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1 Introduction

The paper is devoted to the properties of the hypergeometric equation
(

z(1− z)∂2z +
(

c− (a+ b+ 1)z
)

∂z − ab
)

F (z) = 0, (1.1)

the Gegenbauer equation
(

(1− z2)∂2z − (a+ b+ 1)z∂z − ab
)

F (z) = 0, (1.2)

the confluent equation
(

z∂2z + (c− z)∂z − a
)

F (z) = 0, (1.3)

the Hermite equation
(

∂2z − 2z∂z − 2a
)

F (z) = 0, (1.4)

and the 0F1 equation (closely related to the Bessel equation, see eg. [De])
(

z∂2z + c∂z − 1
)

F (z) = 0. (1.5)

Here, z is a complex variable, ∂z is the differentiation with respect to z, and a, b, c are arbitrary
complex parameters.
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Special functions that solve these equations are typical representatives of hypergeometric type
functions [NU]. They often appear in applications [Flü, MF]. In old times they were considered
one of the central topics of mathematics, see eg. [WW]. In our opinion, they indeed belong to
the most natural objects in mathematics.

Properties of hypergeometric type functions look quite complicated. According to our obser-
vations, when these properties are discussed, most people react with boredom and/or irritation.
We would like to convince the reader that in reality identities related to hypergeometric type
equations are beautiful and can be derived in an elegant and transparent way.

We will show that in order to understand hypergeometric type equations it is helpful to
start from certain 2nd order PDE’s in several variables with constant coefficients. If we start
from rather obvious properties of these PDE’s, reduce the number of variables and change the
coordinates, we can observe how these properties become more complicated. At the end one
obtains relatively complicated sets of identities for hypergeometric type equations.

1.1 Hypergeometric type operators

Equations (1.1)-(1.5) are determined by an operator of the form

C = C(z, ∂z) := σ(z)∂2z + τ(z)∂z + η. (1.6)

In our paper we will concentrate on the study of the operator C itself, rather than on individual
solutions F of the equation

CF = 0. (1.7)

Note, however, that properties of F ’s can be to a large extent inferred from the properties of C
itself.

According to the terminology used in [NU], and then in [DeWr, De], equations (1.1)-(1.5)
belong to the class of hypergeometric type equations. This class is defined by demanding that σ
is a polynomial of at most 2nd order, τ is a polynomial of at most 1st order and η is a number.
More precisely, (1.1)-(1.5) constitute standard forms of all nontrivial classes of hypergeometric
type equations, as explained eg. in [De].

Equations (1.1)-(1.5) depend on a number of (complex) parameters. For instance, in the case
of the hypergeometric equation these parameters are a, b, c. We will prefer to use different sets
of parameters introduced in a systematic way in [De], which are more convenient to express
the symmetries of these equations. In [De] these new parameters were called the Lie-algebraic
parameters. Indeed, as we will describe, they are eigenvalues of the “Cartan algebra” of appro-
priate Lie algebras. For instance, for the hypergeometric equation the Lie-algebraic parameters,
denoted α, β, µ, are the differences of the indices at the three singular points.

We will prefer not to use the operators C directly. As explained in [De], we can write

C(z, ∂z) = ρ−1(z)∂zρ(z)∂z + η, (1.8)

which defines (up to a multiplicative factor) a certain function ρ(z) called the weight. Following
[De], the operator

Cbal(z, ∂z) := ρ(z)
1

2C(z, ∂z)ρ(z)−
1

2 , (1.9)

will be called the balanced form of C. The study of the balanced form is obviously equivalent to
that of C, since both are related by a simple similarity transformation. The original operator C
will be sometimes called the standard form of C.

We will consider 3 classes of identities:
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(1) discrete symmetries,

(2) transmutation relations,

(3) factorizations.

Discrete symmetries involve a transformation of the independent variable, together with a change
of the parameters. The family of the discrete symmetries of the hypergeometric equation is
especially famous. In the literature it is sometimes known under the name of the Kummer’s
table [Ku, AAR, LSV].

The balanced form is especially convenient for a presentation of discrete symmetries, because
some of them simply reduce to the change of sign of parameters.

Transmutation relations say that C multiplied from the right by an appropriate 1st order
operator equals C for shifted parameters multiplied from the left by a similar 1st order operator.
In quantum physics the corresponding 1st order operators are often called creation/annihilation
operators.

Factorizations say that C can be written as a product of two 1st order operators, up to an
additional term that does not contain the independent variable. It is easy to see that factoriza-
tions imply transmutation relations, as described eg. in [De]. Factorizations play an important
role in quantum mechanics. They are often interpreted as the manifestation of supersymmetry
[CKS]. In quantum mechanics discussion of these factorizations has a long history going back at
least to [IH].

Discrete symmetries, transmutation relations and factorizations are far from being trivial.
Nevertheless, in our opinion they belong to the most elementary properties of hypergeometric
type equations and functions. There exist many other properties, notably addition formulas and
integral representations, which we view as more advanced. We do not consider them in our paper.

1.2 Group-theoretical derivation

We will see that all hypergeometric type equations can be obtained by separating the variables
of 2nd order PDE’s with constant coefficients. We will always use the complex variable, to avoid
discussing various signatures of these PDE’s.

Every such a PDE has a Lie algebra and a Lie group of generalized symmetries. In this
Lie algebra we can fix a certain maximal commutative algebra, which we will call the “Cartan
algebra”. Operators whose adjoint action is diagonal in the “Cartan algebra” will be called “root
operators”. In the Lie group of generalized symmetries we will distinguish a discrete group, which
we will call the group of “Weyl symmetries”. This group will implement automorphisms of the
Lie algebra leaving invariant the “Cartan algebra”.

Note that in some cases the Lie algebra of generalized symmetries is semisimple, and then the
names Cartan algebra, root operators and Weyl symmetries correspond to the standard names.
In other cases the Lie algebra is non-semisimple, and then the names are less standard – this is
the reason for the quotation marks that we use.

Parameters of hypergeometric type equation can be interpreted as the eigenvalues of elements
of the “Cartan algebra”. In particular, the number of parameters of a given class of equations
equals the dimension of the corresponding “Cartan algebra”. Each transmutation relation is
related to a “root operator”. Finally, each discrete symmetry of a hypergeometric type operator
corresponds to a “Weyl symmetry” of the Lie algebra.

We can distinguish 3 kinds of PDE’s of the complex variable with constant coefficients:

(1) The Laplace equation on C
n

∆Cnf = 0,

whose Lie algebra of generalized symmetries is so(Cn+2).
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(2) The heat equation on C
n−2 ⊕ C,

(

∆Cn−2 + ∂t
)

f = 0,

whose Lie algebra of generalized symmetries is sch(Cn−2), the so-called (complex) Schrö-
dinger Lie algebra.

(3) The Helmholtz equation on C
n−1,

(

∆Cn−1 − 1
)

f = 0,

whose Lie algebra of symmetries is C
n−1

⋊ so(Cn−1).

Separating the variables in these equations usually leads to differential equations with many
variables. Only in a few cases it leads to ordinary differential equations, which turn out to be of
hypergeometric type. All these cases are described in the following table:

Table 1.

PDE
Lie

algebra
dimension of

Cartan algebra
discrete

symmetries
equation

∆C4 so(C6) 3 cube hypergeometric;

∆C3 so(C5) 2 square Gegenbauer;

∆C2 + ∂t sch(C2) 2 Z2 × Z2 confluent;

∆C + ∂t sch(C1) 1 Z4 Hermite;

∆C2 − 1 C
2
⋊ so(C2) 1 Z2 0F1.

The Laplace equation on C
n, the heat equation on C

n−2 and the Helmholtz equation on C
n−1

together with their generalized symmetries can be elegantly derived by an appropriate reduction
from the Laplace equation in n+ 2 dimensions

∆Cn+2K = 0. (1.10)

Thus, as follows from Table 1, to derive symmetries of the hypergeometric and confluent equations
one should start from

∆C6K = 0. (1.11)

To derive the Gegenbauer, Hermite and 0F1 equation together with all its symmetries it is enough
to start with

∆C5K = 0. (1.12)

It is easy to reduce the Laplace equation from 6 to 5 dimensions. Thus the Laplace equation in
6 dimensions is the “mother” of all hypergeometric type equations.

Let us describe these derivations in more detail.

• We start from (1.11), where the symmetries so(C6) are obvious. By what we call the
conformal reduction, we can reduce ∆C6 to ∆C4 , and then further to the hypergeometric
operator. Alternatively, one can reduce ∆C6 to an appropriate Laplace-Beltrami operator,
and then we obtain (1.1) more directly.
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• We can repeat an analogous procedure one dimension lower. We start from (1.12), and at
the end we obtain the Gegenbauer operator.

• One can reduce (1.11) to ∆C2 + ∂t, the heat operator in 2 dimensions, and then further to
the confluent operator. Note that sch(C2) is contained in so(C6).

• One can repeat the above steps one dimension lower, reducing (1.12) to ∆C + ∂t, the heat
operator in 1 dimension, and then further to the Hermite operator. Note that sch(C) is
contained in so(C5).

• To obtain the 0F1 operator one needs to separate variables in in the Helmholtz operator
∆C2−1. Its symmetries C2

⋊so(C2) are contained in so(C5) and one can start the derivation
from (1.12).

One can ask whether the table 1 can be enlarged, eg. by considering ∆Cnf = 0 with its
conformal symmetries so(Cn+2) for n ≥ 5. One can argue that the answer is negative and the
table 1 is complete. Indeed, the Cartan algebra of so(n+2) has dimension [n/2], and n−[n/2] > 1
for n ≥ 5. Therefore, separation of variables in the Laplace equation in dimension n ≥ 5 leads
to a differential equation in more than one variable.

1.3 Organization of the paper

The paper can be considered as a sequel to [De]. Nevertheless, it is to a large degree self-contained
and independent of [De].

In Section 2 we list the identities that we would like to derive/explain in our article. As
described in the introduction, these identities involve 5 classes of differential operators (1.1)-
(1.5). All these operators are first transformed to the balanced form.

The versions of these identities for the standard form of equations (1.1)-(1.5) can be found in
[De]. In order to reduce the length of the paper, in this paper we concentrate on the balanced
form, which is more symmetric.

Sections 3, 4 and 5 provide basic definitions and concepts, mostly related to (complex) dif-
ferential geometry, Lie groups and Lie algebras. This material is very well known, especially in
the real context. Unfortunately, the use of complex manifolds, natural in our context, has some
disadvantages due to the rigidity of holomorphic functions and their multivaluedness. This is the
reason for some annoying minor complications in these sections, such as local representations of
groups.

In Sec. 6 we describe the action of the conformal group/Lie algebra in n dimensions. We do
this first for a general n. As a simple, but instructive exercise we consider the cases n = 1, 2.

In Sec. 7 we consider the case n = 4, which yields the hypergeometric operator. In Sec. 8 we
consider n = 3, which leads to the Gegenbauer operator. These two sections are very parallel to
one another. Both are direct applications of the formalism of Sec. 6.

In Sec. 9 we consider the Schrödinger group Sch(Cn−2) and its Lie algebra sch(Cn−2). They
describe generalized symmetries of the heat equation in n− 2 dimensions. We first do this for a
general dimension.

In Sec. 10 we consider the case n = 4, which yields the confluent operator. In Sec. 11 we
consider n = 3, which leads to the Hermite operator. Again, these two sections are quite parallel.
They are applications of the formalism of Sec. 9.

In the final Sect. 12 we consider the Helmholtz equation in 2 dimensions together with the
affine Euclidean symmetries C

2
⋊ O(C2) and C

2
⋊ so(C2). This leads to the 0F1 equation (or,

equivalently, to the Bessel equation). We included this section for completeness, however its
material is well-known and well documented in the literature.
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Note that Sections 3, 4, 5, 6 and 9 are quite general and abstract. On the other hand,
Sections 7, 8, 10, 11 and 12 are more concrete and present applications of the general theory to
the classes of hypergeometric type equations (1.1), (1.2), (1.3), (1.4) and (1.5), respectively. To
a large extent they can be read independently of the “general” part of the paper.

1.4 Comparison with literature

Properties of functions of hypergeometric type are described in numerous books, such as [AAR,
EMOT, Ho, MOS, NIST, R, WW, Kuz]. In particular, the properties presented in Sect. 2 (trans-
mutation relations, discrete symmetries and factorizations) are known in one form or another. A
similar presentation can be found in [De]. (Unlike in this paper, the presentation of [De] involves
the standard form of hypergeometric type equations and not their balanced form).

Lie algebras associated with the Bessel and Hermite functions can be found in papers by
Weisner [We1, We2].

The idea of studying hypergeometric type equations with help of Lie algebras was developed
further by Miller. His early book [M1] considers mostly small Lie algebras/Lie groups, typically
sl(2,C)/SL(2,C) and its contractions, and applies them to obtain various identities about hyper-
geometric type functions. These Lie algebras have 1-dimensional “Cartan algebras” and a single
pair of roots. This kind of analysis is able to explain only a single pair of transmutation relations,
whereas to explain bigger families of transmutation relations one needs larger Lie algebras.

A Lie algebra strictly larger than sl(2,C) is so(4,C). There exists a large literature on the
relation of the hypergeometric equation with so(4,C) and its real forms, see eg. [KM]. This Lie
algebra is however still too small to account for all symmetries of the hypergeometric equation—
its Cartan algebra is only 2-dimensional, whereas the equation has three parameters.

An explanation of symmetries of the Gegenbauer equation in terms of so(5) and of the hyper-
geometric equation in terms of so(6) ≃ sl(4) was first given by Miller, see [M4], and especially
[M5].

Miller and Kalnins wrote a series of papers where they studied the symmetry approach to
separation of variables for various 2nd order partial differential equations, such as the Laplace
and wave equation, see eg. [KM1]. A large part of this research is summed up in the book by
Miller [M3]. As an important consequence of this study, one obtains detailed information about
symmetries of hypergeometric type equations.

The main tool that we use to describe properties of hypergeometric type functions is the
theory of generalized symmetries of 2nd order linear PDE’s. This theory is described in another
book by Miller [M2], and further developed in [M3].

The fact that conformal transformations of the Euclidean space are generalized symmetries
of the Laplace equation was apparently known already to Kelvin. Its explanation in terms of
the null quadric first appeared in [Boc]. Null quadric as a tool to study conformal symmetries
of the Laplace equation is the basic tool of [KM1, KMR].

The conformal invariance of the Laplace equation generalizes to arbitrary pseudo-Riemannian
manifolds. In fact, the Laplace-Beltrami operator plus an appropriate multiple of the scalar
curvature, sometimes called the Yamabe Laplacian, is invariant in a generalized sense with respect
to conformal maps. This can be found for instance in [Tay, Or].

The group of generalized symmetries of the heat equation was known already to Lie [L].
It was rediscovered (in the essentially equivalent context of the free Schrödinger equation) by
Schrödinger [Sch]. It was then studied eg. in [Ha, Ni].

Elementary notions from differential geometry used in our paper are well known. One of
standard references in this subject is [KN].

A topic that is extensively treated in the literature on the relation of special functions to group
theory, such as [V, Wa, M1, VK], is derivation of various addition formulas. Addition formulas
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say that a certain special function can be written as a sum, often infinite, of some related
functions. These identities can be typically interpreted in terms of a certain representation of
an appropriate Lie group. These identities are very interesting, however we do not discuss them.
The only elements of Lie groups that we consider are very special–they are the “Weyl symmetries”.
They yield discrete symmetries of hypergeometric type equations, such as Kummer’s table. We
leave out addition formulas, because their theory is considerably more complicated than what
we consider in our paper.

The relationship of Kummer’s table with the group of symmetries of a cube (which is the Weyl
group of so(C6)) was discussed in [LSV]. A recent paper, where symmetries of the hypergeometric
equation play an important role is [Ko]. (We learned the term “transmutation relations” from
this paper).

The use of transmutation relations as a tool to derive recurrence relations for hypergeometric
type functions is well known and can be found eg. in the book by Nikiforov-Uvarov [NU], in the
books by Miller [M1] or in older works such as [Tr, We1, We2].

There exists various generalizations of hypergeometric type functions. Let us mention the
class of A-hypergeometric functions, which provides a natural generalization of the usual hy-
pergeometric function to many-variable situations [Be, Bod]. Saito [Sa] considers generalized
symmetries in the framework of A-hypergeometric functions. Note, however, that the results of
Saito are incomplete in the case of the classic hypergeometric equation. He admits this: “When
p=2 , the symmetry Lie algebra is much larger than g2”, and he quotes the paper by Miller [M5].
Similarly, the (surprisingly large) Lie algebras of symmetries of the Gegenbauer and Hermite
equations cannot be easily seen from a (seemingly very general) analysis of Saito.

There are a number of topics related to the hypergeometric type equation that we do not
touch. Let us mention the question whether hypergeometric functions can be expressed in terms
of algebraic functions. This topic, in the context of A-hypergeometric functions was considered
eg. in the interesting papers [Be, Bod]

In our paper we stick to a rather limited class of equations. We do not have the ambition
to go for generalizations. This limited class has a surprisingly rich structure, which seems to be
lost when we consider their generalizations.

Many, perhaps most identities and ideas described in our paper can be found in one form or
another in the literature, especially in the works by Miller, also by Miller and Kalnins, as we
discussed above. Nevertheless, we believe that our work raises important points that are not
explicitly described in the literature. We argue that symmetry properties of all hypergeometric
type equations become almost obvious if we add a certain number of variables obtaining the
Laplace equation. We describe this idea in a unified framework, identifying the relationship of
theory of hypergeometric type equations with such elements of group theory as roots, Cartan
algebras and Weyl groups. These ideas are summed in Table 1, which to our knowledge has not
appeared in the literature, except for the paper [De] written by one of us.

We use various (minor but helpful) ideas to make our presentation as short and transparent
as possible: eg. the balanced form of hypergeometric type equations, Lie algebraic parameters
and split coordinates in C

n. In our derivations the symmetries are completely obvious at the
starting point, then at each step they become more and more complicated.

The derivation of generalized symmetries of the Laplacian, given after Theorem 1, is probably
partly original. It leads to an interesting geometric object, which we call ∆⋄. It satisfies identities
(6.25) and (6.26), which seem quite important in the context of conformal invariance of the
Laplace equation. These identities are elementary and quite simple, however we have never
seen them in the literature. They can be used to derive factorizations of hypergeometric type
equations, relating them to Casimir operators of certain distinguished subalgebras, another point
that is probably original.
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2 Hypergeometric type operators and their symmetries

In this section we describe the families of identities that we would like to interpret in a group-
theoretical fashion in this article. As mentioned above, all of them involve the balanced form of
the operators (1.1)–(1.5).

2.1 Hypergeometric operator

In the hypergeometric equation (1.1) we prefer to replace the parameters a, b, c with

α := c− 1, β := a+ b− c, µ := b− a. (2.1)

We obtain the (standard) hypergeometric operator

Fα,β,µ(w, ∂w)

= w(1 − w)∂2w +
(

(1 + α)(1 − w)− (1 + β)w
)

∂w +
1

4
µ2 − 1

4
(α+ β + 1)2. (2.2)

Instead of (2.2) we prefer to consider the balanced hypergeometric operator

Fbal
α,β,µ(w, ∂w) := w

α
2 (1 −w)

β

2 Fα,β,µ(w, ∂w)(1 − w)−
β

2w−α
2

= ∂ww(1− w)∂w − α2

4w
− β2

4(1− w)
+
µ2 − 1

4
. (2.3)

Discrete symmetries.
F bal
α, β, µ(w, ∂w) does not change if we flip the signs of α, β, µ. Besides, the following operators

coincide with F bal
α, β, µ(w, ∂w):

w = z : F bal
α, β, µ(z, ∂z), (2.4a)

w = 1− z : F bal
β, α, µ(z, ∂z), (2.4b)

w =
1

z
: z

1

2 (−z)F bal
µ, β, α(z, ∂z) z

− 1

2 , (2.4c)

w = 1− 1

z
: z

1

2 (−z)F bal
µ, α, β(z, ∂z) z

− 1

2 , (2.4d)

w =
1

1− z
: (1− z)

1

2 (z − 1)F bal
β, µ, α(z, ∂z) (1− z)−

1

2 , (2.4e)

w =
z

z − 1
: (1− z)

1

2 (z − 1)F bal
α, µ, β(z, ∂z) (1− z)−

1

2 . (2.4f)
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Transmutation relations.

√

w(1 − w)

(

∂w − α

2w
+

β

2(1− w)

)

F bal
α, β, µ(w, ∂w)

= F bal
α+1, β+1, µ(w, ∂w)

√

w(1 −w)

(

∂w − α

2w
+

β

2(1− w)

)

,

(2.5a)

√

w(1 − w)

(

∂w +
α

2w
− β

2(1− w)

)

F bal
α, β, µ(w, ∂w)

= F bal
α−1, β−1, µ(w, ∂w)

√

w(1 −w)

(

∂w +
α

2w
− β

2(1− w)

)

,

(2.5b)

√

w(1 − w)

(

∂w − α

2w
− β

2(1− w)

)

F bal
α, β, µ(w, ∂w)

= F bal
α+1, β−1, µ(w, ∂w)

√

w(1 −w)

(

∂w − α

2w
− β

2(1− w)

)

,

(2.5c)

√

w(1 − w)

(

∂w +
α

2w
+

β

2(1− w)

)

F bal
α, β, µ(w, ∂w)

= F bal
α−1, β+1, µ(w, ∂w)

√

w(1 −w)

(

∂w +
α

2w
+

β

2(1− w)

)

,

(2.5d)

√
w

(

2(1− w) ∂w − α

w
− µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α+1, β, µ+1(w, ∂w)

√
w

(

2(1− w) ∂w − α

w
− µ− 1

)

,

(2.5e)

√
w

(

2(1− w) ∂w +
α

w
+ µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α−1, β, µ−1(w, ∂w)

√
w

(

2(1− w) ∂w +
α

w
+ µ− 1

)

,

(2.5f)

√
w

(

2(1− w) ∂w − α

w
+ µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α+1, β, µ−1(w, ∂w)

√
w

(

2(1− w) ∂w − α

w
+ µ− 1

)

,

(2.5g)

√
w

(

2(1− w) ∂w +
α

w
− µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α−1, β, µ+1(w, ∂w)

√
w

(

2(1− w) ∂w +
α

w
− µ− 1

)

,

(2.5h)
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√
1− w

(

−2w ∂w − β

1− w
− µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α, β+1, µ+1(w, ∂w)

√
1− w

(

−2w ∂w − β

1− w
− µ− 1

)

,

(2.5i)

√
1− w

(

−2w ∂w +
β

1− w
+ µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α, β−1, µ−1(w, ∂w)

√
1− w

(

−2w ∂w +
β

1− w
+ µ− 1

)

,

(2.5j)

√
1− w

(

−2w ∂w − β

1− w
+ µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α, β+1, µ−1(w, ∂w)

√
1− w

(

−2w ∂w − β

1− w
+ µ− 1

)

,

(2.5k)

√
1− w

(

−2w ∂w +
β

1− w
− µ− 3

)

F bal
α, β, µ(w, ∂w)

= F bal
α, β−1, µ+1(w, ∂w)

√
1− w

(

−2w ∂w +
β

1− w
− µ− 1

)

.

(2.5l)

Factorizations.

F bal
α, β, µ(w, ∂w)

=
√

w(1− w)

(

∂w − α− 1

2w
+

β − 1

2(1 −w)

)

√

w(1 − w)

(

∂w − α

2w
+

β

2(1− w)

)

+

− 1

4

(

(β + α) (β + α− 2) + µ2 − 1
)

(2.6a)

=
√

w(1− w)

(

∂w +
α+ 1

2w
+

β − 1

2(1 −w)

)

√

w(1 − w)

(

∂w − α

2w
− β

2(1− w)

)

+

− 1

4

(

(β − α) (β − α− 2) + µ2 − 1
)

(2.6b)

=
√

w(1− w)

(

∂w − α− 1

2w
− β + 1

2(1 −w)

)

√

w(1 − w)

(

∂w − α

2w
− β

2(1− w)

)

+

− 1

4

(

(β − α) (β − α+ 2) + µ2 − 1
)

(2.6c)

=
√

w(1− w)

(

∂w +
α+ 1

2w
− β + 1

2(1 −w)

)

√

w(1 − w)

(

∂w − α

2w
+

β

2(1− w)

)

+

− 1

4

(

(β + α) (β + α+ 2) + µ2 − 1
)

, (2.6d)
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− (1− w)F bal
α, β, µ(w, ∂w)

= −
√
w

(

−1

2
+ (1− w) ∂w − α− 1

2w
− µ− 1

2

)√
w

(

−1

2
+ (1− w) ∂w +

α

2w
+
µ

2

)

+

− 1

4

(

(µ+ α) (µ+ α− 2) + β2 − 1
)

(2.6e)

= −
√
w

(

−1

2
+ (1− w) ∂w +

α+ 1

2w
− µ− 1

2

)√
w

(

−1

2
+ (1− w) ∂w − α

2w
+
µ

2

)

+

− 1

4

(

(µ− α) (µ− α− 2) + β2 − 1
)

(2.6f)

= −
√
w

(

−1

2
+ (1− w) ∂w − α− 1

2w
+
µ+ 1

2

)√
w

(

−1

2
+ (1− w) ∂w +

α

2w
− µ

2

)

+

− 1

4

(

(µ− α) (µ− α+ 2) + β2 − 1
)

(2.6g)

= −
√
w

(

−1

2
+ (1− w) ∂w +

α+ 1

2w
+
µ+ 1

2

)√
w

(

−1

2
+ (1− w) ∂w − α

2w
− µ

2

)

+

− 1

4

(

(µ+ α) (µ+ α+ 2) + β2 − 1
)

, (2.6h)

− wF bal
α, β, µ(w, ∂w)

= −
√
1− w

(

−1

2
−w ∂w − β − 1

2(1− w)
− µ− 1

2

)√
1− w

(

−1

2
− w ∂w +

β

2(1 − w)
+
µ

2

)

+

− 1

4

(

(µ+ β) (µ+ β − 2) + α2 − 1
)

(2.6i)

= −
√
1− w

(

−1

2
−w ∂w +

β + 1

2(1− w)
− µ− 1

2

)√
1− w

(

−1

2
− w ∂w − β

2(1 − w)
+
µ

2

)

+

− 1

4

(

(µ− β) (µ− β − 2) + α2 − 1
)

(2.6j)

= −
√
1− w

(

−1

2
−w ∂w − β − 1

2(1− w)
+
µ+ 1

2

)√
1− w

(

−1

2
− w ∂w +

β

2(1 − w)
− µ

2

)

+

− 1

4

(

(µ− β) (µ− β + 2) + α2 − 1
)

(2.6k)

= −
√
1− w

(

−1

2
−w ∂w +

β + 1

2(1− w)
+
µ+ 1

2

)√
1− w

(

−1

2
− w ∂w − β

2(1 − w)
− µ

2

)

+

− 1

4

(

(µ+ β) (µ+ β + 2) + α2 − 1
)

. (2.6l)

It is striking how symmetric the above formulas look like. The main goal of our paper is to
explain why this is so.
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2.2 Gegenbauer operator

In the hypergeometric equation (1.1) let us move the singular points to −1, 1 and demand that
it is reflection invariant. Then we can eliminate one of the parameters, say c. We obtain the
Gegenbauer equation (1.2). We introduce new parameters

α :=
a+ b− 1

2
, λ :=

b− a

2
.

We obtain the (standard) Gegenbauer operator

Sα,λ(w, ∂w) := (1− w2)∂2w − 2(1 + α)w∂w + λ2 −
(

α+
1

2

)2
. (2.7)

The balanced Gegenbauer operator is

Sbal
α,λ(w, ∂w) := (w2 − 1)

α
2 Sα,λ(w, ∂w)(w

2 − 1)−
α
2

= ∂w(1− w2)∂w − α2

1− w2
+ λ2 − 1

4
. (2.8)

Discrete symmetries.

S bal
α, λ(w, ∂w) does not change if we flip the signs of α, λ. Besides, the following operators

coincide with S bal
α, λ(w, ∂w):

w = z : S bal
α, λ(z, ∂z), (2.9a)

w =
z√

z2 − 1
: (z2 − 1)

1

4 (z2 − 1)S bal
λ, α(z, ∂z) (z

2 − 1)−
1

4 . (2.9b)

Transmutation relations.

√

1− w2

(

−5

2
− w ∂w − α

1− w2
− λ

)

S bal
α, λ(w, ∂w)

= S bal
α+1, λ+1(w, ∂w)

√

1− w2

(

−1

2
− w ∂w − α

1− w2
− λ

)

,

(2.10a)

√

1− w2

(

−5

2
− w ∂w +

α

1− w2
+ λ

)

S bal
α, λ(w, ∂w)

= S bal
α−1, λ−1(w, ∂w)

√

1− w2

(

−1

2
− w ∂w +

α

1− w2
+ λ

)

,

(2.10b)

√

1− w2

(

−5

2
− w ∂w − α

1− w2
+ λ

)

S bal
α, λ(w, ∂w)

= S bal
α+1, λ−1(w, ∂w)

√

1− w2

(

−1

2
− w ∂w − α

1− w2
+ λ

)

,

(2.10c)

√

1− w2

(

−5

2
− w ∂w +

α

1− w2
− λ

)

S bal
α, λ(w, ∂w)

= S bal
α−1, λ+1(w, ∂w)

√

1− w2

(

−1

2
− w ∂w +

α

1− w2
− λ

)

,

(2.10d)
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w

(

−5

2
+

1− w2

w
∂w − λ

)

S bal
α, λ(w, ∂w)

= S bal
α, λ+1(w, ∂w)w

(

−1

2
+

1− w2

w
∂w − λ

)

,

(2.10e)

w

(

−5

2
+

1− w2

w
∂w + λ

)

S bal
α, λ(w, ∂w)

= S bal
α, λ−1(w, ∂w)w

(

−1

2
+

1− w2

w
∂w + λ

)

,

(2.10f)

√

1− w2

(

∂w +
w

1− w2
α

)

S bal
α, λ(w, ∂w)

= S bal
α+1, λ(w, ∂w)

√

1− w2

(

∂w +
w

1− w2
α

)

.

(2.10g)

√

1− w2

(

∂w − w

1− w2
α

)

S bal
α, λ(w, ∂w)

= S bal
α+1, λ(w, ∂w)

√

1− w2

(

∂w − w

1− w2
α

)

.

(2.10h)

Factorizations.

−
(

1−w2
)

S bal
α, λ(w, ∂w)

= −w
(

1

2
+

1− w2

w
∂w − λ

)

w

(

−1

2
+

1− w2

w
∂w + λ

)

− λ2 + λ+ α2 − 1

4
(2.11a)

= −w
(

1

2
+

1− w2

w
∂w + λ

)

w

(

−1

2
+

1− w2

w
∂w − λ

)

− λ2 − λ+ α2 − 1

4
, (2.11b)

S bal
α, λ(w, ∂w)

=
√

1− w2

(

∂w +
w

1− w2
(α− 1)

)

√

1− w2

(

∂w − w

1− w2
α

)

− α2 + α+ λ2 − 1

4
(2.11c)

=
√

1− w2

(

∂w − w

1− w2
(α+ 1)

)

√

1− w2

(

∂w +
w

1− w2
α

)

− α2 − α+ λ2 − 1

4
,

(2.11d)
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−w2 S bal
α, λ(w, ∂w)

= −
√

1− w2

(

1

2
− w ∂w − α− 1

1− w2
− λ

)

√

1− w2

(

−1

2
− w ∂w +

α

1− w2
+ λ

)

+

− (λ+ α) (λ+ α− 2)− 3

4
(2.11e)

= −
√

1− w2

(

1

2
− w ∂w +

α+ 1

1− w2
− λ

)

√

1− w2

(

−1

2
− w ∂w − α

1− w2
+ λ

)

+

− (λ− α) (λ− α− 2)− 3

4
(2.11f)

= −
√

1− w2

(

1

2
− w ∂w +

α+ 1

1− w2
+ λ

)

√

1− w2

(

−1

2
− w ∂w − α

1− w2
− λ

)

+

− (λ+ α) (λ+ α+ 2)− 3

4
(2.11g)

= −
√

1− w2

(

1

2
− w ∂w − α− 1

1− w2
+ λ

)

√

1− w2

(

−1

2
− w ∂w +

α

1− w2
− λ

)

+

− (λ− α) (λ− α+ 2)− 3

4
. (2.11h)

2.3 Confluent operator

In the confluent equation (1.3) we introduce new parameters

α := c− 1, θ := 2a− c.

The (standard) confluent operator is

Fθ,α(w, ∂w) := w∂2w + (1 + α− w)∂w − 1

2
(1 + θ + α). (2.12)

The balanced confluent operator is

Fbal
θ,α(w, ∂w) := w

α
2 e−

w
2 Fθ,α(w, ∂w)e

w
2 w−α

2

= ∂ww∂w − w

4
− θ

2
− α2

4w
. (2.13)

Discrete symmetries.
Fbal
θ,α(w, ∂w) does not change if we flip the sign of α. Besides, the following operators coincide

with Fbal
θ,α(w, ∂w):

w = z : Fbal
θ,α(z, ∂z), (2.14a)

w = −z : Fbal
−θ,α(z, ∂z). (2.14b)
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Transmutation relations.

1√
w

(

w ∂w +
α

2
+
w

2

)

F bal
θ, α(w, ∂w)

= F bal
θ+1, α−1(w, ∂w)

1√
w

(

w ∂w +
α

2
+
w

2

)

,

(2.15a)

1√
w

(

w ∂w − α

2
+
w

2

)

F bal
θ, α(w, ∂w)

= F bal
θ+1, α+1(w, ∂w)

1√
w

(

w ∂w − α

2
+
w

2

)

,

(2.15b)

1√
w

(

w ∂w +
α

2
− w

2

)

F bal
θ, α(w, ∂w)

= F bal
θ−1, α−1(w, ∂w)

1√
w

(

w ∂w +
α

2
− w

2

)

,

(2.15c)

1√
w

(

w ∂w − α

2
− w

2

)

F bal
θ, α(w, ∂w)

= F bal
θ−1, α+1(w, ∂w)

1√
w

(

w ∂w − α

2
− w

2

)

,

(2.15d)

(

−w ∂w − θ

2
− w

2
− 3

2

)

F bal
θ, α(w, ∂w)

= F bal
θ+2, α(w, ∂w)

(

−w ∂w − θ

2
− w

2
− 1

2

)

,

(2.15e)

(

w ∂w − θ

2
− w

2
+

3

2

)

F bal
θ, α(w, ∂w)

= F bal
θ−2, α(w, ∂w)

(

w ∂w − θ

2
− w

2
+

1

2

)

.

(2.15f)

Factorizations.

−wF bal
θ, α(w, ∂w)

=

(

w ∂w − θ + 1

2
− w

2

)(

−w ∂w − θ + 1

2
− w

2

)

− 1

4
(θ + 1)2 +

1

4
α2 (2.16a)

=

(

−w ∂w − θ − 1

2
− w

2

)(

w ∂w − θ − 1

2
− w

2

)

− 1

4
(θ − 1)2 +

1

4
α2, (2.16b)

F bal
θ, α(w, ∂w)

=
1√
w

(

w ∂w − α− 1

2
− w

2

)

1√
w

(

w ∂w +
α

2
+
w

2

)

− 1

2
(θ − α+ 1) (2.16c)

=
1√
w

(

w ∂w +
α+ 1

2
+
w

2

)

1√
w

(

w ∂w − α

2
− w

2

)

− 1

2
(θ − α− 1) (2.16d)

=
1√
w

(

w ∂w +
α+ 1

2
− w

2

)

1√
w

(

w ∂w − α

2
+
w

2

)

− 1

2
(θ + α+ 1) (2.16e)

=
1√
w

(

w ∂w − α− 1

2
+
w

2

)

1√
w

(

w ∂w +
α

2
− w

2

)

− 1

2
(θ + α− 1) . (2.16f)
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2.4 Hermite operator

In the Hermite equation (1.4) we prefer to use the parameter

λ = a− 1
2 .

The (standard) Hermite operator is

Sλ(w, ∂w) := ∂2w − 2w∂w − 2λ− 1. (2.17)

The balanced Hermite operator is

Sbal
λ (w, ∂w) := e−

w2

2 Sλ(w, ∂w)e
w2

2

= ∂2w − w2 − 2λ. (2.18)

Discrete symmetries. The following operators coincide with S bal
λ (w, ∂w):

w = z : Sbal
λ (z, ∂z), (2.19a)

w = iz : − Sbal
−λ(z, ∂z), (2.19b)

w = −z : Sbal
λ (z, ∂z), (2.19c)

w = −iz : − Sbal
−λ(z, ∂z). (2.19d)

Transmutation relations.
(

∂w + w
)

S bal
λ (w, ∂w) = S bal

λ+1(w, ∂w)
(

∂w + w
)

, (2.20a)
(

∂w − w
)

S bal
λ (w, ∂w) = S bal

λ−1(w, ∂w)
(

∂w − w
)

, (2.20b)

(

−w ∂w − λ− w2 − 5
2

)

S bal
λ (w, ∂w) = S bal

λ+2(w, ∂w)
(

−w ∂w − λ− w2 − 1
2

)

, (2.20c)
(

w ∂w − λ− w2 + 5
2

)

S bal
λ (w, ∂w) = S bal

λ−2(w, ∂w)
(

w ∂w − λ− w2 + 1
2

)

. (2.20d)

Factorizations

−w2S bal
λ (w, ∂w) =

(

w ∂w − λ− 3
2 − w2

) (

−w ∂w − λ− 1
2 − w2

)

− (λ+ 1)2 + 1
4 (2.21a)

=
(

−w ∂w − λ+ 3
2 − w2

) (

w ∂w − λ+ 1
2 − w2

)

− (λ− 1)2 + 1
4 , (2.21b)

S bal
λ (w, ∂w) = ( ∂w − w) ( ∂w + w)− 2λ− 1 (2.21c)

= ( ∂w + w) ( ∂w − w)− 2λ+ 1. (2.21d)

2.5 0F1 operator

In the 0F1 equation (1.5) we prefer to use the parameter

α := c− 1. (2.22)

The (standard) 0F1 operator is

Fα(w, ∂w) := w∂2w + (α+ 1)∂w − 1. (2.23)
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The balanced 0F1 operator is

Fbal
α (w, ∂w) := w

α
2 Fα(w, ∂w)w

−α
2

= ∂ww∂w − 1− α2

4w
. (2.24)

Discrete symmetries. Fα(w, ∂w) does not change if we flip the sign of α.
Transmutation relations.

1√
w

(

w ∂w − α

2

)

F bal
α (w, ∂w) = F bal

α+1(w, ∂w)
1√
w

(

w ∂w − α

2

)

, (2.25a)

1√
w

(

w ∂w +
α

2

)

F bal
α (w, ∂w) = F bal

α−1(w, ∂w)
1√
w

(

w ∂w +
α

2

)

. (2.25b)

Factorizations.

F bal
α (w, ∂w) =

1√
w

(

w ∂w − α− 1

2

)

1√
w

(

w ∂w +
α

2

)

− 1 (2.26a)

=
1√
w

(

w ∂w +
α+ 1

2

)

1√
w

(

w ∂w − α

2

)

− 1. (2.26b)

3 Basic complex geometry

In this section we describe basic notation for complex geometry.
Throughout the section, Ω,Ω1,Ω2 are open subsets of Cn or, more generally, complex mani-

folds. We will write C
× for the multiplicative group C\{0}.

We will write A(Ω) for the set of holomorphic functions on Ω. y = (y1, . . . , yn) will denote
generic coordinates on Ω. We will write A×(Ω) for the set of nowhere vanishing holomorphic
functions on Ω.

3.1 Vector fields

Let hol(Ω) denote the Lie algebra of holomorphic vector fields on Ω. Every A ∈ hol(Ω) can be
identified with the differential operator

Af(y) =
∑

i

Ai(y)∂yif(y), f ∈ A(Ω),

where Ai ∈ A(Ω), i = 1, . . . , n.
We will denote by A ⋊ hol(Ω) the Lie algebra of 1st order differential operators on Ω with

holomorphic coefficents. Such operators can be written as

(A+M)f(y) :=
∑

i

Ai(y)∂yif(y) +M(y)f(y),

where A ∈ hol(Ω) and M ∈ A(Ω).
Let g be a Lie subalgebra of hol(Ω). A linear function g ∋ A 7→MA ∈ A(Ω) satisfying

A1MA2
−A2MA1

=M[A1,A2]

will be called a cocycle for g. Every cocycle together with η ∈ C determines a homomorphism

g ∋ A 7→ A+ ηMA ∈ A⋊ hol(Ω).
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3.2 Point transformations

The set of biholomorphic maps Ω1 → Ω2 will be denoted Hol(Ω1,Ω2). We set Hol(Ω) :=
Hol(Ω,Ω).

Let α ∈ Hol(Ω1,Ω2). The transport of functions, vector fields, etc. by the map α will be also
denoted by α. More precisely, for f ∈ A(Ω1) we define αf ∈ A(Ω2) by

(αf)(y) := f(α−1(y)).

For A ∈ hol(Ω1), α(A) ∈ hol(Ω2) is defined as

α(A) := αAα−1.

If m ∈ A×(Ω2), then we have a map mα : A(Ω1) → A(Ω2) given by

(mαf)(y) := m(y)f(α−1(y)).

A×
⋊ Hol(Ω1,Ω2) will denote the set of transformations A(Ω1) → A(Ω2) of this form. Clearly,

A×
⋊Hol(Ω) is a group.

Suppose that G is a subgroup of Hol(Ω). A family G ∋ α 7→ mα ∈ A×(Ω) satisfying

mα2
(y)mα1

(α−1
2 (y)) = mα2α1

(y), α1, α2 ∈ G, y ∈ Ω,

will be called a cocycle for G. Every cocycle together with η ∈ Z determines a homomorphism

G ∋ α 7→ mη
αα ∈ A×

⋊Hol(Ω). (3.1)

3.3 Local cocycles

Unfortunately, the above definition of a cocycle on a group is too rigid for our purposes. Below
we introduce a weaker version of this concept, which we will be better adapted to our goals.

As before, we assume that G is a subgroup of Hol(Ω). Besides, we fix Ω0 open in Ω. For
α ∈ G we will write

Ωα
0 := Ω0 ∩ α(Ω0). (3.2)

Furthermore, we suppose that to every α ∈ G we associate mα ∈ A×
(

Ωα
0

)

satisfying

mα2
(y)mα1

(

α−1
2 (y)

)

= mα2α1
(y), α1, α2 ∈ G, y ∈ Ω0 ∩ α2(Ω0) ∩ α2 ◦ α1(Ω0). (3.3)

Then G 7→ mα will be called a local cocycle for G based on Ω0.
Let p ∈ A×(Ω0). Then

mα(y) :=
p(y)

p
(

α−1(y)
) , y ∈ Ωα

0 (3.4)

is a (trivial) example of a local cocycle based on Ω0. Note that if p cannot be extended to a
holomorphic function on the whole Ω, then (3.4) cannot be extended to a true cocycle.

Let η ∈ Z. For any α ∈ G we can define the map

mη
αα ∈ A×

⋊Hol
(

Ωα−1

0 ,Ωα
0

)

. (3.5)

For α1, α2 ∈ G and η ∈ Z we have the following weak form of the chain rule:
(

mη
α2
α2 ◦mη

α1
α1

)

(y) = mη
α2◦α1

α2◦α1(y), y ∈ Ω0 ∩ α2(Ω0) ∩ α2◦α1(Ω0). (3.6)

It will be convenient have a special notation for such a collection of maps (3.5): We will write
that

G ∋ α 7→ mη
αα ∈

loc
A×

⋊Hol(Ω0) (3.7)

is a local representation of G.
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3.4 Half-integer powers of a cocycle

For non-integer exponents the power function is unfortunately multivalued. Because of that,
strictly speaking, η 6∈ Z should not be allowed in (3.1). However, we will be forced to consider
situations when η is a half integer. This can be handled by the following formalism.

The non-identity element of the group Z2 acts on C
× by C

× ∋ a 7→ −a ∈ C
×. This defines

C
×/Z2, which is the space of pairs of non-zero complex numbers differing by a sign.
Let η ∈ 1

2 +Z. Then for any a ∈ C
×, the power aη can be interpreted as an element in C

×/Z2.
Let us restrict our attention to Ω that are simply connected. We then define

A×(Ω)/Z2 := {(f,−f) : f ∈ A×(Ω)}, (3.8)

If f ∈ A×(Ω), then fη is well defined as an element of A×(Ω)/Z2.

Remark 1. If Ω is not simply connected, then on the left hand side of (3.8) instead of Ω we
need to put the double cover of Ω. Then fη is still well defined. However we will not use this
construction.

Let us go back to the setup of Subsect. 3.2. We can then define mη
α ∈ A×(Ω)/Z2. Therefore,

(3.1) can be interpreted as a group of transformations of A×(Ω)/Z2.
A similar remark applies to Subsect. 3.3.

3.5 Generalized symmetries

Let C be a linear differential operator on a complex manifold Ω. Let α ∈ Hol(Ω). We say that
it is a symmetry of C iff

αC = Cα.

Let m♯,m♭ ∈ A×(Ω). Define a pair of transformations in A×
⋊Hol(Ω):

α♯ := m♯α; α♭ := m♭α.

We say that a pair (α♯, α♭) is a generalized symmetry of C if

α♭C = Cα♯.

Clearly, the kernel of C is invariant wrt the action of α♯:

Cf = 0 implies Cα♯f = 0.

Generalized symmetries of C form a group.
Let A ∈ hol(Ω). We say that it is an infinitesimal symmetry of C iff

AC = CA.

Let M ♯,M ♭ ∈ A(Ω). One can also consider a pair of operators in A⋊ hol(Ω)

A♯ := A+M ♯, A♭ := A+M ♭.

We say that a pair (A♯, A♭) is a generalized infinitesimal symmetry of C if

A♭C = CA♯.

Clearly, the kernel of C is invariant wrt the action of A♯:

Cf = 0 implies CA♯f = 0.

Infinitesimal generalized symmetries of C form a Lie algebra.
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4 Line bundles

4.1 Scaling

A holomorphic bundle π : V → Y is called a line bundle if its fibers are modelled on C
×. V is

equipped with scaling, a homomorphism C
× ∋ s 7→ λs ∈ Hol(V) preserving the fibers, that is,

satisfying πλs = π. The vector field obtained by differentiating λs is called the vertical vector
field and denoted V :

d

ds
λs

∣

∣

∣

s=1
=: V.

For v ∈ V, we will often simply write sv instead of λsv. We will also write s = λs(v)
v .

Let Y0 ⊂ Y be open. A section based on Y0 is a holomorphic map γ : Y0 → V such that
π ◦ γ = id. Every section based on Y0 determines a trivialization of π−1(Y0)

Y0 × C
× ∋ (y, s) 7→ sγ(y) ∈ π−1(Y0).

4.2 Vector fields on a line bundle

Let holC
×
(V) denote the Lie algebra of scaling invariant vector fields, that is,

holC
×
(V) := {B ∈ hol(V) : λsB = Bλs, s ∈ C

×}.

Let B ∈ holC
×
(V). Then B determines a unique element of hol(Y), which will be denoted B⋄.

Let γ be a section based on Y0. B⋄ can be transported by γ onto γ(Y0). Thus we obtain two

vector fields on γ(Y0): B
∣

∣

∣

γ(Y0)
and γ

(

B⋄
)

.

Proposition 1. For any v ∈ γ(Y0), B(v)− γ(B⋄)(v) is parallel to V (v). Therefore, there exists
Mγ

B ∈ A(Y0) such that

B
(

γ(y)
)

=Mγ
B(y)V

(

γ(y)
)

+ γ
(

B⋄
)

(y), y ∈ Y0. (4.1)

Moreover,

holC
×
(V) ∋ B 7→Mγ

B

is a cocycle. Hence, for any η ∈ C,

holC
×
(V) ∋ B 7→ Bγ,η := B⋄ + ηMγ

B ∈ A⋊ hol(Y0) (4.2)

is a representation of the Lie algebra of scaling invariant vector fields.

Proof. Every B ∈ hol(V0) can be written uniquely as

B = M̃γ
BV +Bγ , (4.3)

where M̃γ
B ∈ A(V0) and for any s ∈ C

× the vector field Y0 ∋ y 7→ Bγ(sγ(y)) is tangent to the

section sγ(Y0). Assume now that B ∈ holC
×
(V0). This means [V,B] = 0, which is equivalent to

(

V M̃γ
B

)

V + [V,Bγ ] = 0. (4.4)

We also have

γ(B⋄)(y) = Bγ
(

γ(y)
)

, (4.5)
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and we set

Mγ
B(y) := M̃γ

B

(

γ(y)
)

, y ∈ Y0. (4.6)

Restricting (4.3) to γ(Y0), using (4.5) and setting (4.6), we obtain (4.1).
Now let B1, B2 ∈ hol(V0). Replacing B in (4.3) with [B1, B2], we can write

[B1, B2] = M̃γ
[B1,B2]

V + [B1, B2]
γ . (4.7)

If in addition B1, B2 ∈ holC
×
(V0), then using (4.4) with B replaced with B1 and B2, we obtain

[B1, B2] =
(

Bγ
1 M̃

γ
B2

−Bγ
2 M̃

γ
B1

)

V + [Bγ
1 , B

γ
2 ]. (4.8)

Comparing (4.8) with (4.7), we obtain

Bγ
1 M̃

γ
B2

−Bγ
2 M̃

γ
B1

= M̃γ
[B1,B2]

. (4.9)

Restricting (4.9) to the section γ(Y0), using (4.5) and setting (4.6), we obtain the cocycle relation

B⋄
1M

γ
B2

−B⋄
2M

γ
B1

=Mγ
[B1,B2]

. (4.10)

�

4.3 Point transformations of a line bundle

Let HolC
×
(V) denote the group of scaling invariant biholomorphic maps of V, that is

HolC
×
(V) := {α ∈ Hol(V) : αλs = λsα, s ∈ C

×}.

Let α ∈ HolC
×
(V). Then α determines a unique element of Hol(Y), which will be denoted by

α⋄.
Let γ be a section over Y0. As in (3.2), we set Yα⋄

0 := α⋄(Y0) ∩ Y0. We define mγ
α ∈ A

(

Yα⋄

0

)

by

mγ
α(y) :=

γ(y)

α ◦ γ ◦ (α⋄)−1(y)
, y ∈ Yα⋄

0 .

Proposition 2.

HolC
×
(V) ∋ α 7→ mγ

α

is a cocycle. Hence for any η ∈ Z

HolC
×
(V) ∋ α 7→ αγ,η := (mγ

α)
ηα⋄ ∈

loc
A×

⋊Hol(Y0) (4.11)

is a local representation.

4.4 Homogeneous functions of integer degree

As before, Y0 ⊂ Y is open. We set V0 := π−1(Y0). For η ∈ Z, let Λη
(

V0

)

denote the space of
holomorphic functions on V0 homogeneous of degree η, that is, functions k ∈ A

(

V0) satisfying

k(sv) = sηk(v), v ∈ V0, s ∈ C
×. (4.12)
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Clearly, (4.12) implies

V k = ηk. (4.13)

Let γ be a section based on Y0. We then have an obvious map ψγ,η : Λη(V0) → A(Y0): for
k ∈ Λη(V0) we set

(

ψγ,ηk
)

(y) := k
(

γ(y)
)

, y ∈ Y0. (4.14)

ψγ,η is bijective and we can introduce its inverse, denoted φγ,η, defined for any f ∈ A(Y0) by
(

φγ,ηf
)(

sγ(y)
)

= sηf(y), s ∈ C
×, y ∈ Y0. (4.15)

Proposition 3. With the notation of (4.2) and (4.11),

Bγ,η := ψγ,ηBφγ,η ∈ A⋊ hol(Y0), (4.16)

αγ,η := ψγ,ηαφγ,η ∈ A×
⋊Hol

(

Y1,Y2

)

. (4.17)

4.5 Homogeneous functions of non-integer degree

One can try to generalize the above construction to η ∈ C\Z. In this case, there is a problem with
the definition of functions homogeneous of degree η, because the power function is multivalued
on C

×. Therefore, we cannot use V0 := π−1(Y0). Instead, let us we assume that V0 ⊂ V is
open, connected, π(V0) = Y0 and π−1(y) ∩ V0 is simply connected for any y ∈ Y0. We say that
k ∈ Λη(V0) if k ∈ A

(

V0) and

k(sv) = sηk(v), v, sv ∈ V0, s ∈ C
×. (4.18)

Note that (4.18) is unambiguous, because, for any y ∈ Y0, on π−1(y) ∩ V0 we have a unique
continuation of holomorphic functions. (4.13) still holds.

Let γ be a section based on Y0 whose image is contained in V0. ψγ,η is still bijective and we
can introduce its inverse, denoted φγ,η, defined for any f ∈ A(Y) by

(

φγ,ηf
)(

sγ(y)
)

= sηf(y), s ∈ C
×, y ∈ Y0, sγ(y) ∈ V0. (4.19)

With this defnition, (4.17) is still true.

5 Complex Euclidean spaces

5.1 Linear transformations

Let us first consider the vector space C
n without the Euclidean structure.

The affine general linear Lie algebra C
n
⋊ gl(Cn) can be identified with the subalgebra of

hol(Cn) spanned by

∂yj , j = 1, . . . , n; yi∂yj , i, j = 1, . . . , n.

Similarly, the affine general linear group C
n
⋊GL(Cn) is a subgroup of Hol(Cn).

We will have a special notation for the generator of dilations

DCn :=

n
∑

i=1

yi∂yi .
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Obviously,

DCnB = BDCn , B ∈ gl(Cn),

DCnα = αDCn , α ∈ GL(Cn).

Let σ = (σ1, . . . , σn) be a permutation of {1, . . . , n}. Then

σ(y1, . . . , yn) := (yσ
−1

1 , . . . yσ
−1
n )

defines an element of GL(Cn). On the level of point transformations it acts as
(

σf
)

(y1, . . . , yn) := f(yσ1 , . . . , yσn).

5.2 Bilinear scalar product

Suppose that

C
n ∋ y, x 7→ 〈y|x〉 =

∑

i,j

gi,jy
ixj

is a nondegenerate symmetric bilinear form on C
n called the scalar product. Clearly, if we know

the square of each vector

〈y|y〉 =
∑

i,j

gi,jy
iyj ,

we have the complete information about the scalar product.
[gij ] will denote the inverse of [gij ].
The orthogonal Lie algebra of Cn, understood as a Lie subalgebra of hol(Cn), is defined as

so(Cn) := {B ∈ gl(Cn) : B〈y|y〉 = 0}.

For i, j = 1, . . . , n, define

Bi,j :=
∑

k

(gj,kyi∂yk − gi,kyk∂yj ).

{Bi,j : i < j} is a basis of so(Cn). Clearly, Bi,j = −Bj,i, in particular Bi,i = 0.
Likewise, recall that the orthogonal and the special orthogonal group of Cn is defined as

O(Cn) := {α ∈ GL(Cn) : 〈αy|αx〉 = 〈y|x〉, y, x ∈ C
n},

SO(Cn) := {α ∈ O(Cn) : detα = 1}.

We define

the Laplacian ∆Cn :=

n
∑

i,j=1

gi,j∂yi∂yj ,

and the Casimir operator CCn :=
1

2

n
∑

i,j=1

gi,kgj,lBi,jBk,l.

Clearly,

∆CnB = B∆Cn , B ∈ C
n
⋊ so(Cn);

∆Cnα = α∆Cn , α ∈ C
n
⋊O(Cn);

CCnB = BCCn , B ∈ so(Cn);

CCnα = αCCn , α ∈ O(Cn).
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Note the identity

∆Cn =
1

〈y|y〉
(

D2
Cn + (n− 2)DCn + CCn

)

. (5.1)

We will denote by Sn−1(R) the (complex) sphere in C
n of squared radius R, that is

Sn−1(R) := {y ∈ C
n : 〈y|y〉 = R}.

We also introduce the null quadric

Vn−1 := Sn−1(0)\{0}. (5.2)

5.3 Split coordinates

The coordinates that we describe in this subsection are particularly convenient for the analysis
of so(Cn) and O(Cn). Let n = 2m if n is even and n = 2m+ 1 if n is odd. Set

In :=

{

{−1, 1, . . . ,−m,m}, for even n,

{0,−1, 1, . . . ,−m,m}, for odd n.

The coordinates in C
n will be labelled by In, so that the square of y = [yi]i∈In is given by

〈y|y〉 =
∑

i∈In

yiy−i =















m
∑

i=1
2y−iyi, for even n,

y20 +
m
∑

i=1
2y−iyi for odd n.

Clearly, gi,j = gi,j = δi,−j .
For n = 2m, so(Cn) has a basis consisting of

Ni := Bi−i = y−i∂y−i
− yi∂yi , j = 1, . . . ,m, (5.3)

Bij = y−i∂yj − y−j∂yi , 1 ≤ |i| < |j| ≤ m. (5.4)

For n = 2m+ 1 we have to add

B0j = y0∂yj − y−j∂y0 , |j| = 1, . . . ,m. (5.5)

The subalgebra of so(Cn) spanned by (5.3) is its Cartan algebra. (5.4), and in the odd case
also (5.5), are its root operators:

[Nk, Bi,j] = (sgn(i)δk,|i| + sgn(j)δk,|j|)Bi,j ,

[Nk, B0,j ] = sgn(j)δk,|j|Bi,j.

We have

∆Cn =
∑

i∈In

∂yi∂y−i
,

CCn =
1

2

∑

i,j∈In

Bi,jB−i,−j.
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5.4 Weyl symmetries

In our applications of the group invariance we will restrict ourselves only to the so-called “Weyl
symmetries”. It will be convenient to consider “Weyl symmetries” contained not only in SO(Cn),
but in the whole O(Cn).

Permutations of I2m that preserve its decomposition into pairs {−1, 1}, . . . , {−m,m} corre-
spond to a subgroup of O(2m) that will be denoted W(C2m). It is isomorphic to Z

m
2 ⋊Sm. It is

generated by two kinds of transformations: τj , j = 1, . . . ,m, which swap the elements of the jth
pair, and permutations from Sm, which permute the pairs. If σ = (σ1, . . . , σm) ∈ Sm, then

σf(y−1, y1, . . . , y−m, ym) := f(y−σ1
, yσ1

, . . . , y−σm , yσm).

For j = 1, . . . , n,

τjf(y−1, y1, . . . , y−j , yj, . . . ) := f(y−1, y1, . . . , yj , y−j, . . . ).

We have

σBi,jσ
−1 = Bσi,σj

; τkBi,jτ
−1
k = (−1)δ|i|,k+δ|j|,kBi,j;

σNjσ
−1 = Nσj

; τkNjτ
−1
k = (−1)δj,kNj .

Using C
2m+1 = C⊕C

2m, we embed W(C2m) in O(C2m+1). We also introduce a transformation
τ0 ∈ O(C2m+1) given by

τ0f(y0, y−1, y1, . . . , y−m, ym) := f(−y0, y−1, y1, . . . , y−m, ym). (5.6)

Clearly, τ0 commutes with W(C2m). The group W(C2m+1) is defined as the group generated by
W(C2m) and τ0, and is isomorphic to Z2 × Z

m
2 ⋊ Sm. We have for i, j = 1, . . . ,m

τ0B0,jτ
−1
0 = −B0,j , τ0Bi,jτ

−1
0 = Bi,j, τ0Njτ

−1
0 = Nj .

In both even and odd cases W(Cn) acts as a group of automorphisms of so(Cn) leaving
invariant the Cartan algebra. To compute the determinant of elements of W(Cn) it suffices to
remember that detσ = 1 for σ ∈ Sm and det τj = −1.

6 Conformal invariance

The main subject of this section is the description of generalized (infinitesimal) symmetries of
the Laplace equation

∆Cnf = 0. (6.1)

We will see in particular that the Lie algebra of generalized symmetries is so(Cn+2). We will see
that it is convenient to start the description of these symmetries from the space C

n+2, which we
will call the extended space. The space C

n will be embedded inside C
n+2 as a section of the null

quadric. We will see how the Laplacian ∆Cn+2 reduces to the Laplacian ∆Cn .

6.1 Conformal invariance of Riemannian manifolds

Suppose that a (complex) manifold Ω is equipped with a nondegenerate holomorphic covariant
2-tensor field g, called the (complex) metric tensor. We will say that (Ω, g) is a (complex)
Riemannian space.
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Thus if A,B ∈ hol(Ω), then we have a holomorphic function

Ω ∋ y 7→ g(A,B)(y) = gi,j(y)A
i(y)Bj(y)

called the scalar product.
Let α ∈ Hol(Ω). We can transport g by α:

α(g)(A,B) := g
(

α−1(A), α−1(B)
)

.

We say that α is conformal if there exists mα ∈ A×(Ω) such that

α(g) = mαg.

Let Cf(Ω) denote the group of conformal maps on (Ω, g). One can check that

Cf(Ω)× Ω ∋ (α, y) 7→ mα(y) ∈ A×(Ω)

is a cocycle.
Let C ∈ hol(Ω). The Lie derivative of g in the direction of C is denoted Cg and defined by

(Cg)(A,B) := C
(

g(A,B)
)

− g([C,A], B) − g(A, [C,B]).

We say that C is infinitesimally conformal if there exists MC ∈ A(Ω) such that

Cg =MCg.

Let cf(Ω) denote the Lie algebra of infinitesimally conformal fields. One can check that

cf(Ω)× Ω ∋ (C, y) 7→MC(y) ∈ A(Ω)

is a cocycle.
We say that a manifold Ω has a conformal structure, if it is covered by a family of open sets

Ωi equipped with bilinear scalar products gi such that on Ωi ∩Ωj we have

gi = ρi,jgj

for some ρi,j ∈ A×(Ωi ∩ Ωj). Clearly, a Riemannian structure on Ω is not necessary to define
Cf(Ω) and cf(Ω)—we need only a conformal structure on Ω.

6.2 Null quadric

Consider the extended space, that is, the complex Euclidean space C
n+2. The central role will

be played by the representations

so(Cn+2) ∋ B 7→ B ∈ hol(Cn+2), (6.2)

O(Cn+2) ∋ α 7→ α ∈ Hol(Cn+2); (6.3)

and the symmetry

B∆Cn+2 = ∆Cn+2B, B ∈ so(Cn+2), (6.4)

α∆Cn+2 = ∆Cn+2α, α ∈ O(Cn+2). (6.5)

As in (5.2), we introduce

V := {z ∈ C
n+2 : z 6= 0, 〈z|z〉 = 0}
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called the null quadric.
Multiplication by s ∈ C

× preserves V. Therefore, we can define the projective quadric

Y := V/C× = {C×z : z ∈ V}.
It is an n-dimensional complex manifold. Let π : V → Y denote the natural projection. Clearly,
V is a complex line bundle over Y. As in Subsect. 4.1, the multiplication by s will be often
denoted by C

× ∋ s 7→ λs ∈ Hol(V) and the corresponding vertical vector field by V ∈ hol(V).
We can restrict (6.2) and (6.3) to V and note that they are scaling invariant. Thus, we have

natural embeddings

so(Cn+2) ∋ B 7→ B ∈ holC
×
(V), (6.6)

O(Cn+2) ∋ α 7→ α ∈ HolC
×
(V). (6.7)

(Recall that holC
×
(V), resp. HolC

×
(V) denote the scaling invariant holomorphic vector fields,

resp. bijections). Therefore, (6.6) and (6.7) induce their actions on Y:

so(Cn+2) ∋ B 7→ B⋄ ∈ hol(Y), (6.8)

O(Cn+2) ∋ α 7→ α⋄ ∈ Hol(Y). (6.9)

6.3 Conformal invariance of projective quadric

Let g denote the restriction of the metric tensor on C
n+2 to V. Note that the null space of g is

1-dimensional and is spanned by the vertical field V . In particular,

g(V,A) = 0, A ∈ hol(V). (6.10)

Moreover, the scaling scales the metric tensor:

λs(g) = s2g, s ∈ C
×, (6.11)

V g = 2g. (6.12)

Using (6.10), we can extend (6.11) to multiplication by nonconstant functions:

Proposition 4. Let U be open in Y, m ∈ A×(U). Define λm ∈ Hol
(

π−1(U)
)

by

λm(z) := m(π(z))z, z ∈ π−1(U).
Then λmg = m2g. In particular, for any section γ, the restriction λm : γ(U) → m ◦ πγ(U) is
conformal.

Let U be open in Y. Let γ be a section over U . The tensor g restricted to γ(U) is nondegen-
erate. We can transport it by γ−1 onto U . This way we endow U with a metric tensor.

For i = 1, 2, let Ui be two open subsets of Y equipped with sections γi. Let gi be the
corresponding complex Riemannian tensors. Obviously, there exists ρ2,1 ∈ A×(U1 ∩ U2) such
that

γ2(y) = ρ2,1(y)γ1(y), y ∈ U1 ∩ U2.

Therefore, by Prop. 4,

g2 = (γ−1
2 γ1)g1 = ρ22,1g1.

Cover Y with open subsets Ui, i = 1, . . . , N , equipped with sections γi. Let gi be the corre-
sponding Riemannian tensors on Ui. Then on Ui ∩ Uj we have

gj = ρ2j,igi, ρj,i ∈ A×(Ui ∩ Uj).

This way we endow Y with a conformal structure. It is easy to see that it does not depend on
the choice of the covering and sections.
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Proposition 5. (6.8) is infinitesimally conformal and (6.9) is conformal.

Proof. Let γ be a section over U ⊂ Y.
Let B ∈ so(Cn+2). By Prop. 1, there exists Mγ

B ∈ A(U) such that

γ(B⋄) =
(

B −Mγ
BV
)

∣

∣

∣

γ(U)
.

Now Bg = 0 and V g = 2g. Hence

γ(B⋄)g = −2Mγ
Bg.

Therefore, γ(B⋄) is infinitesimally conformal on γ(U). Hence B⋄ is infinitesimally conformal on
U .

Let α ∈ O(Cn+2). Clearly, γα := α ◦ γ ◦ (α⋄)−1 is a section based on α⋄(U). Therefore, there
exists m ∈ A×

(

α⋄(U) ∩ U
)

such that

γ(y) = m(y)γα(y), y ∈ α⋄(U) ∩ U . (6.13)

Define now β : π−1
(

U ∩ (α⋄)−1(U)
)

→ π−1
(

α⋄(U) ∩ U
)

β(z) := m
(

π(z)
)

α(z).

Substituting z = γ(y) and using (6.13) we obtain

β(γ(y)) = m(y)α
(

γ(y)
)

= γ(α⋄(y)).

Thus β maps γ
(

U ∩ (α⋄)−1(U)
)

onto γ
(

α⋄(U)∩U
)

. Let βγ denote this restriction of β. By Prop.
4, βγ is conformal. Clearly, it satisfies the identity

βγ = γα⋄γ−1.

Hence α⋄ is conformal. �

6.4 Conformal invariance of complex Euclidean space

Fix a vector e ∈ V, and set

Ve := {z ∈ V : 〈z|e〉 6= 0}. (6.14)

Clearly, Ve is invariant with respect to the action of C× and Ye := Ve/C
× is an open dense subset

of Y. We have a natural section of the line bundle V → Y based on Ye:

Ye ∋ C
×z 7→ z

〈z|e〉 ∈ Ve. (6.15)

Next choose a vector d ∈ V such that 〈e|d〉 = 1. Clearly, {e, d}⊥ is n-dimensional. It will be
convenient further on to choose coordinates (zi)i∈In in {e, d}⊥. Each z ∈ C

n+2 can be written as

z =





(zi)i∈In
z−m−1

zm+1



 = (zi)i∈In + z−m−1e+ zm+1d,

where (zi)i∈In ∈ {e, d}⊥ ≃ C
n, (z−m−1, zm+1) ∈ C

2.
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Using y = (yi)i∈In as generic variables in C
n, and noting that zm+1 = 〈z|e〉, we see that Ye

can be identified with C
n through the map

C
n ∋ y 7→ C

×





y

− 〈y|y〉
2
1



 ∈ Ye. (6.16)

With this identification, the section (6.15) can be written as

C
n ∋ y 7→





y

− 〈y|y〉
2
1



 ∈ Ve. (6.17)

Remark 2. The above discussion shows that Ye has a natural structure of the affine n-dimen-
sional Euclidean space. The choice of d ∈ Ve (which does not influence the definition of Ye)
determines the origin of coordinates in Ye.

The stabilizer of





0
1
0



 = e ∈ V inside O(Cn+2) is isomorphic to C
n
⋊O(Cn), and is given by





1l 0 w
−w# 1 −1

2〈w|w〉
0 0 1









β 0 0
0 1 0
0 0 1



 , β ∈ O(Cn), w ∈ C
n.

The stabilizer of C×e ∈ Y inside O(Cn+2) is isomorphic to C
n
⋊
(

O(Cn)×O(C2)
)

and is given
by





1l 0 w
−w# 1 −1

2〈w|w〉
0 0 1









β 0 0
0 s 0
0 0 s−1



 , β ∈ O(Cn), w ∈ C
n, s ∈ C

×.

6.5 Laplacian on bundle of homogeneous functions

Let V0 be an open subset of V and η ∈ C. We define Λη(V0) to be the set of holomorphic
functions on V0 homogeneous of degree η. (See Subsecs 4.4 and 4.5 for a discussion).

Clearly, B ∈ so(Cn+2) preserves Λη(V0). We will denote by B⋄,η the restriction of B ∈ hol(V)
to Λη(V0).

Clearly, α ∈ O(Cn+2) maps Λη(V0) onto Λη
(

α(V0)
)

. We will denote by α⋄,η the restriction of
α to Λη(V0). Thus we have representations

so(Cn+2) ∋ B 7→ B⋄,η, (6.18)

O(Cn+2) ∋ α 7→ α⋄,η . (6.19)

We find the following theorem curious because it allows in some situations to restrict a second
order differential operator to a submanifold.

Theorem 1. Let Ω ⊂ C
n+2 be open. Let K ∈ A(Ω) be homogeneous of degree 2−n

2 such that

K
∣

∣

∣

V∩Ω
= 0.

Then

∆Cn+2K
∣

∣

∣

V∩Ω
= 0.
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Proof. We will give two proofs. Each of the proofs will provide us with a formula, which will
be useful later on.

Method I. We use the decomposition C
n+2 = C

n ⊕ C
2. As usual, we will denote by 〈z|z〉 the

square of z ∈ C
n+2, by DCn+2 the generator of dilations, by CCn+2 the Casimir operator and by

∆Cn+2 the Laplacian on C
n+2. We will also need the corresponding objects on C

n: 〈z|z〉Cn , DCn ,
CCn , and ∆Cn . We will write

〈z|z〉m+1 := 2z−m−1zm+1,

∆m+1 := 2∂z−m−1
∂zm+1

,

Dm+1 := z−m−1∂z−m−1
+ zm+1∂zm+1

,

Nm+1 := z−m−1∂z−m−1
− zm+1∂zm+1

.

Thus we have

〈z|z〉 = 〈z|z〉Cn + 〈z|z〉m+1,

∆Cn+2 = ∆Cn +∆m+1,

DCn+2 = DCn +Dm+1.

The following identity is a consequence of (5.1):

〈z|z〉Cn∆Cn+2 = 〈z|z〉Cn∆Cn +
(

〈z|z〉 − 〈z|z〉m+1

)

∆m+1

= CCn +
(

DCn − 2− n

2

)2
−
(2− n

2

)2

+ 〈z|z〉∆m+1 −D2
m+1 +N2

m+1

= 〈z|z〉∆m+1 +
(

DCn − 2− n

2
−Dm+1

)(

DCn+2 − 2− n

2

)

−
(2− n

2

)2
+ CCn +N2

m+1. (6.20)

(

2−n
2

)2
is a scalar. CCn and N2

m+1 are polynomials in elements of so(Cn+2). V is tangent to
so(Cn+2). Therefore, all operators in the last line of (6.20) can be restricted to V. The operator

DCn+2 − 2−n
2 vanishes on functions in Λ

2−n
2 (Ω). The operator 〈z|z〉∆m+1 is zero when restricted

to V.

Method II. We write C
n+2 = C

n+1 ⊕ C with the distinguished variable denoted by t. We
assume that the square of z ∈ C

n+2 is given by

〈z|z〉 = 〈z|z〉Cn+1 + t2.

We will use various operators on C
n+1: DCn+1 , CCn+1 , and ∆Cn+1 . We have

DCn+2 = DCn+1 + t∂t,

∆Cn+2 = ∆Cn+1 + ∂2t .
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We have the following identity

〈z|z〉Cn+1∆Cn+2 = 〈z|z〉Cn+1∆Cn+1 + 〈z|z〉∂2t − t2∂2t

= CCn+1 +
(

DCn+1 +
n− 1

2

)2
−
(n− 1

2

)2

+ 〈z|z〉∂2t −
(

t∂t −
1

2

)2
+
(1

2

)2

= 〈z|z〉∂2t +
(

DCn+1 +
n

2
− t∂t

)(

DCn+2 − 2− n

2

)

−
(n− 2

2

)n

2
+ CCn+1 . (6.21)

Then we argue similarly as in Method I. �

Using Theorem 1 we can restrict the Laplacian to functions in Λη(V0) for η = 2−n
2 . More

precisely, we introduce the following definition.
Let k ∈ Λ

2−n
2 (V0). Let Ω be any open subset of Cn+2 such that V0 = Ω∩V, let K ∈ A(Ω) be

homogeneous of degree 2−n
2 and

k = K
∣

∣

∣

V0

.

(We can always find such Ω and K). Note that ∆Cn+2K is homogeneous of degree −2−n
2 . We set

∆⋄
Cn+2k := ∆Cn+2K

∣

∣

∣

V0

.

By Theorem 1, the above definition does not depend on the choice of Ω and K and defines a
map

∆⋄
Cn+2 : Λ

2−n
2 (V0) → Λ

−2−n
2 (V0). (6.22)

Remark 3. Let us explain the notation ∆⋄
Cn+2 for the reduced Laplacian. We do not put the

degree of homogeneity η = 2−n
2 as a superscript, because it is fixed by Thm 1, unlike in the

case of the representations of so(Cn+2) and O(Cn+2). The subscript C
n+2 is a little confusing,

because ∆⋄
Cn+2 acts on functions of only n+1 variables, and after fixing a section on functions of

n variables. However, the intitial operator is clearly ∆Cn+2 . Finally, the diamond ⋄ is a symbol
that we have already used in the context of line bundles.

Restricting (6.4) and (6.5) to Λ
2−n
2 (V0) we obtain

B⋄,−2−n
2 ∆⋄

Cn+2 = ∆⋄
Cn+2B

⋄, 2−n
2 , B ∈ so(Cn+2), (6.23)

α⋄,−2−n
2 ∆⋄

Cn+2 = ∆⋄
Cn+2α

⋄, 2−n
2 , α ∈ O(Cn+2). (6.24)

The following proposition is the consequence of the proof of Thm 1.

Proposition 6. (1) In the notation of Method I of the proof of Thm 1, we have

〈z|z〉Cn∆⋄
Cn+2 =

(n− 2

2

)2
+ CCn +N2

m+1. (6.25)

(2) In the notation of Method II of the proof of Thm 1, we have

〈z|z〉Cn+1∆⋄
Cn+2 = −

(n− 2

2

)n

2
+ CCn+1 . (6.26)

Proof. (6.25) follows from (6.20). (6.26) follows from (6.21). �
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6.6 Conformal invariance of Laplacian for a general section

The operator ∆⋄
Cn+2 is quite abstract. In this subsection we describe how to make it more

explicit.
Consider an open set Y0 in Y. Let V0 := π−1(Y0) and η ∈ 1

2Z. Choose a section γ of the line
bundle V → Y based on Y0. As in (4.15) and (4.14), we can introduce ψγ,η : Λη(V0) → A(Y0)
and its left inverse φγ,η. We set

Bγ,η := ψγ,ηB⋄,ηφγ,η = ψγ,ηBφγ,η, B ∈ so(Cn+2), (6.27)

αγ,η := ψγ,ηα⋄,ηφγ,η = ψγ,ηαφγ,η , α ∈ O(Cn+2). (6.28)

As explained in Props 1, 2 and 3, we obtain a representation and a local representation

so(Cn+2) ∋ B 7→ Bγ,η ∈A⋊ hol(Y0), (6.29)

O(Cn+2) ∋ α 7→ αγ,η ∈
loc
A×

⋊Hol(Y0). (6.30)

We also define

∆γ
Cn+2 := ψγ,−2−n

2 ∆⋄
Cn+2φ

γ, 2−n
2 = ψγ,−2−n

2 ∆Cn+2φγ,
2−n
2 . (6.31)

We have the identities

Bγ,−2−n
2 ∆γ

Cn+2 = ∆γ
Cn+2B

γ, 2−n
2 , B ∈ so(Cn+2), (6.32)

αγ,−2−n
2 ∆γ

Cn+2 = ∆γ
Cn+2α

γ, 2−n
2 , α ∈ O(Cn+2). (6.33)

Thus we have shown that (infinitesimal) conformal transformations of the n-dimensional man-
ifold Y0 lead to generalized (infinitesimal) symmetries of ∆γ

Cn+2 . Even if (in a somewhat different
form) this is a known fact, it seems that our derivation is new and of interest. In particular, it
shows that a large class of second order n-dimensional operators together with their generalized
symmetries directly come from the (n+ 2)-dimensional Laplacian with its true symmetries.

6.7 Conformal invariance of Laplacian on C
n

Let us describe more closely the above construction in the case of the section (6.15). In this case,
instead of γ we will write “fl”, for flat. We identify of Ye with C

n. We can restrict (6.8) to an
action of so(Cn+2) on Ye, and (6.9) to a local action of O(Cn+2) on Ye. Using (4.2) and (4.11),
we obtain

so(Cn+2) ∋ B 7→ Bfl ∈ hol(Cn), (6.34)

O(Cn+2) ∋ α 7→ αfl ∈
loc

Hol(Cn). (6.35)

We introduce ψfl,η : Λη(Ve) → A(Cn) and its left inverse φfl,η. (6.29) and (6.30) can be
rewritten as

so(Cn+2) ∋ B 7→ Bfl,η ∈ A⋊ hol(Cn), (6.36)

O(Cn+2) ∋ α 7→ αfl,η ∈
loc

A×
⋊Hol(Cn). (6.37)

The (n+2)-dimensional Laplacian reduced to the flat section is just the usual n-dimensional
Laplacian:

∆fl
Cn+2 = ∆Cn .
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The symmetries (6.32) and (6.33) become the generalized symmetries of the usual Laplacian:

Bfl,−2−n
2 ∆Cn = ∆CnBfl, 2−n

2 , B ∈ so(Cn+2),

αfl,−2−n
2 ∆Cn = ∆Cnαfl, 2−n

2 , α ∈ O(Cn+2).

Thus C
n+2 serves to describe in a simple way conformal symmetries of Cn. When used in this

fashion, the space C
n+2 will be sometimes called the extended space.

Below we sum up information about conformal symmetries on the level of the extended space
C
n+2 and the space C

n. We will use the split coordinates, that is, z ∈ C
n+2 and y ∈ C

n have
the square

〈z|z〉 =
∑

j∈In+2

z−jzj,

〈y|y〉 =
∑

j∈In

y−jyj.

As a rule, if a given operator does not depend on η, we will omit η.
Cartan algebra of so(Cn+2)

Cartan operators of so(Cn), i = 1, . . . ,m:

Ni = z−i∂z−i
− zi∂zi ,

Nfl
i = y−i∂y−i

− yi∂yi .

Generator of dilations:

Nm+1 = z−m−1∂z−m−1
− zm+1∂zm+1

,

Nfl,η
m+1 =

∑

i∈In

yi∂yi − η = DCn − η.

Root operators

Roots of so(Cn), |i| < |j|, i, j ∈ In:

Bi,j = z−i∂zj − z−j∂zi ,

Bfl
i,j = y−i∂yj − y−j∂yi .

Generators of translations, j ∈ In:

B−m−1,j = zm+1∂zj − z−j∂z−m−1
,

Bfl
−m−1,j = ∂yj .

Generators of special conformal transformations, j ∈ In:

Bm+1,j = z−m−1∂zj − z−j∂zm+1
,

Bfl,η
m+1,j = −1

2
〈y|y〉∂yj + y−j

∑

i∈In

yi∂yi − ηy−j.

Weyl symmetries.

We will write K for a function on C
n+2 and f for a function on C

n.
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Reflection:

τ0K(z0, . . . ) = K(−z0, . . . ),
τfl0 f(y0, . . . ) = f(−y0, . . . ).

Flips, j = 1, . . . ,m:

τjK(. . . , z−j , zj , . . . , z−m−1, zm+1) = K(. . . , zj , z−j , . . . , z−m−1, zm+1),

τflj f(. . . , y−j, yj , . . . ) = f(. . . yj, y−j, . . . ).

Inversion:

τm+1K(. . . , z−m−1, zm+1) = K(. . . , zm+1, z−m−1),

τfl,ηm+1f(y) =
(

−〈y|y〉
2

)η
f
(

− 2y

〈y|y〉
)

.

Permutations, σ ∈ Sm:

σK(. . . , z−j , zj , . . . , z−m−1, zm+1) = K(. . . , z−σj
, zσj

, . . . , z−m−1, zm+1),

σflf(. . . , y−j, yj , . . . ) = f(. . . y−σj
, yσj

, . . . ).

Special conformal transformations, j = 1, . . . ,m:

σ(j,m+1)K(z−1, z1, . . . , z−j , zj , . . . ,z−m−1, zm+1) =

K(z−1, z1, . . . , z−m−1, zm+1, . . . , z−j , zj),

σfl,η(j,m+1)f(y−1, y1, . . . , y−j, yj , . . . ) = yηj f
(y−1

yj
,
y1
yj
, . . . ,−〈y|y〉

2yj
,
1

yj
, . . .

)

.

Laplacian

∆Cn+2 =
∑

i∈In+2

∂zi∂z−i
,

∆fl
Cn+2 =

∑

i∈In

∂yi∂y−i
= ∆Cn .

Computations

Let us describe how to derive these formulas in an easy way.
Consider C

n+1 × C
× (defined by zm+1 6= 0), which is an open dense subset of Cn+2. Clearly,

Ve is contained in C
n+1 ×C

× .
We will write Λη(Cn+1×C

×) for the space of functions homogeneous of degree η on C
n+1×C

×.
Instead of using the maps φfl,η and ψfl,η, as in (4.15) and (4.14), we will prefer Φfl,η : A(Cn) →

Λη(Cn+1 ×C
×) and Ψfl,η : Λη(Cn+1 × C

×) → A(Cn) defined below.
For K ∈ Λη

(

C
n+1 × C

×
)

, we define Ψfl,ηK ∈ A(Cn) by

(

Ψfl,ηK
)

(y) = K
(

y,−〈y|y〉
2

, 1
)

, y ∈ C
n.

Let f ∈ A(Cn). Then there exists a unique function in Λη
(

C
n+1 × C

×
)

that extends f and
does not depend on z−m−1. It is given by

(

Φfl,ηf
)

(. . . , zm, z−m−1, zm+1) := zηm+1f
(

. . . ,
zm
zm+1

)

.
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Ψfl,η is a left inverse of Φfl,η:

Ψfl,ηΦfl,η = id.

Clearly,

Φfl,ηf
∣

∣

∣

Ve

= φfl,ηf,

Ψfl,ηK = ψfl,η
(

K
∣

∣

∣

Ve

)

.

Moreover, functions in Λη(Cn+1 ×C
×) restricted to Ve are in Λη(Ve). Therefore,

Bfl,η = Ψfl,ηBΦfl,η, B ∈ so(Cn+2),

αfl,η = Ψfl,ηαΦfl,η, α ∈ O(Cn+2).

Note also that

∆fl
Cn+2 = Ψfl,η∆Cn+2Φfl,η = ∆Cn .

In practice, the above idea can be implemented by the following change of coordinates on
C
n+2:

yi :=
zi

zm+1
, i ∈ In,

R :=
∑

i∈In+2

ziz−i,

p := zm+1.

The inverse transformation is

zi = pyi, i ∈ In,

z−m−1 =
1

2

(R

p
− p

∑

i∈In

yiy−i

)

,

zm+1 = p

The derivatives are equal to

∂zi = z−1
m+1∂yi + 2z−i∂R, i ∈ In,

∂z−m−1
= 2zm+1∂R,

∂zm+1
= ∂p − z−2

m+1

∑

i∈In

zi∂yi + 2z−m−1∂R.

Note that these coordinates are defined on C
n+1 × C

×. Ve is given by the condition R = 0.
The section (6.15) (see also (6.17)) is given by p = 1.

For a function y 7→ f(y) we have
(

Φfl,ηf
)

(y,R, p) = pηf(y).

For a function (y,R, p) 7→ K(y,R, p) we have
(

Ψfl,ηK
)

(y) = K(y, 0, 1).

Note also that on Λη(Cn+1 × C
×) we have

p∂p = η.
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6.8 Dimension n = 1

Let us illustrate the constructions of this section by describing the projective quadric in the
lowest dimensions, where everything is very explicit. We start with dimension n = 1.

The 1-dimensional projective quadric is isomorphic to the Riemann sphere or, what is the
same, the 1-dimensional projective complex space:

Y1 ≃ C ∪ {∞} = P 1
C.

Indeed, consider C
3 with the scalar product

〈z|z〉 = z20 + 2z−1z+1.

We can cover Y1 with two maps:

C ∋ s 7→ φ+(s) =
(

s, 1,−1

2
s2
)

C
× ∈ Y1,

C ∋ s 7→ φ−(s) =
(

s,−1

2
s2, 1

)

C
× ∈ Y1.

The transition map is

φ−1
+ φ−(s) = −2

s
.

The Lie algebra so(C3) is spanned by

B0,1, B0,−1, N1,

with the commutation relations

[B0,1, B0,−1] = N1,

[N1, B0,1] = B0,1,

[N1, B0,−1] = −B0,−1.

The Casimir operator is

C = 2B0,1B0,−1 −N2
1 −N1

= 2B0,−1B0,1 −N2
1 +N1.

6.9 Dimension n = 2

The 2-dimensional projective quadric is isomorphic to the product of two Riemann spheres:

Y2 ≃ P 1
C× P 1

C.

Indeed, consider C
4 with the scalar product

〈z|z〉 = 2z−1z+1 + 2z−2z+2.

We can cover Y2 with four maps:

C× C ∋ (t, s) 7→ φ+1(t, s) = (−ts, 1, t, s)C× ∈ Y2,

C× C ∋ (t, s) 7→ φ−1(t, s) = (1,−ts, s, t)C× ∈ Y2,

C× C ∋ (t, s) 7→ φ+2(t, s) = (−s,−t, 1, ts)C× ∈ Y2,

C× C ∋ (t, s) 7→ φ−2(t, s) = (−t,−s,−ts, 1)C× ∈ Y2.
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Here are the transition maps:

φ−1
−1φ+1(t, s) = φ−1

−2φ+2(t, s) = (−t−1,−s−1),

φ−1
−2φ−1(t, s) = φ−1

+2φ+1(t, s) = (−t−1, s),

φ−1
−2φ+1(t, s) = φ−1

+2φ−1(t, s) = (t,−s−1).

The Lie algebra so(C4) is spanned by

N1, N2, B1,2, B1,−2, B−1,2, B−1,−2.

Its Casimir operator is

C = 2B1,2B−1,−2 + 2B1,−2B−1,2 −N2
1 −N2

2 + 2N1.

As is well known, so(C4) decomposes into the direct sum so+(C
3)⊕so−(C

3) of two commuting
Lie algebras isomorphic to so(C3) spanned by:

B1,2, B−1,−2, N1 +N2 and B1,−2, B−1,2, N1 −N2.

with the commutation relations

[B1,2, B−1,−2] = N1 +N2, [B1,−2, B−1,2] = N1 −N2,

[N1 +N2, B1,2] = 2B1,2, [N1 −N2, B1,−2] = 2B1,−2,

[N1 +N2, B−1,−2] = −2B−1,−2, [N1 −N2, B−1,2] = −2B−1,2.

(6.39)

The corresponding Casimir operators are

C+ = 2B1,2B−1,−2 −
1

2
(N1 +N2)

2 −N1 −N2 (6.40)

= 2B−1,−2B1,2 −
1

2
(N1 +N2)

2 +N1 +N2, (6.41)

C− = 2B1,−2B−1,2 −
1

2
(N1 −N2)

2 −N1 +N2 (6.42)

= 2B−1,2B1,−2 −
1

2
(N1 −N2)

2 +N1 −N2. (6.43)

Thus

C = C+ + C−.

In the enveloping algebra of so(C4) the operators C+ and C− are distinct. They satisfy
α(C−) = C+ for α ∈ O(C4)\SO(C4), for istance for τi, i = 1, 2.

However, inside the associative algebra of differential operators on C
4 we have the identity

B1,2B−1,−2 −B1,−2B−1,2 = N1N2 +N2,

which implies

C+ = C−
inside this algebra. Therefore, represented in the algebra of differential operators we have

C = 4B1,2B−1,−2 − (N1 +N2)
2 − 2N1 − 2N2 (6.44a)

= 4B−1,−2B1,2 − (N1 +N2)
2 + 2N1 + 2N2 (6.44b)

= 4B1,−2B−1,2 − (N1 −N2)
2 − 2N1 + 2N2 (6.44c)

= 4B−1,2B1,−2 − (N1 −N2)
2 + 2N1 − 2N2. (6.44d)
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7 so(C6) and the hypergeometric equation

In this section we derive the hypergeometric operator and its so(C6) symmetries. We will consider
the following levels:

(1) Extended space C
6 and the Laplacian ∆C6 .

(2) Reduction to the so-called spherical section and the corresponding Laplace-Beltrami oper-
ator.

(3) Depending on the choice of coordinates, separation of variables leads to the balanced or
standard hypergeometric operator.

Alternatively, one can use a different derivation:

(2)’ Reduction to C
4 and ∆C4 with help of the flat section.

(3)’ With appropriate coordinates, separation of variables leads to the balanced or standard
hypergeometric operator.

A separate subsection is devoted to factorizations of the hypergeometric operator. We will
see that they are closely related to so(C4) subalgebras of so(C6) and their Casimir operators.

7.1 Extended space C6

We consider C
6 with the coordinates

z−1, z1, z−2, z2, z−3, z3 (7.1)

and the scalar product given by

〈z|z〉 = 2z−1z1 + 2z−2z2 + 2z−3z3. (7.2)

Lie algebra so(C6). Cartan algebra:

Ni = z−i∂z−i
− zi∂zi , i = 1, 2, 3.

Root operators:

Bi,j = z−i∂j − z−j∂i, 1 ≤ |i| < |j| ≤ 3.

Weyl symmetries. Transpositions:

σ(12)K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z−1, z1, z−3, z3),

σ(13)K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z−2, z2, z−1, z1),

σ(23)K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z−3, z3, z−2, z2).

Cycles:

σ(123)K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z−1, z1, z−2, z2),

σ(132)K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z−3, z3, z−1, z1).

Flips:

τ1K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z−2, z2, z−3, z3),

τ2K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z2, z−2, z−3, z3),

τ3K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z−2, z2, z3, z−3).
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Laplacian.

∆C6 = 2∂z−1
∂z1 + 2∂z−2

∂z2 + 2∂z−3
∂z3 . (7.3)

Symmetries

Ni∆C6 = ∆C6Ni, 1 ≤ i ≤ 3; (7.4a)

Bi,j∆C6 = ∆C6Bi,j, 1 ≤ |i| < |j| ≤ 3; (7.4b)

σ∆C6 = ∆C6σ, σ ∈ S3; (7.4c)

τj∆C6 = ∆C6τj, 1 ≤ j ≤ 3. (7.4d)

7.2 Spherical section

In this subsection we consider the section of the quadric

V5 := {z ∈ C
6 : 2z−1z1 + 2z−2z2 + 2z−3z3 = 0}

given by equations

4 = 2 (z−1z1 + z−2z2) = −2z3z−3.

We will call it the spherical section, because it coincides with S3(4) × S1(−4). The superscript
used for this section will be “sph” for spherical.

We will see that this section is well suited to obtain the hypergeometric equation, both in the
balanced and standard form, because its conformal factor is trivially equal to 1.

As a preparation for a discussion of this section, let us choose the coordinates

r =
√

2 (z−1z1 + z−2z2) , p =
√

2z3z−3, , w =
z−1z1

z−1z1 + z−2z2
, (7.5a)

u1 =

√

z−1

z1
, u2 =

√

z−2

z2
, u3 =

√

z−3

z3
. (7.5b)

The null quadric in these coordinates is given by r2 + p2 = 0. The generator of dilations is

DC6 = r ∂r + p ∂p.

The spherical section is given by the condition r2 = 4.
Let us now describe in detail various objects in the spherical section.

Lie algebra so(C6). Cartan operators:

N sph
1 = u1 ∂u1

, (7.6)

N sph
2 = u2 ∂u2

, (7.7)

N sph
3 = u3 ∂u3

. (7.8)

Roots:

Bsph
2,1 = u1u2

√

w(1 − w)

(

∂w − N sph
1

2w
+

N sph
2

2(1 − w)

)

, (7.9a)

Bsph
−2,−1 =

1

u1u2

√

w(1 − w)

(

∂w +
N sph

1

2w
− N sph

2

2(1 − w)

)

, (7.9b)

Bsph
2,−1 =

u2
u1

√

w(1 − w)

(

∂w +
N sph

1

2w
+

N sph
2

2(1 − w)

)

, (7.9c)

Bsph
−2,1 =

u1
u2

√

w(1 − w)

(

∂w − N sph
1

2w
− N sph

2

2(1 − w)

)

, (7.9d)
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Bsph,η
3,1 =

i

2
u1u3

√
w

(

η + 2(1− w) ∂w − N sph
1

w
− N sph

3

)

, (7.9e)

Bsph,η
−3,−1 =

i

2

1

u1u3

√
w

(

η + 2(1− w) ∂w +
N sph

1

w
+ N sph

3

)

, (7.9f)

Bsph,η
3,−1 =

i

2

u3
u1

√
w

(

η + 2(1− w) ∂w +
N sph

1

w
− N sph

3

)

, (7.9g)

Bsph,η
−3,1 =

i

2

u1
u3

√
w

(

η + 2(1− w) ∂w − N sph
1

w
+ N sph

3

)

, (7.9h)

Bsph,η
3,2 =

i

2
u2u3

√
1− w

(

η − 2w ∂w − N sph
2

1− w
− N sph

3

)

, (7.9i)

Bsph,η
−3,−2 =

i

2

1

u2u3

√
1− w

(

η − 2w ∂w +
N sph

2

1− w
+ N sph

3

)

, (7.9j)

Bsph,η
3,−2 =

i

2

u3
u2

√
1− w

(

η − 2w ∂w +
N sph

2

1− w
− N sph

3

)

, (7.9k)

Bsph,η
−3,2 =

i

2

u2
u3

√
1− w

(

η − 2w ∂w − N sph
2

1− w
+ N sph

3

)

. (7.9l)

Weyl symmetries. Transpositions:

σsph,η12 f(w, u1, u2, u3) = f (1− w, u2, u1, u3) , (7.10a)

σsph,η13 f(w, u1, u2, u3) =
(

i
√
w
)η
f

(

1

w
, u3, u2, u1

)

, (7.10b)

σsph,η23 f(w, u1, u2, u3) =
(

i
√
1− w

)η
f

(

w

w − 1
, u1, u3, u2

)

. (7.10c)

Cycles:

σsph,η312 f(w, u1, u2, u3) =
(

i
√
1− w

)η
f

(

1

1− w
, u3, u1, u2

)

, (7.10d)

σsph,η231 f(w, u1, u2, u3) =
(

i
√
w
)η
f

(

1− 1

w
, u2, u3, u1

)

. (7.10e)

Flips:

τ sph,η1 f(w, u1, u2, u3) = f

(

w,
1

u1
, u2, u3

)

, (7.10f)

τ sph,η2 f(w, u1, u2, u3) = f

(

w, u1,
1

u2
, u3

)

, (7.10g)

τ sph,η3 f(w, u1, u2, u3) = f

(

w, u1, u2,
1

u3

)

. (7.10h)

The Laplacian in coordinates (7.9) is

∆C6 =
4

r2

(

1

4

(

(r ∂r)
2 + 2(r ∂r) +

r2

p2
(p ∂p)

2

)

+ ∂w w(1 − w) ∂w − (u1 ∂u1
)2

4w
− (u1 ∂u2

)2

4(1 − w)
− r2

p2
(u3 ∂u3

)2

4

)

.

(7.11)
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Using

(r ∂r)
2 + 2r ∂r +

r2

p2
(p ∂p)

2 =
(

r ∂r +
r2

p2
(p ∂p) + 1

)(

r ∂r + p ∂p + 1
)

− 1

−
(

r2

p2
+ 1
)

(

p ∂p
)(

r ∂r + 1
)

,
(7.12)

r2 + p2 = 0 and r ∂r + p ∂p = −1, we obtain

∆⋄
C6 =

4

r2

(

∂w w(1 − w) ∂w − (u1 ∂u1
)2

4w
− (u2 ∂u2

)2

4(1 − w)
+

(u3 ∂u3
)2

4
− 1

4

)

. (7.13)

To convert ∆⋄
C6 into the reduced Laplacian ∆sph

C6 , we simply remove the prefactor 4
r2

,
obtaining the Laplace-Beltrami operator on S3(4)× S1(−4):

∆sph
C6 = ∂w w(1− w) ∂w − (N sph

1 )2

4w
− (N sph

2 )2

4(1− w)
+

(N sph
3 )2

4
− 1

4
. (7.14)

Generalized symmetries:

N sph
i ∆sph

C6 = ∆sph
C6 N

sph
i , 1 ≤ i ≤ 3; (7.15)

Bsph,−3
i,j ∆sph

C6 = ∆sph
C6 B

sph,−1
i,j , 1 ≤ |i| < |j| ≤ 3; (7.16)

σsph,−3∆sph
C6 = ∆sph

C6 σ
sph,−1, σ ∈ S3; (7.17)

τ sphj ∆sph
C6 = ∆sph

C6 τ
sph
j , 1 ≤ j ≤ 3. (7.18)

7.3 Balanced hypergeometric operator

Using the spherical section we make an ansatz

f(w, u1, u2, u3) = uα1u
β
2u

µ
3F (w). (7.19)

Clearly,

N sph
1 f = αf,

N sph
2 f = βf,

N sph
3 f = µf.

Therefore, on functions of the form (7.19), ∆sph
C6 , that is (7.14), coincides with the balanced hyper-

geometric operator (2.3). The generalized symmetries for the roots (7.16), for the permutations
(7.17) and for the flips (7.18) coincide with the transmutation relations, with the discrete symme-
tries, and with the sign changes of α, β, µ of the balanced hypergeometric equation, respectively;
see Subsec. 2.1.

7.4 Standard hypergeometric operator

Alternatively, we can slightly change the coordinates (7.9), replacing u1, u2 with

ũ1 :=
z−1√

z−1z1 + z−2z2
= u1

√
w, ũ2 :=

z−2√
z−1z1 + z−2z2

= u2
√
1− w. (7.20)

As compared with the previous coordinates, we need to replace ∂w with

∂w +N sph
1

1

2w
+N sph

2

1

2(w − 1)
. (7.21)



44 J. Dereziński and P. Majewski

Let us only quote the results for the Cartan operators

N sph
1 = ũ1∂ũ1

, (7.22)

N sph
2 = ũ2∂ũ2

, (7.23)

N sph
3 = u3 ∂u3

, (7.24)

and the reduced Laplacian;

∆sph
C6 = w(1− w)∂2w +

(

(1 +N sph
1 )(1− w)− (1 +N sph

2 )w
)

∂w

+
1

4
(N sph

3 )2 − 1

4
(N sph

1 +N sph
2 + 1)2. (7.25)

If we now make the ansatz

f(w, ũ1, ũ2, u3) = ũα1 ũ
β
2u

µ
3 F̃ (w), (7.26)

then clearly,

N sph
1 f = αf,

N sph
2 f = βf,

N sph
3 f = µf.

It is easy to see that on functions of the form (7.26), ∆sph
C6 coincides with the standard hyperge-

ometric operator (2.2). When (7.21) is applied to root operators and Weyl symmetries, we also
obtain the symmetries of the standard hypergeometric operator described in [De].

7.5 Factorizations

In the Lie algebra so(C6) represented in (7.1) we have 3 distinguished Lie subalgebras isomorphic
to so(C4): in an obvious notation,

so12(C
4), so13(C

4), so23(C
4).

By (6.44), the corresponding Casimir operators are

C12 = 4B1,2B−1,−2 − (N1 +N2)
2 − 2N1 − 2N2 (7.27a)

= 4B−1,−2B1,2 − (N1 +N2)
2 + 2N1 + 2N2 (7.27b)

= 4B1,−2B−1,2 − (N1 −N2)
2 − 2N1 + 2N2 (7.27c)

= 4B−1,2B1,−2 − (N1 −N2)
2 + 2N1 − 2N2; (7.27d)

C13 = 4B1,3B−1,−3 − (N1 +N3)
2 − 2N1 − 2N3 (7.27e)

= 4B−1,−3B1,3 − (N1 +N3)
2 + 2N1 + 2N3 (7.27f)

= 4B1,−3B−1,3 − (N1 −N2)
2 − 2N1 + 2N3 (7.27g)

= 4B−1,3B1,−3 − (N1 −N3)
2 + 2N1 − 2N3; (7.27h)

C23 = 4B2,3B−2,−3 − (N2 +N3)
2 − 2N2 − 2N3 (7.27i)

= 4B−2,−3B2,3 − (N2 +N3)
2 + 2N2 + 2N3 (7.27j)

= 4B2,−3B−2,3 − (N2 −N2)
2 − 2N2 + 2N3 (7.27k)

= 4B−2,3B2,−3 − (N2 −N3)
2 + 2N2 − 2N3. (7.27l)
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After the reduction described in (6.25), we obtain the identities

(2z−1z1 + 2z−2z2)∆
⋄
C6 = −1 + C⋄,−1

12 + (N⋄,−1
3 )2, (7.28a)

(2z−1z1 + 2z−3z3)∆
⋄
C6 = −1 + C⋄,−1

13 + (N⋄,−1
2 )2, (7.28b)

(2z−2z2 + 2z−3z3)∆
⋄
C6 = −1 + C⋄,−1

23 + (N⋄,−1
1 )2. (7.28c)

If we use the spherical section, (7.28a), (7.28b), (7.28c) become

4∆sph
C6 = −1 + Csph,−1

12 + (N sph,−1
3 )2, (7.29a)

−4(1 −w)∆sph
C6 = −1 + Csph,−1

13 + (N sph,−1
2 )2, (7.29b)

−4w∆sph
C6 = −1 + Csph,−1

23 + (N sph,−1
1 )2. (7.29c)

They yield the factorizations of the balanced hypergeometric operator described in Subsec. 2.1.
Applying 7.21, we also obtain the factorizations of the standard hypergeometric operator de-
scribed in [De].

7.6 Conformal symmetries of ∆C4

In this subsection we describe the reduction of the Laplacian on C
6 to C

4, which is accomplished
by aplying the flat section. This will lead us to an alternative derivation of the hypergeometric
equation. Besides, the material of this subsection will be needed when we will discuss the
confluent equation.

To a large extent, this subsection is a specification of Subsec. 6.7 to n = 4. Recall that the
flat section is given by

z−3 = −z−1z1 − z−2z2, z3 = 1.

It is parametrized with y ∈ C
4. More precisely, we introduce the coordinates

y−1 = z−1, y1 = z1, y−2 = z−2, y2 = z2. (7.30)

Thus this section can be identified with C
4 with the scalar product given by the square

〈y|y〉 = 2y−1y1 + 2y−2y2. (7.31)

Lie algebra so(C6).

Cartan algebra:

Nfl
i = y−i∂y−i

− yi∂yi , i = 1, 2;

Nfl,η
3 = y−1∂y−1

+ y1∂y1 + y−2∂y−2
+ y2∂y2 − η.

Root operators:

Bfl
1,2 = y−1∂y2 − y−2∂y1 ,

Bfl
−1,−2 = y1∂y−2

− y2∂y−1
,

Bfl
1,−2 = y−1∂y−2

− y2∂y1 ,

Bfl
−1,2 = y1∂y2 − y−2∂y−1

.
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Bfl,η
3,1 = y−1(∂y−1

− η)− y−2y2∂y1 + y−1y−2∂y−2
+ y−1y2∂y2 ,

Bfl
−3,−1 = ∂y−1

,

Bfl,η
3,−1 = y1(∂y1 − η)− y−2y2∂y−1

+ y1y−2∂y−2
+ y1y2∂y2 ,

Bfl
−3,1 = ∂y1 .

Bfl,η
3,2 = y−2(∂y−2

− η)− y−1y1∂y2 + y−2y−1∂y−1
+ y−2y1∂y1 ,

Bfl
−3,−2 = ∂y−2

,

Bfl,η
3,−2 = y2(∂y2 − η)− y−1y1∂y−2

+ y2y−1∂y−1
+ y2y1∂y1 ,

Bfl
−3,2 = ∂y2 .

Weyl symmetries.

Transpositions:

σfl(12)f(y−1, y1, y−2, y2) = f(y−2, y2, y−1, y1),

σfl,η(13)f(y−1, y1, y−2, y2) = yη1f
(−y−1y1 − y−2y2

y1
,
1

y1
,
y−2

y1
,
y2
y1

)

,

σfl,η(23)f(y−1, y1, y−2, y2) = yη2f
(y−1

y2
,
y1
y2
,
−y−1y1 − y−2y2

y2
,
1

y2

)

.

Cycles:

σfl,η(123)f(y−1, y1, y−2, y2) = yη2f
(−y−1y1 − y−2y2

y2
,
1

y2
,
y−1

y2
,
y1
y2

)

,

σfl,η(132)f(y−1, y1, y−2, y2) = yη1f
(y−2

y1
,
y2
y1
,
−y−1y1 − y−2y2

y1
,
1

y1

)

.

Flips

τfl1 f(y−1, y1, y−2, y2) = f(y1, y−1, y−2, y2),

τfl2 f(y−1, y1, y−2, y2) = f(y−1, y1, y2, y−2),

τfl,η3 f(y−1, y1, y−2, y2) = (−2y−1y1 − 2y−2y2)
ηf
( y−1, y1, y−2, y2
−y−1y1 − y−2y2

)

.

Reduced Laplacian coincides with the 4-dimensional Laplacian:

∆fl
C6 = ∆C4 = 2∂y−1

∂y1 + 2∂y−2
∂y2 .

Generalized symmetries:

Nfl,−3
i ∆C4 = ∆C4Nfl,−1

i , 1 ≤ i ≤ 3; (7.32)

Bfl,−3
i,j ∆C4 = ∆C4Bfl,−1

i,j , 1 ≤ |i| < |j| ≤ 3; (7.33)

σfl,−3∆C4 = ∆C4σfl,−1, σ ∈ S3; (7.34)

τfl,−3
j ∆C4 = ∆C4τfl,−1

j , 1 ≤ j ≤ 3. (7.35)
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7.7 Deriving balanced hypergeometric operator from ∆C4

Introduce the following coordinates in C
4:

w =
y−1y1

y−1y1 + y−2y2
, r =

√

2 (y−1y1 + y−2y2), u1 =

√

y−1

y1
, u2 =

√

y−2

y2
. (7.36)

We check that

Nfl
1 = u1∂u1

,

Nfl
2 = u2∂u2

,

Nfl,η
3 = r∂r − η,

∆C4 =
1

r2

(

(r ∂r + 1)2 − 1 + 4 ∂w w(1 − w) ∂w − (u1 ∂u1
)2

w
− (u2 ∂u2

)2

(1− w)

)

.

Thus the ansatz

f(w, u1, u2, r) = uα1u
β
2 r

µ−1F (w)

leads to the balanced hypergeometric operator.

7.8 Deriving standard hypergeometric operator from ∆C4

Alternatively, we can slightly change the coordinates (7.36), replacing u1, u2 with

ũ1 :=
y−1√

y−1y1 + y−2y2
= u1

√
w, ũ2 :=

y−2√
y−1y1 + y−2y2

= u2
√
1− w.

We check that

Nfl
1 = ũ1∂ũ1

,

Nfl
2 = ũ2∂ũ2

,

Nfl,η
3 = r∂r − η,

∆C4 =
1

r2

(

(r ∂r + 1)2 − 1 + 4w(1 − w)∂2w

+ 4
(

(1 + u1∂u1
)(1− w)− (1 + u2∂u2

)w
)

∂w − (u1∂u1
+ u2∂u2

+ 1)2
)

. (7.37)

Thus the ansatz

f(w, ũ1, ũ2, r) = ũα1 ũ
β
2 r

µ−1F (w)

leads to the standard hypergeometric equation.

8 so(C5) and the Gegenbauer equation

In this section we derive the Gegenbauer operator and its so(C5) symmetries. The whole section is
very similar to Sect. 7, where we derived the hypergeometric operator with its so(C6) symmetries.
The main difference is lower dimension.

We will consider the following levels:

(1) Extended space C
5 and the Laplacian ∆C5 .

(2) Reduction to the so-called spherical section and the corresponding Laplace-Beltrami oper-
ator.
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(3) Depending on the choice of coordinates, separation of variables leads to the balanced or
standard Gegenbauer operator.

There exists an alternative derivation:

(2)’ Reduction to C
3 and ∆C3 with help of the flat section.

(3)’ With appropriate coordinates, separation of variables leads to the balanced or standard
Gegenbauer operator.

Some of the aspects of the Gegenbauer equation are actually more complicated than the
corresponding aspects of the hypergeometric equation. This is seen, in particular, when we
consider factorizations of the Gegenbauer operator, which come in two separate varieties, unlike
for the hypergeometric operator, which has a single variety of factorizations. This corresponds
to the fact that so(6) is simply-laced, whereas so(5) is not, ie. its root operators are not of equal
length.

8.1 Extended space C5

We consider C
5 with the coordinates

z0, z−2, z2, z−3, z3 (8.1)

and the scalar product given by

〈z|z〉 = z20 + 2z−2z2 + 2z−3z3. (8.2)

Note that we omit the indices −1, 1; this makes it easier to compare C
5 with C

6.
Lie algebra so(C5). Cartan algebra:

Ni = z−i∂z−i
− zi∂zi , i = 2, 3.

Root operators:

Bi,j = z−i∂j − z−j∂i, |i| = 2, |j| = 3;

B0,j = z0∂j − z−j∂0, |j| = 2, 3.

Weyl symmetries. Transposition:

σ(23)K(z0, z−2, z2, z−3, z3) = K(z0, z−3, z3, z−2, z2).

Reflection and flips:

τ0K(z0, z−2, z2, z−3, z3) = K(−z0, z2, z−2, z−3, z3),

τ2K(z0, z−2, z2, z−3, z3) = K(z0, z2, z−2, z−3, z3),

τ3K(z0, z−2, z2, z−3, z3) = K(z0, z−2, z2, z3, z−3).

Laplacian:

∆C5 = ∂2z0 + 2∂z−2
∂z2 + 2∂z−3

∂z3 .

Generalized symmetries:

Ni∆C5 = ∆C5Ni, i = 2, 3;

Bi,j∆C5 = ∆C5Bi,j, |i| = 2, |j| = 3;

B0,j∆C5 = ∆C5B0,j, |j| = 2, 3;

σ(23)∆C5 = ∆C5σ(23);

τj∆C5 = ∆C5τj, j = 0, 2, 3.
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8.2 Spherical section

We consider the section of the quadric

V4 := {z ∈ C
5 : z20 + 2z−2z2 + 2z−3z3 = 0}

given by equations

1 = z20 + 2z−2z2 = −2z3z−3.

We will call it the spherical section, because it is S2(1)× S1(−1). The superscript used for this
section will be “sph” for spherical.

Introduce the following coordinates in C
5:

r =
√

z20 + 2z−2z2 , p =
√

2z3z−3 , (8.3a)

w =

√

z20
2z−2z2 + z20

, u2 =

√

z−2

z2
, u3 =

√

z−3

z3
. (8.3b)

Similarly as in the previous section, the null quadric in these coordinates is given by r2+p2 = 0.
The generator of dilations is

DC5 = r ∂r + p ∂p.

The spherical section is given by the condition r2 = 1.
Below we describe various objects in the spherical section.
Lie algebra so(C5). Cartan operators:

N sph
2 = u2 ∂u2

, (8.4)

N sph
3 = u3 ∂u3

. (8.5)

Root operators:

Bsph,η
3,2 = iu2u3

√
1− w2

2

(

η − w ∂w − N sph
2

1− w2
−N sph

3

)

, (8.6a)

Bsph,η
−3,−2 = i

1

u2u3

√
1− w2

2

(

η − w ∂w +
N sph

2

1− w2
+N sph

3

)

, (8.6b)

Bsph,η
3,−2 = i

u3
u2

√
1− w2

2

(

η − w ∂w +
N sph

2

1− w2
−N sph

3

)

, (8.6c)

Bsph,η
−3,2 = i

u2
u3

√
1− w2

2

(

η − w ∂w − N sph
2

1− w2
+N sph

3

)

, (8.6d)

Bsph,η
3,0 = iu3

w√
2

(

η +
1− w2

w
∂w −N sph

3

)

, (8.6e)

Bsph,η
−3,0 = i

1

u3

w√
2

(

η +
1− w2

w
∂w +N sph

3

)

, (8.6f)

B2,0 = u2

√

1− w2

2

(

∂w +
w

1−w2
N sph

2

)

, (8.6g)

B−2,0 =
1

u2

√

1− w2

2

(

∂w − w

1−w2
N sph

2

)

. (8.6h)
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Weyl symmetries. Transpositions:

σsph,η23 f(w, u2, u3) =
(

i
√

1− w2
)η
f

(

w√
w2 − 1

, u3, u2

)

. (8.7a)

Reflection and flips:

τ sph0 f(w, u2, u3) =f (−w, u2, u3) , (8.7b)

τ sph2 f(w, u2, u3) =f

(

w,
1

u2
, u3

)

, (8.7c)

τ sph3 f(w, u2, u3) =f

(

w, u2,
1

u3

)

. (8.7d)

The Laplacian in coordinates is

∆C5 =
1

r2

(

(r ∂r)
2 + (r ∂r) +

r2

p2
(p ∂p)

2 + ∂w (1− w2) ∂w − (u2 ∂u1
)2

1− w2
− r2

p2
(u3 ∂u3

)2
)

. (8.8)

Using r2 + p2 = 1 and

(r ∂r)
2 + r ∂r +

r2

p2
(p ∂p)

2 =

(

r ∂r +
r2

p2
(p ∂p) +

1

2

)(

r ∂r + p ∂p +
1

2

)

− 1

4
+

+

(

r2

p2
+ 1

)(

r ∂r +
1

2

)

(

p ∂p
)

.

we obtain

∆⋄
C5 =

1

r2

(

∂w (1− w2) ∂w − (u2 ∂u1
)2

1− w2
+ (u3 ∂u3

)2 − 1

4

)

. (8.9)

To convert ∆⋄
C5 into the reduced Laplacian ∆sph

C5 we simply remove 1
r2

, obtaining the
Laplace-Beltrami operator on S2(1) × S(1):

∆sph
C5 = ∂w (1− w2) ∂w − (N sph

2 )2

1− w2
+ (N sph

3 )2 − 1

4
. (8.10)

We have

N sph
i ∆C3 = ∆C3N sph

i , i = 2, 3; (8.11)

B
sph,− 5

2

i,j ∆C3 = ∆C3B
sph,− 1

2

i,j , |i| = 2, |j| = 3; (8.12)

B
sph,− 5

2

0,j ∆C3 = ∆C3B
sph,− 1

2

0,j , |j| = 2, 3; (8.13)

σ
sph,− 5

2

(23) ∆C3 = ∆C3σ
sph,− 1

2

(23) ; (8.14)

τ sphj ∆C3 = ∆C3τ sphj , j = 0, 2, 3. (8.15)

8.3 Balanced Gegenbauer operator

Using the spherical section we make an ansatz

f(w, u2, u3) = uα2u
λ
3F (w). (8.16)
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Clearly,

N sph
2 f = αf,

N sph
3 f = λf.

Therefore, on functions of the form (8.16), ∆sph
C5 (8.10) coincides with the balanced Gegenbauer

operator (2.8). The generalized symmetries for the roots (8.12) and (8.13), for the permutation
(8.14), and for the flips (8.15) coincide with the transmutation relations, the discrete symmetries,
and the sign changes of α, λ of the balanced Gegenbauer operator, respectively; see Subsec. 2.2.

8.4 Standard Gegenbauer operator

Alternatively, we can replace the coordinate u2 with

ũ2 :=
z−2

√

z20+2z−2z2
= u2

√

1−w2

2
. (8.17)

As compared with the previous coordinates, we need to replace ∂w with

∂w − w√
1− w2

N sph
2 . (8.18)

In these coordinates

N sph
2 = ũ2∂ũ2

, (8.19)

N sph
3 = u3 ∂u3

, (8.20)

∆sph
C5 = (1− w2)∂2w − 2(1 +N sph

2 )w∂w + (N sph
3 )2 −

(

N sph
2 +

1

2

)2
. (8.21)

We make the ansatz

f(w, u2, u3) = ũα2u
λ
3F (w). (8.22)

Clearly,

N sph
2 f = αf,

N sph
3 f = λf.

Therefore, on functions of the form (8.22), ∆sph
C5 coincides with the standard Gegenbauer operator.

8.5 Factorizations

In the Lie algebra so(C5) with the coordinates z0, z−2, z2, z−3, z3 we have 3 distinguished Lie
subalgebras: one isomorphic to so(C4) and two isomorphic to so(C3). In an obvious notation,

so23(C
4), so02(C

3), so03(C
3).
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By (6.44) and (6.38), the corresponding Casimir operators are

C23 = 4B2,3B−2,−3 − (N2 +N3)
2 − 2N2 − 2N3 (8.23a)

= 4B−2,−3B2,3 − (N2 +N3)
2 + 2N2 + 2N3 (8.23b)

= 4B2,−3B−2,3 − (N2 −N2)
2 − 2N2 + 2N3 (8.23c)

= 4B−2,3B2,−3 − (N2 −N3)
2 + 2N2 − 2N3; (8.23d)

C02 = 2B0,2B0,−2 −N2
2 −N2 (8.23e)

= 2B0,2B0,−2 −N2
2 +N2; (8.23f)

C03 = 2B0,3B0,−3 −N2
3 −N3 (8.23g)

= 2B0,3B0,−3 −N2
3 +N3. (8.23h)

After the reduction described in (6.25) and (6.26), we obtain the identities

(2z−2z2 + 2z−3z3)∆
⋄
C5 = −3

4
+ C⋄,− 1

2

23 , (8.24a)

(z20 + 2z−2z2)∆
⋄
C5 = −1

4
+ C⋄,− 1

2

02 + (N
⋄,− 1

2

3 )2, (8.24b)

(z20 + 2z−3z3)∆
⋄
C5 = −1

4
+ C⋄,− 1

2

03 + (N
⋄,− 1

2

2 )2. (8.24c)

If we use the spherical section, (8.24a), (8.24b), (8.24c) become

−w2∆sph
C5 = −3

4
+ Csph,− 1

2

23 , (8.25a)

∆sph
C5 = −1

4
+ Csph,− 1

2

02 + (N sph
3 )2, (8.25b)

(w2 − 1)∆sph
C5 = −1

4
+ Csph,− 1

2

03 + (N sph
2 )2. (8.25c)

They yield the factorizations of the balanced Gegenbauer operator described in Subsec. 2.2 and
of the standard Gegenbauer operator described in [De].

8.6 Conformal symmetries of ∆C3

In this subsection we describe the reduction of the Laplacian on C
5 to C

3. To this end we
apply the flat section. This will lead us to an alternative derivation of the Gegenbauer equation.
Besides, the material of this subsection will be needed when we will discuss the Hermite equation.

To a large extent, this subsection is a specification of Subsec. 6.7 to n = 3. Recall that the
flat section is given by

z−3 = −1

2
z20 − z−2z2, z3 = 1.

We introduce the coordinates

y0 = z0, y−2 = z−2, y2 = z2. (8.26)

Thus we obtain C
3 with the scalar product given by

〈y|y〉 = y20 + 2y−2y2. (8.27)
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Lie algebra so(C5).

Cartan operators:

Nfl
2 = y−2∂y−2

− y2∂y2 ,

Nfl,η
3 = y0∂y0 + y−2∂y−2

+ y2∂y2 − η.

Root operators:

Bfl
0,2 = y0∂y2 − y−2∂y0 ,

Bfl
0,−2 = y0∂y−2

− y2∂y0 ,

Bfl
0,3 = y0∂y3 − y−3∂y0 ,

Bfl
0,−3 = y0∂y−3

− y3∂y0 .

Bfl,η
3,2 = y−2(∂y−2

− η)− y−2y2∂y2 + y−2y−2∂y−2
+ y−2y2∂y2 ,

Bfl
−3,−2 = ∂y−2

,

Bfl,η
3,−2 = y2(∂y2 − η)− y−2y2∂y−2

+ y2y−2∂y−2
+ y2y2∂y2 ,

Bfl
−3,2 = ∂y2 .

Weyl symmetries.

Transpositions:

σfl,η(23)f(y0, y−2, y2) = yη2f
(−1

2y
2
0 − y−2y2

y2
,
1

y2

)

.

Flips:

τfl0 f(y0, y−2, y2) = f(y0, y2, y−2),

τfl2 f(y0, y−2, y2) = f(y0, y2, y−2),

τfl,η3 f(y0, y−2, y2) = (−y20 − 2y−2y2)
ηf
( y0, y−2, y2

−1
2y

2
0 − y−2y2

)

.

Reduced Laplacian coincides with the 3-dimensional Laplacian:

∆fl
C3 = ∆C3 = ∂2y0 + 2∂y−2

∂y2 .

Generalized symmetries:

N
fl,− 5

2

i ∆C3 = ∆C3N
fl,− 1

2

i , i = 2, 3; (8.28)

B
fl,− 5

2

i,j ∆C3 = ∆C3B
fl,− 1

2

i,j , |i| = 2, |j| = 3; (8.29)

B
fl,− 5

2

0,j ∆C3 = ∆C3B
fl,− 1

2

0,j , |j| = 2, 3; (8.30)

σ
fl,− 5

2

(23) ∆C3 = ∆C3σ
fl,− 1

2

(23) ; (8.31)

τ
fl,− 5

2

j ∆C3 = ∆C3τ
fl,− 1

2

j , j = 0, 2, 3. (8.32)
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8.7 Deriving balanced Gegenbauer operator from ∆C3

Introduce the following coordinates in C
3:

u :=

√

y−2

y2
, r :=

√

y20 + 2y−2y2, w :=
y0

√

y20 + 2y−2y2
. (8.33)

Clearly,

Nfl
2 = u∂u,

Nfl,η
3 = r∂r − η,

∆C3 =
1

r2

(

∂w (1− w2) ∂w − (u∂u)
2

1− w2
+
(

r∂r +
1

2

)2 − 1

4

)

. (8.34)

Thus the ansatz

f(w, u, r) = uαrλ−
1

2F (w)

leads to the balanced Gegenbauer operator (2.8).

8.8 Deriving standard Gegenbauer operator from ∆C3

Instead of the coordinate u choose

ũ :=
y−2

√

y20+2y−2y2
= u

√

1− w2

2
.

Clearly,

Nfl
2 = ũ∂ũ,

Nfl,η
3 = r∂r − η,

∆C3 =
1

r2

(

(1− w2)∂2w − 2(1 +Nfl
2 )w∂w −

(

ũ∂ũ +
1

2

)2
+
(

r∂r +
1

2

)2
)

. (8.35)

Thus the ansatz

f(w, ũ, r) = ũαrλ−
1

2 F̃ (w)

leads to the standard Gegenbauer operator (2.7).

9 Symmetries of the heat equation – the Schrödinger algebra

The main subject of this section are generalized (infinitesimal) symmetries of the heat equation
(

∆Cn−2 + ∂t
)

f = 0. (9.1)

We will see in particular that the Lie group of generalized symmetries of (9.1) is sch(Cn−2), the
so-called Schrödinger Lie algebra.

We will reduce the heat equation (9.1) to the Laplace equation on C
n (6.1), whose Lie algebra

of generalized infinitesimal symmetries is, as we saw, so(Cn+2). sch(Cn−2) can be viewed as a
subalgebra of so(Cn+2).

Note that the choice of the dimension n−2 in (9.1) makes our presentation of the heat equation
consistent with that of the Laplace equation of Sect. 6. It will be convenient to start again from
the extended space C

n+2, where all symmetries greatly simplify.
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9.1 The Schrödinger Lie algebra and group on Cn+2

We consider again the space C
n+2 with the scalar product given by

〈z|z〉 =
∑

i∈In+2

z−izi, z ∈ C
n+2,

and the Laplacian

∆Cn+2 =
∑

i∈In+2

∂z−i
∂zi .

Recall that the Lie algebra so(Cn+2) and the group O(Cn+2) have natural representations on
C
n+2 (6.2) and (6.3) commuting with ∆Cn+2 , see (6.4), (6.5). A special role will be played by

the operator

B−m−1,m = zm+1∂zm − z−m∂z−m−1
∈ so(Cn+2).

We define the Schrödinger Lie algebra

sch(Cn−2) := {B ∈ so(Cn+2) : [B,B−m−1,m] = 0}.

We also have the full and special Schrödinger group

Sch(Cn−2) := {α ∈ O(Cn+2) : αB−m−1,m = B−m−1,mα},
SSch(Cn−2) := Sch(Cn−2) ∩ SO(Cn+2).

9.2 Structure of sch(Cn−2)

Let us describe the structure of sch(Cn−2).
We will use our usual notation for elements of so(Cn+2) and O(Cn+2). In particular,

Nm = z−m∂z−m
− zm∂zm , Nm+1 = z−m−1∂z−m−1

− zm+1∂zm+1
.

Define

Nm,m+1 := Nm +Nm+1.

Note that Nm,m+1 belongs to sch(Cn−2) and commutes with so(Cn−2), which is naturally em-
bedded in sch(Cn−2).

sch(Cn−2) is spanned by the following operators:

(1) B−m−1,m, which spans the center of sch(Cn−2).

(2) Bm,j, B−m−1,j, j = 1, . . . ,m− 1, which have the following nonzero commutator:

[Bm,j , B−m−1,−j ] = B−m−1,m. (9.2)

(3) B−m−1,−m, Bm+1,m, Nm,m+1, which have the usual commutation relations of sl(C2) ≃
so(C3):

[Bm+1,m, B−m−1,−m] = Nm.m+1, [B±(m+1),±m, Nm,m+1] = ±B±(m+1),±m.

(4) Bi,j, |i| < |j| ≤ m − 1, Ni, i = 1, . . . ,m − 1, with the usual commutation relations of
so(Cn−2).
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The span of (2) can be identified with C
n−2 ⊕ C

n−2 ≃ C
2 ⊗ C

n−2, which has a natural
structure of a symplectic space. The span of (1) and (2) is the central extension of the abelian
algebra C

2 ⊗C
n−2 by (9.2). Such a Lie algebra is usually called the Heisenberg Lie algebra over

C
2 ⊗ C

n−2 and can be denoted by

heis(C2 ⊗ C
n−2) = C⋊ (C2 ⊗ C

n−2).

sl(C2) acts in the obvious way on C
2 and so(Cn−2) acts on C

n−2. Thus sl(C2) ⊕ so(Cn−2)
acts on C

2 ⊗ C
n−2. Thus

sch(Cn−2) ≃ C⋊(C2 ⊗ C
n−2)⋊

(

sl(C2)⊕ so(Cn−2)
)

.

Note, in particular, that neither sch(Cn−2) nor SSch(Cn−2) are semisimple.
The subalgebra spanned by the usual Cartan algebra of so(Cn−2), Nm,m+1 and B−m−1,m

is a maximal commutative subalgebra of sch(Cn−2). It will be called the “Cartan algebra” of
sch(Cn−2).

Let us introduce κ ∈ SO(Cn−2 ⊕ C
2 ⊕ C

2):

κ(. . . , z−m, zm, z−m−1, zm+1) := (. . . , zm+1, z−m−1,−zm,−z−m).

Note that κ4 = id and κ ∈ SSch(Cn−2). On the level of functions

κK(. . . , z−m, zm, z−m−1, zm+1) := K(. . . ,−zm+1,−z−m−1, zm, z−m).

The subgroup of Sch(Cn−2) generated by W (Cn−2) ⊂ O(Cn−2) and κ will be called the group
of Weyl symmetries of sch(Cn−2).

9.3 The Schrödinger Lie algebra and group on C
n

Recall that in Sect. 6.7 we used the decomposition C
n+2 = C

n ⊕ C
2. Elements of C

n were
generically denoted by y. The space C

n will be also useful in this section. Further on, it will be
decomposed as C

n = C
n−2 ⊕ C

2. Thus the square of an element of Cn is equal to

〈y|y〉Cn = 〈y|y〉Cn−2 + 2y−mym, y ∈ C
n,

and the Laplacian

∆Cn = ∆Cn−2 + 2∂y−m
∂ym .

Recall that we have the representations

so(Cn+2) ∋ B 7→ Bfl,η ∈ A⋊ hol(Cn),

O(Cn+2) ∋ α 7→ αfl,η ∈
loc

A×
⋊Hol(Cn),

and the generalized symmetry

Bfl,−2−n
2 ∆Cn = ∆CnBfl, 2−n

2 , B ∈ so(Cn+2), (9.3)

αfl,−2−n
2 ∆Cn = ∆Cnαfl, 2−n

2 , α ∈ O(Cn+2). (9.4)
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9.4 The Schrödinger Lie algebra and group on Cn−2 ⊕ C

We consider now the space C
n−2⊕C with the generic variables (y, t) = (. . . , ym−1, t). Note that

t should be understood as a new name for y−m, and we keep the old names for the first n − 2
coordinates.

We define the map θ : A(Cn−2 ⊕ C) → A(Cn) by setting for h

(θh)(. . . , ym−1, y−m, ym) := h(. . . , ym−1, y−m)eym . (9.5)

We also define ζ : A(Cn) → A(Cn−2 ⊕ C), which to f associates

(ζf)(. . . , ym−1, t) := f(. . . , ym−1, t, 0). (9.6)

Clearly, ζ is a left inverse of θ:

ζ ◦ θ = id.

Therefore, θ ◦ ζ = id is true on the range of θ.
The heat operator in n − 2 spatial dimensions can be obtained from the Laplacian in n

dimension:

LCn−2 := ∆Cn−2 + 2∂t = ζ∆Cnθ. (9.7)

For B ∈ sch(Cn−2) ⊂ so(Cn+2) we define

Bsch,η := ζBfl,ηθ,

and for α ∈ Sch(Cn−2) ⊂ O(Cn+2),

αsch,η := ζαfl,ηθ.

Lemma 1. sch(Cn−2), Sch(Cn−2) and ∆Cn preserve the range of θ.

Proof. Note that

Bfl,η
−m−1,m = ∂ym .

Let B ∈ sch(Cn−2). Then [Bfl,η, ∂ym ] = 0. Therefore,

Bfl,η = C +D∂ym ,

where C ∈ hol(Cn−2⊕C) and D ∈ A(Cn−2⊕C) (they do not involve the variable ym). Therefore,
B preserves the range of θ.

Likewise, if α ∈ Sch(Cn−2), then we have

αfl,ηf(. . . , y−m, ym) = βf
(

. . . , y−m, ym + d(. . . , y−m)
)

,

where β ∈ A×
⋊Hol(Cn⊕C), d ∈ A(Cn−2⊕C) (they do not involve the variable ym). Therefore,

αfl,η preserves the range of θ.
For ∆Cn the statement is contained in the formula (9.7). �

Theorem 2. (1) For any η,

sch(Cn−2) ∋ B 7→ Bsch,η ∈ A⋊hol(Cn−2 ⊕C),

Sch(Cn−2) ∋ α 7→ αsch,η ∈
loc

A×
⋊Hol(Cn−2 ⊕ C)

is a representation/local representation.
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(2) We have a generalized symmetry

Bsch,−2−n
2 LCn−2 = LCn−2Bsch, 2−n

2 , B ∈ sch(Cn−2),

αsch,−2−n
2 LCn−2 = LCn−2αsch, 2−n

2 , α ∈ Sch(Cn−2).

Proof. Let us first prove (1). Obviously, for B1, B2 ∈ so(Cn+2)

ζ[Bfl,η
1 Bfl,η

2 ]θ = ζ[B1, B2]
fl,ηθ.

If B1, B2 ∈ sch(Cn−2), we can insert θ ◦ ζ in the middle of the commutator. Hence

[Bsch,η
1 , Bsch,η

2 ] = [B1, B2]
sch,η.

Now, for any α1, α2 ∈ O(Cn+2)

ζαfl,η
1 αfl,η

2 θ = ζ(α1α2)
fl,ηθ.

For α1, α2 ∈ Sch(Cn−2) we can insert θ ◦ ζ in the middle of the composition, obtaining

αsch,η
1 αsch,η

2 = (α1α2)
sch,η.

To prove (2) we multiply (9.3) and (9.4) by ζ from the left and θ from the right:

ζBfl,−2−n
2 ∆Cnθ = ζ∆CnBfl, 2−n

2 θ, B ∈ so(Cn+2); (9.8)

ζαfl,−2−n
2 ∆Cnθ = ζ∆Cnαfl, 2−n

2 θ, α ∈ O(Cn+2). (9.9)

For B ∈ sch(Cn−2) and α ∈ Sch(Cn−2) we can insert θ ◦ ζ, which yields (2). �

9.5 Hermite operator

Consider again the space C
n−2⊕C. This time its generic coordinates will be denoted (w, s). We

assume that the space C
n−2 is equipped with a scalar product. The following operator can be

called the (n− 2)-dimensional Hermite operator:

HCn−2 := ∆Cn−2 −DCn−2 + s∂s.

The heat operator is closely related to the Hermite operator. Indeed, let us change the
coordinates from (y, t) ∈ C

n−2 ⊕C
× to (w, s) ∈ C

n−2 ⊕ C
× by

w = t−
1

2 y, s = t
1

2 ,

with the inverse transformation

y = ws, t = s2.

Under this transformation the heat operator LCn−2 becomes 1
s2
HCn−2 .

In Sec. 11 we will use this change of coordinates to obtain the (1-dimensional) Hermite
operator. The construction is, however, interesting in higher dimensions as well, therefore we
mention it here.

Strictly speaking, the above coordinate change does not work globally: in particular, we need
to assume s 6= 0, t 6= 0, besides s doubly covers t. We usually are not absolutely precise about
specifying the domains of coordinate changes–if needed, the reader can easily fill in such details.
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9.6 Schrödinger symmetries in coordinates

In this subsection we sum up information about Schrödinger symmetries on 4 levels described
in the previous subsections. Note that the last two levels differ only by a change of coordinates.
Therefore, the operators on these two levels are denoted by the same symbols, with the same
superscript sch.

We start with generic names of the variables and the corresponding squares:

z ∈ C
n+2, 〈z|z〉Cn+2 =

∑

j∈In+2

z−jzj ,

y ∈ C
n, 〈y|y〉Cn =

∑

j∈In

y−jyj ,

(y, t) ∈ C
n−2 ⊕ C, 〈y|y〉Cn−2 =

∑

j∈In−2

y−jyj,

(w, s) ∈ C
n−2 ⊕ C, 〈w|w〉Cn−2 =

∑

j∈In−2

w−jwj .

Cartan algebra of sch(Cn−2).

Central element:

B−m−1,m = zm+1∂zm − z−m∂z−m−1
,

Bfl
−m−1,m = ∂ym ,

Bsch
−m−1,m = 1,

Bsch
−m−1,m = 1.

Cartan algebra of so(Cn−2), j = 1, . . . ,m− 1:

Nj = z−j∂z−j
− zj∂zj ,

Nfl
j = y−j∂y−j

− yj∂yj ,

N sch
j = y−j∂y−j

− yj∂yj ,

N sch
j = w−j∂w−j

− wj∂wj
.

Generator of scaling:

Nm,m+1 = z−m∂z−m
− zm∂zm + z−m−1∂z−m−1

− zm+1∂zm+1
,

Nfl,η
m,m+1 =

∑

j∈In−2

yj∂yj + 2y−m∂y−m
− η,

N sch,η
m,m+1 =

∑

j∈In−2

yj∂yj + 2t∂t − η,

N sch,η
m,m+1 = s∂s − η.

Root operators of sch(Cn−2).

Roots of so(Cn−2), |i| < |j|, i, j ∈ In−2:

Bi,j = z−i∂zj − z−j∂zi ,

Bfl
i,j = y−i∂yj − y−j∂yi ,

Bsch
i,j = y−i∂yj − y−j∂yi ,

Bsch
i,j = w−i∂wj

− w−j∂wi
.
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Space translations, j ∈ In−2:

B−m−1,j = zm+1∂zj − z−j∂z−m−1
,

Bfl
−m−1,j = ∂yj ,

Bsch
−m−1,j = ∂yj ,

Bsch
−m−1,j =

1

s
∂wj

.

Time translation:

B−m−1,−m = zm+1∂z−m
− zm∂z−m−1

,

Bfl
−m−1,−m = ∂y−m

,

Bsch
−m−1,−m = ∂t,

Bsch
−m−1,−m =

1

2s2

(

−
∑

j∈In−2

wj∂wj
+ s∂s

)

.

Additional roots, j ∈ In−2:

Bm,j = z−m∂zj − z−j∂zm ,

Bfl
m,j = y−m∂yj − y−j∂ym ,

Bsch
m,j = t∂yj − y−j,

Bsch
m,j = s(∂wj

− w−j).

Bm+1,m = z−m−1∂zm − z−m∂zm+1
,

Bfl,η
m+1,m = y−m

(

∑

j∈In−2

yj∂yj + y−m∂y−m
− η
)

− 1

2

∑

j∈In−2

y−jyj∂ym ,

Bsch,η
m+1,m = t

(

∑

j∈In−2

yj∂yj + y−m∂y−m
− η
)

− 1

2

∑

j∈In−2

y−jyj,

Bsch,η
m+1,m =

s2

2

(

s∂s − 2η +
∑

j∈In−2

wj∂wj
−
∑

j∈In−2

wjw−j

)

.

Weyl symmetries. We will write K for a function on C
n+2, f for a function on C

n, h for a
function on C

n−2 ⊕ C in both coordinates
(

. . . , ym−1, t
)

and (. . . , wm−1, s).
Reflection:

τ0K(z0, . . . , . . . , z−m, zm, z−m−1, zm+1) = K(−z0, . . . , z−m, zm, z−m−1, zm+1),

τfl0 f(y0, . . . , y−m, ym) = f(−y0, . . . , y−m, ym),

τ sch0 h(y0, . . . , t) = h(−y0, . . . , t),
τ sch0 h(w0, . . . , s) = h(−w0, . . . , s).

Flips, j = 1, . . . ,m− 1:

τjK(. . . , z−j , zj , . . . , z−m, zm, z−m−1, zm+1) = K(. . . , zj , z−j , . . . , z−m, zm, z−m−1, zm+1),

τflj f(. . . , y−j , yj, . . . , y−m, ym) = f(. . . , yj , y−j, . . . , y−m, ym),

τ schj h(. . . , y−j , yj, . . . , t) = h(. . . , yj , y−j, . . . , t),

τ schj h(. . . , w−j , wj , . . . , s) = h(. . . , wj , w−j , . . . , s).
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Permutations, σ ∈ Sm−1:

σK(. . . , z−m+1, zm−1, z−m, zm,z−m−1, zm+1)

= K(. . . , z−σm−1
, zσm−1

, z−m, zm, z−m−1, zm+1),

σflf(. . . , y−m+1, ym−1, y−m, ym) = f(. . . , y−σm−1
, yσm−1

, y−m, ym),

σschh(. . . , y−m+1, ym−1, t) = h(. . . , y−σm−1
, yσm−1

, t),

σschh(. . . , w−m+1, wm−1, s) = h(. . . , w−σm−1
, wσm−1

, s).

Special transformation κ:

κK(. . . , zm−1, z−m, zm, z−m−1, zm+1) = K(. . . , zm−1,−zm+1,−z−m−1, zm, z−m),

κfl,ηf(. . . , ym−1, y−m, ym) = yη−mf
(

. . . ,
ym−1

y−m
,− 1

y−m
,

1

2y−m

∑

j∈In

y−jyj

)

,

κsch,ηh(. . . , ym−1, t) = tη exp
( 1

2t

∑

j∈In−2

y−jyj

)

h(. . . ,
ym−1

t
,−1

t
),

κsch,ηh(. . . , wm−1, s) = s2η exp
(1

2

∑

j∈In−2

w−jwj

)

h(. . . ,−iwm−1,
i

s
).

Square of κ:

κ2K(. . . , zm−1, z−m, zm, z−m−1, zm+1) = K(. . . , zm−1,−z−m,−zm,−z−m−1,−zm+1),

(κfl,η)2f(. . . , ym−1, y−m, ym) = f(. . . ,−ym−1, y−m, ym),

(κsch,η)2h(. . . , ym−1, t) = (−1)ηh(. . . ,−ym−1, t),

(κsch,η)2h(. . . , wm−1, s) = (−1)ηh(. . . ,−wm−1, s).

Laplacian/Laplacian / Heat operator / Hermite operator

∆Cn+2 =
∑

j∈In+2

∂z−j
∂zj ,

∆Cn =
∑

j∈In

∂y−j
∂yj ,

LCn−2 =
∑

j∈In−2

∂y−j
∂yj + 2∂t,

1

s2
H

Cn−2 =
1

s2

(

∑

j∈In−2

∂w−j
∂wj

−
∑

j∈In−2

wj∂wj
+ s∂s

)

.

Computations. Let us sketch how we computed the Schrödinger Lie algebra and group in
coordinates. We set

Φsch,η := Φfl,η ◦ θ, Ψsch,η := ζ ◦Ψfl,η.

Then Φsch,η, maps h ∈ A(Cn−2 ⊕ C) onto
(

Φsch,ηh
)

(. . . , z−m+1, zm−1,z−m, zm, z−m−1, zm+1)

:= zηm+1h
(

. . .
z−m+1

zm+1
,
zm−1

zm+1
,
z−m

zm+1

)

exp
( zm
zm+1

)

.

For K ∈ A(Cn−2 ⊕ C
2 ⊕ C

2)
(

Ψsch,ηK
)

(. . . , y−m+1, ym−1, t) := K(. . . , y−m+1, ym−1, t, 0,−1
2 〈y|y〉, 1).
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Note that

Ψsch,ηΦsch,η = id,

Ψsch,η∆Cn+2Φsch,η = LCn−2 ,

Ψsch,ηBΦsch,η = Bsch,η, B ∈ sch(Cn−2),

Ψsch,ηαΦsch,η = αsch,η, α ∈ Sch(Cn−2).

10 sch(C2) and the confluent equation

In this section we derive the confluent operator and its sch(C2) symmetries. We will consider
the following levels:

(1) Extended space C
6 and the Laplacian.

(2) Reduction to C
4 and the Laplacian.

(3) Reduction to C
2 ⊕ C and the heat operator.

(4) Special coordinates.

(5) Sandwiching with a weight.

(6) Depending on the choice of coordinates, separation of variables leads to the balanced or
standard confluent operator.

A separate subsection will be devoted to factorizations of the confluent operator.

10.1 C6

We again consider C
6 with the coordinates (7.1) and the product given by (7.2). We describe

various object related to the Lie algebra sch(C2). Remember that sch(C2) is a subalgebra of
so(C6) and we keep the notation from so(C6).

Lie algebra sch(C2).

Cartan algebra is spanned by

N1 = z−1∂z−1
− z1∂z1 ,

N2,3 = z−2∂z−2
− z2∂z2 + z−3∂z−3

− z3∂z3 ,

B−3,2 = z3∂z2 − z−2∂z−3
.

Root operators:

B2,−1 = z−2∂z−1
− z1∂z2 ,

B2,1 = z−2∂z1 − z−1∂z2 ,

B−3,−1 = z3∂z−1
− z1∂z−3

,

B−3,1 = z3∂z1 − z−1∂z−3
,

B−3,−2 = z3∂z−2
− z2∂z−3

,

B3,2 = z−3∂z2 − z−2∂z3 .

Weyl symmetries.

Special symmetry of order 4:

κK(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1,−z3,−z−3, z2, z−2).
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Flip:

τ1K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z−2, z2, z−3, z3).

We also have the Laplacian (7.3) satisfying (7.4a)-(7.4d).

10.2 C4

We descend on the level of C4, with the coordinates (7.30) and the scalar product given by (7.31).

Lie algebra sch(C2).

Cartan algebra:

Nfl,η
2,3 = y−1∂y−1 + y1∂y1 + 2y−2∂y−2

− η,

Nfl
1 = y−1∂y−1 − y1∂y1 ,

Bfl
−3,2 = ∂y2 .

Root operators:

Bfl
2,−1 = y−2∂y−1 − y1∂y2 ,

Bfl
2,1 = y−2∂y1 − y1∂y2 ,

Bfl
−3,−1 = ∂y−1

,

Bfl
−3,1 = ∂y1 ,

Bfl
−3,−2 = ∂y−2

,

Bfl,η
3,2 = −y−1y1∂y2 + y−2(y−1∂y−1

+ y1∂y1 + y−2∂y−2
− η).

Weyl symmetries.

Special symmetry of order 4:

κfl,ηf(y−1, y1, y−2, y2) = yη−2f
( y1
y−2

,
y−1

y−2
,− 1

y−2
,
2y−1y1 + 2y−2y2

2y−2

)

.

Flip:

τfl1 f(y−1, y1, y−2, y2) = f(y1, y−1, y−2, y2).

10.3 C2 ⊕ C

We apply the ansatz involving the exponential ey2 . We rename y−2 to t. The operator Bsch
−3,2

becomes equal to 1, therefore it can be ignored further on.

Lie algebra sch(C2).

Cartan algebra:

N sch,η
2,3 = y−1∂y−1

+ y1∂y1 + 2t∂t − η,

N sch
1 = y−1∂y−1

− y1∂y1 .
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Root operators:

Bsch
2,−1 = t∂y−1

− y1,

Bsch
2,1 = t∂y1 − y−1,

Bsch
−3,−1 = ∂y−1

,

Bsch
−3,1 = ∂y1 ,

Bsch
−3,−2 = ∂t,

Bsch,η
3,2 = −y−1y1 + t(y−1∂y−1

+ y1∂y1 + t∂t − η).

Weyl symmetries.

Special symmetry of order 4:

κsch,ηh(y−1, y1, t) = tη exp
(y−1y1

t

)

h
(y−1

t
,
y1
t
,−1

t

)

.

Flip:

τ sch1 h(y−1, y1, t) = h(y1, y−1, t).

Heat operator:

LC2 = 2∂y−1
∂y1 + 2∂t.

Generalized symmetries:

N sch
1 LC2 = LC2N sch

1 , (10.1)

N sch,−3
2,3 LC2 = LC2N sch,−1

23 , (10.2)

Bsch,−3
i,j LC2 = LC2Bsch,−1

i,j , (i, j) = (2, ±1), (−3, ±1), ±(3, 2); (10.3)

κsch,−3LC2 = LC2κsch,−1, (10.4)

τ sch1 LC2 = LC2τ sch1 . (10.5)

10.4 Coordinates u, w, s

Let us define new complex variables as

w =
y−1y1
t

, u =

√

y−1

y1
, s =

√
t . (10.6a)

Here are the reverse transformations:

y−1 = us
√
w , y1 =

1

u
s
√
w , t = s2 . (10.6b)

Lie algebra sch(C2). Cartan algebra:

N sch,η
2,3 = s ∂s − η, (10.7a)

N sch
1 = u∂u. (10.7b)
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Root operators:

Bsch
−3,−1 =

1

us

1√
w

(

w ∂w +
N sch

1

2

)

, (10.8a)

Bsch
−3,1 =

u

s

1√
w

(

w ∂w − N sch
1

2

)

, (10.8b)

Bsch
2,−1 =

s

u

1√
w

(

w ∂w +
N sch

1

2
− w

)

, (10.8c)

Bsch
2,1 = su

1√
w

(

w ∂w − N sch
1

2
− w

)

, (10.8d)

Bschη
−3,−2 =

1

s2

(

−w ∂w +
N sch,η

23

2
+
η

2

)

, (10.8e)

Bsch,η
3,2 = s2

(

w ∂w +
N sch,η

23

2
− η

2
− w

)

. (10.8f)

Weyl symmetries. Special symmetry of order 4:

κsch,ηh(w, u, s) = s2ηewh
(

− w, u,
1

s

)

.

Flip:

τ sch1 h
(

w, u, s
)

= h
(

w,
1

u
, s
)

.

Heat operator:

LC2 =
2

s2

(

∂w w ∂w − w ∂w − (u∂u)
2

4w
+

1

2
s ∂s

)

. (10.9)

10.5 Sandwiching with an exponential

For any operator C we define

Ĉ := e−
w
2 Ce

w
2 .

The “hat” isomorphism will not change the Cartan operators:

N̂ sch,η
2,3 = s ∂s − η, (10.10a)

N̂ sch
1 = u∂u . (10.10b)

Root operators:

B̂sch
−3,−1 =

1

us

1√
w

(

w ∂w +
N̂ sch

1

2
+
w

2

)

, (10.10c)

B̂sch
−3,1 =

u

s

1√
w

(

w ∂w − N̂ sch
1

2
+
w

2

)

, (10.10d)
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B̂sch
2,−1 =

s

u

1√
w

(

w ∂w +
N̂ sch

1

2
− w

2

)

, (10.10e)

B̂sch
2,1 = su

1√
w

(

w ∂w − N̂ sch
1

2
− w

2

)

, (10.10f)

B̂sch,η
−3,−2 =

1

s2

(

−w ∂w +
N̂ sch,η

2,3

2
+
η

2
− w

2

)

, (10.10g)

B̂sch,η
3,2 = s2

(

w ∂w +
N̂ sch,η

2,3

2
− η

2
− w

2

)

. (10.10h)

Weyl symmetries. Special symmetry of order 4:

κ̂sch,ηh(w, u, s) = s2ηh
(

− w, u,
1

s

)

.

Flip:

τ̂ sch1 h
(

w, u, s
)

= h
(

w,
1

u
, s
)

.

Heat operator.

L̂C2 = e−
w
2 LC2 e

w
2 =

2

s2

(

∂w w ∂w − w

4
−
(

N̂ sch
1

)2

4w
+

1

2
N̂ sch,−1

2,3

)

(10.11)

10.6 Balanced confluent operator

We make an ansatz

h(w, u, s) = uαs−θ−1F (w). (10.12)

Clearly,

N̂ sch
1 h = αh,

N̂ sch,−1
2,3 h = −θh.

Therefore, on functions of this form, s2

2 LC2 coincides with the balanced confluent operator (2.13).
The generalized symmetries for the roots (10.3), for the special Weyl symmetry (10.4) and for
the flip (10.5) coincide with the transmutation relations, the discrete symmetry and the sign
changes of α, θ of the balanced confluent operator, respectively; see Subsec. 2.3.

10.7 Standard confluent operator

Let us change slightly coordinates by replacing u with

ũ :=
y−1√
t
= u

√
w.

The derivative ∂w is then replaced by

∂w +
1

2w
N1.
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Let us make an ansatz

h(w, ũ, s) = ũαs−θ−1F̃ (w). (10.13)

Clearly,

N sch
1 h = αh,

N sch,−1
2,3 h = −θh.

Then, on functions of the form (10.13), s2

2 LC2 coincides with the standard confluent operator
(2.12).

10.8 Factorizations

Let us note the commutation relation

[B−3,2, B3,2] = N2 +N3 = N2,3. (10.14)

It shows that the triple B−3,2, B3,2 and N2,3 defines a subalgebra isomorphic to so(C3), which
we will denote so23(C

3). The Casimir operator for so23(C
3) is

C23 = 4B3,2B−3,−2 −N2
2,3 + 2N2,3 (10.15a)

= 4B−3,−2B3,2 −N2
2,3 − 2N2,3. (10.15b)

By the same arguments as for (7.29a) we obtain

−2y−1y1LC2 = −1 + Csch,−1
23 + (N sch,−1

1 )2. (10.16)

Morever, we have

[B2,−1, B−3,1] = [B2,1 , B−3,−1] = B−3,2. (10.17)

The commutation relations (10.17) define two Heisenberg subalgebras

heis+(C
2) spanned by B2,−1, B−3,1, B−3,2;

heis−(C
2) spanned by B2,1, B−3,−1, B−3,2.

Let us remark that heis+(C
2) is the τ1-image of heis−(C2).

Let us define

C+ = 2B2,1B−3,−1 +N2,3 +N1 −B−3,2 (10.18a)

= 2B−3,−1B2,1 +N2,3 +N1 +B−3,2, (10.18b)

C− = 2B2,−1B−3,1 +N2,3 −N1 −B−3,2 (10.18c)

= 2B−3,1B2,−1 +N2,3 −N1 +B−3,2. (10.18d)

C+ and C− can be viewed as the Casimir operators for heis+(C
2) and heis−(C

2) respectively.
Indeed, C+, resp. C− commute with all operators in heis+(C

2), resp. heis−(C
2).

Let us now consider the operators on the level of C2 ⊕C. Direct calculation yields

Csch,η
+ = 2t(∂y−1

∂y1 + ∂t)− η − 1, (10.19)

Csch,η
− = 2t(∂y−1

∂y1 + ∂t)− η − 1. (10.20)
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Therefore,

tLC2 = Csch,−1
+ = Csch,−1

− . (10.21)

In the variables w, u, s and after sandwiching with the exponential weight, (10.16) and (10.21)
become

−2ws2L̂C2 = −1 + Ĉsch,−1
23 + (N̂ sch,−1

1 )2, (10.22a)

s2L̂C2 = Ĉsch,−1
+ = Ĉsch,−1

− . (10.22b)

We apply the ansatz (10.12) and obtain all the factorizations of the balanced confluent operator
of Subsec. 2.3.

11 sch(C1) and the Hermite equation

In this section we derive the Hermite operator and its sch(C1) symmetries. We will consider the
following levels:

(1) Extended space C
5 and the Laplacian.

(2) Reduction to C
3 and the Laplacian.

(3) Reduction to C⊕ C and the heat operator.

(4) Special coordinates.

(5) Sandwiching with a weight.

(6) Separation of variables in (5) leads to the balanced Hermite operator.

(7) Separation of variables in (4) leads to the standard Hermite operator.

11.1 C5

We again consider C
5 with the coordinates (8.1) and the product given by the square (8.2).

Remember that sch(C1) is a subalgebra of so(C5) and we keep the notation from so(C5).

Lie algebra sch(C1).

The Cartan algebra is spanned by

N2,3 = z−2∂z−2
− z2∂z2 + z−3∂z−3

− z3∂z3 ,

B−3,2 = z3∂z2 − z−2∂z−3
.

Root operators:

B2,0 = z−2∂z0 − z0∂z2 ,

B−3,0 = z3∂z0 − z0∂z−3
,

B−3,−2 = z3∂z−2
− z2∂z−3

,

B3,2 = z−3∂z2 − z2∂z−3
.

Weyl symmetry:

κK(z0, z−2, z2, z−3, z3) = K(z0,−z3,−z−3, z2, z−2).

It generates a group isomorphic to Z4.
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11.2 C3

We descend on the level of C3, as described in Subsect. 8.6. In particular, we use the coordinates
(8.26) with the scalar product given by (8.27).

Lie algebra sch(C1).

Cartan algebra:

Nfl,η
2,3 = y0∂y0 + 2y−2∂y−2

− η,

Bfl
−3,2 = ∂y2 .

Root operators:

Bfl
2,0 = y−2∂y0 − y0∂y2 ,

Bfl
−3,0 = ∂y0 ,

Bfl
−3,−2 = ∂y−2

,

Bfl,η
3,2 = y−2y0∂y0 + y2−2∂y−2

− 1

2
y20∂y2 − ηy2.

Weyl symmetry:

κfl,ηf(y0, y−2, y2) = yη2f
(y0
y2
,
y20 + 2y−2y2

2y2
,− 1

y2

)

.

11.3 C⊕ C

We descend onto the level of C ⊕ C, as described in Subsec. 9.4. B−3,2 becomes equal to 1,
therefore it will be ignored further on. We rename y−2 to t and y0 to y.

Lie algebra sch(C1).

Cartan algebra:

N sch,η
2,3 = y∂y + 2t∂t − η.

Root operators:

Bsch
2,0 = t∂y − y,

Bsch
−3,0 = ∂y,

Bsch
−3,−2 = ∂t,

Bsch,η
3,2 = t(y∂y + t∂t − η)− y2.

Weyl symmetry:

κsch,ηh(y, t) = tη exp(y
2

2t )h(
y
t ,−1

t ).

Heat operator:

LC = ∂2y + 2∂t.

Generalized symmetries:

N
sch,− 5

2

2,3 LC = LCN
sch,− 1

2

2,3 , (11.1)

B
sch,− 5

2

i,j LC = LCB
sch,− 1

2

i,j , (i, j) = (2, 0), (−3, 0), ±(3, 2), (11.2)

κsch,−
5

2LC = LCκ
sch,− 1

2 . (11.3)
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11.4 Coordinates w, s

Let us define new complex variables as

w =
y√
2 t

, s =
√
t . (11.4a)

Reverse transformations are

y =
√
2 sw , t = s2 . (11.4b)

Lie algebra sch(C1).

Cartan operators:

N sch,η
2,3 = s ∂s − η, (11.5a)

Root operators:

Bsch
−3,0 =

1√
2 s

∂w, (11.5b)

Bsch
2,0 =

s√
2
( ∂w − 2w) , (11.5c)

Bsch
−3,−2 =

1

2 s2

(

−w ∂w +N sph,η
2,3 + η

)

, (11.5d)

Bsch,η
3,2 =

s2

2

(

w ∂w +N sph,η
2,3 − η − 2w2

)

. (11.5e)

Above Bsch
−3,−2 does not depend on η even if at first glance it might seem so.

Weyl symmetry:

κsch,ηh(w, s) = s2ηew
2

h(iw,− i
s ).

Heat operator:

LC =
1

2s2
(

∂2w − 2w ∂w + 2s ∂s
)

. (11.6)

11.5 Sandwiching with a Gaussian.

For any operator C we will write

Ĉ := e−
w2

2 Ce
w2

2 . (11.7)

Lie algebra sch(C1).

Cartan algebra:

N̂ sch,η
2,3 = s ∂s − η, (11.8a)
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Root operators:

B̂sch
−3,0 =

1√
2 s

( ∂w + w) , (11.8b)

B̂sch
2,0 =

s√
2
( ∂w − w) , (11.8c)

B̂sch
−3,−2 =

1

2 s2

(

−w ∂w +N sph,η
23 + η − w2

)

, (11.8d)

B̂sch,η
3,2 =

s2

2

(

w ∂w +N sph,η
23 − η − w2

)

. (11.8e)

Weyl symmetry:

κsch,ηh(w, s) = s2ηh(iw,− i
s ).

Heat operator:

L̂C =
1

2s2

(

∂2w − w2 − 2N
sch,− 1

2

2,3

)

. (11.9)

11.6 Balanced Hermite operator

We make an ansatz

h(w, s) = sλ−
1

2F (w). (11.10)

Clearly,

N̂
sch,− 1

2

2,3 h = λh.

Therefore, on functions of this form, 2s2L̂C1 coincides with the balanced Hermite operator (2.18).
The generalized symmetries for the roots (11.2) and for the Weyl symmetry (11.3) coincide
with the transmutation relations and the discrete symmetry of the balanced Hermite operator,
respectively; see Subsec. 2.4.

11.7 Standard Hermite operator

Alternatively, we can use the ansatz

h(w, s) = sλ−
1

2F (w). (11.11)

without the sandwiching (11.7), Clearly,

N
sch,− 1

2

2,3 h = λh.

Then, on functions of the form (11.11), 2s2LC2 coincides with the standard Hermite operator
(2.17).

11.8 Factorizations

In sch(C1) we have a distinguished subalgebra isomorphic to so(C3)

so23(C
3) spanned by B−3,−2, B3,2, N2,3,
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and a distinguished Heisenberg algebra

heis0(C
2) spanned by B2,0, B−3,0, B−3,2.

We set

C23 = 4B3,2B−3,−2 −N2
2,3 + 2N2,3 (11.12a)

= 4B−3,−2B3,2 −N2
2,3 − 2N2,3, (11.12b)

C0 = 2B2,0B−3,0 + 2N2,3 −B−3,2 (11.12c)

= 2B−3,0B2,0 + 2N2,3 +B−3,2. (11.12d)

C23 is the Casimir operator of so23(C3). C0 can be treated as the Casimir operator of heis0(C2).
We have the identities

−y20LC = Csch,−
1
2

23 − 3

4
, (11.13a)

2tLC = Csch,−
1
2

0 . (11.13b)

In the coordinates w, s we can rewrite this as

−w22s2L̂C = Ĉsch,−
1
2

23 − 3

4
, (11.14a)

2s2L̂C = Ĉsch,−
1
2

0 . (11.14b)

We apply the ansatz (11.10) and obtain all the factorizations of the balanced Hermite operator
of Subsec. 2.4.

12 C
2
⋊ so(C2) and the 0F1 equation

In this section we derive the 0F1 operator and its C
2
⋊ so(C2) symmetries from the symmetries

of the Helmholtz equation in 2 dimensions. One can argue that this is the simplest case among
the five cases considered in this paper, because only true (that is, not generalized) symmetries
are used here. This derivation is also extensively discussed in the literature. (Strictly speaking,
in the literature usually the Bessel and modified Bessel equations are considered. They are,
however, equivalent to the 0F1 equation, as described eg. in [De].) We included this section for
the sake of completeness.

Perhaps, it would be sufficient to discuss only two levels of derivation—the 2-dimensional
Helmholtz equation and the 0F1 equation. However, to make this section easier to compare with
the previous ones, we will start from a higher level.

Thus, we will consider the following levels:

(1) Space C
5 and the Laplacian ∆C5 .

(2) Space C
3 and the Laplacian ∆C3 .

(3) Space C
2 and the Helmholtz operator ∆C2 − 1.

(4) Choosing appropriate coordinates we obtain the 0F1 operator.
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12.1 Space C5

As in Subsect. 8.1, we consider C
5 with the coordinates

z0, z−2, z2, z−3, z3 (12.1)

and the product given by

〈z|z〉 = z20 + 2z−2z2 + 2z−3z3. (12.2)

Lie algebra C
2
⋊ so(C2) on C

5.

Cartan operator:

N2 = z−2∂z−2
− z2∂z2 .

Root operators:

B−3,−2 = z3∂−2 − z2∂−3,

B−3,2 = z3∂2 − z−2∂−3.

Weyl symmetry. Flip:

τ2K(z0, z−2, z2, z−3, z3) = K(z0, z2, z−2, z−3, z3).

Laplacian:

∆C5 = ∂2z0 + 2∂z−2
∂z2 + 2∂z−3

∂z3 .

12.2 Space C
3

As in Subsect. 8.6, we consider C3 with coordinates (y0, y−2, y2) and the scalar product given by

〈y|y〉 = y20 + 2y−2y2. (12.3)

Lie algebra C
2
⋊ so(C2).

Cartan operator:

Nfl
2 = y−2∂y−2

− y2∂y2 .

Root operators:

Bfl
−3,−2 = ∂y−2

,

Bfl
−3,2 = ∂y2 .

Weyl symmetry. Flip:

τfl2 f(y0, y−2, y2) = f(y0, y2, y−2).

Reduced Laplacian.

∆fl
C5 = ∆C3 = ∂2y0 + 2∂y−2

∂y2 .
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12.3 Space C2 and the Helmholtz equation

We make an asatz

f(y0, y−, y+) = e−y0h(y−, y+).

In particular, the coordinates y−2, y2 are renamed to y−, y+. We also simplify the names of
various operators in an obvious way.

Lie algebra C
2
⋊ so(C2).

Cartan operator:

N = y−∂y− − y+∂y+ .

Root operators:

B− = ∂y− ,

B+ = ∂y+ .

Weyl symmetry. Flip

τf(y−, y+) = f(y+, y−).

Helmholtz operator:

KC2 := −1 + 2∂y−∂y+ .

Symmetries:

NKC2 = KC2N ; (12.4a)

B±KC2 = KC2B±; (12.4b)

τKC2 = KC2τ. (12.4c)

12.4 Balanced 0F1 operator

We introduce the coordinates

w =
y−y+
2

, u =

√

y−
y+
. (12.5)

Lie algebra C
2
⋊ so(C2). Cartan operator:

N = u∂u.

Root operators:

B+ = u
1√
2w

(

w ∂w − N1

2

)

, (12.6)

B− =
1

u

1√
2w

(

w ∂w +
N1

2

)

. (12.7)

Weyl symmetry. Flip:

τh(w, u) = h
(

w,
1

u

)

.
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Helmholtz operator:

KC2 = ∂w w ∂w − N2

4w
− 1 .

Making an ansatz

h(w, u) = uαF (w),

we obtain the balanced 0F1 operator. Symmetries for the root operators and the flip coincide
with the transmutation relation and the change of the sign of α in the balanced 0F1 operator,
respectively; see Subsect. 2.5.

12.5 Standard 0F1 operator

Modify the coordinates (12.5) by replacing u with

ũ := y− = u
√
2w.

We then have

N = ũ∂ũ,

KC2 = w∂2w + (1 +N)∂w − 1.

Making an ansatz

h(w, u) = ũαF̃ (w),

we obtain the standard 0F1 operator.

12.6 Factorizations

The factorizations

KC2 = 2B−B+ − 1

= 2B+B− − 1,

are completely obvious. They yield the factorizations of the 0F1 operator.
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