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Abstract. Our paper is devoted to the oscillator semigroup, which can be
defined as the set of operators whose kernels are centered Gaussian. Equiva-
lently, they can be defined as the Weyl quantization of centered Gaussians.
We use the Weyl symbol as the main parametrization of this semigroup. We
derive formulas for the tracial and operator norm of the Weyl quantization
of Gaussians. We identify the subset of Gaussians, which we call quantum
degenerate, where these norms have a singularity.

1. Introduction
Throughout our paper we will use the Weyl quantization, which is the most natural
correspondence between quantum and classical states. For a function k = k(x, p),
with x, p ∈ Rd, we will denote by Op(k) its Weyl quantization. Then function k is
called the Weyl symbol (or the Wigner function) of the operator Op(k).

The Heisenberg uncertainty relation says that one cannot compress a state
both in position and momentum without any limits. This is different than in
classical mechanics, where in principle a state can have no dispersion both in
position and momentum.

One can ask what happens to a quantum state when we compress its Weyl
symbol. To be more precise, consider the Gaussian function e−λ(x

2+p2), where
λ > 0 is an arbitrary parameter that controls the “compression”. It is easy to com-
pute the Weyl quantization of e−λ(x2+p2) and express it in terms of the quantum
harmonic oscillator

H = x̂2 + p̂2 =
d∑
j=1

(x̂2j + p̂2j ). (1.1)
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There are 3 distinct regimes of the parameter λ:

Op
(
e−λ(x

2+p2)
)
=


(1− λ2)−d/2 exp

[
− 1

2 log
(1+λ)
(1−λ)H

]
, 0 < λ < 1,

2−d1l{d}(H), λ = 1,

(λ2 − 1)−d/2(−1)(H−d)/2 exp
[
− 1

2 log
(1+λ)
(λ−1)H

]
, 1 < λ.

(1.2)
Thus, for 0 < λ < 1, the quantization of the Gaussian is proportional to a ther-
mal state of H. As λ increases to 1, it becomes “less mixed”–its “temperature”
decreases. At λ = 1 it becomes pure—its “temperature” becomes zero and it is
the ground state of H. For 1 < λ < ∞, when we compress the Gaussian, it is no
longer positive—due to the factor (−1)(H−d)/2 it has eigenvalues with alternating
signs. Besides, it becomes “more and more mixed”, contrary to the naive classical
picture.

Thus, at λ = 1 we observe a kind of a “phase transition”: For 0 ≤ λ < 1 the
quantization of a Gaussian behaves more or less according to the classical intuition.
For 1 < λ the classical intuition stops to work—compressing the classical symbol
makes its quantization more “diffuse”.

It is easy to compute the trace of (1.2):

TrOp
(
e−λ(x

2+p2)
)
=

1

2dλd
. (1.3)

Evidently, (1.3) does not see the “phase transition” at λ = 1. However, if we
consider the trace norm, this phase transition appears—the trace norm of (1.2) is
differentiable except at λ = 1:

Tr
∣∣∣Op

(
e−λ(x

2+p2)
)∣∣∣ =


1

2dλd
λ ≤ 1,

1

2d
, 1 ≤ λ.

(1.4)

Note that (1.4) can be viewed as a kind of quantitative “uncertainty principle”.
Our paper is devoted to operators that can be written as the Weyl quanti-

zation of a (centered) Gaussian, more precisely, operators of the form aOp
(
e−A

)
,

whereA is a quadratic form with a strictly positive real part and a ∈ C. Such opera-
tors form a semigroup called the oscillator semigroup. We denote it by Osc++

(
C2d

)
.

We also considered its subsemigroup, called the normalized oscillator semigroup
and denoted Oscnor++

(
C2d

)
, which consists of operators

±
√

det(1l +Aθ)Op
(
e−A

)
,

where θ is −i times the symplectic form ω.
The oscillator semigroup is closely related to the complex symplectic group

Sp
(
C2d

)
. In particular, there exists a natural 2–1 epimorphism from Oscnor++

(
C2d

)
onto Sp++

(
C2d

)
, which is a certain natural subsemigroup of Sp

(
C2d

)
.

The oscillator semigroup is also closely related to the better known meta-
plectic group, denoted Mp

(
R2d

)
. The metaplectic group is generated by operators
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of the form ±
√
det(1l +Bω)Op

(
eiB
)
, where B is a real symmetric matrix. There

exists a natural 2–1 epimorphism from Mp
(
R2d

)
to the real symplectic group

Sp
(
R2d

)
. Not all elements of the metaplectic group can be written as Weyl quan-

tizations of a Gaussian.
The situation with the oscillator semigroup is somewhat different than with

the metaplectic group. All elements of the oscillator semigroup are quantizations
of a Gaussian, however, not all of them correspond to a (complex) symplectic
transformation. Those that do not correspond to quadratic forms A satisfying
det(1l +Aθ) = 0. We call such quadratic forms “quantum degenerate”. Classically,
they are of course nondegenerate. Only their quantization is degenerate. In partic-
ular, for a quantum degenerate A, the operator Op

(
e−A

)
is not proportional to an

element of Oscnor++

(
C2d

)
. The set of quantum degenerate matrices can be viewed

as a place where some kind of a phase transition takes place in the oscillator semi-
group. For instance, as we show in our paper, the trace norm of Op

(
e−A

)
depends

smoothly on quantum nondegenerate A’s, however, its smoothness typically breaks
down at quantum degenerate A’s.

It is also natural to mention another type of an oscillator semigroup, which
we denote Osc+

(
C2d

)
. It is the semigroup generated by the operators of the form

aOp
(
e−A

)
, where A ≥ 0. Osc+

(
C2d

)
contains both Osc++

(
C2d

)
and Mp

(
R2d

)
. It

is in some sense the closure of Osc++

(
C2d

)
. We mention this semigroup only in

passing, concentrating on Osc++

(
C2d

)
, which is easier, because, as we mentioned

above, all elements of Osc++

(
C2d

)
have Gaussian symbols. Note that the conve-

nient notation ++ for > 0 and + for ≥ 0, which we use, is borrowed from Howe
[16].

Most of the time our discussion of the oscillator semigroup is representa-
tion independent (without invoking a concrete Hilbert space on which Op

(
e−A

)
acts). Perhaps the most obvious representation is the so-called Schrödinger rep-
resentation, where the Hilbert space is L2

(
Rd
)
, x̂ is identified with the operator

of multiplication by x and p̂ is 1
i ∂x. Another possible representation is the Fock

representation (or, which is essentially equivalent, the Bargmann–Fock represen-
tation, see, e.g., [11]). In both Schrödinger and Bargmann–Fock representations
the oscillator semigroup consists of operators with centered Gaussian kernels.

Let us now discuss the literature on operators with Gaussian kernels, or
equivalently, on quantizations of Gaussians. Probably, the best known reference
on this subject is a paper [16] by Howe. In fact, we follow to some extent the
terminology from [16]. His paper contains, for instance, a formula of composition
of operators with Gaussian kernels, a criterion for positivity of such operators
and the proof that there exists a 2–1 epimorphism from the normalized oscillator
semigroup to a subsemigroup of Sp

(
C2d

)
. Howe works mostly in the Schrödinger

representation. Instead of the Weyl symbol, he occasionally considers the so-called
Weyl transform, which is essentially the Fourier transform of the Weyl symbol.

Another important work on the subject is a paper [15] by Hilgert, who realized
that the oscillator semigroup is isomorphic to a semigroup described by Bargmann,
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Brunet and Kramer (see [2], [6], and [7]). Hilgert uses mostly the Fock–Bargmann
representation.

The book of Folland [14] contains a chapter on the oscillator semigroup, which
sums up the main points of [15] and [16].

The existence of the “phase transition” at quantum degenerate positive Gaus-
sians has been known for quite a long time, where the earliest reference we could
find is the paper [20] by Unterberger.

Our paper differs from [14, 15, 16] by using the Weyl quantization as the
basic tool for the description of the oscillator semigroup. It is in some sense paral-
lel to the presentation of the metaplectic group contained in [11, Sect. 10.3]. The
Weyl quantization is in our opinion a natural tool in this context. First of all, it is
symplectically invariant (unlike the Fock–Bargmann transform or the Schrödinger
representation). Because of that, the analysis based on the Weyl quantization is
particularly convenient and yields simple formulas. Secondly, the Weyl quantiza-
tion allows us to make a direct contact with the quantum–classical correspondence
principle. This semiclassical aspect is hidden when one uses the Weyl transform,
which is also symplectically invariant.

An operation, that we introduce, which we find interesting is the prod-
uct # in the set of symmetric matrices. More precisely, it is defined so that
Op
(
e−A

)
Op
(
e−B

)
is proportional to Op

(
− eA#B

)
. Whenever defined, # is as-

sociative, however it is not always well defined. # can be viewed as a semiclassi-
cal noncommutative distortion of the usual sum of square matrices. As we show,
quantum nondegenerate matrices with a positive part form a semigroup, which is
essentially isomorphic to the oscillator semigroup.

Among new results obtained in our paper, there is a formula for the absolute
value of an operator Op

(
e−A

)
, its trace norm and its operator norm.

There exists a close relationship between the set of complex matrices equipped
with # and the complex symplectic group. This relationship is quite intricate–it
is almost a bijection, after removing some exceptional elements in both sets. One
of new results of our paper is a detailed description of this relationship, see in
particular Theorem 18.

An interesting recent paper of Viola [21] gives a formula for the norm of an
element of the oscillator semigroup. Our formula for

∥∥Op
(
e−A

)∥∥ is in our opinion
simpler than Viola’s.

As an application of the formula for the trace norm of Op
(
e−A

)
we give a

proof of the boundedness of the Weyl quantization with an explicit estimate of the
of the operator norm. This result, which is a version of the so-called Calderon–
Vaillancourt Theorem for the Weyl quantization, follows the ideas of Cordes [10]
and Kato [18], however, the estimate of the norm seems to be new.

Elements of the oscillator semigroup can be viewed as exponentials of quan-
tum quadratic Hamiltonians, that is e−Op(H), where H is a classical quadratic
Hamiltonian with a positive real part. One example of such a Hamiltonian is
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Ĥψ := eiψp̂2+e−iψx̂2 for |ψ| < π
2 , which is often called the Davies harmonic oscil-

lator. It has been noted by a number of authors that this operator has interesting,
often counterintuitive properties. In particular, [1] and [21] point out that e−zĤψ

can be defined as a bounded operator only for z that belong to a subset of the
complex plane of a rather curious shape. We reproduce this result using methods
developed in this article.

The oscillator semigroup provides a natural framework for a discussion of
holomorphic semigroups z 7→ e−zOp(H) associated with accretive quadratic Hamil-
tonians Op(H). We briefly discuss this issue at the end of our paper.

Finally, let us mention that one can explicitly compute the Weyl symbol of
various functions of the harmonic oscillator, not only of its exponential. In partic-
ular, formulas in terms of special functions for the Weyl symbol of the resolvent
of the harmonic oscillator can be found in [12]; see also [8], where the inverse of
the harmonic oscillator is considered.

2. Notation
Let L(Cn) denote the set of n× n matrices. For R ∈ L(Cn) we will write R, R#,
resp. R∗ for its complex conjugate, transpose, resp. Hermitian adjoint. Elements
of Cn are represented by column matrices, so that for v, w ∈ Cn the (sesquilinear)
scalar product of v and w can be denoted by v∗w.

By σ(R) we will denote the spectrum of R.
We set

Lreg(Cn) := {R ∈ L(Cn) | R+ 1l is invertible}. (2.1)
For R ∈ Lreg(Cn), its Cayley transform is defined by

c(R) := (1l−R)(1l +R)−1.

The Cayley transform is a bijection on Lreg(Cn) and it is involutive, i.e.,
c(c(R)) = R. (2.2)

For A ∈ L(Cn), we write A > 0, resp. A ≥ 0 if
v∗Av > 0, v ∈ Cn, v 6= 0,

resp. v∗Av ≥ 0, v ∈ Cn.
(2.3)

Sym(Rn), resp. Sym(Cn) denotes the set of symmetric real, resp. complex
n× n matrices. We also set

Sym+(Rn) := {A ∈ Sym(Rn) | A ≥ 0}, (2.4)
Sym++(Rn) := {A ∈ Sym(Rn) | A > 0}, (2.5)
Sym+(Cn) := {A ∈ Sym(Cn) | ReA ≥ 0}, (2.6)

Sym++(Cn) := {A ∈ Sym(Cn) | ReA > 0}. (2.7)
Note that Sym++(Cn) is sometimes called the (generalized) Siegel upper half-plane.
It is sometimes denoted Sn or Sn [16].
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The following proposition can be found in [16]:

Proposition 1. If A ∈ Sym++(Cn), then A−1 exists and belongs to Sym++(Cn).

Proof. Let A = Ar + iAi with Ar ∈ Sym++(Rn), Ai ∈ Sym(Rn). Let B :=
√
Ar,

C := B−1AiB
−1. Then A = B(1l + iC)B and A−1 = B−1(1l + iC)−1B−1. Clearly,

(1l + iC)−1 ∈ Sym++(Cn). Hence A−1 ∈ Sym++(Cn). �

Every n× n symmetric matrix A defines a quadratic form on Rn by
Rn 3 y 7→ y#Ay ∈ C. (2.8)

We will often write A for the function (2.8). Thus, in particular,

e−A(y) = e−y
#Ay.

We will often need to use the square root of a complex number a. If it is
clear from the context that a is positive and real, then

√
a will always denote the

positive square root. If a is a priori arbitrary, then ±
√
a will denote both values

of the square root. If a given formula involves only one of possible values of the
square root, then we will write ϵ

√
a where ϵ = 1 or ϵ = −1.

3. The Weyl quantization
Recall that for any k ∈ S ′(Rd × Rd

)
Op(k)(x, y) = (2π)−d

∫
k
(x+ y

2
, p
)
eip(x−y) dp (3.1)

is called the Weyl–Wigner quantization of the symbol k, see, e.g., [17, Sect. 18.5]
or [11]. We can recover the symbol of a quantization from its distributional kernel
by

k(x, p) =

∫
Op(k)

(
x+

z

2
, x− z

2

)
e−izp dz. (3.2)

For sufficiently nice functions k,m we can define the star product ∗ (sometimes
called the Moyal star) such that Op(k)Op(m) = Op(k ∗m) holds. On the level of
symbols we have

(k ∗m)(x, p) := e
i
2 (∂x1∂p2−∂p1∂x2 )k(x1, p1)m(x2, p2)

∣∣∣x:=x1=x2
p:=p1=p2

. (3.3)

Write y =

[
x
p

]
, ω :=

[
0 1ld

−1ld 0

]
, and θ :=

[
0 −i1ld
i1ld 0

]
= −iω. One can rewrite

(3.3) in a more compact form:

(k ∗m)(y) = e−
1
2∂y1θ∂y2k(y1)m(y2)

∣∣∣
y:=y1=y2

. (3.4)

Here is an integral form of (3.4):

(k ∗m)(y) = π−2d

∫
dy1

∫
dy2 e

2(y−y1)θ(y−y2)k(y1)m(y2), (3.5)
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(see, e.g., [11, Theorem 8.70(4)]). For the product of three symbols, we have
(k ∗m ∗ n)(y)

= e−
1
2∂y1θ∂y2−

1
2∂y1θ∂y3−

1
2∂y2θ∂y3k(y1)m(y2)n(y3)

∣∣∣
y:=y1=y2=y3

= π−3d

∫
dy1

∫
dy2

∫
dy3 e

(y−y1)θ(y−y2)+(y−y2)θ(y−y3)+(y−y1)θ(y−y3) (3.6)

× e−
1
2 (y−y1)θ(y−y1)−

1
2 (y−y2)θ(y−y2)−

1
2 (y−y3)θ(y−y3)k(y1)m(y2)n(y3)

∣∣∣
y=y1=y2=y3

.

4. Product #

Let A,B ∈ Sym
(
C2d

)
. Suppose that

the matrix
[
θAθ −θ
θ θBθ

]
is invertible. (4.1)

We then define A#B ∈ Sym
(
C2d

)
by

A#B :=

[
−1l
1l

]# [
θAθ −θ
θ θBθ

]−1 [−1l
1l

]
. (4.2)

For the time being, the definition of the product # may seem strange. As we
will soon see in Sect. 6, it is motivated by the product of operators with Gaussian
symbols.

The following proposition gives a condition which guarantees that A#B is
well defined.

Proposition 2. Condition (4.1) holds iff the inverse of (1l + AθBθ) exists. We
then have[

θAθ −θ
θ θBθ

]−1

=

[
(θAθ +B−1)−1 (θ + θBθAθ)−1

−(θ + θAθBθ)−1 (θBθ +A−1)−1

]
=

[
Bθ(1l +AθBθ)−1θ (1l +BθAθ)−1θ
−(1l +AθBθ)−1θ Aθ(1l +BθAθ)−1θ

]
, (4.3)

A#B = (θAθ +B−1)−1 + (θBθ +A−1)−1

+(θ + θAθBθ)−1 − (θ + θBθAθ)−1. (4.4)

Proof. It is well known how to compute an inverse of a 2 × 2 block matrix. This
yields (4.3), which implies (4.4).

Clearly,
θ(1l +AθBθ)#θ = (1l +BθAθ). (4.5)

Therefore, the inverse of (1l +AθBθ) exists iff the inverse of (1l +BθAθ) exists. If
this is the case, then all terms in (4.3) and (4.4) are well defined. �
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Proposition 3. The product # is associative, i.e., if A,B,C ∈ Sym
(
C2d

)
and

A#B, B#C, (A#B)#C and A#(B#C) are well defined, then
(A#B)#C = A#(B#C). (4.6)

Besides,
A#0 = 0#A = A, A#(−A) = 0,

A#B = B#A, (−A)#(−B) = −B#A.

Proof. We check that
(A#B)#C = A#(B#C)

=

−1l
0
1l

# θAθ + 1
2θ − 1

2θ − 1
2θ

1
2θ θBθ + 1

2θ − 1
2θ

1
2θ

1
2θ θCθ + 1

2θ

−1 −1l
0
1l

 . (4.7)

(Compare with (3.6)). This yields (4.6). The remaining statements are straight-
forward. �

Note that it is useful to think of # as a noncommutative deformation of the
addition. In fact, we have

A#B = A+B +O(A2 +B2). (4.8)

5. Quantum non-degenerate matrices
Define

Symqnd
(
C2d

)
:=
{
A ∈ Sym

(
C2d

)
: det(1l +Aθ) 6= 0

}
, (5.1)

Symqnd
++

(
C2d

)
:=
{
A ∈ Sym++

(
C2d

)
: det(1l +Aθ) 6= 0

}
, (5.2)

Symqnd
(
R2d

)
:=
{
A ∈ Sym

(
R2d

)
: det(1l +Aθ) 6= 0

}
, (5.3)

Symqnd
++

(
R2d

)
:=
{
A ∈ Sym++

(
R2d

)
: det(1l +Aθ) 6= 0

}
. (5.4)

(“qnd” stands for quantum non-degenerate).
There are several equivalent formulas for the product (4.2). It is actually not

so obvious to pass from one of them to another. In the following proposition we
give a few of them.

Proposition 4. Let A,B ∈ Symqnd
(
C2d

)
such that (1l +AθBθ)−1 exists. Then

A#B = c
(
c(Aθ)c(Bθ)

)
θ (5.5)

= (1l +Aθ)−1(Aθ +Bθ)(1l +AθBθ)−1(1l +Aθ)θ (5.6)
= (1l +Bθ)(1l +AθBθ)−1(Aθ +Bθ)(1l +Bθ)−1θ (5.7)
= (1l−Aθ)(1l +BθAθ)−1(Aθ +Bθ)(1l−Aθ)−1θ (5.8)
= (1l−Bθ)−1(Aθ +Bθ)(1l +BθAθ)−1(1l−Bθ)θ. (5.9)
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We have
1l +AθBθ = (1l +Aθ)(1l +A#Bθ)−1(1l +Bθ), (5.10)

and A#B ∈ Symqnd
(
C2d

)
.

Proof. To see (5.5), it is enough to show that
c(A#Bθ) = c(Aθ)c(Bθ). (5.11)

Equation (4.4) can be rewritten as
A#B = Bθ(1l +AθBθ)−1θ +Aθ(1l +BθAθ)−1θ

+ (1l +AθBθ)−1θ − (1l +BθAθ)−1θ

= (1l +Bθ)(1l +AθBθ)−1θ − (1l−Aθ)(1l +BθAθ)−1θ.

Therefore,
1l−A#Bθ = (Aθ − 1l)Bθ(1l +AθBθ)−1 + (1l−Aθ)(1l +BθAθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ); (5.12)
1l +A#Bθ = (1l +Bθ)Aθ(1l +BθAθ)−1 + (1l +Bθ)(1l +AθBθ)−1

= (1l +Bθ)(1l +AθBθ)−1(1l +Aθ). (5.13)
Hence,

c(A#Bθ)

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)(1l +Aθ)−1(AθBθ + 1l)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)
(
Bθ + (1l +Aθ)−1(1l−Bθ)

)
(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1
(
Bθ + (1l−Bθ)(1l +Aθ)−1

)
(1l−Bθ)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l +BθAθ)(1l +Aθ)−1(1l−Bθ)(1l +Bθ)−1

= c(Aθ)c(Bθ).

Thus (5.5) is proven.
Next note that
c(Aθ)c(Bθ) = (1l +Aθ)−1(1l−Aθ)(1l−Bθ)(1l +Bθ)−1

= (1l +Aθ)−1(1l−Aθ −Bθ +AθBθ)(1l +Bθ)−1.
(5.14)

Therefore,
1l− c(Aθ)c(Bθ) = 2(1l +Aθ)−1(Aθ +Bθ)(1l +Bθ)−1 (5.15)
1l + c(Aθ)c(Bθ) = 2(1l +Aθ)−1(1l +AθBθ)(1l +Bθ)−1. (5.16)

Next we insert (5.15) and (5.16) into
A#B = c

(
c(Aθ)c(Bθ)

)
θ (5.17)

=
(
1l− c(Aθ)c(Bθ)

)(
1l + c(Aθ)c(Bθ)

)−1
θ (5.18)

=
(
1l + c(Aθ)c(Bθ)

)−1(
1l− c(Aθ)c(Bθ)

)
θ, (5.19)
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obtaining (5.6), resp. (5.7).
We know that A#B is symmetric. Applying the transposition to (5.6), resp.

(5.7), we obtain (5.8), resp. (5.9), where we use θ# = −θ, A# = A, B# = B.
Equation (5.10) is proven in (5.13). This implies that 1l+A#Bθ is invertible.

Hence A#B ∈ Symqnd
(
C2d

)
. �

The set Symqnd
(
C2d

)
equipped with (4.2) is not a semigroup. It is enough to

see that for A = B =

[
i 0
0 i

]
we have 1l +AθBθ = 0, so A#B is not defined.

Proposition 5. Sym++

(
C2d

)
is a semigroup.

Proof. Let A and B belong to Sym++

(
C2d

)
. The matrix

[
θAθ −θ
θ θBθ

]
belongs to

Sym++

(
C2d

)
. Hence, so does its inverse. Thus, (4.2) also belongs to Sym++

(
C2d

)
.

This shows that A#B is well defined and belongs to Sym++

(
C2d

)
. �

Proposition 6. Symqnd
++

(
C2d

)
is also a semigroup.

Proof. Let A and B belong to Symqnd
++

(
C2d

)
. We already know that A#B is well

defined, and hence 1l + AθBθ is invertible (see Proposition 2). Using (5.10) and
the invertibility of 1l +Aθ, 1l +Bθ, we can conclude that 1l +A#Bθ is invertible.
Hence A#B ∈ Symqnd

++

(
C2d

)
. �

6. Oscillator semigroup
Following [16, 14], the oscillator semigroup Osc++

(
C2d

)
is defined as the set of

operators on L2
(
Rd
)

whose Weyl symbols are centered Gaussian, that is operators

of the form aOp
(
e−A

)
, where a ∈ C, A ∈ Sym++

(
C2d

)
and A(x, p) =

[
x
p

]#
A

[
x
p

]
.

(In [16], this semigroup is denoted by Ω).
There are several equivalent characterizations of Osc++

(
C2d

)
. Here is one of

them:

Proposition 7. Osc++

(
C2d

)
equals the set of operators on L2

(
Rd
)

with cen-
tered Gaussian kernels. More precisely, the integral kernel of aOp

(
e−A

)
for A =[

B D
D# F

]
is ce−C(x,y), where

c =
2−da√
det(F )

, (6.1)
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C(x, y) = −1

4

[
x
y

]# [
1 1
1 −1

] [
B −DF−1D# −iDF−1

−iF−1D# F−1

] [
1 1
1 −1

] [
x
y

]
= −1

4

[
x
y

]# [
c11 c12
c21 c22

] [
x
y

]
,

and

c11 = B −DF−1D# − iDF−1 − iF−1D# + F−1,

c12 = B −DF−1D# + iDF−1 − iF−1D# − F−1,

c21 = B −DF−1D# − iDF−1 + iF−1D# − F−1,

c22 = B −DF−1D# + iDF−1 + iF−1D# + F−1.

Proof. The formula follows by elementary Gaussian integration. The detailed com-
putations can be found in [14]. �

Proposition 8. Let A and B belong to Sym++

(
C2d

)
. Then the following product

formula holds:

Op
(
e−A

)
Op
(
e−B

)
=

ϵ√
det(AθBθ + 1l)

Op
(
e−A#B

)
, (6.2)

where ϵ = 1 or ϵ = −1. Consequently, Osc++

(
C2d

)
is a semigroup and

Osc++

(
C2d

)
3 cOp

(
e−A

)
7→ A ∈ Sym++

(
C2d

)
(6.3)

is an epimorphism.

Proof. Formula (3.5) assures us that

(e−y
#Ay ∗ e−y

#By)(y)

= π−2d

∫
dy1

∫
dy2 exp

(
− 2(y − y2)θ(y − y1)− y#1 Ay1 − y#2 By2

)
= π−2d

∫
dy1

∫
dy2 exp

(
−
[
y1
y2

]# [
A −θ
θ B

] [
y1
y2

]
− 2

[
y1
y2

]# [−θy
θy

])

= det

[
A −θ
θ B

]−1/2

exp

([
−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

])
.

(6.4)

Then we check that

det

[
A −θ
θ B

]
= det(1l +AθBθ), (6.5)[

−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

]
= −

[
−y
y

]# [
θAθ −θ
θ θBθ

]−1 [−y
y

]
. (6.6)

�
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Again, following [16, 14], we introduce the normalized oscillator semigroup,
denoted Oscnor++

(
C2d

)
, as{

±
√

det(1l +Aθ)Op
(
e−A

)
|A ∈ Symqnd

++

(
C2d

)}
.

(In [16], this semigroup is denoted by Ω0).

Proposition 9. Oscnor++

(
C2d

)
is a subsemigroup of Osc++

(
C2d

)
and

Oscnor++

(
C2d

)
3 ±

√
det(1l +Aθ)Op

(
e−A

)
7→ A ∈ Symqnd

++

(
C2d

)
(6.7)

is a 2–1 epimorphism of semigroups.

Proof. It is enough to check that√
det(1l +Aθ)Op

(
e−A

)√
det(1l +Bθ)Op

(
e−B

)
= ϵ
√

det(1l +A#Bθ)Op
(
e−A#B

)
,

(6.8)

where ϵ = 1 or ϵ = −1. Indeed, (5.10) implies
det(1l +AθBθ) = det(1l +Aθ) det(1l +A#Bθ)−1 det(1l +Bθ). (6.9)

Now we need to use (6.2). �

7. Positive elements of the oscillator semigroup
We define

Symp

(
R2d

)
:=
{
A ∈ Sym++

(
R2d

)
| σ(Aθ) ⊂ [−1, 1]

}
, (7.1)

Symqnd
p

(
R2d

)
:=
{
A ∈ Symp

(
R2d

)
| det(Aθ + 1l) 6= 0

}
. (7.2)

Proposition 10. Let a ∈ C and A ∈ Sym++

(
C2d

)
. Then

(1)
(
aOp

(
e−A

))∗
= aOp

(
e−A

)
.

(2) aOp
(
e−A

)
is Hermitian iff a ∈ R and A ∈ Sym++

(
R2d

)
.

(3) aOp
(
e−A

)
is positive iff a > 0, A ∈ Symp

(
R2d

)
.

Proof. Claims (1) and (2) follow from the obvious identity Op(a)∗ = Op(a).
Let us prove (3). A is a positive definite real matrix and ω is a symplectic

matrix. It is well known, that they can be simultaneously diagonalized, that is,
one can find a basis of R2d such that if we write R2d =

d
⊕
i=1

R2, then ω is the

direct sum of
[
0 1
−1 0

]
and A is the direct sum of

[
λi 0
0 λi

]
with λi > 0. After

an appropriate metaplectic transformation, we can represent the Hilbert space
L2
(
Rd
)

as
d
⊗
i=1

L2(R) and Op
(
e−A

)
can be represented as

d
⊗
i=1

Op
(
e−λi(x

2
i+p

2
i )
)

.
Next we use (1.2) to see that the positivity of Op

(
e−A

)
is equivalent to λi ≤ 1,

i = 1, . . . , d, which in turn is equivalent to σ(Aθ) ⊂ [−1, 1] (the eigenvalues of Aθ
are of the form ±λi). �
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Proposition 11. Symqnd
p

(
R2d

)
=
{
A ∈ Sym++

(
R2d

)
| σ(Aθ) ⊂ ]− 1, 1[

}
.

Proof. We use the basis mentioned at the end of the proof of Proposition 10. �

Proposition 12. det(1l +Aθ) = det(1l +Aθ). Consequently,

Symqnd
(
C2d

)
and Symqnd

++

(
C2d

)
are invariant with respect to complex conjugation.

Proof. We use
θ(1l +Aθ)θ = 1l + θA, (7.3)
(1l + θA)# = 1l−Aθ, (7.4)

1l−Aθ = 1l +Aθ. (7.5)
�

Theorem 13. (1) If A ∈ Sym++

(
C2d

)
, then A#A ∈ Symp

(
R2d

)
.

(2) If A ∈ Symqnd
++

(
C2d

)
, then A#A ∈ Symqnd

p

(
R2d

)
.

Proof. (1) Let A ∈ Sym++

(
C2d

)
. Then

Op
(
e−A

)∗
Op
(
e−A

)
=

1√
det(1l +AθAθ)

e−A#A (7.6)

is a positive operator. Therefore, by Proposition 10(3), A#A ∈ Symp

(
R2d

)
.

(2) Symqnd
++

(
C2d

)
is a semigroup, invariant with respect to the conjugation,

and hence A#A ∈ Symqnd
++

(
C2d

)
. By (1), A#A ∈ Symp

(
R2d

)
. But by definition

Symqnd
p

(
R2d

)
= Symp

(
R2d

)
∩ Symqnd

++

(
C2d

)
. �

8. Complex symplectic group
A linear operator R on R2d is called symplectic if

R#ωR = ω. (8.1)
The set of symplectic operators on R2d will be denoted Sp

(
R2d

)
. It is the well

known symplectic group in dimension 2d.
In our paper a more important role is played by the complex version of the

symplectic group. More precisely, we will say that a complex linear operator R on
C2d is symplectic if (8.1) holds. (Of course, we can replace ω in (8.1) with θ). The
set of complex symplectic operators on C2d will be denoted Sp

(
C2d

)
. It is also a

group, called the complex symplectic group in dimension 2d.
We define

Sp+
(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
| R∗θR ≤ θ

}
, (8.2)

Sp++

(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
| R∗θR < θ

}
. (8.3)
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Both Sp+
(
C2d

)
and Sp++

(
C2d

)
are semigroups satisfying

Sp
(
R2d

)
∩ Sp++

(
C2d

)
= ∅, (8.4)

Sp++

(
C2d

)
⊂ Sp+

(
C2d

)
, (8.5)

Sp
(
R2d

)
⊂ Sp+

(
C2d

)
. (8.6)

We also set
Sph

(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
: R = R−1

}
(8.7)

=
{
R ∈ Sp

(
C2d

)
: R∗θ = θR

}
, (8.8)

Spp
(
C2d

)
:=
{
R ∈ Sph

(
C2d

)
: σ(R) ⊂ ]0,∞[

}
. (8.9)

Below we state a few properties of Sp++

(
C2d

)
and Spp

(
C2d

)
. It will be

convenient to defer their proofs to the next section.

Proposition 14. Spp
(
C2d

)
⊂ Sp++

(
C2d

)
.

Let t > 0. Note that C\ ]−∞, 0] 3 z 7→ zt ∈ C is a well defined holomorphic
function. In the proposition below σ(R) ⊂ ]0,∞[, therefore Rt is well defined.

Proposition 15. Let R ∈ Spp
(
C2d

)
. Then Rt ∈ Spp

(
C2d

)
.

Proposition 16. Let R ∈ Sp++

(
C2d

)
. Then R

−1
R ∈ Spp

(
C2d

)
.

The next result, which is an analog of the polar decomposition, was noted by
Howe (see [16, Proposition (23.7.2)]):

Proposition 17. Every R ∈ Sp++

(
C2d

)
may be decomposed in the following way:

R = TS, (8.10)

where T := R
√
R

−1
R ∈ Sp

(
R2d

)
and S :=

√
R

−1
R ∈ Spp

(
C2d

)
.

9. Relationship between Sym and symplectic group
Let us define

Spreg
(
C2d

)
=
{
R ∈ Sp

(
C2d

)
| R+ 1l is invertible

}
, (9.1)

Spregh

(
C2d

)
=
{
R ∈ Sph

(
C2d

)
| R+ 1l is invertible

}
. (9.2)

Theorem 18. (1) Symqnd
(
C2d

)
3 A 7→ c(Aθ) ∈ Spreg

(
C2d

)
is a bijection. Its

inverse is
Spreg

(
C2d

)
3 R 7→ c(R)θ ∈ Symqnd

(
C2d

)
. (9.3)

Besides, if A,B ∈ Symqnd
(
C2d

)
and A#B ∈ Symqnd

(
C2d

)
is well defined,

then
c(A#Bθ) = c(Aθ)c(Bθ). (9.4)

(2) Symqnd
++

(
C2d

)
3 A 7→ c(Aθ) ∈ Sp++

(
C2d

)
is an isomorphism of semigroups.

(3) Symqnd
(
R2d

)
3 A 7→ c(Aθ) ∈ Spregh

(
C2d

)
is a bijection.
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(4) Symqnd
p

(
R2d

)
3 A 7→ c(Aθ) ∈ Spp

(
C2d

)
is a bijection.

Proof. (1) Let A ∈ Symqnd
(
C2d

)
. Then,

c(Aθ)#θc(Aθ) = (1l− θA)−1(1l + θA)θ(1l−Aθ)(1l +Aθ)−1

= (1l− θA)−1(1l− θAθAθ)(1l +Aθ)−1

= (1l− θA)−1(1l− θA)θ(1l +Aθ)(1l +Aθ)−1 = θ.

Hence, c(Aθ) ∈ Sp
(
C2d

)
.

Conversely, let R ∈ Spreg
(
C2d

)
. Then(

(1l−R)(1l +R)−1θ
)#

= −θ(1l +R#)−1(1l−R#)

= −(θ +R#θ)−1(1l−R#) = −
(
θ(1l +R−1)

)−1
(1l−R#)

= −(1l +R−1)−1(θ − θR#) = −(1l +R−1)−1(1l−R−1)θ

= (1l +R)−1(1l−R)θ.

Hence, c(R)θ ∈ Sym
(
C2d

)
.

Clearly, Aθ + 1l is invertible iff c(Aθ) ∈ Lreg
(
C2d

)
. Thus

Symqnd
(
C2d

)
3 A 7→ c(Aθ) ∈ Spreg

(
C2d

)
is a bijection.

To see (9.4) it is enough to use (5.5).
(2) We have

c(Aθ)∗θc(Aθ) = (1l + θA)−1(1l− θA)θ(1l−Aθ)(1l +Aθ)−1

= (1l + θA)−1(1l− θAθ − θAθ + θAθAθ)(1l +Aθ)−1

= θ − 2(1l + θA)−1θ(A+A)θ(1l +Aθ)−1.

Thus,
c(Aθ)∗θc(Aθ) < θ (9.5)

iff A+A > 0. Hence Symqnd
++

(
C2d

)
3 A 7→ c(Aθ) ∈ Sp++

(
C2d

)
is a bijection. It is

a homomorphism because of (9.4).
(3) Let A ∈ Symqnd

(
R2d

)
. Then

c(Aθ) =
1l +Aθ

1l−Aθ
= c(Aθ)−1. (9.6)

Hence, c(Aθ) ∈ Sph
(
C2d

)
.

Conversely, let R ∈ Spregh

(
C2d

)
. Then

(1l−R)(1l +R)−1θ = −(1l−R)(1l +R)−1θ (9.7)
= −(1l−R−1)(1l +R−1)−1θ = (1l−R)(1l +R)−1θ. (9.8)

Hence, c(R)θ ∈ Sym
(
R2d

)
.
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(4) Clearly,

λ ∈ ]− 1, 1[ iff 1− λ

1 + λ
∈ ]0,∞[.

Therefore,
σ(Aθ) ⊂ ]− 1, 1[ iff σ

(
c(Aθ)

)
⊂ ]0,∞[.

Then we use the characterization of Symqnd
p

(
R2d

)
given in Proposition 11. �

Proof of Proposition 14. Let R ∈ Spp
(
C2d

)
. By Theorem 18(4),

c(R)θ ∈ Symqnd
p

(
R2d

)
.

Proposition 11 implies that c(R)θ ∈ Symqnd
++

(
R2d

)
. Now Theorem 18(2) shows that

R = c
(
(c(R)θ)θ

)
∈ Sp++

(
C2d

)
. �

Proof of Proposition 15. Let R ∈ Spp
(
C2d

)
.

Functional calculus of operators is invariant with respect to similarity trans-
formations. Therefore, R#(−1) = θRθ−1 implies R#(−t) = θRtθ−1. Hence Rt ∈
Sp
(
C2d

)
.

R = R−1 implies Rt = (Rt)−1. Hence, Rt ∈ Sph
(
C2d

)
.

σ(R) ⊂ ]0,∞[ implies σ(Rt) ⊂ ]0,∞[. Hence Rt ∈ Spp
(
C2d

)
. �

Proof of Proposition 16. Theorem 18(2) assures us that we can find a matrix A ∈
Symqnd

++

(
R2d

)
, such that c(Aθ) = R. By Theorem 13(2), A#A ∈ Symqnd

p

(
R2d

)
.

Now we may use Theorem 18(4) to see that c(A#Aθ) ∈ Spp
(
C2d

)
.

It is easy to check that R−1
= c(Aθ). Moreover, by (9.4),

R
−1
R = c

(
Aθ
)
c(Aθ) = c

(
A#Aθ

)
. (9.9)

Therefore, R−1
R ∈ Spp

(
C2d

)
. �

Proof of Proposition 17. By Proposition 16, we have R
−1
R ∈ Spp

(
C2d

)
, while

Proposition 15 yields S :=
√
R

−1
R ∈ Spp

(
C2d

)
. Clearly, R ∈ Sp

(
C2d

)
. Hence,

T := RS ∈ Sp
(
C2d

)
.

T = RS = RS−1 = RS−2S = RR−1RS = T. (9.10)

Therefore, T := RS ∈ Sp
(
R2d

)
. �

Theorem 19. The map

Oscnor++

(
C2d

)
3 ±

√
det(1l +Aθ)Op

(
e−A

)
7→ c(Aθ) ∈ Sp++

(
C2d

)
is a 2–1 epimorphism of semigroups.

Proof. We use Proposition 9 and Theorem 18(2). �
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10. Metaplectic group
It is easy to see that if C ∈ Sym

(
R2d

)
, then c(Cω) ∈ Sp

(
R2d

)
. In fact, elements

of this form constitute an open dense subset of Sp
(
R2d

)
.

We define Mp(R2d), called the metaplectic group in dimension 2d, to be the
group generated by operators of the form

±
√

det(1l + Cω)Op
(
e−iC

)
, C ∈ Sym

(
R2d

)
. (10.1)

The theory of the metaplectic group is well known, see, e.g., [11, Sect. 10.3.1].
We assume that the reader is familiar with its basic elements. Actually, we have
already used it in our proof of Proposition 10(3).

The theory of the metaplectic group can be summed up by the following
theorem:

Theorem 20. The metaplectic group consists of unitary operators. Operators of
the form (10.1) constitute an open and dense subset of Mp(R2d). The map

±
√

det(1l + Cω)Op
(
e−iC

)
7→ c(Cω) (10.2)

extends by continuity to a 2–1 epimorphism Mp
(
R2d

)
→ Sp

(
R2d

)
Remark 1. For completeness, one should mention some other natural semigroups
closely related to Osc++

(
C2d

)
:

1. Osc+
(
C2d

)
generated by operators aOp(e−A) with A ∈ Sym+

(
C2d

)
, a ∈ C;

2. Oscnor+

(
C2d

)
generated by operators of the form ±

√
det(1l +Aθ)Op

(
e−A

)
with A ∈ Sym+

(
C2d

)
.

11. Polar decomposition
For an operator V , its absolute value is defined as

|V | :=
√
V ∗V . (11.1)

The following theorem provides a formula for the absolute value of elements of the
oscillator semigroup.

Theorem 21. Let A ∈ Symqnd
++

(
C2d

)
. Then

∣∣Op(e−A)
∣∣ = 4

√
det
(
1l + (Bθ)2

)
4

√
det(1l +AθAθ)

Op
(
e−B

)
, (11.2)

where
B = c

(√
c(Aθ)c(Aθ)

)
θ. (11.3)

Besides, the function
Symqnd

++

(
C2d

)
3 A 7→

∣∣Op
(
e−A

)∣∣
is smooth.
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Proof. By Proposition 16, c(Aθ)c(Aθ) = c(Aθ)
−1
c(Aθ) ∈ Spp

(
C2d

)
. Hence, by

Proposition 15, we can define
√
c(Aθ)c(Aθ) ∈ Spp

(
C2d

)
. Therefore, B defined in

(11.3) belongs to Symqnd
p

(
R2d

)
and satisfies A#A = B#B.

We have
Op
(
e−B

)2
=

1√
det(1l + (Bθ)2

Op
(
e−B#B

)
. (11.4)

Hence,

Op
(
e−A

)∗
Op
(
e−A

)
=

√
det
(
1l + (Bθ)2

)√
det(1l +AθAθ)

Op
(
e−B

)2
. (11.5)

Besides, Op
(
e−B

)
≥ 0. Therefore,

∣∣Op
(
e−A

)∣∣ is given by (11.2).
Now the square root is a smooth function on the set of invertible matrices

(and obviously on the set of nonzero numbers). In the formula (11.3) for A ∈
Symqnd

++

(
C2d

)
, we never need to take roots of zero or of non-invertible matrices,

because 1l±Aθ and 1l±Aθ are invertible. Therefore,

Symqnd
++

(
C2d

)
3 A 7→

√
c(Aθ)c(Aθ) (11.6)

is smooth. Therefore, the map A 7→ B is smooth
For A ∈ Symqnd

++

(
C2d

)
, A,B ∈ Symqnd

++

(
C2d

)
. Therefore, by Proposition 5.10,

1l+AθAθ and 1l+(Bθ)2 are invertible. Hence, the prefactors of (11.2) are smooth.
This ends the proof of the smoothness of (11.2). �

Let V be a closed operator such that KerV = KerV ∗ = {0}. Then it is well
known that there exists a unique unitary operator U such that we have the identity

V = U |V |. (11.7)
called the polar decomposition.

Theorem 22. Let A ∈ Symqnd
++

(
C2d

)
. Let B ∈ Symqnd

p

(
C2d

)
be defined as in

(11.3). Then ∣∣∣√det(1l +Aθ)Op
(
e−A

)∣∣∣ =√det(1l +Bθ)Op
(
e−B

)
, (11.8)

and the unitary operator U that appears in the polar decomposition√
det(1l +Aθ)Op

(
e−A

)
= U

√
det(1l +Bθ)Op

(
e−B

)
(11.9)

belongs to Mp
(
R2d

)
. Besides, if

iC := A#(−B) (11.10)
is well defined, then

U = ϵ
√
det(1l + Cω)Op

(
e−iC

)
, (11.11)

where ϵ = 1 or ϵ = −1.
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Proof. By (5.10),

1l +AθAθ = (1l +Aθ)(1l +A#Aθ)−1(1l +Aθ), (11.12)
1l +BθBθ = (1l +Bθ)(1l +B#Bθ)−1(1l +Bθ), (11.13)

Besides, A#A = B#B. This together with (11.2) implies (11.8).
Assume now that iC := A#(−B) is well defined. Then clearly√

det(1l +Aθ)Op
(
e−A

)
= ϵ
√

det(1l +Bθ)Op
(
e−B

)√
det(1l + iCθ)Op

(
e−iC

)
.

(11.14)

It remains to show that iC is purely imaginary.

A#(−B) = (−B)#A = (−B)#A#A(−A) (11.15)
= (−B)#B#B#(−A) (11.16)
= B#(−A) = −A#(−B). (11.17)

�

12. Trace and the trace norm
Suppose we have an operator K on L2

(
Rd
)
. As proven in [13] (for a more general

setting, see [4, 5]), if K has a continuous kernel K(x, y) belonging to L2
(
Rd×Rd

)
and x 7→ K(x, x) is in L1

(
Rd
)
, then

TrK =

∫
K(x, x) dx. (12.1)

In the case of Weyl–Wigner quantization, for a symbol k we get

TrOp(k) =

∫
Op(k)(x, x) dx = (2π)−d

∫
k(x, ξ) dxdξ. (12.2)

This easily implies the following proposition:

Proposition 23. The trace of operator Op
(
e−A

)
with A ∈ Sym++

(
C2d

)
is

TrOp
(
e−A

)
=

1

2d
√
detA

=
1

2d
√
detAθ

. (12.3)

(Note that det θ = 1, hence we could insert θ in (12.3)).
One can also compute the trace of the absolute value of elements of the

oscillator semigroup, the so-called trace norm.

Theorem 24. The trace norm of Op
(
e−A

)
, where A ∈ Sym++

(
C2d

)
, is

Tr
∣∣Op

(
e−A

)∣∣ = √
2

2d
√

det |(1l +Aθ)(1l−
√
c(A∗θ)c(Aθ))|

. (12.4)
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Proof. Equations (12.3) and (11.2) imply

Tr
∣∣Op

(
e−A

)∣∣ = 4

√
det
(
1l + (Bθ)2

)
2d 4

√
det(1l +AθAθ)(Bθ)2

. (12.5)

Now, easy algebra shows that
det
(
1l + (Bθ)2

)
det(1l +AθAθ)(Bθ)2

=
2det

(
1l + c(Aθ)c(Aθ)

)
det(1l +AθAθ)

(
1l−

√
c(Aθ)c(Aθ)

)2
=

4

det(1l +Aθ)(1l +Aθ)
(
1l−

√
c(Aθ)c(Aθ)

)2
=

22(
det
∣∣∣(1l +Aθ)

(
1l−

√
c(Aθ)c(Aθ)

)∣∣∣)2 . �

Corollary 25. The trace norm of Op
(
e−B

)
, where B ∈ Sym++

(
R2d

)
, is

Tr
∣∣Op

(
e−B

)∣∣ = √
2

2d
√

det
∣∣|1l +Bθ| − |1l−Bθ|

∣∣ . (12.6)

Thus, if we diagonalize simultaneously B and ω, as in the proof of Proposi-
tion 10, then

Tr
∣∣Op

(
e−B

)∣∣ = √
2

4d
∏
λi<1

λi
. (12.7)

13. Operator norm
Proposition 26. Let B ∈ Sym++

(
R2d

)
. Then∥∥Op

(
e−B

)∥∥ =
1√

det(1l +
√
BθBθ)

. (13.1)

Proof. First, using (1.2), we check that in the case of one degree of freedom we
have ∥∥∥Op

(
e−λ(x

2+p2)
)∥∥∥ =

1

1 + λ
. (13.2)

An arbitrary B we can diagonalize together with θ, as in the proof of Proposi-
tion 10(3), and then we obtain∥∥Op

(
e−B

)∥∥ =
d∏
i=1

1

1 + λi
. (13.3)

Now the right-hand side of (13.3) can be rewritten as the right-hand side of (13.1).
�
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Using (11.8), we obtain an identity for an arbitrary element of the oscillator
semigroup. A closely related result is described in [21, Theorem 5.2].

Theorem 27. Let A ∈ Sym++

(
C2d

)
. Then∥∥√det(1l +Aθ)Op

(
e−A

)∥∥
=

√
det
(
1l + c

(√
c(Aθ)c(Aθ)

))
√

det
(
1l +

√
c
(√

c(Aθ)c(Aθ)
)
c
(√

c(Aθ)c(Aθ)
)) . (13.4)

14. One degree of freedom
In the case of one degree of freedom we have a complete characterization of quan-
tum nondegenerate symmetric matrices.

Theorem 28. Let A ∈ Sym
(
C2
)
. Then A ∈ Symqnd

(
C2
)

iff detA 6= 1.

Proof. We easily compute that for A ∈ Sym
(
C2
)
,

det(1l +Aθ) = 1− detA. �

Next we describe the quantum degenerate case for one degree of freedom on
the level of the oscillator group.

Theorem 29. Elements of Osc++

(
C2
)

that are not proportional to an element of
Oscnor++

(
C2
)

are proportional to a projection. They have the integral kernel of the
form

ce−(ax2+by2), (14.1)

where a, b, c ∈ C, Re a,Re b > 0. The Weyl symbol of the operator with the kernel
(14.1) is

c
2
√
π√

a+ b
e−A, (14.2)

where

A =
1

(a+ b)

[
4ab i(−a+ b)

i(−a+ b) 1

]
. (14.3)

Matrices of the form (14.3) with Re a,Re b > 0 are precisely all matrices in

Sym++

(
C2
)
\Symqnd

++

(
C2
)
. (14.4)
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15. Application to the boundedness of pseudo-differential
operators

Cordes proved the following result [10]:

Theorem 30. Suppose k ∈ S ′(Rd×Rd
)

and s > d
2 . Then there exists a constant

cd,s such that
‖Op(k)‖ 6 cd,s‖(1−∆x)

s(1−∆p)
sk‖∞. (15.1)

The above result can be called the Calderón and Vaillancourt Theorem for
the Weyl quantization. (The original result of Calderón and Vaillancourt [9] con-
cerned the x − p quantization, known also as the standard or Kohn–Nirenberg
quantization).

Note that Theorem 30 is not optimal with respect to the number of deriva-
tives. The optimal bound on the number of derivatives for the Weyl quantization
is s > d

4 . It was discovered by A. Boulkhemair [3] and it requires a different proof
than the one developed by Cordes.

In what follows we will describe a proof of Theorem 30 which gives an estimate
of cd,s. We will follow the ideas of Cordes and Kato ([10] and [18]), who however
do not give an explicit bound on the constant cd,s. The estimate (1.4) for the trace
norm of operators with Gaussian symbols plays an important role in our proof.

We start with the following proposition.

Proposition 31. For s > d
2 , define the functions

ψs(ξ) := (2π)−d
∫

dζ (1 + ζ2)−seiζξ, (15.2)

Ps(x, p) := ψs(x)ψs(p). (15.3)

Then Op(Ps) is of trace class and

Tr
∣∣∣Op(Ps)

∣∣∣ ≤ Γ(s)2 + Γ(s− d
2 )

2

(2π)dΓ(s)2
. (15.4)

Proof. Let us use the so-called Schwinger parametrization

X−s =
1

Γ(s)

∫ ∞

0

e−tXts−1 dt (15.5)

to get

ψs(ξ) =
1

Γ(s)(2π)d

∫ ∞

0

dt

∫
dζ e−t(1+ζ

2)ts−1eiζξ

=
1

π
d
2 2dΓ(s)

∫ ∞

0

dt ts−
d
2−1e−t−

ξ2

4t .

(15.6)
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Now

Ps(x, p) =
1

πd22dΓ2(s)

∫ ∞

0

du

∫ ∞

0

dve−u−v−
x2

4u− p2

4v (uv)s−
d
2−1. (15.7)

By (1.4), we have

Tr
∣∣∣Op

(
e−αx

2−βp2))∣∣∣ = { 1
(2

√
αβ)d

, αβ ≤ 1,
1
2d
, 1 ≤ αβ.

(15.8)

Hence,

Tr
∣∣∣Op(Ps)

∣∣∣
≤ 1

22dπdΓ2(s)

∫ ∞

0

du

∫ ∞

0

dve−u−vTr
∣∣∣Op

(
e−

x2

4u− p2

4v

)∣∣∣(uv)s− d
2−1

≤ 1

2dπdΓ2(s)

( ∫
du

∫
dv

4≤uv, u,v>0

e−u−v(uv)s−1 +

∫
du

∫
dv

uv≤4, u,v>0

e−u−v(uv)s−
d
2−1

)

≤
Γ(s)2 + Γ(s− d

2 )
2

2dπdΓ2(s)
.

(15.9)

�

Proposition 32. Let B be a self-adjoint trace class operator and h ∈ L∞(R2d).
Then

C :=
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂Beiyp̂−iwx̂ (15.10)

is bounded and
‖C‖ ≤ Tr |B| ‖h‖∞. (15.11)

Proof. For Φ ∈ L2
(
Rd
)
, ‖Φ‖ = 1, define TΦ : L2

(
Rd
)
→ L2

(
R2d

)
by

TΦΘ(y, w) := (2π)−
d
2

(
Φ|eiyp̂−iwx̂Θ

)
, Θ ∈ L2

(
R2d

)
. (15.12)

We check that TΦ is an isometry. This implies that for Φ,Ψ ∈ L2
(
Rd
)

of norm one
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂|Φ)(Ψ|eiyp̂−iwx̂ (15.13)

is bounded and its norm is less than ‖h‖∞. Indeed, (15.13) can be written as the
product of three operators

T ∗
ΦhTΨ, (15.14)

where h is meant to be the operator of the multiplication by the function h on the
space L2(R2d). Now it suffices to write

B =
∞∑
i=1

λi|Φi)(Ψi|, (15.15)
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where Φi,Ψi are normalized, λi ≥ 0 and Tr |B| =
∞∑
i=1

λi. �

Proof of Theorem 30. Set
h := (1−∆x)

s(1−∆p)
sk. (15.16)

Then
k(x, p) = (1−∆x)

−s(1−∆p)
−sh(x, p)

=

∫
dy

∫
dwPs(x− y, p− w)h(y, w).

(15.17)

Hence

Op(k) =

∫
dy

∫
dwOp

(
Ps(x− y, p− w)

)
h(y, w)

=
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂Op(Ps)e

iyp̂−iwx̂.

(15.18)

Therefore, by Proposition 32,
‖Op(k)‖ ≤ Tr

∣∣Op(Ps)
∣∣‖h‖∞. (15.19)

Thus we can set
cd,s = Tr

∣∣Op(Ps)
∣∣, (15.20)

which is finite by Proposition 31. �
Proposition 31 yields an explicit estimate for cd,s given by the right-hand

side of (15.4). Actually, in the proof of Proposition 31 we have an even better,
although more complicated explicit estimate given by (15.9).

16. Complex symplectic Lie algebra
The well known symplectic Lie algebra in dimension 2d is defined as the set of
R ∈ L(R2d) satisfying

R#ω + ωR = 0. (16.1)
Similarly, the set of R ∈ L(C2d) satisfying (16.1) is called the complex symplectic
Lie algebra in dimension 2d and denoted sp(C2d). As usual in the complex case,
we usually prefer to replace ω in (16.1) with θ.

We define
sp+(C2d) := {D ∈ sp(C2d) | D∗θ + θD ≥ 0}, (16.2)
sp++(C2d) := {D ∈ sp(C2d) | D∗θ + θD > 0}. (16.3)

We also introduce
sph(C2d) := {D ∈ sp(C2d) | D = −D}, (16.4)
spp(C2d) := {D ∈ sph(C2d) | θD > 0}. (16.5)

Proposition 33. (1) Let D ∈ sp(C2d). Then e−D ∈ Sp(C2d).
(2) Let D ∈ sp++(C2d). Then e−D ∈ Sp++(C2d).
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(3) Let D ∈ sph(C2d). Then e−D ∈ Sph(C2d).
(4) Let D ∈ spp(C2d). Then e−D ∈ Spp(C2d).

Proof. Claims (1) and (3) are obvious corollaries from the definitions.
(2) Integrating

d

dt
(e−tD)∗θe−tD = −(e−tD)∗(D∗θ + θD)e−tD < 0, (16.6)

we obtain (e−D)∗θe−D < θ.
(4) We can write

e−D = e−θ(θD).

We diagonalize simultaneously the positive form θD and θ. In the diagonalizing
basis, the matrices θ and θD commute, the former has eigenvalues ±1, the latter
has positive eigenvalues. Hence e−D has positive eigenvalues. �

17. Hamiltonians
Let H ∈ Sym(C2d). As usual, the quadratic form R2d 3 y 7→ y#Hy ∈ C will
be also denoted by H. Let us briefly recall the properties of quantum quadratic
Hamiltonians Op(H) and their relationship to the metaplectic group. We will use
[11] as the basic reference, although most of these facts are well known.

Set
D := 2Hω−1. (17.1)

Clearly, D ∈ sp(C2d). We will say that D is the symplectic generator associated
with the Hamiltonian H.

First assume that H ∈ Sym(R2d). It is well known that then Op(H) is essen-
tially self-adjoint on S(Rd) (see, e.g., [11, Theorem 10.21]). Moreover, eitOp(H) ∈
Mp(R2d) (see, e.g., [11, Theorem 10.36]). Under the epimorphism 10.2, eitOp(H)

is mapped onto etD, where D ∈ sp(R2d) is defined by (17.1) (see, e.g., [11, Theo-
rem 10.22]). Finally, if etD ∈ Spreg(R) and Ct := c(etD)ω−1,

eitOp(H) =
√
det(1 + Ctω)Op(e−iCt), (17.2)

see, e.g., [11, Theorem 10.35].
Next consider H ∈ Sym++(C2d). It is easy to show that Op(H) extends

from S(Rd) to a maximal accretive operator (see, e.g., [11, Theorem 10.21]).
Moreover, e−tOp(H) ∈ Oscnor++(C2d). In fact, if D is defined as in (17.1), then
−iD ∈ sp++(C2d), and hence by Proposition 33(2), eitD ∈ Sp++(C2d). More-
over, under the epimorphism (6.7), e−tOp(H) is mapped onto eitD. Finally, if we
set At := c(eitD)θ, then

e−tOp(H) =
√
det(1l +Atθ)Op(e−At), (17.3)

see, e.g., in [11, Theorem 10.35].
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18. Holomorphic 1-parameter subsemigroups
Let H ∈ Sym++(C2d). As we recalled above, Op(H) is maximally accretive, and
hence

[0,∞[3 t 7→ e−tOp(H) (18.1)
is a well defined subsemigroup of Osc++(C2d). One can ask whether it can be
extended to a larger subsemigroup if we replace real t with a complex parameter.

If H is real, then the answer is obvious and simple. Then Op(H) is a positive
self-adjoint operator and we have a well defined semigroup

{z ∈ C | Re z ≥ 0} 3 z 7→ e−zOp(H) (18.2)

inside Osc+
(
C2d

)
. For Re z > 0, (18.2) is in Osc++

(
C2d

)
.

If H is not real, then the answer can be more complicated.
Let D ∈ sp++(C2d) correspond to H as in (17.1). Clearly

C 3 z 7→ eizD ∈ Sp
(
C2d

)
(18.3)

is a holomorphic subgroup of Sp(C2d). However, not all elements of the complex
symplectic group correspond to (bounded) operators on the Hilbert space. Moti-
vated by this, we define

A+(H) := {z ∈ C | eizD ∈ Sp+
(
C2d

)
}, (18.4)

A++(H) := {z ∈ C | eizD ∈ Sp++

(
C2d

)
}. (18.5)

From the definition it is obvious that A+(H) is a closed subsemigroup of C and
A++(H) is an open subsemigroup of A+(H).

If z ∈ A++(H), then we define

Az := c(eizD)θ ∈ Sym++

(
C2d

)
, (18.6)

e−zOp(H) :=
√
det(1l +Azθ)Op

(
e−Az

)
. (18.7)

(The definition of (18.7) is consistent with the usual definition of e−zOp(H) for real
positive z).

The shapes of A+(H) and A++(H) can be quite curious. This is already seen
in the simplest nontrivial example, known under the name of the Davies harmonic
oscillator, as shown in [1], see also [21]. In this example, ψ ∈ ]− π

2 ,
π
2 [ is a parameter,

the classical and quantum Hamiltonians and the generator are

Hψ := eiψx2 + e−iψp2, (18.8)
Ĥψ := Op(Hψ) = eiψx̂2 + e−iψp̂2, (18.9)

Dψ := 2

[
0 −eiψ

e−iψ 0

]
. (18.10)

The proposition below reproduces the result of Aleman and Viola (see (1.2) of [1]).
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Proposition 34. Let Hψ be the Davies’ harmonic oscillator, as above. Then

A+(Hψ) =
{
z ∈ C | Re (z) ≥ 0 and | arg tanh z|+ |ψ| 6 π

2

}
, (18.11)

A++(Hψ) =
{
z ∈ C | Re (z) > 0 and | arg tanh z|+ |ψ| < π

2

}
. (18.12)

Proof. iDψ generates a holomorphic group in Sp
(
C2d

)
, which can be computed

using D2
ψ = −41l as

eizDψ =

[
cosh 2z ieiψ sinh 2z

−ie−iψ sinh 2z cosh 2z

]
. (18.13)

Now
Aψ,z = c(eizDψ )θ = 2 tanh z

[
e−iψ 0
0 eiψ

]
. (18.14)

Let us denote t := arg tanh z. Aψ,z belongs to Sym++

(
C2d

)
iff Re (z) > 0

and {
|t+ ψ| < π

2 ,

|t− ψ| < π
2 .

(18.15)

The above pair of inequalities is equivalent to

|t|+ |ψ| < π

2
. (18.16)

By Theorem 18(2), Aψ,z ∈ Sym++

(
C2d

)
iff eizDψ ∈ Sp++

(
C2d

)
.

The proof for A+

(
Hψ

)
is analogous. �
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