Hartree-Fock-Bogoliubov

A. Two-body (density-dependent) interaction:
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B. Variational principle:
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C. Trial wave functions: product states ‘
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HFB wave function

O HFB - quasiparticles incorporated is the quasuparticle
into the HF formalism vacuum

1 HFB wave function - the most general
product wave function consisting of independently
moving quasiparticles (in HF: particles)

(A Selfconsistent description of coupling between p-h
an p-p channels




HFB - density matrix and pairing tensor

HFB density matrix HFB pairing tensor
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HFB equations
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{ HFB equations }
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(1 HFB equations treat p-h and p-p on the same footing

[d Ais a state-dependent field. In general, it depends on
density and has a kinetic term

(d The generalized density matrix and the HFB Hamiltonian
can be diagonalized simultaneously

A Fermi level determined from the particle number
equation

A Often it is convenien to express the HFB equations
in the canonical basis




Independent quasiparticle approach
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k>0 the quasiparticle
vacuum!
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[d Important ground-state correlations are included
1 BCS wave function does not have a sharp particle
number (an intrinsic wave function!)




BCS equations

A
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Independent quasiparticle Quasiparticle
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