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2. Representation of a Slater Determinant

We wish to represent a general Slater determinant |@) for a system of N
particles by use of creation and annihilation operators in a particular represen-
tation. The operator 4,* creates a particle with wave function ¢; and the
operator 4, annihilates a particle with wave function ¢;. We denote by |®,>
the configuration in which the first N-levels are occupied, so that
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where |0) denotes the vacuum, in which no particles are present. Written in this
form, |®,> is normalized to unity.

Theorem. Any N-particle Slater determinant |@)» which is not orthogonal to
I®@,> can be written in the form
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where the coefficients C,,; are uniquely determined. Conversely, any wave
function written in the form of eq. (2), with |®,) defined by eq. (1), is an
N-particle Slater determinant.

Problem: Demonstrate that this representation is correct




Thouless theorem, fermion number
conserving states

Every even product state, non-orthogonal to [0> can be uniquely
written in the form:
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Thouless theorem for particle-number conserving states
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quasi-particle vacuum!




A particle-hole excitation

particle-hole
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O According to the Thouless theorem, any
product state, non orthogonal to the
independent-particle ground state, can be
written as
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Hartree-Fock method

Based on the Ritz variational principle:

|\I/> - trial (variational) wave function. Should be as rich
and realistic as possible
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In the Hartree-Fock method, the trial wave function is the particle-
number conserving product state. That’s it!
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Hartree-Fock method, Lipkin Model



