IN THE MEAN FIELD INFINITE VOLUME LIMIT

JAN DEREZIŃSKI

Dept. of Math. Methods in Phys.,
Faculty of Physics, University of Warsaw

Joint work with

MARCIN NAPIÓRKOWSKI

We show that low lying excitation spectrum of N -body bosonic Schrödinger Hamiltonians with repulsive interaction is approximately given by the Bogoliubov approximation. We consider the limit $N\to\infty$, weak coupling and large density. We allow for an arbitrarily large size of a box provided that it does not grow too fast with N.

We start with a potential that is a real function v on \mathbb{R}^d such that $v(\mathbf{x}) = v(-\mathbf{x})$ and

$$v \in L^1(\mathbb{R}^d), \quad \hat{v} \in L^1(\mathbb{R}^d),$$

$$v(\mathbf{x}) \ge 0, \quad \mathbf{x} \in \mathbb{R}^d, \quad \hat{v}(\mathbf{p}) \ge 0, \quad \mathbf{p} \in \mathbb{R}^d.$$

Then we replace the original v by the periodized potential

$$v^{L}(\mathbf{x}) = \frac{1}{L^{d}} \sum_{\mathbf{p} \in (2\pi/L)\mathbb{Z}^{d}} e^{i\mathbf{p}\mathbf{x}} \hat{v}(\mathbf{p}),$$

which is well defined on the torus $[-L/2, L/2]^d$.

We use the symmetric N-particle Hilbert space

$$L_{\rm s}^2\Big(\left([-L/2,L/2[^d)^N\right)$$

and the periodic boundary conditions indicated by L.

Momentum

$$P_N^L := -\sum_{i=1}^N \mathrm{i} \partial_{\mathbf{x}_i}^L.$$

Hamiltonian

$$H_N^L = -\sum_{i=1}^N \Delta_i^L + \frac{L^d}{N} \sum_{1 \le i < j \le N} v^L(\mathbf{x}_i - \mathbf{x}_j).$$

In the sequel, we drop the superscript L.

Note that spec $P_N = \frac{2\pi}{L}\mathbb{Z}^d$ and $H_N P_N = P_N H_N$. Hence

$$H_N = \bigoplus_{\mathbf{k} \in \operatorname{spec} P_N} H_N(\mathbf{k}).$$

We can define the energy-momentum spectrum

spec
$$(H_N, P_N)$$
.

We will denote by E_N the ground state energy of H_N . By the excitation spectrum we will mean

$$\operatorname{spec}(H_N - E_N, P_N).$$

We introduce the Bogoliubov energy

$$E_{\text{Bog}} := -\frac{1}{2} \sum_{\mathbf{p} \in \frac{2\pi}{L} \mathbb{Z}^d \setminus \{0\}} \left(|\mathbf{p}|^2 + \hat{v}(\mathbf{p}) - |\mathbf{p}| \sqrt{|\mathbf{p}|^2 + 2\hat{v}(\mathbf{p})} \right)$$

and the Bogoliubov dispersion relation

$$e_{\rm p} = |{\bf p}|\sqrt{|{\bf p}|^2 + 2\hat{v}({\bf p})}.$$

Bogoliubov Hamiltonian

$$H_{\text{Bog}} := E_{\text{Bog}} + \sum_{\mathbf{p} \neq 0} e_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}},$$

Bogoliubov momentum

$$P_{\text{Bog}} := \sum_{\mathbf{p} \neq 0} \mathbf{p} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}},$$

Clearly, $H_{\text{Bog}}P_{\text{Bog}}=P_{\text{Bog}}H_{\text{Bog}}$.

Above, $a_{\rm p}^{\dagger}$ and $a_{\rm p}$ are bosonic creation/annihilation operators on the bosonic Fock space $\Gamma_{\rm s}\Big(L^2\big({\rm spec}\,(P_N)\backslash 0\big)\Big)$.

We would like to show that the excitation spectrum of H_N is well approximated by the excitation spectrum of the Bogoliubov Hamiltonian. In the examples below we ilustrate that the latter has a special shape involving a positive critical velocity, which according to the Landau criterion is responsible for superfluidity.

$$\hat{v}_1(p) = \frac{e^{-p^2/5}}{10}$$

Excitation spectrum of 1-dimensional homogeneous Bose gas with potential v_1 in the Bogoliubov approximation.

$$\hat{v}_2(p) = \frac{15e^{-p^2/2}}{2}$$

Excitation spectrum of 1-dimensional homogeneous Bose gas with potential v_2 in the Bogoliubov approximation.

Let A be a bounded from below self-adjoint operator with only discrete spectrum. We define $\overrightarrow{\mathrm{sp}}(A) := (a_1, a_2, \dots)$, where a_1, a_2, \dots are the eigenvalues of A in the increasing order. If $\dim \mathcal{H} = n$, then we set $a_{n+1} = a_{n+2} = \dots = \infty$.

Excitation energies of the N-body Hamiltonian.

If
$$p \in \frac{2\pi}{L} \mathbb{Z}^d \setminus \{0\}$$
, set

$$(K_N^1(\mathbf{p}), K_N^2(\mathbf{p}), \dots) := \overrightarrow{\mathrm{sp}}(H_N(\mathbf{p}) - E_N).$$

The lowest eigenvalue of $H_N(0)-E_N$ is 0 by general arguments.

Set

$$(0, K_N^1(0), K_N^2(0), \dots) := \overrightarrow{sp}(H_N(0) - E_N).$$

Bogoliubov excitation energies.

If
$$p \in \frac{2\pi}{L} \mathbb{Z}^d \setminus \{0\}$$
, set

$$(K_{\text{Bog}}^1(\mathbf{p}), K_{\text{Bog}}^2(\mathbf{p}), \dots) := \overrightarrow{\text{sp}}(H_{\text{Bog}}^L(\mathbf{p}) - E_{\text{Bog}}^L).$$

The lowest eigenvalue of $H_{\mathrm{Bog}}(0)-E_{\mathrm{Bog}}$ is obviously 0. Set

$$(0, K_{\operatorname{Bog}}^1(0), K_{\operatorname{Bog}}^2(0), \dots) := \overrightarrow{\operatorname{sp}}(H_{\operatorname{Bog}}^L(0) - E_{\operatorname{Bog}}^L).$$

For any $\mathbf{p} \in \frac{2\pi}{L} \mathbb{Z}^d$ the Bogoliubov excitation energies are given by

$$\left\{ \sum_{i=1}^{j} e_{\mathbf{k}_{i}} : \mathbf{k}_{1}, \dots, \mathbf{k}_{j} \in \frac{2\pi}{L} \mathbb{Z}^{d} \setminus \{0\}, \ \mathbf{k}_{1} + \dots + \mathbf{k}_{j} = \mathbf{p}, \ j = 1, 2, \dots \right\},\right\}$$

in the increasing order.

Upper bound Let c>0. Then there exists C such that if $L^{2d+2} \leq cN, \mbox{ then}$

$$E_N \ge \frac{1}{2}\hat{v}(0)(N-1) + E_{\text{Bog}} - CN^{-1/2}L^{2d+3};$$

If in addition $K_N^j(\mathbf{p}) \leq cNL^{-d-2}$, then

$$E_N + K_N^j(\mathbf{p}) \ge \frac{1}{2}\hat{v}(0)(N-1) + E_{\text{Bog}} + K_{\text{Bog}}^j(\mathbf{p})$$

 $-CN^{-1/2}L^{d/2+3}(K_N^j(\mathbf{p}) + L^d)^{3/2}.$

Lower bound. Let c>0. Then there exists $c_1>0$ and C such that if $L^{2d+1}\leq cN$, $L^{d+1}\leq c_1N$, then

$$E_N \le \frac{1}{2}\hat{v}(0)(N-1) + E_{\text{Bog}} + CN^{-1/2}L^{2d+3/2};$$

If in addition $K^j_{\text{Bog}}(\mathbf{p}) \leq cNL^{-d-2}$ and $K^j_{\text{Bog}}(\mathbf{p}) \leq c_1NL^{-2}$, then

$$E_N + K_N^j(\mathbf{p}) \le \frac{1}{2}\hat{v}(0)(N-1) + E_{\text{Bog}} + K_{\text{Bog}}^j(\mathbf{p}) + CN^{-1/2}L^{d/2+3}(K_{\text{Bog}}^j(\mathbf{p}) + L^{d-1})^{3/2}.$$

Special case of this theorem with L=1 was proven by R. Seiringer. Mimicking his proof gives big error terms for large L: they are of the order $N^{-1/2}\exp(L^{d/2})$. To get better error estimates we need to use additional ideas.

Bosonic Fock space

$$\mathcal{H} := \bigoplus_{N=0}^{\infty} \mathcal{H}_N = \Gamma_{\mathrm{s}} \left(l^2 \left(\frac{2\pi}{L} \mathbb{Z}^d \right) \right).$$

Hamiltonian in second quantized notation

$$H := \bigoplus_{N=0}^{\infty} H_N = \sum_{\mathbf{p}} \mathbf{p}^2 a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2N} \sum_{\mathbf{p},\mathbf{q},\mathbf{k}} \hat{v}(\mathbf{k}) a_{\mathbf{p}+\mathbf{k}}^{\dagger} a_{\mathbf{q}-\mathbf{k}}^{\dagger} a_{\mathbf{q}} a_{\mathbf{p}}.$$

Number of particles in condensate $N_0 = a_0^{\dagger} a_0$.

Number of particles outside of condensate $N^>=\sum_{{\bf p}\neq 0}a^{\dagger}_{\bf p}a_{\bf p}.$

The exponential property of Fock spaces gives

$$\mathcal{H} \simeq \Gamma_{\mathrm{s}}(\mathbb{C}) \otimes \Gamma_{\mathrm{s}} \Big(l^2 \Big(\frac{2\pi}{L} \mathbb{Z}^d \setminus \{0\} \Big) \Big).$$

Embed the space of zero modes $\Gamma_s(\mathbb{C}) = l^2(\{0, 1, \dots\})$ in a larger space $l^2(\mathbb{Z})$. Thus we obtain the extended Hilbert space

$$\mathcal{H}^{\mathsf{ext}} := l^2(\mathbb{Z}) \otimes \Gamma_{\mathrm{s}} \Big(l^2 \big(\frac{2\pi}{L} \mathbb{Z}^d \setminus \{0\} \big) \Big).$$

The operator N_0 extends to an operator N_0^{ext} satisfying

$$\mathcal{H} = \operatorname{Ran} \mathbb{1}_{[0,\infty[}(N_0^{\text{ext}}).$$

If $N\in\mathbb{Z}$, we will write $\mathcal{H}_N^{\mathrm{ext}}$ for the subspace of $\mathcal{H}^{\mathrm{ext}}$ corresponding to $N^>+N_0^{\mathrm{ext}}=N.$

We have also a unitary operator

$$U|n_0\rangle \otimes \Psi^> = |n_0 - 1\rangle \otimes \Psi^>.$$

We now define for $p \neq 0$ the following operator on \mathcal{H}^{ext} :

$$b_{\mathbf{p}} := a_{\mathbf{p}} U^{\dagger}.$$

Operators b_{p} and b_{q}^{\dagger} satisfy the same CCR as a_{p} and $a_{\mathrm{q}}^{\dagger}.$

Estimating Hamiltonian on \mathcal{H}_N

$$H_{N,\epsilon} := \frac{1}{2}\hat{v}(0)(N-1) + \sum_{\mathbf{p}\neq 0} (|\mathbf{p}|^2 + \hat{v}(\mathbf{p})) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$

$$+ \frac{1}{2N} \sum_{\mathbf{p}\neq 0} \hat{v}(\mathbf{p}) \left(a_0^{\dagger} a_0^{\dagger} a_{\mathbf{p}} a_{-\mathbf{p}} + a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} a_0 a_0 \right)$$

$$- \frac{1}{N} \sum_{\mathbf{p}\neq 0} (\hat{v}(\mathbf{p}) + \frac{\hat{v}(0)}{2}) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} N^{>} + \frac{\hat{v}(0)}{2N} N^{>}$$

$$+ \frac{\epsilon}{N} \sum_{\mathbf{p}\neq 0} (\hat{v}(\mathbf{p}) + \hat{v}(0)) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} N_0 + + (1 + \epsilon^{-1}) \frac{1}{2N} v(0) L^d N^{>} (N^{>} - 1)$$

$$H_N \ge H_{N,-\epsilon}, \quad 0 < \epsilon \le 1; \quad H_N \le H_{N,\epsilon}, \quad 0 < \epsilon.$$

Extended estimating Hamiltonian on $\mathcal{H}_N^{\mathrm{ext}}$

$$H_{N,\epsilon}^{\text{ext}} := \frac{1}{2}\hat{v}(0)(N-1) + \sum_{\mathbf{p}\neq 0} \left(|\mathbf{p}|^2 + \hat{v}(\mathbf{p})\right) b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}$$

$$+ \frac{1}{2} \sum_{\mathbf{p}\neq 0} \hat{v}(\mathbf{p}) \left(\frac{\sqrt{(N_0^{\text{ext}} - 1)N_0^{\text{ext}}}}{N} b_{\mathbf{p}} b_{-\mathbf{p}} + \text{hc}\right)$$

$$- \frac{1}{N} \sum_{\mathbf{p}\neq 0} \left(\hat{v}(\mathbf{p}) + \frac{\hat{v}(0)}{2}\right) b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} N^{>} + \frac{\hat{v}(0)}{2N} N^{>}$$

$$+ \frac{\epsilon}{N} \sum_{\mathbf{p}\neq 0} \left(\hat{v}(\mathbf{p}) + \hat{v}(0)\right) b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} N_0^{\text{ext}}$$

$$+ (1 + \epsilon^{-1}) \frac{1}{2N} v(0) L^d N^{>} (N^{>} - 1).$$

 $H_{N,\epsilon}^{\mathrm{ext}}$ preserves \mathcal{H}_N and restricted to \mathcal{H}_N coincides with $H_{N,\epsilon}$.

$$\sum_{p \neq 0} (|p|^2 + \hat{v}(p)) b_p^{\dagger} b_p + \frac{1}{2} \sum_{p \neq 0} \hat{v}(p) (b_p b_{-p} + b_p^{\dagger} b_{-p}^{\dagger}).$$

preserves $\mathcal{H}_N^{\mathrm{ext}}$. Its restriction to $\mathcal{H}_N^{\mathrm{ext}}$ will be denoted $H_{\mathrm{Bog},N}$. Applying an appropriate Bogoliubov transformation we see that $H_{\mathrm{Bog},N}$ is unitarily equivalent to H_{Bog} , which we introduced before.

$$H_{N,\epsilon}^{\text{ext}} = \frac{1}{2}\hat{v}(0)(N-1) + H_{\text{Bog},N} + R_{N,\epsilon},$$

$$R_{N,\epsilon} := \frac{1}{2} \sum_{\mathbf{p} \neq 0} \hat{v}(\mathbf{p}) \left(\left(\frac{\sqrt{(N_0^{\text{ext}} - 1)N_0^{\text{ext}}}}{N} - 1 \right) b_{\mathbf{p}} b_{-\mathbf{p}} + \text{hc} \right)$$

$$-\frac{1}{N} \sum_{\mathbf{p} \neq 0} \left(\hat{v}(\mathbf{p}) + \frac{\hat{v}(0)}{2} \right) b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} N^{>} + \frac{\hat{v}(0)}{2N} N^{>}$$

$$+\frac{\epsilon}{N} \sum_{\mathbf{p} \neq 0} \left(\hat{v}(\mathbf{p}) + \hat{v}(0) \right) b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} N_0^{\text{ext}} + (1 + \epsilon^{-1}) \frac{1}{2N} v(0) L^d N^{>} (N^{>} - 1).$$

Consequence of the min-max principle:

$$A \leq B$$
 implies $\overrightarrow{sp}(A) \leq \overrightarrow{sp}(B)$.

Rayleigh-Ritz principle:

$$\overrightarrow{\operatorname{sp}}(A) \leq \overrightarrow{\operatorname{sp}}\left(P_{\mathcal{K}}AP_{\mathcal{K}}\Big|_{\mathcal{K}}\right).$$

Proof of lower bound

For brevity set

$$\mathbb{1}_{\kappa}^{N} := \mathbb{1}_{[0,\kappa]}(H_N - E_N).$$

For $0 < \epsilon \le 1$,

$$\mathbb{1}_{\kappa}^{N} H_{N} \mathbb{1}_{\kappa}^{N} \geq \mathbb{1}_{\kappa}^{N} \left(\frac{1}{2} \hat{v}(0)(N-1) + H_{\text{Bog},N} + R_{N,-\epsilon} \right) \mathbb{1}_{\kappa}^{N}.$$

Hence,

$$\overrightarrow{\operatorname{sp}}\left(\mathbb{1}_{\kappa}^{N}H_{N}\mathbb{1}_{\kappa}^{N}\right) \geq \frac{1}{2}\hat{v}(0)(N-1) + \overrightarrow{\operatorname{sp}}\left(H_{\operatorname{Bog}}\right) - \|R_{N,-\epsilon}\|.$$

Suppose now that G is a smooth nonnegative function on $[0,\infty[$ such that

$$G(s) = \begin{cases} 1, & \text{if } s \in [0, \frac{1}{3}] \\ 0, & \text{if } s \in [1, \infty[.]] \end{cases}$$

For brevity, we set $\mathbb{1}_{\kappa}^{\mathrm{Bog}} := \mathbb{1}_{[0,\kappa]}(H_{\mathrm{Bog},N} - E_{\mathrm{Bog}})$. We define

$$Z_{\kappa} := \left(\mathbb{1}_{\kappa}^{\text{Bog}} G(N^{>}/N)^{2} \mathbb{1}_{\kappa}^{\text{Bog}} \right)^{-1/2} \mathbb{1}_{\kappa}^{\text{Bog}} G(N^{>}/N).$$

Clearly, Z_{κ} is a partial isometry with initial space $\operatorname{Ran}(G(N^{>}/N)\mathbb{1}_{\kappa}^{\operatorname{Bog}})$ and final space $\operatorname{Ran}(\mathbb{1}_{\kappa}^{\operatorname{Bog}})$.

$$\overrightarrow{\operatorname{sp}}H_N \leq \overrightarrow{\operatorname{sp}}\left(Z_{\kappa}^{\dagger}Z_{\kappa}H_NZ_{\kappa}^{\dagger}Z_{\kappa}\Big|_{\operatorname{Ran}Z_{\kappa}^{\dagger}}\right) = \overrightarrow{\operatorname{sp}}\left(Z_{\kappa}H_NZ_{\kappa}^{\dagger}\Big|_{\operatorname{Ran}\mathbb{1}_{\kappa}^{\operatorname{Bog}}}\right).$$

$$Z_{\kappa}H_{N}Z_{\kappa}^{\dagger} \leq Z_{\kappa}H_{N,\epsilon}Z_{\kappa}^{\dagger}$$

$$= \frac{1}{2}\hat{v}(0)(N-1)\mathbb{1}_{\kappa}^{\mathrm{Bog}} + H_{\mathrm{Bog}}\mathbb{1}_{\kappa}^{\mathrm{Bog}}$$

$$+Z_{\kappa}(H_{\mathrm{Bog}} - E_{\mathrm{Bog}})Z_{\kappa}^{\dagger} - (H_{\mathrm{Bog}} - E_{\mathrm{Bog}})\mathbb{1}_{\kappa}^{\mathrm{Bog}}$$

$$+Z_{\kappa}R_{N,\epsilon}Z_{\kappa}^{\dagger}.$$

Therefore,

$$\overrightarrow{\operatorname{sp}}(H_{N}) \leq Z_{\kappa} H_{N,\epsilon} Z_{\kappa}^{\dagger}$$

$$= \frac{1}{2} \hat{v}(0)(N-1) + \overrightarrow{\operatorname{sp}} \left(H_{\operatorname{Bog}} \mathbb{1}_{\kappa}^{\operatorname{Bog}} \right)$$

$$+ \left\| Z_{\kappa} (H_{\operatorname{Bog}} - E_{\operatorname{Bog}}) Z_{\kappa}^{\dagger} - (H_{\operatorname{Bog}} - E_{\operatorname{Bog}}) \mathbb{1}_{\kappa}^{\operatorname{Bog}} \right\|$$

$$+ \left\| Z_{\kappa} R_{N,\epsilon} Z_{\kappa}^{\dagger} \right\|.$$