
Solution of Hartree-Fock equations

1. Take the initial single-particle hamiltonian hµν
2. Find eigenvectors of h:

3. Take the A lowest-energy eigenvectors

4. The largest s.p. energy is the Fermi level
5. Find the density matrix

6. Calculate Γ(ρ)  
7. Go back to 2.

Note that the HF equation
[h,ρ]=0 is met by construction



HF minimum should correspond to the positive second derivative
of the energy.
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This implies that independent variations are only in the ph channel
(pp and hh matrix elements of ρ(1) and ρ(2) vanish)
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Constrained Hartree-Fock

q

EHF

Often, we are interested not only in the local HF minima
but also in the whole potential energy surface  (PES)

❏ Several ways of solving the CHF equations
(linear constraint, quadratic constraint, gradient  method)

❏ Usually: many-dimensional surfaces
❏ Static picture - fluctuations are not included!
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Self-consistent HF symmetries

➠ If a certain symmetry for the solution is expected, one can start
with an initial density which has this symmetry

➠ If one starts with a certain symmetry, one will always stay within
this symmetry (if the deepest minimum is deformed, one will
never get to it starting with a spherically symmetric density
matrix)

➠ The above discussion can be generalized to density dependent
interactions satisfying the condition:
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If we have a solution with a (spontaneously) broken
symmetry S…
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…then every transformed (rotated) state is also a solution
of the HF equations!

Goldstone Theorem
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If a symmetry is broken, there appears a zero-energy mode
(Goldstone boson!)




