Doubling the single-particle space

It is convenient to double the dimension of the one-particle space
(such doubling is useful in the context of pairing theory)
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Consequently,
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where:

Using this notation, we can write the contractions of the original
creation and annihilation operators in the compact form:
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Also, the usual commutation relations can be written as:
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Consider the matrix elements
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Let us now consider the condition:
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Let us now show that the self-contraction vanish
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In the doubled space:



Tr(R)=M+§£7¢ § = £(267¢)
Must be an integer
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Hence, the conditipn 2§+§ — ] cannot be met, and
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All self-contractions vanish!
™
a, = (®la,|®)=0

+ +
ay = (@laj|®) =0

M
kl
I
@
—
8 8
¥ ®
|

p=rp"
/ 1T I€=—I$:T

x
I
|

x
I

Generalized density matrix:

R=R+=R2=( ,0* KJ*)
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£ density matrix of the product state
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pair tensor of the product state



