
Hartree-Fock-Bogoliubov

A. Two-body (density-dependent) interaction:

B. Variational principle:

C. Trial wave functions: product states

general Bogoliubov
transformation

HFB wave function
is the quasuparticle

vacuum
❏ HFB - quasiparticles incorporated

    into the HF formalism
❏ HFB wave function - the most  general 

    product wave function consisting of independently
    moving quasiparticles  (in HF:  particles)

❏ Selfconsistent description of coupling between p-h
    an p-p channels
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HFB - density matrix and pairing tensor

Quasiparticle
interaction

Independent quasiparticle
Hamiltonian (HHFB)

Generalized
density matrix

Eigenvalues are 0 or 1 (thus
defining occupations of
quasiparticle states)

HFB density matrix HFB pairing tensor
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ˆ H , ˆ N [ ] = 0,  but  ˆ H 
HFB

, ˆ N [ ] ! 0

However,  we require that ˆ N = N " ˆ H ' = ˆ H # $ ˆ N 
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HFB equations

HFB Hamiltonian

HF Hamiltonian

Selfconsistent  HF field

Selfconsistent  pair field

HFB equations

Complicated
eigenvalue problem

❏ HFB equations treat p-h and p-p on the same footing
❏ Δ is a state-dependent field. In general, it depends on

   density and has a kinetic term
❏ The generalized density matrix and the HFB Hamiltonian

   can be diagonalized simultaneously
❏ Fermi level determined from the particle number 

   equation
❏ Often it is convenien to express the HFB equations

   in the canonical basis
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Independent quasiparticle approach 

εF

Bogoliubov-
Valatin
Transformation

BCS wave function is
the quasiparticle
vacuum!

BCS function is a
superposition of
different number of pairs

❏ Important ground-state correlations are included
❏ BCS wave function does not have a sharp particle

   number (an intrinsic wave function!)
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BCS equations

Particle number
equation

Pairing gap
equation

Variational method

Quasiparticle
interaction

Independent quasiparticle
Hamiltonian (HBCS)
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