2
, d; 2ρ

) 1∫
ρ

e−ηηd−1 log ηM
(d− z

2
, d; 2η

)
dη

+ e−ρM
(d− z

2
, d; 2ρ

) 1∫
ρ

e−ηηd−1D
(d− z

2
, d; 2η

)
dη

+ (−1)dΓ(d)Γ(1− d+ z

2
)e−ρM

(d− z
2

, d; 2ρ
) ∞∫

1

ηd−1e−ηU
(d− z

2
, d; 2η

)
dη

+ e−ρ log ρM
(d− z

2
, d; 2ρ

) ρ∫
0

ηd−1e−ηM
(d− z

2
, d; 2η

)
dη

+ e−ρD
(d− z

2
, d; 2ρ

) ρ∫
0

ηd−1e−ηM
(d− z

2
, d; 2η

)
dη. (41)
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After integrating the first integral by parts, the logarithms cancel out and we
get the following result:

(−1)d2−d+1 ·
Γ(d)2Γ(1− d+z

2
)

Γ(d−z
2

)
Fd,z(ρ)

=− e−ρM
(d− z

2
, d; 2ρ

) 1∫
ρ

1

η

( η∫
0

e−rrd−1M
(d− z

2
, d; 2r

)
dr
)

dη

+ e−ρM
(d− z

2
, d; 2ρ

) 1∫
ρ

e−ηηd−1D
(d− z

2
, d; 2η

)
dη

+ (−1)dΓ(d)Γ(1− d+ z

2
)e−ρM

(d− z
2

, d; 2ρ
) ∞∫

1

ηd−1e−ηU
(d− z

2
, d; 2η

)
dη

+ e−ρD
(d− z

2
, d; 2ρ

) ρ∫
0

ηd−1e−ηM
(d− z

2
, d; 2η

)
dη. (42)

Now it is easy to convince ourselves that Fd,z is analytic in the region ρ ∼ 0.
Let us start with analysing the first summand. The inner integral behaves at least
like η and so the outer integral does not give elements proportional to logarithm
(or worse). The second summand consists of analytic functions times an integral
behaving at zero at least like a constant. The third one is an analytic function
times a finite number (the integral does not depend on ρ). The fourth summand
is an integral behaving around zero like ρd, multiplied by analytic functions and
ρ−d+1, hence it is analytic as well.

5 The Weyl symbol of spectral projections

Recall that the eigenvalues of H are E0 := d, E1 := d + 2, E2 := d + 4,... Let Pn
denote the spectral projection of H onto En. In this section we will compute the
Weyl symbol of Pn. We will see that it has a simple expression in terms of the
Laguerre polynomial Ld−1

n . Thus we will reproduce a recent result of Unterberger
[10], using the formula (34) as the main tool.

Theorem 5. The Weyl symbol of Pn is pn(x2 + p2), where

pn(ρ) = 2d(−1)ne−ρLd−1
n (2ρ). (43)

Proof. The resolvent (z −H)−1 has a pole at En and the corresponding residue is
Pn, that is

Pn = Res(z −H)−1
∣∣∣
z=En

. (44)
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Therefore,

pn(ρ) = −ResFz,d(ρ)
∣∣∣
z=En

. (45)

All terms in (34) are analytic in z around En except for Γ
(
d−z

2

)
, which has a 1st

order pole. By the well-known properties of the Gamma function

−ResΓ
(d− z

2

)∣∣∣
z=En

=
(−1)n2

n!
. (46)

Therefore,

−ResFd,z(ρ)
∣∣∣
z=En

=
2d(−1)n

n!(d− 1)!
e−ρ

(
M(−n, d; 2ρ)

∞∫
ρ

ηd−1e−ηU(−n, d; 2η) dη

+ U(−n, d; 2ρ)

ρ∫
0

ηd−1e−ηM(−n, d; 2η) dη

)
.

Then we use (23) and (24) which lead us to

pn(ρ) =
2dn!

(d+ n− 1)!
e−ρLd−1

n (2ρ)

∫ ∞
0

νd−1e−νLd−1
n (2ν)dν.

The calculation that∫ ∞
0

νd−1e−νLd−1
n (2ν)dν = (−1)n

(d+ n− 1)!

n!
(47)

is elementary after recalling that

Lαn(x) =
1

n!
exx−α∂nxe−xxn+α. (48)

6 The Weyl symbol of the inverse

The inverse to harmonic oscillator is just the resolvent computed at the point
z = 0. Nevertheless, various properties of its symbol are easier than in the general
case, which is the reason why we devote a separate section to the inverse.

Theorem 6. Putting z = 0 in (6) we see that the function Fd,0 can be represented
by

Fd,0(ρ) =

1∫
0

(1− t2)
d
2
−1e−tρ dt. (49)
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The integral representation (49) easily implies the series representation of the
symbol Fd,0:

Theorem 7. Fd,0 can be represented by the following series:

Fd,0(ρ) =
d!!

d

[
α

∞∑
k=0

(2k − 1)!!

(2k + d− 1)!!(2k)!
ρ2k −

∞∑
k=1

(2k)!!

(2k + d)!!(2k + 1)!
ρ2k+1

]
, (50)

where α = π
2

for odd d and α = 1 for even d.

Proof. Write Fd,0(ρ) =
∞∑
n=0

cn
ρn

n!
. By (49) we see that

cn = ∂nρFd,0(ρ)
∣∣∣
ρ=0

= (−1)n
1∫

0

(1− t2)
d
2
−1tn dt (51)

=
(−1)n

2

1∫
0

(1− s)
d
2
−1s

n+1
2
−1 ds =

(−1)n

2

Γ(d
2
)Γ(n+1

2
)

Γ(d+n+1
2

)
, (52)

where we set t2 = s and applied the integral formula for Euler’s Beta function.
The relation Γ(x+1)Γ(y)

Γ(x+y+1)
= x

x+y
Γ(x)Γ(y)
Γ(x+y)

leads to an easy recurrence, which gives for
k ∈ N

c2k+1 = −1

2
· (2k)!!d!!

(2k + d)!!

Γ(d
2
)

Γ(d
2

+ 1)
= −d!!

d
· (2k)!!

(2k + d)!!
, (53)

c2k =
1

2
· (2k − 1)!!(d− 1)!!

(2k + d− 1)!!

Γ(1
2
)Γ(d

2
)

Γ(1+d
2

)
=

{
π
2

(2k−1)!!
(2k+d−1)!!

for d odd,
(2k−1)!!

(2k+d−1)!!
for d even.

(54)

Note that the representation (50) can be found in [2], proven by a different
method.

7 Bessel-type functions and the harmonic oscil-

lator

The modified Bessel function Im and the MacDonald function Km, both solutions
of the modified Bessel equation, can be easily represented by confluent functions
M and U :

Im(z) =
(1

2
z)me−z

Γ(1 +m)
M(m+

1

2
, 2m+ 1; 2z),

Km(z) = π
1
2 (2z)me−zU(m+

1

2
, 2m+ 1; 2z).

(55)
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Setting z = 0 in (34) and using
Γ( d

2
)

Γ(d)
=
√
π21−d

Γ( d+1
2

)
, we can express the inverse of the

harmonic oscillator in terms of Bessel-type functions.

Theorem 8. Set m = d−1
2

. The function Fd,0 can be represented as

Fd,0(ρ) = ρ−m

(
Km(ρ)

ρ∫
0

ηmIm(η) dη + Im(ρ)

∞∫
ρ

ηmKm(η) dη

)
. (56)

Note that the authors of [2] ask the question whether it is possible to express
the Weyl symbol of the inverse of the harmonic oscillator in terms of known special
functions. (56) is our answer to this question.

8 Representation by elementary functions

for even dimensions

It is well-known that Bessel functions of odd parameters can be expressed in terms

of elementary functions. For instance, I 1
2
(x) =

√
2
πx

sinhx and K 1
2
(x) =

√
π
2x

e−x.

Therefore,

F2,0(ρ) =
1− e−ρ

ρ
, (57)

which has also been calculated in [2] (see equation (0.3) in there). An even easier
derivation of this fact is to put d = 2 in (49) and integrate.

More generally, for even d the symbol of the inverse, Fd,0, can be represented
by elementary functions.

Theorem 9. For d = 2p, p = 1, 2, . . . , we get

Fd,0(ρ) =

p−1∑
k=0

(
p− 1

k

)
(−1)k(2k)!ρ−2k−1

(
1− p2k(ρ)e−ρ

)
, (58)

where pj(t) =
j∑
l=0

tl

l!
is the partial Taylor expansion of et.

Proof. We compute:

Fd,0(ρ) =

1∫
0

(1− t2)p−1e−tρ dt =

p−1∑
k=0

(
p− 1

k

)
(−1)kρ−2k−1

ρ∫
0

v2ke−v dv (59)

and then we use Lemma 1.

Lemma 1. For n = 0, 1, . . . , we have∫ ρ

0

vne−vdv = (−1)nn!
(
pn(ρ)e−ρ − 1

)
. (60)
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Proof. For n = 0, (60) is immediate. Then we use induction wrt n:

ρ∫
0

vne−v dv = −ρne−ρ + n

ρ∫
0

vn−1e−v dv. (61)

(58) was proven by a different method in [2].

9 Bounds on derivatives of the symbol

The symbol of the resolvent is a very well behaved smooth function. Its derivatives
satisfy bounds, which we describe in the theorem below. They follow easily from
the integral representation (6).

Theorem 10. Let Re (z) 6 0, n = 0, 1, 2, . . . and let α be a multi-index. Let
0 ≤ s ≤ 1. Then the following bounds are true:

|∂nρFd,z(ρ)| 6 (n!)s(n+ 1)s−1ρ−s(n+1), d ≥ 2; (62)

|∂nρF1,z(ρ)| 6 C(n!)s(n+ 1)
s
2
− 1

2ρ−s(n+1). (63)

where C is a constant independent of n.

Proof. The case d ≥ 2 is very easy. From (6) we get

|∂nρFd,z(ρ)| 6
1∫

0

(1− t2)
d
2
−1tne−tρ dt 6

∞∫
0

tne−tρ dt = n!ρ−n−1. (64)

Next we estimate

|∂nρFd,z(ρ)| 6
1∫

0

(1− t2)
d
2
−1tne−tρ dt 6

1∫
0

tn dt =
1

n+ 1
. (65)

Then we interpolate between (64) and (65) to obtain (62).
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The case d = 1 is slightly more complicated.

|∂nρF1,z(ρ)| 6
1∫

0

(1− t2)−
1
2 tne−tρ dt (66)

6

1
2∫

0

(1− t2)−
1
2 tne−tρ dt+

1∫
1
2

(1− t2)−
1
2 tne−tρ dt (67)

6
(

1− 1

22

)− 1
2

∞∫
0

tne−tρ dt+

1∫
1
2

(1− t2)−
1
2 e−

ρ
2 dt (68)

= C1n!ρ−n−1 + C2e−
ρ
2 ≤ Cn!ρ−n−1. (69)

Next, consider 0 < ε < 1:

|∂nρF1,z(ρ)| 6
1∫

0

(1− t2)−
1
2 tn dt (70)

≤
∫ 1−ε

0

(2ε− ε2)−
1
2 tndt+

∫ 1

1−ε
(1− t2)−

1
2 dt (71)

≤ C

2
√
ε(n+ 1)

+
C
√
ε

2
. (72)

Setting ε := 1√
n+1

we obtain

|∂nρF1,z(ρ)| 6 C√
n+ 1

. (73)

Interpolating between (69) and (73) we obtain (63).

Note that the main result of [2] are the estimates (0.6), (0.7) and (0.8) for the
symbol of the inverse of the harmonic oscillator ad,0(x, p). The authors call them
bounds of Gelfand–Shilov type. Our Thm 10 easily implies the bounds (0.6), (0.7)
and (0.8) of [2].
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[4] J. Dereziński and Ch. Gérard, Mathematics of Quantization and Quantum
Fields, Cambridge Monographs in Mathematical Physics, Cambridge Uni-
versity Press, 2013.
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