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Scattering at Zero Energy for Attractive
Homogeneous Potentials

Jan Dereziński and Erik Skibsted

Abstract. We compute up to a compact term the zero-energy scattering ma-
trix for a class of potentials asymptotically behaving as −γ|x|−μ with 0 <
μ < 2 and γ > 0. It turns out to be the propagator for the wave equation on
the sphere at time μπ

2−μ
.

1. Introduction and results

The paper is devoted to a study of the zero-energy scattering matrix S(0) for a
class of radial potentials on R

d with d ≥ 2. This class consists of the potentials
of the form V (x) := −γ|x|−μ + W (|x|), where 0 < μ < 2 and γ > 0 and W (r) is
a fast decaying perturbation. We will show that the leading term of S(0) can be
computed and is an interesting Fourier integral operator.

This paper can be considered as a companion to a series of papers [4–6],
where the low-energy scattering theory has been developed for a somewhat more
general class of potentials. Note however, that this paper can be read independently
of [4–6].

Before stating our main result, which deals with quantum scattering, let us
say a few words about its classical analog. Consider the equations of motion in a
strictly homogeneous potential V (r) = −γr−μ. It turns out that this problem is
exactly solvable at zero energy. The (non-collision) zero-energy orbits are given by
the implicit equation (in polar coordinates)

sin
(
1 − μ

2

)
θ(t) =

(
r(t)
rtp

)−1+ μ
2

, (1.1)
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see [4, Example 4.3]. Whence the deflection angle of such trajectories equals − μπ
2−μ .

In particular, for attractive Coulomb potentials it equals −π, which corresponds
to the well-known fact that in this case zero-energy orbits are parabolas (see [15,
p. 126] for example).

One can ask whether a similar behavior can be seen at the quantum level.
Our analysis shows that indeed this is the case.

Our main result is stated in terms of the unitary group eiθΛ generated by a
certain self-adjoint operator Λ on L2(Sd−1). The operator Λ is defined by setting
ΛY = (l + d/2 − 1)Y if Y is a spherical harmonic of order l. eiθΛ can be called
the propagator for the wave equation on the sphere. Note that for any θ, the dis-
tributional kernel of eiθΛ can be computed explicitly and its singularities appear
at ω ·ω′ = cos θ. This is expressed in the following fact [16]:

Proposition 1.1. eiθΛ equals

1. cθI, where I is the identity, if θ ∈ π2Z;
2. cθP , where P is the parity operator (given by τ(ω) �→ τ(−ω)), if θ ∈ π(2Z+1);
3. the operator whose Schwartz kernel is of the form cθ(ω ·ω′ − cos θ + i0)−

d
2 if

θ ∈]π2k, π(2k + 1)[ for some k ∈ Z;
4. the operator whose Schwartz kernel is of the form cθ(ω ·ω′ − cos θ − i0)−

d
2 if

θ ∈]π(2k − 1), π2k[ for some k ∈ Z.

We also remark that for all θ, the operator eiθΛ belongs to the class of Fourier
integral operators of order 0 in the sense of Hörmander [11,12].

Let us now briefly recall some points of the time-dependent scattering theory
for Schrödinger operators. Set H0 := − 1

2Δ and H = H0 + V (x). If the potential
V (x) is short-range, following the standard formalism, we can define the usual
scattering operator. In the long-range case the usual formalism does not apply.
Nevertheless, one can use one of the modified formalisms, which leads to a modified
scattering operator S.

Clearly, H0 commutes with S, and hence S can be written in terms of the
direct integral

S �
∫

]0,∞[

⊕S(λ)dλ . (1.2)

The operators S(λ), called scattering matrices, are defined up to a set of measure
zero. In the short-range case, one can chose S(λ) to be continuous for λ > 0, which
fixes the value of positive energy scattering matrices uniquely. In the long-range
case we need to use modified scattering operators, in whose definition there is a
freedom of choosing an arbitrary phase factor depending on λ. One can however
also choose S so that S(λ) is continuous for λ > 0, which fixes S(λ) up to a phase
factor.

Actually, we will use the modified formalism also in the short-range case. To
us a “scattering matrix” will always mean a “modified scattering matrix”, defined
up to a phase factor, also in the short-range case.
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The above description of scattering theory applies to a rather general class of
potentials. Under more restrictive assumptions described in [5] one can show that
the modified scattering operator can be chosen so that S(λ) is continuous down
to λ = 0, which allows us to define the zero-energy scattering matrix S(0). This is
one of the main results of [5].

One can compute the scattering matrix in terms of asymptotics of generalized
eigenfunctions. If the potential is radial this is particularly convenient. Explicitly
the asymptotics of the regular solution of the stationary Schrödinger equation
for the energy λ and the angular momentum sector l determines the scattering
phase shift, denoted σl(λ). Again, the usual definition of the scattering phase shift
applies only to the short-range case. In the long-range case one needs to introduce
a modified scattering phase shift. Our construction differs from these by a trivial
term (i.e. an l-independent term), cf. [5, Theorems 7.3 and 7.4].

Suppose that ]0,∞[	 r �→ V (r) is a continuous real function such that for
some positive constants ε, κ and C

∣∣V (r) + γr−μ
∣∣ ≤ Cr−1−μ

2 −ε , r > 1 ; (1.3)

|V (r)| ≤ Cr−2+κ , r ≤ 1 . (1.4)

With these assumptions, which will be the main assumptions used in this paper,
one can show that our (appropriately modified) phase shift σl(λ) is continuous in
λ down to λ = 0.

We have the following relationship between the phase shift and the scattering
matrix:

S(λ)Y = ei2σl(λ)Y , (1.5)

where Y is any spherical harmonic Y of order l. For positive energies (1.5) is a well-
known identity valid under rather general assumptions. For a (partial) justification
under the above conditions we refer to [5]. However let us stress that in this paper
we can (and will) avoid time-dependent formalisms completely, and in fact we
take (1.5) as the definition of S(λ), in particular for the limiting case λ = 0.
Whence we define the (modified) scattering matrix through the (modified) phase
shift.

Here is the main result of our paper:

Theorem 1.2. Assume the conditions (1.3) and (1.4) on the potential V (r). Then,
for some c ∈ R and a compact operator K on L2(Sd−1), we have

S(0) = eice−i μπ
2−μ Λ + K .

We prove Theorem 1.2 by a careful one-dimensional WKB-analysis, simul-
taneously in each angular momentum sector. Therefore our results do not follow
easily from the literature on 1-dimensional Schrödinger operators that we know.

Consider the potential V (r) equal exactly to −γ|x|−μ, and the corresponding
Hamiltonian Hμ := H0 − γr−μ. It is not difficult to show that Hμ is an ana-
lytic family of operators for Re μ ∈]0, 2[. In the preprint version of our paper we
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formulated a conjecture that in the case of Hμ

S(0) = eice−i μπ
2−μ Λ ,

without the compact error term, or alternatively, that the terms o(l0) in Proposi-
tion 3.2 vanish identically. A special case of this conjecture is the formula S(0) =
eicP in the attractive Coulomb case, which has been known for a long time, see [20].
(Here, (Pτ)(ω) = τ(−ω)). Recently, the above conjecture has been proven by
R. Frank, see [7].

2. Propagator of the wave equation on the sphere

2.1. Distributional kernel of the propagator

For any 1 ≤ i < j ≤ d, define the corresponding angular momentum operator

Lij := −i(xi∂xj
− xj∂xi

) .

Set
L2 :=

∑
1≤i<j≤d

L2
ij , Λ :=

√
L2 + (d/2 − 1)2 .

Note that Λ is a self-adjoint operator on L2(Sd−1) and its eigenfunctions with
eigenvalue l + d/2 − 1 are the lth order spherical harmonics for l = 0, 1, . . . .

For any θ one can compute exactly the integral kernel of eiθΛ. Although
the result already appears in the literature, see [16, Chapter 4, (2.13)], we shall
for the readers convenience give its complete derivation (this proof is different
from Taylor’s). Note that the operator appears naturally when we solve the wave
equation on the sphere, therefore we call it the propagator of the wave equation
on the sphere.

First we need to introduce some notation about distributions. For any ε > 0
and s ∈ R, the expression

R ∈ y �→ (y ± iε)−
s
2

defines uniquely a function on a real line, which can be viewed as a distribution
in S ′(R). It is well-known that for any φ ∈ S(R) there exists a limit

lim
ε↘0

∫
(y ± iε)−

s
2 φ(y)dy =:

∫
(y ± i0)−

s
2 φ(y)dy ,

which defines a distribution in S ′(R). In the sequel we will treat this distribution
as if it were a function, denoting it by (y ± i0)−

s
2 . Note that for s, ε > 0 we have

the identity

(y ± iε)−
s
2 =

e∓iπ s
4

Γ(s/2)

∫ ∞

0

eit(±y+iε)t
s−2
2 dt . (2.1)

We shall in this section show the following result:

Proposition 2.1.
1. If θ = π2k, k ∈ Z, then eiθΛ = (−1)kd times the identity.
2. If θ = π(2k + 1), k ∈ Z, then eiθΛ = eiπ(2k+1)(d/2−1)P , where P is the parity

operator.
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3. If θ ∈]π2k, π(2k + 1)[, k ∈ Z, then eiθΛ has the distributional kernel

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2)e−iπ/2(−ω ·ω′ + cos θ − i0)−d/2.

4. If θ ∈]π(2k − 1), π2k[, k ∈ Z, then eiθΛ has the distributional kernel

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2)e−iπ/2(−ω ·ω′ + cos θ + i0)−d/2 .

2.2. Tchebyshev and Gegenbauer polynomials

Recall that the Tchebyshev polynomials (of the first kind) are defined by the
identity

Tn(cos φ) := cos nφ , n = 0, 1, . . . .

Let |t| < 1.
An elementary calculation yields the following generating function of Tcheby-

shev polynomials:

− ln(1 − 2wt + t2) =
∞∑

l=1

2tl

l
Tl(w) . (2.2)

Gegenbauer polynomials are defined by the generating function [1, 14]

1
(1 − 2wt + t2)(d−2)/2

=
∞∑

l=0

tlC
(d−2)/2
l (w) . (2.3)

The left hand sides of (2.2) and (2.3) look different. But after simple manipulations
(involving differentiation of both sides) they become quite similar:

−t + t−1

(t − 2w + t−1)
d
2

=

⎧
⎨
⎩

T0(w) +
∑∞

l=1 tl2Tl(w) , d = 2 ;

∑∞
l=0 tl+

d
2−1 2l+d−2

d−2 C
(d−2)/2
l (w) , d ≥ 3 .

(2.4)

By substituting t = eiθ for Im θ > 0, we rewrite this as

−i2 sin θ

2d/2(cos θ − w)
d
2

=

⎧
⎨
⎩

T0(w) +
∑∞

l=1 eilθ2Tl(w) , d = 2 ;

∑∞
l=0 ei(l+ d

2−1)θ 2l+d−2
d−2 C

(d−2)/2
l (w) , d ≥ 3 .

(2.5)

2.3. Projection onto lth sector of spherical harmonics

It is well-known that the integral kernel of the projection onto lth sector of spherical
harmonics in L2(Sd−1) can be computed explicitly. This fact is usually presented in
the literature as the addition theorem for spherical harmonics, see e.g. Theorem 2,
Sect. 2 of [14]. In the case d = 3 it can also be found in [17].

In what follows dŷ will denote the natural measure on the unit sphere Sd−1.
Note that for this measure the area of Sd−1 equals sd−1 = 2πd/2

Γ(d/2) .

Proposition 2.2. Let Y be an lth order spherical harmonic in L2(Sd−1).
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1. In the case d = 2,
∫

S1

1
2π

T0(x̂ · ŷ)Y (ŷ)dŷ = δl0Y (x̂) ; (2.6)
∫

S1

1
π

Tn(x̂ · ŷ)Y (ŷ)dŷ = δlnY (x̂) , n = 1, 2, . . . .

2. In the case d ≥ 3,
∫

Sd−1

(d − 2 + 2l)Γ(d/2 − 1)
4πd/2

C(d−2)/2
n (x̂ · ŷ)Y (ŷ)dŷ = δlnY (x̂) . (2.7)

Proof. The case (2.6) is elementary. In the proof below we restrict ourselves to
d ≥ 3.

Let us first recall the formula for the Green’s function in R
d for d ≥ 3:

Gd(x) = − Γ(d/2 − 1)
4πd/2|x|d−2

= − 1
sd−1(d − 2)|x|d−2

, (2.8)

It satisfies

ΔGd = δ0 ,

where δ0 is Dirac’s delta at zero. Recall also the 3rd Green’s identity: if Δg = 0
and Ω is a sufficiently regular domain containing x, then

g(x) =
∫

∂Ω

g(y)∇yGd(x − y)d�s(y) −
∫

∂Ω

(∇g)(y)Gd(x − y)d�s(y) . (2.9)

We extend Y to R
d by setting g(x) = |x|lY (x̂). Note that

Δg(x) = 0 , x̂∇xg(x) = lg(x) .

By (2.3), for |x| < |y|,

Gd(x − y) = −Γ(d/2 − 1)
4πd/2

∞∑
n=0

C(d−2)/2
n (x̂ŷ)|x|n|y|−d+2−n ,

ŷ · ∇yGd(x − y) =
Γ(d/2 − 1)

4πd/2

∞∑
n=0

(d − 2 + n)C(d−2)/2
n (x̂ŷ)|x|n|y|−d+1−n .

We apply (2.9) to the unit ball, so that |y| = 1 and |x| < 1:

|x|lY (x̂) =
∫

Sd−1
g(ŷ)ŷ · ∇Gd(x − ŷ)dŷ −

∫

Sd−1
(ŷ · ∇g)(ŷ)Gd(x − ŷ)dŷ

=
Γ(d/2 − 1)

4πd/2

∞∑
n=0

(d − 2 + n + l)
∫

Sd−1
Y (ŷ)C(d−2)/2

n (x̂ŷ)|x|ndŷ . (2.10)

Comparing the powers of |x| on both sides of (2.10), we obtain (2.7). �
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2.4. Proof of Proposition 2.1

Let Qd−1
l be the orthogonal projection onto lth order spherical harmonics on Sd−1.

We multiply (2.5) by Γ(d/2)2−1π−d/2, set w = ω ·ω′ and use Proposition 2.2. We
obtain

−i sin θ Γ(d/2)
(2π)d/2(cos θ − ω ·ω′)d/2

=
∞∑

l=0

Qd−1
l (ω, ω′)ei(l+d/2−1)θ

= eiθΛ(ω, ω′) .

Replace θ with θ + iε, where θ is real and ε positive. For small ε we have

cos(θ + iε) ≈ cos θ − i sin θε .

Now sin θ > 0 for θ ∈]π2k, π(2k + 1)[ and sin θ < 0 for θ ∈]π(2k − 1), π2k[, which
ends the proof for the case θ ∈ R \ πZ.

The case θ ∈ πZ is obvious.

2.5. Propagator as a FIO

The operator eiθΛ is an interesting explicit example of a Fourier integral operator
(whenceforth abbreviated FIO) in the sense of Hörmander [11, 12]. As a side re-
mark, let us check this directly. (The material of this subsection will not be used
in what follows.)

Let X be a smooth compact manifold of dimension n. Let us recall some
basic definitions related to Fourier integral operators on X, cf. [12].

We say that X × X × R
k 	 (x, x′, θ) �→ φ(x, x′, θ) ∈ R is a non-degenerate

phase function if it is a function homogeneous of degree 1 in θ, smooth and satis-
fying ∇φ 
= 0 away from θ = 0, and such that

{
(x, x′, θ) ∈ X × X × R

k | ∇θφ(x, x′, θ) = 0
}

is a smooth manifold on which ∇∇θ1φ, . . . ,∇∇θk
φ are linearly independent.

Let χ be a smooth and homogeneous transformation on T
∗X \ X×{0}.

We say that it is associated to a non-degenerate phase function φ iff two pairs
(x, ξ), (x′, ξ′) ∈ T

∗X \ X×{0} satisfy χ(x′, ξ′) := (x, ξ) exactly when

ξ = ∇xφ(x, x′, θ) ,

ξ′ = −∇x′φ(x, x′, θ) ,

0 = ∇θφ(x, x′, θ) . (2.11)

The transformation χ is automatically canonical, that is, it preserves the symplec-
tic form of T

∗X.
We say that a smooth function X × X × R

k 	 (x, x′, θ) �→ u(x, x′, θ) is an
amplitude of order m iff

∂α
x ∂α′

x′ ∂
β
θ u = O

(
〈θ〉m−|β|) .
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Recall from [12] that an operator U from C∞(X) to D′(X) is called a Fourier
integral operator of order

m − n

2
+

k

2
iff in local coordinate patches its distributional kernel can be written as

U(x, x′) =
∫

eiφ(x,x′θ)u(x, x′, θ) dθ , (2.12)

where θ ∈ R
k are auxiliary variables, the function φ is a non-degenerate phase

function, and u is an amplitude of order m.
If the phase of U is associated to a canonical transformation χ, we say that

U itself is associated to χ.
Let WF (v) denote the wave front set of a distribution v, as defined in [12,

Section 2.5]). Let us remark that under appropriate additional assumptions on a
FIO U , for all v ∈ D′(X) we have

WF (Uv) ⊆ χ
(
WF (v)

)
;

see [12, Proposition 2.5.7 and Theorem 2.5.14]. (Note that these additional as-
sumptions are fulfilled for the example U = Uθ given below.)

Theorem 2.3. The operator Uθ := eiθΛ is a FIO of order 0.

Proof. If θ ∈ πZ, then eiθΛ is a so-called point transformation. But point trans-
formations given by diffeomorphisms of the underlying manifold are always FIO
of order zero.

Assume that θ /∈ πZ. Consider e.g. the case θ ∈]π2k, π(2k +1)[. By (2.1) and
Proposition 2.1 the kernel of Uθ can then be written as

Uθ(ω, ω′) = C

∫ ∞

0

eit(ω ·ω′−cos θ)t
d−2
2 dt . (2.13)

If we compare (2.13) with the definition of a FIO given above, we see that t(ω ·ω′−
cos θ) is a non-degenerate phase function. We also have n = d − 1, m = d−2

2 and
k = 1. Thus Uθ is a FIO of order

d − 2
2

− d − 1
2

+
1
2

= 0 . �

Let us describe the canonical transformation associated to the FIO Uθ. Let
(ω, ξ) ∈ T

∗(Sd−1). It is enough to assume that |ξ| = 1. Then the canonical trans-
formation χθ associated to Uθ is given by χθ(ω′, ξ′) = (ω, ξ), where

ω = ω′ cos θ − ξ′ sin θ ,

ξ = ω′ sin θ + ξ′ cos θ .
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3. Main result

3.1. Scattering matrix at positive energies

Throughout the paper we fix μ ∈]0, 2[ and γ > 0, and impose the conditions (1.3)
and (1.4) on the potential V (r). It will be convenient to fix R0 > 0 such that
V (r) < 0 for r > R0.

Since our potential is radial, to define the scattering operator we can use
the scattering phase shift formalism. This formalism is, at least under some mild
additional conditions on the potential, equivalent to the usual time-dependent
formalism of scattering theory, see [5] for an elaboration.

In the paper we will need just the scattering matrix at zero energy. Let us
however start with defining the scattering matrix at a positive energy.

Let l ∈ N ∪ {0} have the meaning of a total angular momentum and λ > 0
be the energy. Introduce the notation

Vl(r) = 2V (r) +
(l + d

2 − 1)2 − 4−1

r2
.

Consider the reduced Schrödinger equation on the half-line ]0,∞[ for energy λ:

−u′′ + Vlu = 2λu . (3.1)

One can show that all real solutions of (3.1) satisfy

lim
r→∞

(
(λ + γr−μ)

1
4 u(r) − C sin

(∫ r

R0

(2λ + 2γr̃−μ)
1
2 dr̃ + D

))
= 0 (3.2)

for some C > 0 and D ∈ R. The regular solution is the solution satisfying

lim
r→0

r−l− d−1
2 u(r) = 1 . (3.3)

(The existence and uniqueness of the regular solution is usually proven by studying
an integral equation of Volterra type, cf. [15].) Now the phase shift at energy λ is
defined in terms of the constant D for the regular solution by

σl(λ)

= D +
√

2
∫ ∞

R0

(√
λ + γr−μ −

√
λ − V (r)

)
dr −

√
2λR0 +

d − 3 + 2l
4

π . (3.4)

We define the (modified) scattering matrix at energy λ as the unitary operator on
L2(Sd−1) that on lth order spherical harmonics Y acts as

S(λ)Y = ei2σl(λ)Y .

Note that the above definition is adapted to the long-range case. However,
we use it also in the short-range case, because it makes possible to take the limit
as λ ↘ 0. σl(λ) defined above is also consistent with the convention adopted in [5].

For comparison, let us mention the standard definition of the phase shift in
the short-range case. (3.2) needs to be replaced with

lim
r→∞

(
u(r) − C sin

(
(2λ)

1
2 r + Dsr

))
= 0 , (3.5)
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and (3.4) with

σsr
l (λ) = Dsr +

d − 3 + 2l
4

π . (3.6)

In particular under (1.3) and (1.4) with μ ∈]1, 2[

σsr
l (λ) = σl(λ) +

√
2

∫ ∞

R0

(√
λ −

√
λ − V (r)

)
dr . (3.7)

The integral to the right in (3.7) does not have a (finite) limit as λ ↘ 0 in this
case.

3.2. Scattering matrix at zero energy

It turns out that under the conditions (1.3) and (1.4) the definition of the scattering
matrix can be extended to zero energy.

The definitions of σl(0) and S(0) are special cases of the definitions of σ(λ)
and S(λ) for λ > 0 described in Subsection 3.1.

Explicitly, consider the zero-energy case of (3.1)

−u′′ + Vlu = 0 . (3.8)

It follows from the WKB-analysis given in the bulk of Subsection 3.3 that all real
solutions of (3.8) satisfy

lim
r→∞

(
(γr−μ)

1
4 u(r) − C sin

(∫ r

R0

(2γr̃−μ)
1
2 dr̃ + D

))
= 0 (3.9)

for some C > 0 and D ∈ R. Consider D corresponding to the regular solution
which is fixed by the requirement (3.3). Now we define the (modified) zero-energy
phase shift as

σl(0) = D +
∫ ∞

R0

(√
2γr−μ −

√
−2V (r)

)
dr +

d − 3 + 2l

4
π . (3.10)

We define the (modified) scattering matrix at energy 0 by

S(0)Y = ei2σl(0)Y ,

where Y is any lth order spherical harmonic.
Note that it follows from the proof given in the bulk of this section (as well

as from [5]) that

σl(0) = lim
λ↘0

σl(λ) ,

S(0) = s− lim
λ↘0

S(λ) .

The following theorem is the main result of the paper:

Theorem 3.1. For a certain compact operator K on L2(Sd−1), we have

S(0) = eic0e−i μπ
2−μ Λ + K ,

where

c0 =
4
√

2γ

2 − μ
R

1−μ
2

0 + 2
∫ ∞

R0

(√
2γr−μ −

√
−2V (r)

)
dr .
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3.3. One-dimensional WKB-analysis

We shall show the following asymptotics:

Proposition 3.2. The phase shift obeys

σl(0) = − μπ

2(2 − μ)
l +

c

2
+ o(l0) , (3.11)

c

2
= −πμ(d − 2)

4(2 − μ)
+

2
√

2γ

2 − μ
R

1−μ
2

0 +
∫ ∞

R0

(√
2γr−μ −

√
−2V (r)

)
dr .

Clearly Theorem 3.1 is a consequence of Proposition 3.2.
This subsection is devoted to the main part of the proof of Proposition 3.2.

It is based on detailed 1-dimensional analysis.
For convenience, let us note that the effective potential Vl of (3.8) for the

case V (r) = −γr−μ is given by

Vl(r) = −2γr−μ +
k(k + 1)

r2
, k := l +

d − 3
2

.

Abusing slightly notation, we shall henceforth denote this expression by Vk, and
similarly σk(0) := σl(0). Note that now we have V0(r) = −2γr−μ.

In the case V = −γr−μ, there is for k > 0 a unique zero, say, denoted r0, of
the effective potential Vk. Explicitly,

Vk(r0) = 0 for r0 =
(

k(k + 1)
2γ

) 1
2−μ

. (3.12)

For later applications, let us notice that

V ′
k(r0) = −(2 − μ)

k(k + 1)
r3
0

. (3.13)

Clearly Vk is positive to the left of r0 and negative to the right of r0.

Proposition 3.3. The regular solution satisfies (up to multiplication by a positive
constant)

u(r) = (−Vk)−
1
4 (r)

(
sin

(∫ r

r0

√
−Vk(r̃) dr̃ +

π

4
+ o(k0)

)
+ O(r−εk)

)
, (3.14)

where o(k0) signifies a vanishing term that is independent of r and εk > 0.

3.3.1. Scheme of proof of Proposition 3.3. We shall first concentrate on the case
where V = −γr−μ; the general case will be treated by the same scheme (to be
discussed later).

We introduce a partition of ]0,∞[ into four subintervals given as follows in
terms of ε1, ε2, ε3 ∈ (0, 1] to be fixed later:

1. I1 =]0, r1], r1 = r0k
− ε1

2−μ .
2. I2 =]r1, r2], r2 = r0(1 − k−ε2).
3. I3 =]r2, r3], r3 = r0(1 + k−ε3).
4. I4 =]r3,∞[.
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In each of the intervals Ij where j = 2, 3 or 4, we shall specify a certain model
Schrödinger equation together with its two linearly independent solutions φ±

j . In
terms of these, we can construct exact solutions to the reduced equation

−u′′ + Vku = 0 (3.15)

by the method of variation of parameters, cf. for example [9]. Our subject of study
is formulas for the regular solution u = uk. Specifically, in the interval I1 we shall
use a comparison argument to get estimates of the regular solution at r = r1. Then
we shall use a connection formula to get estimates of the “coefficients” a+

2 and a−
2

of the ansatz
u = a+

j φ+
j + a−

j φ−
j (3.16)

with j = 2 at the same point r = r1. Next, using the differential equation for a+
2

and a−
2 we shall derive estimates of these quantities at r = r2. Proceeding similarly

we shall consecutively represent u by (3.16) on I3 and I4 using connection formulas
at r2 and r3, and eventually get estimates in the interval I4, and whence derive
the relevant asymptotics of u.

Suppose φ− and φ+ solve the same one-dimensional Schrödinger equation,
say,

−φ′′ + Aφ = 0 .

The variation of parameter method for the equations (3.15) and (3.16) yields
[

φ+ φ−
d
dτ φ+ d

dτ φ−

]
d
dτ

[
a+

a−

]
= (Vk − A)

[
0 0

φ+ φ−

] [
a+

a−

]
. (3.17)

(We have omitted the subscript j). We introduce the notation W (φ−, φ+) for the
Wronskian W (φ−, φ+) = φ− d

dr φ+ − φ+ d
drφ−. Then we write B = Vk − A and

transform (3.17) into
d
dr

(
a+

a−

)
= N

(
a+

a−

)
,

where

N =
B

W (φ−, φ+)

(
φ−φ+ (φ−)2

−(φ+)2 −φ−φ+

)
.

For a positive increasing continuous function f on I (to be specified), we
introduce the matrix T = diag(1, f−1). We compute

TNT−1 =
B

W (φ−, φ+)

(
φ−φ+ f(φ−)2

−f−1(φ+)2 −φ−φ+

)
.

Introducing the operator (Mjz)(r) =
∫ r

rj−1
Nj(r′)z(r′) dr′, j ≥ 2, acting on con-

tinuous functions z( · ) : Ij → R
2, the above differential equation is solved by

(
a+

j

a−
j

)
(r) − zj =

∞∑
m=1

Mm
j zj ; zj =

(
a+

j

a−
j

)
(rj−1) .
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Whence we have the bound
∥∥∥∥Tj(r)

{ (
a+

j

a−
j

)
(r) − zj

}∥∥∥∥ ≤
∞∑

m=1

∥∥∥
((

TjMjT
−1
j

)m
Tjzj

)
(r)

∥∥∥ ; (3.18)

to the right Tj is considered as an operator acting as (Tjz)(r′) = (Tj)(r′)z(r′).
Using that fj is increasing, we can estimate

‖(TjMjT
−1
j z)(r)‖ ≤

∫ r

rj−1

‖(TjNjT
−1
j )(r′)‖ ‖z(r′)‖dr′ ,

which applied repeatedly in (3.18) yields the following bound for r ∈ Ij :
∥∥∥∥Tj(r)

{ (
a+

a−

)
(r) − zj

}∥∥∥∥

≤
{(

exp
∫ r

rj−1

‖(TjNjT
−1
j )(r′)‖dr′

)
− 1

}
sup
r̃∈Ij

‖Tj(r̃)zj‖

=

{(
exp

∫ r

rj−1

‖(TjNjT
−1
j )(r′)‖dr′

)
− 1

}
‖Tj(rj−1)zj‖ . (3.19)

We specify in the following φ±
j , Aj , Bj and fj for j = 2, 3 and 4; in all cases

W (φ−
j , φ+

j ) = 1:

Re interval I2. We define

φ±
2 (r) = 2−

1
2 V

− 1
4

k e±
∫ r

r1

√
Vk dr′

, (3.20a)

compute

B2 = −
(
V

− 1
4

k

)′′
V

1
4

k = − 5
16

(
V ′

k

Vk

)2

+
1
4

V ′′
k

Vk
, (3.20b)

A2 = Vk +
5
16

(
V ′

k

Vk

)2

− 1
4

V ′′
k

Vk
,

and let

f2(r) =
φ+

2 (r)
φ−

2 (r)
= e2

∫ r
r1

√
Vk dr′

. (3.20c)

Re interval I3. We define (in terms of the Airy function, cf. [9] and [10, Defini-
tion 7.6.8])

φ+
3 (r) =

√
πζ−1Ai

(
− ζ2(r − r0)

)
; ζ := |V ′

k(r0)|
1
6 , (3.21a)

φ−
3 (r) =

√
πe

πi
6 ζ−1Ai

(
− ζ2e

2πi
3 (r − r0)

)

+
√

πe−
πi
6 ζ−1Ai

(
− ζ2e−

2πi
3 (r − r0)

)
, (3.21b)
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compute

B3(r) = Vk(r) −
(
Vk(r0) + V ′

k(r0)(r − r0)
)

=
∫ r

r0

(r − r̃)V ′′
k (r̃) dr̃ , (3.21c)

A3(r) = Vk(r0) + V ′
k(r0)(r − r0) ,

and let

f3(r) =

{
exp

(
− 4

3ζ3(r0 − r)
3
2
)
, if r < r0 ;

1 , if r ≥ r0 .
(3.21d)

Re interval I4. We define

φ+
4 (r) = (−Vk)−

1
4 sin

(∫ r

r0

√
−Vk dr′ +

π

4

)
, (3.22a)

φ−
4 (r) = (−Vk)−

1
4 cos

(∫ r

r0

√
−Vk dr′ +

π

4

)
, (3.22b)

compute

B4 = −
(
(−Vk)−

1
4
)′′(−Vk)

1
4 = − 5

16

(
V ′

k

Vk

)2

+
1
4

V ′′
k

Vk
, (3.22c)

A4 = Vk +
5
16

(
V ′

k

Vk

)2

− 1
4

V ′′
k

Vk
,

and let
f4 = 1 . (3.22d)

3.3.2. Details of proof of Proposition 3.3. We start implementing the scheme out-
lined in Subsubsection 3.3.1.

In the interval I1 we shall use a standard comparison argument. With Vk

replaced by V = k̃(k̃+1)
r2 , the regular solution is given by the expression u = rk̃+1

and the corresponding Riccati equation

ψ′ = V − ψ2 (3.23)

is solved by ψ = φ′

φ = k̃+1
r .

We fix ε1 ∈]0, 1] (actually ε1 > 0 can be chosen arbitrarily) and notice the
following uniform bound in r ∈ I1:

Vk(r) =
k(k + 1)

r2

(
1 + O(k−ε1)

)
. (3.24)

Using (3.24), we can find C > 0 such that with k± := k(1 ± Ck−ε1) and
V ±

k (r) := k±(k±+1)
r2 there are estimates

Vk(r)
{
≤ V +

k (r)
≥ V −

k (r)
, r ∈ I1 .
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Now, by using [2, Theorem 1.8] and the Riccati equation, it follows that the
regular solution u of (3.15) is positive in I1, and that v := u′

u obeys the bounds

v(r)

{
≤ k++1

r

≥ k−+1
r

, r ∈ I1 .

We conclude the uniform bound

v(r) =
k + 1

r

(
1 + O(k−ε1)

)
, r ∈ I1 . (3.25)

The connection formula at r = r1 reads

cj

(
1
v

)

r=rj−1

=
(

a+
j φ+

j + a−
j φ−

j

a+
j (φ+

j )′ + a−
j (φ−

j )′

)

r=rj−1

, j = 2 . (3.26)

Obviously, (3.26) is solved for the coefficients by
(

a+
j

a−
j

)

r=rj−1

=
cj

W (φ−
j , φ+

j )

(
(−φ−

j )′ + φ−
j v

(φ+
j )′ − φ+

j v

)

r=rj−1

, j = 2 . (3.27)

Next, from (3.20a) we compute

(φ±
2 )′ =

(
±

√
Vk − 1

4
V ′

k

Vk

)
φ±

2 . (3.28)

We substitute these expressions and (3.25) in the right hand side of (3.27) and
obtain (

a+
2 (r1)

a−
2 (r1)

)
= c2

2k

r1

(
1 + O

(
k−ε1

)
O

(
k−ε1

)
)

. (3.29)

To apply (3.19), we notice that

T2N2T
−1
2 = B2φ

−
2 φ+

2

(
1 1
−1 −1

)
= B2O

(
V

− 1
2

k

)
.

Whence (for the first inequality below we assume that the integral is bounded
in k so that the inequality expx−1 ≤ Cx applies – this will be justified by (3.31)),

‖T2(r2)
{(

a+
2

a−
2

)
(r2) −

(
a+
2

a−
2

)
(r1)

}∥∥∥∥

=

{(
exp

∫ r2

r1

∣∣∣∣∣

(
− 5

16

(
V ′

k

Vk

)2

+
1
4

V ′′
k

Vk

)
O

(
V

− 1
2

k

)
∣∣∣∣∣ dr′

)
− 1

}
O

(
k

r1

)

≤ C1
k

r1
r0

∫ r2/r0

r1/r0

((
V ′

k

)2

V
5
2

k

+
|V ′′

k |
V

3
2

k

)
ds (changing variables r′ = r0s)

≤ C2r
−1
1

∫ r2/r0

r1/r0

(
s−6

(s−2 − s−μ)
5
2

+
s−4

(s−2 − s−μ)
3
2

)
ds

= C2r
−1
1

(∫ r2/r0

1/2

· · · ds +
∫ 1/2

r1/r0

· · · ds

)
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≤ C3r
−1
1 max

(∫ r2/r0

1/2

(1 − s2−μ)−
5
2 ds,

∫ 1/2

r1/r0

s−1 ds

)

≤ C4k
3
2 ε2−1 k

r1
; (3.30)

we need here
3
2
ε2 − 1 < 0 . (3.31)

We conclude by combining (3.29) and (3.30):

(
a+
2 (r2)

a−
2 (r2)

)
= c2

2k

r1

(
1 + O(k−ε1) + O(k

3
2 ε2−1)

O(k−ε1) + e2
∫ r2

r1

√
Vk dr′

O(k
3
2 ε2−1)

)
. (3.32)

Next we repeat the above procedure passing from the interval I2 to I3.
The first issue is the connection formula (3.26) with j = 2 replaced by j = 3.

The left hand side can be estimated using (3.28), (3.32) and the following estimates
(where (3.31) is used):

√
Vk(r2) =

√
k(k + 1)

r2

(
1 − (1 − k−ε2)2−μ

) 1
2

=
k

r0
(2 − μ)

1
2 k− ε2

2
(
1 + O(k−ε2)

)
, (3.33)

V ′
k(r2)

Vk(r2)
=

O
(

k2

r3
2

)

Vk(r2)
= r−1

2 O
(
kε2

)
. (3.34)

Notice that (3.33) dominates (3.34) (by (3.31) again), so that
(√

Vk − 1
4

V ′
k

Vk

)
(r2) = (2 − μ)

1
2

k

r0
k− ε2

2
(
1 + O(k−ε2)

)
.

We conclude that

v(r2) =
(φ+

2 )′(r2)
φ+

2 (r2)

(
1 + O(k

3
2 ε2−1)

)

= (2 − μ)
1
2

k

r0
k− ε2

2
(
1 + O(k−ε2) + O(k

3
2 ε2−1)

)
. (3.35)

By (3.26) and (3.27) with j = 2 replaced by j = 3, up to multiplication by a
positive constant,

(
a+
3

a−
3

)

r=r2

=
(

(−φ−
3 )′ + φ−

3 v
(φ+

3 )′ − φ+
3 v

)

r=r2

. (3.36)
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It remains to examine the asymptotics of φ±
3 and their derivatives at r2. For that

we notice the asymptotics as r − r0 → −∞, cf. [9, Appendix B] and [10, (7.6.20)],

φ+
3 =

exp
(
− 2

3ζ3(r0 − r)
3
2
)

2ζ
3
2 (r0 − r)

1
4

(
1 + O

(
ζ−3(r0 − r)−

3
2
))

, (3.37a)

(φ+
3 )′ = ζ3(r0 − r)

1
2
exp

(
− 2

3ζ3(r0 − r)
3
2
)

2ζ
3
2 (r0 − r)

1
4

(
1 + O

(
ζ−3(r0 − r)−

3
2
))

, (3.37b)

φ−
3 =

exp
(

2
3ζ3(r0 − r)

3
2
)

ζ
3
2 (r0 − r)

1
4

(
1 + O

(
ζ−3(r0 − r)−

3
2
))

, (3.37c)

(φ−
3 )′ = −ζ3(r0 − r)

1
2
exp

(
2
3ζ3(r0 − r)

3
2
)

ζ
3
2 (r0 − r)

1
4

(
1 + O

(
ζ−3(r0 − r)−

3
2
))

. (3.37d)

Since ζ3(r0 − r2)
3
2 �

√
2 − μk1− 3

2
ε2

2−μ , cf. (3.13), these asymptotics are applicable.
By the same computation, (3.35) can be rewritten as

v(r2) = ζ3(r0 − r2)
1
2
(
1 + O(k−ε2) + O(k

3
2 ε2−1)

)
. (3.38)

Whence, in conjunction (3.36), we obtain (up to multiplication by a positive con-
stant)

(
a+
3 (r2)

a−
3 (r2)

)
=

(
exp

(
2
3ζ3(r0 − r2)

3
2
)(

1 + O(k−ε2) + O(k
3
2 ε2−1)

)
exp

(
− 2

3ζ3(r0 − r2)
3
2
)(

O(k−ε2) + O(k
3
2 ε2−1)

)
)

. (3.39)

Next, to apply (3.19) with j = 3 we need the following asymptotics of φ±
3

and their derivatives as r − r0 → +∞, cf. [9, Appendix B] and [10, (7.6.20) and
(7.6.21)]:

φ+
3 =ζ−

3
2 (r − r0)−

1
4

(
sin

(
2
3
ζ3(r − r0)

3
2 +

π

4

)
+O

(
ζ−3(r − r0)−

3
2
))

, (3.40a)

(φ+
3 )′=ζ

3
2 (r − r0)

1
4

(
cos

(
2
3
ζ3(r − r0)

3
2 +

π

4

)
+O

(
ζ−3(r − r0)−

3
2
))

, (3.40b)

φ−
3 =ζ−

3
2 (r − r0)−

1
4

(
cos

(
2
3
ζ3(r − r0)

3
2 +

π

4

)
+O

(
ζ−3(r − r0)−

3
2
))

, (3.40c)

(φ−
3 )′=−ζ

3
2 (r − r0)

1
4

(
sin

(
2
3
ζ3(r − r0)

3
2 +

π

4

)
+O

(
ζ−3(r − r0)−

3
2
))

. (3.40d)

In particular,

T3N3T
−1
3 = B3ζ

−2O(k0) uniformly in r ∈ I3 .

In conjunction with (3.19), (3.13) and the fact that

V ′′
k (r) = O

(
k− 4+2μ

2−μ
)

uniformly in r ∈ I3 , (3.41)
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we obtain ∥∥∥∥T3(r3)
{(

a+
3

a−
3

)
(r3) −

(
a+
3

a−
3

)
(r2)

}∥∥∥∥
≤ C1

(
(r3 − r0)3 + (r0 − r2)3

)
k− 4+2μ

2−μ k
2
3

1+μ
2−μ a+

3 (r2)

≤ C2k
4
3−3 min(ε2,ε3)a+

3 (r2) ; (3.42)

here we need
4
3
− 3min(ε2, ε3) < 0 , (3.43)

cf. (3.31). At this point let us for convenience take ε3 = ε2, so that (3.43) simplifies
and in conjunction with (3.31) leads to the single requirement

2
3

> ε2 = ε3 >
4
9

. (3.44)

We conclude that (up to multiplication by the positive constant a+
3 (r2))(

a+
3 (r3)

a−
3 (r3)

)
=

(
1 + O(k

4
3−3ε2)

O(k
4
3−3ε2)

)
. (3.45)

Next we need to study the connection formula passing from I3 to I4; a little
linear algebra takes it to the form(

a+
4

a−
4

)
=

(
W (φ−

4 , φ+
3 ) W (φ−

4 , φ−
3 )

W (φ+
3 , φ+

4 ) W (φ−
3 , φ+

4 )

)(
a+
3

a−
3

)
, r = r3 .

So we need to compute the appearing Wronskians. To this end we note the fol-
lowing uniform asymptotics for r ∈ [r0, r3], which are readily obtained from (3.13)
and (3.41) (recall that by now ε3 = ε2):

Vk(r) = V ′
k(r0)(r − r0)

(
1 + O(k−ε2)

)
, (3.46a)

V ′
k(r) = V ′

k(r0)
(
1 + O(k−ε2)

)
, (3.46b)

√
−Vk(r) = ζ3(r − r0)

1
2
(
1 + O(k−ε2)

)
, (3.46c)∫ r

r0

√
−Vk(r′) dr′ =

2
3
ζ3(r − r0)

3
2
(
1 + O(k−ε2)

)

=
2
3
ζ3(r − r0)

3
2 + O(k1− 5

2 ε2) . (3.46d)

Due to (3.46c) and (3.46d), the asymptotics (3.40a)–(3.40d) at the point r = r3

can be written in terms of

θ :=
∫ r3

r0

√
−Vk(r′) dr′ +

π

4
as

φ+
3 (r3)

(−Vk(r3))−
1
4

= sin
(
θ + O(k1− 5

2 ε2)
)

+ O(k−ε2) + O(k
3
2 ε2−1) , (3.47a)

(φ+
3 )′(r3)

(−Vk(r3))
1
4

= cos
(
θ + O(k1− 5

2 ε2)
)

+ O(k−ε2) + O(k
3
2 ε2−1) , (3.47b)
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φ−
3 (r3)

(−Vk(r3))−
1
4

= cos
(
θ + O(k1− 5

2 ε2)
)

+ O(k−ε2) + O(k
3
2 ε2−1) , (3.47c)

(φ−
3 )′(r3)

(−Vk(r3))
1
4

= − sin
(
θ + O(k1− 5

2 ε2)
)

+ O(k−ε2) + O(k
3
2 ε2−1) . (3.47d)

Next, using that
−V ′

k

(−Vk)
3
2
(r3) = O(k

3
2 ε2−1) ,

cf. (3.46a) and (3.46b), we obtain for the functions φ±
4

φ+
4 (r3) =

(
− Vk(r3)

)− 1
4 sin(θ) , (3.48a)

(φ+
4 )′(r3) =

(
− Vk(r3)

) 1
4
(
cos(θ) + O(k

3
2 ε2−1)

)
, (3.48b)

φ−
4 (r3) =

(
− Vk(r3)

)− 1
4 cos(θ) , (3.48c)

(φ−
4 )′(r3) = −

(
− Vk(r3)

) 1
4
(
sin(θ) + O(k

3
2 ε2−1)

)
. (3.48d)

The matrix of Wronskians is readily computed using (3.40a)–(3.40d) and
(3.47a)–(3.47d). In combination with (3.45), we obtain (using in the second step
(3.44))

(
a+
4 (r3) − 1
a−
4 (r3)

)
= O(k−ε2) + O(k

3
2 ε2−1) + O(k

4
3−3ε2) + O(k1− 5

2 ε2)

= O(k−ε2) + O(k
3
2 ε2−1) + O(k

4
3−3ε2) . (3.49)

Now we estimate in I4 using (3.49) (and mimicking partially (3.30))
∥∥∥∥
(

a+
4

a−
4

)
(r) −

(
a+
4

a−
4

)
(r3)

∥∥∥∥

≤ C1

{(
exp

∫ r

r3

∣∣∣∣∣

(
− 5

16

(
V ′

k

Vk

)2

+
1
4

V ′′
k

Vk

)
O

(
(−Vk)−

1
2
)
∣∣∣∣∣ dr′

)
− 1

}

≤ C2r0

∫ r/r0

r3/r0

((
− V ′

k

)2

(−Vk)
5
2

+

∣∣ − V ′′
k

∣∣
(−Vk)

3
2

)
ds (changing variables r′ = r0s)

≤ C3r
μ/2−1
0

∫ r/r0

r3/r0

sμ/2−2
(
(1 − sμ−2)−

5
2 + (1 − sμ−2)−

3
2
)
ds

≤ C4r
μ/2−1
0

(∫ ∞

2

sμ/2−2 ds +
∫ 2

r3/r0

(1 − sμ−2)−
5
2 ds

)

≤ C5r
μ/2−1
0 k

3
2 ε2

= O(k
3
2 ε2−1) . (3.50)
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By the same type of estimation we also deduce that for fixed k there exist
εk > 0 and a±

4 (∞) ∈ R such that

a±
4 (r) = a±

4 (∞) + O(r−εk) .

By applying (3.50) with r = ∞ in combination with (3.49) (and using an elemen-
tary trigonometric formula), we conclude that (3.14) is true.

The general case. It remains to prove (3.14) under Conditions (1.3) and (1.4). All
previous constructions and estimates carry over, so below we consider only some
additional estimates that are needed. Denoting U(r) = 2V (r) − 2γr−μ, the func-
tions φ±

j and fj and the potentials Aj are exactly the same, while the potentials
Bj are given as the old Bj plus U , j = 2, 3, 4.

Re interval I1. We notice that (3.24) is valid (here with Vk defined upon replacing
2γr−μ → 2V ). Whence we can proceed exactly as before.

Re interval I2. In addition to (3.30) we need the following estimation (assuming
in the last step that μ

2 + ε < 1):

∫ r2

r1

|UO(V − 1
2

k )|dr′O

(
k

r1

)

≤ C1
k

r1
r0

∫ r2/r0

r1/r0

r−1−μ
2 −ε

V
1
2

k

ds (changing variables r = r0s)

≤ C2
k

r1

r
1−μ

2 −ε
0

k

∫ r2/r0

r1/r0

s−
μ
2 −ε

(1 − s2−μ)
1
2

ds

≤ C3k
− 2ε

2−μ
k

r1
. (3.51)

Re interval I3. In addition to (3.42) we need the following estimation

∫ r3

r2

|Uζ−2|dr′

≤ C1

∫ r3

r2

k
2
3

1+μ
2−μ r′−1−μ

2 −ε dr′

≤ C2k
2
3

1+μ
2−μ r

−μ
2 −ε

0 (k−ε2 + k−ε3)

≤ C3k
1
3−ε2− 2ε

2−μ . (3.52)

Due to (3.44) the right hand side of (3.52) vanishes.
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Re interval I4. In addition to (3.50) we need the following estimation:
∫ r

r3

∣∣UO
(
(−Vk)−

1
2
)∣∣ dr′

≤ C1r
−ε
0

∫ r/r0

r3/r0

s−1−ε

(1 − sμ−2)
1
2

ds (changing variables r′ = r0s)

≤ C2k
− 2ε

2−μ . (3.53)

This ends the proof of (3.14). �

3.4. End of proof of Proposition 3.2

We need the following elementary identity:

Lemma 3.4. Let μ < 2. Then∫ ∞

1

(√
r−μ − r−2 −

√
r−μ

)
dr =

2 − π

2 − μ
. (3.54)

Proof. We first substitute r = s
1

μ−2 and then s = sin2 φ. Thus the left hand side
of (3.54) equals

1
2 − μ

∫ 1

0

s−
3
2

(√
1 − s − 1

)
ds =

2
2 − μ

∫ π
2

0

(
1 − cos φ

sin2 φ
− 1

)
dφ

=
2

2 − μ

(
1 − cos φ

sin φ
− φ

)∣∣∣∣
π/2

0

=
2 − π

2 − μ
. �

Proof of Proposition 3.2. Using Proposition 3.3 we calculate from (3.10)

σk(0) = lim
r→∞

(∫ r

r0

√
−Vk(r̃)dr̃ +

π

4
−

∫ r

R0

√
−2V (r̃)dr̃ +

kπ

2

)
+ o(k0)

=
∫ ∞

r0

(√
−Vk(r) −

√
−V0(r)

)
dr

+
∫ ∞

R0

(√
−V0(r) −

√
−2V (r)

)
dr

−
∫ r0

R0

√
−V0(r)dr +

(k + 1
2 )π

2
+ o(k0) .

Now (using Lemma 3.4)
∫ ∞

r0

(√
−Vk(r) −

√
−V0(r)

)
dr =

√
k(k + 1)

∫ ∞

1

(√
r−μ − r−2 −

√
r−μ

)
dr

=
√

k(k + 1)
2 − π

2 − μ
;

∫ R0

r0

√
−V0(r)dr = − 2

2 − μ

√
k(k + 1) +

2
√

2γ

2 − μ
R

1−μ
2

0 .
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Thus,

σk(0) −
∫ ∞

R0

(√
−V0(r) −

√
−2V (r)

)
dr

= −
√

k(k + 1)
π

2 − μ
+

(k + 1
2 )π

2
+

2
√

2γ

2 − μ
R

1−μ
2

0 + o(k0)

= −
(k + 1

2 )πμ

2(2 − μ)
+

2
√

2γ

2 − μ
R

1−μ
2

0 + o(k0) . �
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[5] J. Dereziński, E. Skibsted, Quantum scattering at low energies, to appear in Journal
of Functional Analysis.

[6] S. Fournais, E. Skibsted, Zero energy asymptotics of the resolvent for a class of slowly
decaying potentials, Math. Z. 248 (2004), 593–633.

[7] R. Frank, A note on low energy scattering for homogeneous long range potentials,
arXiv 0812.2916, to appear in Annales Henri Poincaré.

[8] Y. Gatel, D. Yafaev, On the solutions of the Schrödinger equation with radiation
conditions at infinity: the long-range case, Ann. Inst. Fourier, Grenoble 49, no. 5
(1999), 1581–1602.

[9] E. Harrell, B. Simon, The mathematical theory of resonances whose widths are ex-
ponentially small, Duke Math. J. 47, no. 4 (1980), 845–902.
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