Introduction to hypergeometric type functions

J. Dereziński
Department of Mathematical Methods in Physics,
Faculty of Physics
University of Warsaw,
Pasteura 5, 02-093 Warszawa, Poland,
email jan.derezinski@fuw.edu.pl

August 16, 2018

1 Generalized hypergeometric equations and functions

1.1 Generalized hypergeometric series

For $a_1, \ldots, a_k \in \mathbb{C}$, $c_1, \ldots, c_m \in \mathbb{C}\setminus\{0, -1, -2, \ldots\}$, we define the (generalized) hypergeometric series of type kF_m:

$$kF_m(a_1, \ldots, a_k; c_1, \ldots, c_m; z) := \sum_{j=0}^{\infty} \frac{(a_1)_j \cdots (a_k)_j z^j}{(c_1)_j \cdots (c_m)_j j!}. \quad (1.1)$$

Notice that

1. if $m + 1 > k$, then (1.1) is convergent for $z \in \mathbb{C}$;
2. if $m + 1 = k$, then (1.1) is convergent for $|z| < 1$;
3. if $m + 1 < k$, then (1.1) is divergent (however sometimes we can give a meaning to the function kF_m).

This follows by the d’Alembert criterion: if f_j is jth coefficient of (1.1), then

$$\frac{f_{j+1}}{f_j} = \frac{(a_1 + j) \cdots (a_k + j)}{(c_1 + j) \cdots (c_m + j)}.$$

We can also use a different normalization:

$$kF_m(a_1, \ldots, a_k; c_1, \ldots, c_m; z) := \frac{kF_m(a_1, \ldots, a_k; c_1, \ldots, c_m; z)}{\Gamma(c_1) \cdots \Gamma(c_m)} = \sum_{j=0}^{\infty} \frac{(a_1)_j \cdots (a_k)_j z^j}{\Gamma(c_1 + j) \cdots \Gamma(c_m + j) j!}. \quad (1.2)$$
Then we do not have to restrict the values of \(c_1, \ldots, c_m \in \mathbb{C} \). (If for some \(i \) \(c_i \in \{0, -1, -2, \ldots\} \), then \(F \) is zero).

1.2 Generalized hypergeometric equations

Theorem 1.1 The function (1.1) solves the equation

\[
(c_1 + z \partial_z) \cdots (c_m + z \partial_z) \partial_z F(a_1, \ldots, a_k; c_1, \ldots, c_m; z) = (a_1 + z \partial_z) \cdots (a_k + z \partial_z) F(a_1, \ldots, a_k; c_1, \ldots, c_m; z).
\]

Proof. We check that both (1.3) and (1.4) are equal to

\[
a_1 \cdots a_k F(a_1 + 1, \ldots, a_k + 1; c_1, \ldots, c_m; z).
\]

\(\square \)

Note that the equation (1.4) is of the order \(\max(k, m + 1) \). Below we list all equations and hypergeometric functions with equations of the order at most 2.

1.3 Hypergeometric function or \(\text{2F1} \)

\[
\text{2F1}(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{n!(c)_n} z^n.
\]

The series is convergent for \(|z| < 1\), it extends to a multivalued function on a covering of \(\mathbb{C}\setminus\{0, 1\} \).

The function is a solution of the hypergeometric equation

\[
(z(1 - z) \partial_z^2 + (c - (a + b + 1)z) \partial_z - ab) u(z) = 0
\]

that is analytic around 0 and equals there 1.

1.4 Confluent function or \(\text{1F1} \)

\[
\text{1F1}(a; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n}{n!(c)_n} z^n.
\]

The series is convergent for all \(z \in \mathbb{C} \). It defines a solution analytic around 0 and equal there 1 of the confluent equation

\[
(z \partial_z^2 + (c - z) \partial_z - a) u(z) = 0,
\]

1.5 Function \(\text{0F1} \)

\[
\text{0F1}(-; c; z) = F(c; z) = \sum_{n=0}^{\infty} \frac{1}{n!(c)_n} z^n.
\]

The series is convergent for all \(z \in \mathbb{C} \). It defines a solution analytic around 0 and equal there 1 of the \(\text{0F1} \) equation (related to the Bessel equation)

\[
(z \partial_z^2 + c \partial_z - 1) u(z) = 0.
\]
1.6 $2F_0$ function
For arg $z \neq 0$ we define

$$F(a, b; -; z) := \lim_{c \to \infty} F(a, b; c; cz).$$

It extends to an analytic function on the universal cover of $\mathbb{C}\setminus\{0\}$ with a branch point of an infinite order at 0. It has the following asymptotic expansion:

$$F(a, b; -; z) \sim \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{n!} z^{n}, \quad |\arg z - \pi| < \pi - \epsilon, \quad \epsilon > 0.$$

This function has a branch point at zero. Hence it cannot be defined with a series around zero. It solves the $2F_0$ equation (related to the confluent equation)

$$(z^{2}\partial_{z}^{2} + (-1 + (a + b + 1)z)\partial_{z} + ab) u(z) = 0.$$

1.7 Power function $1F_0$

$$F(a; -; z) = (1 - z)^{-a} = \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!} z^{n}.$$

The series is convergent for $|z| < 1$, it extends to a multivalued function on a covering of $\mathbb{C}\setminus\{1\}$. It is a solution of

$$((z - 1)\partial_{z} - a)u(z) = 0.$$

1.8 Exponential function $0F_0$

$$F(-; -; z) = e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n}.$$

It solves

$$(\partial_{z} - 1)u(z) = 0.$$

2 2nd order differential equations in complex domain

In this section we will discuss a general theory of equations of the form

$$(b(z)\partial_{z}^{2} + c(z)\partial_{z} + d(z)) u(z) = 0. \quad (2.5)$$

z will be a complex variable. The functions b, c, d will be usually holomorphic or at least meromorphic in an open set $\Omega \subset \mathbb{C}$.

Discussing an equation such as (2.5), we will often introduce an operator

$$A(z, \partial_{z}) := b(z)\partial_{z}^{2} + c(z)\partial_{z} + d(z). \quad (2.6)$$
We will say that (2.5) is given by the operator (2.6). Indeed, \(u \) solves (2.5) iff \(u \) is in the kernel of (2.6).

By dividing (2.5) by \(b(z) \) we obtain

\[
\left(\partial_z^2 + \frac{c(z)}{b(z)} \partial_z + \frac{d(z)}{b(z)} \right) u(z) = 0.
\] (2.7)

Thus we can usually assume that \(b(z) \) is 1 and consider

\[
\left(\partial_z^2 + c(z) \partial_z + d(z) \right) u(z) = 0.
\] (2.8)

2.1 Wronskian

Let \(u_1(z), u_2(z) \) be a pair of functions. Their Wronskian is

\[
W(u_1, u_2)(z) = W(z) := u_1(z)u_2'(z) - u_1'(z)u_2(z).
\]

If they are solutions of (2.8), then the Wronskian satisfies

\[
(\partial_z + c(z)) W(z) = 0.
\]

If

\[
\tilde{u}_1(z) = a_{11}u_1(z) + a_{12}u_2(z), \quad \tilde{u}_2(z) = a_{21}u_1(z) + a_{22}u_2(z)
\]

is another pair of solutions, then

\[
W(\tilde{u}_1, \tilde{u}_2) = (a_{11}a_{22} - a_{12}a_{21}) W(u_1, u_2).
\]

2.2 Regular points

Definition 2.1 We say that \(z_0 \in \Omega \) is a regular point of (2.8) if \(c(z) \) and \(d(z) \) are analytic around \(z_0 \).

Proposition 2.2 Let \(c(z), d(z) \) be holomorphic in a connected and simply connected open subset \(\Omega \subset \mathbb{C} \). Then the problem

\[
\begin{aligned}
&\left(\partial_z^2 + c(z) \partial_z + d(z) \right) u(z) = 0 \\
u(z_0) = w_0, \quad \partial_z u(z_0) = w_1,
\end{aligned}
\] (2.9)

has a unique solution in \(\Omega \).

Note that if \(b, c, d \) are holomorphic around \(z_0 \), then

\[
(b(z)\partial_z^2 + c(z)\partial_z + d(z)) u(z) = 0
\] (2.10)

is regular at \(z_0 \) iff \(b(z_0) \neq 0 \). Let us give the formula for the coefficients of the expansion

\[
u(z) := \sum_{k=0}^{\infty} u_k z^k.
\]
of (2.10).

\[
\begin{cases}
u_0 = w_0, & u_1 = w_1, \\
\sum_{k=0}^{m} k(k-1)u_k b_{m-k} + \sum_{k=0}^{m-1} k c_{m-k-1} u_k + \sum_{k=0}^{m-2} d_{m-k-2} u_k = 0.
\end{cases}
\]

Definition 2.3 Assume that \(c(z), d(z)\) are holomorphic for \(|z| > R\). We say that \(\infty\) is a regular point of (2.8) if after the change of coordinates \(w = z^{-1}\) we obtain a regular point at 0.

Consider (2.8). The change \(w = z^{-1}\) and division by \(w^4\) leads to

\[
\left(\partial_{w}^2 + (2w^{-1} - w^{-2}c(w^{-1}))\partial_{w} + w^{-4}d(w^{-1})\right)u(w^{-1}) = 0.
\]

Hence \(\infty\) is a regular point if there exist (finite) limits

\[
\lim_{z \to \infty} (2z - z^2 c(z)), \quad \lim_{z \to \infty} z^4 d(z).
\]

Theorem 2.4 Let \(\infty\) be a regular point of (2.8). Then for any \(w_0, w_1\) there exists a unique solution of the problem

\[
\begin{cases}
(\partial_{z}^2 + c(z)\partial_{z} + d(z)) u(z) = 0 \\
\lim_{z \to \infty} u(z) = w_0, \quad \lim_{z \to \infty} (u(z) - w_0)z = w_1.
\end{cases}
\]

(2.11)

2.3 Regular-singular points

Definition 2.5 We say that an equation

\[
(\partial_{z}^2 + c(z)\partial_{z} + d(z)) u(z) = 0
\]

has a regular-singular point at \(z_0 \in \Omega\), if \(c(z)\) has at \(z_0\) a pole of at most 1st order and \(d(z)\) has at \(z_0\) a pole of at most 2nd order.

For simplicity, assume that \(z_0 = 0\). We can rewrite the above equation as

\[
(z^2 \partial_{z}^2 + q(z) z \partial_{z} + r(z)) u(z) = 0.
\]

(2.13)

0 is regular-singular iff \(q, r\) are analytic at 0.

Theorem 2.6 (Frobenius Method) \(z = 0\) is regular-singular iff \(q, r\) are holomorphic at \(z = 0\). Assume that in addition \(q, r\) are holomorphic in an open connected simply connected set \(\Omega \subset \mathbb{C}\) containing 0. Let \(\lambda \in \mathbb{C}\) satisfy

\[
\lambda(\lambda - 1) + \lambda q(0) + r(0) = 0,
\]

\[
(\lambda + m)(\lambda + m - 1) + (\lambda + m)q(0) + r(0) \neq 0, \quad m = 1, 2, \ldots .
\]
Then there exists a unique function $\tilde{u}(z)$ holomorphic in Ω, such that $u(z) := z^\lambda \tilde{u}(z)$ is a solution of the problem

$$
\begin{aligned}
\left\{
\begin{array}{l}
(z^2 \partial_z^2 + q(z)z \partial_z + r(z)) u(z) = 0, \\
\lim_{z \to 0} z^{-\lambda} u(z) = 1,
\end{array}
\right.
\end{aligned}
$$

(2.14)

Clearly, if p, q, r is analytic around 0, the equation

$$(p(z)z^2 \partial_z^2 + q(z)z \partial_z + r(z)) u(z) = 0,$$

(2.15)

has a regular-singular point at 0 iff $p(0) \neq 0$. Let us give a recurrent formula for coefficients of

$$u(z) := \sum_{k=0}^{\infty} u_k z^{\lambda+k}$$

$$
\begin{aligned}
\left\{
\begin{array}{l}
u_0 = 1, \\
u_m = -((\lambda + m)(\lambda + m - 1)p_0 + (\lambda + m)q_0 + r_0)^{-1} \\
\quad \times \sum_{k=0}^{m-1} ((\lambda + k)(\lambda + k - 1)p_{m-k} + (\lambda + k)q_{m-k} + r_{m-k})u_k.
\end{array}
\right.
\end{aligned}
$$

Thus, if we are looking for solutions (2.15), we should first find the roots λ_1, λ_2 of the so-called indicial equation

$$\lambda(\lambda - 1)p(0) + \lambda q(0) + r(0) = 0.$$

If $\lambda_1 - \lambda_2 \notin \mathbb{Z}$, then we can find two linearly independent solutions that behave at zero as z^{λ_1} and z^{λ_2}. If $\lambda_1 - \lambda_2 \in \mathbb{Z}$, then generally we can find only a solution behaving as z^{λ_1}, where $\lambda_1 - \lambda_2 \geq 0$.

Definition 2.7 Assume that $q(z)$, $r(z)$ are holomorphic for $|z| > R$. We say that ∞ is a regular-singular point of (2.8) if after the change of coordinates $w = z^{-1}$ we obtain a regular-singular point at 0.

Hence ∞ is a regular singular point of (2.12) if

$$
\begin{aligned}
\lim_{z \to \infty} z c(z), \quad \lim_{z \to \infty} z^2 d(z)
\end{aligned}
$$

exist. Similarly, ∞ is a regular singular point of (2.13) if

$$
\begin{aligned}
\lim_{z \to \infty} q(z), \quad \lim_{z \to \infty} r(z)
\end{aligned}
$$

exist.
Proposition 2.8 Let $q(z)$, $r(z)$ be holomorphic in a connected simply connected open set $\Omega \subset \mathbb{C}$ containing \{\{z > R\}. Let $\lambda \in \mathbb{C}$ satisfy

\[
\lambda(\lambda + 1) - \lambda q(\infty) + r(\infty) = 0,
\]

\[
(\lambda + m)(\lambda + m + 1) - (\lambda + m)q(\infty) + r(\infty) \neq 0, \quad m = 1, 2, \ldots.
\]

Then there exists a unique function $\tilde{u}(z)$ holomorphic in Ω, such that $u(z) := z^{-\lambda}\tilde{u}(z)$ is a solution of

\[
\begin{cases}
(z^2\partial_z^2 + q(z)z\partial_z + r(z)) u(z) = 0, \\
\lim_{z \to \infty} z^{\lambda}u(z) = 1.
\end{cases} \tag{2.18}
\]

Proposition 2.9 Let

\[
\left(\partial_z^2 + \frac{q(z)}{(z - z_0)} \partial_z + \frac{r(z)}{(z - z_0)^2}\right)
\]

have indices $\rho_0, \tilde{\rho}_0$ at z_0 and $\rho_\infty, \tilde{\rho}_\infty$ at ∞. Then

\[
(z - z_0)^\mu \left(\partial_z^2 + \frac{q(z)}{(z - z_0)} \partial_z + \frac{r(z)}{(z - z_0)^2}\right) (z - z_0)^{-\mu} \tag{2.20}
\]

has at z_0 indices $\rho_0 + \mu, \tilde{\rho}_0 + \mu$ and at ∞ indices $\rho_\infty - \mu, \tilde{\rho}_\infty - \mu$.

Proof. We can assume that $z_0 = 0$. We use $z^\mu \partial_z z^{-\mu} = \partial_z - \frac{\mu}{z}$.

Then (2.20) is

\[
\begin{align*}
\left(\partial_z - \frac{\mu}{z}\right)^2 + \frac{q(z)}{z} \left(\partial_z - \frac{\mu}{z}\right) + \frac{r(z)}{z^2} & = \partial_z^2 - 2z^{-\mu} \partial_z + \frac{\mu + \mu^2}{z^2} + \frac{q(z)\mu}{z^2} - \frac{r(z)}{z^2} \\
& = \partial_z^2 + \frac{(\mu + q(z))}{z} \partial_z + \frac{(\mu + \mu^2 - \mu q(z) + r(z))}{z^2}.
\end{align*}
\]

Therefore, the indicial equation at 0 is

\[
\lambda(\lambda - 1) + \lambda(q(0) - 2\mu) + \mu + \mu^2 - q(0)\mu + r(0) = 0 \tag{2.21}
\]

and the indicial equation at ∞ is

\[
\lambda(\lambda + 1) - \lambda q(\infty) - 2\mu + \mu + \mu^2 - q(\infty)\mu + r(\infty) = 0 \tag{2.23}
\]

and

\[
\lambda(\lambda + 1) - \lambda q(\infty) - 2\mu + \mu + \mu^2 - q(\infty)\mu + r(\infty) = 0 \tag{2.24}
\]

Theorem 2.10 Suppose that we change the variables in the equations, considering a (holomorphic) map $y \mapsto z(y)$. Assume that y_0 is mapped at z_0 and $\partial_y^2(y_0) \neq 0$. Then the indices of the transformed equation coincide with the indices of the original equation.
Proof. We will assume that the equation has the form (2.19) and $z_0 = y_0 = 0$. Let us compute the change of the differentiation operators:

$$\partial_z = \frac{1}{\partial_z} \partial_y, \quad (2.25)$$

$$\partial_z^2 = -\frac{\partial_z^2}{(\partial_z)^2} \partial_y + \frac{1}{(\partial_z)^2} \partial_y^2. \quad (2.26)$$

Therefore,

$$\left(\partial_z^2 + \frac{q(z)}{z} \partial_z + \frac{r(z)}{z^2}\right) \left(\partial_y + \frac{q(y)}{y} \partial_y + \frac{r(y)}{y^2}\right) \quad (2.27)$$

$$= \frac{1}{(\partial_z)^2} \left(\partial_y^2 + \frac{q(z(y))}{z(y)} \partial_y - \frac{\partial_z^2}{z(y)} \partial_y + \frac{(\partial_z^2)^2}{z(y)^2} r(z(y))\right) \quad (2.28)$$

$$= \frac{1}{(\partial_z)^2} \left(\partial_y^2 + \frac{\check{q}(y)}{y} \partial_y + \frac{\check{r}(y)}{y^2}\right) \quad (2.29)$$

Now it is easy to see that $\check{q}(0) = q(0)$ and $\check{r}(0) = r(0)$. \qed

2.4 Equations with two regular-singular points on the Riemann sphere

Example 2.11 Every 2nd order equation that in $\mathbb{C} \cup \{\infty\}$ has only regular points except for two regular-singular points at 0 and ∞ has the form

$$(z^2 \partial_z^2 + qz \partial_z + r)u(z) = 0. \quad (2.30)$$

It is sometimes called the homogeneous Euler equation. Its indicial points are

$$0 : \lambda(\lambda - 1) + q\lambda + r = 0,$$

$$\infty : \lambda(\lambda - 1) - q\lambda + r = 0.$$

If $\rho, \tilde{\rho}$ are its indices at 0, then $-\rho, -\tilde{\rho}$ are its indices at ∞. Its solutions are $z^\rho, z^{\tilde{\rho}}$ if $\rho \neq \tilde{\rho}$ and $z^\rho \log z$ if $\rho = \tilde{\rho}$. The equation (2.30) can be rewritten as

$$(z^2 \partial_z + (1 - \rho - \tilde{\rho}) z \partial_z + \rho \tilde{\rho})u(z) = 0.$$

Example 2.12 Every 2nd order equation that in $\mathbb{C} \cup \{\infty\}$ has only regular points except for two regular-singular points at z_1 and z_2 has the form

$$\left(\partial_z^2 + \left(g_1(z - z_1)^{-1} + g_2(z - z_2)^{-1}\right) \partial_z + h(z - z_1)^{-2}(z - z_2)^{-2}\right)u(z) = 0, \quad (2.31)$$

where $g_1 + g_2 = 2$. Its indicial equations are

$$z_1 : \lambda(\lambda - 1) + g_1\lambda + h(z_1 - z_2)^{-2} = 0,$$

$$z_2 : \lambda(\lambda - 1) + g_2\lambda + h(z_1 - z_2)^{-2} = 0.$$
If \(\rho, \tilde{\rho} \) are indices at \(z_1 \), then \(-\rho, -\tilde{\rho} \) are indices at \(z_2 \). Solutions have the form
\[
(z - z_1)^\rho (z - z_2)^{-\rho}, \quad (z - z_1)^\rho (z - z_2)^{-\rho} \log(z - z_1)(z - z_2)^{-1}, \quad \text{if } \rho \neq \tilde{\rho}.
\]
Equation (2.31) can be rewritten as
\[
\left(\frac{\partial^2}{\partial z^2} + \left((1 - \rho - \tilde{\rho})(z - z_1)^{-1} + (1 + \rho + \tilde{\rho})(z - z_2)^{-1} \right) \frac{\partial}{\partial z} + \rho \tilde{\rho}(z_1 - z_2)^2(z - z_1)^{-2}(z - z_2)^{-2} \right) u(z) = 0.
\]

3 Systems of 1st order equations

3.1 Regular points

This subsection can be skipped.

We will discuss differential equations
\[
\frac{\partial}{\partial z} v(z) = A(z)v(z). \tag{3.32}
\]
where \(A(z) \) is a matrix and \(v(z) \in \mathbb{C}^n \).

Definition 3.1 If \(A(z) \) is analytic at \(z_0 \), then we say that \(z_0 \) is a regular point of (3.32).

Theorem 3.2 Let \(\Omega \) be a connected simply connected open subset of \(\mathbb{C} \). Let
\[
\Omega \ni z \mapsto A(z) = \begin{bmatrix} a_{11}(z) & \cdots & a_{1n}(z) \\ \vdots & \ddots & \vdots \\ a_{n1}(z) & \cdots & a_{nn}(z) \end{bmatrix}
\]
be a holomorphic function with values in \(n \times n \) matrices and \(w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{C}^n \).

Then there exists a unique holomorphic function \(\Omega \ni z \mapsto v(z) = \begin{bmatrix} v_1(z) \\ \vdots \\ v_n(z) \end{bmatrix} \in \mathbb{C}^n \) that solves the problem
\[
\begin{align*}
\frac{dv(z)}{dz} &= A(z)v(z), \\
v(z_0) &= w.
\end{align*} \tag{3.33}
\]

Proof. Let us first restrict ourselves to a disk \(K(z_0, r) \) such that \(K(z_0, r)^{\text{cl}} \subset \Omega \). We can also assume that \(z_0 = 0 \).

Let
\[
A(z) = \sum_{k=0}^{\infty} A_k z^k
\]
Then the series
\[v(z) := \sum_{k=0}^{\infty} v_k z^k, \]
where
\[
\begin{cases}
 v_0 = w, \\
 v_{m+1} := \frac{1}{m+1} \sum_{k=0}^{m} A_{m-k} v_k.
\end{cases}
\]
is the unique formal series solving (3.33).

Let us show that this series is convergent in \(K(0, r) \). By the Cauchy inequality,
\[\|A_k\| \leq Cr^{-k}. \]
If we set
\[
\begin{cases}
 p_0 = \|w\| \\
 p_{m+1} := \frac{1}{m+1} \sum_{k=0}^{m} C r^{-m+k} p_k,
\end{cases}
\]
then we can show inductively that
\[\|v_m\| \leq p_m. \] (3.34)

Indeed, we have
\[\|v_0\| = p_0. \]
Assume that
\[\|v_k\| \leq p_k, \ k = 0, \ldots, m. \]
Then
\[
\begin{align*}
\|v_{m+1}\| & \leq \frac{1}{m+1} \sum_{k=0}^{m} \|A_{m-k} v_k\| \\
& \leq \frac{1}{m+1} \sum_{k=0}^{m} \|A_{m-k}\| \|v_k\| \\
& \leq \frac{1}{m+1} \sum_{k=0}^{m} C r^{-m+k} p_k = p_{m+1}.
\end{align*}
\]
This proves (3.34).

If we subtract the formula
\[
\begin{align*}
r(m+1)p_{m+1} &= \sum_{k=0}^{m} C r^{-m+k+1} p_k, \\
m p_m &= \sum_{k=0}^{m-1} C r^{-m+k+1} p_k,
\end{align*}
\]
then we obtain
\[r(m+1)p_{m+1} = (Cr + m)p_m. \]
This immediately implies
\[
\lim_{m \to \infty} \frac{p_{m+1}}{p_m} = r^{-1}.
\]
Hence, by the d’Alembert criterion
\[\sum_{k=0}^{\infty} p_k z^k \]
is convergent in the disk \(K(0, r) \). Therefore, so is \(\sum_{k=0}^{\infty} v_k z^k \).

The above reasoning can be repeated for any disk contained in \(\Omega \). In this way, since \(\Omega \) is connected, we can extend \(v(z) \) to the whole \(\Omega \). \(\Omega \) is simply connected, and therefore the resulting function will be univalued. \(\square \)

Example 3.3

\[(\partial_z - 1)v(z) = 0, \quad v(0) = 1. \]

We set
\[v(z) = \sum_{n=0}^{\infty} v_n z^n. \]

We obtain a recurrence relation
\[nv_n = v_{n-1}. \]

Therefore,
\[v(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}. \]

Obviously, \(v(z) = e^z \).

Example 3.4 Let \(\mu \in \mathbb{C}, \ z \neq -1 \)

\[(\partial_z - \mu(z + 1)^{-1}) v(z) = 0, \quad v(0) = 1. \]

We set
\[v(z) = \sum_{n=0}^{\infty} v_n z^n. \]

We obtain a recurrence relation
\[nv_n = (\mu - n + 1)v_{n-1}. \]

Therefore,
\[v(z) = \sum_{n=0}^{\infty} \frac{\mu \ldots (\mu - n + 1) z^n}{n!}, \quad |z| < 1. \]

Obviously, \(v(z) = (1 + z)^\mu \).
Proof of Thm 2.4. Define
\[v(z) := \begin{bmatrix} u(z) \\ u'(z) \end{bmatrix}, \quad w := \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \]
and
\[A(z) := \begin{bmatrix} 0 & 1 \\ -d(z) & -c(z) \end{bmatrix} \]
Then (2.9) can be rewritten as
\[
\begin{cases}
\frac{dv(z)}{dz} = A(z)v(z), \\
v(z_0) = w.
\end{cases}
\]
We can apply Thm 3.2.

Definition 3.5 Assume that \(A(z) \) is defined for \(|z| > R\). We say that \(\infty \) is a regular point of (3.32), if after the change of the variable \(w = z^{-1} \) we obtain a regular point at 0.

Obviously, \(\partial_z = -w^2 \partial_w. \) Hence, after the change of the variable (3.32) transforms into
\[\partial_w v(w^{-1}) = -w^{-2} A(w^{-1})v(w^{-1}). \]
Therefore, \(\infty \) is a regular point iff there exists
\[\lim_{z \to \infty} z^2 A(z). \]

Theorem 3.6 Let \(\infty \) be a regular point of (3.35). Then for any \(w \in \mathbb{C}^n \), there exists a unique holomorphic solution satisfying
\[
\begin{cases}
\frac{dv(z)}{dz} = A(z)v(z), \\
\lim_{z \to \infty} v(z) = w.
\end{cases}
\]

3.2 Regular-singular points

Definition 3.7 We say that the equation
\[\frac{dv(z)}{dz} = A(z)v(z) \]
has a regular-singular point at \(z_0 \), if \(A(z) \) has at \(z_0 \) a pole of at most 1st order.

We can then rewrite (3.33) as
\[(z - z_0) \partial_z v(z) = B(z)v(z), \]
where \(B(z) \) is holomorphic around \(z_0 \). The eigenvalues of the matrix \(B(z_0) \) are called indices of the singular point \(z_0 \).

For simplicity, assume that \(z_0 = 0 \).
Theorem 3.8 (Frobenius method for systems of equations) Let \(\Omega \) be a connected simply connected open subset of \(\mathbb{C} \) containing 0. Let

\[
\Omega \ni z \mapsto B(z) = \begin{bmatrix} b_{11}(z) & \ldots & b_{1n}(z) \\ \vdots & \ddots & \vdots \\ b_{n1}(z) & \ldots & b_{nn}(z) \end{bmatrix}
\]

be a holomorphic function with values in \(n \times n \) matrices. Let \(w \in \mathbb{C}^n \) and \(\lambda \in \mathbb{C} \) satisfy

\[
(B(0) - \lambda)w = 0, \quad \lambda + m \text{ is not an eigenvalue of } B(0) \text{ for } m = 1, 2, \ldots.
\]

(3.38)

Then there exists a unique function \(\tilde{v}(z) \) holomorphic on \(\Omega \) such that \(v(z) := z^\lambda \tilde{v}(z) \) solves the problem

\[
\begin{aligned}
& \frac{dz}{dz} v(z) = B(z)v(z), \\
& \lim_{z \to 0} z^{-\lambda} v(z) = w.
\end{aligned}
\]

(3.39)

Proof. Let us first consider a disc \(K(0, r) \) such that \(K(0, r)^{cl} \subset \Omega \). Let

\[
B(z) = \sum_{k=0}^{\infty} B_k z^k
\]

Then the series

\[
v(z) := z^\lambda \sum_{k=0}^{\infty} v_k z^k,
\]

where

\[
\begin{aligned}
& v_0 = w \\
& v_m := (\lambda + m - B_0)^{-1} \sum_{k=0}^{m-1} B_{m-k} v_k.
\end{aligned}
\]

is the unique formal series solving (3.39).

Let us show that this series is convergent in the disk \(K(0, r) \). By the Cauchy inequality,

\[
\|B_k\| \leq Cr^{-k}.
\]

If we set

\[
\begin{aligned}
p_0 &= \|w\| \\
p_m &= \|(\lambda + m - B_0)^{-1}\| \sum_{k=0}^{m-1} Cr^{-m+k} p_k,
\end{aligned}
\]

then we can show by induction that

\[
\|v_m\| \leq p_m.
\]
If we subtract the formulas
\[r \| (\lambda + m + 1 - B_0)^{-1} \|^{-1} p_{m+1} = \sum_{k=0}^{m} C r^{-m+k} p_k, \]
\[\| (\lambda + m - B_0)^{-1} \|^{-1} p_m = \sum_{k=0}^{m-1} C r^{-m+k} p_k, \]
then we obtain
\[r \| (\lambda + m + 1 - B_0)^{-1} \|^{-1} p_{m+1} = \left(C + \| (\lambda + m - B_0)^{-1} \|^{-1} \right) p_m. \]

It is easy to see that
\[\lim_{m \to \infty} m \| (\lambda + m - B_0)^{-1} \| = 1. \]

Hence,
\[\lim_{m \to \infty} \frac{p_{m+1}}{p_m} = r^{-1}. \]

Thus by the d’Alembert criterion, the series that defines \(\tilde{v}(z) \) is convergent in the disk \(K(0, r) \).

Using Thm 3.2 we can extend \(\tilde{v}(z) \) to the whole \(\Omega \).

Example 3.9 Let
\[B = \begin{bmatrix} \lambda & \cdots & \cdots & \cdots \\ 1 & \lambda & \cdots & \cdots \\ \cdots & \cdots & \lambda & \cdots \\ \cdots & \cdots & \cdots & 1 & \lambda \end{bmatrix}. \]

Consider the equation \(z \partial_z v(z) = Bv(z) \). We obtain
\[z \partial_z v_1 = \lambda v_1, \]
\[v_1 + z \partial_z v_2 = \lambda v_2, \]
\[\cdots \]
\[v_{n-1} + z \partial_z v_n = \lambda v_n. \]

A basis of solution of this system is
\[\begin{bmatrix} 0 \\ \cdots \\ 0 \\ z^\lambda \\ z^\lambda \log z \\ \cdots \\ z^\lambda (\log z)^{m-1} \end{bmatrix}, \quad m = 1, \ldots, n. \]
Example 3.10 The following equation has a regular-singular point at 0:
\[\partial_z v(z) = (az^{-1} + b)v(z). \]
its solution is \(v(z) = z^a e^{bz} \)

Proof of Thm 2.6 Define
\[
v(z) := \begin{bmatrix} u(z) \\ zu'(z) \end{bmatrix}, \quad w := \begin{bmatrix} 1 \\ \lambda \end{bmatrix}
\]
and
\[
B(z) := \begin{bmatrix} 0 & 1 \\ -c(z) & 1 - b(z) \end{bmatrix}.
\]
We then have
\[
B(z)v(z) = \begin{bmatrix} zu'(z) \\ -c(z)u(z) - b(z)zu'(z) + zu'(z) \end{bmatrix},
\]
\[
z\partial_z \begin{bmatrix} u(z) \\ zu'(z) \end{bmatrix} = \begin{bmatrix} zu'(z) \\ z^2u''(z) + zu'(z) \end{bmatrix},
\]
\[
z^{-\lambda}v(z) = \begin{bmatrix} \tilde{u}(z) \\ z\tilde{u}'(z) + \lambda\tilde{u}(z) \end{bmatrix}.
\]
Hence (2.14) can be rewritten as
\[
\begin{cases}
z\frac{dv(z)}{dz} = B(z)v(z), \\
\lim_{z \to 0} z^{-\lambda}v(z) = w.
\end{cases}
\]
We can apply Thm 3.8.

Definition 3.11 Assume that \(B(z) \) is defined for \(|z| > R \). We say that \(\infty \) is a regular-singular point of (3.36), if after the change of the variable \(w = z^{-1} \) we obtain a regular-singular point at 0.

Thus (3.37) has a regular-singular point if \(\lim_{z \to \infty} B(z) \) exists. The eigenvalues of \(-B(\infty)\) are called indices of \(\infty \).

Theorem 3.12 Let \(\Omega \) be a connected simply connected subset of \(\mathbb{C} \) containing \(\{|z| > R\} \). Let
\[
\Omega \ni z \mapsto B(z) = \begin{bmatrix} a_{11}(z) & \ldots & a_{1n}(z) \\ \vdots & \ddots & \vdots \\ a_{n1}(z) & \ldots & a_{nn}(z) \end{bmatrix}
\]
be a holomorphic function with values in \(n \times n \) matrices. Let \(w \in \mathbb{C}^n \) and \(\lambda \in \mathbb{C} \) satisfy
\[
(B(\infty) + \lambda)w = 0,
\]
\[\lambda + m \text{ is not an eigenvalue of } -B(\infty) \text{ for } m = 1, 2, \ldots \quad (3.40)\]
Then there exists a unique function \(\tilde{v}(z) \) holomorphic on \(\Omega \) such that \(v(z) := z^{-\lambda} \tilde{v}(z) \) solves
\[
\begin{aligned}
&z \frac{dv(z)}{dz} = B(z)v(z), \\
&\lim_{z \to \infty} z^\lambda v(z) = w.
\end{aligned}
\tag{3.41}
\]

Example 3.13 Every 1st order equation on the Riemann sphere possessing only regular points except of regular-singular points at \(z_1, z_2 \) and \(\infty \) has the form
\[
\partial_z v(z) = \left(a_1 (z - z_1)^{-1} + a_2 (z - z_2)^{-1} \right) v(z)
\tag{3.42}
\]

It has indices
\[
z_1: a_1, \quad z_2: a_2, \quad \infty: -a_1 - a_2,
\]
and a solution \((z - z_1)^{a_1}(z - z_2)^{a_2}\).

4 Hypergeometric equation

4.1 Riemann equations

Lemma 4.1 Every 2nd order equation which on the Riemann sphere has only regular points except for 3 points at \(z_1, z_2 \) and \(\infty \) is given by an operator of the form
\[
\partial_z^2 + \left(\frac{g_1}{z - z_1} + \frac{g_2}{z - z_2} \right) \partial_z + \left(\frac{h_1}{(z - z_1)^2} + \frac{h_2}{(z - z_2)^2} + \frac{k}{(z - z_1)(z - z_2)} \right) v(z)
\tag{4.43}
\]

Proof. Consider
\[
\partial_z^2 + c(z) \partial_z + d(z)
\tag{4.44}
\]

Clearly, if in \(\mathbb{C} \) the only singular points are at \(z_1, z_2 \), and they are regular-singular, then
\[
c(z) = c_{\text{reg}}(z) + \frac{g_1}{z - z_1} + \frac{g_2}{z - z_2},
\tag{4.45}
\]
\[
d(z) = d_{\text{reg}}(z) + \frac{h_1}{(z - z_1)^2} + \frac{h_2}{(z - z_2)^2} + \frac{k_1}{z - z_1} + \frac{k_2}{z - z_2}
\tag{4.46}
\]

where \(c_{\text{reg}}, d_{\text{reg}} \) are entire functions. \(\infty \) is a regular-singular point if the following limits also exist:
\[
\lim_{z \to \infty} z c(z),
\tag{4.47}
\]
\[
\lim_{z \to \infty} z^2 d(z).
\tag{4.48}
\]
(4.47) implies the existence of \(\lim_{z \to \infty} zc_{\text{reg}}(z) \). Thus, \(zc_{\text{reg}}(z) \) is a bounded entire function. By the Liouville Theorem, \(zc_{\text{reg}} \) is a constant. But \(c_{\text{reg}} \) is also an entire function. Hence \(c_{\text{reg}} = 0 \).

(4.48) implies the existence of a limit \(\lim_{z \to \infty} zd(z) \), which in turn implies the existence of \(\lim_{z \to \infty} zd_{\text{reg}}(z) \). By the Liouville Theorem, \(zd_{\text{reg}} \) is a constant. But \(d_{\text{reg}} \) is also an entire function. Hence \(d_{\text{reg}} = 0 \).

Using again (4.48), knowing that \(d_{\text{reg}} = 0 \), we obtain \(k_1 + k_2 = 0 \).

We can transform (4.43) further, obtaining

\[
\partial_z^2 + \left(\frac{g_1}{z - z_1} + \frac{g_2}{z - z_2} \right) \partial_z + \frac{h_1(z_1 - z_2)}{(z - z_1)^2(z - z_2)} + \frac{h_2(z_2 - z_1)}{(z - z_2)^2(z - z_1)} + \frac{h}{(z - z_1)(z - z_2)}. \tag{4.49}
\]

with \(h = k - h_1 - h_2 \).

Suppose that the indices are

\[
z_1 : \rho_1, \tilde{\rho}_1, \quad z_2 : \rho_2, \tilde{\rho}_2, \quad \infty : \rho_3, \tilde{\rho}_3.
\]

Lemma 4.2 The sum of indices of (4.43) is 1. The Riemann operator expressed in terms of the indices is

\[
P \begin{pmatrix} z_1 & z_2 & \infty \\ \rho_1 & \rho_2 & \rho_3 \\ \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3 \end{pmatrix} z, \partial_z = \partial_z^2 - \left(\frac{\rho_1 + \tilde{\rho}_1 - 1}{z - z_1} + \frac{\rho_2 + \tilde{\rho}_2 - 1}{z - z_2} \right) \partial_z + \frac{\rho_1 \tilde{\rho}_1(z_1 - z_2)}{(z - z_1)^2(z - z_2)} + \frac{\rho_2 \tilde{\rho}_2(z_2 - z_1)}{(z - z_2)^2(z - z_1)} + \frac{\rho_3 \tilde{\rho}_3(z_1 - z_2)}{(z - z_1)(z - z_2)} \tag{4.50}
\]

Proof. Its indicial equations are

\[
z_1 : \quad \lambda(\lambda - 1) + g_1 \lambda + h_1 = 0,
\]

\[
z_2 : \quad \lambda(\lambda - 1) + g_2 \lambda + h_2 = 0,
\]

\[
\infty : \quad \lambda(\lambda + 1) - (g_1 + g_2) \lambda + h = 0.
\]

By the Vieta equations

\[
-1 + g_1 = -\rho_1 - \tilde{\rho}_1,
\]

\[
-1 + g_2 = -\rho_2 - \tilde{\rho}_2,
\]

\[
1 - g_1 - g_2 = -\rho_\infty - \tilde{\rho}_\infty.
\]

We sum up these equations.

It is easy to generalize (4.50) to an arbitrary triplet of points:
Theorem 4.3 1. Suppose that we are given a 2nd order differential equation on the Riemann sphere having 3 singular points \(z_1, z_2, z_3 \), all of them regular singular points with the following indices

\[
\begin{align*}
 z_1 & : \quad \rho_1, \, \tilde{\rho}_1, \\
 z_2 & : \quad \rho_2, \, \tilde{\rho}_2, \\
 z_3 & : \quad \rho_3, \, \tilde{\rho}_3.
\end{align*}
\]

Then the following condition is satisfied:

\[
\rho_1 + \tilde{\rho}_1 + \rho_2 + \tilde{\rho}_2 + \rho_3 + \tilde{\rho}_3 = 1.
\] (4.51)

Such an equation, normalized to have coefficient 1 at the 2nd derivative, is always equal to

\[
\mathcal{P} \left(\begin{array}{ccc}
 z_1 & z_2 & z_3 \\
 \rho_1 & \rho_2 & \rho_3 \\
 \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3
\end{array} \right) \frac{\partial}{\partial z} \phi(z) = 0,
\] (4.52)

where

\[
\mathcal{P} \left(\begin{array}{ccc}
 z_1 & z_2 & z_3 \\
 \rho_1 & \rho_2 & \rho_3 \\
 \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3
\end{array} \right) := \frac{\partial^2}{\partial z^2} - \left(\frac{\rho_1 + \tilde{\rho}_1 - 1}{z - z_1} + \frac{\rho_2 + \tilde{\rho}_2 - 1}{z - z_2} + \frac{\rho_3 + \tilde{\rho}_3 - 1}{z - z_3} \right) \frac{\partial}{\partial z}
\]
\[
+ \frac{\rho_1 \tilde{\rho}_1 (z_1 - z_2) (z_1 - z_3)}{(z - z_1)^2 (z - z_2) (z - z_3)} + \frac{\rho_2 \tilde{\rho}_2 (z_2 - z_3) (z_2 - z_1)}{(z - z_2)^2 (z - z_3) (z - z_1)} + \frac{\rho_3 \tilde{\rho}_3 (z_3 - z_1) (z_3 - z_2)}{(z - z_3)^2 (z - z_1) (z - z_2)}.
\]

2. Let \(z \mapsto w(z) = \frac{az + b}{cz + d} \). (Transformations of this form are called homographies or M"obius transformations). We can always assume that \(ad - bc = 1 \).

Then

\[
\mathcal{P} \left(\begin{array}{ccc}
 w(z_1) & w(z_2) & w(z_3) \\
 \rho_1 & \rho_2 & \rho_3 \\
 \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3
\end{array} \right) = (cz + d)^4 \mathcal{P} \left(\begin{array}{ccc}
 z_1 & z_2 & z_3 \\
 \rho_1 & \rho_2 & \rho_3 \\
 \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3
\end{array} \right),
\]

3.

\[
(z - z_1)^{-\lambda} (z - z_2)^{-\lambda} \mathcal{P} \left(\begin{array}{ccc}
 z_1 & z_2 & z_3 \\
 \rho_1 & \rho_2 & \rho_3 \\
 \tilde{\rho}_1 & \tilde{\rho}_2 & \tilde{\rho}_3
\end{array} \right) (z - z_1)^{\lambda} (z - z_2)^{-\lambda}
\]
\[
= \mathcal{P} \left(\begin{array}{ccc}
 z_1 & z_2 & z_3 \\
 \rho_1 - \lambda & \rho_2 + \lambda & \rho_3 \\
 \tilde{\rho}_1 - \lambda & \tilde{\rho}_2 + \lambda & \tilde{\rho}_3
\end{array} \right).
\]

Clearly, in all above formulas one of \(z_i \) can equal \(\infty \), with an obvious meaning of various expressions.
4.2 Hypergeometric equation

By Thm 4.3 (2), we can assume that the points z_1, z_2, z_3 are any triplet of distinct points on the Riemann sphere. We choose them to be $0, 1, \infty$.

By Thm 4.3 (3), we can assume that ρ_1, ρ_2 are arbitrary numbers. We choose them to be both 0. The sum of remaining indices must be 1. Hence, we have 3 parameters left. We set

0, indices: 0, $1 - c$;
1, indices: 0, $c - a - b$;
∞, indices: a, b. Thus

$$P \begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & a \\ 1 - c & c - a - b & b \end{pmatrix}$$

$$= \partial_z^2 - \left(\frac{1 - c - 1}{z} + \frac{c - a - b - 1}{(z-1)} \right) \partial_z + \frac{ab}{z(z-1)}. \quad (4.53)$$

Define

$$F(a, b; c; z, \partial_z) := z(1 - z)P \begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & a \\ 1 - c & c - a - b & b \end{pmatrix}$$

$$= z(1 - z)\partial_z^2 + (c - (a + b + 1)z)\partial_z - ab. \quad (4.54)$$

Rewrite the equation

$$F(a, b; c; z, \partial_z)F(z) = 0$$

in the form

$$(z^2 \partial_z^2 + (a + b + 1)z\partial_z + ab)F(z) = (z\partial_z^2 + c\partial_z)F(z). \quad (4.56)$$

Substituting $F = \sum_{n=0}^{\infty} F_n z^n$ into (4.56) we obtain

$$\sum_{n=0}^{\infty} (n + a)(n + b)F_n z^n = \sum_{n=0}^{\infty} n(n + c - 1)F_n z^{n-1}. \quad (4.57)$$

This leads to the recurrence relation

$$(n + a)(n + b)F_n = F_{n+1}(n + 1)(n + c). \quad (4.58)$$

For $a \in \mathbb{C}$ we define

$$(a)_n := a(a + 1) \cdots (a + n - 1).$$

The solution analytic at 0 and equal there 1 is the hypergeometric function

$$F(a, b; c; z) = \sum_{j=0}^{\infty} \frac{(a)_j (b)_j z^j}{(c)_j j!}.$$
$F(a, b; c; z)$ is defined for $c \neq 0, -1, -2, \ldots$. Sometimes, it is more convenient to consider

$$F(a, b; c; z) := \frac{F(a, b, c; z)}{\Gamma(c)} = \sum_{j=0}^{\infty} \frac{(a)_j (b)_j}{\Gamma(c + j)} \frac{z^j}{j!}$$

defined for all a, b, c.

4.3 Solution $\sim z^{1-c}$ at 0

We have the identity

$$z^{c-1} F(a, b; c) z^{1-c} = F(b + 1 - c, a + 1 - c; 2 - c)$$

Therefore, the solution of (4.55) behaving as z^{1-c} at zero is

$$z^{1-c} F(b + 1 - c, a + 1 - c; 2 - c; z) \quad (4.59)$$

4.4 Solutions having definite behaviors at 1

$w = 1 - z$ is a substitution that exchanges 0 and 1:

$$F(a, b; c; z, \partial_z) := F(a, b; a + b + 1 - c; w, \partial_w).$$

Therefore, the solution analytic at 1 and having there the value 1 is

$$F(a, b; a + b + 1 - c; 1 - z).$$

There is also a solution behaving as $(1 - z)^{c-a-b}$ at 1:

$$(1 - z)^{c-a-b} F(-b + c, -a + c; 1 + c - a - b; 1 - z).$$

4.5 Solutions having definite behaviors at ∞

∞ is a regular-singular point with indices a, b. $w = z^{-1}$ is the substitution that exchanges 0 and ∞

$$(-z)^{1+a} F(a, b; c; z, \partial_z)(-z)^{-a} = F(a, a - c + 1; a - b + 1; w, \partial_w). \quad (4.60)$$

Hence, the solution that behaves at ∞ as z^{-a} is

$$z^{-a} F(a, a - c + 1; a - b + 1; z^{-1}).$$

The second solution is obtained by exchanging a and b:

$$z^{-b} F(b - c + 1, b; b - a + 1; z^{-1}).$$
4.6 Identities

The following substitution does not move 0, and exchanges 1 and \(\infty \):

\[z \mapsto w = \frac{z}{z-1}. \]

It leads to

\[-(1-z)^{1+a} F(a, b; c; z, \partial_z) (1-z)^{-a} = F(a, c-b; c; w, \partial_w) \] (4.62)

An analogous identity is obtained if we exchange \(a \) and \(b \). This yields

\[F(a, b; c; z) = (1-z)^{-c-a} F(c-a, c-b; c; z) \]

\[= (1-z)^{-a} F(a, c-b; c; \frac{z}{z-1}) \]

\[= (1-z)^{-b} F(c-a, b; c; \frac{z}{z-1}). \]

4.7 Integral representations

Theorem 4.4 Let the curve \([0, 1] \ni \tau \mapsto t(\tau)\) satisfy

\[t^{a-c+1} (1-t)^{c-b} (t-z)^{-a-1} \bigg|_{t(0)}^{t(1)} = 0. \]

Then

\[\int_\gamma t^{a-c} (1-t)^{c-b-1} (t-z)^{-a} dt \] (4.63)

solves the hypergeometric equation.

Proof. We check that

\[(z(1-z) \partial_z^2 + (c - (a + b + 1)z) \partial_z - ab) t^{a-c} (1-t)^{c-b-1} (t-z)^{-a} \]

\[= -a \partial_t t^{a-c+1}(1-t)^{c-b}(t-z)^{-a-1}. \]

This implies the following representation of the hypergeometric function:

\[\int_1^\infty t^{a-c}(t-1)^{c-b-1} (t-z)^{-a} \] (4.64)

\[= \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} F(a, b; c; z), \quad \text{Re}(c-b) > 0, \text{Reb} > 0. \] (4.65)

Indeed, notice that (4.64) satisfies the assumptions of Thm 4.4, it is analytic around zero and at zero equals

\[\int_1^\infty t^{-c}(t-1)^{c-b-1} dt = \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}. \]
Setting \(z = 1 \) in (4.64) we obtain

\[
\int_1^\infty t^{a-c}(t-1)^{-a-b-1} \, dt = \frac{\Gamma(c-a-b)\Gamma(b)}{\Gamma(c-a)}. \quad (4.66)
\]

Therefore,

\[
F(a, b; c; 1) = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)}, \quad \text{Re} > \text{Re}(a + b). \quad (4.67)
\]
5 Confluent equation

5.1 \(_1 F_1\) equation as a limit of the hypergeometric equation
Let \(a, c \in \mathbb{C}\). The confluent or the \(_1 F_1\) equation is given by the operator
\[
F(a; c; z, \partial_z) := z\partial_z^2 + (c - z)\partial_z - a.
\] (5.68)
The confluent equation is a limiting case of the hypergeometric equation:
\[
\lim_{b \to \infty} \frac{1}{b} F(a; b; c; z/b, \partial_{z/b}) = F(a; c; z, \partial_z).
\]

5.2 Confluent function
0 is a regular-singular point with indices 0, 1 - \(c\). The solution of the confluent equation analytic around 0 and equal 1 at 0 is
\[
F(a; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n}{n!(c)_n} z^n.
\]

5.3 Solution \(\sim z^{1-c}\) at 0
We have the identity
\[
z^{c-1} F(a; c) z^{1-c} = F(1 + a - c; 2 - c).
\]
Hence
\[
z^{1-c} F(a - c + 1; 2 - c; z) = \sum_{n=0}^{\infty} \frac{(a - c + 1)_n}{n!(2 - c)_n} z^{1-c+n}.
\]
is a solution of the confluent equation.

5.4 First Kummer’s identity
Using \(e^{-z} \partial_z e^z = \partial_z + 1\) we obtain the identity
\[
e^{-z} (z\partial_z^2 + (c - z)\partial_z - a) e^z = z\partial_z^2 + (c + z)\partial_z + c - a.
\] (5.69)
Substitute \(z = -w\) and multiply by \(-1\), obtaining
\[
w\partial_w^2 + (c - w)\partial_w - c + a.
\]
Thus
\[
e^{-z} F(a; c; z, \partial_z) e^z = F(c - a; c; w, \partial_w).
\]
Hence \(e^z F(c - a; c; -z)\) is a solution of the confluent equation analytic around 0 and equal 1 at 0. We obtain the identity
\[
F(a; c; z) = e^z F(c - a; c; -z).
\] (5.70)
5.5 Integral representations

If \([0, 1] \ni \tau \mapsto s(\tau) \in \Omega\) is a curve and \(f\) is a function on \(\Omega\), we introduce the notation
\[
f \Big|_{\gamma(0)}^{\gamma(1)} := f(\gamma(1)) - f(\gamma(0)).
\]

Theorem 5.1 Let the curve \(\gamma\) satisfy
\[
e^{zs} s^a (1-s)^{c-a} \big|_{\gamma(1)}^{\gamma(0)} = 0. \tag{5.71}
\]
Then
\[
\int_{\gamma} e^{zs} s^{a-1} (1-s)^{c-a-1} ds \tag{5.72}
\]
is a solution of the confluent equation

Proof.

\[
(z \partial_z^2 + (c-z) \partial_z - a) e^{zs} s^{a-1} (1-s)^{c-a-1} \\
= ze^{zs} s^{a+1} (1-s)^{c-a-1} + (c-z) e^{zs} s^a (1-s)^{c-a-1} - ae^{zs} s^{a-1} (1-s)^{c-a-1} \\
= -ze^{zs} s^a (1-s)^{c-a} - ae^{zs} s^{a-1} (1-s)^{c-a} + (c-a) e^{zs} s^a (1-s)^{c-a-1} \\
= -\partial_s e^{zs} s^a (1-s)^{c-a}.
\]

Hence for \(\text{Re} a > 0, \text{Re}(c-a) > 0\) we have
\[
\int_0^1 e^{zs} s^{a-1} (1-s)^{c-a-1} ds = \frac{\Gamma(a) \Gamma(c-a)}{\Gamma(c)} F(a; c; z). \tag{5.73}
\]
Indeed, the assumptions are satisfied, since the value of the function in (5.71) at 0 and 1 is zero. We obtain a solution of the confluent equation analytic around 0. We check that at zero it equals
\[
\int_0^1 s^{a-1} (1-s)^{c-a-1} ds = \frac{\Gamma(a) \Gamma(c-a)}{\Gamma(c)}.
\]

5.6 Laguerre polynomials

For \(n = -a \in \{0, 1, 2, \ldots \}\), \(F(-n; c; z)\) is an \(n\)th degree polynomial. These are the so-called Laguerre polynomials. They can be represented as an integral with \(\gamma\) encircling 0:
\[
L_{n}^{a}(z) := \frac{(1+a)n}{n!} F(-n; 1+a; z) \\
= \frac{(-1)^n}{2\pi i} \int_{0^+} e^{t z} t^{-n-1} (1-t)^{a+n} dt.
\]
5.7 The $2F_0$ equation

Parallel to the $1F_1$ equation we will consider the $2F_0$ equation, given by the operator

$$F(a, b; -; z, \partial_z) := z^2 \partial_z^2 + (-1 + (1 + a + b)z)\partial_z + ab,$$ \hspace{1cm} (5.74)

where $a, b \in \mathbb{C}$. This equation is another limiting case of the hypergeometric equation:

$$\lim_{c \to \infty} F(a, b; c; cz, \partial_{(cz)}) = -F(a, b; -; z, \partial_z).$$

5.8 Point ∞ for the confluent equation

We have

$$z^{a+1}(z\partial_z^2 + (c - z)\partial_z - a)z^{-a} = z^2\partial_z^2 + z(-2a + c - z)\partial_z + a(1 + a - c).$$ \hspace{1cm} (5.75)

and

$$z^2\partial_z^2 + z(1 - a - b - z)\partial_z + ab,$$ \hspace{1cm} (5.76)

where we set $b := 1 + a - c$. Substituting $w = -z^{-1}$ (with the inverse $z = -w^{-1}$), using $\partial_z = w^2\partial_w$, we obtain that (5.76) is

$$w^2\partial_w^2 + (-1 + (1 + a + b)w)\partial_w + ab.$$

We thus obtained the $2F_0$ equation. Note that 0 is an irregular singular point of this equation. Therefore, ∞ is an irregular singular point of the confluent equation.

If

$$(w^2\partial_w^2 + (-1 + (1 + a + b)w)\partial_w + ab)g(w) = 0,$$

then

$$(z\partial_z^2 + (c - z)\partial_z - a)z^{-a}g(-z^{-1}) = 0.$$ \hspace{1cm} (5.77)

Conversely, if

$$(z\partial_z^2 + (c - z)\partial_z - a)f(z) = 0,$$

then

$$(w^2\partial_w^2 + (-1 + (1 + a + b)w)\partial_w + ab)w^{-a}f(-w^{-1}) = 0.$$

5.9 Asymptotic series

Let function f be defined on $K(z_0, r) \cap \{\alpha_1 < \arg(z - z_0) < \alpha_2\}$. We write

$$f(z) \sim \sum_{j=0}^{\infty} a_j(z - z_0)^j,$$

if for any n there exists C_n such that

$$\left| f(z) - \sum_{j=0}^{n} a_j(z - z_0)^j \right| \leq C_n|z - z_0|^{n+1}.$$
Clearly, if \(f(z) = \sum_{j=0}^{\infty} a_j (z-z_0)^j \) for \(z \in K(z_0, r) \), then \(f(z) \sim \sum_{j=0}^{\infty} a_j (z-z_0)^j \).

Example. For \(-\frac{\pi}{2} + \epsilon < \text{arg} \: z < \frac{\pi}{2} - \epsilon \)

\[
e^{-\frac{1}{z}} \sim \sum_{j=0}^{\infty} 0z^j.
\]

Example. For \(-\frac{\pi}{4} + \epsilon < \text{arg} \: z < \frac{\pi}{4} - \epsilon \) and \(-\frac{\pi}{4} + \epsilon < \text{arg} \: -z < \frac{\pi}{4} - \epsilon \)

\[
e^{-\frac{1}{z^2}} \sim \sum_{j=0}^{\infty} 0z^j.
\]

In particular, all derivatives of \(\mathbb{R} \ni x \rightarrow e^{-\frac{1}{x^2}} \) at zero are zero.

Example: Error Function.

\[
\text{Erf}(z) := \int_{z}^{\infty} e^{-t^2} \, dt.
\]

Clearly, \(\lim_{\text{Re} \: z \to \infty} \text{Erf}(z) = \frac{1}{2} \sqrt{\pi} \). For \(-\frac{\pi}{2} + \epsilon < \text{arg} \: z < \frac{\pi}{2} - \epsilon \) we easily show by integration by parts that

\[
\frac{1}{2} \sqrt{\pi} - \text{Erf}(z) = \int_{z}^{\infty} e^{-t^2} \, dt \sim \frac{e^{-z^2}}{2z} \left(1 + \sum_{k=1}^{\infty} (-1)^k \frac{1 \cdot 3 \cdots (2k-1)}{(2z^2)^k} \right).
\]

5.10 \(_2F_0 \) function

We try to solve (5.77) with a power series

\[
g(w) = \sum_{n=0}^{\infty} g_n w^n.
\]

We obtain

\[
\sum_{n=0}^{\infty} (n(n-1)g_n w^n - ng_n w^{n-1} + (1+a+b)ng_n w^n + abg_n w^n) = 0
\]

Hence

\[
(n-1+a)(n-1+b)g_{n-1} = ng_n.
\]

This gives the coefficients

\[
g_n = \frac{(a)_n (b)_n}{n!} g_0
\]

and leads to a divergent series.
Theorem 5.2 Let a contour γ satisfy
\[
e^{-t^a(1-wt)^{1-b}}\bigg|_{\gamma(0)}^{(1)} = 0 \quad (5.78)
\]
Then
\[
\int_{\gamma} e^{-t^{a-1}(1-wt)^{-b}}dt
\]
is a solution of (5.77).

Proof. By Thm 5.1
\[
\int_{\gamma} e^{zs^{a-1}(1-s)^{c-a-1}}ds
\]
is a solution of the confluent. Therefore,
\[
w^{-a} \int_{\gamma} e^{-sw^{-1}s^{a-1}(1-s)^{c-a-1}}ds,
\]
for $b = 1 + a - c$ is a solution of (5.77). Next we substitute $t = \frac{z}{w}$.

For $w \in \mathbb{C}\setminus[0, \infty[, \text{Re} a > 0$ we define
\[
F(a,b; -w) := \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-t^{a-1}(1-wt)^{-b}}dt. \quad (5.79)
\]
For other values of a we extend (5.79) by analytic continuation. We have the following asymptotic expansion:
\[
F(a,b; -w) \sim \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{n!} w^n.
\]
More precisely, for any n, for $|\text{arg } w| \geq \epsilon > 0$,
\[
\lim_{w \to 0} w^{-n} \left(F(a,b; -w) - \sum_{j=0}^{n} \frac{(a)_j (b)_j}{j!} w^j \right) = 0.
\]

To prove this, we use the formula
\[
f(z) = \sum_{j=0}^{n-1} \frac{f^{(j)}(0)z^j}{j!} + z^n \int_{0}^{1} \frac{f^{(n)}(sz)n(1-s)^{n-1}}{n!} ds,
\]
which implies
\[
(1-z)^{-b} = \sum_{j=0}^{n-1} \frac{(b)_j z^j}{j!} + \frac{(b)_n z^n}{n!} \int_{0}^{1} n(1-s)^{n-1}(1-zs)^{-b-n} ds.
\]
Hence

\[
F(a, b; -; w) = \frac{1}{\Gamma(a)} \int_0^\infty e^{-t} t^{a-1} (1 - w t)^{-b} dt
\]

\[
= \sum_{j=0}^{n-1} \frac{1}{\Gamma(a)} \int_0^\infty e^{-t} t^{a-1} \frac{(b)_{j} w^{j}}{j!} dt
\]

\[
+ \frac{1}{\Gamma(a)} \int_0^\infty e^{-t} t^{a-1} \frac{(b)_{n} w^{n}}{n!} \int_0^1 (1 - w t s)^{-b-n} (1 - s)^{-1} ds
\]

\[
= \sum_{j=0}^{n-1} \frac{(b)_{j} \Gamma(a+j)}{\Gamma(a) j!} w^{j}
\]

\[
+ \frac{w^{n}(b)_{n}}{\Gamma(a)n!} \int_0^1 n(1-s)^{-1} ds \int_0^\infty e^{-t} t^{a-1} (1 - w t s)^{-b-n} dt
\]

\[
= \sum_{j=0}^{n-1} \frac{(b)_{j} \Gamma(c-a) w^{j}}{\Gamma(a) j!}
\]

\[
+ \frac{w^{n}(b)_{n}(c-a)_{n}}{n!} \int_0^1 n(1-s)^{-1} ds F(a+n, b+n; -; ws)
\]

5.11 Solutions of the confluent equation with definite behavior at \(\infty\)

Consider the analytic function on the upper halfplane given by

\[
s \mapsto e^{z s} s^{a-1}(1 - s)^{c-a-1},
\]

where we use the principal branch of power functions. Assume that \(\text{Re} a > 0\), \(\text{Re}(c-a) > 0\). Remember that

\[
F(z) = \int_0^1 e^{z s} s^{a-1}(1 - s)^{c-a-1} ds = \frac{\Gamma(a)\Gamma(c-a)}{\Gamma(c)} F(a; c; z)
\]

is one of solutions of the confluent equation. If \(\text{Im} z > 0\), then we can write the following solutions

\[
F_0(z) = \int_0^{e^{i\phi}} e^{z s} s^{a-1}(1 - s)^{c-a-1} ds,
\]

\[
F_1(z) = \int_1^{e^{i\phi}} e^{z s} s^{a-1}(1 - s)^{c-a-1} ds,
\]

where \(\phi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] - \arg z, \frac{3\pi}{2} - \arg z\] guarantees that \(e^{z s}\) along the halfline where we integrate converges fast to zero (thus the appropriate condition is fulfilled). Notice that

\[
F(z) + F_1(z) - F_0(z) = 0. \quad (5.80)
\]
Substituting \(s = -z^{-1}t \), where \(t \in [0, \infty[\), for \(\Re a > 0 \) we obtain

\[
F_0(z) = \int_0^\infty e^{-t}(-tz^{-1})^{a-1}(1+z^{-1}t)^{c-a-1}(-z^{-1})dt
\]

\[
= (-z)^{-a} \Gamma(a) F(a, a + 1 - c; -z^{-1}).
\]

Substituting \(s = 1 - z^{-1}t \), where \(t \in [0, \infty[\), for \(\Re(c - a) > 0 \) we can write

\[
F_1(z) = -e^{z} \int_0^\infty e^{-t}(1-z^{-1}t)^{a-1}z^{-c+a}t^{c-a-1}dt
\]

\[
= -e^z z^{-c+a} \Gamma(c-a) F(c-a, 1-a; -z^{-1}).
\]

By (5.80), we obtain

\[
\frac{F(a; c; z)}{\Gamma(c)} = (-z)^{-a} \frac{F(a, a + 1 - c; -z^{-1})}{\Gamma(a)} + z^{-c+a} \frac{e^z F(c-a, 1-a; -z^{-1})}{\Gamma(c-a)}
\]

5.12 Hydrogen atom

We transform the confluent operator

\[
e^{-z^2/2} (z \partial_z^2 + (c-z) \partial_z) e^{z^2/2}
\]

(5.81)

\[
= z \partial_z^2 + c \partial_z + \frac{c}{2} - a - \frac{z}{4};
\]

(5.82)

Next,

\[
z^{-(1-c)/2} \left(z \partial_z^2 + c \partial_z + \frac{c}{2} - a - \frac{z}{4}\right) z^{(1-c)/2}
\]

(5.83)

\[
= z \partial_z^2 + \partial_z - \frac{z}{4} + \frac{c}{2} - a - \frac{(1-c)^2}{4z}.
\]

(5.84)

We divide (5.82) by \(z \) and substitute \(z = 2w \). We obtain

\[
\partial_w^2 + \frac{1}{w} \partial_w - 1 + (c - 2a) \frac{1}{w} - \left(\frac{1-c}{2}\right)^2 \frac{1}{w^2},
\]

(5.85)

We multiply (5.85) with \(w^2 \). We obtain

\[
w^2 \partial_w^2 + w \partial_w - w^2 + (c - 2a)w - \left(\frac{1-c}{2}\right)^2,
\]

(5.86)

or the equation for the radial wave function for the Coulomb potential in dimension 2 (which is easy to transform into an analogous equation in higher dimensions).

Therefore, if \(f \) satisfies the confluent equation, then \(e^{-w}w^{(-1+c)/2}f(2w) \) satisfies (5.86).
6 Dzeta function

6.1 Riemann’s dzeta function

For $\text{Re } s > 1$ Riemann’s dzeta function is defined as

$$
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.
$$

(6.87)

6.2 Prime numbers

Let $\text{Re } s > 1$. We have

$$
\zeta(s)(1 - 2^{-s}) = \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \ldots.
$$

(6.88)

Likewise, if $p_1 = 2, p_2 = 3, p_3 = 5, \ldots$ are the prime numbers in the increasing order, then

$$
\zeta(s)(1 - p_1^{-s}) \cdots (1 - p_n^{-s}) = \sum_{k \in X_n} \frac{1}{k^s},
$$

(6.89)

where X_n is the set of positive integers not divisible by p_1, \ldots, p_n.

Proposition 6.1 We have

$$
\prod_{n=j}^{\infty} (1 - p_j^{-s}) = \frac{1}{\zeta(s)}.
$$

(6.90)

$\zeta \neq 0$ for $\text{Re } s > 1$.

Proof. First note that the lhs of (6.90) is an absolutely convergent product, because

$$
p_j^{-s} \leq j^{-s},
$$

and $\sum j^{-s} < \infty$. By continuing (6.89) we obtain

$$
\lim_{n \to \infty} \zeta(s) \prod_{j=1}^{n} (1 - p_j^{-s}) = 1,
$$

(6.91)

which implies (6.90).

All the factors of (6.90) are nonzero. Hence (6.90) is nonzero.

6.3 Holomorphic extension of dzeta function

Theorem 6.2 For any s with $\text{Re } s > 1$ we have

$$
\zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1} e^{-x} \frac{dx}{1 - e^{-x}}.
$$

(6.92)
\(\zeta \) extends to a holomorphic function on \(\mathbb{C} \setminus \{0\} \). It has the following integral representation valid for all \(s \) except for \(s = 1, 2, \ldots \) (because of singularities of the Gamma function):

\[
\zeta(s) = \frac{\Gamma(1-s)}{2\pi i} \int_{-\infty,0+,\infty} z^{s-1} e^z \frac{dz}{1-e^z}.
\] (6.93)

Proof. (6.92) follows by summing up

\[
\int_0^\infty x^{s-1} e^{-nx} dx = \Gamma(s) \frac{1}{n^s}.
\] (6.94)

(6.93) follows by summing up

\[
\frac{1}{2\pi i} \int_{-\infty,0+,\infty} z^{s-1} e^{nz} dz = \frac{1}{\Gamma(1-s)n^s}.
\] (6.95)

(6.93) is holomorphic on the whole \(\mathbb{C} \) except maybe at the singularities of \(\Gamma(1-s) \), which are 1, 2, \ldots. But we already know that \(\zeta \) is holomorphic for \(\text{Re} s > 1 \). Hence the only singularity can be at 1. \(\square \)

Theorem 6.3

\[
\zeta(s) = \frac{1}{s-1} + \gamma + O(s).
\] (6.96)

Proof.

\[
\zeta(s) = \sum_{n=1}^{\infty} \int_n^{\infty} \frac{s}{x^{s+1}} dx
\] (6.97)

\[
= \sum_{n=1}^{\infty} \int_n^{n+1} \frac{sn}{x^{s+1}} dx
\] (6.98)

\[
= \int_1^{\infty} \frac{s}{x^s} dx + \sum_{n=1}^{\infty} \int_n^{n+1} \frac{s(n-x)}{x^{s+1}} dx.
\] (6.99)

Now,

\[
\lim_{s \searrow 1} \int_n^{n+1} \frac{s(n-x)}{x^{s+1}} dx = \int_n^{n+1} \frac{n-x}{x^2} dx = \frac{1}{n+1} - \log(n+1) + \log(n).
\]

Therefore,

\[
\lim_{s \searrow 0} \left(\zeta(s) - \frac{1}{s-1} \right)
\] (6.100)

\[
= 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \log(n+1) + \log(n) \right)
\] (6.101)

\[
= \sum_{n=1}^{\infty} \left(\frac{1}{n} - \log(n+1) + \log(n) \right) = \gamma.
\] (6.102)
6.4 Bernoulli numbers

The Bernoulli numbers are defined by

\[\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}. \] (6.103)

The function

\[\frac{x}{e^x - 1} + \frac{x}{2} = \frac{x}{2} \coth \left(\frac{x}{2} \right) \] (6.104)

is even. Hence for odd \(n \) we have \(B_n = 0 \) except for \(B_1 = -\frac{1}{2} \). Otherwise, \(B_0 = 1, B_2 = \frac{1}{6} \), etc. We also have

\[x \coth(x) = \sum_{k=0}^{\infty} B_{2k} \frac{(2x)^{2k}}{(2k)!}, \] (6.105)

\[x \cot(x) = \sum_{k=0}^{\infty} (-1)^k B_{2k} \frac{(2x)^{2k}}{(2k)!}. \] (6.106)

Theorem 6.4 For positive even integers the zeta function can be expressed in terms of Bernoulli numbers:

\[\zeta(2k) = \frac{(-1)^{k+1} 2^{2k-1} \pi^{2k}}{(2k)!} B_{2k}. \] (6.107)

For all negative integers the zeta function can be expressed in terms of Bernoulli numbers:

\[\zeta(-n) = -\frac{B_{n+1}}{n+1}. \] (6.108)

(In particular, for even negative integers the zeta function is zero).

Proof. To prove (6.107) we use

\[\pi \cot \pi x = \frac{1}{x} + \sum_{n=1}^{\infty} \frac{2x}{x^2 - n^2}. \] (6.109)

By (6.109),

\[x \cot x = 1 + 2 \sum_{n=1}^{\infty} \frac{x^2}{x^2 - n^2 \pi^2} \] (6.110)

\[= 1 - 2 \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{x^{2k}}{n^{2k} \pi^{2k}} \] (6.111)

\[= 1 - 2 \sum_{k=1}^{\infty} \frac{x^{2k}}{\pi^{2k}} \zeta(2k). \] (6.112)
(6.108) follows from (6.93), which for \(s = -n \) can be rewritten as
\[
\zeta(-n) = \frac{n!}{2\pi i} \int_{[0,1]} \frac{z^{-1-n}}{e^z - 1} \, dz.
\] (6.113)

6.5 Riemann's reflection formula

Theorem 6.5

\[
\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \sin(\frac{\pi}{2}s) \zeta(1-s). \tag{6.114}
\]

or equivalently
\[
\zeta(s) \Gamma(s) \cos(\frac{\pi}{2}s) = 2^{s-1} \pi^s \zeta(1-s). \tag{6.115}
\]

Proof. Assume that \(\text{Re} s < 0 \). The function \(\frac{z^{-1}e^z}{1-e^z} \) has simple poles at \(z \in \text{int}(\tau) \). We compute the residues:
\[
\text{Res} \left. \frac{z^{-1}e^z}{1-e^z} \right|_{z = i2\pi n} = -(i2\pi n)^{-1}. \tag{6.116}
\]

Now for \(n > 0 \),
\[
(i2\pi n)^{-1} + (i2\pi (-n))^{-1} = (2\pi)^{-1} (e^{i\frac{\pi}{2}(s-1)} + e^{-i\frac{\pi}{2}(s-1)}) n^{s-1} \tag{6.117}
\]
\[
= 2^s \pi^{s-1} \sin(\frac{\pi}{2}s) n^{s-1}. \tag{6.118}
\]

On \(\mathbb{C}\setminus (-\infty, 0] \), treated as the domain of \(z^s \), we consider the circle of radius \((2N+1)\pi\) and centered at \(0\). We treat it as a curve \(\gamma_N \) starting at \(- (2N+1)\pi - i0\) and ending at \(- (2N+1)\pi + i0\). Let \(\delta_N := [- (2N+1)\pi - i0, 0^+, - (2N+1)\pi + i0] \).

Then
\[
\frac{1}{2\pi i} \int_{\gamma_N} \frac{z^{s-1}e^z}{1-e^z} \, dz - \frac{1}{2\pi i} \int_{\delta_N} \frac{z^{s-1}e^z}{1-e^z} \, dz \tag{6.120}
\]
\[
= - \sum_{n=1}^{N} 2^s \pi^{s-1} \sin(\frac{\pi}{2}s) n^{s-1} \tag{6.121}
\]
\[
\to -2^s \pi^{s-1} \sin(\frac{\pi}{2}s) \zeta(1-s). \tag{6.122}
\]

But on \(\gamma_N \)
\[
\left| \frac{e^z}{1-e^z} \right| < K \tag{6.123}
\]
\[
|z^{s-1}| < |(2N + 1)\pi|^{|s-1|} \tag{6.124}
\]

Hence the first term of (6.120) converges to 0. Clearly, the second term of (6.120) converges to \(-\zeta(s)\).

We pass from (6.114) to (6.115) by \(\Gamma(1-s) \Gamma(s) = \frac{\pi}{\sin(\pi s)} \) and \(\sin \pi s = 2 \sin(\frac{\pi}{2}s) \cos(\frac{\pi}{2}s) \).

\(\square\)
Applying $\Gamma(s) = \pi^{-\frac{s}{2}}2^{\frac{s-1}{2}}\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{s}{2} + \frac{1}{2}\right)$ and $\Gamma\left(\frac{s}{2} + \frac{1}{2}\right)\Gamma\left(-\frac{s}{2} + \frac{1}{2}\right) = \frac{\pi}{\cos(\frac{\pi s}{2})}$ we obtain

$$
\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{s}{2}}\Gamma\left(-\frac{s}{2} + 1\right)\zeta(1-s). \tag{6.125}
$$

If we introduce

$$
\eta(s) := \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s), \tag{6.126}
$$

then (6.125) can be written in a symmetric way:

$$
\eta(s) = \eta(1-s). \tag{6.127}
$$

η has only two singularities: at 0 and 1. The following function is entire

$$
\xi(s) := \frac{1}{2}s(s-1)\eta(s) = \frac{1}{2}s(s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s), \tag{6.128}
$$

and it also satisfies the symmetry

$$
\xi(s) = \xi(1-s). \tag{6.129}
$$

Note that

$$
\log(\xi(s)) = \log\left(\frac{s(-1+s)}{2}\right) + \log\left(\Gamma\left(\frac{s}{2}\right)\right) - \frac{s}{2}\log(\pi) + \log(\zeta(s)). \tag{6.130}
$$

6.6 Poisson summation formula

In this subsection we adopt the following convention for Fourier transform:

$$
\hat{f}(\xi) := \int f(x)e^{-i2\pi x\xi}dx. \tag{6.131}
$$

Putting 2π in the exponent is well adapted to periodic functions of period one: we then have nice formulas

$$
\hat{f}_k = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)e^{-i2\pi kx}dx, \tag{6.132}
$$

$$
f(x) = \sum_k \hat{f}_k e^{2i\pi kx}. \tag{6.133}
$$

Theorem 6.6 If $f \in L^1$ and $\sum_j |\hat{f}(j)| < \infty$, then

$$
\sum_{k=-\infty}^{\infty} f(k) = \sum_{j=-\infty}^{\infty} \hat{f}(j). \tag{6.134}
$$

Proof. Let $j \in \mathbb{Z}$.

$$
\int_{-n-\frac{1}{2}}^{n+\frac{1}{2}} f(x)e^{-i2\pi jx}dx = \sum_{k=-n}^{n} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x+k)e^{-2\pi ijx}dx. \tag{6.135}
$$
Define
\[g(x) := \lim_{n \to \infty} \sum_{k=-n}^{n} f(x + k), \]
which is a periodic integrable function with period 1. We have
\[\hat{f}(j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} g(x)e^{-2\pi ijx}dx. \]

By the inversion of the Fourier transformation for periodic functions we obtain
\[g(x) = \sum_{j=-\infty}^{\infty} \hat{f}(j)e^{2\pi ijx}. \]

Setting \(x = 0 \) we obtain
\[\sum_{k=-\infty}^{\infty} f(k) = g(0) = \sum_{j=-\infty}^{\infty} \hat{f}(j). \]

6.7 2nd proof of Riemann’s reflection formula

Define
\[\phi(x) := \sum_{n=1}^{\infty} e^{-n^2\pi x}. \]

Note that
\[1 + 2\phi(x) = \sum_{n=-\infty}^{\infty} e^{-n^2\pi x} = \theta_3(0, e^{-x}), \]
\[\int e^{-y^2\pi x}e^{-2\pi i\xi y}dy = \frac{1}{\sqrt{x}}e^{\frac{\xi^2}{x}}. \]

Hence the Poisson summation formula implies
\[1 + 2\phi(x) = \frac{1}{\sqrt{x}}(1 + 2\phi(\frac{1}{x})). \]

Recall that
\[\eta(s) := \frac{\Gamma(\frac{s}{2})\zeta(s)}{\pi^\frac{s}{2}}. \]

Theorem 6.7 We have the identities
\[
\eta(s) = \int_{0}^{\infty} \frac{dx}{x} \phi(x)x^\frac{s}{2}
= \int_{1}^{\infty} \frac{dx}{x} \phi(x)(x^\frac{1}{2} + x^\frac{1-s}{2}) - \frac{1}{s(1-s)}
= \int_{1}^{\infty} \frac{dx}{x} \left(\phi(x)x^\frac{1}{2} - \frac{1}{2}x^{-\frac{1}{2}}\right)(x^\frac{s}{2}(s-\frac{1}{2}) + x^{-\frac{1}{2}}(s-\frac{1}{2}))
= \int_{0}^{\infty} \frac{1}{2} \frac{dx}{x} \left(\phi(x)x^\frac{1}{2} - \frac{1}{2}x^{-\frac{1}{2}}\right)(x^\frac{s}{2}(s-\frac{1}{2}) + x^{-\frac{1}{2}}(s-\frac{1}{2}))
\]
The first is valid for $\text{Re} s > 1$, the second for all s and the two last for $0 < \text{Re} s < 1$.

In particular, by (6.146), η extends analytically to the complex plane except for $0, 1$.

Proof. For any $\text{Re} s > 0$ we have

$$\frac{1}{n^s \pi^{-\frac{s}{2}}} \Gamma \left(\frac{s}{2} \right) = \int_0^\infty \frac{dx}{x} e^{-\pi x^2} x^{\frac{s}{2}}. \quad (6.149)$$

For $\text{Re} s > 1$ we can sum up (6.149) obtaining (6.145). Now,

$$\int_0^\infty \frac{dx}{x} \phi(x) x^\frac{s}{2} = \int_1^\infty \frac{dx}{x} \phi(x) x^\frac{s}{2} + \int_1^\infty \frac{dx}{x} \phi \left(\frac{1}{x} \right) x^{-\frac{s}{2}}$$

$$= \int_1^\infty \frac{dx}{x} \phi(x) \left(x^\frac{s}{2} + x^{-\frac{s}{2}} \right) + \frac{1}{2} \int_1^\infty \frac{dx}{x} \left(x^{-\frac{s}{2}} - x^\frac{s}{2} \right).$$

But

$$\frac{1}{2} \int_1^\infty \frac{dx}{x} \left(x^{-\frac{s}{2}} - x^\frac{s}{2} \right) = \frac{1}{s - 1} - \frac{1}{s} = -\frac{1}{s(1 - s)}. \quad (6.150)$$

This implies (6.146) for $\text{Re} s > 1$. But (6.146) is analytic except for $0, 1$. Hence the formula can be extended.

For $0 < \text{Re} s < 1$,

$$-\frac{1}{2} \int_1^\infty \frac{dx}{x} \left(x^{-\frac{s}{2}} + x^\frac{s}{2} \right) = -\frac{1}{1 - s} - \frac{1}{s} = -\frac{1}{s(1 - s)}. \quad (6.151)$$

Hence (6.146) implies (6.147)

(6.147) implies (6.148) by (6.143).

Note that the function η satisfies the symmetries

$$\eta(s) = \eta(1 - s), \quad (6.152)$$

$$\overline{\eta(s)} = \eta(\overline{s}). \quad (6.153)$$

The first follows from (6.146). The same symmetries are satisfied by

$$\xi(s) := \frac{1}{2} s(s - 1) \eta(s).$$

6.8 Zeros of the dzeta function

Let $\frac{1}{2} + iZ$ be the set of all zeros of the dzeta function away from \mathbb{R}. Z coincides with the set of zeros of η and of ξ. Note that $Z = \overline{Z} = -Z$. The Riemann hypothesis says that $Z \subset \mathbb{R}$.

Let $\frac{1}{2} + iZ_+$ be the set of zeros of the dzeta function with positive imaginary part. Clearly, $Z = Z_+ \cup (-Z_+)$.

36
By the Hadamard Theorem,
\[\xi(s) = \prod_{\lambda \in \mathbb{Z}} \left(1 - \frac{s}{\frac{1}{2} + i\lambda} \right) \]
(6.154)
\[= \prod_{\lambda \in \mathbb{Z}_+} \left(1 - \frac{s}{\frac{1}{2} + i\lambda} \right) \left(1 - \frac{s}{\frac{1}{2} - i\lambda} \right) \]
(6.155)
\[= \prod_{\lambda \in \mathbb{Z}_+} \left(1 - \frac{s}{\frac{1}{4} + \lambda^2} \right). \]
(6.156)

Hence
\[\log \xi(s) = \sum_{\lambda \in \mathbb{Z}} \log \left(1 - \frac{s}{\frac{1}{2} + i\lambda} \right). \]
(6.157)

6.9 Dzeta function as Mellin transform

Introduce
\[\pi(x) := \# \{ \text{primes} \leq x \}, \]
(6.158)
\[\Pi(x) = \sum_{m=1}^{\infty} \frac{1}{m} \pi(x^{\frac{1}{m}}). \]
(6.159)

Then
\[\log \zeta(s) = -\sum_p \log(1 - p^{-s}) \]
(6.160)
\[= -\sum_p \sum_{m=1}^{\infty} \frac{p^{-sm}}{m}, \]
(6.161)
\[= -\int x^{-s} \Pi'(x) \, dx. \]
(6.162)

For any \(a > 0 \), we can write \(\Pi' \) as the Fourier transform
\[\log \zeta(a + it) = -\int_{0}^{\infty} x^{-a-it} \Pi'(x) \, dx \]
(6.163)
\[= -\int e^{-au-itu} \Pi'(e^u) e^u du. \]
(6.164)

Inverting the Fourier transform we obtain
\[\Pi'(x) = -\frac{x^{a-1}}{2\pi} \int x^{it} \log \zeta(a + it) \, dt. \]
(6.165)

We have for \(\text{Re} \lambda > 0 \)
\[\int e^{it\xi} \log(it + \lambda) \, dt = -2\pi i \frac{e^{-\xi\lambda}}{|\xi|_+}. \]
(6.166)
Hence, for \(\text{Re} \lambda > a \),

\[
- \frac{x^{a-1}}{2\pi} \int x^i \log(x + \lambda - a) dt = \frac{x^{\lambda-1}}{\log x}.
\] (6.167)

Using now (6.157), Riemann derived the formula

\[
\Pi(x) = \text{Li}(x) - \sum_{\lambda \in \mathbb{Z}_+} \text{Li}(x^\lambda) - \log(2) + \int_x^\infty \frac{dt}{(t^2 - 1) \log t}.
\] (6.168)

Here

\[
\text{Li}(x) := \int_0^x \frac{dt}{\log t}.
\] (6.169)

Introduce the Mellin transformation:

\[
(Mf)(t) := \int_0^\infty x^{-\frac{1}{2}} f(x) dx,
\] (6.170)

\[
(M^{-1}g)(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} x^{-\frac{1}{2}} + it g(t) dt.
\] (6.171)

6.10 The Hurwitz zeta function

For \(\text{Re} s > 0 \) and \(a \notin \{\ldots, -2, -1, 0\} \), we define

\[
\zeta(s, a) := \sum_{n=1}^{\infty} \frac{1}{(a + n)^s}.
\] (6.172)

Theorem 6.8 For any \(s, a \) with \(\text{Re} s > 0 \) and \(\text{Re} a > 0 \), we have

\[
\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty x^{s-1} e^{-ax} \frac{dz}{1 - e^{-x}}.
\] (6.173)

\(s \mapsto \zeta(s, a) \) extends to a holomorphic function on \(\mathbb{C} \setminus \{0\} \). It has the following integral representation valid for all \(s \) except for \(s = 0, 1, 2, \ldots \):

\[
\zeta(s) = \frac{\Gamma(1 - s)}{2\pi i} \int_{|z| = \infty} \frac{x^{s-1} e^{az}}{1 - e^z} \frac{dz}{z}.
\] (6.174)

For \(s \approx 0 \) we have

\[
\zeta(s) = \frac{1}{s - 1} + O(s^0).
\] (6.175)

6.11 The Hurwitz identity

Theorem 6.9 Let \(0 < \text{Re} a \leq 1 \). Then

\[
\zeta(s, a) = 2^s \pi^{s-1} \Gamma(1 - s) \sum_{n=1}^{\infty} \frac{\sin(2\pi na + \pi s)}{n^{-s}}.
\] (6.176)