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We show that low lying excitation spectrum of N -body bosonic
Schrodinger Hamiltonians with repulsive interaction is approximately
given by the Bogoliubov approximation. We consider the limit
N — oo, weak coupling and large density. We allow for an ar-
bitrarily large size of a box provided that it does not grow too fast

with V.



We start with a potential that is a real function v on R such

that v(x) = v(—x) and
ve L{RY, ©e LYRY,
v(x) >0, xeR’ o(p) >0, peR”

Then we replace the original v by the periodized potential

v =7 Y o),

pE(2r/L)Z4

which is well defined on the torus [—L/2, L/2[%.



We use the symmetric N-particle Hilbert space

22((=L/2 /2"

and the periodic boundary conditions indicated by L.

Momentum

Hamiltonian
L - L L L
HN:—ZAZ-—FN Z ’U(XZ'—Xj>.
i=1

In the sequel, we drop the superscript L.



Note that spec Py = %Zd and Hy Py = PyHy. Hence
Hy = D }qu<k).

kespec Py

We can define the energy-momentum spectrum
spec (Hy, Py).

We will denote by Ey the ground state energy of Hy. By the

excitation spectrum we will mean

spec (Hy — En, Py).



We introduce the Bogoliubov energy

EBog::_% > (!p!2+’0(p)—Iplx/lp\2+2@(p))

peLz\{0}

and the Bogoliubov dispersion relation

ep = |p|V/IpI? + 20(p).



Bogoliubov Hamiltonian

HBog = EBog + Z GpCLIT)CLp,
p#0

Bogoliubov momentum

Clearly, HBogPBog = PBogHBog-

Above, al

! and a;, are bosonic creation/annihilation operators on

the bosonic Fock space T’ (L2 (spec (PN)\O)).



We would like to show that the excitation spectrum of Hy is
well approximated by the excitation spectrum of the Bogoliubov
Hamiltonian. In the examples below we ilustrate that the latter has
a special shape involving a positive critical velocity, which according

to the Landau criterion is responsible for superfluidity.
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Excitation spectrum of 1-dimensional homogeneous Bose gas

with potential vy in the Bogoliubov approximation.



Let A be a bounded from below self-adjoint operator with only dis-
crete spectrum. We define @(A) = (ay, ag, ... ), where ay, as, . . .
are the eigenvalues of A in the increasing order. If dim H = n, then

we set 4,41 = Qpyo = - - - = OQ.



Excitation energies of the N-body Hamiltonian.

If p € ZZN\{0}, set

(Kn(), Kx(p),...) = sB(Hx(p) — Ex).

The lowest eigenvalue of Hy(0) — Ey is 0 by general arguments.

Set

(0, K3 (0), K3(0),...) == sp(Hx(0) — Ey).



Bogoliubov excitation energies.

If p € ZZN\{0}, set

(KBog(D)s Kiog(D), - - ) = SB(HEog (D) — Eiog)

The lowest eigenvalue of Hpue(0) — Epog is obviously 0. Set

(07 K]%og<0>7 K]%og(o)v ne ) ‘= @(Héjog«)) o E]%og)'



For any p € Q%Zd the Bogoliubov excitation energies are given by

J
2
{Zeki : kl,...,kjE%Zd\{O}, k1—|—°--—|—kj:p, jZl,Q,...},
1=1

in the increasing order.



Upper bound Let ¢ > 0. Then there exists C' such that if

L?7+2 < ¢N, then

Ex > =0(0)(N — 1) 4 Epog — CN /2[5,

DO | —

If in addition K7 (p) < cNL™ 92, then

0(0)(N = 1) + Epog + Ko, (p)

DO | —

Ex+ K(p) >

—CN_1/2Ld/2+3(K]j\7(p> +Ld)3/2.



Lower bound. Let ¢ > 0. Then there exists ¢; > 0 and C such

that if L2 < ¢N, L9 < ¢/ N, then

5(0)(N — 1) + Epog + CN12L20+3/2,

hDI»—k

Ey <

If in addition Kéog( ) < ecNL %2 and Kf;)og( ) < ¢t NL™?, then

| 1 -
By + Kp) < 200N = 1)+ By + Ky (0)
g

DO

‘|—CN_1/2Ld/2+3<Kf3)Og< >+Ld—1)3/2.



Special case of this theorem with L = 1 was proven by R. Seiringer.
Mimicking his proof gives big error terms for large L: they are of
the order N~'/2exp(L%?). To get better error estimates we need

to use additional ideas.



Bosonic Fock space
Hi= B Hy= (52 “7)).
neo Y <L )
Hamiltonian in second quantized notation

1 )
H = @ Hy = Z p ala, + — N Z v(k)a;kag_kaqap.

=0
p,q.k

Number of particles in condensate Ny = agao.

Number of particles outside of condensate N~ = ) al];ap.

p#0



The exponential property of Fock spaces gives

H~T(C) T, (z?(%ﬁzd\{()})).

Embed the space of zero modes I'y(C) = *({0,1,...}) in a larger

space [*(Z). Thus we obtain the extended Hilbert space

H™ = 1X(Z) @ T (12 (Z%Zd\{o}))'



The operator Ny extends to an operator N§*' satisfying
H = Ran]l[O’OOKNSXt).

If N € Z, we will write HS* for the subspace of H™" corresponding

to N* + N = N.



We have also a unitary operator
Ulng) @ UV~ =|ng—1) @ U~
We now define for p # 0 the following operator on H:
b, = apUT.

Operators b;, and b;fl satisfy the same CCR as a,, and all.



Estimating Hamiltonian on H

D(0)(N = 1)+ ) (Ip]” + 6(p)) afay
p#0

1 .
+— Z v(p) (agagapa_p + CL%L)CLT_pCLoCLQ)
p#0

DO | —

HN,e =

——Y (d(p) + @)agapJ\P + %J\P

N (6(p) + 9(0))alapNo + +(1 + el)%v(O)Ld]\V(]\V y

HN > HN,—€7 0<e < 1; HN < HN,e: 0 <e.



Extended estimating Hamiltonian on HS¥"

HYS = So(0)(N — 1)+ 3 (1pf + 5(0))biby

p#0
Next 1)Next

+2 Z ( b p + he)

p#O
) 0(0) 5(0)

_ T > >
Z o(p )bib, N 2NN
p#O

+— Z (0(p 0)) b b, NE*

p#O
1
+(1+ e H=—v(0)L'N~ (N~ —1).

2N

Hf\}(E preserves H and restricted to H  coincides with H .



> (Ipl* + 0(p)) bjby, + %Z@@ (bob—y 101, ).

p70 p70

ext

preserves HSY'. Its restriction to HY' will be denoted Hpog v Ap-
plying an appropriate Bogoliubov transformation we see that Hp v

is unitarily equivalent to Hp,s, which we introduced before.



@(O)(N — 1) + HBog,N + RN,e;

%
Ry, = % @(p)((\/<N§Xt_ DAG? 1)byb_y + he)

N

(6(p) + @)b;;bpjw + %W

+— 3" (8(p) + 0(0)) BB NS + (1 + e%%v(O)LdN “(NT -1,



Consequence of the min-max principle:
A < B implies 5p(A) < 55(B).
Rayleigh-Ritz principle:

B(4) < FB(PeAP ).



Proof of lower bound

For brevity set

I == Njo.(Hy — Ev).
For 0 < e <1,
1
1Y Hy1Y > 1Y <§@(O)<N — 1) + Hpog v + RN,E> 1.
Hence,

ﬁﬁ(nfjHanj) > Z3(0)(N — 1) + ﬁ%(HBOg) Ry ||

DO | —



Suppose now that G is a smooth nonnegative function on [0, co|

such that )

1, ifsel0,3]
G(s) = 4 ’

0, ifsell, ool
\

For brevity, we set 1°°% := L ) (HBog, N — EBog). We define

~1/2

Z = (I)°G(N” /N)*1.°%) " /"12°8G(N~ /N).

Clearly, Z,. is a partial isometry with initial space Ran(G(N> /N)15°%)

and final space Ran(1°°).



Ran]lEOg> .

SpHy < @(ZQZZ,{HNZ);Z,{

Z.HyZ! < Z.Hy Z!
i . 0
= SO(0)(N = DI + Hpo, 1)
‘|‘Z/<;<HBog - EBog>Z/]; — (HBog _ EBO%> ]1508;

+Z/€RN,EZ/JL'



Therefore,

@(HN) < Z.Hy . Z!
= SO(O)(N — 1) + 3 Hoe 1)
|| Zu(Hpog — EBog>Z/I; — (HBog — EBogﬂEOg
+|Z.Ry 2]




