
Quasiparticle energy

BCS model

❏ Fermi level can be extracted from 
experimental binding energies:

❏ Energy gap in  even-even nuclei:

❏ High level density in odd systems:

❏ Pairing gap can be extraxted from experimental
odd-even mass differences:

State-independent monopole pairing force:
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The gap equation

For well
deformed

nuclei

❏ Schematic  solution for the case of  uniform
   density of single-particle states

❏ Anticorrelation between pairing and shell effects

❏ Blocking effect
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Simple pairing model

❏ Correlations are important, especially
    for small values of G 

❏ Static description breaks down when the
    single-particle level density is small
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Recall that v2
k is the occupation probability for state k. Thus, the

pairing interaction destabilizes the Fermi surface!

Inserting these results into Eq. (1) yields the Gap Equation
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This equation, together with the Equation for the energies ε̃k has to

be solved iteratively.

Simple examples and illustration:

(1) Pure pairing force: vijkl = −G, tk,l = δklεl

Gap equation
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For vanishing single-particle energies εk = 0 and a single-j shell one

recovers the results of the seniority model. The gap becomes
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at half filling. Comparison with the seniority model shows that 2∆ is

the energy to break a pair and equals the excitation energy!



(2) Analytical solution for simple model.

Assume constant interaction G, constant gap ∆, and constant density

of states ρ, and restrict summation to the vicinity δ of the Fermi

surface. Gap equation:
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For weak pairing Gρ � 1 one finds
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Gap is nonperturbative in interaction G!

The particle number variance is

(∆N)2 ≈ 2ρ∆ atan
δ
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πρ∆ for weak pairing ∆ � δ,

2ρδ for strong pairing.



BCS essentials

1. The Fermi surface of a Fermi gas is unstable with respect to at-

tractive interactions. The gap equation has a nontrivial solution

∆ 6= 0 whenever the interaction or the density of states is suffi-

ciently large.

2. The finite excitation gap causes superfluidity: The system cannot

absorb arbitrarily small perturbations and therefore remains inert

(See, e.g., Landau & Lifshitz, Statistical Mechanics II).




