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The lecture notes are devoted to some topics in scattering theory for
certain models inspired by quantum field theory. As a toy example, we
describe scattering theory for van Hove Hamiltonians, where all basic
objects can be computed exactly. We also sketch the formalism, basic
results and some open problems about the so-called Pauli-Fierz Hamilto-
nians – a class of models describing a small quantum system interacting
with a bosonic field, which have an interesting and nontrivial scattering
theory.
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1. Introduction

The main aim of these lectures is to sketch the formalism and basic results
of the scattering theory for certain classes of models inspired by quantum
field theory (QFT). We hope that we will convince the readers that this
subject has both mathematical elegance and physical relevance.

In our lectures, we mostly consider models that are quite simple. In
particular, they always have localized, fast decaying interactions. We are not
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going to consider relativistic, or even translation invariant models, whose
scattering theory is mathematically more dificult, and often problematic.

In Section 2 we describe the standard formalism of scattering theory
[24, 28, 32], whose starting point is a pair of operators H and H0 on a
single Hilbert space. Then, in Section 3 we consider scattering theory of
Schrödinger operators [28, 10], which, at least in the short range case, is an
application of the standard formalism.

Later on we will see that when one wants to study scattering in QFT
models, even very simple ones, the standard formalism has to be modified
substantially. Therefore, strictly speaking, Sections 2 and 3 do not belong
to the main subject of our lectures. Nevertheless, we believe that it is in-
structive to start with a discussion of these topics, so that the reader can
compare them with scattering in QFT.

We use the term “quantum field theory” in a rather broad meaning.
Roughly speaking, for the purpose of these lectures, a quantum field the-
ory Hamiltonian is a self-adjoint operator whose definition is based on the
formalism of second quantization, involving creation/annihilation operators
and Fock spaces. In Section 4 we briefly recall this formalism [5, 7].

In Section 5 we describe in formal terms general principles of scattering
in QFT with localized interactions [13, 20, 31]. We explain, in particular,
the meaning of renormalization, which in such models is finite and well
understood.

In Section 6 we describe scattering theory of a certain exactly solvable
class of Hamiltonians – van Hove Hamiltonians [8].

In Section 7 we discuss the so-called representations of the CCR [5, 7].
They arise naturally in the context of scattering theory for bosonic Hamil-
tonians and allow us to describe some difficult situations typical eg. for the
infra-red problem.

Section 8 is devoted to the scattering theory for a class of Hamiltonians
describing a small system interacting with bosonic quantum fields. Fol-
lowing our earlier works, we call them Pauli-Fierz Hamiltonians, although
other names can be found in the literature as well. We describe some rigor-
ous results about this subject, as well as some intriguing unsolved problems
[10, 11, 12, 14, 15].

In our lectures we do not discuss scattering theory for translation in-
variant QFT models. This subject is more difficult and its rigorous under-
standing is limited. Let us give a list of what we know rigorously about this
subject.
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(1) Scattering theory for N -body Schrödinger Hamiltonians is well under-
stood, thanks to the work of Enss, Sigal, Soffer, Graf, the author and
others, see [9] and references therein. It can be interpreted as a rather
special example of a quantum field theory [6] for a class of Hamiltonians
preserving the number of particles.

(2) The Haag-Ruelle theory gives a satsfactory framework for scattering
theory in a relativistic quantum field theory satisfying the so-called
Haag-Kastler or Wightman axioms in the presence of an isolated shell
in the energy-momentum spectrum [23].

(3) Formal perturbative scattering theory for (nonrelativistic) translation
invariant QFT models is described in [13, 31].

(4) Compton scattering at weak coupling and small energy has been studied
in an interesting paper of Fröhlich, Griesemer and Schlein [15].

2. Basic abstract scattering theory

In this section we recall the standard formalism of scattering theory in an
abstract setting. This topic is well known, see e.g. [28, 24, 32]. Later on we
will use a different formalism, but we believe that it is instructive to start
with the standard approach.

2.1. Møller and scattering operators

Suppose that we are given two self-adjoint operators H0 and H = H0 + V .
The Møller (or wave) operators (if they exist) are defined as

S± := s− lim
t→±∞

eitH e−itH0 .

They satisfy S±H0 = HS± and are isometric.
The scattering operator is introduced as

S = S+∗S−.

It satisfies H0S = SH0. If RanS+ = RanS−, then it is unitary.
Let us note in parenthesis that in the old literature one can sometimes

find a scattering operator of a different kind

S̃ = S+S−∗, (2.1)

which satisfies S̃H = HS̃. Both scattering operators are closely related:

S̃ = S−S∗S−∗.
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2.2. Measurement of observables

In this and the next subsections we try to describe how the scattering oper-
ator leads to measurable quantities. We will call them (abstract) scattering
cross-sections. Let us note that scattering cross-sections in the context of
Schrödinger operators or QED are discussed in essentially every textbook
on quantum mechanics or quantum field theory. In distinction to those
presentations, we will try to do it in an abstract setting, disregarding the
concrete form of a quantum system. I find it curious that the abstract
formalism of scattering cross-sections is quite complicated and involves a
nontrivial condition, which we will call the predictiveness, see (2.6). Note
also, that one treats differently the initial time (when the state is prepared)
and the final time (when an observable is measured).

We will go back to scattering cross-sections in Subsection 3.2, where we
consider them in the context of Schrödinger operators,

Let us start with recalling some of the basic principles of quantum me-
chanics. Let ρ be the density matrix representing a state prepared at time
t−. (Recall that a density matrix is a positive operator of trace 1). Let A be
a self-adjoint operator representing an observable measured at time t+. We
learn at basic courses of quantum mechanics that the average outcome of
the measurement, which we call the expectation of the measurement, equals

Tr A e−i(t+−t−)H ρ ei(t+−t−)H .

In realistic situations, it is often difficult to determine the initial state ρ.
Typically, the only thing that the experimenter uses to prepare the initial
state can be mathematically described by a certain commuting family of
self-adjoint operators, which we will call the control observable.

Suppose that the control observable has continuous spectrum (which
often happens in practice). Then there does not exist a density matrix,
which commutes with the control observable, In fact, this follows from the
fact that density matrices have pure point spectrum. Therefore, in such
a case it is impossible to prepare a state which has a sharp value of the
control observable.

Let us try to describe this situation with a more formal language. The
control observable will be represented by a ∗-homomorphism

C∞(X) 3 f 7→ γ(f) ∈ B(H), (2.2)

where X is a locally compact Hausdorff space and C∞(X) denotes the
commutative C∗-algebra of continuous functions on X vanishing at infinity.
(For example, we can think of X as Rd and γ(f) as f(D), where D denotes
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the momentum). We can assume that the ∗-homomorphism γ is injective.
If not, Kerγ = {f ∈ C∞(X) : f = 0 on Y } for some closed Y ⊂ X, and
we can replace in an obvious way C∞(X) with C∞(X\Y ).

It is convenient to extend the ∗-homomorphism γ to a normal ∗-
homomorphism, denoted by the same symbol

L∞(X) 3 f 7→ γ(f) ∈ B(H), (2.3)

where L∞(X) denotes the commutative W ∗-algebra of bounded Borel func-
tions on X.

Let U be a Borel set in X and let 1U denote the characteristic function
of U . Let B be a self-adjoint operator. We define two real numbers

σ+(U, γ,B) := sup{TrρB : ρ is a density matrix, ρ = γ(1U )ργ(1U )},
σ−(U, γ,B) := inf{TrρB : ρ is a density matrix, ρ = γ(1U )ργ(1U )}.

Clearly, σ+(U, ρ,B), resp. σ−(U, ρ,B), is an increasing, resp. decreasing
function of the set U .

Let x ∈ X. We set

σ+(x, γ,B) := inf{σ+(U, γ,B) : x ∈ U open in X}, (2.4)

σ−(x, γ,B) := sup{σ−(U, γ,B) : x ∈ U open in X}. (2.5)

We will say that x is predictive for (γ,B) if

σ−(x, γ,B) = σ+(x, γ,B), (2.6)

and then we set σ(x, γ,B) equal to (2.6).
For instance, if x is closed in X (which, by the injectivity of γ implies

γ(1{x}) 6= 0), then x is predictive for (γ,B) iff the value of

(Ψ|BΨ) (2.7)

does not depend on a normalized vector Ψ ∈ Ranγ(1{x}), and then
σ(x, γ,B) equals (2.7).

Let us go back to the situation where the experiment is prepared at
time t−. and the observable A is measured at time t+. We assume that the
experimenter tries to prepare the initial state so that the initial value of the
observable given by γ equals x. We also assume that x ∈ X is predictive for
(γ, ei(t+−t−)H A e−i(t+−t−)H). Then the expectation of the measurement is
close to

σ
(
x, γ, ei(t+−t−)H A e−i(t+−t−)H

)
.
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2.3. Physical meaning of the scattering operator

The physical importance of the scattering theory is based on the fact that
in practical situations it takes a long time to prepare states and to mea-
sure observables. Scattering theory provides a natural way to take this into
account.

Suppose that H0 is an operator, which is “easy to control” by the ex-
perimentalist. Let ρ be a density matrix and A a self-adjoint operator. We
assume for the moment that the experimentalist is able to prepare the state
e−it−H0 ρ eit−H0 at time t− , and to measure the observable eit+H0 A e−it+H0

at time t+. Suppose also that the standard Møller operators exist, and hence
the scattering operator S is well defined. Then it is easy to see that, for
t− → −∞, t+ →∞, the expectation of the measurement converges to

TrASρS∗. (2.8)

Thus, in principle, we can determine the full information about the operator
S, up to a phase factor, from experiments.

One can argue that the experiment described above is rather difficult to
perform for arbitrary A and ρ. Let us modify it to make it more realistic.

Assume that the observable A commutes with H0. Then

eit+H0 A e−it+H0 = A

does not depend on the time of measurement t+, and thus should be easy
to measure.

ρ is a trace class operator, hence there exists an orthonormal basis con-
sisting of its eigenvectors. If [H0, ρ] = 0, then H0 has pure point spectrum.
But in typical situations H0 has continuous spectrum. Therefore, there are
no density matrices commuting with H0. It is therefore natural to apply
the formalism described in the previous subsection.

First we need to choose a control observable. A possible choice would
be the free Hamiltonian H0, or in the language of the previous subsection,
the ∗-homomorphism

C∞(spH0) 3 f 7→ f(H0) ∈ B(H),

given by the functional calculus. Physically, it means the only observable
that we control when preparing the initial state is the energy.

In practice, the experimentalist, when preparing the initial state, con-
trols other observables as well (eg. the momentum). Assume that they can
be described by a ∗-homomorphism γ defined on a C∗-algebra C∞(X), see
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(2.2). It is natural to assume that f(H0) for f ∈ C∞(R) belongs to the range
of γ (which means that the free Hamiltonian is one of control observables).

Suppose that the experimentalist prepares the state at time t− with
the control observable γ arbitrarily close to x ∈ X. Then he performs the
measurement of the observable A at time t+. It follows from the definitions
(2.4) and (2.5) that the expectation of such a measurement lies inside or
very close to the interval[
σ−

(
x, γ, ei(t+−t−)H A e−i(t+−t−)H

)
, σ+

(
x, γ, ei(t+−t−)H A e−i(t+−t−)H

)]
.

Let us now take the limits t− → −∞, t+ →∞. Assume that we are al-
lowed to change the order of relevant limits. Then, for any ε > 0, there exists
T such that, for t− ≤ −T, T ≤ t+, the expectation of the measurement
lies in

[σ− (x, γ, S∗AS)− ε, σ+ (x, γ, S∗AS) + ε] .

In particular, let us assume also that x is predictive for (γ, S∗AS). Then,
as t− → −∞ and t+ →∞, the expectation of the experiment becomes close
to

σ(x, γ, S∗AS). (2.9)

(2.9) can be called the scattering cross-section at x ∈ X for the observable
A.

2.4. Problem with eigenvalues

As before, H and H0 is a pair of self-adjoint operators. It is easy to see that
if the standard Møller operators exist and H0Ψ = EΨ, then HΨ = EΨ.
Thus, on the subspace spanned by eigenvectors of H0, the Møller and scat-
tering operators are equal to the identity. Because of that, in practice the
standard formalism of scattering theory is usually applied to Hamiltonians
H0 without point spectrum.

In models inspired by QFT, typically, both H0 and H have ground
states, and these ground states are different. Thus, standard scattering
theory is not applicable. Instead, one can sometimes try other approaches.

2.5. Alternative kinds of Møller operators

There are various possible alternative kinds of Møller operators, which can
be used instead of standard ones. Let us describe two of them.
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The strong Abelian Møller operators are defined as

S±Ab := s− lim
ε↘0

ε

∫ ∞
0

e−εt e±itH e∓itH0 dt.

They satisfy S±AbH0 = HS±Ab, but do not have to be isometric. If the stan-
dard Møller operator exists, then so do the Abelian Møller operators, and
they coincide.

Another type of Møller operators that can be found in the literature are
adiabatic Møller operators. To define them we first introduce the dynamics
with an adiabatically switched on interaction

Uε(0) = 1,
d
dt
Uε(t) = iUε(t)(H0 + e−ε|t| V ).

Then one sets

S±ad := w− lim
ε↘0

lim
t→±∞

Uε(t) e−itH0 .

One expects that under quite general assumptions S±Ab coincides with S±ad.
In such a case, we will denote them by S±ur. (The subscript “ur” stands for
unrenormalized)

Suppose that the vacuum amplitude operators Z± := S±∗ur S
±
ur have triv-

ial kernels. Then we can define the renormalized Møller operators

S±rn := S±ur(Z
±)−1/2.

They also satisfy S±rnH0 = HS±rn and are isometric.
If RanS+

rn = RanS−rn, then the renormalized scattering operator

Srn = S+∗
rn S

−
rn

is unitary and H0Srn = SrnH0.

2.6. Dyson series for Møller and scattering operators

Set V (t) = eitH0 V e−itH0 . Expanding in formal power series we obtain

S+
Ab = lim

ε↘0

∞∑
n=0

∫
∞>tn>···>t1>0

in e−εtn V (tn) · · ·V (t1)dtn · · · dt1,

S+
ad = lim

ε↘0

∞∑
n=0

∫
∞>tn>···>t1>0

in e−ε(tn+···+t1) V (tn) · · ·V (t1)dtn · · · dt1.
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For Sur := S+∗
ur S

−
ur, after performing the ε↘ 0 limit we get

Sur =
∞∑
n=0

∫
∞>tn>···>t1>−∞

inV (tn) · · ·V (t1)dtn · · · dt1.

After expanding each term in Feynman diagrams, this formal expansion is
the usual starting point for analysis of scattering amplitudes in quantum
field theory.

2.7. Other formalisms of scattering theory

The formalism of scattering theory that we described in this section started
from a pair of operators H0 and H acting on the same Hilbert space. Note
that this formalism does not apply to all situations of physical interest,
including many QFT models.

Usually, the main aim of scattering theory is to describe a certain single
self-adjoint Hamiltonian H acting on a Hilbert space H. We will call H
and H the physical Hamiltonian and the physical Hilbert space respectively.
The “free Hamiltonian”, or better to say, the “asymptotic Hamiltonian”
is not a priori given. It is even not clear that it should act on the same
Hilbert space and that it should be the same for the past and future. In
fact, part of our job is to guess the asymptotic Hilbert spaces H±as as well
as the asymptotic Hamiltonians H±as together with a construction of the
Møller operators S± : H±as → H, which should be isometric (preferably
unitary), and intertwine the asymptotic and physical Hamiltonians, i.e.
HS± = S±H±as. I do not know a single formalism that gives a universal
recipe how to do this. For various situations one often needs to find it
separately. An example of such a formalism is given in Section 8 where we
describe scattering theory for Pauli-Fierz Hamiltonians.

Let us mention that a common way to define Møller operators is to
introduce appropriate identification operators J± : H±as → H such that

S± := s− lim
t→∞

eitH J± e−itH±as
. (2.10)

Note that the usual scattering operator S = S+∗S− maps H−as into H+as.
The alternative scattering operator S̃ = S+S−∗, introduced in (2.1), acts
on the physical space H.

Let us mention some interesting set-ups of scattering theory, which we
will not discuss in these notes:
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(1) Many-body Schrödinger operators, see eg. [10]
(2) Local relativistic QFT, the Haag-Ruelle theory, see eg. [23]
(3) Obstacle scattering for classical waves.

3. Scattering theory for 2-body Schrödinger operators

In this section we describe basic elements of scattering theory for
Schrödinger operators [28, 10]. In the short-range case they follow the rules
of the standard formalism, outlined in the previous section. In the long-
range case a modification is needed.

3.1. Short-range case

Consider the Hilbert space L2(Rd) and set

H0 = −1
2

∆, H = −1
2

∆ + V (x).

We say that the potential V (x) is short range if

|V (x)| ≤ C(1 + |x|)−1−µ, µ > 0. (3.1)

Under this assumption one can show that the standard Møller operators
S± := s− lim

t→±∞
eitH e−itH0 exist and their ranges equal the absolute con-

tinuous spectral subspace of the operator H, denoted Ran1c(H). The last
statement is called the asymptotic completeness.

We define as usual the scattering operator S and we introduce the T -
operator:

S = 1 + iT.

3.2. Physical meaning of scattering cross-sections

Let ξ be the momentum variable. Let ξ̂ = ξ|ξ|−1 denote the angular vari-
able. Recall that T commutes with H0. Therefore, the T -operator has the
distributional kernel in the momentum representation:

T (ξ+, ξ−) = δ(|ξ+| − |ξ−|)T (|ξ+|, ξ̂+, ξ̂−).

The scattering cross-section at the energy λ2/2, incoming angle ξ̂− and
outgoing angle ξ̂+ is defined as

σ(λ, ξ̂+, ξ̂−) := |T (λ, ξ̂+, ξ̂−)|2. (3.2)

It is commonly accepted that the scattering cross-sections are physically
the most relevant quantities that are contained in the scattering operator.
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Let us try to explain their physical meaning, following the idea sketched in
Subsection 2.3

The rough idea of the scattering cross-section is as follows. Suppose that
we prepare a state concentrated around the momentum ξ− and measure the
probability of finding the particle of momentum around ξ+. Assume that
the energies are the same: |ξ−|2/2 = |ξ+|2/2. Then the probability of the
measurement is proportional to σ(|ξ+|, ξ̂+, ξ̂−), at least if the scattering
amplitude is well behaved (sufficiently continuous).

Let us make it more precise. Let D = −i∇x denote the momentum
operator. Suppose that we want to measure the observable a(D) at time
t+. At time t− prepare the state e−it−H0 ρ eit−H0 , where for simplicity we
assume that the density matrix factorizes in the energy and momenta:

ρ(ξ−, ξ′−) = ρen(|ξ−|, |ξ′−|)ρan(ξ̂−, ξ̂′−).

We also assume that a(D)ρ = 0 (so that we measure only scattered states).
By (2.8), the expectation of the measurement converges to∫ ∫ ∫

T (|ξ+|, ξ̂+, ξ̂−)a(ξ+)T (|ξ+|, ξ̂+, ξ̂′−)

×ρen(|ξ+|, |ξ+|)ρan(ξ̂−, ξ̂′−)|ξ+|d−1dξ+dξ̂−dξ̂′−. (3.3)

Let us make some additional assumptions. Fix the incoming angle η− ∈
Sd−1. Let us assume that ξ̂− 7→ T (|ξ+|, ξ̂+, ξ̂−) is continuous at ξ̂− = η̂−,
uniformly for ξ+ ∈ supp a. Then it is easy to see that, for any ε > 0, there
exists δ > 0 such that if ρan(ξ̂−, ξ̂′−) is supported in the set

|ξ̂− − η̂−| ≤ δ, |ξ̂′− − η̂−| ≤ δ,

then the expectation value of the measurement (3.3) differs from∫
a(ξ+)σ(|ξ+|, ξ̂+, η̂−)ρen(|ξ+|, |ξ+|)|ξ+|d−1dξ+

×
∫
ρan(ξ̂−, ξ̂′−)dξ̂−dξ̂′−. (3.4)

by at most ε.
Note that the operator T enters (3.4) only through the scattering cross-

section. Therefore, scattering cross-sections are sufficient to describe exper-
iments with a well collimated incident beam.
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3.3. Long-range case

Suppose that the potential satisfies V = Vl + Vs where Vs is short-range
(satisfies (3.1)) and

|∂αxVl| ≤ Cα(1 + |x|)−|α|−µ, µ > 0, |α| = 0, 1, . . . . (3.5)

We then say that the potential is long range.
It includes the physically relevant Coulomb potential V (x) = z|x|−1,

where z is the charge.
One can show that for such potentials standard Møller operators in

general do not exist. This is one of manifestations of the infra-red problem
in quantum physics. Nevertheless, it is possible to compute scattering cross-
sections for long range potentials.

There are several methods to do this. The method presented in many
quantum mechanics textbooks goes as follows. First one approximates a
given long-range potential by a sequence of short-range potentials. Eg.
the Coulomb potential is approximated by the Yukawa potentials Vµ =
z e−µ|x| |x|−1. For short-range potentials one can construct Møller and scat-
tering operators, and hence the scattering cross-sections

σµ(λ, ξ̂1, ξ̂2)

are well defined. Then one shows that there exists

lim
µ↘0

σµ(λ, ξ̂1, ξ̂2),

which is interpreted as the scattering cross-section for V .
There exist better approaches to the long-range scattering. Instead of

the standard Møller operators, one defines the so-called modified Møller
operators for long-range potentials, see eg. [9]. One way to do it, which
works for µ > 1

2 in (3.5), is as follows. One introduces the function

S(t, ξ) =
tξ2

2
+
∫ t

0

Vl(sξ)ds.

Then one can show that there exists

S±lr := s− lim
t→±∞

eitH e−iS(t,D) . (3.6)

(3.6) are called modified Møller operators. They are isometric, intertwine
the free and full Hamiltonian, that is S±lrH0 = HS±lr . They also satisfy
asymptotic completeness, in other words RanS±lr = Ran 1c(H).
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We introduce the modified scattering operator by setting Slr := S+∗
lr S−lr

and the T -operator by Slr = 1+iTlr. We can write the distributional kernel
as

Tlr(ξ+, ξ−) = δ(|ξ+| − |ξ−|)Tlr(|ξ+|, ξ̂+, ξ̂−).

cattering cross-section are defined as

σ(λ, ξ̂+, ξ̂−) := |Tlr(λ, ξ̂+, ξ̂−)|2. (3.7)

3.4. Freedom of the choice of modified Møller operators

The main disadvantage of the formalism described above is the fact that in
general there is no canonical choice of S±lr . Nevertheless, this arbitrariness
is quite limited. If we have two modified Møller operators S±lr,1 and S±lr,2,
then there exists a phase function ψ± such that

S±lr,1 = S±lr,2 eiψ±(D),

where recall that D = −i∇x. This arbitrariness disappears in scattering
cross-sections, which are canonically defined.

There is, however, another construction, which is unique and canonical.
For long-range potentials, there exists self-adjoint operators D± such that,
for any g ∈ Cc(Rd),

g(D±) = s− lim
t→±∞

eitH g(D) e−itH 1c(H).

Unlike modified Møller operators, asymptotic momenta are canonically de-
fined. Following [10], one can define canonically the whole class of modified
Møller operators as isometric operators S±lr satisfying

g(D±) = S±lr g(D)S±∗lr .

4. Second quantization

In this section we will fix our notation for operators on Fock spaces, which
will be the main language in the sequel.

4.1. Fock spaces

Let Z be a Hilbert space. Physically, it will have the meaning of a 1-particle
space. On ⊗nZ we have the obvious natural action of the permutation
group, denoted

Sn 3 σ 7→ Θ(σ) ∈ U(⊗nZ).
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Let us introduce the orthogonal projections onto symmetric/antisymmetric
tensors:

Θn
s :=

1
n!

∑
σ∈Sn

Θ(σ),

Θn
a :=

1
n!

∑
σ∈Sn

sgnσΘ(σ).

Many concepts are paralel for the symmetric (bosonic) and antisymmetric
(fermionic) case. The former will be often denoted by the subscript “s” and
the latter by the subscript “a”. We will write “s/a” to denote “either s or
a”.

The n-particle bosonic/fermionic space is defined as⊗ns/aZ := Θn
s/a⊗

nZ.

The bosonic/fermionic Fock space is Γs/a(Z) :=
∞
⊕
n=0
⊗ns/aZ. The vector

Ω = 1 ∈ ⊗0
s/aZ = C is called the vacuum.

4.2. Creation and annihilation operators

For f ∈ Z we define the creation operator

a∗(f)Ψ :=
√
n+ 1 Θn+1

s/a f ⊗Ψ, Ψ ∈ ⊗ns/aZ,

and the annihilation operator a(f) := (a∗(f))∗.
Note that traditionally, in most physics textbooks, one uses a somewhat

different notation for creation and annihilation operators. One identifies Z
with L2(Ξ) for some measure space (Ξ,dξ). If f equals a function Ξ 3 ξ 7→
f(ξ), then one writes

a∗(f) =
∫
f(ξ)a∗(ξ)dξ, a(f) =

∫
f(ξ)a(ξ)dξ. (4.1)

4.3. Field and Weyl operators

In the bosonic case, for f ∈ Z we introduce the field operators

φ(f) :=
1√
2

(a∗(f) + a(f)).

and the Weyl operators

W (f) := eiφ(f) .

For later reference note that

(Ω|W (f)Ω) = e−‖f‖
2/4 .
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4.4. Wick quantization

Let b ∈ B
(
⊗ns/aZ,⊗

m
s/aZ

)
. We would like to define its Wick quantization.

To this end, it will be convenient to use the traditional notation, which
involves an identification of Z with L2(Ξ). This identification allows us (at
least formally) to represent the operator b by its integral kernel of b, which
is a function b(ξ1, · · · ξm, ξ′n, · · · , ξ′1) symmetric/antisymmetric in its first
and last coordinates. The Wick quantization of the polynomial b will be
denoted by

B =
∫
b(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

a∗(ξ1) · · · a∗(ξm)a(ξ′n) · · · a(ξ′1)dξ1, · · · ξndξ′m · · · dξ′1. (4.2)

It is the operator whose only nonzero matrix elements are between k + m

and k+n particle vectors. For Φ ∈ ⊗k+m
s/a Z, Ψ ∈ ⊗k+n

s/a Z, the corresponding
matrix element equals

(Φ|BΨ) =

√
(n+ k)!(m+ k)!

k!
(Φ|b⊗ 1⊗kZ Ψ).

Let us remark that the operator (4.2) does not depend on the the choice
of the identification of Z with L2(Ξ). Moreover, (4.2) is consistent with the
usual traditional notation, in particular with (4.1).

4.5. Second quantization of operators

For an operator q on Z we define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗ns/aZ

:= q ⊗ · · · ⊗ q
∣∣∣
⊗ns/aZ

.

Similarly, for an operator h we define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗ns/aZ

:=
(
h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h

) ∣∣∣
⊗ns/aZ

.

In the traditional notation, if h is the multiplication operator by h(ξ), then
dΓ(h) =

∫
h(ξ)a∗ξaξdξ.

Note the identity Γ(eith) = eitdΓ(h).

5. Scattering for Hamiltonians of quantum field theory

In this section we describe the basics of scattering theory of QFT Hamilto-
nians with localized interaction and without the “small system” (see Section
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8). Unfortunately, in many cases one has to work with formal power series
(see however [11]). Most of the general references on the subject are quite
old [13, 20, 31].

5.1. QFT Hamiltonians

Typical Hamiltonians of QFT have (at least formally) the form

Hλ := H0 + λV, (5.1)

where

H0 :=
∫
h(ξ)a∗(ξ)a(ξ)dξ, (5.2)

V :=
∫ ∑

n,m

vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

a∗(ξ1) · · · a∗(ξm)a(ξ′n) · · · a(ξ′1)dξ1, · · · ξmdξ′1 · · · dξ′n.

The polynomials vn,m should be even in fermionic variables. We will assume
that the one-particle energy is h(ξ) =

√
ξ2 +m2.

The variable ξ has the interpretation of a 1-particle momentum. Clearly,
H0 is translation invariant. The perturbation V is translation invariant iff
it has the form

vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

= ṽn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

δ(ξ1 + · · ·+ ξm − ξ′n − · · · − ξ′1).

In our notes we will not consider translation invariant interactions. We
will always assume that vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1) are smooth and decay
fast in all directions. This simplifying assumption expresses in particular
the fact that the interaction is well localized. The scattering theory for such
interactions is much easier to study and better understood than that for
translation invariant interactions.

We will not worry too much about the self-adjointness of Hλ. If we
encounter problems, we will work with formal power series.

Actually, in the case of fermions one can define (5.1) as a self-adjoint
operator, since the perturbation is bounded. In the case of bosons, the self-
adjointness holds if the perturbation is of degree 1. It is also true for 2nd
order perturbation that is sufficiently small. Otherwise it can be proven
only under special assumptions (e.g. for spacially cut-off P (φ)2 interactions
[18]).
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5.2. QFT Hamiltonians that do not polarize vacuum

Suppose that

vn,0 = v0,n = 0. (5.3)

Then Ω is an eigenvector of both H0 and H, and the standard wave oper-
ators exist, at least formally, see eg. [31].

Unfortunately, physically realistic Hamiltonians often polarize the vac-
uum, and the standard formalism of scattering theory is inapplicable in
these cases.

5.3. Ground state

In general, at least formally, Hλ possesses a ground state Ωλ with the ground
state energy Eλ. They depend on λ in terms of a formal perturbation ex-
pansion:

Ωλ =
∞∑
n=0

λnΩn, Eλ =
∞∑
n=0

λnEn.

5.4. Feynman-Dyson approach

There exist two basic formalisms for scattering theory of QFT Hamiltonians
with localized interaction. The first approach can be traced back to the
early works on QED. We will call it the Feynman-Dyson approach. It starts
with introducing the unrenormalized Møller operators. One can prove their
existence, at least as formal power series

S±ur = s− lim
ε↘0

ε

∫ ∞
0

e−εt e±itH e∓it(H0−E) dt

=
∞∑
n=0

λnS±ur,n.

One can also show that the vacuum amplitude operator Z = S−∗ur S
−
ur =

S+∗
ur S

+
ur is proportional to identity and equals Z = |(Ωλ|Ω)|2. The renor-

malized Møller operators S±rn := S±urZ
−1/2 are formally unitary and so is

the renormalized scattering operator Srn := S+∗
rn S

−
rn.

5.5. The LSZ formalism

Instead of the scattering theory based on Møller operators, one can proceed
differently. Following Lehman-Symanzik-Zimmermann, one can start by in-
troducing the so-called asymptotic creation/annihilation operators defined
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as the limits

a±λ (f) := lim
t→±∞

eitH a(e−ith f) e−itH ,

a∗±λ (f) := lim
t→±∞

eitH a∗(e−ith f) e−itH .

One can show their existence at least as formal power series. They satisfy
the usual canonical commutation/anticommutation relations (CCR/CAR).
Moreover, asymptotic annihilation operators kill the perturbed ground
state:

a±λ (f)Ωλ = 0.

The renormalized Møller operators can be defined with help of asymp-
totic operators

S±rn,λa
∗(f1) · · · a∗(fn)Ω = a∗±λ (f1) · · · a∗±λ (fn)Ωλ.

They are formally unitary and intertwine the CCR/CAR:

S±rn,λa
∗(f) = a∗±λ (f)S±rn,λ,

S±rn,λa(f) = a±λ (f)S±rn,λ.

Note that there is no need for renormalization.
One can construct the alternative renormalized scattering operator S̃

with help of asymptotic operators, even skipping the Møller operators, as
the unique (up to a phase factor) unitary operator satisfying

S̃rn,λa
∗−
λ (f) = a∗+λ (f)S̃rn,λ,

S̃rn,λa
−
λ (f) = a+

λ (f)S̃rn,λ.

6. Scattering theory of Van Hove Hamiltonians

A van Hove Hamiltonian is a self-adjoint operator formally defined as

H =
∫
h(ξ)a∗(ξ)a(ξ)dξ +

∫
z(ξ)a(ξ)dξ +

∫
z(ξ)a∗(ξ)dξ,

where ξ 7→ h(ξ) ∈ [0,∞[ describes the energy and ξ 7→ z(ξ) the interaction.
Van Hove Hamiltonians form a very instructive class of operators, whose
properties, and in particular the scattering theory, are very well understood
[8]. They can also serve as a simple illustration of the infra-red and ultra-
violet problem. In our lectures we will not discuss the ultraviolet problem
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and we will always assume that at high energies the coupling function is
sufficiently regular, which is expressed by the condition∫

h≥1

|z(ξ)|2dξ <∞.

Following [8], we will however discuss the infra-red behavior of van Hove
Hamiltonians, which is relevant for their scattering theory. One can distin-
guish 3 cases of the infra-red behavior of the coupling function. In the order
of an increasing singularity, we call them A, B and C.

6.1. Infra-red case A

We say that the coupling function belongs to Case A if∫
h<1

|z(ξ)|2

h(ξ)2
dξ < ∞. (6.1)

(The integral (6.1) is restricted to ξ with h(ξ) < 1). Van Hove Hamiltonians
with the coupling function satisfying this condition are the most regular. It
is easy to see that they are bounded from below self-adjoint operators with
the ground state energy

E := −
∫
|z(ξ)|2

h(ξ)
dξ, (6.2)

and the spectrum [E,∞[. Besides, the coherent vector

Ψ = exp
(
−
∫
|z(ξ)|2

2h(ξ)2
dξ
)

exp
(∫

a∗(ξ)
z(ξ)
h(ξ)

dξ
)

Ω.

is its unique ground state.
To see this it is enough to introduce the so-called dressing operator

U := exp
(
−a∗( z

h
) + a(

z

h
)
)
. (6.3)

If we set

H0 =
∫
h(ξ)a∗ξaξdξ,

then the operator H is up to a constant unitarily equivalent to H0:

H − E = UH0U
∗. (6.4)
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6.2. Infra-red case B

Let ∫
h<1

|z(ξ)|2

h(ξ)
dξ <∞,∫

h<1

|z(ξ)|2

h(ξ)2
dξ = ∞.

In this case H can be still defined as a self-adjoint operator and is bounded
from below. The equation (6.2) defines a finite number E, which is the
infimum of the spectrum of H. However, H has no eigenvalues. This is
related to the fact that the dressing operator (6.3) is ill defined, and hence
we cannot write (6.4).

6.3. Infra-red case C

Let ∫
h<1

|z(ξ)|2dξ < ∞,∫
h<1

|z(ξ)|2

h(ξ)
dξ = ∞.

H can be still defined as a self-adjoint operator. However, H has no eigen-
vectors and its spectrum covers the whole real line.

For coupling functions satisfying∫
h<1

|z(ξ)|2dξ =∞

one cannot define a van Hove Hamiltonian at all.

6.4. Feynman-Dyson scattering theory for van Hove

Hamiltonians

Assume that h has an absolutely continuous spectrum (as an operator on
L2(Ξ)) and Case A or B: ∫

|z(ξ)|2

h(ξ)
dξ < ∞.

Then it is easy to show that there exists the strong Abelian Møller operator

S±ur := s− lim
ε↘0

ε

∫ ∞
0

e−εt eitH e−it(H0+E) dξ.
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We have S±ur = UZ, where

Z = exp
(
−
∫
|z(ξ)|2

h2(ξ)
dξ
)
.

In Case A, the vacuum amplitude constant is nonzero and we can renor-
malize S±ur, obtaining the dressing operator

S±rn := S±urZ
−1/2 = U.

The scattering operator is (unfortunately) trivial:

S = S+∗
rn S

−
rn = 1.

In case B, the vacuum amplitude constant is zero. The Møller operators
are not defined. However, if we are willing to introduce and then remove
a cut-off, then we can informally conclude that the scattering operator is
again equal to identity.

6.5. The LSZ formalism for van Hove Hamiltonians

It is easy to see that in Case A, B and C, for f ∈ Domh−1, there exist
asymptotic fields:

a±(f) := lim
t→±∞

eitH a(e−ith f) e−itH = a(f) + (f |h−1z),

a∗±(f) := lim
t→±∞

eitH a∗(e−ith f) e−itH = a∗(f) + (z|h−1f).

This allows us to compute the scattering operator S̃ even in Case B and C.
It is trivial – proportional to the identity.

From the point of view of asymptotic fields, the difference between Case
A and Cases B and C consists in the type of representations of the CCR:
in Case A it is Fock, but in Case B and C it is not. (Here we use the
terminology that we will develop in the next section).

7. Representations of the CCR

We have seen that the LSZ formalism leads to asymptotic operators
satisfying the usual canonical commutation/anticommutation relations
(CCR/CAR). These operators can have unusual properties, different from
the properties of the usual creation/annihilation operators on a Fock space,
as we saw for van Hove Hamiltonians in Case B and C. Therefore, it is use-
ful to develop a theory of representations of the CCR/CAR in an abstract
form. In these lectures we will restrict ourselves to the case of the CCR.
We will follow [5, 7].
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7.1. Definition of a representation of the CCR

Let Y be a real vector space equipped with an antisymmetric form ω. (Usu-
ally we assume that ω is symplectic, i.e. nondegenerate). Let U(H) denote
the set of unitary operators on a Hilbert space H. We say that

Y 3 y 7→Wπ(y) ∈ U(H)

is a representation of the CCR over Y in H if

Wπ(y1)Wπ(y2) = e−
i
2y1ωy2 Wπ(y1 + y2), y1, y2 ∈ Y.

7.2. Regular representations of the CCR

Let Y 3 y 7→Wπ(y) be a representation of the CCR. Clearly,

R 3 t 7→Wπ(ty) ∈ U(H)

is a 1-parameter group. We say that a representation of the CCR is regular
if this group is strongly continuous for each y ∈ Y.

Assume that y 7→ Wπ(y) is a regular representation of the CCR. The
field operator corresponding to y ∈ Y is defined as

φπ(y) := −i
d
dt
Wπ(ty)

∣∣∣
t=0

.

We have the Heisenberg canonical commutation relations

[φπ(y1), φπ(y2)] = iy1ωy2.

7.3. Creation/annihilation operators associated with a

representation of the CCR

Let Z be a complex vector space with a scalar product (·|·). It is a symplectic
space with the form Im(·|·). Suppose that

Z 3 f 7→Wπ(f) ∈ U(H) (7.1)

is a regular representation of the CCR. For f ∈ Z we introduce the cre-
ation/annihilation operators corresponding to (7.1)

aπ∗(f) :=
1√
2

(φπ(f) + iφπ(if)), aπ(f) :=
1√
2

(φπ(f)− iφπ(if)).

They satisfy the usual relations

[aπ(f1), aπ(f2)] = 0, [aπ∗(f1), aπ∗(f2)] = 0,

[aπ(f1), aπ∗(f2)] = (f1|f2).
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7.4. The Fock representation

We still consider a complex vector space Z with a scalar product. Let Zcpl

denote its completion. Consider the creation/annihilation operators acting
on the Fock space Γs(Zcpl). Then φ(f) := 1√

2
(a∗(f) + a(f)) are self-adjoint

operators and

Z 3 f 7→ exp iφ(f) ∈ U
(
Γs(Zcpl)

)
is a regular representation of the CCR called the Fock representation. The
vacuum Ω is characterized by either of the following equivalent equations:

a(f)Ω = 0, f ∈ Z;

(Ω| eiφ(f) Ω) = e−
1
4 (f |f), f ∈ Z.

7.5. Coherent representations

In this subsection, following [12], we describe an important class of repre-
sentations of the CCR on a Fock space – coherent representations.

Let g be an antilinear functional on Z (not necessarily bounded). Then

Z 3 f 7→Wg(f) := W (f) eiRe(g|f) ∈ U(Γs(Zcpl)) (7.2)

is a regular representation of the CCR. It will be called the g-coherent
representation. The corresponding creation/annihilation operators are

ag(f) = a(f) +
1√
2

(f |g),

a∗g(f) = a∗(f) +
1√
2

(g|f).

The vector Ω is characterized by either of the following equations:

ag(f)Ω =
1√
2

(f |g)Ω,

(Ω|Wg(f)Ω) = e−
1
4 (f |f)+iRe(f |g) .

It is easy to show that the representation f 7→Wg(f) is unitarily equiv-
alent to the Fock representation iff g is a bounded functional, equivalently,
g ∈ Zcpl. More generally, Wg1 is equivalent to Wg2 iff g1 − g2 ∈ Zcpl. This
gives an obvious equivalence relation on the dual of Z. The equivalence
class of g with respect to this relation will be denoted [g].
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7.6. Coherent sectors

Suppose that

Z 3 f 7→Wπ(f) ∈ U(H) (7.3)

is a representation of the CCR (e.g. obtained by asymptotic limits, so that
π = ±). Let g be be an antilinear functional on Z. In this subsection we
describe a method that allows us to determine the largest subrepresentation
of Wπ equivalent to a multiple of the g-coherent representation.

Let Spancl(K) denote the closure of the linear span of K. Define

Kπg := {Ψ ∈ H : aπ(f)Ψ =
√

2(g|f)Ψ} (7.4)

= {Ψ ∈ H : (Ψ|Wπ(f)Ψ) = ‖Ψ‖2 e−
1
4 (f |f)+iRe(f |g)},

Hπ[g] := Spancl
{
aπ∗(f1) · · · aπ∗(f1)Ψ : Ψ ∈ Kπg , fi ∈ Z

}
(7.5)

= Spancl
{
Wπ(f)Ψ : Ψ ∈ Kπg , f ∈ Z

}
.

Kπg is called the space of g-coherent vectors and Hπ[g] is called the [g]-
coherent sector of Wπ. In the case g = 0, we have a somewhat different
terminology: Kπ0 is called the space of Fock vacua and Hπ[0] is called the
Fock sector of Wπ.

We also define an isometric operator Sπg : Kπg ⊗ Γs(Zcpl)→ H by

Sπg Ψ⊗ a∗g(f1) · · · a∗g(fn)Ω (7.6)

= aπ∗(f1) · · · aπ∗(fn)Ψ,

Sπg Ψ⊗Wg(f)Ω

= Wπ(f)Ψ.

(In (7.4), (7.5) and (7.6) we give two alternative equivalent definitions. One
of them involves creation/annihilation operators and ther other one involves
Weyl operators).

Theorem 7.1: The following statements are true:

(1) Hπ[g] is an invariant subspace for Wπ.
(2) Sπg : Kπg ⊗ Γs(Zcpl)→ Hπ[g] is unitary.
(3) Sπg 1⊗Wg(f) = Wπ(f) Sπg , f ∈ Z.
(4) If U is isometric such that U 1 ⊗ Wg(f) = Wπ(f) U, f ∈ Z, then

RanU ⊂ Hπ[g].

Thus Hπ[g] is the biggest subspace of H, on which Wπ is unitarily equivalent
to Wg.
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7.7. Covariant representations

We still consider a representation of the CCR (7.3). Let h be a self-
adjoint operator on Zcpl and H a self-adjoint operator on H. We say that
(Wπ, h,H) is a covariant representation of the CCR iff

eitHWπ(f) e−itH = Wπ(eith f), f ∈ Z.

The most obvious example of a covariant representation is (W,h,dΓ(h)),
where W is the Fock representation. This follows from the identity

eitdΓ(h)W (f) e−itdΓ(h) = W (eith f).

Let us now describe a somewhat more complicated example of a covari-
ant representation. Let g ∈ h−1Zcpl. Set z = 1√

2
hg. Introduce the van Hove

Hamiltonian

dΓg(h) := dΓ(h) + a∗(z) + a(z) + (z|h−1z).

Let W g by the g-coherent representation. Then (Wg, h,dΓg(h)) is a covari-
ant representation of the CCR, that is

eitdΓg(h)Wg(f) e−itdΓg(h) = Wg(eith f). (7.7)

Note that (7.7) is obvious for g ∈ Zcpl, because then

dΓg(h) = W (ig)dΓ(h)W (−ig),

Wg(f) = W (ig)W (f)W (−ig).

7.8. Coherent sectors of a covariant representation

The following theorem [12] shows that in some cases subrepresentations of
a covariant representation of the CCR are also covariant.

Suppose that Z 3 f 7→ Wπ(f) ∈ U(H) is a representation of the CCR.
We will use the notation Kπg , Hπ[g] and Sπg introduced in (7.4), (7.5) and
(7.6).

Theorem 7.2: Let (Wπ, h,H) be covariant. Then the following is true:

(1) Kπ0 and Hπ[0] are eitH-invariant. Let Kπ
0 := H

∣∣∣
Kπ0

and set

Hπ
0 = Kπ

0 ⊗ 1 + 1⊗ dΓ(h).

Then HSπ0 = Sπ0H
π
0 .
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(2) Let g ∈ h−1/2Z. Then Hπ[g] is eitH-invariant. Moreover, for some op-
erator Kπ

g on Kπg , if we set

Hπ
g := Kπ

g ⊗ 1 + 1⊗ dΓg(h),

then we have HSπg = SπgH
π
g .

(1) of the above theorem shows that one can always restrict a covariant
representation to its Fock sector, obtaining a covariant representation. This
covariant representation is very easy – the Hamiltonian restricted to this
sector decouples into a sum of non-interacting simple-minded terms.

(2) says that, under some conditions on g, the representation Wπ re-
stricted to the [g]-coherent sector is still covariant. Moreover, it is unitarily
equivalent to (

1⊗W g, 1⊗ h,Kπ
g ⊗ 1 + 1⊗ dΓg(h)

)
.

This fact can be used to analyze dynamics that are seemingly difficult, eg.
such as those typical for the infra-red problem [4, 30, 33, 25, 26]. In fact, if
g 6∈ Zcpl, then the Hamiltonian H restricted to the [g]-coherent sector has
no eigenvectors, and in spite of that it is under control – its main part is a
well understood van Hove Hamiltonian.

8. Pauli-Fierz Hamiltonians

Many physical situations are well described in terms of a “small quantum
system” interacting with quantized fields. The small quantum system can
be an atom, a molecule, a “quantum dot”, etc. One often assumes that it is
finite dimensional, or at least that its Hamiltonian has a discrete spectrum.
The quantized fields can describe electromagnetic radiation (photons), crys-
tal vibrations (phonons), etc. One often assumes that they are described
by a simple free dynamics.

The Hamiltonian of a composite system typically consists of three terms:
the Hamiltonian of the small system, the Hamiltonian of the quantum field,
and the interaction that couples them.

8.1. Definition of Pauli-Fierz Hamiltonians

We will restrict ourselves to the case of bosonic fields and we will assume
that the interaction is linear in the fields.

More explicitly, suppose that K be a Hilbert space with a self-adjoint
operator K describing the small system. For instance, we can consider the
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space L2(Rd) with a Schrödinger operator K = −∆+V (x). Usually, we will
assume that K has discrete eigenvalues, which is the case if lim

|x|→∞
V (x) =

∞.
We assume that the bosons are described by the Fock space Γs(Z),

where, for concreteness, the one-particle space is Z = L2(Rd). As usual,
the dispersion relation of the bosons is assumed to be h(ξ) :=

√
ξ2 +m2,

m ≥ 0. The parameter m will be called “the mass”.
The full Hilbert space is K ⊗ Γs(Z). We fix a coupling function

ξ 7→ v(ξ) ∈ B(K).

An operator of the form

H := H0 + V, (8.1)

where

H0 := K ⊗ 1 + 1⊗
∫
h(ξ)a∗(ξ)a(ξ)dξ, (8.2)

V :=
∫
v(ξ)⊗ a∗(ξ)dξ + hc,

will be called a Pauli-Fierz Hamiltonian. Note in parenthesis that the ter-
minology in this area is not settled and other names are used in this context
as well, such as a generalized spin-boson Hamiltonian.

8.2. Spectral properties of Pauli-Fierz Hamiltonians

Let us start with some results about the spectral properties of Pauli-Fierz
Hamiltonians.

Theorem 8.1:

(1) [10] Assume that (K + i)−1 is compact and∫
(1 + h(ξ)−1)‖v(ξ)‖2dξ <∞.

Then H is self-adjoint and bounded from below. If E := inf spH, then

spessH = [E +m,∞[. (8.3)

(2) [16], see also [1, 2, 19]. If in addition∫
(1 + h(ξ)−2)‖v(ξ)‖2dξ <∞,

then H has a ground state (the infimum of its spectrum is an eigen-
value).
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(1) can be called an HVZ-type theorem for Pauli-Fierz Hamiltonians
(after a well known Hunziker-van Winter-Zhislin Theorem about N -body
Schrödinger Hamiltonians [29]). It implies that if m is positive, then H nec-
essarily has a ground state. By (2), if the interaction is sufficiently regular
in the infrared region, this ground state survives even if m = 0.

In typical situations one expects that H has no eigenvalues embedded
in its continuous spectrum. This expecation is often confirmed by rigorous
results. In fact, for a small non-zero coupling constant and some generic
assumptions on the interaction, one can show that the spectrum of Hλ :=
H + λV in ]E +m,∞[ is purely absolutely continuous, eg. [2, 3].

In particular, if m = 0, this means that the only eigenvalue of Hλ is at
the bottom of its spectrum. One can often prove that it is nondegenerate.

8.3. Scattering theory of Pauli-Fierz Hamiltonians

In the case of Pauli-Fierz Hamiltonians, the formalism of scattering the-
ory based on Abelian Møller operators (which in Section 5 we called the
Feynman-Dyson formalism) does not apply. Note that (8.1) is not an oper-
ator of the form (5.1), because of the presence of the small system.

It turns out, however, that a certain version of the LSZ formalism works
well for Pauli-Fierz Hamiltonians. This formalism will be described below,
following its version described by Gérard and the author in [10, 11, 12].
(Fröhlich-Griesemer-Schlein use a slightly different setup in [14]).

Theorem 8.2: [10] Suppose that for f from a dense subspace we have∫ ∞
0

∥∥∥∥∫ eith(ξ) f(ξ)v(ξ)dξ + hc
∥∥∥∥ dt <∞. (8.4)

Define Z1 := Domh−1/2 ⊂ L2(Rd). Then the following holds:

(1) For f ∈ Z1, there exists

W±(f) := s− lim
t→±∞

eitH 1⊗W (e−ith f) e−itH ; (8.5)

(2) W±(f1)W±(f2) = e−iIm(f1|f2)W±(f1 + f2), f1, f2 ∈ Z1;
(3) R 3 t 7→W±(tf) is strongly continuous;
(4) eitHW±(f) e−itH = W±(eith f);
(5) If HΨ = EΨ, then (Ψ|W±(f)Ψ) = e−‖f‖

2/4 ‖Ψ‖2.

Note that the assumption (8.4) is very weak and it allows for m = 0.
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Now we can follow the strategy developed in in Section 7. Using asymp-
totic Weyl operators W±(f) we introduce asymptotic fields

φ±(f) :=
d

idt
W±(tf)

∣∣∣
t=0

and asymptotic creation/annihilation operators

a∗±(f) :=
1√
2

(φ(f) + iφ(if)),

a±(f) :=
1√
2

(φ(f)− iφ(if)).

We also define the space of asymptotic Fock vacua:

K±0 :=
{

Ψ : (Ψ|W±(f)Ψ) = e−‖f‖
2/4 ‖Ψ‖2

}
(8.6)

=
{

Ψ : a±(f)Ψ = 0
}
. (8.7)

(Remember that (8.6) and (8.7) are equal to one another).
Here is a reformulation of Theorem 8.2, where we use the terminology

introduced in Section 7:

Theorem 8.3: Under the assumptions of Theorem 8.2 the following is
true:

(1) For f ∈ Z1 the limit (8.5) exists. Denote it by W±(f).
(2) Z1 3 f 7→W±(f) are representations of the CCR.
(3) These representations are regular.
(4) (W±, h,H) are covariant.
(5) Hp(H) ⊂ K±0 , where Hp(H) denotes the span of eigenvectors of H.

8.4. Asymptotic dynamics

Let us stress that so far in our scattering theory for Pauli Fierz amilto-
nians, the starting point was a single Hamiltonian H, and not a pair of
Hamiltonians (H,H0). In fact, a priori it is not clear which operator should
play the role of the “free Hamiltonian”, or better to say, the “asymptotic
Hamiltonian”. The operator H0 of (8.2), obtained by dropping the interac-
tion term, is in general not the right choice. In fact, typically, it even has a
completely different spectrum than H. In this subsection we will describe
how to introduce natural asymptotic Hamiltonians and to construct Møller
operators.

First let us introduce the operator

K±0 := H
∣∣∣
K±0
.
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It describes the energies of asymptotic vacua. (Under the assumptions of
Theorem 8.4 below we can prove, and under more general conditions we
expect, that the spectrum of K±0 coincides with the point spectrum of H).

Define

H±[0] := Spancl
{
W±(f)Ψ : Ψ ∈ K±0 , f ∈ Z1

}
.

Clearly, H±[0] is the smallest space containing the asymptotic vacua and
invariant wrt asymptotic creation operators. It is the largest space on which
the asymptotic representations are Fock.

Define the asymptotic Fock Hilbert space H±as
0 := K±0 ⊗Γs(L2(Rd)) and

the asymptotic Hamiltonian for the Fock sector

H±as
0 := K±0 ⊗ 1 + 1⊗

∫
h(ξ)a∗(ξ)a(ξ)dξ.

Note that there exist unitary operators

S±0 : H±as
0 → H±[0] ⊂ H,

which we will call the Møller operators for the Fock sector, such that

S±0 Ψ⊗ a∗(f1) · · · a∗(fn) Ω

= a∗±(f1) · · · a∗±(fn) Ψ, Ψ ∈ K±0 .

The Møller operators intertwine the creation/annihilation operators and
the Hamiltonian on the asymptotic space, and those on the physical space:

S±0 1⊗ a∗(f) = a∗±(f)S±0 ,

S±0 1⊗ a(f) = a±(f)S±0 ,

S±0 H
±as
0 = HS±0 .

The scattering operators for the Fock sector is defined as

S00 = S+∗
0 S−0 .

It satisfies S00H
−as
0 = H+as

0 S00. If H+
[0] = H−[0], then S00 is unitary on

H+as
0 = H−as

0 .
The operator S00 can be used to compute various physically interesting

scattering cross-sections.
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8.5. Asymptotic completeness

Theorem 8.2 is not difficult to prove. The following theorem is deeper,
especially its second part.

Theorem 8.4: Asymptotic completeness for massive Pauli-Fierz

Hamiltonians. Assume that m > 0. Then

(1) [21, 10, 11] H±[0] = H, in other words, the asymptotic representations of
the CCR are Fock.

(2) [10] K±0 = Hp(H), in other words, all the asymptotic vacua are linear
combinations of eigenvectors.

In the proof of Theorem 8.4 an important role is played by the methods
developed in the study of N -body scattering theory [9]. It is a rather satis-
factory result except for one aspect: it assumes the positivity of the mass,
which is not very physical. It would be very interesting to extend it to the
case m = 0. Here is a possible conjecture [12]:
Conjecture: Asymptotic completeness for massless Pauli-Fierz
Hamiltonians. Assume that h(ξ) = |ξ| and∫

(1 + h(ξ)−2)‖v(ξ)‖2dξ <∞.

Then

(1) H±[0] = H,
(2) K±0 = Hp(H).

Note that the above conjecture is true if dimK = 1 (i.e. for van Hove
Hamiltonians). It is also true if v(ξ) = 0 for |ξ| < ε, ε > 0, (as remarked in
[14]).

8.6. Relaxation to the ground state

Common wisdom says that a typical small system interacting with a reser-
voir at zero temperature will relax to its ground state. For a wide and
generic class of Pauli-Fierz Hamiltonians this idea can be rigorously ex-
pressed and proven, and is essentially an easy corollary of their asymptotic
completeness and spectral properties.

As we remarked before, one can often prove that Pauli-Fierz Hamiltoni-
ans have only absolutely continuous spectrum except for a unique ground
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state Ψgr [2, 3]. If in addition asymptotic completeness holds [10, 14], then
the asymptotic space is H±as

0 = Γs(Z).
Introduce the C∗-algebra

A := B(K)⊗ CCR(Z) ⊂ B (K ⊗ Γ(Γs(Z))) ,

where CCR(Z) = Spancl{W (f) : f ∈ Z}. The following theorem comes
from [22, 14]:

Theorem 8.5: Relaxation to the ground state. Assume that H is
a Pauli-Fierz Hamiltonian for which asymptotic completeness holds, and
there are no eigenvectors except for a unique ground state Ψgr. Let A ∈ A.
Then

w− lim
|t|→∞

eitH A e−itH = (Ψgr|AΨgr) 1H.

8.7. Coherent asymptotic representations

In the massless case asymptotic completeness does not always hold. In par-
ticular, the Fock property of asymptotic fields may be not true. To see this
it is enough to consider the case of van Hove Hamiltonians; more compli-
cated examples can be found in [12]. Nevertheless, following the formalism
of Subsection 7.6 and [12], one can try to look for coherent asymptotic rep-
resentations. This will allow us to study scattering amplitudes also in the
case where the Fock property breaks down.

In fact, assume that g belongs to the dual of Z1. Then one can define
the subspaces of asymptotic g-coherent vectors

K±g := {Ψ ∈ H : (Ψ|W±(f)Ψ) = ‖Ψ‖2 e−
1
4 (f |f)+iRe(f |g)},

the [g]-coherent sector

H±[g] := Spancl
{
W±(f)Ψ : Ψ ∈ Kπg , f ∈ Z

}
,

the g-coherent asymptotic Hilbert space

H±as
g := K±g ⊗ Γs(Zcpl),

and the g-coherent asymptotic Hamiltonians

H±as
g := K±g ⊗ 1 + 1⊗ dΓ(h).
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The Møller operators for the g-coherent sectors S±g : H±as
g → H±[g] ⊂ H

intertwine creation/annihilation operators and the Hamiltonians:

S±g 1⊗ a∗g(f) = a∗±(f)S±g ,

S±g 1⊗ ag(f) = a±(f)S±g ,

S±g H
±as
g = HS±g .

There exists an alternative time-dependent definition of the Møller op-
erator, which follows the pattern (2.10). Define the g-coherent identifier
J±g : H±as

g → H by

J±g Ψ⊗Wg(f)Ω = 1⊗W (f) Ψ.

Then we can introduce the Møller operators using this identifier:

S±g = s− lim
t→±∞

eitH J±g e−itH±as
g .

Let g1, g2 belong to the dual of Z1. Then one can define the scattering
operator between the sectors corresponding to g1 and g2:

Sg2,g1 := S+∗
g2 S

−
g1 .

This operator can be used to define and compute scattering crossections
even if asymptotic fields have no Fock vacua.
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