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Abstract

Our paper is devoted to the oscillator semigroup, which can be defined
as the set of operators whose kernels are centered Gaussian. Equivalently,
they can be defined as the the Weyl quantization of centered Gaussians. We
use the Weyl symbol as the main parametrization of this semigroup. We
derive formulas for the tracial and operator norm of the Weyl quantization
of Gaussians. We identify the subset of Gaussians, which we call quantum
degenerate, where these norms have a singularity.
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1 Introduction

Throughout our paper we will use the Weyl quantization, which is the most
natural correspondence between quantum and classical states. For a function
a = a(x, p), with x, p ∈ Rd, we will denote by Op(a) its Weyl quantization.
Then function a is called the Weyl symbol (or the Wigner function) of the
operator Op(a).

The Heisenberg uncertainty relation says that one cannot compress a
state both in position and momentum without any limits. This is different
than in classical mechanics, where in principle a state can have no dispersion
both in position and momentum.

∗The financial support of the National Science Center, Poland, under the grant UMO-
2014/15/B/ST1/00126, is gratefully acknowledged.
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One can ask what happens to a quantum state when we compress its
Weyl symbol. To be more precise, consider the Gaussian function e−λ(x2+p2),
where λ > 0 is an arbitrary parameter that controls the “compression”. It is
easy to compute the Weyl quantization of e−λ(x2+p2) and express it in terms
of the quantum harmonic oscillator

H = x̂2 + p̂2 =
d∑
j=1

(x̂2
j + p̂2

j ). (1.1)

There are 3 distinct regimes of the parameter λ:

Op
(
e−λ(x2+p2)

)
=


(1− λ2)−d/2 exp

(
− 1

2 log (1+λ)
(1−λ)H

)
, 0 < λ < 1,

2−d1l{d}(H), λ = 1,

(λ2 − 1)−d/2(−1)(H−d)/2 exp
(
− 1

2 log (1+λ)
(λ−1)H

)
, 1 < λ.

(1.2)
Thus, for 0 < λ < 1, the quantization of the Gaussian is proportional to a
thermal state of H. As λ increases to 1, it becomes “less mixed”–its “tem-
perature” decreases. At λ = 1 it becomes pure—its “temperature” becomes
zero and it is the ground state of H. For 1 < λ < ∞, when we compress
the Gaussian, it is no longer positive—due to the factor (−1)(H−d)/2 it has
eigenvalues with alternating signs. Besides, it becomes “more and more
mixed”, contrary to the naive classical picture.

Thus, at λ = 1 we observe a kind of a “phase transition”: For 0 ≤ λ < 1
the quantization of a Gaussian behaves more or less according to the classical
intuition. For 1 < λ the classical intuition stops to work—compressing the
classical symbol makes its quantization more “diffuse”.

It is easy to compute the trace of (1.2):

Tr Op
(
e−λ(x2+p2)

)
=

1

2dλd
. (1.3)

Evidently, (1.3) does not see the “phase transition” at λ = 1. However, if
we consider the trace norm, this phase transition appears—the trace norm
of (1.2) is differentiable except at λ = 1:

Tr
∣∣∣Op

(
e−λ(x2+p2)

)∣∣∣ =

{
1

2dλd
λ ≤ 1,

1
2d
, 1 ≤ λ.

(1.4)

Note that (1.4) can be viewed as a kind of quantitative “uncertainty princi-
ple”.

Our paper is devoted to operators that can be written as the Weyl
quantization of a (centered) Gaussian, more precisely, operators of the form
aOp(e−A), where A is a quadratic form with a strictly positive real part and
a ∈ C. Such operators form a semigroup called the oscillator semigroup. We
denote it by Osc++(C2d). We also considered its subsemigroup, called the
normalized oscillator semigroup and denoted Oscnor

++(C2d), which consists of

operators ±
√

det(1l +Aθ)Op(e−A), where θ is −i times the symplectic form
ω.
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The oscillator semigroup are closely related to the complex symplectic
group Sp(C2d). In particular, there exists a natural 2-1 epimorphism from
Oscnor

++(C2d) onto Sp++(C2d), which is a certain natural subsemigroup of
Sp(C2d).

The oscillator semigroup is closely related to the better known meta-
plectic group, denoted Mp(R2d). The metaplectic group is generated by
operators of the form ±

√
det(1l +Bω)Op(eiB), where B is a real symmetric

matrix. There exists a natural 2-1 epimorphism from Mp(R2d) to the real
symplectic group Sp(R2d). Not all elements of the metaplectic group can be
written as Weyl quantizations of a Gaussian.

The situation with the oscillator semigroup is somewhat different than
with the metaplectic group. All elements of the oscillator semigroup are
quantizations of a Gaussian, however, not all of them correspond to a
(complex) symplectic transformation. Those, that do not, correspond to
quadratic forms A satisfying det(1l +Aθ) = 0. We call such quadratic forms
“quantum degenerate”. Classically, they are of course nondegenerate. Only
their quantization is degenerate. In particular, for a quantum degenerate
A, the operator Op(e−A) is not proportional to an element of Oscnor

++(C2d).
The set of quantum degenerate matrices can be viewed as a place where
some kind of a phase transition takes place in the oscillator semigroup. For
instance, as we show in our paper, the trace norm of Op(e−A) depends
smoothly on quantum nondegenerate A’s, however its smoothness typically
breaks down at quantum degenerate A’s.

It is also natural to mention another type of an oscillator semigroup,
which we denote Osc+(C2d). It is the semigroup generated by the operators
of the form aOp(e−A), where A ≥ 0. Osc+(C2d) contains both Osc++(C2d)
and Mp(R2d). It is in some sense the closure of Osc++(C2d). We mention
this semigroup only in passing, concentrating on Osc++(C2d), which is easier,
because, as we mentioned above, all elements of Osc++(C2d) have Gaussian
symbols. Note that the convenient notation ++ for > 0 and + for ≥ 0,
which we use, is borrowed from Howe [14].

Most of the time our discussion of the oscillator semigroup is represen-
tation independent (without invoking a concrete Hilbert space on which
Op(e−A) acts). Perhaps the most obvious representation is the so-called
Schrödinger representation, where the Hilbert space is L2(Rd), x̂ is identi-
fied with the operator of multiplication by x and p̂ is 1

i ∂x. Another possible
representation is the Fock representation (or, which is essentially equivalent,
the Bargmann-Fock representation, see e.g. [10]). In both Schrödinger and
Bargmann-Fock representations the oscillator semigroup consists of opera-
tors with centered Gaussian kernels.

Let us now discuss the literature on operators with Gaussian kernels,
or equivalently, on quantizations of Gaussians. Probably, the best known
reference on this subject is a paper [14] by Howe. In fact, we follow to
some extent the terminology from Howe. His paper contains, for instance,
a formula of composition of operators with Gaussian kernels, a criterion for
positivity of such operators and the proof that there exists a 2-1 epimorphism
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from the normalized oscillator semigroup to a subsemigroup of Sp(C2d).
Howe works mostly in the Schrödinger representation. Instead of the Weyl
symbol, he considers the so-called Weyl transform, which is essentially the
Fourier transform of the Weyl symbol.

Another important work on the subject is a paper [13] by Hilgert, who
realised that the oscillator semigroup is isomorphic to a semigroup described
by Bargmann, Brunet and Kramer (see [2], [6] and [7]). Hilgert uses mostly
the Fock-Bargmann representation.

The book of Folland [12] contains a chapter on the oscillator semigroup,
which sums up the main points of [13] and [14].

The existence of the “phase transition” at quantum degenerate positive
Gaussians has been known for quite a long time, where the earliest reference
we could find is the paper [18] by Unterberger.

Our paper differs from [14, 13, 12] by using the Weyl quantization as the
basic tool for the description of the oscillator semigroup. It is in some sense
parallel to the presentation of the metaplectic group contained in Sect. 10.3
of [10]. An operation, that we introduce, which we find interesting is the
product # in the set of symmetric matrices. More precisely, it is defined so
that Op(e−A)Op(e−B) is proportional to Op(−eA#B). Whenever defined, #
is associative, however it is not always well defined.

We also derive a formula for the absolute value of and operator Op(e−A),
and its trace norm. To our knowledge, these formulas have never appeared
in the literature before.

An interesting recent paper of Viola [19] gives a formula for the norm
of an element of the oscillator semigroup. We also a similar formula for∥∥Op(e−A)

∥∥, which in our opinion is simpler than Viola’s.
As an application of the formula for the trace norm of Op(e−A) we give a

proof of the boundedness of the Weyl quantization with an explicit estimate
of the of the operator norm. This result, which is a version of the so-called
Calderon-Vaillancourt Theorem for the Weyl quantization, follows the ideas
of Cordes [9] and Kato [16], however the estimate of the norm seems to be
new.

Elements of the oscillator semigroup can be viewed as exponentials of
quantum quadratic Hamiltonians, that is e−Op(H), where H is a classical
quadratic Hamiltonian with a positive real part. One example of such a
Hamiltonian is Ĥψ := eiψp̂2 + e−iψx̂2 for |ψ| < π

2 , which is often called the
Davies harmonic oscillator. It has been noted by a number of authors that
this operator has interesting, often counterintuitive properties. In particular,

[1] and [19] point out that e−zĤψ can be defined as a bounded operator only
for z that belong to a subset of the complex plane of a rather curious shape.
We reproduce this result using methods developed in this article.

The oscillator semigroup provides a natural framework for a discussion of
holomorphic semigroups z 7→ e−zOp(H) associated with accretive quadratic
Hamiltonians Op(H). We briefly discuss this issue at the end of our paper.
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2 Notation

Let L(Cn) denote the set of n×n matrices. For R ∈ L(Cn) we will write R,
R#, resp. R∗ for its complex conjugate, transpose, resp. Hermitian adjoint.
Elements of Cn are represented by column matrices, so that for v, w ∈ Cn
the (sesquilinear) scalar product of v and w can be denoted by v∗w.

σ(R) will denote the spectrum of R.
We set

Lreg(Cn) := {R ∈ L(Cn) | R+ 1l is invertible }. (2.1)

For R ∈ Lreg(Cn), its Cayley transform is defined by

c(R) := (1l−R)(1l +R)−1.

The Cayley transform is a bijection on Lreg(Cn) and it is involutive, i.e.

c(c(R)) = R. (2.2)

For A ∈ L(Cn), we write A > 0, resp. A ≥ 0 if

v∗Av > 0, v ∈ Cn, v 6= 0, (2.3)

resp. v∗Av ≥ 0, v ∈ Cn. (2.4)

Sym(Rn), resp. Sym(Cn) denotes the set of symmetric real, resp. com-
plex n× n matrices. We also set

Sym+(Rn) := {A ∈ Sym(Rn) | A ≥ 0}, (2.5)

Sym++(Rn) := {A ∈ Sym(Rn) | A > 0}, (2.6)

Sym+(Cn) := {A ∈ Sym(Cn) | ReA ≥ 0}, (2.7)

Sym++(Cn) := {A ∈ Sym(Cn) | ReA > 0}. (2.8)

Note that Sym++(Cn) is sometimes called the (generalised) Siegel upper
half-plane. It is sometimes denoted Sn or Sn [14].

The following proposition can be found in [14]:

Proposition 1. If A ∈ Sym++(Cn), then A−1 exists and belongs to Sym++(Cn).

Proof. Let A = Ar + iAi with Ar ∈ Sym++(Rn), Ai ∈ Sym(Rn). Let
B :=

√
Ar, C := B−1AiB

−1. Then A = B(1l + iC)B and A−1 = B−1(1l +
iC)−1B−1. Clearly, (1l+iC)−1 ∈ Sym++(Cn). Hence A−1 ∈ Sym++(Cn).

Every n× n symmetric matrix A defines a quadratic form on Rn by

Rn 3 y 7→ y#Ay ∈ C. (2.9)

We will often write A for the function (2.9). Thus, in particular,

e−A(y) = e−y
#Ay.

We will often need to use the square root of a complex number a. If it
is clear from the context that a is positive and real, then

√
a will always

denote the positive square root. If a is a priori arbitrary, then ±
√
a will

denote both values of the square root. If a given formula involves only one
of possible values of the square root, then we will write ε

√
a where ε = 1 or

ε = −1.
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3 The Weyl quantization

Recall that for any a ∈ S ′(Rd × Rd)

Op(a)(x, y) = (2π)−d
∫
a
(x+ y

2
, p
)

eip(x−y) dp (3.1)

is called the Weyl–Wigner quantization of the symbol a, see e.g. Section
18.5 of [15] or [10]. We can recover the symbol of a quantization from its
distributional kernel by

a(x, p) =

∫
Op(a)

(
x+

z

2
, x− z

2

)
e−izp dz. (3.2)

For sufficiently nice functions a, b we can define the star product ∗ (some-
times called the Moyal star) such that Op(a)Op(b) = Op(a ∗ b) holds. On
the level of symbols we have

(a ∗ b)(x, p) := e
i
2

(∂x1∂p2−∂p1∂x2 )a(x1, p1)b(x2, p2)
∣∣∣x:=x1=x2
p:=p1=p2

. (3.3)

Write y =

[
x
p

]
, ω :=

[
0 1ld
−1ld 0

]
, and θ :=

[
0 −i1ld

i1ld 0

]
= −iω. One can

rewrite (3.3) in a more compact form:

(a ∗ b)(y) = e−
1
2
∂y1θ∂y2a(y1)b(y2)

∣∣∣
y:=y1=y2

. (3.4)

Here is an integral form of (3.4):

(a ∗ b)(y) = π−2d

∫
dy1

∫
dy2 e2(y−y1)θ(y−y2)a(y1)b(y2), (3.5)

(see e.g. [10], Theorem 8.70.(4)). For the product of 3 symbols we have

(a ∗ b ∗ c)(y) = e−
1
2
∂y1θ∂y2−

1
2
∂y1θ∂y3−

1
2
∂y2θ∂y3a(y1)b(y2)c(y3)

∣∣∣
y:=y1=y2=y3

(3.6)

= π−3d

∫
dy1

∫
dy2

∫
dy3 e(y−y1)θ(y−y2)+(y−y2)θ(y−y3)+(y−y1)θ(y−y3)

(3.7)

× e−
1
2

(y−y1)θ(y−y1)− 1
2

(y−y2)θ(y−y2)− 1
2

(y−y3)θ(y−y3)a(y1)b(y2)c(y3)
∣∣∣
y=y1=y2=y3

.

4 Product #

Let A,B ∈ Sym(C2d). Suppose that

the matrix

[
θAθ −θ
θ θBθ

]
is invertible. (4.1)
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We then define A#B ∈ Sym(C2d) by

A#B :=

[
−1l
1l

]# [
θAθ −θ
θ θBθ

]−1 [−1l
1l

]
. (4.2)

For the time being, the definition of the product # may seem strange.
As we will soon see in Section 6, it is motivated by the product of operators
with Gaussian symbols.

The following proposition gives a condition which guarantees that A#B
is well defined.

Proposition 2. (4.1) holds iff the inverse of (1l + AθBθ) exists. We then
have [

θAθ −θ
θ θBθ

]−1

=

[
(θAθ +B−1)−1 (θ + θBθAθ)−1

−(θ + θAθBθ)−1 (θBθ +A−1)−1

]
=

[
Bθ(1l +AθBθ)−1θ (1l +BθAθ)−1θ
−(1l +AθBθ)−1θ Aθ(1l +BθAθ)−1θ

]
, (4.3)

A#B = (θAθ +B−1)−1 + (θBθ +A−1)−1

+(θ + θAθBθ)−1 − (θ + θBθAθ)−1. (4.4)

Proof. It is well known how to compute an inverse of a 2× 2 block matrix.
This yields (4.3), which implies (4.4).

Clearly,
θ(1l +AθBθ)#θ = (1l +BθAθ). (4.5)

Therefore, the inverse of (1l+AθBθ) exists iff the inverse of (1l+BθAθ) exists.
If this is the case, then all terms in (4.3) and (4.4) are well defined.

Proposition 3. The product # is associative. More precisely, if A,B,C ∈
Sym(C2d) and A#B, B#C, (A#B)#C and A#(B#C) are well defined,
then

(A#B)#C = A#(B#C). (4.6)

Besides,

A#0 = 0#A = A, A#(−A) = 0, (4.7)

A#B = B#A, (−A)#(−B) = −B#A. (4.8)

Proof. We check that

(A#B)#C = A#(B#C) (4.9)

=

−1l
0
1l

# θAθ + 1
2θ −1

2θ −1
2θ

1
2θ θBθ + 1

2θ −1
2θ

1
2θ

1
2θ θCθ + 1

2θ

−1 −1l
0
1l

 . (4.10)
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(Compare with (3.7)). This yields (4.6). The remaining statements are
straightforward.

Note that it is useful to think of # as a noncommutative deformation of
the addition. In fact, we have

A#B = A+B +O(A2 +B2). (4.11)

5 Quantum non-degenerate matrices

Define

Symqnd(C2d) := {A ∈ Sym(C2d) : det(1l +Aθ) 6= 0}, (5.1)

Symqnd
++(C2d) := {A ∈ Sym++(C2d) : det(1l +Aθ) 6= 0}, (5.2)

Symqnd(R2d) := {A ∈ Sym(R2d) : det(1l +Aθ) 6= 0}, (5.3)

Symqnd
++(R2d) := {A ∈ Sym++(R2d) : det(1l +Aθ) 6= 0}. (5.4)

(qnd stands for quantum non-degenerate).
There are several equivalent formulas for the product (4.2). It is actu-

ally not so obvious to pass from one of them to another. In the following
proposition we give a few of them.

Proposition 4. Let A,B ∈ Symqnd(C2d) such that (1l + AθBθ)−1 exists.
Then

A#B = c
(
c(Aθ)c(Bθ)

)
θ (5.5)

= (1l +Aθ)−1(Aθ +Bθ)(1l +AθBθ)−1(1l +Aθ)θ (5.6)

= (1l +Bθ)(1l +AθBθ)−1(Aθ +Bθ)(1l +Bθ)−1θ (5.7)

= (1l−Aθ)(1l +BθAθ)−1(Aθ +Bθ)(1l−Aθ)−1θ (5.8)

= (1l−Bθ)−1(Aθ +Bθ)(1l +BθAθ)−1(1l−Bθ)θ. (5.9)

We have
1l +AθBθ = (1l +Aθ)(1l +A#Bθ)−1(1l +Bθ), (5.10)

and A#B ∈ Symqnd(C2d).

Proof. To see (5.5), it is enough to show that

c(A#Bθ) = c(Aθ)c(Bθ). (5.11)

(4.4) can be rewritten as

A#B = Bθ(1l +AθBθ)−1θ +Aθ(1l +BθAθ)−1θ

+(1l +AθBθ)−1θ − (1l +BθAθ)−1θ

= (1l +Bθ)(1l +AθBθ)−1θ − (1l−Aθ)(1l +BθAθ)−1θ.
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Therefore,

1l−A#Bθ = (Aθ − 1l)Bθ(1l +AθBθ)−1 + (1l−Aθ)(1l +BθAθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ); (5.12)

1l +A#Bθ = (1l +Bθ)Aθ(1l +BθAθ)−1 + (1l +Bθ)(1l +AθBθ)−1

= (1l +Bθ)(1l +AθBθ)−1(1l +Aθ). (5.13)

Hence,

c(A#Bθ)

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)(1l +Aθ)−1(AθBθ + 1l)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)
(
Bθ + (1l +Aθ)−1(1l−Bθ)

)
(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1
(
Bθ + (1l−Bθ)(1l +Aθ)−1

)
(1l−Bθ)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l +BθAθ)(1l +Aθ)−1(1l−Bθ)(1l +Bθ)−1

= c(Aθ)c(Bθ).

Thus (5.5) is proven.
Next note that

c(Aθ)c(Bθ) = (1l +Aθ)−1(1l−Aθ)(1l−Bθ)(1l +Bθ)−1 (5.14)

= (1l +Aθ)−1(1l−Aθ −Bθ +AθBθ)(1l +Bθ)−1. (5.15)

Therefore,

1l− c(Aθ)c(Bθ) = 2(1l +Aθ)−1(Aθ +Bθ)(1l +Bθ)−1 (5.16)

1l + c(Aθ)c(Bθ) = 2(1l +Aθ)−1(1l +AθBθ)(1l +Bθ)−1. (5.17)

Next we insert (5.16) and (5.17) into

A#B = c
(
c(Aθ)c(Bθ)

)
θ =

(
1l− c(Aθ)c(Bθ)

)(
1l + c(Aθ)c(Bθ)

)−1
θ(5.18)

=
(
1l + c(Aθ)c(Bθ)

)−1(
1l− c(Aθ)c(Bθ)

)
θ.(5.19)

obtaining (5.6), resp. (5.7).
We know that A#B is symmetric. Applying the transposition to (5.6),

resp. (5.7) we obtain (5.8), resp. (5.9), where we use θ# = −θ, A# = A,
B# = B.

(5.10) is proven in (5.13). This implies that 1l + A#Bθ is invertible.
Hence A#B ∈ Symqnd(C2d).

Symqnd(C2d) equipped with (4.2) is not a semigroup. It is enough to see

that for A = B =

[
i 0
0 i

]
we have 1l +AθBθ = 0, so A#B is not defined.

Proposition 5. Sym++(C2d) is a semigroup.

Proof. Let A and B belong to Sym++(C2d). The matrix

[
θAθ −θ
θ θBθ

]
be-

longs to Sym++(C2d). Hence, so does its inverse. Therefore, (4.2) also
belongs to Sym++(C2d). This shows that A#B is well defined and belongs
to Sym++(C2d).
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Proposition 6. Symqnd
++(C2d) is also a semigroup.

Proof. Let A and B belong to Symqnd
++(C2d). We already know that A#B is

well defined, and hence 1l + AθBθ is invertible (see Prop. 2). Using (5.10)
and the invertibility of 1l + Aθ, 1l +Bθ, we can conclude that 1l + A#Bθ is
invertible. Hence A#B ∈ Symqnd

++(C2d).

6 Oscillator semigroup

Following [14, 12], the oscillator semigroup Osc++(C2d) is defined as the set
of operators on L2(Rd) whose Weyl symbols are centered Gaussian, that
is operators of the form aOp(e−A), where a ∈ C, A ∈ Sym++(C2d) and

A(x, p) =

[
x
p

]#

A

[
x
p

]
. (In [14], this semigroup is denoted Ω).

There are several equivalent characterizations of Osc++(C2d). Here is
one of them:

Proposition 7. Osc++(C2d) equals the set of operators on L2(Rd) with
centered Gaussian kernels. More precisely, the integral kernel of aOp(e−A)

for A =

[
B D
D# F

]
is

ce−C(x,y),

where

c =
2−da√
det(F )

, (6.1)

C(x, y) = −1

4

[
x

y

]# [
1 1

1 −1

][
B −DF−1D# −iDF−1

−iF−1D# F−1

][
1 1

1 −1

][
x

y

]

= −1

4

[
x

y

]# [
B −DF−1D# − iDF−1 − iF−1D# + F−1 B −DF−1D# + iDF−1 − iF−1D# − F−1

B −DF−1D# − iDF−1 + iF−1D# − F−1 B −DF−1D# + iDF−1 + iF−1D# + F−1

][
x

y

]
.

Proof. The formula follows by elementary Gaussian integration. The de-
tailed computations can be found in [12].

Proposition 8. Let A and B belong to Sym++(C2d). Then the following
product formula holds:

Op(e−A)Op(e−B) =
ε√

det(AθBθ + 1l)
Op(e−A#B), (6.2)

where ε = 1 or ε = −1. Consequently, Osc++(C2d) is a semigroup and

Osc++(C2d) 3 cOp(e−A) 7→ A ∈ Sym++(C2d) (6.3)

is an epimorphism.
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Proof. Formula (3.5) assures us that

(e−y
#Ay ∗ e−y

#By)(y) (6.4)

= π−2d

∫
dy1

∫
dy2 exp

(
− 2(y − y2)θ(y − y1)− y#

1 Ay1 − y#
2 By2

)
(6.5)

= π−2d

∫
dy1

∫
dy2 exp

(
−
[
y1

y2

]# [
A −θ
θ B

] [
y1

y2

]
− 2

[
y1

y2

]# [−θy
θy

])

= det

[
A −θ
θ B

]−1/2

exp

([
−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

])
. (6.6)

Then we check that

det

[
A −θ
θ B

]
= det(1l +AθBθ), (6.7)

[
−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

]
= −

[
−y
y

]# [
θAθ −θ
θ θBθ

]−1 [−y
y

]
. (6.8)

Again, following [14, 12], we introduce the normalized oscillator semi-
group, denoted Oscnor

++(C2d), as{
±
√

det(1l +Aθ)Op(e−A) |A ∈ Symqnd
++(C2d)

}
.

(In [14], this semigroup is denoted Ω0).

Proposition 9. Oscnor
++(C2d) is a subsemigroup of Osc++(C2d) and

Oscnor
++(C2d) 3 ±

√
det(1l +Aθ)Op(e−A) 7→ A ∈ Symqnd

++(C2d) (6.9)

is a 2-1 epimorphism of semigroups.

Proof. It is enough to check that√
det(1l +Aθ)Op(e−A)

√
det(1l +Bθ)Op(e−B) (6.10)

= ε
√

det(1l +A#Bθ)Op(e−A#B), (6.11)

where ε = 1 or ε = −1. Indeed, (5.10) implies

det(1l +AθBθ) = det(1l +Aθ) det(1l +A#Bθ)−1 det(1l +Bθ). (6.12)

Now we need to use (6.2).
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7 Positive elements of the oscillator semi-

group

We define

Symp(R2d) := {A ∈ Sym++(R2d) | σ(Aθ) ⊂ [−1, 1]}, (7.1)

Symqnd
p (R2d) := {A ∈ Sym++(R2d) | σ(Aθ) ⊂]− 1, 1[}. (7.2)

Proposition 10. Let a ∈ C and A ∈ Sym++(C2d). Then

(1)
(
aOp(e−A)

)∗
= aOp(e−A).

(2) aOp(e−A) is Hermitian iff a ∈ R and A ∈ Sym++(R2d).

(3) aOp(e−A) is positive iff a > 0, A ∈ Symp(R2d).

Proof. (1) and (2) are follow by the obvious identity Op(a)∗ = Op(a).
Let us prove (3). A is a positive definite real matrix and ω is a symplectic

matrix. It is well known, that they can be simultaneously diagonalized, that

is, one can find a basis of R2d such that if we write R2d =
d
⊕
i=1

R2, then

ω is the direct sum of

[
0 1
−1 0

]
and A is the direct sum of

[
λi 0
0 λi

]
with

λi > 0. After an appropriate metaplectic transformation, we can represent

the Hilbert space L2(Rd) as
d
⊗
i=1

L2(R) and Op(e−A) can be represented as

d
⊗
i=1

Op
(
e−λi(x

2
i+p

2
i )
)
. Next we use (1.2) to see that the positivity of Op(e−A)

is equivalent to λi ≤ 1, i = 1, . . . , d, which in turn is equivalent to σ(Aθ) ⊂
[−1, 1] (the eigenvalues of Aθ are of the form ±λi).

Proposition 11. Symqnd
p (R2d) = {A ∈ Symp(R2d) | det(Aθ + 1l) 6= 0}.

Proof. We use the basis that is mentioned at the end of the proof of Prop.
10.

Proposition 12. det(1l + Aθ) = det(1l +Aθ). Consequently, Symqnd(C2d)

and Symqnd
++(C2d) are invariant with respect to complex conjugation.

Proof. We use

θ(1l +Aθ)θ = 1l + θA, (7.3)

(1l + θA)# = 1l−Aθ, (7.4)

1l−Aθ = 1l +Aθ. (7.5)

Theorem 13. (1) If A ∈ Sym++(C2d), then A#A ∈ Symp(R2d).

(2) If A ∈ Symqnd
++(C2d), then A#A ∈ Symqnd

p (R2d).

12



Proof. (1): Let A ∈ Sym++(C2d). Then

Op(e−A)∗Op(e−A) =
1√

det(1l +AθAθ)
e−A#A (7.6)

is a positive operator. Therefore, by Proposition 10 (3), A#A ∈ Symp(R2d).

(2): Symqnd
++(C2d) is a semigroup invariant wrt the conjugation, and hence

A#A ∈ Symqnd
++(C2d). By (1), A#A ∈ Symp(R2d). But by Prop. 11,

Symqnd
p (R2d) = Symp(R2d) ∩ Symqnd

++(C2d).

8 Complex symplectic group

A linear operator R on R2d is called symplectic if

R#ωR = ω. (8.1)

The set of symplectic operators on R2d will be denoted Sp(R2d). It is the
well known symplectic group in dimension 2d.

In our paper a more important role is played by the complex version
of the symplectic group. More precisely, we will say that a complex linear
operator R on C2d is symplectic if (8.1) holds. (Of course, we can replace
ω in (8.1) with θ). The set of complex symplectic operators on C2d will be
denoted Sp(C2d). It is also a group, called the complex symplectic group in
dimension 2d.

We define

Sp+(C2d) := {R ∈ Sp(C2d) | R∗θR ≤ θ}, (8.2)

Sp++(C2d) := {R ∈ Sp(C2d) | R∗θR < θ}. (8.3)

Sp+(C2d) and Sp++(C2d) are semigroups satisfying

Sp(R2d) ∩ Sp++(C2d) = ∅, (8.4)

Sp++(C2d) ⊂ Sp+(C2d), (8.5)

Sp(R2d) ⊂ Sp+(C2d). (8.6)

We also set

Sph(C2d) := {R ∈ Sp(C2d) : R = R−1} (8.7)

= {R ∈ Sp(C2d) : R∗θ = θR}, (8.8)

Spp(C2d) := {R ∈ Sph(C2d) : σ(R) ⊂]0,∞[}. (8.9)

Below we state a few properties of Sp++(C2d) and Spp(C2d). It will be
convenient to defer their proofs to the next section.

Proposition 14. Spp(C2d) ⊂ Sp++(C2d).

Note that C\] − ∞, 0] 3 z 7→ zt ∈ C is a well defined holomorphic
function. In the proposition below σ(R) ⊂]0,∞[, therefore Rt is well defined.

13



Proposition 15. Let R ∈ Spp(C2d) and t > 0. Then Rt ∈ Spp(C2d).

Proposition 16. Let R ∈ Sp++(C2d). Then R
−1
R ∈ Spp(C2d).

The next result, which is an analog of the polar decomposition, was noted
by Howe (see [14], Proposition (23.7.2)):

Proposition 17. Every R ∈ Sp++(C2d) may be decomposed in the following
way:

R = TS, (8.10)

where T := R
√
R
−1
R ∈ Sp(R2d) and S :=

√
R
−1
R ∈ Spp(C2d).

9 Relationship between Sym and symplec-

tic group

Let us define

Spreg(C2d) =
{
R ∈ Sp(C2d) | R+ 1l is invertible

}
, (9.1)

Spreg
h (C2d) =

{
R ∈ Sph(C2d) | R+ 1l is invertible

}
. (9.2)

Theorem 18. (1) Symqnd(C2d) 3 A 7→ c(Aθ) ∈ Spreg(C2d) is a bijection.
Its inverse is

Spreg(C2d) 3 R 7→ c(R)θ ∈ Symqnd(C2d). (9.3)

Besides, if A,B ∈ Symqnd(C2d) and A#B ∈ Symqnd(C2d) is well de-
fined, then

c(A#Bθ) = c(Aθ)c(Bθ). (9.4)

(2) Symqnd
++(C2d) 3 A 7→ c(Aθ) ∈ Sp++(C2d) is an isomorphism of semi-

groups.

(3) Symqnd(R2d) 3 A 7→ c(Aθ) ∈ Spreg
h (C2d) is a bijection.

(4) Symqnd
p (R2d) 3 A 7→ c(Aθ) ∈ Spp(C2d) is a bijection.

Proof. (1): Let A ∈ Symqnd(C2d). Then,

c(Aθ)#θc(Aθ) = (1l− θA)−1(1l + θA)θ(1l−Aθ)(1l +Aθ)−1 (9.5)

= (1l− θA)−1(1l− θAθAθ)(1l +Aθ)−1 (9.6)

= (1l− θA)−1(1l− θA)θ(1l +Aθ)(1l +Aθ)−1 = θ.(9.7)

Hence, c(Aθ) ∈ Sp(C2d).
Conversely, let R ∈ Spreg(C2d). Then(

(1l−R)(1l +R)−1θ
)#

= −θ(1l +R#)−1(1l−R#) (9.8)

= −(θ +R#θ)−1(1l−R#) = −
(
θ(1l +R−1)

)−1
(1l−R#) (9.9)

= −(1l +R−1)−1(θ − θR#) = −(1l +R−1)−1(1l−R−1)θ (9.10)

= (1l +R)−1(1l−R)θ. (9.11)
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Hence, c(R)θ ∈ Sym(C2d).
Clearly, Aθ + 1l is invertible iff c(Aθ) ∈ Lreg(C2d). Thus Symqnd(C2d) 3

A 7→ c(Aθ) ∈ Spreg(C2d) is a bijection.
To see (9.4) it is enough to use (5.5).
(2): We have

c(Aθ)∗θc(Aθ) = (1l + θA)−1(1l− θA)θ(1l−Aθ)(1l +Aθ)−1 (9.12)

= (1l + θA)−1(1l− θAθ − θAθ + θAθAθ)(1l +Aθ)−1(9.13)

= θ − 2(1l + θA)−1θ(A+A)θ(1l +Aθ)−1. (9.14)

Thus,
c(Aθ)∗θc(Aθ) < θ (9.15)

iff A+A > 0. Hence Symqnd
++(C2d) 3 A 7→ c(Aθ) ∈ Sp++(C2d) is a bijection.

It is a homomorphism because of (9.4).
(3): Let A ∈ Symqnd(R2d). Then

c(Aθ) =
1l +Aθ

1l−Aθ
= c(Aθ)−1. (9.16)

Hence, c(Aθ) ∈ Sph(C2d).
Conversely, let R ∈ Spreg

h (C2d). Then

(1l−R)(1l +R)−1θ = −(1l−R)(1l +R)−1θ (9.17)

= −(1l−R−1)(1l +R−1)−1θ = (1l−R)(1l +R)−1θ. (9.18)

Hence, c(R)θ ∈ Sym(R2d).
(4): Clearly,

λ ∈]− 1, 1[ iff
1− λ
1 + λ

∈]0,∞[.

Therefore,
σ(Aθ) ⊂]− 1, 1[ iff σ

(
c(Aθ)

)
⊂]0,∞[.

Proof of Proposition 14. Let R ∈ Spp(C2d). By Theorem 18 (4), c(R)θ ∈
Symqnd

p (R2d). Proposition 11 implies that c(R)θ ∈ Symqnd
++(R2d). Now The-

orem 18 (2) shows that R = c
(
(c(R)θ)θ

)
∈ Sp++(C2d).

Proof of Proposition 15. Let R ∈ Spp(C2d).
Functional calculus of operators is invariant wrt similarity transforma-

tions. Therefore, R#(−1) = θRθ−1 implies R#(−t) = θRtθ−1. Hence Rt ∈
Sp(C2d).

R = R−1 implies R
t

= (Rt)−1. Hence, Rt ∈ Sph(C2d).
σ(R) ⊂]0,∞[ implies σ(Rt) ⊂]0,∞[. Hence Rt ∈ Spp(C2d).
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Proof of Proposition 16. Theorem 18 (2) assures us that we can find a ma-

trix A ∈ Symqnd
++(R2d), such that c(Aθ) = R. By Theorem 13 (2), A#A ∈

Symqnd
p (R2d). Now we may use Theorem 18 (4) to see that c(A#Aθ) ∈

Spp(C2d).

It is easy to check that R
−1

= c(Aθ). Moreover, by (9.4),

R
−1
R = c(Aθ)c(Aθ) = c(A#Aθ). (9.19)

Therefore, R
−1
R ∈ Spp(C2d).

Proof of Proposition 17. By Prop. 16, R
−1
R ∈ Spp(C2d). By Prop. 15,

S :=
√
R
−1
R ∈ Spp(C2d). Clearly, R ∈ Sp(C2d). Hence, T := RS ∈

Sp(C2d).

T = RS = RS−1 = RS−2S = RR−1RS = T. (9.20)

Therefore, T := RS ∈ Sp(R2d).

Theorem 19. The map

Oscnor
++(C2d) 3 ±

√
det(1l +Aθ)Op(e−A) 7→ c(Aθ) ∈ Sp++(C2d)

is a 2-1 epimorphism of semigroups.

Proof. We use Proposition 9 and Theorem 18 (2).

10 Metaplectic group

It is easy to see that if C ∈ Sym(R2d), then c(Cω) ∈ Sp(R2d). In fact,
elements of this form constitute an open dense subset of Sp(R2d).

We define Mp(R2d), called the metaplectic group in dimension 2d, to be
the group generated by operators of the form

±
√

det(1l + Cω)Op(e−iC), C ∈ Sym(R2d). (10.1)

The theory of the metaplectic group is well known, see e.g. [10], Sec-
tion 10.3.1. We assume that the reader is familiar with its basic elements.
Actually, we have already used it in our proof of Prop. 10 (3).

The theory of the metaplectic group can be summed up by the following
theorem:

Theorem 20. The metaplectic group consists of unitary operators. Oper-
ators of the form (10.1) constitute an open and dense subset of Mp(R2d).
The map

±
√

det(1l + Cω)Op(e−iC) 7→ c(Cω) (10.2)

extends by continuity to a 2− 1 epimorphism Mp(R2d)→ Sp(R2d)

Remark 10.1. For completeness, one should mention some other natural
semigroups closely related to Osc++(C2d):
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1. Osc+(C2d) generated by operators of the form aOp(e−A) with A ∈
Sym+(C2d), a ∈ C;

2. Oscnor
+ (C2d) generated by operators of the form±

√
det(1l +Aθ)Op(e−A)

with A ∈ Sym+(C2d).

11 Polar decomposition

For an operator V , its absolute value is defined as

|V | :=
√
V ∗V . (11.1)

The following theorem provides a formula for the absolute value of elements
of the oscillator semigroup.

Theorem 21. Let A ∈ Symqnd
++(C2d). Then

∣∣Op(e−A)
∣∣ =

4

√
det
(
1l + (Bθ)2

)
4

√
det(1l +AθAθ)

Op(e−B), (11.2)

where

B = c
(√

c(Aθ)c(Aθ)
)
θ. (11.3)

Besides, the function

Symqnd
++(C2d) 3 A 7→

∣∣Op(e−A)
∣∣

is smooth.

Proof. By Prop. 16, c(Aθ)c(Aθ) = c(Aθ)
−1
c(Aθ) ∈ Spp(C2d). Hence, by

Prop. 15 we can define
√
c(Aθ)c(Aθ) ∈ Spp(C2d). Therefore, B defined in

(11.3) belongs to Symqnd
p (R2d) and satisfies A#A = B#B.

We have

Op(e−B)2 =
1√

det(1l + (Bθ)2
Op
(
e−B#B

)
. (11.4)

Hence,

Op(e−A)∗Op(e−A) =

√
det
(
1l + (Bθ)2

)√
det(1l +AθAθ)

Op(e−B)2. (11.5)

Besides, Op(e−B) ≥ 0. Therefore,
∣∣Op(e−A)

∣∣ is given by (11.2).
Now the square root is a smooth function on the set of invertible matrices

(and obviously on the set of nonzero numbers). In the formula (11.3) for

A ∈ Symqnd
++(C2d) we never need to take roots of zero or of non-invertible

matrices, because 1l±Aθ and 1l±Aθ are invertible. Therefore,

Symqnd
++(C2d) 3 A 7→

√
c(Aθ)c(Aθ) (11.6)
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is smooth. Therefore, the map A 7→ B is smooth
For A ∈ Symqnd

++(C2d), A,B ∈ Symqnd
++(C2d). Therefore, by Prop. 5.10,

1l + AθAθ and 1l + (Bθ)2 are invertible. Hence, the prefactors of (11.2) are
smooth. This ends the proof of the smoothness of (11.2).

Let V be a closed operator such that KerV = KerV ∗ = {0}. Then it is
well known that there exists a unique unitary operator U such that we have
the identity

V = U |V |. (11.7)

called the polar decomposition.

Theorem 22. Let A ∈ Symqnd
++(C2d). Let B ∈ Symqnd

p (C2d) be defined as
in (11.3). Then∣∣∣√det(1l +Aθ)Op(e−A)

∣∣∣ =
√

det(1l +Bθ)Op(e−B), (11.8)

and the unitary operator U that appears in the polar decomposition√
det(1l +Aθ)Op(e−A) = U

√
det(1l +Bθ)Op(e−B) (11.9)

belongs to Mp(R2d). Besides, if

iC := A#(−B) (11.10)

is well defined, then

U = ε
√

det(1l + Cω)Op(e−iC), (11.11)

where ε = 1 or ε = −1.

Proof. By (5.10),

1l +AθAθ = (1l +Aθ)(1l +A#Aθ)−1(1l +Aθ), (11.12)

1l +BθBθ = (1l +Bθ)(1l +B#Bθ)−1(1l +Bθ), (11.13)

Besides, A#A = B#B. This together with (11.2) implies (11.8).
Assume now that iC := A#(−B) is well defined. Then clearly√

det(1l +Aθ)Op(e−A) (11.14)

=ε
√

det(1l +Bθ)Op(e−B)
√

det(1l + iCθ)Op(e−iC). (11.15)

It remains to show that iC is purely imaginary.

A#(−B) = (−B)#A = (−B)#A#A(−A) (11.16)

= (−B)#B#B#(−A) (11.17)

= B#(−A) = −A#(−B). (11.18)
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12 Trace and the trace norm

Suppose we have an operator K on L2(Rn). As proven in [11] (for a more
general setting, see [4] and [5]), if K has a continuous kernel K(x, y) be-
longing to L2(Rn × Rn) and x 7→ Kx, x) is in L1(Rn), then

TrK =

∫
K(x, x) dx. (12.1)

In the case of Weyl–Wigner quantization, for a symbol a we get

Tr Op(a) =

∫
Op(a)(x, x) dx = (2π)−d

∫
a(x, ξ) dx dξ. (12.2)

This easily implies the followig proposition:

Proposition 23. The trace of operator Op(e−A) with A ∈ Sym++(C2d) is

Tr Op(e−A) =
1

2d
√

detA
=

1

2d
√

detAθ
. (12.3)

(Note that det θ = 1, hence we could insert θ in (12.3)).
One can also compute the trace of the absolute value of elements of the

oscillator semigroup, the so-called trace norm.

Theorem 24. The trace norm of Op(e−A), where A ∈ Sym++(C2d), is

Tr |Op(e−A)| =
√

2

2d
√

det |(1l +Aθ)(1l−
√
c(A∗θ)c(Aθ))|

. (12.4)

Proof. (12.3) and (11.2) imply

Tr
∣∣Op(e−A)

∣∣ =

4

√
det
(
1l + (Bθ)2

)
2d 4

√
det(1l +AθAθ)(Bθ)2

. (12.5)

Now, easy algebra shows that

det
(
1l + (Bθ)2

)
det(1l +AθAθ)(Bθ)2

(12.6)

=
2 det

(
1l + c(Aθ)c(Aθ)

)
det(1l +AθAθ)

(
1l−

√
c(Aθ)c(Aθ)

)2 (12.7)

=
4

det(1l +Aθ)(1l +Aθ)
(
1l−

√
c(Aθ)c(Aθ)

)2 (12.8)

=
22(

det
∣∣∣(1l +Aθ)

(
1l−

√
c(Aθ)c(Aθ)

)∣∣∣)2 . (12.9)
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Corollary 25. The trace norm of Op(e−B), where B ∈ Sym++(R2d), is

Tr |Op(e−B)| =
√

2

2d
√

det
∣∣|1l +Bθ| − |1l−Bθ|

∣∣ . (12.10)

Thus, if we diagonalize simultaneously B and ω, as in the proof of Prop.
10, then

Tr |Op(e−B)| =
√

2

4d
∏
λi<1

λi
. (12.11)

13 Operator norm

Proposition 26. Let B ∈ Sym++(R2d). Then

∥∥Op(e−B)
∥∥ =

1√
det(1l +

√
BθBθ)

. (13.1)

Proof. First, using (1.2), we check that in the case of one degree of freedom
we have ∥∥Op

(
e−λ(x2+p2)

)∥∥ =
1

1 + λ
. (13.2)

An arbitrary B we can diagonalize together with θ, as in the proof of Prop.
10 (3), and then we obtain

∥∥Op(e−B)
∥∥ =

d∏
i=1

1

1 + λi
. (13.3)

Now the rhs of (13.3) can be rewritten as the rhs of (13.1).

Using 11.8, we obtain an identity for an arbitrary element of the oscillator
semigroup. A closely related result is described in Thm 5.2 of [19].

Theorem 27. Let A ∈ Sym++(C2d). Then∥∥√det(1l +Aθ)Op(e−A)
∥∥

=

√
det
(

1l + c
(√

c(Aθ)c(Aθ)
))

√
det
(

1l +

√
c
(√

c(Aθ)c(Aθ)
)
c
(√

c(Aθ)c(Aθ)
)) . (13.4)

14 One degree of freedom

In the case of one degree of freedom we have a complete characterization of
quantum nondegenerate symmetric matrices.

Theorem 28. Let A ∈ Sym(C2). Then A ∈ Symqnd(C2) iff detA 6= 1.
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Proof. We easily compute that for A ∈ Sym(C2),

det(1l +Aθ) = 1− detA. (14.1)

Next we describe the quantum degenerate case for one degree of freedom
on the level of the oscillator group.

Theorem 29. Elements of Osc++(C2) that are not proportional to an ele-
ment of Oscnor

++(C2) are proportional to a projection. They have the integral
kernel of the form

ce−(ax2+by2), (14.2)

where a, b, c ∈ C, Re a,Re b > 0. The Weyl symbol of the operator with the
kernel (14.2) is

c
2
√
π√

a+ b
e−A, (14.3)

where

A =
1

(a+ b)

[
4ab i(−a+ b)

i(−a+ b) 1

]
. (14.4)

Matrices of the form (14.4) with Re a,Re b > 0 are precisely all matrices in

Sym++(C2)\Symqnd
++(C2). (14.5)

15 Application to the boundedness of pseudo-

differential operators

Cordes proved the following result [9]:

Theorem 30. Suppose a ∈ S ′(Rd × Rd) and s > d
2 . Then there exists a

constant cd,s such that

‖Op(a)‖ 6 cd,s‖(1−∆x)s(1−∆p)
sa‖∞. (15.1)

The above result can be called the Calderón and Vaillancourt Theorem
for the Weyl quantization. (The original result of Calderón and Vaillancourt
[8] concerned the x− p quantization, known also as the standard or Kohn-
Nirenberg quantization).

Note that Theorem 30 is not optimal with respect to the number of
derivatives. The optimal bound on the number of derivatives for the Weyl
quantization is s > d

4 . It was discovered by A. Boulkhemair [3] and it
requires a different proof than the one developed by Cordes.

In what follows we will describe a proof of Theorem 30 which gives an
estimate of cd,s. We will follow the ideas of Cordes and Kato ([9] and [16]),
who however do not give an explicit bound on the constant cd,s. The esti-
mate (1.4) for the trace norm of operators with Gaussian symbols plays an
important role in our proof.

We start with the following proposition.
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Proposition 31. For s > d
2 , define the functions

ψs(ξ) := (2π)−d
∫

dζ (1 + ζ2)−seiζξ, (15.2)

Ps(x, p) := ψs(x)ψs(p). (15.3)

Then Op(Ps) is trace class and

Tr
∣∣∣Op(Ps)

∣∣∣ ≤ Γ(s)2 + Γ(s− d
2)2

(2π)dΓ(s)2
. (15.4)

Proof. Let us use the so-called Schwinger parametrization

X−s =
1

Γ(s)

∫ ∞
0

e−tXts−1 dt (15.5)

to get

ψs(ξ) =
1

Γ(s)(2π)d

∫ ∞
0

dt

∫
dζ e−t(1+ζ2)ts−1eiζξ

=
1

π
d
2 2dΓ(s)

∫ ∞
0

dt ts−
d
2
−1e−t−

ξ2

4t . (15.6)

Now

Ps(x, p) =
1

πd22dΓ2(s)

∫ ∞
0

du

∫ ∞
0

dve−u−v−
x2

4u
− p

2

4v (uv)s−
d
2
−1. (15.7)

By (1.4), we have

Tr
∣∣∣Op

(
e−αx

2−βp2)
)∣∣∣ =

{
1

(2
√
αβ)d

, αβ ≤ 1,

1
2d
, 1 ≤ αβ.

(15.8)

Hence,

Tr
∣∣∣Op(Ps)

∣∣∣ (15.9)

≤ 1

22dπdΓ2(s)

∫ ∞
0

du

∫ ∞
0

dve−u−vTr
∣∣∣Op

(
e−

x2

4u
− p

2

4v

)∣∣∣(uv)s−
d
2
−1 (15.10)

≤ 1

2dπdΓ2(s)

( ∫
du

∫
dv

4≤uv, u,v>0

e−u−v(uv)s−1 +

∫
du

∫
dv

uv≤4, u,v>0

e−u−v(uv)s−
d
2
−1

)
(15.11)

≤
Γ(s)2 + Γ(s− d

2)2

2dπdΓ2(s)
. (15.12)
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Proposition 32. Let B be a self-adjoint trace class operator and h ∈
L∞(R2d). Then

C :=
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂Beiyp̂−iwx̂ (15.13)

is bounded and
‖C‖ ≤ Tr |B| ‖h‖∞. (15.14)

Proof. For Φ ∈ L2(Rd), ‖Φ‖ = 1, define TΦ : L2(Rd)→ L2(R2d) by

TΦΘ(y, w) := (2π)−
d
2 (Φ|eiyp̂−iwx̂Θ), Θ ∈ L2(R2d). (15.15)

We check that TΦ is an isometry. This implies that for Φ,Ψ ∈ L2(Rd) of
norm one

1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂|Φ)(Ψ|eiyp̂−iwx̂ (15.16)

is bounded and its norm is less than ‖h‖∞. Indeed, (15.16) can be written
as the product of three operators

T ∗ΦhTΨ, (15.17)

where h is meant to be the operator of the multiplication by the function h
on the space L2(R2d). Now it suffices to write

B =
∞∑
i=1

λi|Φi)(Ψi|, (15.18)

where Φi,Ψi are normalized, λi ≥ 0 and Tr |B| =
∞∑
i=1

λi.

Proof of Theorem 30. Set

h := (1−∆x)s(1−∆p)
sa. (15.19)

Then

a(x, p) = (1−∆x)−s(1−∆p)
−sh(x, p) (15.20)

=

∫
dy

∫
dwPs(x− y, p− w)h(y, w). (15.21)

Hence

Op(a) =

∫
dy

∫
dwOp

(
Ps(x− y, p− w)

)
h(y, w) (15.22)

=
1

(2π)d

∫
dy

∫
dw h(y, w)e−iyp̂+iwx̂Op(Ps)e

iyp̂−iwx̂. (15.23)
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Therefore, by Proposition 32,

‖Op(a)‖ ≤ Tr
∣∣Op(Ps)

∣∣‖h‖∞. (15.24)

Thus we can set
cd,s = Tr

∣∣Op(Ps)
∣∣, (15.25)

which is finite by Proposition 31.
Proposition 31 yields an explicit estimate for cd,s given by the rhs of

(15.4). Actually, in the proof of Proposition 31 we have an even better,
although more complicated explicit estimate given by (15.11).

16 Complex symplectic Lie algebra

The well known symplectic Lie algebra in dimension 2d is defined as the set
of R ∈ L(R2d) satisfying

R#ω + ωR = 0. (16.1)

Similarly, the set of R ∈ L(C2d) satisfying (16.1) is called the complex sym-
plectic Lie algebra in dimension 2d and denoted sp(C2d). As usual in the
complex case, we usually prefer to replace ω in (16.1) with θ.

We define

sp+(C2d) := {D ∈ sp(C2d) | D∗θ + θD ≥ 0}, (16.2)

sp++(C2d) := {D ∈ sp(C2d) | D∗θ + θD > 0}. (16.3)

We also introduce

sph(C2d) := {D ∈ sp(C2d) | D = −D}, (16.4)

spp(C2d) := {D ∈ sph(C2d) | θD > 0}. (16.5)

Proposition 33. (1) Let D ∈ sp(C2d). Then e−D ∈ Sp(C2d).

(2) Let D ∈ sp++(C2d). Then e−D ∈ Sp++(C2d).

(3) Let D ∈ sph(C2d). Then e−D ∈ Sph(C2d).

(4) Let D ∈ spp(C2d). Then e−D ∈ Spp(C2d).

Proof. (1) and (3) are obvious corollaries from the definitions.
(2): Integrating

d

dt
(e−tD)∗θe−tD = −(e−tD)∗(D∗θ + θD)e−tD < 0 (16.6)

we obtain (e−D)∗θe−D < θ.
(4): We can write

e−D = e−θ(θD).

We diagonalize simultaneously the positive form θD and θ. In the diagonal-
izing basis, the matrices θ and θD commute, the former has eigenvalues ±1,
the latter has positive eigenvalues. Hence e−D has positive eigenvalues.
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17 Hamiltonians

Let H ∈ Sym(C2d). As usual, the quadratic form R2d 3 y 7→ y#Hy ∈ C
will be also denoted by H. Let us briefly recall the properties of quantum
quadratic Hamiltonians Op(H) and their relationship to the metaplectic
group. We will use [10] as the basic reference, although most of these facts
are well known.

Set
D := 2Hω−1. (17.1)

Clearly, D ∈ sp(C2d). We will say that D is the symplectic generator asso-
ciated with the Hamiltonian H.

First assume that H ∈ Sym(R2d). It is well known that then Op(H)
is essentially self-adjoint on S(Rd) (see e.g. [10] Thm 10.21). Moreover,
eitOp(H) ∈Mp(R2d) (see e.g. [10] Thm 10.36). Under the epimorphism 10.2,
eitOp(H) is mapped onto etD, where D ∈ sp(R2d) is defined by (17.1) (see
e.g. [10] Thm 10.22). Finally, if etD ∈ Spreg(R) and Ct := c(etD)ω−1,

eitOp(H) =
√

det(1 + Ctω)Op(e−iCt), (17.2)

see e.g. [10] Thm 10.35.
Next consider H ∈ Sym++(C2d). It is easy to show that Op(H) extends

from S(Rd) to a maximal accretive operator (see e.g. [10], Thm 10.21).
Moreover, e−tOp(H) ∈ Oscnor

++(C2d). In fact, if D is defined as in (17.1), then
−iD ∈ sp++(C2d), and hence by Prop. 33 (2), eitD ∈ Sp++(C2d). Moreover,
under the epimorphism (6.9), e−tOp(H) is mapped onto eitD. Finally, if we
set At := c(eitD)θ, then

e−tOp(H) =
√

det(1l +Atθ)Op(e−At), (17.3)

see e.g. in [10] Thm 10.35.

18 Holomorphic 1-parameter subsemigroups

Let H ∈ Sym++(C2d). As we recalled above, Op(H) is maximally accretive,
and hence

[0,∞[3 t 7→ e−tOp(H) (18.1)

is a well defined subsemigroup of Osc++(C2d). One can ask whether it can
be extended to a larger subsemigroup if we replace real t with a complex
parameter.

If H is real, then the answer is obvious and simple. Then Op(H) is a
positive self-adjoint operator and we have a well defined semigroup

{z ∈ C | Re z ≥ 0} 3 z 7→ e−zOp(H) (18.2)

inside Osc+(C2d). For Re z > 0, (18.2) is in Osc++(C2d).
If H is not real, then the answer can be more complicated.
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Let D ∈ sp++(C2d) correspond to H as in (17.1). Clearly

C 3 z 7→ eizD ∈ Sp(C2d) (18.3)

is a holomorphic subgroup of Sp(C2d). However, not all elements of the
complex symplectic group correspond to (bounded) operators on the Hilbert
space. Motivated by this, we define

A+(H) := {z ∈ C | eizD ∈ Sp+(C2d)}, (18.4)

A++(H) := {z ∈ C | eizD ∈ Sp++(C2d)}. (18.5)

From the definition it is obvious that A+(H) is a closed semisubgroup of C
and A++(H) is an open semisubgroup of A+(H).

If z ∈ A++(H), then we define

Az := c(eizD)θ ∈ Sym++(C2d), (18.6)

e−zOp(H) :=
√

det(1l +Azθ)Op
(
e−Az

)
. (18.7)

(The definition of (18.7) is consistent with the usual definition of e−zOp(H)

for real positive z).
The shapes of A+(H) and A++(H) can be quite curious. This is already

seen in the simplest nontrivial example, known under the name of the Davies
harmonic oscillator, as shown in [1], see also [19]. In this example, ψ ∈
] − π

2 ,
π
2 [ is a parameter, the classical and quantum Hamiltonians and the

generator are

Hψ := eiψx2 + e−iψp2, (18.8)

Ĥψ := Op(Hψ) = eiψx̂2 + e−iψp̂2, (18.9)

Dψ := 2

[
0 −eiψ

e−iψ 0

]
. (18.10)

The proposition below reproduces the result of Aleman and Viola (see (1.2)
of [1]).

Proposition 34. Let Hψ be the Davies’ harmonic oscillator, as above.
Then:

A+(Hψ) = {z ∈ C | Re (z) ≥ 0 and | arg tanh z|+ |ψ| 6 π

2
}, (18.11)

A++(Hψ) = {z ∈ C | Re (z) > 0 and | arg tanh z|+ |ψ| < π

2
}. (18.12)

Proof. iDψ generates a holomorphic group in Sp(C2d), which can be com-
puted using D2

ψ = −41l:

eizDψ =

[
cosh 2z ieiψ sinh 2z

−ie−iψ sinh 2z cosh 2z

]
(18.13)

Now

Aψ,z = c(eizDψ)θ = 2 tanh z

[
e−iψ 0

0 eiψ

]
. (18.14)
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Let us denote t := arg tanh z. Aψ,z belongs to Sym++(C2d) iff Re (z) > 0
and {

|t+ ψ| < π
2 ,

|t− ψ| < π
2 .

(18.15)

The above pair of inequalities is equivalent to

|t|+ |ψ| < π

2
. (18.16)

By Theorem 18(2), Aψ,z ∈ Sym++(C2d) iff eizDψ ∈ Sp++(C2d).
The proof for A+(Hψ) is analogous.
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