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1.1 The Mathematics of Quantum Mechanics

1.1.1 Vector Space

Quantum mechanics is a theory for the description of the statistical behavior of microscopic
entities. It defines physical states in a sesquilinear form of a vector space H on the field of
complex numbers, also known as Hilbert space. ket |a〉 ∈ H or bra 〈b| ∈ H∗ (dual space) [1].

Properties of vector spaces:

• addition: |a〉+ |b〉 = |c〉

• scalar product: α|a〉 = |a〉α with α ∈ C

9



• inner product: 〈b|a〉 = α with α ∈ C

• the inner product is sesquilinear, in other words linear in |a〉 and anti-linear in 〈b|:
〈b|a+ αc〉 = 〈b|a〉+ α〈b|c〉, and 〈b|a〉 = 〈a|b〉∗

• and doing so it defines a norm for the vector: 〈a|a〉 = ||a||2 = x ≥ 0, with x ∈ R

1.1.2 Basis

orthornormal basis {|n〉} = {|1〉, |2〉, . . . , |N〉} it is an orthonormal basis for the vector space
V if ∀|n〉, |m〉 ∈ {|n〉} ⇒ |n〉 ∈ V , 〈n|n〉 = 1, 〈m|n〉 = 0 (normalized and orthogonal), and
∀|a〉 ∈ V ⇒ |a〉 =

∑N
n=1 cn|n〉 (complete basis)

1.1.3 Operators

Mathematically operators act on a vector, mapping it from a vector space to another. In
Quantum Mechanics operators are linear ((X + αY )|a〉 = X|a〉 + αY |a〉) and associative.
In general X|a〉 = |b〉, with |a〉 ∈ V and |b〉 ∈W ,

X := |b〉〈a|, (1.1)

and if we consider a physical state |a〉 with norm 1

X|a〉 = 〈a|a〉|b〉 = |b〉. (1.2)

〈m|X|n〉 := Xmn ∈ C (1.3)

X|a〉 = |b〉 ⇔ 〈a|X† = 〈b|, with|b〉 ∈Wand〈b| ∈W ∗, (1.4)

(X†)nn′ = X∗n′n (1.5)

(XY )† = Y †X† (1.6)

X|x〉 = x|x〉, x ∈ C eigenvalue, |x〉 ∈ V eigenvector.

Linear operators which satisfy A† = A are called Hermitian, has real eigenvalues.

A =
∑
n

an|n〉〈n|, an ∈ R (1.7)

Linear operators which satisfy UU † = 1⇒ U † = U−1 are called unitary (||Ua||2 = 〈a|U †U |a〉 =
||a||).

Linear operators which satisfy P 2 = P (idempotency) and are Hermitian, are called orthogonal

projectors. P1|a〉 = |a1〉 ∈ V1 ⊂ V and 〈b|P †1 (|a〉 − P1|a〉) = 0. In the Dirac notation:

P1 =
∑N1

i=1 |i〉〈i| where i = 1 . . . N1 are a subset of the orthonormal basis.

If the case V1 ≡ V , PV =
∑N

n=1 |n〉〈n| ≡ I is the identity operator.

Density operator: ρ =
∑

i pi|ψi〉〈ψi|, pi = |〈ψi|a〉|2 probability of |ψi〉 in state |a〉, |ψi〉 is
normalized and

∑
i pi = 1

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 = Tr[ρA] (1.8)
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1.1.4 Tensor Products

|φ〉1 =
∑
an|n〉 ∈ HN 1, |〉χ2 =

∑
cm|m〉 ∈ HM2 Define the tensor products of spaces |φ1 ⊗

χ2〉 := |φχ〉12 =
∑

n,m ancm|n ⊗m〉12 ∈ HN 1 ⊗ HM2 with dimension N ·M , is the space of
two interacting quantum systems.

〈n⊗m|n′ ⊗m′〉12 = δm,m′δn,n′ . (1.9)

If A|φ1〉 = a|φ1〉,
⇒ A|φχ〉12 = a|φχ〉12. (1.10)

Two–body Density Matrix

ρ12 = ρ1 ⊗ ρ2 =
∑
i,j

pipj |φiχj〉12 12〈φiχj | (1.11)

ρ1 = Tr2[ρ12] =
∑
m

〈m|ρ12|m〉 (1.12)

1.1.5 Coordinates

An infinite dimensional (with uncountable cardinality) Hilbert space H , is used to represent
quantum state that vary in a continuous spectrum, most importantly r and k. The inner
product makes use of integrals over wavefunctions and operator which are defined in the sense
of the distributions.

Coordinate |r〉 and momentum |k〉 representations.

r̂|r〉 = r|r〉 (1.13)

p̂|k〉 = k|k〉 (1.14)

p̂|r〉 = −i~ d

dr
|r〉 (1.15)

r̂|k〉 = − 1

i~
d

dk
|k〉 (1.16)

〈r|k〉 =
1√
2π~

e
i
~r·k (1.17)

1.1.6 Variational Principle

Let’s consider |ψλ〉 eigenvectors of Ĥ, with eigenvalue λ Ĥ |ψλ〉 = λ |ψλ〉 , forms an orthonormal
set
∑

λ1,λ2
〈ψλ1 | ψλ2〉 = δλ1λ2

Expectation value of h is then given by

〈ψ | H | ψ〉 =
∑
λ1,λ2

〈ψ|ψλ1〉 〈ψλ1 |H|ψλ2〉 〈ψλ2 |ψ〉 (1.18)

=
∑
λ

λ |〈ψλ | ψ〉|2 ≥
∑

λ∈Spec(H)

E0 |〈ψλ | ψ〉|2 = E0 (1.19)
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so if we minimize E0 we find the exact expectation value of the Hamiltonian.

1.2 Schroedinger equation

1.2.1 Time dependent and independent Schroedinger Equation

ĤΨ(r, t) = i~
∂

∂t
Ψ(r, t), (1.20)

[
−~2

2µ
∇2 + V (r, t)

]
Ψ(r, t) = i~

∂

∂t
Ψ(r, t). (1.21)

If H is time independent than the time evolution and the coordinate evolution are separable.

Ĥ(r)Ψ(r) = EΨ(r), (1.22)

with H defined as [
−~2

2µ
∇2 + V (r)

]
Ψ(r) = EΨ(r). (1.23)

1.2.2 Solutions of time independent Schroedinger equations for notable
potentials

1.2.2.1 Free particle Schroedinger equation

One dimensional case r→ x

V (r) = 0⇒ H = T

Ĥψ = Eψ (1.24)

−~2

2m

d

dx
ψ(x) = Eψ(x) (1.25)

ψ(x) = eikx; k =

√
2mE

~
(1.26)

1.2.2.2 Square well

V (x) =

{
−V0 −a/2 < x < a/2
0 |x| > a/2

(1.27)

12



if E < 0,

ψ(x) = Asin(k0x) +Bcos(k0x); k0 =

√
2m(E + V0)

~
|x| < a − V0 < E < 0

(1.28)

ψ(x) = Cekx +De−kx; k = −
√

2m(E)

~
x > a E < 0

(1.29)

ψ(x) = Eekx + Fe−kx; k = −
√

2m(E)

~
x < −a E < 0

(1.30)

with k =
√

2mE/~, and k0 =
√

2m(E + V0)/~. Since ψ(x) ∈ L2, ⇒ C = F = 0 for
rinormalizability.

Theorem 1 If the potential is symmetric, so that V (x) = V (−x), then ψ(x) can be taken as
either even or odd.

for ψ(x) odd B = 0, D = −F ψ(x) ∈ C, so we apply matching conditions for ψ(x) and ψ′(x).

k = − k0

tan(k0a)
. (1.31)

if E > 0, means that also for |x| > a I have positive eigenvalue, so the eigenfunction must be
also trigonometric,

ψ(x) = Asin(k0x) +Bcos(k0x); k0 =

√
2m(E + V0)

~
|x| < a/2 − V0 < E < 0

(1.32)

ψ(x) = Csin(kx+ φ) +Dcos(kx+ φ); k =

√
2m(E)

~
x > a/2 E > 0

(1.33)

ψ(x) = Esin(kx+ φ) + F cos(kx+ φ); k =

√
2m(E)

~
x > a/2 E > 0

(1.34)

(1.35)

again I choose to solve the odd case, implying B = D = F . Note the phase factor φ between
the solution inside and outside the well.

using the same technique of matching conditions one obtains,

tg(ka+ φ)

k
=

tg(k0a+ φ)

k0
(1.36)

which has solutions for every k, thus every E defining a continuous energy spectrum. Note
that, φ is univocally determined,

φ = arctg

(
k

k0
tg(k0a+ φ)

)
− ka, (1.37)
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and is related to the phase shift.

Moreover considering the matching conditions at ψ(a),

A

E
=

sin(ka+ φ)

sin(k0a)
(1.38)

implying that for sin(k0a)→ 0, the wavefunction inside the well becomes increasingly impor-
tant respect to the ones outside defining a resonance for k0a = nπ (Fabry-Perot cavity rule),

or En = (n~π)2

2ma2
− V0

if I put this square well in a box of length L (or infinite potential well), I have an additional
boundary condition that is ψ(±L) = 0, implying

⇒ sin(ka+ φ) = 0⇒ En =
~2

2m

(nπ
L

+ φ
)2
. (1.39)

that is not as easy as it seems (remember that φ is the solution of a trascendent equation
function of k and k0), but recovers the previous solution for L >> a.

1.2.2.3 Harmonic Oscillator

The 1 dimensional harmonic oscillator

V =
1

2
mω2x2, (1.40)

have solutions with eigenfunctions

ψn(x) =
1√

2n n!
·
(mω
π~

)1/4
· e−

mωx2

2~ ·Hn

(√
mω

~
x

)
, (1.41)

with Hn(x) are Hermite polinomials

Hn(z) = (−1)n ex
2 dn

dxn

(
e−x

2
)
, (1.42)

and eigenvalues

En = ~ω
(
n+

1

2

)
, (1.43)

with n = 0, 1, 2, . . . the quantum number.

The three dimensional isotropic harmonic oscillator,

V =
1

2
mω2r2 (1.44)

is easy to solve considering r2 = x2 + y2 + z2 that gives three independent 1D harmonic
oscillators, since the potential is separable thus the solution is factorizable.

Solving the system in spherical coordinates we use the angular momentum operator L̂ = r̂×p̂.
A central potential is separable in central and angular part, since

L̂2|r〉 = −~2

[
1

sin2θ

∂2

∂φ2
+

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)]
|r〉 (1.45)
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that is proportional to angular part of the Laplace operator ∆, corresponding to the operator
part of p̂2, in spherical coordinates.

⇒ p̂2 = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
+
L̂2

r2
:= p̂2

r +
L̂2

r2
(1.46)

Eigenfunctions of L̂ are called spherical harmonics that in spherical coordinates are written
as Y l

m(θ, φ). L̂z|l,m〉 = ~m|l,m〉 and L̂2|l,m〉 = ~2l(l + 1)|l,m〉. In rotationally invariant
systems energy cannot depend from Li. For a given central interaction,

⇒ H =
p̂2
r

2m
+

L̂2

2mr2
+ V (r) (1.47)

we have a system that is separable r and Ω (solid angle), thus its eigensolutions have to be

factorized in in eigenfunctions of p̂2r
2m + V (r), that we call the radial part as φ(r), and L̂2

2mr2

that is the angular part and are the spherical harmonics.

The solutions for 1.44 are

Enl = ~ω
(

2n+ l +
3

2

)
, (1.48)

and

φkl(r) = Nklr
le−νr

2
L

(l+ 1
2

)

k (2νr2), (1.49)

with,

Nkl =

√√
2ν3

π

2k+2l+3 k! νl

(2k + 2l + 1)!!
(1.50)

with ν ≡ µω
2~ and Lk

(l+ 1
2

)(2νr2) are generalized Laguerre polynomials, that are the solutions
to the above differential equation.

Both Hermite and Laguerre polynomials are a orthonormal basis of the Hilbert space, being
complete orthogonal basis for L2. Consequently spherical harmonics are a basis of the
Hilbert space.

1.3 Spin and Angular momentum

SO(3) is the group of rotations in 3D space, is the group of unitary orthogonal (det= 1) 3x3
matrices. SU(2) is the group of rotations in 2D space, is the group of unitary special (det= 1)
2x2 matrices, also known as the Pauli matrices.

σ0 = I =

(
1 0
0 1

)
, σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
.

(1.51)

σ̂ are the spinor operators for spin 1/2 particles. σ̂, L̂, live in different spaces, so [σ̂, L̂] = 0.
This also means that eigenvectors are factorized |l,m〉 ⊗ |±〉. The two possible state of spins,
define a new space called spinor space

〈r|l,m〉 ⊗ |±〉 =

(
u+
lm(r)
u−lm(r)

)
=

(
ψ+(r)
ψ−(r)

)
Y l
m(θ, φ), (1.52)
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this representation of wavefunctions in factorized solutions of L̂ and σ̂, considering a complete
set of operators (commute each others) L̂z, σ̂z, σ̂

2, L̂2 is called LS–coupling.

We can define the total angular momentum,

Ĵ := σ̂ + L̂, (1.53)

we have the following set of complete operators, J2, L2, σ2, Jz, which define the J–coupling
scheme. Quantum number |l − s| ≤ j ≤ l + s.

1.4 Exercises

Exercise 1.

demonstrate Eq. (1.5) and (1.6).

Exercise 2.

demonstrate the Schwartz inequality |〈a|b〉|2 ≤ ||a||2||b||2.

Exercise 3.

exercise: finish problem in Sect. 1.2.2.2, solving the even cases. Then consider the density
current

j(r) =
~

2im
[ψ(r)∇ψ∗(r) + ψ∗(r)∇ψ(r)], (1.54)

and calculate how the current density behaves inside and outside the potential well.
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Lecture 2

Density functional theory (DFT)
[Week 1, day 2]

2.1 Fundamentals of DFT

2-1: Density functional theory I

Density functional theory is based on a constraint variational approach that
uses observables as variational parameters.

Let us consider Hamiltonian Ĥ and observable Q̂. Let us assume that the set of parameters p
uniquely parametrizes the entire Hilbert space |Ψ(p)〉, that is, p1 6= p1 → |Ψ(p1)〉 6= |Ψ(p2)〉,
and that we can calulate the average values:

E(p) = 〈Ψ(p)|Ĥ|Ψ(p)〉 ≡ 〈Ĥ〉, (2.1a)

Q(p) = 〈Ψ(p)|Q̂|Ψ(p)〉 ≡ 〈Q̂〉, (2.1b)

as well as their derivatives over p.

We now solve the constraint variational equation for the routhian R̂:

R̂ = Ĥ − λQ̂, (2.2)

that is,

δ〈Ĥ−λQ̂〉 ≡∇〈Ĥ−λQ̂〉 ≡∇E−λ∇Q ≡ ∂

∂pi

[
E(p)−λQ(p)

]
≡ ∂E(p)

∂pi
−λ∂Q(p)

∂pi
= 0, (2.3)

where λ is called Lagrange multiplier.

2-2: Constraint variation
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Function E(p) has a minimum within the set where function Q(p) is
constant

m
gradients ∇E and ∇Q are parallel.

After solving variational equation (2.3) for all λ we obtain the ”path” p(λ), and

E(λ) ≡ E(p(λ)), (2.4a)

Q(λ) ≡ Q(p(λ)). (2.4b)

R(λ) ≡ R(p(λ)) = E(λ)− λQ(λ). (2.4c)

Assuming that function Q(λ) can be inverted into λ(Q) we obtain

E(Q) = min
p
E(p)

Q(p)=Q
≡ E(λ(Q)) ≡ E(p(λ(Q))). (2.5)

2-3: Exact ground-state energy E0 and exact value of observable Q0
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Energy E is now a function of observable Q. By minimizing E(Q), E0 =
minQE(Q) that is, by solving

d

dQ
E(Q) = 0, (2.6)

we obtain E0 and Q0

2-4: Density functional theory II

Density functional theory is based on replacing the exact variational
method with a two-stage variational method:

1: Minimization of energy E under constraint on value Q of observable
Q̂, which gives energy E(Q) as function of Q.

2: Minimization of energy E(Q) with respect to Q.

In this way the minimization of energy E(Q) gives the exact ground-state
energy E0 and exact value of observable Q0.
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Depending on which observable we pick, we can have very different DFTs:

δ
〈
Ĥ − λQ̂

〉
= 0 =⇒ E = E(Q), (2.7a)

δ

〈
Ĥ −

K∑
k=1

λkQ̂k

〉
= 0 =⇒ E = E(Qk), (2.7b)

δ

〈
Ĥ −

∫
dq λ(q)Q̂(q)

〉
= 0 =⇒ E = E[Q(q)], (2.7c)

δ

〈
Ĥ +

∫
drU(r)ρ̂(r)

〉
= 0 =⇒ E = E[ρ(r)], (2.7d)

δ

〈
Ĥ +

∑
σ

∫
drU(r;σ)ρ̂(r;σ)

〉
= 0 =⇒ E = E[ρ(r;σ)], (2.7e)

δ

〈
Ĥ +

∑
σσ′

∫
drU(r;σ′σ)ρ̂(r;σσ′)

〉
= 0 =⇒ E = E[ρ(r;σσ′)],

(2.7f)

δ

〈
Ĥ +

∑
στ,σ′τ ′

∫
drU(r;σ′τ ′, στ)ρ̂(r;στ, σ′τ ′)

〉
= 0 =⇒ E = E[ρ(r;στ, σ′τ ′)],

(2.7g)

δ

〈
Ĥ +

∫
dr
(
U(r)ρ̂(r) +M(r)τ̂(r)

)〉
= 0 =⇒ E = E[ρ(r), τ(r)],

(2.7h)

δ

〈
Ĥ +

∫
dr

∫
dr ′ U(r ′, r)ρ̂(r, r ′)

〉
= 0 =⇒ E = E[ρ(r, r ′)],

(2.7i)

δ

〈
Ĥ +

∫
dx

∫
dx′ U(x′, x)ρ̂(x, x′)

〉
= 0 =⇒ E = E[ρ(x, x′)].

(2.7j)

In (2.7j) we denoted x ≡ {r, σ, τ} and x′ ≡ {r′, σ′, τ ′}.

Remember that:

2-5: Density functional theory III

Density functional theory is based on picking the right observables, that is,
right degrees of freedom to describe the given system.

2.1.1 DFT for local densities of spinless particles

Consider DFT (2.7d). One-body density operator is the DFT observable:

ρ̂(r) =

A∑
i=1

δ(r − ri) ≡ a+
r ar. (2.8)
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for

ar :=
∑
µ

φµ(r)aµ, (2.9a)

a+
r :=

∑
µ

φ∗µ(r)a+
µ . (2.9b)

The position-dependent Lagrange multipliers are identical to one-body (mean-field) potentials
U(r): 〈

Û
〉

=

〈∫
drU(r)ρ̂(r)

〉
=

∫
drU(r)ρ(r), (2.10)

for
〈ρ̂(r)〉 = ρ(r). (2.11)

The particle-number operator is a sum of density operators:

N̂ =

∫
dr ρ̂(r) =

∫
dr a+

r ar, (2.12)

This is why:

2-6: Density functional theory IV

Density functional theory based on density observables are universal, that
is, applicable to systems of arbitrary particle numbers.

2.1.2 DFT for local densities of spin 1/2 particles

Consider DFT (2.7f).
ρ̂(r;σσ′) = a+

rσarσ′ (2.13)

and

δ =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
,

(2.14)

allows us to introduce scalar and vector (spin) densities and fields:

ρ(r;σσ′) = 1
2ρ(r)δσσ′ +

1
2s(r) · σσσ′ , (2.15a)

U(r;σσ′) = U(r)δσσ′ + Σ(r) · σσσ′ , (2.15b)

The interaction energy with the external filed in (2.7f) now reads:∑
σσ′

∫
drU(r;σ′σ)ρ(r;σσ′) =

∫
dr (U(r)ρ(r) + Σ(r) · s(r)) , (2.16)

and the functional now depends on scalar and vector densities, E[ρ(r;σσ′)] = E[ρ(r), s(r)].
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2.1.3 DFT for local densities of spin 1/2 and isospin 1/2 particles

Consider DFT (2.7g).

ρ̂(r;στ, σ′τ ′) = a+
rστarσ′τ ′ (2.17)

and for the isospin density matrices δ and τ ,

δ =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
,

(2.18)

we introduce scalar and vector, and isoscalar and isovector density matrices [2]:

ρ(r;στ, σ′τ ′) = 1
4ρ(r)δσσ′δττ ′ +

1
4s(r) · σσσ′δττ ′

+ 1
4ρ(r)δσσ′ ◦ τττ ′ + 1

4s(r) · σσσ′ ◦ τττ ′ , (2.19a)

U(r;στ, σ′τ ′) = U(r)δσσ′δττ ′ + Σ(r) · σσσ′δττ ′
+ U(r)δσσ′ ◦ τττ ′ + Σ(r) · σσσ′ ◦ τττ ′ , (2.19b)
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where symbol “◦” denotes the scalar product in the isospace. In another notation we can also
write

ρ(r;στ, σ′τ ′) = 1
4

3∑
µ=0

3∑
k=0

ρµk(r)δµσσ′δ
k
ττ ′ (2.20a)

U(r;στ, σ′τ ′) = 1
4

3∑
µ=0

3∑
k=0

Uµk(r)δµσσ′δ
k
ττ ′ (2.20b)

Interaction energy with an external local potential now reads:∑
στ,σ′τ ′

∫
drU(r;σ′τ ′, στ)ρ(r;στ, σ′τ ′) =

∫
dr
(
U(r)ρ(r) + Σ(r) · s(r)

+U(r) ◦ ρ(r) + Σ(r) · ◦ s(r)
)
, (2.21)

and the functional depends on the following densities: scalar-isoscalar ρ(r), vector-isoscalar
s(r), scalar-isovector ρ(r), and vector-isovector s(r), E[ρ(r;στσ′τ ′)] = E[ρ(r), s(r),ρ(r), s(r)].

2.1.4 DFT for quasilocal functional and spinless particles

Consider DFT (2.7i). We first define the operator of local kinetic density τ̂(r) as

τ̂(r) = −
A∑
i=1

∇i · δ(r − ri)∇i ≡∇
(
a+
r

)
·∇
(
ar

)
, (2.22)

for

∇
(
ar

)
:=

∑
µ

∇
(
φµ(r)

)
aµ, (2.23a)

∇
(
a+
r

)
:=

∑
µ

∇
(
φ∗µ(r)

)
a+
µ , (2.23b)

and the kinetic density τ(r):

τ(r) = 〈τ̂(r)〉 = ∇ ·∇′ρ(r, r′)
r′=r

. (2.24)

This gives

~2

2m

∫
dr τ̂(r) = − ~2

2m

A∑
i=1

∆i = T̂ . (2.25)

Densities ρ(r) and τ(r) are independent, because for R = 1
2(r + r′) and s = r − r′ we have:

τ(R) = 1
4∆Rρ(R, s = 0)−∆sρ(R, s)

s=0
. (2.26)

The first-stage variational equation 2-4 now reads

δ

〈
V̂ +

∫
dr

[
U(r)ρ̂(r) +

(
~2

2m
+M(r)

)
τ̂(r)

]〉
= δ

〈
V̂
〉

+ δ

∫
dr

[
U(r)ρ(r) +

(
~2

2m
+M(r)

)
τ(r)

]
= 0,

(2.27)
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which gives the functional:

E[ρ, τ ] =
~2

2m

∫
dr τ(r) + V [ρ, τ ], (2.28)

with the kinetic energy explicitly and exactly singled out.

We now minimize this functional with respect to density and kinetic density under the con-
dition that the number of particles is A. For that we again minimize the Routhian:

R[ρ, τ ] = E[ρ, τ ]− λ
∫

dr ρ(r) =
~2

2m

∫
dr τ(r) + V [ρ, τ ]− λ

∫
dr ρ(r). (2.29)

This gives variational equations:

δR[ρ, τ ]

δρ(r)
=

δV [ρ, τ ]

δρ(r)
− λ = U(r)− λ = 0, (2.30a)

δR[ρ, τ ]

δτ(r)
=

δV [ρ, τ ]

δτ(r)
+

~2

2m
= M(r) = 0. (2.30b)

2-7: Gradient minimization loop

Steepest-descent minimization of the functional E[ρ, τ ] can proceed as fol-
lows.

1◦ Begin with reasonable initial guesses for the densities ρ(0)(r) and
τ (0)(r). Set the iteration number k = 0.

2◦ Calculate the derivatives:

U(k)(r) =
δV [ρ(k), τ (k)]

δρ(k)(r)
, M(k)(r) =

δV [ρ(k), τ (k)]

δτ (k)(r)
+

~2

2m
, (2.31)

3◦ Calculate new approximatiosn to densities:

ρ(k+1)(r) = ρ(k)(r)− ε(U(k)(r)− λ), (2.32a)

τ (k+1)(r) = τ (k)(r)− εM(k)(r). (2.32b)

4◦ Iterate the loop 2◦–3◦ until convergence is reached.

2.2 Representing densities by orbitals

2-8: N-representability of local density
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Arbitrary positive function, ρ(r) > 0, normalized as
∫

dr ρ(r) = A, can be
represented by a sum of squares of A orthonormal,

∫
dr φ∗h(r)φh′(r) = δhh′ ,

functions as

ρ(r) =
A∑
h=1

|φh(r)|2. (2.33)

See Refs. [3, 4] and excersise 6 for explicit constructions. The N-representation is, of course, not
unique. However, by minimizing the functional with respect to the orbitals, we automatically
minimize it with respect to the density. The chain rule rules!

2-9: N-representability of local density and kinetic density?

Conjecture or approximation: Arbitrary positive functions, ρ(r) > 0,
τ(r) > 0, normalized as

∫
dr ρ(r) = A, can be represented by sums of

squares of A orthonormal,
∫

dr φ∗h(r)φh′(r) = δhh′ , functions as

ρ(r) =
A∑
h=1

|φh(r)|2, (2.34a)

τ(r) '
A∑
h=1

|∇φh(r)|2. (2.34b)

Generalizations to systems with spin or spin and isospin:

〈Φ|ρ̂(r;σσ′)|Φ〉 =
A∑
h=1

φh(r;σ)φ∗h(r;σ′)

= 1
2ρ(r)δσσ′ +

1
2s(r) · σσσ′ , (2.35a)

〈Φ|ρ̂(r;στ, σ′τ ′)|Φ〉 =
A∑
h=1

φh(r;στ)φ∗h(r;σ′τ ′)

= 1
4ρ(r)δσσ′δττ ′ +

1
4s(r) · σσσ′δττ ′

+ 1
4ρ(r)δσσ′ ◦ τττ ′ + 1

4s(r) · σσσ′ ◦ τττ ′ . (2.35b)

2.3 The DFT Kohn-Sham method

In 1965 Kohn and Sham [5] (Kohn’s Nobel Prize 1998) proposed to represent the density by
specific orbitals.

Let us consider a one-body Kohn-Sham Hamiltonian:

ĥKS = −∇
(

~2

2m
+MKS(r)

)
·∇ + UKS(r), (2.36)
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Walter Kohn (March 9, 1923 – April 19, 2016)

where MKS(r) and UKS(r) are, respectively, the fixed Kohn-Sham mass function and poten-
tial. The many-body Kohn-Sham Hamiltonian reads:

ĤKS =
A∑
i=1

ĥKS,i =

∫
dr

[(
~2

2m
+MKS(r)

)
τ̂(r) + UKS(r)ρ̂KS(r)

]
, (2.37)

We know that all eigenstates of a one-body Hamiltonian are equal to Slater determinants
|ΦKS〉 built of the orbitals diagonalizing ĥ:

ĥKSφ
KS
h (r) = εKSh φKSh (r), (2.38)

where εKSh are the Kohn-Sham energies and φKSh (r) are the Kohn-Sham orbitals. All average
total Kohn-Sham energies, including the ground-state energy, read:

EKS [ρKS , τKS ] =

∫
dr

[(
~2

2m
+MKS(r)

)
τKS(r) + UKS(r)ρKS(r)

]
. (2.39)

for

ρKS(r) = 〈ΦKS |ρ̂(r)|ΦKS〉 =
A∑
h=1

φKSh (r)φKS∗h (r), (2.40a)

τKS(r) = 〈ΦKS |τ̂(r)|ΦKS〉 =
A∑
h=1

(
∇φKSh (r)

)
·
(
∇φKS∗h (r)

)
. (2.40b)

26



Are densities {ρKS(r), τKS(r)} representable by {MKS(r), UKS(r)}? If yes, we can minimize
the exact functional EKS [ρ, τ ] in the space of N-representable densities {ρKS(r), τKS(r)} by
using the Kohn-Sham potentials equal to the exact derivatives, that is,

2-10: The Kohn-Sham theorem

Self-consistent minimization of the Kohn-Sham energy EKS with the self-
consistency conditions.

MKS(r) =
δV [ρ, τ ]

δτ(r)
, UKS(r) =

δV [ρ, τ ]

δρ(r)
. (2.41)

gives the exact solution of the DFT variational equations. The solution is
exact up to the approximation of τ(r) ' τKS(r).

2-11: Self-consistent loop

Self-consistent minimization of the Kohn-Sham energy EKS can proceed as
follows.

1◦ Begin with reasonable initial guesses for the Kohn-Sham potentials

M
(0)
KS(r) and U

(0)
KS(r). Set the iteration number k = 0.

2◦ Diagonalize (2.38) the Kohn-Sham hamiltonian ĥ
(k)
KS and find the

Kohn-Sham orbitals φKS,ki (r).

3◦ Select A orbitals φKS,kh (r), h=1,. . . ,A, from among i = 1, . . . ,M
orbitals. Most often the lowest ones.

4◦ Calculate (2.40) the Kohn-Sham densities ρ
(k)
KS(r) and τ

(k)
KS(r):

5◦ Calculate (2.41) the Kohn-Sham potentials M
(k)
KS(r) and U

(k)
KS(r):

6◦ Iterate the loop 2◦–5◦ until convergence is reached.

2.4 Take-away messages

2.5 Exercises

Exercise 4.

Price of a diver suit depends on the diver’s height h and waist w as E = ah2 + bw2. Within a
given population, a company can hire divers of a given stature Q = ph+ qw. How to minimize
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the total cost of buying the diver suits for the company?

∂R

∂h
= 0 =⇒ h = λ

p

2a
,

∂R

∂w
= 0 =⇒ w = λ

q

2b
. (2.42)

E(λ) = λ2
[
p2

4a
+
q2

4b

]
≡Wλ2, (2.43)

Q(λ) = λ

[
p2

2a
+
q2

2b

]
≡ 1

2
Wλ, (2.44)

E(Q) =
4

W
Q2, (2.45)

h0 =
p

Wa
Q, w0 =

q

Wb
Q. (2.46)

Exercise 5.

Prove the identities

dE(Q)

dQ
= λ, (2.47a)

dR(λ)

dλ
= Q. (2.47b)

Exercise 6.

Prove [4] that any positive function ρ(y) > 0 in one dimension, normalized as
∫ 1

0
dyρ(y) = A,

can be N-represented (2.33) by A orthonormal orbitals as ρ(y) =
∑A
h=1 |φh(y)|2 for

φh(y) =

[
ρ(y)

A

]1/2
exp

{
2πih

∫ y

0

dz
ρ(z)

A

}
. (2.48)

Exercise 7.

Using coordinate representation of the kinetic density operator (2.22) prove equations (2.24)
and (2.25).

Exercise 8.

Show that equation (2.38) is the variational equation corresponding to minimizing the Kohn-
Sham functional (2.39) with respect to the Kohn-Sham orbitals.

Exercise 9.
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Derive the Kohn-Sham potentials for the functional (2.28) given by

V [ρ, τ ] =

∫
drCτρ(r)τ(r) + Cρρ2(r) + CρDρ

2+α(r), (2.49)

where Cτ , Cρ, and CρD are coupling constants.

M(r) = Cτρ(r), U(r) = Cττ(r) + 2Cρρ(r) + (2 + α)CρDρ
1+α(r). (2.50)
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Lecture 3

Second Quantization
[Week 1, day 3]
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3.1 The Mathematics of second quantization

We want to describe a relativistic field theory for quantum mechanics. Since in relativity
there is no mass conservation, particle number and type is not conserved and has to be
defined dinamically. Consequently we will introduce a formalism for many-particle systems
called “second quantization”

3.1.1 Fock Space and symmetries

Considering Hilbert space H of one particle system as defined in sect. 1.1.5 we consider the
hilbert space relative to A–particle systems as

HA = H ⊗H ⊗ . . .⊗H (3.1)

The wavefunctions in this space are Φ(x1, . . . , xi, . . . , xj , . . . , xA).
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Transposition operator P̂ij which swaps the places of ith and jth particle.

P̂ijΦ(x1, . . . , xi, . . . , xj , . . . , xA) = Φ(x1, . . . , xj , . . . , xi, . . . , xA). (3.2)

P̂ij an Hermitian, and unitary operator, so its an operator which eigenvalues can only be +1
or −1. We can then divide the space HA in space composed of eigenfunctions of P̂ij with

eigenvalues pij = ±1, H
(±)
A , and the one orthogonal to these two.

HA = H
(+)
A ⊕H

(−)
A ⊕H ′

A (3.3)

Theorem 2 (Spin Statistic theorem) Particles living in H
(+)
A , with P̂ijΦ=Φ, have inte-

ger spin and are called bosons;

particles living in H
(−)
A , with P̂ijΦ=−Φ, have semi-integer spin and are called fermions.[6]

H ′
A is the orthogonal complement, populated by functions that are neither symmetric nor

anti-symmetric (irreducibile representation of the permutation group), but and up to now is
no experimental evidence indicating a connection with physical wavefunctions.

Ψ ∈H
(±)

2 ⇒ Φ(x1µ, x2ν) =
1√
2

(φµ(xP1)φν(x2)± φµ(x2)φν(x1)) (3.4)

When constructing the basis of A-particle states in the space H
(−)
A we similarly single-out

antisymmetric states,

Φµ1...µA(x1, . . . , xA) = (A!)−1/2
∑
P

(−1)Pφµ1(xi1) . . . φµA(xiA), (3.5)

where P is the permutation of A elements, P(1, 2 . . . , A)=(i1, i2, . . . , iA). The above state is
called Slater determinant of single-particle states,

Φµ1...µA(x1, . . . , xA) = (A!)−1/2

∣∣∣∣∣∣∣∣
φµ1(x1) φµ2(x1) · · · φµA(x1)
φµ1(x2) φµ2(x2) · · · φµA(x2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φµ1(xA) φµ2(xA) · · · φµA(xA)

∣∣∣∣∣∣∣∣ . (3.6)

Fock space

F (±) := C⊕H ⊕H
(±)

2 ⊕ · · · ⊕H (±)
n ⊕ · · · (3.7)

with functions as

f ∈ F (±) =



f0 ∈ C
f1(r1σ1) ∈H

f2(r1σ1, r2σ2) ∈H
(±)

2
...

...

fn(r1σ1, · · · , rnσn) ∈H
(±)
n

...
...


. (3.8)
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Applying the number operator results in

N̂Φ =



0 · f0

1 · f1(r1σ1)
2 · f2(r1σ1, r2σ2)

...
n · fn(r1σ1, · · · , rnσn)

...


. (3.9)

3.1.2 Creation operators

We define a creation operator that creates a particle in the antisymmetric Fock space, thus

a+
µΦA(µ1, · · · , µA) :=

{
0 for µ ∈ {µi},
ΦA+1(µ, µ1, · · · , µA) for µ 6∈ {µi},

(3.10)

and the annihilation operator, hermitian conjugate of the constructor, is given by

aµΦA+1(µ1, · · · , µA + 1) :=

{
0 for µ 6∈ {µi}
(−1)i+1ΦA(µ1, · · · , µi−1, µi+1, · · · , µA+1) for µ = µi

(3.11)
In F (−), in other words for fermions, creation and annihilation rules operator obey this fol-
lowing anticommutation rules {

a+
µ , a

+
ν

}
= 0, (3.12)

{aµ, aν} = 0, (3.13){
aµ, a

+
ν

}
= δµ,ν . (3.14)

From these relations follows that a+
µ a

+
µ = 0, that embed the Pauli principle into the properties

of the creation operators.

At this point we can define a vacuum state such as

aµ|0〉 = 0 ∀µ (3.15)

and every state is defined by application of constructor operators

|µ1 · · ·µA〉 := a+
µ1 · · · a

+
µA
|0〉 (3.16)

which defines an orthonormal set of states, correspondant to the slater determinant wavefunc-
tion in Eq. (3.11).

3.1.3 Operators in second-quantization

N̂ν gives the number of fermions occupying the ν-th single-particle state,

N̂ :=
∑
ν

a+
ν aν , (3.17)

that is used to define the fermion-number operator:

N̂ |µ1 . . . µA〉 = A|µ1 . . . µA〉. (3.18)

32



Theorem 3 (Theorem on the second-quantization representation for operators in the Fock space)
In the second-quantization representation, the K-particle operator is defined by its antisym-
metrized matrix elements and has the following form:

F̂ = (K!)−2
∑

µ1...µK
ν1...νK

Fµ1...µKν1...νKa
+
µ1 . . . a

+
µK
aνK . . . aν1 , (3.19)

that reduces to the case of one and two body operators to

F̂ =
∑
µ1ν1

Fµ1ν1a
+
µ1aν1 , (3.20)

F̂ =
1

4

∑
µ1µ2ν1ν2

Fµ1µ2ν1ν2a
+
µ1a

+
µ2aν2aν1 . (3.21)

Creation and destruction operator can also be represented in the Hilbert space (coordinate
or momentum), giving the creation or destruction of a particle in a particular position or
momentum.

3.1.4 From first to second–quantized form

Let’s consider a one body operator in the second quantization form, as in Eq. (3.20), using
the field operators as defined in the previous lecture

a+(r) :=
∑
µ

φ∗µ(r)a+
µ , a(r) :=

∑
µ

φµ(r)aµ, (3.22)

we can build it from first quantization operator

F̂ =
∑
µ1ν1

〈µ|F |ν〉a+
µ aν =

∫
d3ra+(r)a(r)F (r) (3.23)

Implying that densities (ρ =
∑

i ρ(r− ri)) in second quantization, at a given coordinate r are
then given by

ρ̂(r) = â+(r)a(r) (3.24)

3.2 Wick Theorem

Let’s consider a decomposition of A on Ψ such as

A = A0 +A+ +A−, (3.25)

with,

A0 is a constant, (3.26)

A−|Ψ〉 = 0, (3.27)

〈Ψ|A+ = 0. (3.28)
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Let then P=|Ψ〉〈Ψ| be the operator projecting on the state |Ψ〉. Thus we get the explicit form
of the decomposition (3.25) that fullfills the rules of (3.26-3.28),

A0 = 〈Ψ|A|Ψ〉, (3.29)

A− = (A− 〈Ψ|A|Ψ〉) (1− P ), (3.30)

A+ = (1− P )AP, (3.31)

with for any operator A and any state |Ψ〉.

If we want to calculate the average product of two operators

〈Ψ|AB|Ψ〉 = 〈Ψ|A|Ψ〉〈Ψ|B|Ψ〉+ 〈Ψ|A−B+|Ψ〉, (3.32)

that relates to (anti–)commutator relations,

〈Ψ|A−B+|Ψ〉 = 〈Ψ|{A−, B+}|Ψ〉 = 〈Ψ|[A−, B+]|Ψ〉
= 〈Ψ|{A−, B}|Ψ〉 = 〈Ψ|[A−, B]|Ψ〉 = · · · (3.33)

We then define a contraction, and auto–contraction, for fermions as

AB := {A−, B}, (3.34)

A := 0. (3.35)

To be noted that the contractions for bosons are given by commutator and the auto–contraction
is a number that gives an important contribution to observables such as the total energy.

Theorem 4 (Wick’s theorem) If all mutual contractions of pairs of operators in the prod-
uct are numbers, then the average value of the product of these operators equals the linear
combination of products of all possible contractions and auto-contractions.

AD1D2 . . . DkB := ckABD1D2 . . . Dk. (3.36)

3.2.1 Wick’s theorem for Slater determinants

Owing to anticommutation rules (3.14), fermion contractions are numbers. Can be build
considering the configuration which annhilate the state on the left and right (cf. (3.26-3.28)
) is called normal ordering N [· · · ], and contractions are then defined as

AB = AB −N [AB]. (3.37)

They result in the following values,

a+
µ aν =

A∑
i=1

δµµiδνµi , (3.38)

aµa
+
ν =

M∑
i=A+1

δµµiδνµi , (3.39)

a+
µ a

+
ν = aµaν = 0, (3.40)
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while auto–contractions vanish:
a+
µ = aµ = 0. (3.41)

This again is for the specific case of naked fermions, we will later see that in the case of
other creation and annhilation in other systems contractions and autocontractions can have a
different outcome, for example in the system with pairing interaction in the Bolgolybov basis
(cf. Lecture 6).

3.2.2 Calculations of matrix elements

Calculation of one body matrix element over two body states gives,

〈α′1, α′2|F̂ |α1, α2〉 =
∑

µ1µ2ν1ν2

Fµν〈0|aα′2aα′1a
+
µ aνa

+
α1
a+
α2
|0〉 (3.42)

= Fα′1α1
δα′2α2

+ Fα′2α2
δα′1α1

− Fα′1α2
δα′2α1

− Fα′2α1
δα′1α2

, (3.43)

making use of contractions.

3.3 Exercises

Exercise 10.

Prove that the square of a general one–body operator is equal to a sum of one– and two–body
operators.

Exercise 11.

Calculate the matrix elements of a two body operator Eq.(3.21) between two body states using
Wick theorem.
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Lecture 4

Hartree-Fock Method
[Week 1, day 4]
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4.1 Nuclear interaction

The first step to develop a microscopic picture of nuclear structure is to obtain a model for
the forces acting between nucleons. The general nuclear Hamiltoninan reads

H =
−~2

2m

∑
i

∇2
i +

∑
i≤j

vij +
∑
i≤j≤k

Vijk + · · ·+ n-body terms (4.1)

where vij is the 2-body Nucleon-Nucleon interaction (NN) and Vijk is the 3-body one.

A possible representation of the 2-body interaction looks like

36



vij =
∑
p=1,n

vp(rij)O
p
ij (4.2)

which is a form factor (typically a sum of Yukawa potential
∑

a exp−kar /r) times an operator.
To reproduce scattering data a minimum of 8 operators is required

Op=1,8
ij = 1, τiτj , σiσj , (τiτj)(σiσj), Sij , Sij(τiτj),L · S,L · Sτiτj (4.3)

To reproduce with more accuracy data, extra operators are needed, typically 14 or 18. In
Fig.4.1, we show the shape of the NN potential for the different channels of spin and isospin.

Figure 4.1: Dependence of the Argonne v14 NN potential on the total spin (S) and isospin
(T). [7].

We observe that the nuclear strong force strongly depends on the spin-isospin channels. It
is strongly repulsive at very short distance (hard-core) and attractive at r ≈ 1 fm. Solving
Eq.4.1 for this potential becomes quickly quite prohibitive and thus not applicable to the
entire mass chart.

4.1.1 A simple case: Coulomb

The hamiltonian for 1 atom (fixed position) reads (in natural units ~ = me = ε0 = 1

H = −
ne∑
i=1

∇2
i

2
− Z

ne∑
i=1

1

ri
+

ne∑
i=1

ne∑
j>i

1

rij
(4.4)

We anticipate here that our goal is to find a procedure so that
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H =

ne∑
i=1

hei +
1

2

ne∑
i=1

ne∑
j>i

v̄ee (4.5)

where hei is a single-electron Hamiltonian of the electron i and v̄ee is a residual interaction
that is difficult to treat.

4.2 Hartree-Fock method

Figure 4.2: Mean free path determined from neutron cross sections (squares) and proton
reaction cross sections (diamonds). The solid line represents various theoretical models. [8].

we want to simplify Eq.4.1 by replacing the nuclear potential

∑
i≤j

vij ≈
∑
i

vi (4.6)

This means that given a nucleus with A particles. The total Hamiltonian of the system reads
now [9]

HHF =

A∑
i

h(i) (4.7)

The corresponding energy of the system EHF0 can be seen as an approximation to the ex-
act ground state energy of the system. The total wave-function of the system is a Slater
determinant Φ(1, . . . , A)
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|HF 〉 = |Φ(1, . . . , A)〉 = ΠA
i a
†
i |−〉 (4.8)

where a†i is the single particle creator operator. To calculate the single particle wave functions
φk(i) we need to solve a system of coupled equations of the form

h(i)φk(i) = εkφk(i) with i = (r, σ, τ) (4.9)

It is important to recall here that for the Hartree-Fock (HF) case, we replace the initial many-
body problem by a simpler one-body problem and. The equation we are going to derive
look formally the same as the Kohn-Sham equations of DFT, however there is conceptual
difference. While HF is an approximation of the nuclear many-body problem starting from
the Hamiltonian, DFT goal is to provide an exact reformulation of the initial problem and
can be regarded as an ab-initio approach.

4.2.1 Thouless Theorem

The Thouless theorem (Nucl. Phys. 21 1960) states Theorem: Any N -particle Slater deter-
minant |Φ〉 which is not orthogonal to |Φ0〉 can be written in the form

|Φ〉 = ΠN
i=1Π∞m=N+1(1 + Cmia

†
mai)|Φ0〉 (4.10)

= exp

[
N∑
i=1

∞∑
m=N+1

Cmia
†
mai

]
|Φ0〉 (4.11)

where Cmi are uniquely determined.1

1proof We suppose that Φ〉 is a determinant of the wave functions

ψα =
∞∑
i=1

fαiφi (4.12)

where α = 1, . . . , N . Using second quantisation we can write the Slater determinant as

|Φ〉 = ΠN
α=1

(
N∑
i=1

fαia
†
i +

∞∑
m=N+1

fαma
†
m

)
|0〉 (4.13)

Since this state is not orthogonal to |Φ0〉 we have

〈Φ0|Φ〉 = detfαi = 1 (4.14)

here α, i run from 1 to N. We write Fiα = f−1
αi

N∑
i=1

fαiFiβ = δαβ

N∑
α=1

Fiαfαj = δij (4.15)

i,j are less or equal to N. We can thus define Cmi =
∑N
α=1 Fiαfαm for i ≤ N and m > N . We can now write

N linear independent combinations of the wave function φαas
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The Thouless theorem can be generalised for a more general product state of the form.

Theorem: Each even product state non-orthogonal to vacuum |0〉 can be uniquely expressed
in the following form

|Φ〉 = Nexp

{
−1

2

∑
µν

Z†µνa
†
µa
†
ν

}
|0〉 (4.20)

where ZT = −Z and N is a normalisation constant

4.2.2 Density matrix in Quantum Mechanics

In quantum mechanics, we distinguish between one-particle density matrix, 2-particles, and
so on... Formally we can define a single-particle operator in N-body Hilbert space as

ρ̂(r) =
N∑
i=1

δ(r− r̂i) (4.21)

where r̂i is the space operator of particle i and r is a parameter. We can express it in second
quantisation as

ρ̂(r) =
∑
pq

dpqa
†
paq (4.22)

dpq = 〈p|δ(r− r̂)|q〉 =
∑
s

φ∗p(r, s)φ
∗
q(r, s) (4.23)

The expectation value of this operator on a N-body wave-function is just

χi =

N∑
α=1

Fiαψα = φi +

∞∑
m=N+1

Cmiφm (4.16)

The Slater determinant built out of χ should be equal to |Φ〉 so

|Φ〉 =

[
ΠN
i=1a

†
i +

∞∑
m=N+1

Cmia
†
m

]
|0〉 (4.17)

=

[
ΠN
i=11 +

∞∑
m=N+1

Cmia
†
mai

]
a†i |0〉 (4.18)

=
[
ΠN
i=1Π∞m=N+1(1 + Cmia

†
mai)

]
|Φ0〉 (4.19)

The sum over m can be replaced by a product because all terms in which the same creation operator occurs
more than one vanish For the same reason we can re-write it in terms of an exponential!.
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〈Ψ|ρ̂(r)|Ψ〉 = N
∑
spin

∫
dr2,...N |Ψ(r, s, r2, s2, ....rN , sN )|2 = ρ(r) (4.24)

this can be interpreted as the diagonal element of an operator ρ̂Ψ in coordinate space and
called density matrix.

〈rs|ρ̂Ψ|r′s′〉 = ρ(rsr′s′) =
∑
pq

φp(r.s)ρqpφ
∗
q(r
′s′) (4.25)

with ρqp = 〈Ψ|c†qcp|Ψ〉 being the matrix element of the density operator in arbitrary basis.

For the specific case of a Slater determinant, ρ is diagonal in a given single-particle basis
ρ̂2

Ψ = ρ̂Ψ

We can consider elements of a density matrix as measurable characteristics of a product state.
For example, measuring a physical quantity, which corresponds to a one-body or two-body
operator, on a product state, we respectively obtain

〈Φ|F̂ |Φ〉 =
∑
µν

Fµνρνµ = TrFρ (4.26)

〈Φ|F̂ |Φ〉 =
1

2

∑
µµ′νν′

Fµµ′νν′ρνµρν′µ′ (4.27)

4.2.3 Deriving HF equations

Figure 4.3: Single particle leveles and occupation probability of the states. εF is the Fermi
energy, defined as the energy between the last occupied and first empty state.

To derive HF equation we use Thouless theorem to build a class of trial functions of a A
system We introduce the notation p = A+ 1, ...M (particle) and h = 1, .., A (hole)

|Z̃〉 = exp(
∑
ph

Z∗pha
†
pah)a†1...a

†
A|0〉 (4.28)
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Zph is a rectangular matrix.

We define the HF energy as

EHF =
〈Z̃|H|Z̃〉
〈Z̃|Z̃〉

(4.29)

The variational principle δEHF = 0 means

δEHF =
〈Z̃|H|δ⊥Z̃〉
〈Z̃|Z̃〉

(4.30)

notice we have performed a orthogonal variation of |Z̃〉

|δ⊥Z̃〉 = |δZ̃〉 − 〈Z̃|δZ̃〉
〈Z̃|Z̃〉

|Z̃〉 (4.31)

We define

δ :=
∑
ph

δZ∗ph
∂

∂Z∗ph
(4.32)

We have

|δZ̃〉 =
∑
ph

δZ∗pha
†
pah|Z̃〉 (4.33)

|δ⊥Z̃〉 =
∑
ph

δZ∗ph

(
a†pah − ρhp

)
|Z̃〉 (4.34)

(4.35)

We get

δEHF =
〈Z̃|H|δ⊥Z̃〉
〈Z̃|Z̃〉

(4.36)

=
1

〈Z̃|Z̃〉
〈Z̃|H|

∑
ph

δZ∗ph

(
a†pah − ρhp

)
|Z̃〉 (4.37)

that we have to put to zero thus
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〈Z̃0|H|
(
a†pah − ρ0hp

)
|Z̃0〉 = 0 (4.38)

where ”0” means a product state that obeys this variational principle.

Apply Wick on the Hamiltonian

H = T + V =
∑
µν

Tµνa
†
µaν +

1

4

∑
µλνπ

Vµλνπa
†
µa
†
λaπaν (4.39)

by doing that we get

〈Z̃|H|
(
a†µaν − ρνµ

)
|Z̃〉 = 〈Z̃|H|a†µaν |Z̃〉 − ρνµ〈Z̃|H|Z̃〉 (4.40)

= (ρh(1− ρ))µν (4.41)

where hµν = Tµν + Γµν . T is the one-body matrix elements of the kinetic term and Γµν =∑
λπ Vµλνπρπλ. From the hermiticity of the interaction we conclude that

Γ† = Γ (4.42)

h† = h (4.43)

We can summarise the result by showing that the product state |Z̃0〉 obeys the variational
Hartree-Fock condition if its density matrix ρ0 obeys

[h0, ρ0] = 0 (4.44)

The density matrix obeying the Hartree-Fock equation is called self-consistent density matrix
and the Hamiltonian induced by it - self-consistent Hamiltonian

To solve this equation we have to set up a self-consistent procedure as illustrated in Fig.4.4

We can now calculate the HF energy

EHF = TrTρ+
1

2
TrTr(ρv̄ρ) (4.45)

= TrTρ+
1

2
Tr(ρΓ) (4.46)

= TrTρ+
1

2
Tr(ρh− ρT ) (4.47)

=
1

2
TrTρ+

1

2
Trhρ (4.48)

in canonical basis
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Figure 4.4: Self-consistent procedure used to solve HF equations. First one has to choose a
set of single-particle states that are supposed to not be too far from the solution.Then, from
them, the HF hamiltonian is computed. Bysolving HF equations, new single-particle states
are found. Then, the procedure is iterated until the convergence is achieved

EHF =
1

2

A∑
h=1

(Thh + εh) (4.49)

Thh are the diagonal matrix element of the kinetic energy operator

Figure 4.5: Single particle energies in 132Sn for some given interactions (Skyrme family) for
neutron states (a) and protons (b). A thick mark indicates the Fermi level. Taken from
Ref. [10].

Single particle states are not strictly speaking observables, but they can be associated with
the necessary energies to add/remove a particle from a N-body system. In particular we make
use of the so called Koopman’s theorem

EHF [N + 1]− EHF [N ] ≈ εN+1 (4.50)
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which states that the energy difference between to nuclei with N and N+1 particles corresponds
to the single particle energy εN+1 of the last occupied state.

4.2.4 Stability matrix

We derived the Hartree-Fock equations requiring that the first variation of energy equal zero
To see if the solution corresponds to a real minimum of the total energy we have to consider
the second order variation of the energy.

Let assume that the density matrix ρ can be expanded around ρ0

ρ = ρ0 + ρ1 + ρ2 + . . . (4.51)

ρ0 ≥ ρ1 ≥ ρ2 . . . (4.52)

by requiring that the ρ matrix is a projector, we have

ρ2
0 = ρ0 (4.53)

ρ0ρ1 + ρ1ρ0 = ρ1 (4.54)

ρ0ρ2 + ρ1ρ1 + ρ2ρ0 = ρ2 (4.55)

We define σ0 = 1− ρ0, which is still a projector. We consider an arbitrary matrix A.

ρ0[A, ρ0]ρ0 = σ0[A, ρ0]σ0 = 0 (4.56)

ρ0[A, ρ0]σ0 = −ρ0Aσ0 (4.57)

σ0[A, ρ0]ρ0 = σ0Aρ0 (4.58)

since ρ0 projects on occupied (hole) states and σ0 on unoccupied (particle) states, we can
separate A in blocks h = 1, A p = A+ 1, . . . ,M

[A, ρ0] =

(
0 −Ahp

Aph′ 0

)
(4.59)

[[A, ρ0], ρ0] =

(
0 −Ahp

Aph′ 0

)
(4.60)

(4.61)

If we now come back to Eq.4.56, we can re-write them as
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ρ1 = [[ρ1, ρ0], ρ0] (4.62)

ρ2 = [[ρ2, ρ0], ρ0] +
1

2
[[ρ1, ρ0], ρ1] (4.63)

this means that the pp and hh matrix elements of first order correction ρ1 are equal to zero,
while the same matrix elements of ρ2 depended on the correction ρ1.

Since we have ρ0 the HF density we need to discuss only second order variation E2. We defined
the stability operator of the solution of HF equations, which acts in the set of Hermitian
matrices with vanishing p-p and h-h elements as a linear transformation is defined as

M0ρ1 := [[h0, ρ1] + [Γ1, ρ0], ρ0] (4.64)

We see that the second order energy variation around the HF solution depends only on the
first-order variation of the density matrix.

Theorem Second-order variation of energy around the HF solution is equal to the diagonal
matrix element of the Hermitian stability operator M0 calculated for first-order correction to
the density

E2 =
1

2
(ρ1|M0ρ1) (4.65)

We have used the scalar product of 2 matrices as (A|B) = TrA†B. In the canonical basis of
HF density the stability matrix reads

(M0ρ1)ph = (ep − eh)ρ1ph +
∑
p′h′

(Vpp′hh′ρ1h′p′ + Vph′hp′ρ1p′h′) (4.66)

we will see that this matrix is related to RPA equations. To get a stable HF solution we need
to have such a matrix to be positive definite, this check can be done only numerically..

4.3 Infinite nuclear matter

As a first example of applications of HF to a system, we consider the infinite medium.

φk(r) =
1√
Ω

exp−ikr χ 1
2
σχ 1

2
τ (4.67)

The infinite medium is characterized by the density
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ρ0 = ρn↑ + ρp↑ + ρn↓ + ρp↓ (4.68)

We can thus characterise the infinite medium by considering the unbalance between the dif-
ferent densities. In the following we will consider only spin-saturated system (ρ↑ = ρ↓), but
it it simple to generalise. We define an asymmetry parameter

Y =
ρn − ρp
ρn + ρp

(4.69)

we have thus the two important cases Y = 0 Symmetric Nuclear Matter (SNM) and Y=1
Pure Neutron Matter.

Figure 4.6: Schematic representation of a Neutron Star

The HF Hamiltonian is composed by a kinetic part (treated as Fermi gas) and interaction.
We consider SNM (thus ρn = ρp)

The expectation value of the kinetic energy is

E

A

∣∣∣∣
Kinetic

=
3

5

~2

2m
k2
F (4.70)

Exercise 4 Prove the previous result on kinetic energy. Assume at first no interaction and a
pure Fermi gas. Remember that

∑
k →

1
(2π)3

∫
d3k and k3

F = 3
2π

2ρ
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While for the the interaction V one needs to calculate explicitly

〈V 〉 =
1

2

∑
i,j≤εF

〈i, j|V (r)(1− PσPτPx)|ij〉 (4.71)

the exchange operator PσPτPx acting on spin/isospin/position gives us the Fock term. Let’s
make explictly the calculation taking an interaction of the form

4.3.1 Example: finite range interactions

V (r) = W exp−(r1−r2)2/µ2 (4.72)

Recalling that momentum and spin commute we can calculate the following quantities

4PσPτ = 1− σ1σ2 − τ1τ2 + σ1σ2τ1τ2 (4.73)

We have

〈V 〉SNM =
1

2
W
∑
ij

〈ij|V (r)(1− PσPτPx)|ij〉

=
1

2
4× 4

∑
kikj

〈kikj |W exp−(r1−r2)2/µ2
(

1− 1

4
Px

)
|kikj〉

= 8
∑
kikj

1

Ω2

∫
d3r1d

3r2W exp−(r1−r2)2/µ2
[
1− 1

4
exp−i(ki−kj)(r1−r2)

]
[From r1, r2 to center of mass coordinates so we can get rid on 1 integral R, r12]

=
8

Ω

∑
kikj

∫
d3r12W exp−(r1−r2)2/µ2

[
1− 1

4
exp−i(ki−kj)r1

]

=
8

Ω

(
Ω

8π3

)2 ∫
d3kid

3kj

∫
d3r12W exp−(r1−r2)2/µ2

[
1− 1

4
exp−i(ki−kj)r1

]
(4.74)

We now define

V(0) =

∫
d3r exp−(r1−r2)2/µ2 (4.75)

V(k) =

∫
d3r expikr exp−(r1−r2)2/µ2 (4.76)
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and we have

〈V 〉SNM = W
Ω

8π6

{(
4π

3
k3
F

)2

V(0)− 1

4

∫
d3kid

3kjV(k)

}
(4.77)

Notice that the integral over the two Fermi spheres is limited by the HF to the two Fermi
momenta kF1, kF2 which are equal in this case.

1

A
〈V 〉 =

1

2
ρW

{
′ − 3

∫ 1

0
dxx2(2 + x3 − 3x)(2kFx)

}
(4.78)

E = aVA− asA2/3 − aCZ2/A1/3 − aA(A− 2Z)2/A+ . . . (4.79)
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Figure 4.7: Energy per particle in SNM (panel a) and PNM (panle b) for some effective
interactions at HF level. symbols refer to ab-initio results based on BHF.

4.3.2 Example: zero range interactions

Consider an interaction of the type

V = t0(1 + x0Pσ)δ(ri − rj) +
1

6
t3(1 + x3Pσ)ρ

(
ri + rj

2

)α
δ(ri − rj) (4.80)

this is the simplest form of the Skyrme interaction.

(1 + x0Pσ)(1− PxPσPτ ) = (1 + x0Pσ)(1− PσPτ ) (4.81)

= 1 + x0Pσ − (x0P
2
σ + Pσ)Pτ (4.82)

= 1 +
1

2
x0 −

1

2
(1 + 2x0)Pτ (4.83)
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where Px = 1 is due to the fact that the δ is a pure S-wave. We have

EHF =
t0
2

∑
lm

∫
ψ∗l (r

′
i)ψ
∗
m(r′j)

(
1 +

1

2
x0 −

1

2
(1 + 2x0)Pτ

)
ψl(ri)ψm(rj)dridrjdri′drj′

∣∣
ri=rj=r′i=r

′
j

=

∫ {
t0
2

(
1 +

1

2
x0

)
ρ(ri, r

′
i)ρ(ri, r

′
i)−

t0
2

(
1

2
+ x0)ρ(ri, r

′
i)ρ(ri, r

′
i)δq1q2

}
dridrjdri′drj′

∣∣
ri=rj=r′i=r

′
j

=

∫
d3r

{
t0
2

(
1 +

1

2
x0

)
ρ(r)2 − t0

2
(
1

2
+ x0)

∑
q

ρq(r)
2

}
(4.84)

where Pτ reduces to a δq1q2 since we assume no isospin mixing. For SNM we have (leave as
exercise)

E

A

∣∣∣∣
SNM

=
3t0
8
ρ+

t3
16
ρα+1 (4.85)

From the simple HF calculation of the infinite medium we can extract extra informations on
the nuclear interaction

P = ρ2∂E/ρ

∂ρ
[pressure] (4.86)

K = 9
∂P

∂ρ
[incompressibility] (4.87)

E/A(ρ, Y ) = E/A(ρ, 0) + S(ρ)Y 2 + . . . [symmetry energy] (4.88)

L = 3ρ
∂S

∂ρ
[slope of symmetry energy] (4.89)

These quantities can be related to properties of finite nuclei as neutron skin-thickness (L) or
the centroid of giant monopole resonances. See Figs.4.8-4.9

4.3.3 Neutron Stars

To calculate the mass and the radius of a NS we have to solve the Tolman-Oppenheimer-
Volkoff (TOV) equations for the total pressure P and the enclosed mass m

dP (r)

dr
= −Gm(r)ε(r)

r2

[(
1 +

P (r)ε(r)

c2

)(
1 +

4πr3P (r)

ε(r)c2

)][
1− 2Gm(r)

rc2

]−1

,

dm(r)

dr
= 4πr2ε(r) , (4.90)

where G is the gravitational constant and ε(r) is the total energy density of the system [We
need to include mass contribution!!].
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Figure 4.8: Evolution of pressure in SNM for different interaction (Gogny). The shaded area
is a constraint extracted from flow data experiment Ref. [11]. Taken from Ref. [12]

4.4 Exercise

Exercise 11

Given the simple equation of state

E

A

∣∣∣∣
SNM

=
3t0
8
ρ+

t3
16
ρα+1 (4.91)

Find a set of values t0, t3 that gives you a reasonable equation of state:

E

A

∣∣∣∣
ρ=ρsat

≈ −16MeV

ρsat ≈ 0.16fm−3

The parameter α is usually take in the region α ∈ [0.1− 1]. A good EoS should not collapse
at large densities i.e.EA > 0 for ρ > 3× ρsat
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Figure 4.9: Symmetry energy as a function of density for all Gogny interactions. Taken from
Ref. [12]

Exercise 12

Calculate the HF energy per particle using the following interaction in a spin and isospin
saturated system (Symmetric Nuclear Matter). No Coulomb interaction.

V =
2∑
i=1

[Wi +BiPσ −HiPτ −MiPσPτ ] e−(r/µCi )2 + t(DD)(1 + x(DD)Pσ)ρα(R)δ(r)

Note you do not need to use explicit values for Wi, Bi, . . . ...
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Figure 4.10: Mass-radius relation for neutron stars obtained with 11 Gogny interaction. The
shaded region enclosed by a full line is obtained from quiescent low-mass X ray binary mass
and radius observations using atmosphere models that include both hydrogen and helium.
The upper limit on NS mass is indicated by a grey line.Taken from Ref. [12]
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Lecture 5

Spontaneous symmetry breaking
[Week 1, day 5]
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5.1 Spontaneous breaking of parity symmetry
in ammonia molecule

The Lennard-Jones potential, which describes the atom-atom interaction in a diatomic mole-
cule, has the form:

V (r) = ε

[(rm
r

)12
− 2

(rm
r

)6
]
, (5.1)

where rm is the distance between atoms.

The binding energy of the molecule with bond lengths NH and HH rNH and rHH respectively
is equal to:

ENH3(rNH, rHH) = 3εNH

[(
dNH

rNH

)12

− 2

(
dNH

rNH

)6
]

+3εHH

[(
dHH

rHH

)12

− 2

(
dHH

rHH

)6
]
, (5.2)

where dNH and dHH are the bond lengths in equilibrium.
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Figure 5.1: HH bond length (solid line, left axis) and NH bond length (dotted line, right axis)
obtained from the energy minimization (5.2) at a predetermined position of the nitrogen atom
d. Filled circles indicate the bond lengths in the actual molecule of ammonia and the empty
circles correspond to a hypothetical flat molecule.
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Figure 5.2: The binding energy of the molecule of ammonia as a function of the position of
the nitrogen atom d. Filled circles represent the energies of bonds in the actual molecule of
ammonia, and the empty circle corresponds to a hypothetical flat molecule.

Let us denote overlaps and Hamiltonian matrix elements in the two-dimensional Hilbert space
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by

1 = 〈L|L〉 = 〈R|R〉, (5.3a)

ε = 〈L|R〉 = 〈R|L〉, (5.3b)

E0 = 〈L|Ĥ|L〉 = 〈R|Ĥ|R〉, (5.3c)

∆ = 〈L|Ĥ|R〉 = 〈R|Ĥ|L〉. (5.3d)

In the non-orthogonal basis of states |L〉 and |R〉, the Hamiltonian H and overlap N matrices
read,

H =

(
E0 ∆
∆ E0

)
, N =

(
1 ε
ε 1

)
, (5.4)

and the orthogonal eigenstates can be very easily found:

|±〉 =
1√

2± 2ε
(|L〉 ± |R〉) , (5.5)

with
P̂ |±〉 = ±|±〉, (5.6)

and correspond to eigenenergies

E± = 〈±|Ĥ|±〉 =
E0 ±∆

1± ε
. (5.7)

We thus also see that states |L〉 and |R〉 are not eigenstates, but linear combinations thereof,
that is, wave packets:

|L〉 =
1

2

(√
2 + 2ε|+〉+

√
2− 2ε|−〉

)
, (5.8a)

|R〉 =
1

2

(√
2 + 2ε|+〉 −

√
2− 2ε|−〉

)
. (5.8b)

It is very useful to understand states |±〉 as projected or symmetry-restored states. Indeed,
we can define projection operators on both parities as

Π± = 1
2(1± P̂ ), Π2

± = Π±, (5.9)

in terms of which,
|±〉 = N±Π±|L〉 = ±N±Π±|R〉, (5.10)

where N± are normalization constants.

As a next step, we will carry out a diagonalization of Hamiltonian (5.4) for all values of the
parameter d, assuming that

E0(d) = ENH3(d), (5.11a)

ε(d) = exp
(
−1

2a
2(2d)2

)
, (5.11b)

∆(d) =
(
h0 − 1

2h2a
2(2d)2

)
ε(d). (5.11c)

Now, let’s consider a T -even observable D̂ of negative spatial parity,

D̂+ = D̂, T̂ D̂T̂+ = D̂, P̂ D̂P̂+ = −D̂, (5.12)
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Figure 5.3: Ammonia molecule binding energies as functions of the position of the nitrogen
atom d. The solid line represents the binding energy in states, |L〉 and |R〉, that break the
symmetry (as in Fig. 5.2), and the long-dashed and short-dashed lines correspond to the
binding energies E+ and E− in the states of the restored symmetry, |+〉 and |−〉, respectively.
The inset shows the same curves around the minimum in a larger scale.

and assume that we may calculate its matrix elements for states |L〉 and |R〉, and therefore
also for |±〉 states. An example of such an observable could be the dipole moment of the
ammonia molecule, that is, a vector connecting the center of mass of the molecule with the
center of its charge. In this case, it only has a non-zero z component, and illustrates the
position of the nitrogen atom in relation to the H3 plane. The matrix of its matrix elements
in a non-orthogonal basis of states |L〉 and |R〉 has the form of:

D =

(
D0 0
0 −D0

)
, (5.13)

and in an orthogonal basis of states |±〉 it has the form of:

D′ =
1√

1− ε2

(
0 D0

D0 0

)
, (5.14)

where D0 ≡ 〈L|D̂|L〉, see problem 12.

The squared module of the matrix element 〈−|D̂|+〉 defines the probability of an E1 transition
between the excited negative-parity state |−〉 and the ground state |+〉, and so we know its
experimental value:

B (E1;|−〉 → |+〉) ∼ |〈−|D̂|+〉|2 =
D2

0

1− ε2
= (30.6)2 e2 pm2. (5.15)

|〈−|D̂|+〉|2 =
(0.836 e)2d2

1− exp (−a2(2d)2)
−−−−→
d→ 0

(0.836 e)2

4a2
= (10.0)2 e2 pm2. (5.16)

So, had the ammonia molecule been flat (d=0), the probability of the E1 transition |−〉 → |+〉
would have been ten times smaller than experimentally observed.
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Figure 5.4: The binding energies in the ammonia molecule in the symmetry breaking states
|L〉 and |R〉 plotted as a function of the position of the nitrogen atom d. The following curves
represent the solutions for different lengths of dNH bonds.

5.2 Self-consistent symmetries

According to the nature of nuclear interactions, the nuclear Hamiltonian has six basic sym-
metries:

1◦ translational symmetry,

2◦ rotational symmetry,

3◦ isospin symmetry,

4◦ particle-number symmetry,

5◦ space-parity symmetry,

6◦ time-reversal symmetry.

Discrete symmetries, Signature:

R̂k := e−iπÎk , R̂2
k = (−1)A, (5.17)

where Îk is the operator of the projection of the total angular momentum on the kth axis.

Simplex:

Ŝk := P̂ R̂k, Ŝ2
k = (−1)A. (5.18)
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The simplexes are nothing but mirror reflections with respect to planes y-z, z-x, and x-y, for
k = x, y, z, respectively.

Continuous symmetries:

Û = exp
(
iαŜ

)
or Û = exp

(
iα · Ŝ

)
. (5.19)

Hermitian operators Ŝ (or Ŝ) are called generators of symmetry operators Û , and, for the
above mentioned symmetries, they are:

1◦ total momentum operator: P̂=
∑A

i=1 pi ,

2◦ total angular-momentum operator: Î=
∑A

i=1 ji ,

3◦ total isospin operator: T̂=
∑A

i=1 ti ,

4◦ particle number operator N̂ ,

8◦ total position operator: R̂=
∑A

i=1 ri ,

where pi, ji, ti and ri are, respectively, operators of momentum, angular momentum, isospin
and coordinates of the i-th particle.

The parameters of the above continuous symmetries are, respectively,

1◦ αr=−r0/~, where r0 is the vector of translation,

2◦ αn=−n0/~, where |n0| is the angle of rotation around axis n0/|n0|,

3◦ αm=−m0/~, where |m0| is the angle of rotation in isospace around axis m0/|m0|,

4◦ αφ = −φ0/~, where φ0 is the so-called gauge angle,

8◦ αv=−mv0/~, where v0 is the change of the system velocity.

All continuous symmetries discussed here are one-body symmetries, that is, their generators
are one-body operators,

Ŝ =
∑
µν

Sµνa
+
µ aν . (5.20)

ÛaµÛ
+ =

∑
ν

U+
µνaν , (5.21)

where matrix U is directly connected with matrix S:

U = exp (iαS) . (5.22)

5-1: Theorem about self-consistent symmetries
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If operator Û is a one-body symmetry of Hamiltonian Ĥ, that is,

ÛĤÛ+ = Ĥ, (5.23)

then one-body Hamiltonian h[ρ], induced by density matrix ρ, has the
property:

Uh[ρ]U+ = h[UρU+]. (5.24)

If the density matrix is invariant with respect to the given symmetry, thus UρU+=ρ, theorem
(5.24) says that also the induced Hamiltonian is invariant with respect to this symmetry,

UρU+ = ρ =⇒ UhU+ = h. (5.25)

This implication, written for the symmetry generator and self-consistent density matrix, has
the form:

[S, ρ0] = 0 =⇒ [S, h0] = 0. (5.26)

The theorem about self-consistent symmetries 5-1 does not say if the self-consistent solution
is, or is not invariant with respect to the given symmetry. In general, depending on the
interaction, we may obtain solutions that do, or do not have symmetries of the many-body
Hamiltonian:

5-2: Broken symmetries

Solutions of the Hartree-Fock equations do not have to have all symmetries
of the Hamiltonian of the system. We will call a self-consistent solution
that is not invariant with respect to the given symmetry, broken-symmetry
solution or symmetry-breaking solution.

5-3: Interpretation of broken symmetries

Symmetry-breaking solutions of the Hartree-Fock equations should be in-
terpreted as approximations of wave packets, and not as approximations of
exact eigenstates of the Hamiltonian.

5.3 Spontaneous breaking of other symmetries

In the case of rotational symmetry the order operator is the quadrupole-moment tensor,

Q̂µ =

A∑
i=1

r2
i Y2µ(θi, φi), (5.27)
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where ri, θi, φi are the coordinates of the ith nucleon in a spherical coordinate system and
Y2µ are standard spherical harmonics (spherical functions) [13, 14]. This operator defines the
probabilities of electromagnetic quadrupole transitions E2 and is the order operator for the
rotational-symmetry breaking.

Particle-number-symmetry breaking aims at describing the deviations of the exact density
matrix from a projective density matrix without going outside the class of product states.
For this symmetry breaking, the order operator could be the operator of the collective-pair
transfer.

P̂ =
∑
ν

sνuνvν ā
+
ν̃ ā

+
ν , (5.28)

but an equally good one could be the operator of the dispersion of the particle number squared,

σ̂2
N = N̂2 − 〈Φ|N̂ |Φ〉2 (5.29)

.

In nuclei having a particular shell structure [15], with large orbitals of opposite parity on two
sides of the Fermi energy, the symmetry of spatial parity will be spontaneously broken. For
such a symmetry breaking, a proper order operator is the isovector-dipole-moment operator,

Q̂IV
1µ =

A∑
i=1

τ̂ zi riY1µ(θi, φi), (5.30)

cf. Eq. (5.27), where τ̂ z is a doubled third component of the isospin (equals +1 for neutrons
and −1 for protons). An equally good order operator is also the isoscalar octupole moment
operator

Q̂IS
3µ =

A∑
i=1

r3
i Y3µ(θi, φi), (5.31)

which measures the “pear-shape” of the nucleus.

5.4 The Goldstone theorem

Each self-consistent solution that breaks a given symmetry allows us to give a whole class of
self-consistent solutions. For if

ρ0 6= ρ′0 = Uρ0U
+, (5.32)

then for h′0=h[ρ′0], from the theorem about self-consistent symmetries, we have

[h′0, ρ
′
0] = [Uh0U

+, Uρ0U
+] = U [h0, ρ0]U+ = 0. (5.33)

5-4: The Goldstone Theorem
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If the self-consistent solution ρ0 breaks a continuous one-body symmetry
with the generator given by matrix S, formula (5.20), then matrix

ρS1 := i[S, ρ0] (5.34)

is the eigenvector of stability operator M0 of this self-consistent solution
with an eigenvalue of zero, thus

M0ρ
S
1 = 0. (5.35)

5.5 Take-away messages

Don’t let yourself confuse by
the confusing traditional terminology

When you hear about: Think about:

State in the intrinsic
reference frame

State in the intrinsic
reference frame

State in the laboratory
reference frame

State in the laboratory
reference frame

State before the
symmetry restoration

State before the
symmetry restoration

State after the
symmetry restoration

State after the
symmetry restoration

5.6 Exercises

Exercise 12.

Prove that the matrix elements D of the order operator D̂ (5.12) in the symmetry-breaking
states |L〉 and |R〉 have the form (5.13), and those D′ in the symmetry-restored states |±〉 have
the form (5.14).

Exercise 13.
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Consider two exact eigenstates of the Hamiltonian, |+〉exact and |−〉exact, which have opposite
parities, small excitation energy, ∆Eexact = Eexact

− − Eexact
+ , and large E1 transition matrix

element, Dexact
0 = exact〈−|D̂|+〉exact. Use them to construct two exact wave packets,

|L〉exact = cos(α)|+〉exact
+ sin(α)|−〉exact,

(5.36a)

|R〉exact = cos(α)|+〉exact
− sin(α)|−〉exact.

(5.36b)

In function of the mixing angle α determine the exact matrix elements defined in Eqs. (5.3)
and show for which mixing angles: 1◦ average energies of these two wave packets are equal. 2◦

average dipole moments of these two wave packets have opposite signs. 3◦ overlaps between
these two wave packets are small. 4◦ Hamiltonian matrix elements between these two wave
packets are small. Also determine the Hamiltonian kernel, ∆(α)/ε(α), and discuss the question
of how one can reconcile this result with the Gaussian overlap approximation (5.11c).

Exercise 14.

Prove that average energies of all symmetry-breaking Hartree-Fock states that are transformed
by the symmetry operator are all equal.

Exercise 15.

Prove the Goldstone theorem 5-4, see Ref. [16].
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Spontaneous Symmetry Breaking
II: Pairing Correlations
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6.1 Wick theorem for General Product States

Assume generic fermionic operators {β, β†}. Usual anticommutation relations are

{β†µ, β†ν} = 0, {βµ, βν} = 0, {βµ, β†ν} = δµν (6.1)

Define product state from said operators as

|Φ〉 =
∏
µ

βµ|0〉 (6.2)
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where |0〉 is the particle vacuum (here we do not have βµ|0〉 = 0)

To use Wick theorem for 〈Φ|ÂB̂|Φ〉/〈Φ|Φ〉 with Â, B̂ expressed in terms of the fermionic
operator ak, we need

ak = ak0 + ak+ + ak− (6.3)

How can we express operators ak0, ak+ and ak− in terms of the {a, a†}?

Generic form for the annihilation operator

ak− =
∑
mn

T̂ (m,n) (6.4)

where
T̂ (m,n) =

∑
α

Cαa
†
1 · · · a

†
ma1 · · · an (6.5)

6-1: Wick Theorem for Product States

The contractions aka
†
l and akal (and a†ka

†
l and a†kal) are numbers if and

only if ak− and ak+ (and a†k− and a†k+) are linear combinations of creation
and annihilation operators. For ak−,

ak− =
∑
l

Xklal +
∑
l

Ykla
†
l

a†k− =
∑
l

X ′klal +
∑
l

Y ′kla
†
l

(6.6)

By convention (and to anticipate future results), choose the following notations

Xkl = (1− ρ)kl, Ykl = −κkl
X ′kl = κ′∗kl, Y ′kl = ρ′Tkl

(6.7)

Use ak = ak0 + ak+ + ak− and the new notations to obtain

ak− =
∑
l

(1− ρ)klak −
∑
l

κkla
†
k

a†k− =
∑
l

ρ′Tkl a
†
l +

∑
l

κ′∗klal
(6.8)

and
ak+ =

∑
l

ρklal + κkla
†
l − xk

a†k+ =
∑
l

(1− ρ′T )kla
†
l −

∑
l

κ′∗klal − y∗k
(6.9)

where xk = ak and y∗k = a†k
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Figure 6.1: Left: Gian Carlo Wick (1909-1992). Right: Wick and Fermi brainstorming on Ostia
beach

Wick contractions are then defined as

a†kal = {a†k−, al} = ρ′Tkl ,

akal = {ak−, al} = −κkl,
aka
†
l = {ak−, a†l } = (1− ρ)kl,

a†ka
†
l = {a†k−, a

†
l } = κ′∗kl.

(6.10)

Anticommutation rules for operators β and β† lead to the relations x = y = 0 and

ρ′ = +ρ
κ′T = −κ and

ρ† = +ρ ρ2 − κκ∗ = 0
κT = −κ ρκ− κρ = 0

(6.11)

and x = y = 0

6.2 The HFB Theory

6.2.1 The Bogoliubov transformation

Bogoliubov transformation(
β
β†

)
=

(
U † V †

V T UT

)(
a
a†

)
, W =

(
U V ∗

V U∗

)
(6.12)

Unitarity of the Bogoliubov transformation

WW† =W†W = 1. (6.13)
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Figure 6.2: Left: Nikolay Bogolyubov (1909-1992). Right: Pierre-Gilles de Gennes (1932-2007)

From particles to quasiparticles (and back)

W : {β, β†} → {a, a†} ≡ 〈a|β〉,
W† : {a, a†} → {β, β†} ≡ 〈β|a〉.

(6.14)

Quasiparticle (Bogoliubov, HFB) vacuum

|Φ〉 =

Np∏
µ=1

βµ|0〉, ∀µ, βµ|Φ〉 = 0 (6.15)

with Np ≤M

Quasiparticles represent excitations of the system: the vacuum is the state with no excitation
(ground-state). Contrary to HF, HFB gives a recipe for both the g.s. and the excited states.

Quasiparticle operators {β, β†} are fermionic operators and the HFB vacuum is a product
state: general conditions for the Wick theorem apply.

6.2.2 Densities

Given an arbitrary reference state |Φ〉, the one-body density matrix is given by

ρkl =
〈Φ|a†l ak|Φ〉
〈Φ|Φ〉

= a†l ak. (6.16)

The last equality is only true if |Φ〉 is a product state

Similarly, the pairing tensor (abnormal density) is defined as

κkl =
〈Φ|alak|Φ〉
〈Φ|Φ〉

= alak (6.17)
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6-2: Densities associated with the HFB vacuum

If the reference state |Φ〉 is a HFB vacuum (product state of quasiparticle
operators), then

ρ = V ∗V T , κ = V ∗UT . (6.18)

Therefore, there is a one-to-one mapping between the set of densities, the
reference state and the matrices of the Bogoliubov transformation

|Φ〉 ⇔ (U, V )⇔ (ρ, κ) (6.19)

6-3: Degrees of freedom in the HFB theory

In the HFB theory, the one-body density matrix ρ and the pairing tensor κ
encapsulate all the physics degrees of freedom. Since ρ and κ have specific
symmetry properties, the actual degrees of freedom are ρkl, ρ

∗
kl, κkl, and

κ∗kl for k ≥ l.

Densities in terms of Wick contractions

ρkl = a†l ak, κkl = alak,

(1− ρ)∗kl = ala
†
k, κ∗kl = a†ka

†
l .

(6.20)

Generalized density

R =

(
ρ κ
−κ∗ 1− ρ∗

)
, R2 = R, R† = R (6.21)

Alternative forms

R = 〈Φ|

(
a†l ak alak
a†l a
†
k ala

†
k

)
|Φ〉. (6.22)

and

R = 〈Φ|1−W
(
βµ
β†µ

)
(β†ν βν)W†|Φ〉 =W〈Φ|1−

(
βµ
β†µ

)
(β†ν βν)|Φ〉W†. (6.23)

6.2.3 Energies and fields

Hamiltonian version - Traditional mean-field approach based on choosing a (possibly
effective) Hamiltonian Ĥ, an ansatz for the reference state |φ〉 and computing the energy as
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〈Φ|Ĥ|Φ〉/〈Φ|Φ〉. For the HFB ansatz and a two-body Hamiltonian,

E =
∑
ij

tijρji +
1

2

∑
ijkl

v̄ijklρljρki +
1

4

∑
ijkl

v̄ijklκ
∗
ijκkl. (6.24)

Energy density functional version - Simply assume that the energy is now some func-
tional E[ρ, ρ∗, κ, κ∗] = E[R] with no necessary connection to a Hamiltonian.

Variational principle for E as a functional of R (or equivalently of ρ, ρ∗, κ, κ∗) is expressed
as

δE = 0⇒
∑
kl

∂E

∂Rkl
δRkl = 0 (6.25)

Notations
∂E

∂ρkl
=

1

2
hlk, and

∂E

∂ρ∗kl
=

1

2
h∗lk. (6.26)

and
∂E

∂κkl
=

1

2
∆∗kl, and

∂E

∂κ∗kl
=

1

2
∆kl. (6.27)

HFB matrix

H =

(
h ∆
−∆∗ −h∗

)
, (6.28)

where the HFB matrix

• is defined by 1
2Hkl = ∂E/∂Rkl

• obeys the HFB equation [H,R] = 0

• is such that δE = 1
2Tr(HδR)

Energy as a functional of R

E =
1

4
tr [(H+ T )S] , (6.29)

with

T =

(
t 0
0 −t∗

)
, S =

(
ρ κ
−κ∗ −ρ∗

)
= R−

(
0 0
0 IN

)
. (6.30)

Generalized eigenvalue problem (non-linear): build the generalized density from the eigenvec-
tors of H ensures that the commutator equals 0.

Solving the HFB equations determine the generalized density R, hence ρ and κ and any
observable by virtue of the Wick theorem.

6-4: Quasiparticle basis
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The basis that diagonalizes R (hence H) determines the Bogoliubov trans-
formation matrix W. Alternatively, the vectors(

U
V

)
and

(
V ∗

U∗

)
, (6.31)

are the eigenvectors of both R and H.

In the case of some two-body potential, the mean field (or Hartree-Fock field) reads

hkl = tkl + Γkl, (6.32)

with the Hartree-Fock potential (role of a one-body potential)

Γkl =
∑
mn

v̄kmlnρnm =
∑
mn

v̄mknlρnm. (6.33)

and the pairing field

∆kl =
1

2

∑
mn

v̄klmnκmn, (6.34)

6-5: Thouless Theorem Revisited

For a quasiparticle vacuum |Φ0〉 associated with quasiparticles β, β†, any
other product wave function |Φ1〉 not orthogonal to |Φ0〉 can be written

1. |Φ1〉 = eiT̂ |Φ0〉,

2. T̂ =
∑
µ<ν

Tµνβ
†
µβ
†
ν +

∑
µ<ν

T †µνβµβν .
(6.35)

In other words, the matrix of the transformation T̂ in the q.p. basis asso-
ciated with the state |Φ0〉 takes the generic form

T̃ =

(
0 T †

T 0

)
. (6.36)

Application: Collective momentum. Suppose |Φ0〉 ≡ |Φ(a)〉 and |Φ1〉 ≡ |Φ(a + δa)〉. Since we
must have limδa→0 |Φ1〉 = |Φ0〉, choose the transformation T̂ in the form T̂ = δa · P̂a/~. We
have

lim
δa→0

(
|Φ(a + δa)〉 − |Φ(a)〉

δa

)
≡ ∂

∂a
|Φ(a)〉 =

i

~
P̂a|Φ(a)〉. (6.37)

and therefore P̂a = −i~ ∂
∂a
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Application: Multi-reference EDF and symmetry restoration.

ρ01
ij =

〈Φ1|c†jci|Φ0〉
〈Φ1|Φ0〉

(6.38)

where |Φ0〉 correspond to a HFB vacuum for some collective variable q or gauge angle α and
|Φ1〉 correspond to a different HFB vacuum with q′ or α′.

6.3 The BCS Approximation

Figure 6.3: Left to right: John Bardeen (1908-1991), Leon Cooper (1930-), Robert Schrieffer
(1931-).

6.3.1 General Case

6-6: Bloch-Messiah Theorem
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A unitary matrixW of the form (6.12) can always be decomposed as follows

W =

(
D 0
0 D∗

)(
Ū V̄
V̄ Ū

)(
C 0
0 C∗

)
(6.39)

where Ū and V̄ are in the canonical form

Ū =



0 0
. . .

uk 0
0 uk̄

. . .

0 1


, V̄ =



1 0
. . .

0 vk
vk̄ 0

. . .

0 0


,

Interpretation of the Bloch-Messiah theorem

W : {β} → {a} = {β} C→ {α} Ū ,V̄→ {c} D→ {a}. (6.40)

• Transforms quasi-particle operators into themselves: transformation C;

• Goes from the quasi-particle basis to a particle-basis: transformation (Ū , V̄ );

• Transforms the particle operators into themselves: transformation D.

6-7: Canonical Basis

The transformation D diagonalizes the density matrix ρ and puts the pair-
ing tensor κ into the canonical form analogous of V̄ . This transformation
defines the canonical basis.

In the canonical basis, the HFB vacuum reads

|Φ〉 =
∏
k

αk|0〉 =
∏
k>0

αkαk̄|0〉 (6.41)

Special Bogoliubov transformation (Ū , V̄ )

α†k = ukc
†
k + vk̄ck̄,

α†
k̄

= uk̄c
†
k̄

+ vkck,
,

αk = u∗kck + v∗
k̄
c†
k̄
,

αk̄ = u∗
k̄
ck̄ + v∗kc

†
k.

(6.42)

Additionally:
(uk, vk) ∈ R2, uk̄ = uk, vk̄ = −vk (6.43)

6-8: BCS wave function
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Given an arbitrary single-particle basis characterized by operators ck, the
ansatz for the many-body wave function for an even-even system is

|φ〉 =
∏
k>0

(
uk + vkc

†
kc
†
k̄

)
|0〉 (6.44)

with

• |0〉 is the particle-vacuum, ck|0〉 = 0, ∀k

• |k̄〉 = T̂ |k〉 time-reversed partner of state |k〉 and the product runs
only over states k

• |uk|2 + |vk|2 = 1

Energy (with constraint on particle number) assuming ansatz (6.44),

E[ρ, κ, κ∗] =
1

2

∑
k

v2
k(hkk + tkk − λ) +

1

2

∑
k>0

∆kk̄ukvk (6.45)

Variational principle implemented using derivatives with respect to uk and vk keeping in mind
that u2

k + v2
k = 1, hence duk/dvk = −vk/uk yields

2(hkk + tkk − λ)ukvk +
1

2

[
∆kk̄ + ∆∗kk̄

+4
∑
m>0

∂2E

∂κ∗mm̄∂κkk̄
umvm + 4

∑
m>0

∂2E

∂κmm̄∂κ∗kk̄
umvm

]
(u2
k − v2

k) = 0 (6.46)

Special case: pairing force such that

4
∂2E

∂κ∗mm̄∂κkk̄
= v̄kk̄mm̄ (6.47)

yields the gap equation

∆kk̄ =
∑
m>0

v̄kk̄mm̄umvm = −∆k (k > 0) (6.48)

6.3.2 Seniority pairing: constant pairing strength

Assume a pairing force characterized by

vαβγδ = −1

4
Gδαβ̄δγδ̄ sign(α)sign(γ) (6.49)

Pairing gap is constant and reads

∆µν = −sign(µ)δµν∆, ∆ = G
∑
µ>0

κµµ̄ = G
∑
µ>0

uµvµ (6.50)
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Gap equation

∆ =
G

2

∑
µ>0

∆√
(eµ − λ)2 + ∆2

(6.51)

Pairing energy

Epair = −∆2

G
+G

∑
µ>0

v4
µ (6.52)

Quasiparticle energy
Ek =

√
(ek − λ)2 + ∆2 (6.53)

Occupations

u2
k =

1

2

(
1 +

ek − λ
Γk

)
; v2

k =
1

2

(
1− ek − λ

Γk

)
(6.54)

6.3.3 Odd Nuclei

Suppose one state k is not paired with k̄. If vk = 1, then uk = 0, but also vk̄ = 0 and uk̄ = 1.

Then αkαk̄ = c†
k̄
ck ⇒ αkαk̄|0〉 = 0

HFB theory as presented above always produces fully paired vacua, which involve only super-
position of eigenstates of N̂ with even particle number

|Φ〉 =
∑
N

c2N |2N〉 (6.55)

Modification: describe odd nucleus as a 1 qp excitation of an even-even (fully-paired) system

|Φ〉odd = β†µ0 |Φ〉eve. (6.56)

Odd-nucleus HFB vacuum

|Φ〉odd =
∏
µ

β̃µ|0〉, {β̃} = {β̃1 = β1, . . . , β̃µ0 = β†µ0 , . . . β̃M = βM}, (6.57)

In practice, at each iteration of the HFB equation, substitute

Uiµ0 → V ∗iµ0 , ∀i,
Viµ0 → U∗iµ0 , ∀i. (6.58)

6.4 Projection on Good Particle Number

6.4.1 U(1) Symmetry Breaking

Back to Slater determinant |Φ〉, by definition

N̂ |Φ〉 = N |Φ〉 ⇒ |Φ′〉 ≡ e−iφN̂ |Φ〉 = e−iφN |Φ〉 (6.59)
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and all densities ρφ ∝ 〈Φ′|a†a|Φ′〉 are identical, hence all energies E[ρφ] are degenerate.

Transformation

Uφ : |Φ〉 7→ |Φ′〉 ≡ e−iφN̂ |Φ〉 (6.60)

is an example of a U(1) symmetry group.

HFB (and BCS) states are not invariant under transformation Uφ: symmetry is broken

• There is an order parameter g that characterizes the degree to which symmetry is broken
(g = 0 for symmetry-conserved states)

• The order parameter is a complex number of the form g = |g|eiα, with |g| measures the
“deformation” and α the “orientation”.

For particle number symmetry, |g| could be anything related to, e.g., κ, ∆, 〈∆N̂2〉; φ as in
(6.59) is a good choice for the phase α as it is the angle that defines a particle-number rotation
in Fock space.

6.4.2 Symmetry Restoration

Particle number projection operator

P̂N =
1

2π

∫ 2π

0
dφeiφ(N̂−N), (6.61)

Projected density

ρNji =
〈Φ|c†icjP̂N |Φ〉
〈Φ|P̂N |Φ〉

=
1

2π

∫ 2π

0
dφ y(φ)

〈Φ|c†icjeiφ(N̂−N)|Φ〉
〈Φ|eiφ(N̂−N)|Φ〉

=
1

2π

∫ 2π

0
dφ y(φ)ρji(φ) (6.62)

with |Φ〉 a symmetry-breaking state (Bogoliubov vacuum)

Two alternatives here

• Express the energy functionals E[ρN , κN ], calculate the corresponding HFB matrix by
taking partial (functional) derivatives with respect to ρN and κN : Variation After Pro-
jection (VAP)

• Solve HFB equations as usual and at convergence, calculate E[ρN , κN ]: Projection After
Variation (PAV)

Key is the possibility to compute transition densities ρ(φ), etc. from only the knowledge of
the Bogoliubov transformation. Define the matrices

N11 = U †U − V †V,
N20 = U †V ∗ − V †U∗,
N02 = V TU − UTV.

(6.63)
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and, for a given gauge angle φ,

U(φ) = cosφI + i sinφN11,
V (φ) = +i sinφN02.

(6.64)

Then the transition densities are

ρ(φ) = +e+iφV ∗[U∗(φ)]−1V T ,
κ10(φ) = +e+iφV ∗[U∗(φ)]−1UT ,
κ01(φ) = −e−iφU∗[U∗(φ)]−1V T

(6.65)

Bottom line: the total energy E[ρ, κ] can be expressed as a functional of the transition densities
alone, which can be expressed functions of the U and the V matrices.

Caveats

• PAV: if pairing has disappeared during HFB iterations, PAV won’t change a thing

• VAP: very costly to implemented

• PAV/VAP: not viable if EDF not strictly derived from the expectation value of a density-
independent pseudopotential on the HFB vacuum.

6.5 Exercise

Exercise 16.

Starting from a two-body Hamiltonian, calculate the energy on the Bogoliubov vacuum as a
functional of ρ, κ and κ∗.

Exercise 17.

Derive the HFB equation by applying the variational principle: the energy should be a minimum
with respect to variations of the generalized density, under the condition that said generalized
density is a projector.

Exercise 18.

Using the canonical basis, show that a fully paired vacuum always correspond to a superposition
of eigenstates of N̂ with even number of particles, and that the prescription (6.56) gives a
superposition of odd-particle eigenstates.

Exercise 19.
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Show that the BCS ansatz for the wavefunction derives from the form of the HFB vacuum and
the Bloch-Messiah theorem

Exercise 20.

Prove that the BCS wave function is not an eigenstate of the particle number operator
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Lecture 7

Random Phase Approximation
[Week 2, day 2]
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7.1 Nuclear vibrations

Figure 7.1: today’s lecture
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Exploring nuclear excitations.

• 1947 Baldwin-Klaiber observe a giant dipole resonance (GDR) in photo-nuclear reactions

• 1972 giant quadrupole resonance

• 1977 giant dipole resonance

Figure 7.2: Giant resonance of photo disintegration in 197Au. The yield of neutrons is shown
as a function of the energy of the monochromatic photons used to produce the reaction.

Let’s consider an electromagnetic process. The electric multipole moment associated with an
electromagnetic transition Eλ can be expressed as [9]

M(Eλ;µ) =
(2λ+ 1)!!

qλ(λ+ 1)

∫
d3r

{
ρYλµ

d

dr
rjλ(qr) + i

q

c
j · rYλµjλ(qr)

}
(7.1)

where q is the momentum transfer, jλ(qr) is the spherical Bessel function, ρ is the charge
density and j is the current density.

For a photon of 10 MeV the exchange momentum is q − 0.25 fm −1 thus qr << 1. We can
make an expansion of the Bessel function as

jλ(qr) ≈ (qr)λ

(2λ+ 1)!!

[
1− 1

2

(qr)2

2λ+ 3
+ . . .

]
(7.2)

we replace in previous equation and we stop at first order. We get

M(Eλ;µ) =
(2λ+ 1)!!

qλ(λ+ 1)

∫
d3r

{
ρYλµ

d

dr

(
(qr)λ

(2λ+ 1)!!

)}
(7.3)

=

∫
ρrλYλµd

3r (7.4)
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Figure 7.3: Giant resonance dipole resonance with mono energetic photons in Sn isotopes

Figure 7.4: Schematic representation of collective natural parity modes.

by assuming that the charge density is written as
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∆S = 0 ∆S = 0 ∆S = 1 ∆S = 1
∆T = 0 ∆T = 1 ∆T = 0 ∆T = 1

L=0
∑
τi

∑
σiτi

IAS GTR∑
i r

2
i

∑
r2
i τi

∑
r2
i σi

∑
r2
i σiτi

ISGMR IVGMR ISSMR IVSMR

L=1
∑
riY

1
mτi

∑
riY

1
mσi

∑
riY

1
mσiτi

IVGDR ISSDR IVSDR∑
r3
i Y

1
m

ISGDR

L=2
∑
r2
i Y

2
m

∑
r2
i Y

2
mτi

∑
r2
i Y

2
mσi

∑
r2
i Y

2
mσiτi

ISGQR IVGQR ISSQR IVSQR

L=3
∑
r3
i Y

2
m

∑
r3
i Y

2
mτi

∑
r3
i Y

2
mσi

∑
r3
i Y

2
mσiτi

ISGOR IVGOR ISSOR IVSOR

Table 7.1: Summary of probes used to excited collective states

ρ(r) =
∑
k

e

(
1

2
− tzk

)
δ(r− rk) (7.5)

where we neglect relativistic effects and assuming point like particles. We can substitute and
we get

M(Eλ;µ) =
∑
k

e

(
1

2
− tzk

)
rλkYλµ(Ωk) (7.6)

the first term does not depend on isospin and thus it probes isoscalar modes, the second
probes isovector modes. In this expansion a word of caution for monopole modes. In this
case λ = 0 our approximation does not work and so we have to go up to a second order in the
expansion so

M(E0) =
1

4
r
∑
k

r2
k −

1

2
e
∑
k

tzkr
2
k (7.7)

In Tab.7.1 we summarise the possible probes used to excited various collective states. We
distinguish between isospin flip or not (∆T = 0, 1) and non spin-flip or spin-flip (∆S = 0, 1).

Since most of the time the residual interaction is diagonal in isospin, we can separate out the
calculation for charge exchange process and charge conserving ones.

7.1.1 Linear response theory

We assume that an external time dependent field perturbs our HF ground state.
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F (t) = Fe−iωt + F †eiωt (7.8)

we assume that F is one body operator F (t) =
∑

kl fkla
†
kal. the field is weak so that we can

assume only small variations around the ground state.

The density matrix is now time-dependent and reads

ρ(t)kj = 〈Φ(t)|a†l ak|Φ(t)〉 (7.9)

We assume that at any time ρ(t) corresponds to a Slater determinant ρ2 = ρ/ So the density
obeys the equation of motion

i~
dρ

dt
= [h[ρ] + f(t), ρ] (7.10)

this is the Time Dependent Hartree Fock (TDHF) equation obtained by time derivative of
the density matrix.

Working in the small amplitude limit we can expand the density around the g.s. value ρ(0) as

ρ(t) = ρ(0) + δρ(t) (7.11)

= ρ(0) + ρ(1)e−iωt + ρ(1)†eiωt (7.12)

We work for convenience in the HF basis of the ground state density ρ(0). In this case the
density is diagonal and we have 1 and 0 occupation number.

i~
dρ

dt
= [h[ρ] + f(t), ρ] (7.13)

=
[
h[ρ(0) + δρ(t)] + f(t), ρ(0) + δρ(t)

]
(7.14)

=

[
h[ρ(0)] +

δh

δρ
δρ(t) + f(t), ρ(0) + δρ(t)

]
(7.15)

we expand up to linear order. We observe that in HF basis

ρ(0)
µν = δµνρ

(0)
µ

{
0 particle
1 hole

(7.16)

h0
µν = h[ρ0]µν = δµνεµ (7.17)

ρ2 = ρ→ ρ0δρ+ δρρ0 = δρ (7.18)

We observe that the only non vanishing matrix elements of ρ1 are the ph hp excitations. We
get

i~
dρ

dt
= [h0, δρ] + [f, ρ(0)] +

[
δh

δρ
δρ, ρ(0)

]
(7.19)
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δh

δρ
δρ =

∑
im

(
δh

δρmi

∣∣∣∣
ρ=ρ(0)

δρmi +
δh

δρim

∣∣∣∣
ρ=ρ(0)

δρim

)
(7.20)

in this equation all particle-particle and hole-hole matrix elements vanish and we have as
possible excitations only particle-hole or hole-particle.

Figure 7.5: Schematic representation of excited states in nuclei.

These equations can be expressed in a more elegant matrix form

{(
A B
B∗ A∗

)
− ~ω

(
1 0
0 −1

)}(
ρ

(1)
ph

ρ
(1)
hp

)
=

(
fph
fhp

)
(7.21)

we have defined

Aminj = (εm − εi)δijδmn +
∂hmi
∂ρnj

(7.22)

Bminj =
∂hmi
∂ρjn

(7.23)

This is called linear response since there is a linear relation between ρ1 and the external field
f .

Remember that

v̄psqr =
∂hpq
∂ρrs

=
∂2E[ρ]

∂ρqp∂ρrs
(7.24)
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Figure 7.6: Giant monopole excitation in 208Pb.

The RPA approximation is the small amplitude limit of the TDHF.

Within the RPA approximation one can calculate the excited states as

Q†ν =
∑
mi

Xν
mia
†
mai −

∑
mi

Y ν
mia
†
iam (7.25)

This operator creates the excited states so that Qν |RPA〉 = 0

We have to impose orthogonalisation relations

〈ν|ν ′〉 = δνν′ = 〈RPA|[Qν , Q†ν′ ]|RPA〉 ≈ 〈HF |[Qν , Q
†
ν′ ]|HF 〉 (7.26)

so we get

δνν′ =
∑
mi

(
Xν∗
miX

ν′
mi − Y ν∗

miY
ν′
mi

)
(7.27)

when |RPA〉 ≈ |HF 〉 we use the quasi-boson approximation the X,Y are intrpeted as the

probability of finding the state a†mai|0〉 and a†iam|0〉 in the exctied state |ν〉.
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A possible extension of RPA is second-RPA; e can consider not only 1p-1h excitations but
also 2p-2h

Q†ν =
∑
ph

Xν
pha
†
pah − Y ν

hpa
†
hap (7.28)

+
∑

p<p′;h<h′

Xν
php′h′a

†
paha

†
p′ah′ − Y

ν
php′h′a

†
hapa

†
h′ap′ (7.29)

Figure 7.7: (ct. Gamabcurta et al. PRC81 (2010)

7.2 Sum rules

The sum rule is an important property of the calculation since it can be related to important
properties of the response function.

The sum rule of an operator F =
∑
fpqa

†
paq is defined as

Sk =
∑
ν

(Eν − E0)k|〈ν|F |0〉|2 (7.30)
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The |ν〉 represents the complete set of the eigenstates of the exact hamiltonian H with energies
Eν . The most important sum rule is the S1 also called Energy Weighted Sum Rule (EWSR).
In this case one can show that

S1 =
∑
ν

(Eν − E0)|〈ν|F |0〉|2 (7.31)

To prove this we consider an operator Ĉ = [Ĥ, F̂ ] which is hermitian

We now calculate

〈0|[F,C]|0〉 = 〈0|FC|0〉 − 〈0|CF |0〉 (7.32)

=
∑
ν

〈0|F |ν〉〈ν|C|0〉 − 〈0|C|ν〉〈ν|F |0〉 (7.33)

=
∑
ν

〈0|F |ν〉〈ν|F |0〉(Eν − E0)− (E0 − Eν)〈0|F |ν〉〈ν|F |0〉 (7.34)

= 2
∑
ν

(Eν − E0)〈ν|F |0〉2 (7.35)

In the RPA case the ground state |0〉 is approximated by the |HF 〉 ground state. We assume
that our excitation operator gives

〈0|F |0〉 = 0 (7.36)

We consider a simple HamiltonianH = T+V and an operator of the form F =
∑A

i=1 er
L
i YLM (Ωi)

We get for isoscalar probes (λ >2)

SIS1 (λ) =
~2

2m

λ(λ+ 1)2

4πA
〈r2λ−2〉 (7.37)

For isovector probes we define

FLM =
eN

A

Z∑
i=1

rLYLM −
eZ

A

N∑
i=1

rLYLM (7.38)

this effective charge factor comes to correct the center of mass correction.

SIV1 (λ) =
~2

2m

λ(λ+ 1)2

4π

{
N2Z

A2
〈r2λ−2〉p +

NZ2

A2
〈r2λ−2〉n

}
(7.39)
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Notice that for J=0 and J=1 there are some differences in the operators. See references.

Very often the properties of the nucleus relevant to experiment can be related to weighted
integrals of the strength function

If =

∫
f(E)S(E)dE (7.40)

the expression of f is supposed to be know. This function depends on the physical properties
and not on the nuclear structure properties. We assume it continuos, but it could not be the
case. We can expand the weighted function

f(E) =
∑
k

1

k!
fk(Ē)(E − Ē)k (7.41)

If = f(Ē)m0 + f ′(Ē)(m1 − Ēm0) + . . . (7.42)

=
∑
k

1

k!
fk(Ē)

k∑
i=0

(
k
i

)
(−)imk−iĒ

i (7.43)

knowing all positive moment we get complete information on the strength function!!

7.2.1 Practical example: separable interaction

We take a simple separable 2-body interaction that we can write as

V = −χ
N∑
ij

Q(i)Q(j) (7.44)

so that the matrix elements can be written as1 and we take only ph excitations (Tam Dancoff
approximations)

〈v〉mjin ≈ −χ〈m|Q|i〉〈n|Q|j〉 (7.45)

So replacing in the TD equation (we stay in 1 D system for simplicity)

(εmi − E)Ymi = χQmi

∗∑
nj

Ynj (7.46)

1no exchange!
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We define N = χQmi
∑∗

nj Ynj and we replace in Eq.7.46. We get

Ymi =
NQmi
εmi − E

(7.47)

N = χQmi

∗∑
nj

Ynj (7.48)

N = χN
∑
nj

Q2
mi

εmi − E
(7.49)

or more simplify

1

χ
=
∑
nj

Q2
mi

εmi − E
(7.50)

this can be solved graphically. In Fig.7.8 we show a schematic representation of a possible
solution for Eq..7.50.

From this figure we observe that according to the sign of χ ,i.e. the residual interaction we
have a low-lying state or not.

See for example the position of lowest 2+ in nuclei!! Also for small residual interactions we
obtain a collective excitations which is obtained by superpositions of other ph states.

Figure 7.8: Graphical solution of Eq.7.50.

7.2.2 QRPA

The derivation follows exactly the same steps, but instead of ρ we use theR =

(
ρ κ
−κ∗ 1− ρ∗

)
in this case the operator that creates the excitation is
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Q†ν =
∑
K≤K′

Xν
KK′α

†
Kα
†
K′ − Y

ν
KK′αK′αK (7.51)

The equations look formally the same, the novelty is that now we have both ph excitations
and pp and hh.

Let’s write down the QRPA equation (just to give you a flavour!) in canonical basis 2

∑
L<L′

(
AKK′,LL′ BKK′,LL′

−B∗KK′,LL′ −A∗KK′,LL′

)(
Xk
LL′

Y k
LL′

)
= Ek

(
Xk
KK′

Y k
KK′

)
(7.52)

You can find explict expressions of the A,B matrix in Ref [9], the residual interaction now is

V ph
KLK′L′ =

δ2E[ρ, κ, κ∗]

δρK′KδρL′L
(7.53)

V pp
K′KL′L =

δ2E[ρ, κ, κ∗]

δκ∗K′KδκL′L
(7.54)

If your functional contains mixed terms as κρ then you need to take into account mixed
derivatives!

V 3p1h
K′KL′L =

δ2E[ρ, κ, κ∗]

δκK′KδρLL′
= V 3p1h∗

LL′K′K (7.55)

7.2.3 Spurious states

We assume that the hamiltonian H is invariant under a continuos symmetry operation gen-
erated by a one-body operator P̂ i.e. translation, particle number, angular momentum... We
assume that the HF(B) solution violates such a symmetry

[ρ0, P̂ ] 6= 0 (7.56)

since ρ0 is diagonal in HF basis, this means that the non-zero matrix elements of P are the
ph. Since the exact hamiltonian commutes with P̂

[H, P̂ ] = 0 (7.57)

the P̂ is an exact solution of the RPA equation. This means

2The basis in which the density ρ is diagonal!
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(
A B
B∗ A∗

)(
P
−P ∗

)
= 0 (7.58)

where P is the vector Pmi in particle-hole space

|P 〉 =
∑
mi

(
Pmia

†
mai + P ∗mia

†
iam

)
|RPA〉 (7.59)

If the calculations are performed exactly, the spurious solution separates out and it is or-
thonormal to the other phonons.

7.3 Exercise: matrix element in spherical symmetry

7.3.1 Couplings l, s and jj

When coupling two wave functions we can use two schemes: jj or LS. This means3 In jj
scheme we couple spin χ and angular momentum Ylml

|j1j2l1l2JM〉 =
∑
m1m2

CJMj1m1;j2m2

∑
m1
lm

1
s

∑
m2
lm

2
s

Cj1m1

l1m1
l ;

1
2
m1
s
Cj2m2

l2m2
l ;

1
2
m2
s
Yl1m1

l
(1)χm1

s
(1)Yl2m2

l
(2)χm2

s
(2)

(7.60)

here Cj3m3j1m1j2m2
is the Clebsh-Gordan. If you prefer working in 3j notation4

Cj3m3j1m1j2m2
(−)j1−j2+m3 ĵ3

(
j1 j2 j3
m1 m2 −m3

)
(7.61)

in the LS coupling we make

7.3.2 Particle-particle and particle-hole matrix element

It is important to separate out the couplings involving particle-particle and particle-hole ma-
trix elements in jj-coupling.

• J〈ab−1|V |c−1d〉J particle-hole

• J〈ad|V |cb〉J particle-particle

3We neglect radial part since it not essential for the discussion
4Remember ĵ =

√
2j + 1
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To go from one to the other we use the so-called Pandya transformation.

J〈ab−1|V |c−1d〉′J =
∑
J ′

Ĵ ′
2

J ′〈ad|V |bc〉J ′
∑
MM ′

∑
all m

(−)jb+jd+mb+md

×
(

ja jb J
ma mb −M

)(
ja jc J ′

ma −mc −M ′
)(

jd jb J ′

−md mb M ′

)(
jc jd J
mc md −M

)
=

∑
J ′

Ĵ ′
2

J ′〈ac|V |bd〉J ′
{
ja jb J
jd jc J ′

}
(7.62)

we use the shorthand notation ĵ =
√

2j + 1. This is know as Pandya transformation and
allow us to go from one coupling scheme to the other in a simple way.

Calculate the matrix element of Aδ(r−r′) on a spherical nucleus characterized by the w.f. φnlj .
For simplicity we consider only 1 species, so that we can neglect isospin quantum number.
The wave function of the single particle state reads

φnljm(r,Ω) =
unlj(r)

r

∑
mlms

Cjm
lml,

1
2
ms
Ylml(Ω)χ 1

2
ms

(7.63)

calculate

J〈ac−1|V |b−1d〉J = (7.64)

J〈ac|V |bd〉J = (7.65)

for simplicity you can consider only J = 0, optionally you can consider the general case
(J 6= 0)

you have to consider just the direct term (no exchange: if we suppose the residual interaction
comes from functional derivative, this is already taken into account at functional level) Use
the formula

δ(r1 − r2) =
∑
λµ

(−)λ
δ(r1 − r2)

r2
Yλµ(1)Yλ−µ (7.66)
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Lecture 8

Nuclear collective motion:
Configuration mixing
[Week 2, day 3]
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8.1 Configuration mixing

8-1: Correlations

Fermion states that are not equal to product states are called correlated
states.

Remember that product states form a basis of the many-fermion Hilbert space, so an arbitrary
many-fermion wave function Ψ(x1, . . . , xA) can always be represented as a linear combination
of product states:

Ψ(x1, . . . , xA) =
∑

µ1,...,µA

Aµ1,...,µAΦµ1,...,µA(x1, . . . , xA) (8.1)

or as a multi-dimensional integral over the product states:

|Ψ〉 =

∫
dZ̃ f(Z̃)|Φ(Z̃)〉, (8.2)
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were |Φ(Z̃)〉 are the Thouless product states [generalized coherent states] paramatrized by
complex Thouless matrices Z̃ph:

|Φ(Z̃)〉 ≡ |Z̃〉 = exp

(∑
ph

Z̃∗pha
+
p ah

)
a+

1 . . . a
+
A|0〉, (8.3)

for which the unity resolution holds:

Î =

∫
w(Z̃)dZ̃|Z̃〉〈Z̃|, (8.4)

w(Z̃) = W 〈Z̃|Z̃〉−M+1 = W det(1 + Z̃Z̃+)−M+1, (8.5a)

W = πA(A−M)
M−A∏
ν=1

(ν +A)!

ν!
, (8.5b)

dZ̃ =
∏
ph

d<(Z̃ph)d=(Z̃ph). (8.5c)

Representations (8.1) and (8.2) motivate introducing the following approximate models:

• The shell model (SM) or no-core shell model (NCSM):

Ψ(x1, . . . , xA) '
∑

µ1,...,µA′

Aµ1,...,µA′Φµ1,...,µA′ (x1, . . . , xA′)⊗ |core〉 (8.6)

for A′ valence particles occupying M single-particle states φµ for µ = 1, . . . ,M .

• The configuration interaction (CI) models:

Ψ(x1, . . . , xA) '
∑
k

AkΦk(x1, . . . , xA) (8.7)

for Φk(x1, . . . , xA) belonging to an appropriately selected discrete set of product
states of A particles.

• The generator coordinate method (GCM) models:

Ψ(x1, . . . , xA) '
∫

dq f(q)Φq(x1, . . . , xA), (8.8)

for |Φ(q)〉 = |Φ(Z̃(q))〉 constituting an appropriately selected continuous family of
product states of A particles.

8-2: Generator coordinate method

Postulates an approximation of the many-fermion state by the integral:

|Ψ〉 =

∫
dq f(q)|Φ(q)〉, (8.9)

where |Φ(q)〉=|Φ(Z̃[q])〉 denotes a family of product states (generator
states) parametrized by the generator coordinate(s) q.
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8.2 The Hill-Wheeler equation

〈Ψ|Ĥ|Ψ〉 =

∫
dqdq′ f∗(q)H(q, q′)f(q′), (8.10a)

〈Ψ|Ψ〉 =

∫
dqdq′ f∗(q)I(q, q′)f(q′) = 1, (8.10b)

where

H(q, q′) = 〈Φ(q)|Ĥ|Φ(q′)〉, (8.11a)

I(q, q′) = 〈Φ(q)|Φ(q′)〉, (8.11b)

and,

H(q, q′) = H∗(q′, q), (8.12a)

I(q, q′) = I∗(q′, q), (8.12b)

for
〈Φ(q)|Φ(q)〉 = 1, (8.13)

The average energy:

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(8.14)

is a functional of the weight function f(q), E=E[f ]. By varying the average energy with
respect to the weight function we obtain [17]:

8-3: The Hill-Wheeler equation

∫
dq′
[
H(q, q′)− EI(q, q′)

]
f(q′) = 0. (8.15)

A discretization corresponds to a CI model:∑
j

Hijfj = E
∑
j

Iijfj , (8.16)

where Hij ≡ H(qi, qj), Iij ≡ I(qi, qj), and fj ≡ f(qj).

The square-root kernel I 1/2(q, q′):

I(q, q′) =

∫
dq′′ I 1/2(q, q′′) I 1/2(q′′, q′). (8.17)

allows us to define for each kernel O(q, q′) its reduced kernel Õ(q, q′):

O(q, q′) =

∫
dq′′dq′′′ I 1/2(q, q′′) Õ(q′′, q′′′) I 1/2(q′′′, q′), (8.18)
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which gives:

8-4: Integral GCM Schrödinger equation

∫
dq′ H̃(q, q′) g(q′) = E g(q), (8.19)

where

g(q) =

∫
dq′ I 1/2(q, q′) f(q′), (8.20)

and ∫
dq |g(q)|2 = 1, (8.21)

The inverse square-root kernel:∫
dq′′ I −1/2(q, q′′) I 1/2(q′′, q′) = δ(q − q′). (8.22)

does not exist! Let us check the spectrum of the norm kernel:∫
dq′ I(q, q′) ik(q

′) = nk ik(q). (8.23)

which gives orthogonal natural states∫
dq i∗k(q) ik′(q) = δkk′ . (8.24)

The cut-off expansion:

I(q, q′) '
∑

nk>ncut

ik(q)nk i
∗
k(q
′), (8.25)

gives

I 1/2(q, q′) '
∑

nk>ncut

ik(q)n
1/2
k i∗k(q

′), (8.26a)

I −1/2(q, q′) '
∑

nk>ncut

ik(q)n
−1/2
k i∗k(q

′), (8.26b)

and the reduced kernels

Õ(q, q′) '
∑

nk>ncut
nk′>ncut

ik(q) Õkk′ i∗k′(q′), (8.27)

where

Õkk′ = n
−1/2
k n

−1/2
k′

∫
dqdq′ i∗k(q)O(q, q′) ik′(q

′). (8.28)

and ∑
k′

H̃kk′gk′ = Egk, (8.29)
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g(q) =
∑
k

gk ik(q). (8.30)

〈Ψ|Ô|Ψ〉 =
∑
kk′

g∗k Õkk′ gk′ . (8.31)

8-5: Differential GCM Schrödinger equation

Ĥ(q)g(q) = Eg(q) (8.32)

for

O(q, q′) =

∫
dq′′ I 1/2(q, q′′) Ô(q′′) I 1/2(q′′, q′), (8.33)

where Ô(q) is a differential operator in q.

8.3 Gaussian overlap approximation (GOA)

8-6: Gaussian overlap approximation

Gaussian overlap approximation postulates the approximation of the norm
and Hamiltonian kernels by the Gauss functions:

HG(q, q′) = IG(q, q′)
[
h0(Q)− 1

2h2(Q)(q − q′)2
]
, (8.34a)

IG(q, q′) = exp
{
−1

2a
2(Q)(q − q′)2

}
, (8.34b)

where functions a(Q), h0(Q) i h2(Q) depend on Q=1
2(q + q′).

In the GOA we have:

H(q, q′)

I(q, q′)
≡ h(q, q′) ' h0(Q)− 1

2h2(Q)(q − q′)2 + . . . , (8.35a)

log I(q, q′) ≡ i(q, q′) ' − 1
2a

2(Q)(q − q′)2 + . . . , (8.35b)

which gives

h0(q) = h(q, q), (8.36a)

h2(q) =

[
− ∂

2h(q, q′)

∂(q − q′)2

]
q′=q

=
1

2

[
∂2h(q, q′)

∂q∂q′
− ∂2h(q, q′)

∂q2

]
q′=q

, (8.36b)

a2(q) =

[
− ∂2i(q, q′)

∂(q − q′)2

]
q′=q

=
1

2

[
∂2i(q, q′)

∂q∂q′
− ∂2i(q, q′)

∂q2

]
q′=q

. (8.36c)
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or

a(q) =
1

2

[
∂ĩ(q, q′)

∂q
− ∂ĩ(q, q′)

∂q′

]
q′=q

(8.37)

for
ĩ(q, q′) =

√
−2 log I(q, q′). (8.38)

Canonical variable:

x(q) =

∫ q

q0

dq′ a(q′). (8.39)

gives

8-7: Gaussian overlap approximation in the canonical variable

HG(x, x′) = IG(x, x′)
[
h0(X)− 1

2h2(X)(x− x′)2
]
, (8.40a)

IG(x, x′) = exp
{
−1

2(x− x′)2
}
, (8.40b)

where functions a(X), h0(X) i h2(X) depend on X=1
2(x+ x′).

We can now determine the square-root norm kernel I 1/2
G (x, x′) (8.17),

I 1/2
G (x, x′) = (2/π)1/4 exp

{
−(x− x′)2

}
, (8.41)

and its spectrum (8.23),

nk = (2π)1/2 exp
{
−1

2k
2
}
, (8.42a)

ik(x) = exp {ikx} , (8.42b)

see exercise 2.

We can now prove (exercise 3) that

Ĥ = −1

2

d

dx
B(x)

d

dx
+ V (x), (8.43)

exactly fulfils (8.33) provided the collective mass function B(x) and collective potential V (x)
fulfill Fredholm integral equations of the first kind:

h0(x) = (2/π)1/2

∫
dx′
[
2(x− x′)2B(x′) + V (x′)

]
exp

{
−2(x− x′)2

}
, (8.44a)

h2(x) = (2/π)1/2

∫
dx′B(x′) exp

{
−2(x− x′)2

}
. (8.44b)

which can be formally solved through the Fourier transforms:

V (x) = (1/2π)

∫
dk
[
h0(k)− 1

8(4− k2)h2(k)
]

exp
{
k2/8− ikx

}
, (8.45a)

B(x) = (1/2π)

∫
dk h2(k) exp

{
k2/8− ikx

}
, (8.45b)
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where

hj(k) =

∫
dxhj(x) exp {ikx} . (8.46)

If we expand V (x′) and B(x′) around x,

V (x′) = V (x) + (x′ − x)V ′(x) + 1
2(x′ − x)2V ′′(x) + . . . , (8.47a)

B(x′) = B(x) + (x′ − x)B′(x) + 1
2(x′ − x)2B′′(x) + . . . , (8.47b)

than

V (x) = h0(x)− 1
2h2(x)− 1

8V
′′(x)− 1

8B
′′(x), (8.48a)

B(x) = h2(x)− 1
8B
′′(x). (8.48b)

or

V (x) = h0(x)− 1
2h2(x)− 1

8h
′′
0(x)− 1

16h
′′
2(x), (8.49a)

B(x) = h2(x)− 1
8h
′′
2(x). (8.49b)

In case when the scale a is constant we have:

Ĥ = −1

2

d

dq
B(q)

d

dq
+ V (q), (8.50)

h0(q) = (2a/π)1/2

∫
dq′
[
2(q − q′)2a4B(q′) + V (q′)

]
exp

{
−2a2(q − q′)2

}
, (8.51a)

h2(q) = (2a/π)1/2

∫
dq′B(q′)a4 exp

{
−2a2(q − q′)2

}
. (8.51b)

and thus in the lowest order:

V (q) = h0(q)− 1
2h2(q)/a2, (8.52a)

B(q) = h2(q)/a4. (8.52b)

8.4 Symmetry restoration

8.5 Take-away messages

8.6 Exercises

1. Estimate the dependence of the norm kernel (8.11b) on a difference between the product
states.

2. For the Gaussian kernel (8.40b) calculate the its square-root kernel (8.17) and its spec-
trum and eigen functions (8.23).

3. Prove that the second-order differential operator (8.43) fulfills (8.33) for B(x) and V (x)
defined in (8.44).

(x′′ − x)2 + (x′′ − x′)2 = 2
(
x′′ − 1

2(x+ x′)
)2

+ 1
2(x− x′)2, (8.53)

2(x′′ − x)(x′′ − x′) = 2
(
x′′ − 1

2(x+ x′)
)2 − 1

2(x− x′)2. (8.54)
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Figure 8.1: Left: Potential energy of the ammonia molecule E0 (dashed line), the collective
potential E0−h2 (solid line), and the eigenenergies of the lowest three states (horizontal lines).
Right: wave functions of the lowest three states.
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Lecture 9

Large Amplitude Collective Motion
[Week 2 day 4]

Contents

9.1 Adiabatic Time-Dependent Hartree-Fock Theory . . . . . . . . . . 102

9.1.1 The TDHF Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.1.2 The ATDHF Equations . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1.3 The Inertia Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1.4 Perturbative Cranking Inertia . . . . . . . . . . . . . . . . . . . . . . 106

9.2 The ATDHFB Approximation: Extension to Superfluid Systems . 107

9.3 Gaussian overlap approximation of the generator coordinate method109

9.3.1 The GOA approximation . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3.2 Local approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.4.1 ATDHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.4.2 ATDHFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.4.3 GCM+GOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.1 Adiabatic Time-Dependent Hartree-Fock Theory

9.1.1 The TDHF Equation

Define a time-dependent one-body density matrix as

ρji(t) = 〈Ψ(t)|c†icj |Ψ(t)〉, (9.1)

where |Ψ(t)〉 is solution to the time-dependent, many-body Schrödinger equation

i~
∂|Ψ〉
∂t

= Ĥ|Ψ(t)〉. (9.2)
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Take time-derivative of density matrix and use Schrödinger equation to find

i~
∂ρji
∂t

= 〈Ψ(t)|[c†icj , Ĥ]|Ψ(t)〉 (9.3)

Use the Wick theorem to derive the time-dependent Hartree-Fock (TDHF) equation

i~ρ̇ = [h[ρ], ρ], (9.4)

where

• the wavefunction remains a Slater determinant at all times;

• the total energy is conserved, E(t) = E;

• the density is neither time-even nor time-odd: cannot be interpreted as a generalized
coordinate (or a generalized momentum).

9.1.2 The ATDHF Equations

9-1: Expansion of the density matrix

The TDHF density matrix can be expanded around a reference density ρ(0)

ρ̂(t) = eiχ̂(t)ρ̂(0)(t)e−iχ̂(t). (9.5)

where χ̂ ≡ χ̂(t) is a one-body, hermitian, time-even, time-dependent oper-
ator and

• in the context of large-amplitude collective motion, the ρ̂(0)(t) is a
time-even, time-dependent density;

• in the derivations of the RPA equations, it is the static HF density;

• in the derivations of the stability matrix of the HF equation, the
density is also the static HF density and χ̂ is time-independent.

Adiabatic approximation: the operator χ̂ is “small” with respect to unity.

Use transformation (9.5) and expand up to second order in χ

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t) + . . . (9.6)

First and second order terms
ρ̂(1)(t) = i

[
χ̂(t), ρ̂(0)(t)

]
,

ρ̂(2)(t) =
1

2

[[
χ̂(t), ρ̂(0)(t)

]
, χ̂(t)

]
.

(9.7)
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Both the density ρ̂(0)(t) and the operator χ̂(t) are hermitian and time-even

T̂ ρ̂(0)(t)T̂ † = ρ̂(0)(t), ρ̂(0)†(t) = ρ̂(0)(t),

T̂ χ̂(t)T̂ † = χ̂(t), χ̂†(t) = χ̂(t).
(9.8)

Time-dependent mean-field (general case of an energy functional not derived from a genuine
two-body or more potential)

hij(t) = tij + Γij(t), Γij(t) =
∑
kl

2
∂2E

∂ρkl∂ρji
ρkl(t). (9.9)

9-2: ATDHF equations

Introducing expansion (9.6) into the TDHF equation (9.4), we classify the
terms by their properties with respect to time-reversal and obtain the fol-
lowing to sets of equations

i~ ˙̂ρ(0) = [ĥ(0), ρ̂(1)] + [Γ̂(1), ρ̂(0)], (time-odd)

i~ ˙̂ρ(1) = [ĥ(0), ρ̂(0)] + [ĥ(0), ρ̂(2)] + [Γ̂(1), ρ̂(1)] + [Γ̂(2), ρ̂(0)], (time-even)
(9.10)

with

Γ̂
(1)
ij = 2

∂2E

∂ρji∂ρmn
ρ(1)
mn (≡ Tr v̂ρ̂(1)), Γ̂

(2)
ij = 2

∂2E

∂ρji∂ρmn
ρ(2)
mn (9.11)

Remarks

• ATDHF equations are self-consistent and determine simultaneously ρ̂(0)(t) and χ̂(t)

• If χ̂→ 0, then ρ̂(0)(t) ≡ ρ̂(0) and second ATDHF equation becomes [ĥ(0), ρ̂(0)] = 0.

• If χ̂(t) 6= 0, [ĥ(0)(t), ρ̂(0)(t)] is second order in χ̂(t), see the second ATDHF equation. By
assumption, it should be small at all times t: ρ(0)(t) is close to a HF solution.

ATDHF basis is the basis that simultaneously diagonalizes ρ̂(0)(t), ĥ
(0)
hh (t), and ĥ

(0)
pp (t). The

eigenvalues of ĥ
(0)
hh (t) are called hole energies, those of ĥ

(0)
pp (t) are called particle energies. The

density ρ̂(0)(t) being a projector, its eigenvalues are 0 or 1 as usual.

9-3: Collective momentum and velocity
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By analogy with classical mechanics (p = mv), the time-dependent, time-
even odd density ρ̇(0) plays the role of a collective velocity, while χ is the
associated collective momentum. They are related by a matrix which plays
the role of a collective inertia (=inverse of a mass)

~

 ρ̇
(0)
ph

ρ̇
(0)∗
ph

 =

(
Aph,p′h′ −Bph,p′h′

−B∗ph,p′h′ A∗ph,h′p′

)(
χp′h′

χ∗p′h′

)
(9.12)

with

Aph,p′h′ = (ep − eh)δhh′δpp′ + 2
∂2E

∂ρhp∂ρp′h′

Bph,p′h′ = 2
∂2E

∂ρhp∂ρh′p′

(9.13)

This matrix is the QRPA matrix.

Second order expansion of the energy with respect to χ

E(t) = E(0)(t) + E(1)(t) + E(2)(t). (9.14)

Concatenation of the ph and hp elements of operators into vectors

χ =

(
χph
χ∗ph

)
, χ† = (χ∗ph, χph). (9.15)

Collective kinetic energy (K ≡ E(2))

K =
1

2
Tr
(
χ†Mχ

)
(9.16)

with

M =

(
+Aph,p′h′ −Bph,p′h′
−B∗ph,p′h′ +A∗ph,p′h′

)
(9.17)

9.1.3 The Inertia Tensor

Cranking approximation: neglect the ”residual” interaction

M =

(
ep − eh 0

0 ep − eh

)
(9.18)

9-4: Inglis formula
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The general expression (9.16) for the collective inertia becomes

K = ~2
∑
ph

|〈p|ρ̇(0)|h〉|2

ep − eh
, (9.19)

which is known as the Inglis formula.

Reduction of number of freedom

ρ̂(0)(t) ≡ ρ̂(0)(q(t)) = ρ̂(0)(q1(t), . . . , qn(t)), (9.20)

where q = (q1, . . . , qn) is a set of n collective variables that carry all the time-dependence

Derivative of the density

˙̂ρ(0) =
∑
µ

q̇µ
∂ρ̂(0)

∂qµ
. (9.21)

Classical form of the kinetic energy (at cranking approximation)

K =
1

2

∑
µν

Mµν q̇µq̇ν (9.22)

Inertia tensor

Mµν = 2~2
∑
ph

〈p|∂ρ̂
(0)

∂qµ
|h〉〈h|∂ρ̂

(0)

∂qν
|p〉

ep − eh
. (9.23)

9-5: Collective path

The ATDHF equations provide a closed set of self-consistent equations. At
convergence, they determine both the entire sequence of density matrices
{ρ(0)(t)}t=t1,...,tN , known as the collective path, and the inertia tensor along
that path. Often, one sets the collective path beforehand using HF solutions

[ĥ(0) − λq̂, ρ̂(0)] = 0,⇒ ρ(0) ≡ ρ(0)(q) (9.24)

9.1.4 Perturbative Cranking Inertia

Additional approximation (perturbative): obtain an expression for the collective inertia which
is local in the coordinate space, i.e., only depends on the point q.

Taylor expansion of the density at point q + δq

ρ̂(q + δq) = ρ(0)(q) + δq
∂ρ̂

∂q
, (9.25)
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leads to a perturbation of the HF Hamiltonian, ĥ(0) → ĥ = ĥ(0) + δĥ, and correspondingly of
the vector of Lagrange parameters λ→ λ+ δλ.

Use RPA theory to relate the variations δq and δρ̂ (which defines the first-order term of the
Taylor expansion) to δλ and express the derivative δρ̂/δq as a function of the RPA matrix
(see exercises)

9-6: Perturbative cranking inertia tensor

The perturbative expression is built on top of the cranking approximation,
i.e., it is still assumed that the RPA matrix is diagonal. We find

M = 2~2[M(1)]−1M(3)[M(1)]−1. (9.26)

At the cranking approximation, the inertia tensor for the system protons + neutrons is the
sum of the two,

Mµν = M(n)
µν + M(p)

µν (9.27)

At the perturbative cranking approximation, the total tensor of inertia is given by the same
formula (9.26),

M = 2~2[M(1)]−1M(3)[M(1)]−1, (9.28)

only each moment is the sum of the proton and neutron contribution.

9.2 The ATDHFB Approximation: Extension to Superfluid
Systems

TDHFB equation

i~ ˙̂R = [Ĥ, R̂], (9.29)

HFB matrix and generalized density

H =

(
h− λ ∆
−∆∗ −h∗ + λ

)
, R =

(
ρ κ
−κ∗ 1− ρ∗

)
, (9.30)

Perturbation of the generalized density

R̂(t) = eiχ̂(t)R̂(0)(t)e−iχ̂(t), (9.31)

Second order expansion of the generalized density

R̂(t) = R̂(0)(t) + R̂(1)(t) + R̂(2)(t) +O(χ̂3), (9.32)
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with the analog of Eqs.(9.8),

R̂(1)(t) = i
[
χ̂(t), R̂(0)(t)

]
,

R̂(2)(t) =
1

2

[[
χ̂(t), R̂(0)(t)

]
, χ̂(t)

]
.

(9.33)

Second order expansion of the HFB matrix

Ĥ(t) = Ĥ(0)(t) + Ĥ(1)(t) + Ĥ(2)(t) +O(χ̂3), (9.34)

ATDHFB equations

i~ ˙̂R(0) = [Ĥ(0), R̂(1)] + [Ĥ(1), R̂(0)], (time-odd)

i~ ˙̂R(1) = [Ĥ(0), R̂(0)] + [Ĥ(0), R̂(2)] + [Ĥ(1), R̂(1)] + [Ĥ(2), R̂(0)]. (time-even)
(9.35)

Notations

H(0) =

(
h(0) − λ ∆(0)

−∆(0)∗ −h(0)∗ + λ

)
, H(1) =

(
Γ(1) ∆(1)

−∆(1)∗ −Γ(1)∗

)
, H(2) =

(
Γ(2) ∆(2)

−∆(2)∗ −Γ(2)∗

)
,(9.36)

with

Γ
(1)
ij =

∑
kl

v̄ikjlρ
(1)
lk , ∆

(1)
ij =

1

2

∑
kl

v̄ijklκ
(1)∗
kl ,

Γ
(2)
ij =

∑
kl

v̄ikjlρ
(2)
lk , ∆

(2)
ij =

1

2

∑
kl

v̄ijklκ
(2)∗
kl .

(9.37)

ATDHFB basis: basis that diagonalizes the generalized density R̂(0)

Structure of H̃(0)

H̃(0) =

(
E H

(0)
12

H
(0)
21 −E

)
. (9.38)

Notation

χ̃ =

(
χ11 χ12

χ21 χ22

)
, (9.39)

First ATDHFB equation in the ATDHFB basis

~

(
Ṙ12
ij

Ṙ12∗
ij

)
=

(
A B
B∗ A∗

)( χ12
ij

χ12∗
ij

)
(9.40)

Next step: express the energy E[R] up to second order

E[R] = EHFB +
1

4
(χ12∗χ12)

(
A B
B∗ A∗

)(
χ12

χ12∗

)
(9.41)

108



Collective kinetic energy

K =
1

4
Tr
(
χ†Mχ

)
=

~2

4
Tr
(
Ṙ†M−1Ṙ

)
(9.42)

As before, introduce collective variables and assume that

Ṙ ≡
∑
b

q̇b
∂R
∂qb

(9.43)

Then, use again QRPA theory to express ∂R/∂qb as function of matrix elements of the oper-
ators associated with qb,

M
(
R12

R12∗

)
=
∑
b

[
M (1)

]−1

ab
M−1

(
Q12
b

Q12∗
b

)
(9.44)

Collective inertia tensor at the ATDHFB approximation in full glory

Mµν =
∑
ab

[
M (1)

]−1

µa
(Q12∗

a Q12
b )M−3

(
Q12
b

Q12∗
b

)[
M (1)

]−1

bν
(9.45)

9-7: ATDHFB Inertia

The full, exact calculation of the collective inertia at the ATDHFB approx-
imation requires inverting the full QRPA matrix for a deformed nucleus.

9.3 Gaussian overlap approximation of the generator coordi-
nate method

Recall the general GCM ansatz for the wave function

|Ψ〉 =

∫
daf(a)|φa〉, (9.46)

where a = (a1, . . . , aN ) is a vector of collective variables, and |φa〉 a set of many-body wave
functions that are known (for example, HFB solutions under the constraints given by a).

Recall the norm and Hamiltonian overlaps

H(a,a′) = 〈φa|Ĥ|φa′〉, I(a,a′) = 〈φa|φa′〉 (9.47)

9.3.1 The GOA approximation

9-8: Gaussian overlap approximation (GOA)
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In the Gaussian overlap approximation, we assume that the norm overlap
reads

I(a,a′) = exp

[
−1

2
(a− a′)G(ā)(a− a′)

]
. (9.48)

with ā = (a + a′)/2 and γ(a) = det (G(a))

Reduced Hamiltonian

H(a,a′) = I(a,a′)h(a,a′), (9.49)

Derivatives at point a = a′ = q

haa ≡ hakal =
∂2h(a,a′)

∂ak∂al

∣∣∣∣
a=a′=q

, haa ≡ haka′l =
∂2h(a,a′)

∂ak∂a
′
l

∣∣∣∣
a=a′=q

(9.50)

Procedure: expand the reduced Hamiltonian up to second order in a and a′ around point
a = a′ = q by using the fact that

〈Ψ|Ĥ|Ψ〉 =

∫
da

∫
da′
∫
dqf∗(a)I1/2(a,q)h(a,a′)f(a′)I1/2(q,a′), (9.51)

introduce

g(q) =

∫
daI1/2(q,a)f(a) (9.52)

and express terms such as (a− a′) as functions of the derivatives of I1/2 with respect to q

9-9: Collective Hamiltonian and Inertia

In the GOA approximation, we can extract a collective Schrödinger equa-
tion that involves the collective Hamiltonian

Hcoll(q) = −1

2

∂

∂q
B
∂

∂q
+ Vcoll(q) (9.53)

with the collective potential and collective inertia tensor given by

Vcoll(q) = V (q)− 1

2
G−1haa′ +

1

8
G−1∂

2haa
∂q2

B =
1

2
G−1(haa′ − haa)G−1

(9.54)

Local collective Hamiltonian for coordinate-dependent metric

Ĥcoll(a) = − ~2

2
√
γ(a)

∑
kl

∂

∂ak

√
γ(a)Bkl(a)

∂

∂al
+ V (a). (9.55)
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Collective inertia tensor B for coordinate-dependent metric

Bij(q) =
1

2~2

∑
kl

G−1
ik (q)

[
haa′ − haa + Γnkl(a)

∂h(a,a′)

∂an

∣∣∣∣
a=a′=q

]
G−1
lj (q). (9.56)

Reminder: Christoffel symbol

Γnkl(a) =
1

2

∑
i

G−1
ni (a)

(
∂Gki
∂al

+
∂Gil
∂ak

− ∂Glk
∂ai

)
. (9.57)

All derivatives in the previous equation are evaluated at a = a′ = q.

9.3.2 Local approximation

Using the Thouless theorem, the action of collective momentum on HFB state is

P̂k|Φa〉 =
∑
µ<ν

[
P 12
k;µνβ

†
µβ
†
ν + P 21

k;µνβµβν

]
|Φa〉 (9.58)

with P 21
k;µν = P 12∗

k;νµ

Reminder: HFB equations at point a

[H(a)−
∑
a

λaQa,R(a)] = 0, (9.59)

where Qa is the matrix of the constraint operator Q̂a in the double sp basis and λa is the
Lagrange parameter for the collective variable a (a ≡ ak for k = 1, . . . , N).

Small variations
H(a + δa) = H(a) +H1,
R(a + δa) = R(a) +R1,
λa(a + δa) = λa(a) + δλa.

(9.60)

HFB equation to first order in δa

[R1,H(a)−
∑
a

λaQa] + [R(a),H1] =
∑
a

δλa[R(a),Qa]. (9.61)

QRPA

M
(

R12

R12 ∗

)
=
∑
a

δλa

(
Q12
a

Q12 ∗
a

)
, (9.62)

Collective momentum as function of collective variable at point q(
P 12
a

−P 12∗
a

)
=
∑
b

[M(1)]−1
ab M̃

−1

(
Q12
b

Q12 ∗
b

)
. (9.63)
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where M̃ is just so slightly different from the QRPA matrix M

M̃ =

(
A −B
−B∗ A∗

)
=

(
1 0
0 −1

)
M
(

1 0
0 −1

)
. (9.64)

Definition of the overlap kernel Gab

Gab(q) =
1

~2
〈Φq|P̂kP̂l|Φq〉, (9.65)

In the cranking approximation of the GCM, the inertia tensor is expressed entirely as function
of the moments

B = M(1)[M(2)]−1M̃(1)[M(2)]−1M(1). (9.66)

Same moments as in ATDHFB

M
(K)
ab = Re

∑
µν

〈µν|Q̂a|0〉〈0|Q̂b|µν〉
(Eµ + Eν)K

. (9.67)

9-10: Collective inertia at the perturbative cranking

In the perturbative (=local) cranking approximation of the GCM, the in-
ertia tensor is expressed entirely as function of the moments

B = M(1)[M(2)]−1M(1)[M(2)]−1M(1). (9.68)

with the metric tensor given by

G =
1

2
[M(1)]−1M(2)[M(1)]−1. (9.69)

Alternative expression

B =
1

4
G−1[M(1)]−1G−1. (9.70)

9.4 Exercises

9.4.1 ATDHF

Exercise 21.

Show that in the basis that diagonalizes ρ̂(0)(t) at time t, any operator Â can be written

Â = Âhp + Âph (9.71)
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where Âhp = ρ̂(0)(t)Âσ̂(0)(t) (and similarly with Âph), with

ρ̂(0)(t) =
∑
h

|h〉〈h|,

σ̂(0)(t) =
∑
p

|p〉〈p| = 1− ρ̂(0)(t).
(9.72)

and |h〉 an eigenvector of ρ̂(0)(t) with eigenvalue 1 and |p〉 an eigenvector with eigenvalue 0.

Exercise 22.

Show hat we can find at all times t a basis that simultaneously diagonalizes ρ̂(0)(t), ĥ
(0)
hh (t), and

ĥ
(0)
pp (t).

Exercise 23.

Show that, in the ATDHF basis, the matrix of ρ(1) reads

ρ(1) =

(
0 +iχph

−iχhp 0

)
. (9.73)

Exercise 24.

Show that the first ATDHF equation can be written

~ρ̇(0)ph = (ep − eh)χph − iΓ(1)
ph

~ρ̇(0)hp = (ep − eh)χhp + iΓ
(1)
hp

(9.74)

Exercise 25.

Show that the first term of E(2) reads

tr ĥ(0)ρ̂(2) =
1

2

∑
ph

(ep − eh)χphχ
∗
ph +

1

2

∑
ph

(ep − eh)χphχ
∗
ph. (9.75)

and that the second one reads

tr ρ̂(1)Γ(1) = v̄ph′hp′χp′h′χhp − v̄pp′hh′χh′p′χhp − v̄hh′pp′χp′h′χph + v̄hp′ph′χh′p′χph (9.76)
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9.4.2 ATDHFB

Exercise 26.

Show that the perturbed static HF equation can be written

[ĥ(0) − λq̂, δρ̂] = δλ[q̂, ρ̂(0)]. (9.77)

at first order in δρ̂ and neglecting variations of the mean field δh

Exercise 27.

Evaluate these commutators in the HF basis of ρ̂(0). Recall that in that basis,

(ĥ(0) − λq̂)ij = eiδij , ρ
(0)
ij = niδij , Qµ,ij = 〈i|Q̂µ|j〉. (9.78)

Exercise 28.

Use the definition of the expectation value of Q̂ to obtain a elation between δqµ and δλν that
involves the moments

M (K)
µν =

∑
ph

〈p|Q̂µ|h〉〈h|Q̂ν |p〉
(ep − eh)K

(9.79)

Exercise 29.

Show that the matrices R̃(1) and ˜̇R(0) have the following form

R̃(1) =

(
0 iχ12

−iχ21 0

)
. (9.80)

and

˜̇R(0) =

(
0 Ṙ

(0)
12

Ṙ
(0)
21 0

)
(9.81)

Exercise 30.

Show that, in the s.p. basis, we have

ρ(1) = −iV ∗χ21U
† + iUχ12V

T

κ(1) = −iV ∗χ21V
† + iUχ12U

T (9.82)

Exercise 31.
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Show that, in the s.p. basis, we have

H
(1)
12 = U†Γ(1)V ∗ − V †∆(1)∗V ∗ + U†∆(1)U∗ − V †Γ(1)∗U∗

H
(1)
21 = V TΓ(1)U − UT∆(1)∗U + V T∆(1)V − UTΓ(1)∗V

(9.83)

Exercise 32.

By using the special form of all these matrices in the qp basis, show that the ATDHF equation
can be expressed as

~Ṙ12
ij = (Ei + Ej)χ

12
ij − iH12

ij

~Ṙ12∗
ji = (Ei + Ej)χ

12∗
ji + iH12∗

ji

(9.84)

9.4.3 GCM+GOA

Exercise 33.

Starting with the expression of the square of the norm overlap I1/2(a,a′) and using the property
GikG

−1
kj = δij (Einstein summation conventions used), show that

G−1il
∂I1/2

∂al
= −2(a− a′)iI1/2, (9.85)

G−1il
∂I1/2

∂a′l
= +2(a− a′)iI1/2, (9.86)

and

G−1ik
∂2I1/2

∂ak∂al
G−1lj = −2G−1ij I1/2 + 4(a− a′)i(a− a′)jI1/2, (9.87)

G−1ik
∂2I1/2

∂ak∂a′l
G−1lj = +2G−1ij I1/2 + 4(a− a′)i(a− a′)jI1/2. (9.88)

Exercise 34.

By using a Taylor expansion of the reduced Hamiltonian h(a,a′) at point a = a′ = q, express
the expectation value 〈Ψ|Ĥ|Ψ〉 of the Hamiltonian on the GCM state up to second order in a−q
and q − a′.

Exercise 35.

By using the property

|Φa〉 = ei(a−q)P̂q/~|Φq〉.

show that
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• Time-reversal properties impose that

∂

∂ak
I(a,a′)|a=a′=q = 0. (9.89)

• The metric tensor can be expressed as

1

~2
〈Φq|P̂kP̂l|Φq〉 = Gkl. (9.90)

• The second derivatives of the Hamiltonian overlap kernels are

∂2h(a,a′)

∂ak∂al
=
∂2H(a,a′)

∂ak∂al

∣∣∣∣
a=a′=q

− E(q)
∂2I(a,a′)

∂ak∂al
|a=a′=q,

∂2h(a,a′)

∂ak∂a′l
=
∂2H(a,a′)

∂ak∂a′l

∣∣∣∣
a=a′=q

− E(q)
∂2I(a,a′)

∂ak∂a′l
|a=a′=q.

(9.91)

Exercise 36.

Show that the inverse of the QRPA matrix as a similar block structure, namely,

M−1 =

(
C D
D∗ C∗

)
, C = C†, D = DT . (9.92)

Exercise 37.

Using the symmetry properties of G, and the results (9.90) and (9.58), show that we can write

Gab =
1

4

(
P 12∗
a;µν ,−P 12

a;µν

)( P 12
b;µν

−P 12∗
b;µν

)
, (9.93)

where indices µ, ν run over the entire basis set.

Exercise 38.

Show that
haa′ =

∑
i<j,µ<ν

P 12∗
k,ijP

12
l,µνAijµν . (9.94)

and
haa = −

∑
i<j,µ<ν

P 12∗
k,ijP

21
l,µνBijνµ, (9.95)

Exercise 39.

Using the properties that Aijµν = A∗µνij (same for B), Bijµν = −Bijνµ, and P 12
k,ij = −P 21∗

k,ij , and
after removing the restrictions on the summation indices, show that

haa′ − haa =
1

4
(P 12∗
k , P 12

k )

(
A B
B∗ A∗

)(
P 12
l

P 12∗
l

)
. (9.96)
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Exercise 40.

Introduce the matrix

M̃ =

(
A −B
−B∗ A∗

)
=

(
1 0
0 −1

)
M
(

1 0
0 −1

)
. (9.97)

Show that we have

haa′ − haa =
1

2
[M(1)]−1M̃(1)[M(1)]−1. (9.98)
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Phenomenological nuclear
functionals I
[Week 2, day 5]
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10.1 The Nuclear Hamiltonian

The QCD Lagrangian is the current description of the Strong force

L = −1

4
FαµνF

µν
α −

∑
n

Ψ̄nγ
µ
[
∂µ − igAαµtα

]
Ψn −mnΨ̄nΨn (10.1)

with α the index for the 8 colors, n the 6 quark flavour (u,d,s,t,b,c) index, ν, µ the quadri-
coordinates. A represents the gluon vector field, Ψ the quarks wavefunctions. F is the field
tensor, that is made of appropriately coupled vector fields,

Fαµν = ∂µA
α
ν − ∂νAαµ + CαβγA

β
µA

γ
ν (10.2)

the last term is the self-interaction between gluons, that is the main difference with QED
and is the whole reason QCD is non perturbative (at low energies) making nuclear physics so
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complicated (cf. Fig. 10.1, Cool animations at
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/) The

Figure 10.1: Courtesy of Derek B. Leinweber, for GlueX collaboration [18].

Figure 10.2: Reproduction of Hadrons masses from ab–initio [19].
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Figure 10.3: Two examples of the Phase Shifts of Argonne v18 compared with experimental
result.

are several ways to build a low energy representation of the nuclear strong force: both phe-
nomenological (e.g. Argonne v18 + Urbana IX, cf.
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https://www.phy.anl.gov/theory/research/av18/) and exploiting the symmetries of the
QCD–Lagrangian (the Chiral Effective Field Theory, χEFT, being one of the most promis-
ing). The nature of this bare force is inherently many–body. Moreover they are often very
difficult to treat due to the presence of an hard–core (the two–body part of the interaction
goes to infinity at r . 0.4 fm), and the interaction has to be regularized with renormalization
techniques (SRG) before being used introducing non–physical cutoffs. After the regulariza-
tion, and even in case of naturally soft–core potentials (e.g. NNLOsat), this is a representation
of the bare force between two (or more) nucleons in the vacuum, thus is not suited to de-
scribe the effective interactions between nucleons in the nucleus and then be used for Density
Functionals calculations as it is.

Then we are back at the starting point of an ’unknown’, effective A–body hamiltonian for the
nuclear system,

Ĥ = T̂ + V̂2(x1,x2) + V̂3(x1,x2,x3) + · · ·+ V̂A(x1, · · · ,xA) (10.3)

with x representing r, σ, τ .

10.2 Effective pseudopotentials

10.2.1 General Two–Bodies

Let’s consider the radial dependence of a general two–body interaction,

〈r′1r′2|V |r1r2〉 = V (r′1, r
′
2, r1, r2) (10.4)

we can write |r′1r′2〉 as expansion,

|r′1r′2〉 = |r1r2〉+ (r1− r′1)
∂

∂r1
|r1r2〉+ (r2− r′2)

∂

∂r2
|r1r2〉+ · · · = e

i
~ ((r1−r′1)·p1+(r2−r′2)·p2)|r1r2〉,

(10.5)
and considering,

V̂ |r1r2〉 =

∫
V (r′1, r

′
2, r1, r2)|r′1r′2〉d3r′1d3r′2 = Ṽ (r1,p1, r2,p2)|r1r2〉. (10.6)

Using the expansion over perturbations in positions, and the Fourier transform, we have
transformed a general interaction depending on 4 coordinates, to depending on two coordinates
with a non–locality represented by a momentum dependence.

This is a pseudopotential: is not strictly an interaction (being partially Fourier transformed
and having a momentum dependence, and eventually other terms mimicking the many–body);
is not related to the original two–body force, but is something that effectively reproduces
nuclear properties (e.g. Lennard-Jones).

10.2.2 Invariance properties

To cut down the generality, we can define general symmetry properties a two–body interaction
needs to have in order to have physical meaning [9, 20, 21]
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• Hermiticity, V̂ + = V , to have real eigenvalues.

• Invariance under the exchange of coordinates, V (1, 2) = V (2, 1), so that the interaction
does not change the exchange symmetry of the wavefunction.

• Translational invariance and Rotational invariance, the system behaves equally if you
change coordinates.

• Galilean invariance, in the case of non–relativistic systems the potential is not change if
the system moves at constant velocity.

• Space reflection, there is no parity violation in the strong interaction.

• Time reversal, equation of motion must not depend on the time direction.

These properties can be used to bind the shape of a general interaction. For example transla-
tional and Galilean invariance means that a general two–body pseudopotential must depend
only on relative coordinate r, k. Rotational invariance implies that the potential must be a
scalar, the only three independent scalar we can construct with r, k are r2 (or more in general
v(r), with r scalar), p2, and r · k. However k changes sign under time reversal, this implies
that the latter term can only appear quadratically; however (r · k + k · r)2 can be rewritten
as function of r2, p2, L2.

To be exchange invariant, the spin operator has to be

S =
1

2
(σ1 + σ2) , (10.7)

but since S has to be multiplied by a vector, also invariant under space reflection, to be a
scalar. The only other operator which satisfy the requirement is L, giving the operator part
(which can be multiplied by functions of r and p) of the well known spin–orbit interaction,
L · S.

We have than defined a crucial structure for the central two–body interaction part of a func-
tional generator

V (r) = v0(r) + vσ(r)σ1 · σ2 + vτ (r)τ1 · τ2 + vσ,τ (r)σ1 · σ2τ1 · τ2, (10.8)

that is more commonly written considering the spin and isospin exchange operators

P σ =
1

2
(1 + σ1 · σ2), P τ =

1

2
(1 + τ1 · τ2), (10.9)

as
V (r) = vt(r) + vx(r)P σ − vy(r)P τ − vz(r)P σP τ , (10.10)

From this we can define the well known families of functional generators,

10.3 Skyrme and Gogny functional generators

10.3.1 Skyrme

Skyrme interaction was proposed already in the ’50 [22] as an effective contact pseudopotential,
momentum dependent, with three–body contact term. After that it has evolved and taken
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several different forms and parametrizations, but the most accepted being,

ṽSkyrme(r12) = t0(1 + x0P
σ)δ(r1 − r2)

+1
2 t1(1 + x1P

σ)
[
δ(r1 − r2)k′2 + k2δ(r1 − r2)

]
Momentum Dependent

+t2(1 + x2P
σ)k′∗δ(r1 − r2) · k Momentum Dependent

+1
6 t3(1 + x3P

σ)ρα(R)δ(r1 − r2) Density Dependent
+iW0(σ1 + σ2)k∗δ(r1 − r2)× k Spin–Orbit

(10.11)
with k the relative momentum operator

k =
1

2i
(∇1 −∇2). (10.12)

ρα(R) is the density dependent term, usually with 1/6 . α . 2/3 and 2R = r1 + r2. In
’72 Brink and Vautherin shown the equivalence of the three–body contact term with a two
body, density dependent term [23] (α = 1) in the case of time–even symmetric systems,
effectively departing from the concept of interaction and introducing functional generators.
Let’s consider the usual definition of fields, using the distinction between isoscalar (t = 0,
ρ0 = ρn + ρp) and isovector (t = 1, ρ1 = ρn − ρp) densities,

Time even fields

ρt(r, r
′) =

∑
i,σ

ψ∗i (r, σ, τ)ψi(r
′, σ, τ), particle density, (10.13)

τt(r) = ∇ · ∇′ρ(r, r′)|r=r′ , kinetic energy density, (10.14)

jt(r) = kρt(r, r
′)|r=r′ , current density, (10.15)

Time odd fields

st(r) =
∑
σ,σ′

ρt(rσ, rσ
′)〈σ′|σ̂|σ〉, spin density, (10.16)

Tt(r) = ∇ · ∇′st(r, r′)|r=r′ , spin kinetic energy density, (10.17)

Jt(r) = k⊗ st(r, r
′)|r=r′ , spin current density, (10.18)

where ψi are the Kohn-Sham wavefunctions that determine the Kohn-Sham densities.

It determines the following energy densities for the odd and even fields,

Eet (r) = Cρt ρ
2
t + C∆ρ

t ρt∆ρ+ Cτt ρtτt + Cjt j
2
t + C∇jt ρt∇ · jt, (10.19)

Eot (r) = Cst s
2
t + C∆s

t st ·∆s + CTt st ·Tt + CJt J2
t + C∇Jt st∇× Jt, (10.20)

giving the total energy density as

E(r) =
∑
t

Eet + Eot . (10.21)

Where C are constants combinations of the coupling constants of the functional generator
(ti, xi and W0; cf. [24] for a complete and definitive list) which depends on the symmetries
assumed, in particular the density depenedent term is reabsorbed in

Cρt = Cρt + CρDDt ρα0 . (10.22)
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10.3.2 Coulomb

As usual, the Coulomb interaction is

v(r12) =
e2

4πε0

1

|r1 − r2|
(10.23)

so its densities are given by

EC = EdirC (r) + EexcC (r, r′) =
e2

4πε0

(∫
d3r′

ρ(rpρ(r′p
|r− r′|

−
ρ2
p(r, r

′)

|r− r′|

)
(10.24)

where the direct energy density considers the charge density as the proton one, while the ex-
change term would require the employment of the non–local density ρ(r, r′) =

∑
i ψ
∗
i (rσq)ψi(r

′σq),
to be solved exactly.

An approximation to reduce this non–local exchange term to a local functional is the Slater
approximation [25]

− e2

4πε0

ρ2
p(r, r

′)

|r− r′|
≈ −3e2

8ε0

(
3

π

) 1
3

ρ4/3
p (r) (10.25)

10.3.3 Gogny

Gogny and Dechargé, [26] have introduced in 1980 a finite–range functional based on a sum
of two gaussians, with the usual zero range density dependence and spin–orbit, Gogny D1,
that has proven to be very successful (especially the new readjustments D1S and D1M),

ṽGogny(r12) =
∑2(3)

j = 1 e−(r1−r2)2/µ2j (Wj +BjP
σ −HjP

τ −MjP
σP τ ) sum of Gaussians,

+t3(1 + x3P
σ)ρα(R)δ(r1 − r2) Density Dependent,

+iW0(σ1 + σ2)k∗δ(r1 − r2)× k Spin–Orbit.
(10.26)

10.4 BCP functional

The Barcellona–Catania–Paris [27] is a good example of a pure Kohn-Sham scheme functional
in nuclear physics. Defines the energy from the following ansatz

E = T0 + Es.o. + EFRint + E∞int + EC (10.27)

with T0 the kinetic term, Es.o. the spin orbit (uncorrelated), Eint the proper nuclear interaction
part, split in a Finite–Range (FR) and a bulk (∞) term, and EC the Coulomb contribution
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respectively. More precisely,

T0 =
~2

2m

∑
σ,q

∫
d3rτq(r, σ,q) (10.28)

EC [ρp] =
1

2

∫
d3rd3r′

ρp(r)ρp(r
′)

r− r′
− 3

4

(
3

π

) 1
3
∫

d3rρ4/3
p (r) (10.29)

EFRint [ρn, ρp] =
1

2

∑
q,q′

∫
d3rd3r′ρt(r)vq,q′(r− r′)ρq′(r

′)− 1

2

∑
q,q′

∫
d3rρq(r)ρq′(r)vq,q′

∫
d3r′vq,q′(r

′)

(10.30)

E∞int[ρn, ρp] =

∫
d3r

[
Ps(ρ)

(
1− β2

)
+ Pn(ρ)β2

]
ρ (10.31)

where vq,q′(r
′) is a central Gaussian, ρ = ρp + ρn, βρ = ρp − ρn, Ps and Pn are polynomials

(to the fifth power) of ρ. The resulting functional is now non–local.
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10.5 Exercise

Exercise 41.

Calculate the energy density corresponding to a free (non interacting v(r12) = 0) fermion gas in
spherical symmetry, remembering that wavefunction for the free system are plane waves

ψ(r) =
1

(2π)3/2
eir·k (10.32)

Exercise 42.

Calculate the energy density corresponding to the central term of Gogny functional generator

vGogny(r12) =

2(3)∑
j

= 1 e−(r1−r2)
2/µ2

j (Wj +BjP
σ −HjP

τ −MjP
σP τ ) (10.33)

Exercise 43.

Considering that the Galilean invariance implies on the functional that

ρ(x,x′) = e
i
~p·(r−r′)ρ′(x,x′), (10.34)

Demonstrate that the term ρτ − j2 is Galilean invariant.
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Lecture 11

Lecture 11: Phenomenological
nuclear functionals II
[Week 3, day 1]
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11.1 SelfInteraction

If we consider Coulomb functional in the Slater approximation

EC(r) =
e2

4πε0

(∫
ρp(r

′)

|r− r′|
− 3

2

(
3

π

) 1
3

ρ1/3
p (r)

)
ρp(r) 6= 0, (11.1)

for one particle ρ(r) = |ψ0(r)|2, and this should be zero but it is not! However the original
non–local functiontal exactly derived from the interaction it is,

e2

4πε0

(∫
d3r′

ρp(r)ρp(r
′)

|r− r′|
−
ρ2
p(r, r

′)

|r− r′|

)
= 0, (11.2)

that for one particle is ρ(r, r′) = ψ∗0(r′)ψ0(r)
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So, first of all, beware on the conditions that have to be satisfied by your functional. Second
of all consider that the functional form, that is not derived exactly from an interaction form,
contains implicitly self–interaction terms. This self–interaction terms make going beyond the
mean field level very difficult, e.g. generating instabilities when projecting.

11.2 Nuclear Matter properties

For a time–even system, I can write the Hamiltonian density as

H(r) =
~2

2m
τt + Cρt ρ

2
t + C∆ρ

t ρt∆ρ+ Cτt ρtτt + Cjt j
2
t + C∇jt ρt∇ · jt, (11.3)

and the relation between densitis and Fermi momentum in the free Fermi gas is

ρ =
2

3π2
k3
F ; τ =

3

5

(
3π2

2

)2/3

ρ5/3. (11.4)

Because of translational invariance in infinite matter ∇ρ = ∇ · j = 0, and if the matter is
spin-saturated I don’t have the spin orbit density jt = 0.

Binding Energy per particle is given by,

E0

A
=
H
ρ

=
3~2

10m
k2
F + Cρt ρ+

3

5
Cτt ρk

2
F , (11.5)

binding energy per particle in function of ρ is called Equation of State and contains the
information regarding the static and dynamic properties of infinite nuclear matter.

and I can try to look for a minimum in the binding energy per particle that my functional
gives, which is an equilibrium density ρ0 called saturation density

δE0/A

δρ

∣∣∣∣
ρ=ρ0

=
3~2

10m
k2
Fρ
−1 + Cρt +

3

5
Cτt k

2
F

∣∣∣∣
ρ=ρ0

= 0. (11.6)

Incompressiblity K is the curvature of the equation of state around the saturation density
respect to the Fermi momentum,

K = k2
F

∂2(E0/A)

∂k2
F

∣∣∣∣
ρ=ρ0

=
6~2

10m
k2
F + 6C̃ρt ρ+

60

5
Cτt ρk

2
F (11.7)

11.2.0.1 Effective mass

It is convenient to collect Cτt ρtτt with the kinetic term, defining an effective mass which
includes some non–local (velocity dependent) terms of the functional

mk(r) := m

(
1 +

2m

~2
Cτt ρt

)−1

=
~2

2

(
δH
δτ

)−1

(11.8)

11.3 Experimental and other constraints
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Figure 11.1: Chiral–EFT contraints on pure neutron matter Equation Of State (left) and
neutron–star mass–radius relation [28].

Figure 11.2: Chiral–EFT contraints on pure neutron matter Equation Of State (left) and
neutron–star mass–radius relation [28].
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Figure 11.3: Summary of constraints on symmetry energy parameters. The filled ellipsoid
indicates joint SvL, with Sv symmetry energy and L the density independent part of the
symmetry energy, are constrained by nuclear masses [29]. The finite-range droplet model
fit [30] is indicated with a diamond. The filled bands show constraints from neutron skin
thickness of tin (Sn) isotopes [31], isotope diffusion in heavy-ion collisions (HIC), the dipole
polarizability of 208Pb [32], and giant dipole resonances (GDR) [33]. The hatched rectangle
shows constraints from astrophysical modeling of Masses–Radii observations. The two closed
curves show neutron matter constraints (H is from [34], and G is from [35].) The white area
is the experimentally allowed overlap region. cf. [36].
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BCP1 D1S SLy4

rmsE [MeV] 1.775 2.414 1.711
rmsR [fm] 0.031 0.020 0.024

Table 11.1: RMS deviations of energies and radii given in [27].

11.4 Performance of common functionals

Figure 11.4: Comparison between BCP (dots) and D1S (crosses) functionals [27].

Figure 11.5: Comparison between two different fits of the same Skyrme functional form, one
is fitted in a way more sophisticated way [29].
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Figure 11.6: A very rich functional, constantly updated and further corrected for beyond–
mean–field correlations, still not that much better [37].
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11.5 Pairing forces

Figure 11.7: Excitated states spectrum of even an odd Sn isotopes [9] (left) and example
of odd–even mass staggering represented in the neutron separation energy for neutron rich
isotopes of Sn, Sb and Te [38] (right).
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Figure 11.8: Textbook example of backbanding due to pair breaking 156Dy [39] (right).

There are several ways to introduce pairing into a functional, again phenomenological guidance
is paramount. Ideally one would like consistency within the functional in the particle–hole
and particle–particle channel, but only Gogny and very few of the Skyrme functionals are able
to deliver sensible pairing properties.

For this reason pairing is often “attached” in various forms that not necessarly have the same
form of the functional in the particle–hole channel.

Phenomenologically even in the ’50 Maria Göppelt–Mayer realized that a short range inter-
action between nucleons in J = 0 states could explain odd-even staggering [40].
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11.5.1 Seniority Pairing

The seniority scheme is the quintessential pairing interaction

V̂ sen
p = −GP̂+

m P̂m′ = −G
∑

m,m′>0

a+
ma

+
m̄am̄′am′ , (11.9)

where P̂+
m , P̂m are pair creation and annihilation operators and create or destroy pair of

particles in time reversal. The interaction can be rewritten to be V sen
p ≈ −∆(P++P )+∆2/G,

by omitting (P+− < P >)(P− < P >) considering small variations around the ground states,
where ∆ := G〈BCS|P |BCS〉.

I recall that the BCS ansatz vacuum is defined as |BCS〉 =
∏
m>0(UmVmama

+
m̄)|0〉, however

here I haven’t used the notion and I could define the BCS vacuum starting from the seniority
pairing operator. Since the average value of the 〈BCS|N̂ |BCS〉 = 2

∑
m>0 V

2
m = N in the

BCS ground state is not fixed, I have to constrain my single–particle Hamiltonian with a
Lagrange multiplier λ that imposes the number of particles N .

This gives a total mean field + pairing hamiltonian

H = Hsp − λN̂ + Vp =
∑
m>0

(εm − λ)(a+
m̄am̄a

+
mam)−∆(a+

ma
+
m̄ + am̄am) + ∆2/G, (11.10)

which is bilinear in creation operator. To solve it make use of the usual techniques I need to
rotate the a+, a space, making use of the Bogoliubov–Valatin transformation (cf. Lecture 6,
Sect. 6.2.1),

α†m = Uma
†
m + Vm̄cm̄,

α†m̄ = Um̄a
†
m̄ + Vmcm,

,
αm = U∗mam + V ∗m̄a

†
m̄,

αm̄ = U∗m̄am̄ + v∗ma
†
m,

(11.11)

that enable to rewrite the hamiltonian in the quasiparticle basis,

H =
∑
m>0

Em(α+
mαm + α+

m̄αm̄) + const. (11.12)

By equating Eq. (11.10) and (11.12), and representing the bilinear forms as off–diagonal
matrix elements ones get

Em

(
Um
Vm

)
=

(
εm − λ ∆

∆ εm − λ

)(
Um
Vm

)
, (11.13)

which eigenvalue and eigenvector solution define the properties of the BCS quasiparticles

Em =
√

(εm − λ) + ∆2 ;
U2
m

V 2
m

}
=

1

2

(
1± εm − λ

Em

)
, (11.14)

together with the fact that we want the Bogoliubov transformation to be unitary, so

{αm, αm′} := δm,m′ ⇒ U2
m + V 2

m = 1. (11.15)

To be noted that Eq. 11.13 and following are still valid for a more general interaction vmm̄m′m̄′

once adopting a state–dependent pairing gap ∆m.
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λ and ∆ deserve a talk in their own right: λ defines the Hamiltonian H ′ above setting the
number of particles of the system we want to describe as a Lagrange multiplier, this is solved
consistently within the definition of Vm in what is called number equation,

N = 2
∑
m>0

V 2
m. (11.16)

∆ is the pairing gap, which is related to the average value of P̂ operator, α0 = 〈BCS|P+|BCS〉 =∑
m>0 UmVm, that substituting with Eq. (11.14) and eventually for a general BCS–type pair-

ing interaction,

∆m = −
∑
m′>0

vmm̄m′m̄′Um′Vm′ = −1

2

∑
m′>0

∆m′

(εm′ − λ)2 + ∆2
m′

(11.17)

is known as Gap Equation. Solving iteratively Number, Gap Equations and making use
of eigenvalue Eqs. (11.13) we get BCS solutions of the system, used to describe fermion
superfluidity.

This which has extremely interesting physical properties concerning nuclear superfluidity,
being studied and reflected in virtually every nuclear observable such as odd-even mass dif-
ferences, particle–hole occupation factors, excitation energy of single particle and collective
states, 2–particle transfer reactions, rotation inertia ...etc...

Quantum states are now defined as 

quasiparticles considering they are 

bounded pairs as having both 

particle and hole content.
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ASn(p,t) reactions

Figure 11.10: cf. [41],[42]
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11.5.2 Pairing Functional

A simple delta pairing interaction v(r12) = t′0(1 + x′0P
σ)δ(r1 − r2), generates a similar (but

not equal) functional in the pairing channel, as it does in the particle–hole,

Epair =
t′0
4

(1− x′0)(ρ2
n + ρ2

p) (11.18)

To derivate it we have to consider the nature of densities in the pairing channel. If in the
particle–hole channel, densities can be written as

ρ̂(r1s1t1, r2s2t2) = 〈Ψ|a†r2s2t2ar1s1t1 |Ψ〉 , (11.19)

which eventually gives, in the general case with isospin mixing,

ρ̂(r1s1t1, r2s2t2) =
1

4
(ρ0(r1, r2)δs1s2δt1t2 + ρ1(r1, r2)δs1s2 τ̂

(3)
t1t2

+ s0(r1, r2) · σ̂s1s2δt1t2 + s1(r1, r2) · σ̂s1s2 τ̂
(3)
t1t2

). (11.20)

However, in the particle–particle channel densities arise from the application of two creation
or destruction operator from the fact that the ground state is not anymore annihilated by
bilinear operators,

ˆ̃ρ(r1s1t1, r2s2t2) = −2s2〈Ψ|ar2 -s2t2ar1s1t1 |Ψ〉 , (11.21)

bringing a different relation and different symmetries,

ρ̂(r1s1t1, r2s2t2) = ρ̂∗(r2s2t2, r1s1t1) , (11.22)

ˆ̃ρ(r1s1t1, r2s2t2) = 4s1s2
ˆ̃ρ(r2 -s2t2, r1 -s1t1) , (11.23)

and while the densities are subdivided in the same way (scalar, spin, eventually, but not in
this case, isospin)

ˆ̃ρt(r1s1, r2s2) =
1

2
(ρ̃t(r1, r2)δs1s2 + s̃t(r1, r2) · σ̂s1s2) , (11.24)

the decomposition of the spin exchange operators in the particle–particle are not the same as
in the particle–hole, since the bilinear operators recouple all the indexes,

4σ′2σ2P
σ
σ′1−σ′2σ′2−σ2

=
1

2

(
−δσ′2σ′1σ2σ1 + σ̂σ′2σ′1 · σσ2σ1

)
. (11.25)

Tackling directly this form of the exchange operator can be tricky, thus one of the most
practical way to derive the pairing functional is by considering the aforementioned symmetry
properties of the densities in the particle–particle channel and considering that the action of
the spin exchange operator on the density is∑
s1,s2

ρ̃∗(r1s1, r2s2)ρ̃(r1s2, r2s1) =
1

2
[−ρρ̃(r1s1, r2s2)ρ̃∗(r1, r2)ρ̃∗(r1, r2)− s̃∗(r1, r2) · s(r1, r2)],

(11.26)
that is -1/2 on scalar density and +1/2 on spin density. Giving the final energy density as

Ẽ =
t′0
4

(1− x′0)ρ̃2(r) +
t′0
4

(1 + x′0)s̃2(r) (11.27)
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11.5.3 Surface–Volume

In practical calculations the standard is often considered to be the above calculated local and
zero-range [43], however there is a further sophistication that can be employed that is the
introduction of a form factor that with the density dependence emulates a surface surface or
volume predominance of the pairing interaction:

V̂pair(r1, r2) =
∑
t=n,p

Vt

(
1− αρ(R)

ρ0

)
δ(r1 − r2), (11.28)

with R = (r1 + r2)/2, ρ0 = 0.16 fm−3 is the saturation density. If α = 1, we have a surface
pairing force, if α = 0 we have a volume pairing force; often, α = 1/2.

11.6 Exercise

Read a lot of the provided literature.
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12.1 Nilsson orbitals

A very valid alternative to describe properties of nuclei is represented by phenomenological
potentials. In Fig.12.3 some simple phenomenological potentials for a schematic 1D case.

The potential that resembles the most the result of an HF calculation is the Wood-Saxon.

V WS(r) = V0

[
1 + exp

(
r −R0

a

)]−1

(12.1)

the problem of this potential (see computational class) is that it is very difficult to find
analytical solutions and one need to solve it numerically. An alternative is to use the HO
potential. For the case of no spin-orbit the solutions are known analytically. We follow here
the derivation of Nilsson.

We consider the phenomenological Hamiltonian to describe nuclear properties

H = − ~2

2M
∆ +

1

2
Mω2

0r
2 − C l ˙s−D

(
l2 − 〈l2〉N

)
(12.2)
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Figure 12.1: Phenomenological potentials.

the ; l ˙s spin orbit term has been added to reproduce magic numbers. The term l2 has been
added to reproduce the mode accurate Wood-Saxon potential. While 〈l2〉N = N(N + 3)/2
has been added to avoid too much compression of the shells due to l2.

We can easily apply it to the deformed case (assume axial symmetry along z)

H = − ~2

2M

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+
M

2

[
ω2
⊥(x2 + y2) + ω2

zz
2
]
− C l ˙s−D(l2 − 〈l2〉N )(12.3)

where

ωz = ω0

(
1− 2

3
ε

)
(12.4)

ω⊥ = ω0

(
1 +

1

3
ε

)
(12.5)

the distorsion parameter ε is defined as ε = (ω⊥ − ωz)/ω0. For ε > 0 (< 0) we have prolate
(oblate) shapes. The problem can be solved in the two extreme cases: very small and very
large deformation

12.1.1 small ε

We consider very small deformation so that we can write the hamiltonian as Hsph
0 + εh′ that

reads

εh′ = ε
M

2

2

3
ω2

0(x2 + y2 − 2z2) = −M
2
ω2

0

4

3
εr2P2(cos θ) (12.6)
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the eigenfunction of a pure spherical case would read

φ(NlsjΩ) = RNl(r)
∑
ΛΣ

CjΩ
lΛ 1

2
Σ
YlΛ(r̂)χ 1

2
Σ (12.7)

here j = l+s and Ω is the z-axis projection of j. In the spherical case each state is (2j+1)-fold
degenerate. This degeneracy is removed by the small perturbation that we can calculate at
first order as

〈NlsjΩ|εh′|NlsjΩ〉 =
1

6
εMω2

0〈r2〉3Ω2 − j(j + 1)

j(j + 1)
(12.8)

(See exercise). We see that the states with Ω < j move down in energy and thus they are
favoured compared to states with Ω ≈ j that get a much smaller contribution. For oblate
deformation the opposite is true.

12.1.2 very large ε

We now consider very large deformations we can consider the corrective terms l2 and l · s as
perturbations.

We thus split H into Hosc + h′ where

Hosc = − ~2

2M
∆ +

M

2

[
ω2
⊥(x2 + y2) + ω2

zz
2
]

(12.9)

Where h′ contain terms that play a minor role as l2 or l ·s We introduce stretched coordinates
as

χ = x

(
Mω⊥
~

)1/2

, η = y

(
Mω⊥
~

)1/2

, ξ = z

(
Mωz
~

)1/2

(12.10)

so we can rewrite H as

Hosc =
1

2
~ω⊥

[
−
(
∂2

∂χ2
+

∂2

∂η2
+ (χ2 + η2)

)]
+

1

2
~ωz

(
− ∂2

∂ξ2
+ ξ2

)
(12.11)

We no go to cylindrical coordinates (ρ, φ, ξ) where

χ = ρ cosφ (12.12)

η = ρ sinφ (12.13)
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We can write the Schroedinger equation as

[
1

2
~ω⊥

(
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
− 1

ρ2

∂2

∂φ2
+ ρ2

)
+

1

2
~ωz

(
− ∂2

∂ξ2
+ ξ2

)
− E

]
= 0 (12.14)

We now separate the φ part by assuming our solution to be ψ = U(ρ)Z(ξ)Φ(φ). We have

− ∂2

∂φ2
Φ = Λφ (12.15)

with solution Φ = eiΛφ. This is the consequence of [Lz, H] = 0 and Lz = Λ is a constant of
motion. For the ξ part we get

~ωz
(
− ∂2

∂ξ2
+ ξ2

)
Z(ξ) = EzZ(ξ) (12.16)

this is 1-D HO equation Ez = ~ωz(nz + 1/2). And E = E⊥ + Ez.

1

2
~ω⊥

(
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

Λ2

ρ2
+ ρ2

)
U(ρ) = E⊥U(ρ) (12.17)

We assume a solution form U = ρ|Λ|e−ρ
2/2W (ρ), so replacing in previous equation we get for

W

zW ′′ + (|Λ|+ 1− z)W ′ − 1

2

(
|Λ|+ 1− E⊥

~ω⊥

)
W = 0 (12.18)

where z = ρ2. The solution of this equation is called hypergeometric function

W = F

(
1

2
(|Λ|+ 1− E⊥

~ω⊥
), |Λ|+ 1; z

)
(12.19)

with E⊥ = ~ω⊥(2np + |Λ|+ 1) = ~ω⊥(n⊥ + 1).

We can now summarise the results as

E = ~ωz
(
nz +

1

2

)
+ ~ω⊥(n⊥ + 1) = ~ω0

(
N +

3

2
+
ε

3
(n⊥ − 2nz)

)
(12.20)

Ψ = Ce−ξ
2/2Hnz(ξ)ρ

|Λ|e−ρ
2/2F

(
−n⊥ − |Λ|

2
, |Λ|+ 1; ρ2

)
eiΛφ (12.21)
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We notice that we have a shell structure at ε = 0; 0.6; 1,−0.75. On top of this we need now to
calculate the correction induced by the other term we have left apart. We can calculate them
as a perturbation

〈NnzΛΣ|l · s|NnzΛΣ〉 = ΛΣ (12.22)

〈NnzΛΣ|l2|NnzΛΣ〉 = Λ2 + 2n⊥ + nz + 2nz + n⊥ (12.23)

The effect of the inclusion of these terms is to remove the 2 × (n⊥ + 1)-fold degeneracy and
only a two fold (Kramer) degeneracy is left (time reversal conserving).

In the intermediate region these approximations do not hold anymore and we have to solve the
problem numerically. We can expand the problem over the basis |NlΛΣ, but now [jz, H] = 0.
So we have Ω = Λ + Σ

Figure 12.2: Nilsson orbitals in the limit of very large deformations. Taken from [44].
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Figure 12.3: Nilsson orbitals. Complete calculation. Taken from [44].

12.2 Particle rotor-model

Rotation is a typical example of collective motion.By looking at occurrence of rotational bands
one could determine if the nucleus is deformed or not. In practice pure rotational bands are
never realised.

EI =
~2

2I
I(I + 1) (12.24)

If exact the ratio E(I = 4) : E(I = 2) = 3.33, only in few nuclear system this is almost the
case: rare earth region. We assume that the Hamiltonian can be written as H = Hint +Hcoll.
The intrinsic part is

Hint =
∑
k

eka
†
kak +

1

4

∑
klmn

v̄klmna
†
ka
†
l anam (12.25)

this is a microscopic description of valence particles around Fermi energy (HF maybe). Here
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ek are the single particles energies in deformed Nilsson potential (for example). The collective
part reads

Hcoll =
3∑
i=1

R2
i

2Ii
(12.26)

Ri are the body-fixed collective angular momenta of the core. Given the angular momentum
of the valence particle j they form I = R+ j is the total angular momentum. Eliminating R
we can rewrite the Hamiltonian as

Hcoll =
∑
i

I2
i

2Ii
+

j2
i

2Ii
− Iiji
Ii

(12.27)

The first term acts only on the degrees of freedom of the rotor; the second on the coordinates
of the valence particle and the last term is the ’Coriolis’ term.

Let’s assume axial symmetry so that I1 = I2 = I. No rotation in q.m. along the symmetry
axis (3-axis). It follows that the 3-component of of the total angular momentum I has to be
equal to the 3-component of j

K = Ω (12.28)

We thus obtain

Hcoll =
I2 − I2

3

2I
+
j2
1 + j2

2

2I
− 1

I
(I1j1 + I2j2) (12.29)

The recoil term acts only in the intrinsic coordinates. We can neglect if we adjust the intrinsic
degrees of freedom to experiment!

To solve such a system we can consider 3 limiting cases:

1. strong coupling limit: the odd particle adiabatically follows the rotation of the even core.
It is realised if the coupling to the deformation is much stronger than the perturbation
induced by Coriolis.

2. weak coupling limit: very small deformations, the odd particle moves on spherical shell
model levels only slightly disturbed by other effects (quadrupole vibrations for example)

3. decoupling limit: the Coriolis is so strong that the coupling to the deformation of the
core can be neglected
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Figure 12.4: Schematic representation of the particle-rotor coupling. Taken from [45]

12.2.1 Strong coupling

The strong limit is realized when the Coriolis term is small compared to the level splitting of
single particle energies. This is the case

• large deformations, because of the splitting in Nilsson Hamiltonian is proportional to
deformation.

• Coriolis is small. Small values of j or low spins I.

This limit is called strong coupling or deformation aligned because in the case K is a good
quantum number. The angular momentum j os the valence particle is strongly coupled to
the motion of the core. In a semiclassic picture j precesses around the 3-axis (left panel of
Fig.12.4) Since Coriolis is the only term that couples the rotor degrees of freedom with the
intrinsic one, we can factorise the w.f. in terms of inner degrees of freedom φiK and rotor w.f.
|IMK〉

We assume that (adiabatic approximation) that the rotational motion has no influence on the
inner structure. The projection of the total angular momentum K along the symmetry axis
is a good quantum number. The term j2

1 + j2
2 depend only on single particle w.f. φν and they

are thus constant along the rotational band. We ignore them also at first order.

The total energy reads

EIK = |eν − λ|+
~2

2I
[
I(I + 1)−K2

]
(12.30)

Usually we should have quasi-particle → pairing. The lowest possible spin is I0 = K. The
band-head E(I0) is not precisely eK but slightly shifted especially if we take into account the
terms we have neglected. The spectrum has a spacing of ∆I = 1 and its moment of inertia is
that of the rotor
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I ≈ β2A7/3

400
MeV−1 (12.31)

The energy of the band should be corrected by the Coriolis term I · j.

If we take into account Coriolis we get a contribution in first order perturbation theory only
for K = 1/2 as

ECoriolis =
~2

2I
ai
(
I +

1

2

)
(−)I+1/2 (12.32)

where ai is the decoupling factor. This introduces a small distortion to the rotational spectrum.
This term is used to explain the distortion observed in K=1/2 band. The Coriolis term can
also explain the coupling between K=1/2 and K=-1/2 bands.

12.2.2 Weak coupling

As said before the strong coupling breaks down if Coriolis is not negligible compared to single
particle energies belonging to different K values. (ψIMK is the total w.f. of the system )

〈ψIMK+1|HCor|ψIMK〉 = − 1

I
√
I(I + 1)−K(K + 1)〈ψΩ+1|jx|ψΩ〉 (12.33)

if |ψiΩ〉 =
∑

nj C
i|njΩ〉 is decomposed on eigenstates of j2; we can calculate the matrix element

as

〈ψIMK+1|HCor|ψIMK〉 = − 1

I
∑
nj

|Cnj|2
√
I(I + 1)−K(K + 1)

√
j(j + 1)− Ω(Ω + 1)(12.34)

so the matrix elements are large for large values of I/K and j/Ω. That is for example the
case of levels with large values of j and small Ω are involved.

In the current weak limit, we neglect the K-splitting of the intrinsic degrees of freedom (small
deformation). In this case [j2, R2]1 commute with Hint. The corresponding spectrum will
look like

E(I) = Eint +
1

2I
R(R+ 1) (12.35)

with |j − R| ≤ I ≤ j + R. and R = 0, 2, 4, ... Why only even number? Because it turns out

that the Hamiltonian of a rotor has an extra symmetry R = eiπÎ1 . See Bohr-Mottelson book

1Remember that R = I − j
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for details. This symmetry is equivalent to a reflection with respect to the plane 2,3-plane
together with a parity transformation.

This means that for each rotational quantum number R, j can have 2j+1 orientations without
changing the energy of the system. The splitting of these levels can be taken into account by
first order perturbation theory. β~ω0〈ψIRM |r2Y20|ψIRM 〉.

E(I) = Eint +
1

2I
R(R+ 1)− β~ω0〈ψIRM |r2Y20|ψIRM 〉 (12.36)

For each orientation of j there is a whole rotational band of the core with ∆R = 2. The levels
with the highest values of I=R+j for a given energy correspond to the yras levels. These
levels are connected by strong E2 transitions They are called favoured states and their energy
is given by

E(I) = Eint +
1

2I
(I − j)(I − j + 1) (12.37)

The states lie on a parabola with minimum I ≈ j.

12.2.3 Decoupling limit

In this case we can not neglect the splitting of levels in the intrinsic part. We write the
Hamiltonian as

H = Hsp +
~2

2I
(I2 + j2 − 2I · j) (12.38)

We want to minimise the total energy so for given I and more or less fixed j. The I · j
of the rotor tries to align the intrinsic spin j with the total spin I. The latter is in most
cases perpendicular to the symmetry axis (3-axis) There will be a tendency toward a large
perpendicular component of j contrary to the aligned case where j is quantised along the
symmetry axis. See right panel of Fig.12.4 We get

E =
~2

2I

[
I(I + 1) + j(j + 1)− 2ΩK + a(−)I+1/2

(
I +

1

2

)]
(12.39)

where we consider for example j=13/2 and Ω = K = 1/2. Why i13/2, since this is intruder
state and it is ’uncoupled’ to surrounding orbitals of different parity.

We thus observe that if we take the band with I = j, j + 2, j + 4, ... in the aligned case. the
spin projection on the rotation axis equal j and the total rotational energy can be written as
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E =
~2

2I
[I(I + 1) + j(j + 1)− 2Iα] (12.40)

=
~2

2I
[(I − α)(I − α+ 1)− 2α] (12.41)

=
~2

2I
[R(R+ 1)] + const (12.42)

with R = I − α describes the collective motion.

12.3 Exercise

Prove the relation

〈NlsjΩ|εh′|NlsjΩ〉 =
1

6
εMω2

0〈r2〉3Ω2 − j(j + 1)

j(j + 1)
(12.43)

where

εh′ = ε
M

2

2

3
ω2

0(x2 + y2 − 2z2) = −Mω2
0

2

3
εr2P2(cos θ) (12.44)

φ(NlsjΩ)(r, θ) = RNl(r)
∑
ΛΣ

CjΩ
lΛ 1

2
Σ
YlΛ(θ)χ 1

2
Σ (12.45)

〈r2〉 =

∫
drr4R2

Nl(r) (12.46)
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13.1 General Considerations on HFB Solvers

13.1.1 Strategies for Solving the HFB Equation

Reminder

[H,R] = 0 (13.1)

Two main methods to solve the HFB equation

• Non-linear eigenvalue problem in configuration space (=basis)
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– Initialize density R ≡ R(0) (that is, ρ(0) and κ(0));

– Use these densities to compute the HFB matrix at 0-iteration H(0);

– Diagonalize H(0) to obtain eigenvectors

(
U (0)

V (0)

)
– Calculate new densities

ρ(1) = V (0)∗V (0)T , κ(1) = V (0)∗U (0)T

– Use the new densities to recalculate HFB matrix at 1-iteration H(1)

– Repeat until densities (or other relevant quantities) do not change.

• Gradient method based on the Thouless theorem in configuration space

– Initialize Bogoliubov transformation W(0) (hence the U (0) and V (0))

– Calculate generalized density R(0) from W (0) and from there the HFB matrix at
0-iteration H(0)

– Compute Z = iη[R(0),H(0)] with η � 1 (until convergence, the commutator is not
zero)

– Construct new iteration of Bogoliubov matrix by

R(1) = R(0) + i[Z,R(0)]

and recalculate the HFB matrix at 1-iteration H(1)

– Repeat until nothing changes

Note: for the HF+BCS equation, the imaginary time method can also be used.

• Basis expansion of HFB wave functions(
h− λ ∆
−∆∗ −h∗ + λ

)(
Uµ
Vµ

)
= Eµ

(
Uµ
Vµ

)
(13.2)

with (
Uµ(rσ)
Vµ(rσ)

)
≡

Nbasis∑
n=1

(
Unµ
Vnµ

)
ϕn(rσ) (13.3)

• Direct r-space discretization of HFB equation∫
d3r′

∑
σ′

(
h(rσ, rσ′)− λδσσ′ ∆(rσ, rσ′)δσσ′

−∆(rσ, rσ′)δσσ′ −h(rσ, rσ′) + λδσσ′

)(
Uµ(rσ)
Vµ(rσ)

)
= Eµ

(
Uµ(rσ)
Vµ(rσ)

)
(13.4)

with (
Uµ(rσ)
Vµ(rσ)

)
≡
(
Uµ(riσ)
Vµ(riσ)

)
, i = 1, . . . , Npoints (13.5)

• Lattice representation of coordinate space (Lagrange meshes, spline meshes, etc.)
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Figure 13.1: Convergence of a HFB calculation for 208Pb, both as a function of the number of
shells in the HO basis (black circles, lower x-axis) and as a function of the mesh size in coordinate
space (red squares, upper x-axis).

13.1.2 Types of Energy Functionals

Popular EDF in nuclear physics: Skyrme and Gogny

• Skyrme potential is local, zero-range

V̂Skyrme(r1, r2) ∝ δ(r1 − r2)δ(r1 − r′1)δ(r2 − r′2) (13.6)

which leads to a functional of the local density ρ(r) and derivatives τ(r), etc.,

E[ρ] =

∫
d3r H(r), H(r) = Cρρρ2 + Cρτρτ + . . . (13.7)

• Gogny potential is local, finite range

V̂Gogny(r1, r2) ∝ e−(r1−r2)2/µ2δ(r1 − r′1)δ(r2 − r′2) (13.8)

which leads to a functional of the non-local density ρ(r, r′),

E[ρ] =

∫
d3r

∫
d3r′ H(r, r′), H(r, r′) = Cρρρ2(r, r′)e−(r−r′)2/µ2 + . . . (13.9)

Next generation of EDF

• Three- and Four-body potentials V (r1, r2, r3), V (r1, r2, r3, , r4)

• Momentum-dependent potential
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Possible computational bottlenecks

• In configuration space, one needs to compute tensor contractions of the type∑
abcd

v̄abcdρdb (NN) or
∑
abcdef

v̄abcdefρebρfc (NNN)

with a ≡ (n, `, j,m) or a ≡ (nx, ny, nz, σ), . . .

• In coordinate space, one must perform multi-dimensional integrals and differentiation
such as ∫

d3r

∫
d3r′V (r − r′)ρ(r, r′)ρ(r′, r) and ∇ ·∇ρ(r′, r)

13.1.3 Symmetries (and lack thereof)

13-1: Conserved symmetries and block structure

For any self-consistent symmetry S, the density matrix and pairing tensor,
and the Hartree-Fock potential and pairing field, can be put into a block
diagonal form in the basis of the eigenstates of the symmetry operators.

Usual example: if rotational invariance is a self-consistent symmetry, then

[ĥ, ĵ2] = [ĥ, l̂2] = 0 (13.10)

Define a basis of states ϕn`jm(r) that are eigenstates of ĵ2 and ˆ̀2. In that basis,

hαβ =



. . . 0
. . .

h
(`j)
αβ

. . .


0

. . .


(13.11)

Therefore, diagonalization of the HF (and HFB) matrix can be performed by block, which
is advantageous since the time of diagonalization scales like O(N3) with N the size of the
matrix.

Estimates of runtime for full HFB solution on current architectures

Additional advantage: each s.p. or q.p. states gets a label corresponding to the conserved
quantum numbers associated with the symmetry.
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1D (spherical) 2D (axial) 3D (triaxial)

< 10 s < 10 min < 10 hours

Table 13.1: Time to solution for HFB equation in a large HO basis (N0 = 20) for the ground-state
of an even-even nucleus with a Skyrme force.

13.1.4 Configuration Space

Choice of basis functions sometimes matter

• Physical wavefunctions of the nucleus should fall like e−kr for large r but eigenfunctions
of the HO behave like Gaussians (no matter which coordinate system) and do not have
the proper asymptotic behavior

• On the other hand, eigenfunctions of a finite potential (square well, Woods-Saxon, Nils-
son) are mostly non-localized (=continuum states) and may not be adapted to describing
a well-bound nucleus with good precision

• Basis functions centered at the origin (HO, WS, square well, etc.) are not well adapted
at describing very deformed shapes (fission, reaction)

HO basis - N=12
HO basis - N=16
HO basis - N=20
HO basis - N=24
HO basis - N=28
WS basis
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Figure 13.2: Left: Radial density in 40Mg as a function of r computed by expanding the HFB
solution either on the HO basis or on the WS basis. Right: convergence of the HFB energy as a
function of the HO basis characteristics for a very deformed configuration in 240Pu (〈Q̂20〉 = 200
b, 〈Q̂20〉 = 50 b2)

Asymptotic behavior of wavefunctions especially relevant for reaction theory, not so much for
structure.
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Figure 13.3: Evolution of Flops/socket as a function of time. The traditional Moore’s law has
been broken already 10 years ago...

13.2 Algorithms, Optimization and Parallelism

13.2.1 Reminder on Parallel Computing

CPU speed has not improved significantly over the past decade: gains in computational power
have come almost exclusively from an increase in parallelism.

Two different types of parallelism (to simplify)

• Shared memory parallelism (OpenMP, Pthreads) – Different CPU (typically between 4
and 24) share the same block of physical memory.

– Advantages: usually implemented via pragmas – commented lines in the source
code that are interpreted only if the code is compiled in a certain way.

– Drawbacks: scalability is very limited. API not always consistent

• Distributed memory parallelism (MPI) – CPU are located on different chips that do not
have access to the same memory. Explicit communication to exchange data is needed.

– Advantages: scalable and programmer is in control of what (s)he is doing

– Drawbacks: requires an implementation (=library) and adding in the source file all
instructions needed to do the communication
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Figure 13.4: Left: Distributed memory parallelism. Right: shared memory parallelism.

13.2.2 OpenMP

Program test OpenMP
Implicit none
Integer : : i ,N
Integer , allocatable : : A( : )

N = 10000000
Allocate (A( 1 :N) )
Write (∗ , ’ (” He l lo World in s e r i a l r eg i on ”) ’ )

!$OMP PARALLEL SHARED(A,N) PRIVATE( I )
!$OMP DO

Do i =1,N
A( i ) = i

End Do
!$OMP END DO
!$OMP END PARALLEL

Open(55 , f i l e=’ toto . dat ’ , form=’ formatted ’ )
Write (55 ,∗ ) A
Close (55)

End Program test OpenMP

How it works:

• OpenMP capabilities are inserted in the form of comments that are only interpreted
when the code is compiled with specific flags

• Until the !$OMP PARALLEL, the code is executed serially as usual

• Between !$OMP PARALLEL and !$OMP END PARALLEL, the code creates several threads
(controlled by the environment variable OMP NUM THREADS) that have all access to the
same variables. In our example, work to set Ai = i for a vector of size N is divided
between available threads. Both the vector and its size are shared by all threads (public
variables), while the running index is specific to each thread (private variable).
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13.2.3 MPI

Program test MPI
Include ’ mpif . h ’
Integer : : mpi err , mpi s i ze , mpi rank

Call m p i i n i t ( mpi err )
Call mpi comm size (MPI COMM WORLD, mpi s i ze , mpi err )
Call mpi comm rank (MPI COMM WORLD, mpi rank , mpi err )

I f ( mpi rank .Eq . 0 ) Then
Write (6 , ’ (”The master says He l lo ”) ’ )

Else
Write (6 , ’ (”The s l a v e ” , i4 , ” i s s u l k i n g ”) ’ ) mpi rank

End i f

Call m p i f i n a l i z e ( mpi err )

End Program test MPI

How it works:

• The code must be compiled with calls to proper libraries. Typically, MPI installation
provides a wrapper such as mpif90 or mpif77 which can be used instead of your favorite
compiler.

• Run the code by specifying the number of MPI tasks with something like

mpirun −np 4 test MPI

• At execution, everything happens as if the executable were cloned in np copies

– Each clone is independent of the others to start with

– Use calls to basic MPI routines to access process number in source code and enable
communication among processes

– Beware of naive statements such as write(6,*): all processes will try to write to
the same standard output...

• When coding, always imagine what the code would/should do if it is run by the process
number [something]

• More advanced routines allow the partitioning of all available processes into specific
groups (=communicators). A given process may belong to different communicators.

13.2.4 Optimization

Loop nesting - Memory storage of arrays depends on programming language: accessing
large multidimensional arrays in nested loops must be coded differently in Fortran and C
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Fortran C

sum A = 0.0
do k=1,N

do j =1,N
do i =1,N

sum A = sum A + A( i , j , k )
end do

end do
end do

sum A = 0 . 0 ;
for ( i =1; i<=N; i++)

{
for ( j =1; j<=N; j++)

{
for ( k=1; k<=N; k++)

{ sum A = sum A + A[ i , j , k ] ; }
}

}
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Figure 13.5: Impact of loop reordering on the calculation of the mean-field Γnm for a Gogny
potential.

Memory and algorithms - The number of matrix elements 〈ab|v̂|cd〉 for a two-body
interaction in a basis with N0 = 20 shells depends dramatically on the conserved symmetries

1D (spherical) 2D (axial) 3D (triaxial)

scaling ≈ N5
0 ≈ N9

0 ≈ N12
0

size ≈ 1 MB ≈ 1 GB ≈ 1 TB

Table 13.2: Characteristics of matrix elements needed to solve the HFB equations for different
symmetries

Consequence: for 2D and 3D geometries, it is not efficient to precalculate the matrix elements
and access them when computing Γij and/or ∆ij .

• Alternative 1: calculate fields on-the-fly (CPU-dependent)

• Alternative 2: use large-scale parallelism (communication-dependent)
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Algorithms - Consider the mean-field potential for a generic (but separable) two-body force
in Cartesian coordinates

Γij ≡ Γnm, n = nx, ny, nz (13.12)

A naive calculation could involve the (utterly horrible) code below

do nx=1,N
do ny=1,N

do nz=1,N
do mx=1,N

do my=1,N
do mz=1,N

do npx=1,N
do npy=1,N

do npz=1,N
do mpx=1,N

do mpy=1,N
do mpz=1,N

gamma(nx , ny , nz ,mx,my,mz) = gamma(nx , ny , nz ,mx,my,mz) &
+ twobody (nx , ny , nz , npx , npy , npz ,mx,my, mz ,mpx,mpy, mpz) &
∗ rho (mpx,mpy, mpz , npx , npy , npz )

end do
end do

end do
end do

end do
end do

end do
end do

end do
end do

end do
end do

What is wrong here:

• 12-nested loop will be extremely slow

• 12-dimensional arrays will require prohibitive storage, see table 13.2

• no advantage taken of separability of interaction

• no advantage taken of parallelism

Use the fact that the potential is separable. Example: the Gogny force

V (r, r′) = e
− (r−r′)2

µ2 = e
− (x−x′)2

µ2 e
− (y−y′)2

µ2 e
− (z−z′)2

µ2 (13.13)

therefore
Γn′m′ =

∑
n′xm

′
x

Vnxn′xmxm′x

∑
n′ym

′
y

Vnyn′ymym′y

∑
n′zm

′
z

Vnzn′zmzm′zρmn (13.14)
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Separate contributions from each direction as follows (red indices imply summations, but not
contractions)

Y n′zm
′
z

mxnxmyny =
∑
n′zm

′
z

∑
nzmz

Vnzn′zmzm′zρmxmymznxnynz (13.15)

Z
n′zm

′
zn
′
ym
′
y

mxnx =
∑
n′ym

′
y

∑
nymy

Vnyn′ymym′yY
n′zm

′
z

mxnxmyny (13.16)

Γn
′
zm
′
zn
′
ym
′
yn
′
xm
′
x =

∑
n′xm

′
x

∑
nxmx

Vnxn′xmxm′xZ
n′zm

′
zn
′
ym
′
y

mxnx (13.17)

G( : , : ) = 0 .0
do nx=1,N

do mx=1,N

do ny=1,N
do my=1,N

do npz=1,N
do mpz=1,N

D=0.0
do nz=1,N

do mz=1,N
i = indexv (mx,my,mz)
j = indexv (nx , ny , nz )
D = D + V(mz, nz , mpz , npz ) ∗ rho ( j , i )

end do
end do
Y(my, ny , mpz , npz)=D

end do
end do

end do
end do

do npz=1,N
do mpz=1,N

do npy=1,N
do mpy=1,N

D=0.0
do ny=1,N

do my=1,N
D = D + V(my, ny ,mpy, npy ) ∗ Y(my, ny , mpz , npz )

end do
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end do
Z(mpy, npy , mpz , npz)=D

end do
end do

end do
end do

do npz=1,N
do mpz=1,N

do npy=1,N
do mpy=1,N

do npx=1,N
do mpx=1,N

i = indexv (mpx,mpy, mpz)
j = indexv (npx , npy , npz )
G( i , j ) = G( i , j ) + V(mx, nx ,mpx, npx ) &

∗Z(mpy, npy , mpz , npz )
end do

end do

end do
end do

end do
end do

end do
end do

Scales like O(N8)

Parallelism - Continue on the example above, but take advantage of the fact that several
loops can be parallelized.

G( : , : ) = 0 .0

! rank o f the current CPU in the group d e d i c a t e d to the mean− f i e l d
! c a l c u l a t i o n
Call mpi comm rank ( group comm , group rank , mpi err )
! S i z e o f s a i d group
Call mpi comm size ( group comm , group s i z e , mpi err )

do nx=1,N
! Cond i t iona l e x e c u t i o n : on ly f o r t h o s e v a l u e s o f Nx t h a t match
! t h i s p a t t e r n do we do the c a l c u l a t i o n
I f ( group rank .Eq . Mod(Nx, g r o u p s i z e ) ) Then

do mx=1,N
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...

end do

! S i z e o f the matrix G
b u f f e r s i z e = Nmax∗Nmax

! New matrix c o n t a i n i n g the f u l l matrix G
Allocate ( f u l l G (Nmax,Nmax)

! Combine matr ices o f each rank i n t o a s i n g l e one
Call mpi a l l r educe (G, fu l l G , b u f f e r s i z e , MPI DOUBLE PRECISION, &

MPI SUM, group comm , mpi err )
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Figure 13.6: Acceleration of triaxial Gogny calculations in a large HO basis as a function of
MPI tasks and OpenMP threads.

13.3 Beyond HFB

13.3.1 RPA and QRPA

Recall that the RPA equations for channel ν are(
A B
−B∗ −A∗

)(
Xν

Yν

)
= Ων

(
Xν

Yν

)
(13.18)

with
Aph,p′h′ = (εp − εh)δpp′δhh′ + v̄ph′hp′

Bph,p′h′ = v̄pp′hh′ .
(13.19)
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Diagonalizing the RPA matrix in the general case

• h runs over all occupied HF states – possibly including both neutrons and protons states,
say h = 1, . . . , 100

• p runs over a set of “relevant” empty states. For sake of simplicity, assume again
p = 1, . . . , 100

• Total number of ph states is 100 × 100 = 104: diagonalize dense (=lots of non-zero
matrix elements) matrices of size 104 × 104.

Still doable, but RPA misses important correlations for open shell nuclei

QRPA equations for channel ν take a very similar form as RPA(
A B
−B∗ −A∗

)(
Xν

Yν

)
= Ων

(
Xν

Yν

)
(13.20)

with, this time (Einstein’s summation conventions apply)

Aijµν = (Ei + Ej)δiµδjν
+ U †iαV

∗
βj v̄αkβlUlµV

T
νk − V

†
iαV

∗
βj v̄
∗
αβklVkνV

T
µl

+ U †iαU
∗
βj v̄αβklUkµU

T
νl − V

†
iαU

∗
βj v̄
∗
αkβlVlνU

T
µk

Bijµν = −U †iαV ∗βj v̄αkβlV ∗lνU
†
µk + V †iαV

∗
βj v̄
∗
αβklU

∗
kµU

†
νl

−U †iαU∗βj v̄αβklV ∗kνV
†
µl + V †iαU

∗
βj v̄
∗
αkβlU

∗
lµV

†
νk

(13.21)

New estimates of the size in the general case

• every index i, j, µ, ν runs over the size of the s.p. basis – unless the number of
quasiparticles (=eigenvectors) is truncated. Suppose a basis of N = 1, 000 states.

• Total number of ij or µν states is now 1, 000× 1, 000 = 106: diagonalize dense matrices
of size 106 × 106.

Simplifications: use self-consistent symmetries (but lose some physics).

13.3.2 GCM and Projection

Particle number projection - Project on both protons and neutrons

EPAV =
1

2π

∫
dϕn

∫
dϕp y(ϕn, ϕp)E(ϕn, ϕp) (13.22)

with

E(ϕn, ϕp) =
∑
ττ ′

Eττ
′
(ϕτ , ϕτ ′), τ, τ ′ = n, p (13.23)
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and

Eττ (ϕ,ϕ) = tijρ
τ
ji(ϕ) +

1

2
Γττij (ϕ)ρτji(ϕ)− 1

2
∆ττ
ij (ϕ)κτji(ϕ)

Eττ
′
(ϕ,ϕ′) =

1

2
Γττ

′
ij (ϕ′)ρτji(ϕ)

(13.24)

Bottom line: when discretizing the integrals over gauge angle with N quadrature points, you
need to recalculate N2 HFB-like energies. Typically, N = 7 is sufficient.

Angular momentum projection - Take a triaxial deformed HFB state |Φ〉 and project
on good angular momentum

|IMK〉 =
2I + 1

8π2

∫
dΩDI∗ML(Ω)R̂(Ω)|Φ〉 (13.25)

with Ω = (α, β, γ) the Euler angles, DI∗ML(Ω) Wigner matrices and R̂(Ω) a rotation operator
defined as

R̂(Ω) = e−iαÎxe−iβÎye−iγÎz

For I = 10, you need at least 20 points for each Euler angle (roughly: the number of gauge
angle points is twice the maximum spin), hence a total of 8, 000 points, each of them with the
same computational cost as a regular HFB iteration.

Generator coordinate method - Assume simply two collective coordinates q1 and q2.
Example: (q1, q2) ≡ (Q20, Q22) (γ-soft nuclei), (Q20, Q30) (pear-shapes in actinides), etc. If
we have 10 points/collective variable, we get a 10N scaling with the number N of collective
variables.

13.4 Exercises

Exercise 44.

Starting from the HFB equation in configuration space, Eq.(13.2), express the HFB equation in
coordinate-spin space, Eq.(13.4).

Exercise 45.

Assume a heavy nucleus with axial and triaxial quadrupole, as well as axial octupole degrees of
freedom. Suppose you want to calculate the collective excitation spectrum up to spin I = 20.

• Based on the estimates above, how many HFB calculations will be needed?

• How many “rotations in gauge space” (including both particle number and Euler angles)
are needed?

• Assume we want to use a separable interaction (Gogny-like) and a large basis (why?) so
that we use 8 MPI tasks/HFB calculation, and 4 OpenMP threads/MPI task: how many
CPU do you need?

If we want to repeat this exercise for all even-even nucleus that are bound (≈ 1, 000), how many
cores do we need?
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Open questions in nuclear DFT
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Figure 14.1: Feynman’s Rainbow: A Search for Beauty in Physics and in Life, by Leonard
Mlodinow [46].
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14.1 Precision frontier
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19/28

Jacek Dobaczewski

1) “Remember that all models are wrong; 
the practical question is how wrong do 
they have to be to not be useful”
G.E.P. Box and N.R. Draper
Empirical Model Building and Response 
Surfaces
(John Wiley & Sons, New York, 1987)

� Error Estimates of Theoretical Models: a Guide:
J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard,
J. Phys. G: Nucl. Part. Phys. 41 (2014) 074001

� Enhancing the interaction between nuclear experiment
and theory through information and statistics
D.G. Ireland and W. Nazarewicz
J. Phys. G: Nucl. Part. Phys. 42 (2015) 030301
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14.2 Density functionals for matrix elements

89/95

Jacek Dobaczewski

Collectivity

beyond mean field, ground-state correlations, shape 
coexistence, symmetry restoration, projection on good 
quantum numbers, configuration interaction, generator 
coordinate method, multi-reference DFT, etc….

True for
interaction

In order to bring forward the origin of singularities in energy kernels [47, 48, 49], it is instructive
to recall principal properties of the standard GWT approach. Let us start with a one-body
density-independent operator F̂ =

∑
ij Fija

†
iaj . Its off-diagonal kernel (the matrix element

divided by the overlap), can be calculated with the aid of GWT, and reads [50]:

〈Ψ|F̂ |Ψ̃〉
〈Ψ|Ψ̃〉

=
∑
ij

Fij a
+
i aj ≡

∑
ij

Fij ρ̃ji, (14.1)

where

ρ̃ji ≡ a+
i aj ≡

〈Ψ|a+
i aj |Ψ̃〉
〈Ψ|Ψ̃〉

, (14.2)

denotes transition density matrix. Therefore, its matrix element between the unprojected
state |Ψ〉 and AMP state |IMK〉 = P̂ IMK |Ψ〉 can be calculated from

FIMK ≡ 〈Ψ|F̂ P̂ IMK |Ψ〉

=
2I + 1

8π2

∫
dΩDI ?

MK(Ω)〈Ψ|F̂ |Ψ̃〉, (14.3)

where

P̂ IMK =
2I + 1

8π2

∫
DI ∗
MK(Ω)R̂(Ω) dΩ (14.4)

is the AMP operator, DI
MK(Ω) is the Wigner function, and R̂(Ω) = e−iαÎze−iβÎye−iγÎz stands

for the active rotation operator in space, parametrized in terms of Euler angles Ω = (α, β, γ),
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and M and K denote the angular-momentum components along the laboratory and intrinsic
z-axis, respectively [51, 52].

The immediate conclusion stemming from Eqs. (14.1)–(14.2) is that the overlaps, which appear
in the denominators of the matrix element and transition density matrix, cancel out, and the
matrix element 〈Ψ|F̂ |Ψ̃〉 of an arbitrary one-body density-independent operator F̂ is free from
singularities and can be safely integrated, as in Eq. (14.3).

Let us now turn our attention to two-body operators. The most popular two-body effective
interactions used in nuclear structure calculations are the zero-range Skyrme [53, 54] and
finite-range Gogny [55] effective forces. Because of their explicit density dependence, they
should be regarded, for consistency reasons, as generators of two-body part of the nuclear
EDF. The transition matrix element of the two-body generator reads:

〈Ψ|V̂2B|Ψ̃〉 =
1

4

∑
ijkl

V̄ijkl [ρ̃] 〈Ψ|a+
i a

+
j alak|Ψ̃〉, (14.5)

where V̄ijkl [ρ̃] denotes the antisymmetrized transition-density-dependent matrix element. Gogny
and Skyrme effective interactions both contain local terms proportional to ρ η which, in the
MR DFT formulation, are usually replaced with the transition (mixed) density ρ η → ρ̃ η [56].
Such a procedure, although somewhat arbitrary, is very common, because it fulfills a set of
internal consistency criteria formulated in Refs. [57, 58]. These include hermiticity, indepen-
dence of scalar observables on the orientation of the intrinsic system, and consistency with the
underlying mean field. The alternative way of proceeding is to substitute density-dependent
terms with projected density [59] or average density [60]. These scenarios do not fulfill all the
consistency criteria and will not be discussed here.

Evaluating the transition matrix element, Eq. (14.5), with the aid of GWT, one obtains,

〈Ψ|V̂2B|Ψ̃〉
〈Ψ|Ψ̃〉

=
1

4

∑
ijkl

V̄ijkl [ρ̃]

(
a+
i a

+
j alak

+ a+
i ak a

+
j al − a+

i al a
+
j ak

)
. (14.6)

Furthermore, for particle-number-conserving theory, contractions a+
i a

+
j and alak vanish, whereas

the remaining two contractions give products of two transition density matrices,

〈Ψ|V̂2B|Ψ̃〉
〈Ψ|Ψ̃〉

=
1

4

∑
ijkl

V̄ijkl [ρ̃] (ρ̃kiρ̃lj − ρ̃liρ̃kj) , (14.7)

or

〈Ψ|V̂2B|Ψ̃〉
〈Ψ|Ψ̃〉

=
1

4

∑
ijkl

V̄ijkl [ρ̃]

(
〈Ψ|a+

i ak|Ψ̃〉 〈Ψ|a
+
j al|Ψ̃〉

〈Ψ|Ψ̃〉2

−
〈Ψ|a+

i al|Ψ̃〉 〈Ψ|a
+
j ak|Ψ̃〉

〈Ψ|Ψ̃〉2

)
, (14.8)

that is, the transition matrix element reads

〈Ψ|V̂2B|Ψ̃〉 =
1

2

∑
ijkl

V̄ijkl [ρ̃]
〈Ψ|a+

i ak|Ψ̃〉 〈Ψ|a
+
j al|Ψ̃〉

〈Ψ|Ψ̃〉
. (14.9)

170



This defines the matrix element between the unprojected and AMP states,

V 2B
IMK =

2I + 1

8π2

∫
dΩDI ?

MK(Ω)〈Ψ|V̂2B|Ψ̃〉. (14.10)

We note here that, because of the density dependence of the two-body interaction, the analogue
the first member of Eq. (14.3), that is, V 2B

IMK ≡ 〈Ψ|V̂2BP̂
I
MK |Ψ〉 is not valid. Nevertheless,

expression (14.10) constitutes a consistent definition of the matrix element.

At variance with the one-body case discussed above, the integrand in Eq. (14.10) is inversely
proportional to the overlap, thus containing potentially dangerous (singular) terms. The
singularity disappears only if the sums in the numerator, evaluated at angles Ω where the
overlap 〈Ψ|Ψ̃〉 equals zero, give a vanishing result; such a cancellation requires evaluating the
numerator without any approximations or omitted terms. An additional singularity is created
by the density dependence of the interaction.
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14.3 Effective theory of the DFT and gradient expansions

15/95

Jacek Dobaczewski

� An effective theory (ET) is a 
theory which “effectively” 
captures what is physically 
relevant in a given domain.

� The most appropriate description 
of particle interactions in the 
language of quantum field theory 
(QFT) depends on the energy at 
which the interactions are 
studied.

� Objective reductionism 
(Weinberg): the convergence of 
arrows of scientific explanation.

� Emergence (Anderson): “at each 
new level of complexity entirely 
new properties appear and the 
understanding of the new 
behaviors requires research 
which I think is as fundamental 
in its nature as any other”.

Elena Castellani, physics/0101039G.F. Bertsch, et al., Scidac Review 6, 42 (2007)

44/95

Jacek Dobaczewski

Hydrogen atom perturbed near the center

Relative errors in the S-
wave binding energies 
are plotted versus:
(i) the binding energy for 
the Coulomb theory
(ii) the Coulomb theory 
augmented with a delta 
function in first-order 
perturbation theory
(iii) the non-perturbative 
effective theory through 
a2, and
(iv) the effective theory 
through a4.
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We regularize the zero-range delta interaction using the Gaussian function,

δ(r) = lim
a→ 0

ga(r) = lim
a→ 0

e−
r2

a2

(a
√
π)

3 .

Then, the resulting central two-body regularized pseudopotential reads,

V (r1r2; r ′1r
′
2) =

4∑
i=1

P̂iÔi(k
′,k)δ(r1 − r ′1)δ(r2 − r ′2)ga(r1 − r2),

where k = 1
2i(∇1−∇2) and k′ = 1

2i(∇
′
1−∇′2) are the standard relative-momentum operators,

and the Wigner, Bartlett, Heisenberg, and Majorana terms are given by the standard spin
and isospin exchange operators, P̂1 ≡ 1, P̂2 ≡ P̂σ, P̂3 ≡ −P̂τ , P̂4 ≡ −P̂σP̂τ .

To give a specific example, up to the second-order, that is, up to the next-to-leading-order
(NLO) expansion, operators Ôi(k

′,k) read

Ôi(k
′,k) = T

(i)
0 +

1

2
T

(i)
1

(
k′∗

2
+ k2

)
+ T

(i)
2 k′∗ · k,

where T
(i)
k are the channel-dependent coupling constants.

V (r1r2; r ′1r
′
2) =

4∑
i=1

P̂iÔi(k
′,k)δ(r1 − r ′1)δ(r2 − r ′2)ga(r1 − r2),

Ôi(k
′,k) =

∑
nj
T

(ni)
j Ô

(n)
j (k ′,k)

Differential operators Ô
(n)
j (k′,k) are scalar polynomial functions of two vectors, so owing to

the Generalized Cayley-Hamilton theorem, they must be polynomials of three elementary
scalars: k2, k′2, and k′ · k, or

T̂1 = 1
2(k′∗2 + k2), T̂2 = k′∗ · k, T̂3 = 1

2(k′∗2 − k2),

with the condition that only even powers of T̂3 can appear. In terms of T̂1, T̂2, and T̂3, we
now can define the following differential operators:

LO: Ô
(0)
1 (k′,k) = 1̂,

NLO: Ô
(2)
1 (k′,k) = T̂1, Ô

(2)
2 (k′,k) = T̂2,

N2LO: Ô
(4)
1 (k′,k) = T̂ 2

1 + T̂ 2
2 , Ô

(4)
2 (k′,k) = 2T̂1T̂2,

Ô
(4)
3 (k′,k) = T̂ 2

1 − T̂ 2
2 , Ô

(4)
4 (k′,k) = T̂ 2

3 .

We performed derivations of average energies separately for all terms of the regularized finite-
range pseudopotential. The final result of this derivation is given by linear combinations of
terms of the EDF appearing on the rhs of the following expression,

〈C ñ
′L̃′,t̃

ñL̃,v12S̃
V̂ ñ′L̃′,t̃

ñL̃,v12S̃
〉 =

∑
Ca
′,α′,t,L
a,α,Q T a

′,α′,t,L
a,α,Q .
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In this expression, Ca
′,α′,t,L
a,α,Q and T a

′,α′,t,L
a,α,Q denote, respectively, the coupling constants and

terms of the EDF according to the compact notation, where the Greek indices α = {nαSαvαJα}
and Roman indices a = {maIa} combine all the quantum numbers of the local densities ρα(r)
and derivative operators Da in the spherical-tensor formalism, that is,

T a
′,α′,t,L

a,α,Q =

∫
dr1dr2 ga(r)

[[[
Da′ρ

t
α′(r1)

]
Q

[Daρ
t
α(r2)]Q

]0
]

0

.

T a
′,α′,t,N

a,α,Q =

∫
dr1dr2 ga(r)

[[[
Da′ρ

t
α′(r1, r2)

]
Q

[Daρ
t
α(r2, r1)]Q

]0
]

0

,

They have been obtained using the integration by parts to transfer all derivatives onto the
density matrices, and then employing the locality deltas to perform integrations over two out
of four space coordinates.
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Jacek Dobaczewski
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Regularized pseudopotentials vs. Gogny
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Jacek Dobaczewski

Coupling constants of the regularized 
pseudopotentials

Λ ≈ 700 MeV/hc ≈ 3.8 fm-1
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14.4 Large-scale Calculations

14.4.1 Fission
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Figure 14.2: N. Schunck, D. Duke, H. Carr, and A. Knoll, [61].
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14.4.2 Multi-reference EDF

Figure 14.3: Excitation energies of states in the ground-state band of 25Mg, and B(E2) and
B(M1) values for transitions between them. B. Bally, B. Avez, M. Bender, and P.-H. Heenen,
[62].
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Figure 14.4: 2+ and 4+ excitation energies for the Mg isotopic chain calculated with the GCM
method including axial states (red squares), axial+triaxial with Jc = 0 states (blue diamonds)
and axial+triaxial with Jc = 0, 2 states (magenta open dots). M. Borrajo, T.R. Rodriguez,
and J.L. Egido, [63].
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14.5 Take-away messages

• Read current publications. Follow the arXiv. Participate in (or request) a journal club.

• Talk to experimentalists.

• Avoid traps.

Jacek Dobaczewski

44/30

I. My model is better than your model.
II. My model describes data precisely.
III. My model has high predictive power.
IV. My model is a final word in nuclear theory.
V. My code is better than your code.
VI. I can extrapolate my model to wherever.
VII. I have no time to evaluate uncertainties.

Seven Deadly Sins of a 

Nuclear Theorist
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Lecture 15

Students’ questions
[Week 3, day 5]

1. (a) "Why does DFT work "better" (model more accurately phenomena) in

some fields of research than in others? " For example, modelling

electrons seems to be far simpler and more is known about it than

applying DFT to nucleons when they are all fermions. I guess it has

to do with the strong force and QCD more generally but it would be

nice to get a little more detail on what the specific challenges are

and why these challenges don’t apply to every case of DFT.

and closely connected to this,

(b) "What, if any, are the applications of the theory currently and

what potential applications do you believe it could have in the

future, both in theoretical and experimental physics (and possibly

wider society/industry)? "

2. What would be necessary for DFT to achieve the same level of

accuracy/precision as experiment? Is it bigger computers, more

sophisticated functionals, a more general theory? Or is it a fool’s

errand?

3. my question regards the separation of the energy functional (for

example in Skyrme theory) in isospin, isovector, time-even and

time-odd part:

I would like to have a remarks about the properties of the nucleus

(symmetries and experimental observables) that can be related to the

different parts.

The idea is to clarify me in which sector of the functional is

necessary to work in order to improve its predictive power.
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4. I know Nicolas mentioned that HFB could be used for excited states as

well as ground states (by acting on the HFB ground state with some

quasiparticle operator, I think). In practice, what information does

that give us? Can we extract single particle excitations, or

collective nuclear excitations, or just quasiparticle excitations?

5. "How can I verify that given multipole moment operators make sense?

What physical properties can I find by applying these operators on a

state describing a nucleus?"

6. 1) How exactly the case of even-odd and odd-odd nuclei is handled in

DFT framework (blocking method...)

2) As we know density dependence of the coupling constant is needed

to reproduce saturation density. This lead to spuriousity while

restoring symmetry. Is there any systematic way to construct a

spuriosity-free functional ? (Inclusion of a3-body terms etc...)

7. During the course we have discussed phenomenological functionals and

the fact that for each different parametrisation of a such

functionals an adjustment on experimental data is needed. Hence, to

what extend can new experimental measurements of exotic systems

actually help in improving or constrain such functionals? I also have

another question closely related to the first one. Providing that new

experimental values can actually help in further constraining the

different functionals, at present do you have any idea on what

observables would bring the most stringent constraints?

8. I don’t know if this question is fully inside of the DFT theory we

have seen, but I am curious about the topic. It is about the fitting

of the phenomenological nuclear functionals.

I was wondering how the values of the constants of the

phenomenological potentials (t0, t1, t2, t3, x0, x1, x2, x3, W0 for

Skyrme, Hi, Wi, Bi, Mi, t3,x3, W0 for Gogny, etc.) are fitted. That

is to say, usually to which parameters are these interactions fitted?

Are mostly experimental values or can the parameters be fixed by hand

in order to reproduce a certain behaviour? How to choose which

parameters use? And in general, how is the process of the fitting? Do

you have to take into account anything special?

I am currently working with symmetry energies when studying neutron

stars, and it is seen that they tend to have similar values at low

densities, meanwhile at larger densities the behabiour between the

different fittings is different, I supose because at larger densities

one does not have parameters to fit and then one has to extrapolate.
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But could it be some kind of constraint/parametrization in order to

have better behaviours at larger densities? How is this behaviour at

larger densities treated in the process of fitting (if it is

considered)?

9. I want to know more details about BCS model and Bogoliubov

transformation. Both BCS and HFB include the concept of

quansipaticle. BCS ground state is HFB vacuum. I want to know the

essential difference of these two methods and something about

quasipaticle.

10. The question is about the interpretation of broken symmetries,

restored symmetries and what does a nucleus "really" look like. The

symmetry-breaking solution of mean-field equations, according to

notes, should be interpreted as an approximation of the wave packet

and not of a true nuclear eigenstate. As I understand, this should be

just the consequence of the fact that this state - not having the

good quantum number of the broken symmetry - actually corresponds to

a linear combination (wave packet) of states with different good

quantum numbers. For example, my pear-shaped Ba144 nucleus on a

mean-field level corresponds to a mixture of states with positive and

negative parity and does not correspond to a nuclear state which can

be directly measured in experiment. By restoring symmetries ("going

back to a laboratory frame") we obtain states with either positive or

negative parity which can actually be directly measured, alongside

with transitional properties between them. Therefore, when we say

that we have measured a nucleus to be pear-shaped, this is truly an

imagination: nucleus as we measure it can never be pear-shaped since

all of its eigenstates have good parity. What we have actually

discovered is that the eigenstates of the nucleus can be used to

build a wave packet which will, for example, have non-vanishing

expectation value of octupole moment operator (this value will come

precisely from the large off-diagonal elements that we have measured;

all diagonal elements should give zero). However, outside of our

apparatus nothing prevents nucleus to be in precisely this wave

packet state - therefore, the nucleus can indeed and for real be

pear-shaped.

After long discussion, my questions would be:

1. Is my reasoning correct? If yes, is this kind of wave packets

somehow treated theoretically? What is their connection with

interpreted wave packets from a MF level?

2. How can this kind of reasoning be extended to the case of

spherical symmetry-breaking quadrupole-deformed nuclei? Are "pancake"

and "cigar" shapes any more or less real than pears? (Of course, I
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know they are way more common.)

11. 1. How EDFs are fit, what are the quantities people care (most) about

when fitting, and why (what are the importance of these quantities)?

2. Are there quantities that work against each other (for e.g. if I

want to get a better overall radius fit Ill have to sacrifice mass)?

3. When doing a mass table calculation, why cant we choose different

EDFs for the region that they are good at and mix the result

together, and usually (what I know of) use a single EDF?

4. A few comments (or point a direction, references) about how to

productively analyze uncertainty when using EDFs

12. With recent advances in the development of accelerator cards (Intel

phi or GPUs), do you see any benefit to be had in (TD)DFT codes from

using them? The newest generations have more and more local memory on

the board, requiring less data transfer, but I suppose the problem

may not scale well. Thoughts?

13. "What is the uncertainty of the DFT method? What gives the largest

contribution to it: the unknown form of the true functional, the fit

of the parameters, the numerical errors of computing methods or

something else?"

14. What are the main observed phenomena in experiments that the nuclear

theory can’t or has difficulties to reproduce?

15. How is the performance and validity of using a DME-treated density

functional compared to using an ’exact’ one in HF calculations?

16. Two questions come to mind, and I don’t know which one of them, if

any, would be more applicable. So, you can choose which one will be

discussed.

First, can something like the Bogoliubov transformation be used to

treat phenomena like alpha clustering? If so, is there something

analogous to the BCS approximation in that case?

Second, what happens with pairing when nuclei have nonzero

temperature? Naively we would expect BCS to not work at one point

because it’s like superfluidity and that gets destroyed at

sufficiently large temperatures. Does the same happen in the full

H(F)B treatment? Are there any kinds of pairing that BCS can not
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qualitatively describe?

The question I want to ask the most is if there is any way to extend

mean-field theories so that mesons are treated as real constituents

of nuclei instead of just appearing as classical fields, but I

suspect answering that would take three more weeks at least.

17. One question I ask myself is about hfb+gcm. If we considere a state

|hfbgcm> = f_i \prod_j \gamma_{ij} |0> and we minimize directly the

energy of |hfbgcm> with constraints on each \prod_j\gamma_{ij}|0>, so

we calculate hfb states at the same time than the gcm state, we can

think that the result will be better than with calculations of hfb

states and then gcm. There is any work on this ? Which kind of

correlation can we obtain?

18. In your famous paper published in 1984, you introduced

abnormal density \quad \rho to replace pairing tensor which appears

in standard HFB theory. Can you explain their relationship in details

and why you introduced them? Just for convenience in computation or

other deep reasons?

And I am not sure whether such specific question is suited

for discussion class. If not, I would like to discuss something

about Goldstein theorem in spontaneous symmetry broken because even I

read the lecture, I know nothing about what the theorem express.

19. Can we predict beta decay and alpha decay based on DFT?

If we can, is it only to create excited states, and calculate the

transition matrix element? Or need something correction?

20. We spoke a bit about asymmetric kernels/matrix elements in the case

of MR-EDF and on a broader picture for symmetry breaking and

restoration, but are there other cases in which those have been shown

to be useful/necessary?

21. Given that there are hundreds (thousands?) of functionals to choose

from, how do we make the decision of which one to use for a given

physical problem? Are there some functionals which are definitely

better than others? Are there some which should never be used?

22. Just today, you said something about the impossibility of doing

calculations beyond mean field with two-body potentials that include

density dependence. First of all, I didn’t understand the reason of

that. Moreover, this should means that we are not able to expand the

terms that correspond to the three body interaction after the first

order of perturbation: is it an important limitation of the model?

23. In fig 14.4 in lecture notes, between N=12 and N=14, it seem that all
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three theoretical lines have higher slope compared to the

experimental result. Can this difference be explained with some

physics argument?
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[33] Luca Trippa, Gianluca Colò, and Enrico Vigezzi. Giant dipole resonance as a quantitative
constraint on the symmetry energy. Phys. Rev. C, 77:061304, Jun 2008.

[34] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk. Constraints on neutron star
radii based on chiral effective field theory interactions. Phys. Rev. Lett., 105:161102, Oct
2010.

[35] S. Gandolfi, J. Carlson, and Sanjay Reddy. Maximum mass and radius of neutron stars,
and the nuclear symmetry energy. Phys. Rev. C, 85:032801, Mar 2012.

[36] J. M. Lattimer. The nuclear equation of state and neutron star masses, 2012.

[37] S. Goriely, N. Chamel, and J. M. Pearson. Further explorations of skyrme-hartree-fock-
bogoliubov mass formulas. xvi. inclusion of self-energy effects in pairing. Phys. Rev. C,
93:034337, Mar 2016.

[38] A Kankainen, J yst, and A Jokinen. High-accuracy mass spectrometry of fission products
with penning traps. Journal of Physics G: Nuclear and Particle Physics, 39(9):093101,
2012.

[39] M.A. Riley, J. Simpson, J.F. Sharpey-Schafer, J.R. Cresswell, H.W. Cranmer-Gordon,
P.D. Forsyth, D. Howe, A.H. Nelson, P.J. Nolan, P.J. Smith, N.J. Ward, J.C. Lisle,
E. Paul, and P.M. Walker. Near yrast discrete line gamma-ray spectroscopy in 156dy up
to spin 40kh. Nuclear Physics A, 486(2):456 – 492, 1988.

[40] Maria Goeppert Mayer. Nuclear configurations in the spin-orbit coupling model. ii. the-
oretical considerations. Phys. Rev., 78:22–23, Apr 1950.

[41] G Potel, A Idini, F Barranco, E Vigezzi, and R A Broglia. Cooper pair transfer in nuclei.
Reports on Progress in Physics, 76(10):106301, 2013.

[42] G. Potel, A. Idini, F. Barranco, E. Vigezzi, and R. A. Broglia. Nuclear field theory
predictions for 11li and 12be: Shedding light on the origin of pairing in nuclei. Physics
of Atomic Nuclei, 77(8):941–968, 2014.

[43] J. Dobaczewski, W. Nazarewicz, and P. G. Reinhard. Pairing interaction and self-
consistent densities in neutron-rich nuclei. Nucl. Phys. A, 693(1–2):361, 2001.

[44] Ingemar Ragnarsson and Sven Gvsta Nilsson. Shapes and shells in nuclear structure.
Cambridge university press, 2005.

[45] P.Ring and P.Schuck. The Nuclear Many-Body Problem. Springer-Verlag Berlin Heidel-
berg, 1980.

[46] L. Mlodinow, Feynman’s Rainbow: A Search for Beauty in Physics and in Life (Vintage,
2011).

[47] J. Dobaczewski, M. V. Stoitsov, W. Nazarewicz, and P.-G. Reinhard. Particle-number
projection and the density functional theory. Phys. Rev. C, 76:054315, Nov 2007.

[48] D. Lacroix, T. Duguet, and M. Bender. Configuration mixing within the energy density
functional formalism: Removing spurious contributions from nondiagonal energy kernels.
Phys. Rev. C, 79:044318, Apr 2009.

188



[49] M. Bender, T. Duguet, and D. Lacroix. Phys. Rev., C 79:044319, 2009.

[50] J.P. Blaizot and G. Ripka. Quantum theory of finite systems. MIT Press, Cambridge
Mass., 1986.

[51] P. Ring and P. Schuck. The Nuclear Many-Body Problem. Springer, 1980.

[52] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii. Quantum Theory of Angular
Momentum. World Scientific, Singapore, 1988.

[53] T.H.R. Skyrme. Phil. Mag., 1:1043, 1956.

[54] T.H.R. Skyrme. Nucl. Phys., 9:615, 1959.

[55] D. Gogny. Nucl. Phys., A237:399, 1975.

[56] P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, and J. Meyer. Analysis of the gen-
erator coordinate method in a study of shape isomerism in 194hg. Nucl. Phys., A510:466,
1990.

[57] L. M. Robledo. Int. J. Mod. Phys. E, 16:337, 2007.

[58] L. M. Robledo. Remarks on the use of projected densities in the density-dependent parts
of skyrme and gogny functionals. J. Phys., G 37:064020, 2010.

[59] A. Scherillo, J. Genevey, J. A. Pinston, A. Covello, H. Faust, A. Gargano, R. Orlandi,
G. S. Simpson, I. Tsekhanovich, and N. Warr. Neutron-rich in and cd isotopes close to
the doubly magic [sup 132]sn. Phys. Rev. C, 70(5):054318, 2004.

[60] T. Duguet and P. Bonche. Density dependence of two-body interactions for beyond–
mean-field calculations. Phys. Rev. C, 67(5):054308, 2003.

[61] N. Schunck, D. Duke, H. Carr, and A. Knoll, Phys. Rev. C 90, 054305 (2014).

[62] B. Bally, B. Avez, M. Bender, and P.-H. Heenen, Phys. Rev. Lett. 113, 162501 (2014).

[63] M. Borrajo, T.R. Rodriguez, and J.L. Egido, Phys. Lett. B746, 341 (2015).

189


