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Remainder of Quantum Mechanics
[Week 1, day 1]
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1.1 The Mathematics of Quantum Mechanics

1.1.1 Vector Space

Quantum mechanics is a theory for the description of the statistical behavior of microscopic
entities. It defines physical states in a sesquilinear form of a vector space H on the field of
complex numbers, also known as Hilbert space. ket |a) € H or bra (b| € H* (dual space) [1].

Properties of vector spaces:

e addition: |a) + |b) = |c)

e scalar product: ala) = |a)a with a € C



e inner product: (bla) = a with a € C

e the inner product is sesquilinear, in other words linear in |a) and anti-linear in (b|:

(bla + ac) = (bla) + a(b|c), and (bla) = (a|b)*

e and doing so it defines a norm for the vector: (ala) = ||a||> =z > 0, with z € R
1.1.2 Basis
orthornormal basis {|n)} = {|1),]2),...,|N)} it is an orthonormal basis for the vector space

V if Vin),m) € {|n)} = |n) € V, (n|n) = 1, (m|n) = 0 (normalized and orthogonal), and
V|a) € V = |a) = Eﬁle ¢n|n) (complete basis)

1.1.3 Operators

Mathematically operators act on a vector, mapping it from a vector space to another. In
Quantum Mechanics operators are linear ((X + aY)|a) = X|a) + aY'|a)) and associative.
In general X|a) = |b), with |a) € V and |b) € W,
X = (1) al, (1)
and if we consider a physical state |a) with norm 1
Xla) = (ala)|b) = [b). (1.2)

(m|X|n) :== Xppp € C
X|a) = |b) < (a|XT = (b], with|b) € Wand(b| € W*,
(XT)nn’ = X';:’n
(XY) =vixT

~~ I/~ /N
— = =
S O s W
~— N N

X|z) = x|z), v € C eigenvalue, |x) € V eigenvector.

Linear operators which satisfy AT = A are called Hermitian, has real eigenvalues.

A= Zan|n><n|, an € R (1.7)

Linear operators which satisfy UUT = 1 = UT = U~ are called unitary (||Ua||? = (a|UTU|a) =

lal]).

Linear operators which satisfy P? = P (idempotency) and are Hermitian, are called orthogonal
projectors. Pila) = |a;) € Vi C V and <b|P1T(\a) — Pila)) = 0. In the Dirac notation:
P = 25\21 |i)(i| where ¢ = 1... Ny are a subset of the orthonormal basis.

If the case Vi =V, Py = 3. |n)(n| = T is the identity operator.

Density operator: p = Y, pi|v;)(¢i|, pi = |(¢ia)|? probability of |¢;) in state |a), |¢;) is
normalized and )", p; =1

(4) = ZpiwilAI@Di) = Tr[pA] (1.8)

10



1.1.4 Tensor Products

D)1 = S an|n) € HV, hx2 = 2_cm|m) € HM, Define the tensor products of spaces |1 ®
X2) = [@X)12 = D, GnCm|n @ m)12 € HN | @ HM, with dimension N - M, is the space of
two interacting quantum systems.

<TL ® m|n/ ® m/>12 = 5m,m’6n7n’- (19)

If A[¢1) = al¢r),
= Alpx)12 = alpx)12. (1.10)

Two—body Density Matrix

pr2=p1®p2 =Y pipjldix;hz 12{dix;] (1.11)
ihj
p1 = Tra[pra] = Y (m|p1a|m) (1.12)
m

1.1.5 Coordinates

An infinite dimensional (with uncountable cardinality) Hilbert space %, is used to represent
quantum state that vary in a continuous spectrum, most importantly r and k. The inner
product makes use of integrals over wavefunctions and operator which are defined in the sense
of the distributions.

Coordinate |r) and momentum |k) representations.

rjr) =r|r) (1.13)

pIk) = kk) (114

blr) = —ih%h‘) (1.15)

k) — *%dd*k k) (1.16)

(r[k) = —¢irk (1.17)
21h

1.1.6 Variational Principle

Let’s consider |ty ) eigenvectors of H, with eigenvalue A H [1)5) = X[ty , forms an orthonormal
set D03, o (Uar [ ¥ag) = dain,

Expectation value of h is then given by

<77Z} | H | d}> = Z <¢’w>\1> <11Z)>\1|H|7w[})\2> <¢/\2|¢> (1.18)
A1,A2
“S M P Y Bl | )P = Ey (1.19)
A A\ESpec(H)

11



so if we minimize Fy we find the exact expectation value of the Hamiltonian.

1.2 Schroedinger equation

1.2.1 Time dependent and independent Schroedinger Equation

HU(rt) = ih%{/(r,t), (1.20)
iﬁw +V(r,t)| (e, t) = ihglll(r t) (1.21)
2# 9 ) - at ) * *

If H is time independent than the time evolution and the coordinate evolution are separable.
H(r)¥(r) = E¥(r), (1.22)
with H defined as

[;ZVQ + vm} U(r) = B¥(r). (1.23)

1.2.2 Solutions of time independent Schroedinger equations for notable
potentials

1.2.2.1 Free particle Schroedinger equation

One dimensional case r —

Vir)=0=H=T

Hy = Ei (1.24)
—h? d
%gdf@) = E(z) (1.25)
P(x) =™ k= Q%nE (1.26)
1.2.2.2 Square well
W —a/2<x<a/2
V(z) = { 0 2] > a/2 (1.27)

12



if £ <0,

2m(E + W,
Y(x) = Asin(kgx) + Beos(kox); ko = m(h-i-o) lz| < a —-Vo<E<O
(1.28)
v/ 2m(E
Y(x) = Cet® + De~k2; k:—Tg() xr>a E <0
(1.29)
2m(E
U(x) = Be + Fe™™ k= —TZ() r<-a E<O0
(1.30)

with k& = V2mE/h, and kg = /2m(E + Vp)/h. Since ¢(x) € L?, = C = F = 0 for

rinormalizability.

Theorem 1 If the potential is symmetric, so that V(x) = V(—x), then ¢(z) can be taken as
either even or odd.

for ¢(x) odd B=0,D = —F ¢(x) € C, so we apply matching conditions for ¢(z) and ¢'(x).

ko
k=——7"—. 1.31
tan(kopa) (1:31)

if £ > 0, means that also for |x| > a I have positive eigenvalue, so the eigenfunction must be
also trigonometric,

2m(E + W
P(x) = Asin(kozr) + Beos(kox); ko = vem(E + Vo) |z| < a/2 -VW<E<O

h
(1.32)

[\~
ES
g

() = Csin(kx + ¢) + Dcos(kx + ¢); k r>a/2 E>0

(1.33)

P(x) = Esin(kx + ¢) + Fcos(kx + ¢); k

x> a/2 E>0
(1.34)
(1.35)

again I choose to solve the odd case, implying B = D = F. Note the phase factor ¢ between
the solution inside and outside the well.

using the same technique of matching conditions one obtains,

tg(ka +¢)  tg(koa + ¢)
k - ko

(1.36)

which has solutions for every k, thus every E defining a continuous energy spectrum. Note
that, ¢ is univocally determined,

¢ = arctg (:Otg(koa + gb)) — ka, (1.37)

13



and is related to the phase shift.
Moreover considering the matching conditions at ¢ (a),

A sin(ka
A _ sin(ka+¢) (1.38)
E sin(koa)
implying that for sin(kpa) — 0, the wavefunction inside the well becomes increasingly impor-
tant respect to the ones outside defining a resonance for kga = nm (Fabry-Perot cavity rule),

or B, = (nhm)? Vo

2ma?

if I put this square well in a box of length L (or infinite potential well), I have an additional
boundary condition that is ¢(£L) = 0, implying

2 2
= sin(ka + ¢) = 0= E, = 5 <%7r+¢) . (1.39)

that is not as easy as it seems (remember that ¢ is the solution of a trascendent equation
function of k and ko), but recovers the previous solution for L >> a.

1.2.2.3 Harmonic Oscillator

The 1 dimensional harmonic oscillator

1
V= imw2x2, (1.40)
have solutions with eigenfunctions
1 mw\ /4 mws? mw
with Hy,(z) are Hermite polinomials
dn
Ho(2) = (—1)" e (afﬁ) : (1.42)
and eigenvalues
1
with n = 0,1, 2,... the quantum number.

The three dimensional isotropic harmonic oscillator,

1
V= §mw2r2 (1.44)

is easy to solve considering 72 = 22 + y? + 22 that gives three independent 1D harmonic
oscillators, since the potential is separable thus the solution is factorizable.

Solving the system in spherical coordinates we use the angular momentum operator L =#x p-
A central potential is separable in central and angular part, since
. 1 92 ) o)
L?|r) = —R? — | sinf— r 1.45
) sin26 O¢? * sinf 06 ( o 80)] Iv) (1.45)

14



that is proportional to angular part of the Laplace operator A, corresponding to the operator
part of P2, in spherical coordinates.

22 20 L2 L2
—_ 2 —_— JR— f— JR—
= pr=h (81“2 + TBT) + =0 + (1.46)

FEigenfunctions of L are called spherical harmonics that in spherical coordinates are written
as Y (0,0). L.|l,m) = hm|l,m) and L?|l,m) = h2l(l + 1)|l,m). In rotationally invariant
systems energy cannot depend from L;. For a given central interaction,

o L
2m  2mr?

= H=

+V(r) (1.47)

we have a system that is separable r and  (solid angle), thus its eigensolutions have to be

~2 ~
factorized in in eigenfunctions of 2= + V/(r), that we call the radial part as ¢(r), and %
that is the angular part and are the spherical harmonics.

The solutions for 1.44 are

3
E, = hw <2n +1+ 2) , (1.48)

and )
() = Nigr'e ™ L7 (2ur2), (1.49)

with,
23 2k+2043 L 1
V= v (1.50)
(2k+21+1) 2k + 20+ 1)

with v = 57 and Lk(l"'%)(QW‘ ) are generalized Laguerre polynomials, that are the solutions

to the above differential equation.

Both Hermite and Laguerre polynomials are a orthonormal basis of the Hilbert space, being
complete orthogonal basis for L2. Consequently spherical harmonics are a basis of the
Hilbert space.

1.3 Spin and Angular momentum

SO(3) is the group of rotations in 3D space, is the group of unitary orthogonal (det= 1) 3x3
matrices. SU(2) is the group of rotations in 2D space, is the group of unitary special (det= 1)
2x2 matrices, also known as the Pauli matrices.

10 0 1 0 —1 1 0
op=1= 0 1) r=0%=\{; o) 2=oy=\, o) @w=o=={, _;]

(1.51)

¢ are the spinor operators for spin 1/2 particles. &,ﬁ, live in different spaces, so [7, f;] = 0.
This also means that eigenvectors are factorized |I,m) ® |£). The two possible state of spins,
define a new space called spinor space

ity = () = (070 ) vie.) (152

15



this representation of wavefunctions in factorized solutions of L and &, considering a complete
set of operators (commute each others) L., é.,,52, L? is called LS—coupling.

We can define the total angular momentum,

J=6+1L, (1.53)

we have the following set of complete operators, J2, L2, o2, J,, which define the J-coupling
scheme. Quantum number |l —s| < j <[+ s.

1.4 Exercises

Exercise 1.

demonstrate Eq. (1.5) and (1.6).

Exercise 2.

demonstrate the Schwartz inequality |{a|b)|? < ||a||?||b]|2.

Exercise 3.

ezercise: finish problem in Sect. 1.2.2.2, solving the even cases. Then consider the density
current

i(r) = %W(F)VW(I‘) + 47 () Vi(r)], (1.54)

and calculate how the current density behaves inside and outside the potential well.

16



Lecture 2

Density functional theory (DFT)
[Week 1, day 2]

2.1 Fundamentals of DFT

2-1: Density functional theory I

Density functional theory is based on a constraint variational approach that
uses observables as variational parameters.

Let us consider Hamiltonian H and observable Q Let us assume that the set of parameters p
uniquely parametrizes the entire Hilbert space |¥(p)), that is, p1 # p1 — [V(p1)) # |V (p2)),
and that we can calulate the average values:

E(p) = (¥(p)|H|¥(p))
Q) = (Y(p)IQI¥(p))

(), (2.1a)
(@), (2.1b)

as well as their derivatives over p.

We now solve the constraint variational equation for the routhian R:
R=H - )Q, (2.2)
that is,

. R 0

SH-)\O) = V(H-\0) = VE-\VQ = B OE(p) ,9Q(p)

Op; Op;

[E(p)-2a(p)| = =0, (2.3)

where A is called Lagrange multiplier.

2-2: Constraint variation

17



| Edward John Routh FRS; 20 January 1831 - 7 June 1907 |

Function E(p) has a minimum within the set where function Q(p) is
constant

0

gradients VE and V@ are parallel.

After solving variational equation (2.3) for all A we obtain the "path” p()\), and

E(\) = E(p\), (2.4a)
Q) = QW) (2.4b)
RO = R(O) = EO) - AQ(). (2.4¢)
Assuming that function @Q(\) can be inverted into A(Q)) we obtain
E(Q) =minE()], |, = FAQ) = BpAQ). (25)

2-3: Exact ground-state energy Fj; and exact value of observable ()

18



Energy E is now a function of observable (). By minimizing E(Q), Ey =
ming F(Q) that is, by solving

d

GF@ =0, (2.6)

we obtain Ey and Qg

2-4: Density functional theory II

Density functional theory is based on replacing the exact variational
method with a two-stage variational method:

1: Minimization of energy F under constraint on value ) of observable
@, which gives energy F(Q) as function of Q.

2: Minimization of energy F(Q) with respect to Q.

In this way the minimization of energy F(Q) gives the exact ground-state
energy Fy and exact value of observable Q.

19




Depending on which observable we pick, we can have very different DFT's:

I
o
&
I

&

©

~

I
o
<
I

S|

)

S

<H+ Z /dr r;o't' or)p(r;oT,0'T") )y =0 = E = E[p(r;or,o'7")],

0'7'0"7'

In (2.7j) we denoted = = {r,o,7} and 2’ = {»',o’, 7'}.

Remember that:

2-5: Density functional theory III

right degrees of freedom to describe the given system.

Density functional theory is based on picking the right observables, that is,

2.1.1 DFT for local densities of spinless particles

Consider DFT (2.7d). One-body density operator is the DFT observable:
A

p(r) = Zé(r — 1) =afap.

i=1
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for

ar =Y ulr)ay, (2.9a)
m
af = > ¢n(r)al. (2.9b)
m
The position-dependent Lagrange multipliers are identical to one-body (mean-field) potentials
U(r):
<U> - </dr U(r)ﬁ(r)> = /dr U(r)p(r), (2.10)
for

(5(r)) = p(r). (2.11)
The particle-number operator is a sum of density operators:

N:/drﬁ(r):/draja,,, (2.12)

This is why:

2-6: Density functional theory IV

Density functional theory based on density observables are universal, that
is, applicable to systems of arbitrary particle numbers.

2.1.2 DFT for local densities of spin 1/2 particles

Consider DFT (2.7f).
§(r00") = 0}y (2.13)

and

(2.14)

allows us to introduce scalar and vector (spin) densities and fields:
p(rioc’) = Lp(r)0ser + 35(7) 040, (2.15a)
Ulr;oo’) = U(r)dser + 2(7) - 0o0r, (2.15Db)

The interaction energy with the external filed in (2.7f) now reads:
Z/dr U(r;o'o)p(r;oc’) = /d’r (U(r)p(r) +X(r) - s(r)), (2.16)

and the functional now depends on scalar and vector densities, E[p(r;o0’)] = E[p(r), s(7)].
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FIG. 1 (color online). Number of publications per year (1975-
2014) on topics (““density functional™ or “DFT"), according to the
Web of Science Core Collection (February 2015). The inset shows
data near 1990 on an expanded scale. The number of publications
depends on the precise search criteria, but the overall picture is
unchanged. From Mavropoulos, 2015.

2.1.3 DFT for local densities of spin 1/2 and isospin 1/2 particles

Consider DFT (2.7g).

5 1Y — ot
p(r;or, o' T') = ay . Qporr

and for the isospin density matrices 0 and T,
5— 1 0 (0 1 (0 —i (1 0
o 1)\t o) ?T\i o) P70 1)

we introduce scalar and vector, and isoscalar and isovector density matrices [2]:

p(r)éagl(STT/ + iS(’T’) : 0-0'0'/57'7'/

p(r;or,o'r)

e Ll L

p(’r)(sao" O Trr! + %S(T) *Ogg! O Trety
Ulr;or,o't’) = Ur)dsg0rr + X(T) - OporOrps
+  U(7)dso © Trrr + 3(T) - Opor © Trrvy

_l’_
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where symbol “o” denotes the scalar product in the isospace. In another notation we can also
write

3 3

p(rior, o'ty = iZZpuk(T)égLa,éﬁH (2.20a)
1=0 k=0
3 3

U(rsor,o't’) = 13N " Uun(r)st, ok, (2.20b)
p=0 k=0

Interaction energy with an external local potential now reads:

Z /dr U(r;o't' or)p(r;or,o't’) = /dr(U(r)p(r)—i—E(r)-s(r)

+U(r) o p(r) + B(r) -0 s(r)), (2.21)

and the functional depends on the following densities: scalar-isoscalar p(r), vector-isoscalar
s(r), scalar-isovector p(r), and vector-isovector s(r), E[p(r;ora’'t")] = E[p(r), s(r), p(r), s(r)].

2.1.4 DFT for quasilocal functional and spinless particles
Consider DFT (2.71). We first define the operator of local kinetic density 7(r) as

) = — EA: Vi o(r—r)Vi=V(af) -V (a), (2.22)
=1

for

V(ar) = ZV((;SM(T))%, (2.23a)
V(aj) = ZV(¢;(T))aj, (2.23b)

and the kinetic density 7(7):

7(r) = (7(r)) =V - V'p(r, ') , (2.24)
This gives
K2 [ )
— T = —— AN, =T. 2.2
o dr 7(r) o 2 (2.25)

Densities p(r) and 7(r) are independent, because for R = 3(r 4+ r') and s = 7 — r’ we have:

7(R) = jARp(R,s = 0) = Asp(R,s)| _ . (2.26)
The first-stage variational equation 2-4 now reads
) <f/ + /dr [U(r)/’)(r) + (;; + M(r)) %(r)} >
— 3 (V) + 5/dr [U(r)p('r) T (;; 4 M(r)) T(T)} o,
(2.27)
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which gives the functional:
h2
Elp,7] = 2m/drr(r) +Vip.7), (2.28)

with the kinetic energy explicitly and exactly singled out.

We now minimize this functional with respect to density and kinetic density under the con-
dition that the number of particles is A. For that we again minimize the Routhian:

2

Rip, 7] = E[p, 7| — )\/dr p(r) = ;n/dr T(r)+ Vip, 7] — )\/dr p(r). (2.29)

This gives variational equations:

dR[p,7] _ OVp,7]

sor) oy A o
oRlpr) _ Vlpr) R
S = e + 5= M(r) =0, (2.30D)

2-7: Gradient minimization loop

Steepest-descent minimization of the functional E[p, 7| can proceed as fol-
lows.

1° Begin with reasonable initial guesses for the densities p(®(r) and
7O (r). Set the iteration number k = 0.

2° Calculate the derivatives:

5V [p®), 7] VI, rB] 8

- = — 2.31
Vo) = 5wy M) = w23
3° Calculate new approximatiosn to densities:
pE () = pW () = Uy (r) — A), (2.32a)
T(k+1) (rp) = T(k) (’l") — GM(k) (’l") (232b)

4° Tterate the loop 2°-3° until convergence is reached.

2.2 Representing densities by orbitals

2-8: N-representability of local density
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Arbitrary positive function, p(r) > 0, normalized as [ dr p(r) = A, can be
represented by a sum of squares of A orthonormal, [ dr ¢ ()¢ (r) = O,
functions as

A
p(r) = lon(r). (2.33)
h=1

See Refs. [3, 4] and excersise 6 for explicit constructions. The N-representation is, of course, not
unique. However, by minimizing the functional with respect to the orbitals, we automatically
minimize it with respect to the density. The chain rule rules!

2-9: N-representability of local density and kinetic density?

Conjecture or approximation: Arbitrary positive functions, p(r) > 0,
7(r) > 0, normalized as [drp(r) = A, can be represented by sums of
squares of A orthonormal, [ dr ¢} (r)dp (1) = dpp, functions as

A

p(r) = |én(r), (2.34a)
Ah:l

T(r) = > [Ven(r)*. (2.34b)

h=1

Generalizations to systems with spin or spin and isospin:

A
(®lp(r;oc’)|®) = > ou(r;o)eh(rio’)
h=1

- % (7‘)500/ + %S(T) *Og0/, (2.35&)

)

on(r;or)or(r;o’'r)

M=

(®|p(r;or,0'T)|®) =

>
> |
—~ =

r>50'0’ 7! + %S(T) ' 0'00’57'7"
7‘)500’ O Trrr + %S(T) *Ogg! O Tryptl. (235b)

el
°
—~

2.3 The DFT Kohn-Sham method

In 1965 Kohn and Sham [5] (Kohn’s Nobel Prize 1998) proposed to represent the density by
specific orbitals.

Let us consider a one-body Kohn-Sham Hamiltonian:

hiks =—-V (; + MKS@“)) -V + Ugs(r), (2.36)



[ Walter Kohn (March 9, 1923 - April 19, 2016) ]

where Mgg(r) and Ukg(r) are, respectively, the fixed Kohn-Sham mass function and poten-
tial. The many-body Kohn-Sham Hamiltonian reads:

A
Hgs = ; hisi = /dT [(% + MKS(T)> 7(r) + Urs(r)prs(r) |, (2.37)

We know that all eigenstates of a one-body Hamiltonian are equal to Slater determinants
|®xs) built of the orbitals diagonalizing h:

hicsdn *(r) = e “op 5 (r), (2.38)

where eff 9 are the Kohn-Sham energies and ¢hK S (r) are the Kohn-Sham orbitals. All average
total Kohn-Sham energies, including the ground-state energy, read:

Exslprs, Tks] = /d’r [(% + MKs(T‘)) Trs(r) + UKs(r)ng(r)] . (2.39)
for
A
prs(r) = (Prslp(r)|Prs) =Y on(r)op ¥ (r), (2.40a)
h=1
A
mies(r) = (@sli(r)Oks) = > (VeSw)) - (Ve (). (2.40b)

>
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Are densities {pxs(r), Tks(r)} representable by { Mks(r), Uxs(r)}? If yes, we can minimize
the exact functional Exglp, 7] in the space of N-representable densities {pxs(7), TKs(r)} by
using the Kohn-Sham potentials equal to the exact derivatives, that is,

2-10: The Kohn-Sham theorem

Self-consistent minimization of the Kohn-Sham energy Exg with the self-
consistency conditions.

5V[p, T] (5V[,0, T]
or(r) op(r)

gives the exact solution of the DFT variational equations. The solution is
exact up to the approximation of 7(7) ~ 7xg(7).

Mpgs(r) = Uks(r) = (2.41)

2-11: Self-consistent loop

Self-consistent minimization of the Kohn-Sham energy Exg can proceed as
follows.

1° Begin with reasonable initial guesses for the Kohn-Sham potentials
Ml(g)g(r) and U;?g(r). Set the iteration number k£ = 0.

2° Diagonalize (2.38) the Kohn-Sham hamiltonian ﬁg’;)s and find the
Kohn-Sham orbitals qﬁZKS’k (r).

3° Select A orbitals thKS’k(r), h=1,...,A, from among ¢ = 1,..., M
orbitals. Most often the lowest ones.

4° Calculate (2.40) the Kohn-Sham densities p&??g(r) and TI((I%(T‘)I

5° Calculate (2.41) the Kohn-Sham potentials Ml(g(r) and U}g(r):

6° Iterate the loop 2°-5° until convergence is reached.

2.4 Take-away messages

2.5 Exercises

Exercise 4.

Price of a diver suit depends on the diver’s height h and waist w as E = ah? 4+ bw?. Within a
given population, a company can hire divers of a given stature Q) = ph + qw. How to minimize
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the total cost of buying the diver suits for the company?

OR P OR q

pdah -\ = = A—. 2.42
Oh 0 = >\2a’ ow 0 =w 2b ( )
2 P2 q2 2
EN) = A [4(1 + 4{)} =WA°, (2.43)
QN = A[E L C] Ly (2.44)
N 2a 2| 27 '
4
E = —Q? 2.45
@ = 5@ (2.45)
__p _ 9
ho = WaQ, Wo WbQ (246)
Exercise 5.
Prove the identities
dE(Q)
= 2.4
0 A (2.47a)
dR(A
% =Q. (2.47b)

Exercise 6.

Prove [4] that any positive function p(y) > 0 in one dimension, normalized as fol dyp(y) = A,
can be N-represented (2.33) by A orthonormal orbitals as p(y) = Zle |6n(y)|? for

on(y) = {p(Ay)} v exp {27Tih /Oy dzpf:) } : (2.48)

Exercise 7.

Using coordinate representation of the kinetic density operator (2.22) prove equations (2.24)
and (2.25).

Exercise 8.

Show that equation (2.38) is the variational equation corresponding to minimizing the Kohn-
Sham functional (2.39) with respect to the Kohn-Sham orbitals.

Exercise 9.
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Derive the Kohn-Sham potentials for the functional (2.28) given by
Vip.r) = [ drCp(ryr(r) + 72 (1) + Chp* ), (2.49)

where C7, C?, and C?, are coupling constants.

M(r)=CTp(r), U(r)=CT71(r)+2C?p(r) + (2 + a)CPhp (7). (2.50)
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Second Quantization
[Week 1, day 3]
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3.1 The Mathematics of second quantization

We want to describe a relativistic field theory for quantum mechanics. Since in relativity
there is no mass conservation, particle number and type is not conserved and has to be
defined dinamically. Consequently we will introduce a formalism for many-particle systems

called “second quantization”

3.1.1 Fock Space and symmetries

Considering Hilbert space 7 of one particle system as defined in sect. 1.1.5 we consider the

hilbert space relative to A—particle systems as
FHN=HRHRD...QH

The wavefunctions in this space are ®(x1,...,24,...,2j,...,24).
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Transposition operator P;j which swaps the places of ith and jth particle.

Pii®(z1,...,xi, ..., x5, ..., x4) = P(z1,. .., 25, ., T4, ..., TA). (3.2)

]%j an Hermitian, and unitary operator, so its an operator which eigenvalues can only be +1
or —1. We can then divide the space JZ4 in space composed of eigenfunctions of F;; with

eigenvalues p;; = £1, %ﬁgi), and the one orthogonal to these two.
Ay = o ) & A (3.3)

Theorem 2 (Spin Statistic theorem) Particles living in j’ffr), with PAij(P:(I), have inte-
ger spin and are called bosons;

(=)

particles living in J€, °, with P}fI’z—@, have semi-integer spin and are called fermions.[6]

Sy is the orthogonal complement, populated by functions that are neither symmetric nor
anti-symmetric (irreducibile representation of the permutation group), but and up to now is
no experimental evidence indicating a connection with physical wavefunctions.

()

Ve A 5 Bapar) = 2= (040 (22) £ dua)0u(@) (3.4)

When constructing the basis of A-particle states in the space %”é_)

antisymmetric states,

we similarly single-out

DPpypia (T1,..,24) = (A!)_1/2 Z(_l)P¢u1 (i) - - - Pua (Tia)s (3.5)
P
where P is the permutation of A elements, P(1,2..., A)=(i1,d2,...,i4). The above state is

called Slater determinant of single-particle states,

Gy (21)  Pup(1) v Pua(@1)
7xA) — (A!)fl/Q ¢#1 (xQ) ¢#2 (xQ) e (bMA (1.2) . (36)

Dy pa (1,

Fock space

FE —corof e 0t Ha. .. (3.7)
with functions as
f() eC
fl(rlal) e H

) fa(ri01,1209) € %(i)

fn(rlgla Tt arnan) S %L(i)
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Applying the number operator results in

0- fo
1 fi(rioq)
2 fa(rio1,1202)

n- fn(rlala e arno'n)

3.1.2 Creation operators

We define a creation operator that creates a particle in the antisymmetric Fock space, thus

0 for p € {u:}

+ 1)

al®d N = 3.10

H A(Ml /JJA) { (I)A-I-l(,u’,ulv to 7)LLA) for K ¢ {:ul}a ( )

and the annihilation operator, hermitian conjugate of the constructor, is given by

0 for pn & {p:}
a, P s A+ 1) = .
a Al pa ) { (—1)l+1‘1)A(M17"' M1y Hit1, o pay1)  for po=puy

(3.11)

In F(-), in other words for fermions, creation and annihilation rules operator obey this fol-
lowing anticommutation rules

{af,af} =0, (3.12)
{ap,a,} =0, (3.13)
{ap,af } =6, (3.14)

From these relations follows that af[a,‘j = 0, that embed the Pauli principle into the properties
of the creation operators.

At this point we can define a vacuum state such as
a,0) =0 Vu (3.15)
and every state is defined by application of constructor operators

which defines an orthonormal set of states, correspondant to the slater determinant wavefunc-
tion in Eq. (3.11).

3.1.3 Operators in second-quantization

N, gives the number of fermions occupying the v-th single-particle state,
N := Zai’a,,, (3.17)
14

that is used to define the fermion-number operator:

Nipr ... pa) = Alp - . pa). (3.18)

32



Theorem 3 (Theorem on the second-quantization representation for operators in the Fock space)
In the second-quantization representation, the K-particle operator is defined by its antisym-
metrized matriz elements and has the following form:

F= (KN " Fuypgnow Oy - O e -, (3.19)

M1 LK
vi..Vg

that reduces to the case of one and two body operators to

F ZFM1V1 ’u,laV17 (320)
pivi
F: Z H1p2r1V2 m :LrgauQaul- (3.21)

Hluzl/ll/z

Creation and destruction operator can also be represented in the Hilbert space (coordinate
or momentum), giving the creation or destruction of a particle in a particular position or
momentum.

3.1.4 From first to second—quantized form

Let’s consider a one body operator in the second quantization form, as in Eq. (3.20), using
the field operators as defined in the previous lecture

=Y dumal,  ar) =) éur)a, (3.22)

we can build it from first quantization operator

F= Z<M\F]y>a:ay = /d3ra+(r)a(r)F(r) (3.23)

Hiv1

Implying that densities (p = ), p(r — r;)) in second quantization, at a given coordinate r are

then given by
p(x) = a* (x)a(r) (3.24)

3.2 Wick Theorem

Let’s consider a decomposition of A on ¥ such as

A=Ao+ A+ +A_, (3.25)
with,
Ao is a constant, (3.26)
A_|W) =0, (3.27)
(T|A, = 0. (3.28)
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Let then P=|¥)(¥| be the operator projecting on the state |¥). Thus we get the explicit form
of the decomposition (3.25) that fullfills the rules of (3.26-3.28),

Ag = (U A, (3.29)
A= (A— (T|A]D)) (1 - P), (3.30)
A, = (1- P)AP, (3.31)

with for any operator A and any state |¥).

If we want to calculate the average product of two operators

(U[AB|Y) = (B A|W)(9|B|T) + (V| A_B, |v), (3:32)
that relates to (anti—)commutator relations,
(W|A_By W) = (W{A_, B, }T) = (B[4, B,|T)
= (W{A-, B}|¥) = (V[[A_, B]|¥) = --- (3.33)

We then define a contraction, and auto—contraction, for fermions as

AB = {A_, B}, (3.34)
A= 0. (3.35)

To be noted that the contractions for bosons are given by commutator and the auto—contraction
is a number that gives an important contribution to observables such as the total energy.

Theorem 4 (Wick’s theorem) If all mutual contractions of pairs of operators in the prod-
uct are numbers, then the average value of the product of these operators equals the linear
combination of products of all possible contractions and auto-contractions.

1 1
AD\D,...DyB :=c*ABD D, ... Dy, (3.36)

3.2.1 Wick’s theorem for Slater determinants

Owing to anticommutation rules (3.14), fermion contractions are numbers. Can be build
considering the configuration which annhilate the state on the left and right (cf. (3.26-3.28)
) is called normal ordering N|---], and contractions are then defined as

AB = AB — N[AB]. (3.37)

They result in the following values,

/i A
“:“V = Z 6##1'5'/!%7 (3-38)
=1
— M
a,ua;r = Z 5uu,-5wu7 (3.39)
i=A+1
[
ajaj = a'M_aL =0, (3.40)
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while auto—contractions vanish:

rn n
+ _
aM—aM—O.

(3.41)

This again is for the specific case of naked fermions, we will later see that in the case of
other creation and annhilation in other systems contractions and autocontractions can have a
different outcome, for example in the system with pairing interaction in the Bolgolybov basis

(cf. Lecture 6).

3.2.2 Calculations of matrix elements

Calculation of one body matrix element over two body states gives,

(o, | Flay, ag) = Z Fl(0lag,a /a:[a,,aal aZ,|0)

H1p2viv2
- Fa’alda’ asg + Fo/ agda’ a1 a 04260{, ar Faéal(sa’laga

making use of contractions.

3.3 Exercises

Exercise 10.

(3.42)

(3.43)

Prove that the square of a general one-body operator is equal to a sum of one— and two—body

operators.

Exercise 11.

Calculate the matrix elements of a two body operator Eq.(3.21) between two body states using

Wick theorem.
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4.1 Nuclear interaction

The first step to develop a microscopic picture of nuclear structure is to obtain a model for
the forces acting between nucleons. The general nuclear Hamiltoninan reads

_h?
H:%ZV?+ZUU+IZ Vijk + -+ + n-body terms (4.1)
( (5] 1<j<k

where v;; is the 2-body Nucleon-Nucleon interaction (NN) and Vj;;, is the 3-body one.

A possible representation of the 2-body interaction looks like
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vij = Y uplry)O (4.2)

p=1,n

which is a form factor (typically a sum of Yukawa potential ), exp " /r) times an operator.
To reproduce scattering data a minimum of 8 operators is required

Of ™ = 1,77, 0105, (1i75)(0i07), Sij» Sij (7)), L - S, L - Sy (4.3)

To reproduce with more accuracy data, extra operators are needed, typically 14 or 18. In
Fig.4.1, we show the shape of the NN potential for the different channels of spin and isospin.

fos |
%
=
&
L)
=

150 ¢ . D —

0 1 2 3

r (fm)

Figure 4.1: Dependence of the Argonne v14 NN potential on the total spin (S) and isospin
(T). [7].

We observe that the nuclear strong force strongly depends on the spin-isospin channels. It
is strongly repulsive at very short distance (hard-core) and attractive at r ~ 1 fm. Solving

Eq.4.1 for this potential becomes quickly quite prohibitive and thus not applicable to the
entire mass chart.

4.1.1 A simple case: Coulomb

The hamiltonian for 1 atom (fixed position) reads (in natural units A = m, = go =1

o~ V2 O R R

:_Z Ql_ZZTA—i_ZZr.. (4.4)
- - [3 . Ty
i=1 i=1 =1 j>1

We anticipate here that our goal is to find a procedure so that
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Ne  Te

H:ithF%ZZ@ee (4.5)
=1

i=1 j>i

where h{ is a single-electron Hamiltonian of the electron ¢ and v°¢ is a residual interaction
that is difficult to treat.

4.2 Hartree-Fock method

A (fm)

200 400 600 800
T (MeV)

Figure 4.2: Mean free path determined from neutron cross sections (squares) and proton
reaction cross sections (diamonds). The solid line represents various theoretical models. [8].

we want to simplify Eq.4.1 by replacing the nuclear potential
S~ Y (1)
i<j i

This means that given a nucleus with A particles. The total Hamiltonian of the system reads
now [9]

A
HIE = " h(i) (4.7)

The corresponding energy of the system El’ can be seen as an approximation to the ex-
act ground state energy of the system. The total wave-function of the system is a Slater
determinant ®(1,..., A)
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|HF) = |®(1,..., A)) = I{al|-) (4.8)

where aZT is the single particle creator operator. To calculate the single particle wave functions
¢1 (1) we need to solve a system of coupled equations of the form

h(§)én(i) = exdp(i) with i = (r,0,7) (4.9)

It is important to recall here that for the Hartree-Fock (HF) case, we replace the initial many-
body problem by a simpler one-body problem and. The equation we are going to derive
look formally the same as the Kohn-Sham equations of DFT, however there is conceptual
difference. While HF is an approximation of the nuclear many-body problem starting from
the Hamiltonian, DFT goal is to provide an exact reformulation of the initial problem and
can be regarded as an ab-initio approach.

4.2.1 Thouless Theorem

The Thouless theorem (Nucl. Phys. 21 1960) states Theorem: Any N-particle Slater deter-
minant |®) which is not orthogonal to |®g) can be written in the form

©) = T TIe_y o (1+ Crial,aq)| @) (4.10)
N 00
= exp Z Z Cmiainai] |Po) (4.11)
i=1 m=N+1

where C,,; are uniquely determined.!

!proof We suppose that ®) is a determinant of the wave functions

Yo =D faits (4.12)
i=1
where o = 1,..., N. Using second quantisation we can write the Slater determinant as
N oo
@) =TT, <Z faial + ) famain> 0) (4.13)
i=1 m=N+1

Since this state is not orthogonal to |®o) we have

<q>o|q)> = detfm- =1 (414)

here «,¢ run from 1 to N. We write F;o, = f(;il

N N
Z faiFip = bap Z Fiafaj = 8ij (4.15)
i—1 a1

i,j are less or equal to N. We can thus define C,,; = 25:1 Fia fam for i < N and m > N. We can now write
N linear independent combinations of the wave function ¢ as
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The Thouless theorem can be generalised for a more general product state of the form.

Theorem: Each even product state non-orthogonal to vacuum |0) can be uniquely expressed
in the following form

|®) = Nexp{—z 1,ala } 0) (4.20)

where ZT = —Z and N is a normalisation constant

4.2.2 Density matrix in Quantum Mechanics

In quantum mechanics, we distinguish between one-particle density matrix, 2-particles, and
so on... Formally we can define a single-particle operator in N-body Hilbert space as

pr) = Z o(r — 1) (4.21)

where 1; is the space operator of particle ¢ and r is a parameter. We can express it in second
quantisation as

p(r) = deqalaq (4.22)

dpg = <p|5 r—#)|g) = Zcb ,5) (4.23)

The expectation value of this operator on a N-body wave-function is just

N oS}
- Z Fiawa = ¢z + Z sz¢m (416)

m=N+1

The Slater determinant built out of x should be equal to |®) so

@) = |[IMlial+ > Cuial,||0) (4.17)
m=N+1

= |m5ia+ ) Cmiainai] al|0) (4.18)
m=N+1

= [Hi\f P8 o N+1(1+leam 1)] |Po) (4.19)

The sum over m can be replaced by a product because all terms in which the same creation operator occurs
more than one vanish For the same reason we can re-write it in terms of an exponentiall.
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(U|p(r)| ) = NZ/er N|U(r, 5,12, 5, ...t5,53) |2 = p(r) (4.24)

spin

this can be interpreted as the diagonal element of an operator py in coordinate space and
called density matriz.

(rs|py|r’s’) = p(rsr’s’) ZgﬁP (r.5) pgpy(r's’) (4.25)
P4

with pgp = (ﬁ/\cqcpml) being the matrix element of the density operator in arbitrary basis.

For the specific case of a Slater determinant, p is diagonal in a given single-particle basis
Py = bw
We can consider elements of a density matrix as measurable characteristics of a product state.

For example, measuring a physical quantity, which corresponds to a one-body or two-body
operator, on a product state, we respectively obtain

(B|F|®) = ZFwa =TrFp (4.26)
<(I)|F|<I> Z up'vv' Pop P’/ (4.27)
uu v

4.2.3 Deriving HF equations

511\
— =10
€j—— ER
—
S p— =1
52—.4-"—

Figure 4.3: Single particle leveles and occupation probability of the states. ep is the Fermi
energy, defined as the energy between the last occupied and first empty state.

To derive HF equation we use Thouless theorem to build a class of trial functions of a A
system We introduce the notation p = A+ 1,...M (particle) and h = 1,.., A (hole)

= exp Z ha ap)a aA\O> (4.28)
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Zph is a rectangular matrix.

We define the HF energy as

= <Z\~HJZ>
(Z]Z)
The variational principle  Er = 0 means
Z|H|6,.Z
OFEyr = M
(Z|2)

notice we have performed a orthogonal variation of |Z)

- . Z|6Z)
6.2) = 62) - 2020 2
(Z]Z)
We define
5= 075 —
Z hazph
We have
162) = Za waban|Z)
6.2) = Zazph (afan = onp) 12)
ph
We get

(Z|H|5.2)

oF = ——
HF <er>

(a ap — php) |Z)

that we have to put to zero thus
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(ZolH] (aban = porp ) 1 Z0) = 0 (4.38)

where ”0” means a product state that obeys this variational principle.

Apply Wick on the Hamiltonian

1
H=T+V =3 Tuala,+ Y Viwrajalaza, (4.39)
% pAVT

by doing that we get

(Z|H| (aLay —Pu#) 1Z) = (Z|Hl|a}av|Z) — puu(Z|H|Z) (4.40)
= (ph(1 = p))uw (4.41)

where hy,, = T, +T,,. T is the one-body matrix elements of the kinetic term and I';,, =
> e Vidwrpra. From the hermiticity of the interaction we conclude that

If=r (4.42)
At =h (4.43)

We can summarise the result by showing that the product state |Zo> obeys the variational
Hartree-Fock condition if its density matrix pg obeys

[ho, po] =0 (4.44)

The density matrix obeying the Hartree-Fock equation is called self-consistent density matrix
and the Hamiltonian induced by it - self-consistent Hamiltonian

To solve this equation we have to set up a self-consistent procedure as illustrated in Fig.4.4

We can now calculate the HF energy

FEIE — TyTp+ %TTTT’(p@p) (4.45)
= TrTp+ %Tr(pf) (4.46)
= TrTp+ %Tr(ph —pT) (4.47)
= %Ter + %Trh,o (4.48)

in canonical basis
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hle] = 5+ Vi (p)

hlollei) = €ilps)

{ei}

Figure 4.4: Self-consistent procedure used to solve HF equations. First one has to choose a
set of single-particle states that are supposed to not be too far from the solution.Then, from
them, the HF hamiltonian is computed. Bysolving HF equations, new single-particle states
are found. Then, the procedure is iterated until the convergence is achieved

A

1
BT = B > (Tin +n) (4.49)
h=1

T}y, are the diagonal matrix element of the kinetic energy operator

T I — ———
() u Pz - g e T 3
2 Fomy—— —. — B e 6 Ettlﬂ;)-::_-;:;:;-—-,t:::;-—v:::—;—--:;m ]
o)y e g @2y an
4k ' - e o £ gy SR | 2
> 6 Fapr Sn, v (a) ] s -10p™ st SR E
[} 32 )‘-.I - ——— Ihyn () F @ 132 —lggg
2 g s e 1 J-BE Sn, T (b) E
— = Foshy" % _ — 23y E
T o fEmr =" ‘ = el Tlual t2gn
ek “'r E E + e -y T T R
L e e e —— e 2y _16 B2 3
-12 e o Famy ™ ]
—lgp 4 r | SR P S, =
-14 F 3 -18 | I
Exp. T22 T42 T62 T24 T44 T64 T26 T46 Te6 Exp. T22 T42 T2 T24 Td44 Te4 T26 T46 Téh

Figure 4.5: Single particle energies in '32Sn for some given interactions (Skyrme family) for
neutron states (a) and protons (b). A thick mark indicates the Fermi level. Taken from
Ref. [10].

Single particle states are not strictly speaking observables, but they can be associated with
the necessary energies to add /remove a particle from a N-body system. In particular we make
use of the so called Koopman’s theorem

EHFIN +1] — EAF[N] = enpq (4.50)
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which states that the energy difference between to nuclei with N and N+1 particles corresponds
to the single particle energy exn11 of the last occupied state.

4.2.4 Stability matrix

We derived the Hartree-Fock equations requiring that the first variation of energy equal zero
To see if the solution corresponds to a real minimum of the total energy we have to consider
the second order variation of the energy.

Let assume that the density matrix p can be expanded around pg

p = potprt+p2+... (4.51)
£0 Z plng... (452)

by requiring that the p matrix is a projector, we have

P = M (4.53)
popr+pipo = p1 (4.54)
pop2 + p1p1 + p2po = p2 (4.55)

We define oy = 1 — pg, which is still a projector. We consider an arbitrary matrix A.

po[A, polpo = o0[A, polog = 0 (4.56)
polA, poloo = —poAoyg (4.57)
o0[A, polpo = o0Apo (4.58)

since py projects on occupied (hole) states and oy on unoccupied (particle) states, we can
separate A in blocks h=1,Ap=A+1,.... M

[A,po1:( o ‘ﬁhp) (4.59)
[[A, po. po] = ( ASh, ﬂgh” > (4.60)
(4.61)

If we now come back to Eq.4.56, we can re-write them as
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p1 = llp1;pol; po] (4.62)
[lp1, pol, p1] (4.63)

N

P2 = [[P%PO]:PO]"‘

this means that the pp and hh matrix elements of first order correction p; are equal to zero,
while the same matrix elements of ps depended on the correction p;.

Since we have py the HF density we need to discuss only second order variation Fo. We defined
the stability operator of the solution of HF equations, which acts in the set of Hermitian
matrices with vanishing p-p and h-h elements as a linear transformation is defined as

Mopr = [[ho,pl] + [F17p0}7p0] (4'64)

We see that the second order energy variation around the HF solution depends only on the
first-order variation of the density matrix.

Theorem Second-order variation of energy around the HF solution is equal to the diagonal
matrix element of the Hermitian stability operator My calculated for first-order correction to
the density

1
Br=5 (p11Mop1) (4.65)

We have used the scalar product of 2 matrices as (A|B) = TrA'B. In the canonical basis of
HF density the stability matrix reads

(Mop1)ph = (ep = en)piph + Y (Voprhi P1nvpr + Vohthgy prptie) (4.66)
p/h/

we will see that this matrix is related to RPA equations. To get a stable HF solution we need
to have such a matrix to be positive definite, this check can be done only numerically..

4.3 Infinite nuclear matter

As a first example of applications of HF to a system, we consider the infinite medium.

1 .
i(r) = —=exp™ X1, X1, (4.67)

VQ

The infinite medium is characterized by the density
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PO = Pnt + Ppt + Pnl + Ppy (4'68)

We can thus characterise the infinite medium by considering the unbalance between the dif-
ferent densities. In the following we will consider only spin-saturated system (py = p), but
it it simple to generalise. We define an asymmetry parameter

y="t"rr (4.69)
Pn + Pp

we have thus the two important cases Y = 0 Symmetric Nuclear Matter (SNM) and Y=1
Pure Neutron Matter.

A NEUTRON STAR: SURFACE and INTERIOR
. “Swiss ‘Spaghetti’
CORE: iy Ik

Homogeneous
Matter

ENVELOPE
CRUST
OUTER CORE
INNER CORE

Neutron Superfluid +
Neutron Vortex  Proton Superconductor

Figure 4.6: Schematic representation of a Neutron Star

The HF Hamiltonian is composed by a kinetic part (treated as Fermi gas) and interaction.
We consider SNM (thus p, = pp)

The expectation value of the kinetic energy is

= R (4.70)

Kinetic

Ezercise 4 Prove the previous result on kinetic energy. Assume at first no interaction and a
pure Fermi gas. Remember that ), — ﬁ fd3k‘ and k:% = %772p
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While for the the interaction V one needs to calculate explicitly

V=3 3 @lv)a - BPeP)li) (1.71)

1,j<eFr

the exchange operator P, P, P, acting on spin/isospin/position gives us the Fock term. Let’s
make explictly the calculation taking an interaction of the form

4.3.1 Example: finite range interactions

V(r)= W exp™ (n—72)°/w? (4.72)

Recalling that momentum and spin commute we can calculate the following quantities

4P, P, =1 — 0109 — T1To + 010271 T (4.73)

We have

Wyswar = 3W S GIVGI - PP Pig)

1 (1 —1o)2 /112 1
= 54x 4]§<kikj‘Wexp (ri=r2)"/u (1 - 4P$) \keik;)
g

1 1 )
= 8 Z 02 /d3r1d37‘2W exp~ (1772)°/w? [1 1 eXp_’(k"_kj)(rl_m)}
kik

iy

[From 71,79 to center of mass coordinates so we can get rid on 1 integral R, 712]

_ 8 3 ~(r1—r2)2/u L iki—k))r
= Ql;;/drlgWexp e l—zexp 3T

8( QN [ 5, 3 —(r1—r9)2/p2 L iki—k,)r
= glgs3 d°k;id’k; | drigWexp™ \1TTRH 1—Zexp i

873
(4.74)
We now define
V(0) = / Br exp(r—r2)/u (4.75)
V(k) = /d3r exp’™ exp~ (11 772)/w? (4.76)
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and we have

(V)snm (4.77)

2
W;Z7T6 { <4‘;k1}> V(0) — i /d3kid3ij(k)}

Notice that the integral over the two Fermi spheres is limited by the HF to the two Fermi
momenta kg1, kpo which are equal in this case.

(4.78)

o[ =

(V) = %pW {/ — 3/01 doa? (2 + 2° — 3m)(2kpx)}

E/A [MeV]

E=ayA—a,A*? —acZ? /AP —ay(A—22)% A+ ...

60

40
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(=
(=]

)
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2

(4.79)
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Figure 4.7: Energy per particle in SNM (panel a) and PNM (panle b) for some effective
interactions at HF level. symbols refer to ab-initio results based on BHF.

4.3.2 Example: zero range interactions

Consider an interaction of the type

1 ri +1i\”
V= to(l + xOPa)é(Ti — T‘j) + 6753(1 + l‘ng)p <12]) 5(” — ’r‘j) (480)
this is the simplest form of the Skyrme interaction.
(1+x9P,)(1 — P,P,P.) = (14+z0P,)(1— P,P;) (4.81)
= 1+x9P, — (xoP% + P,)P; (4.82)
1 1
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where P, = 1 is due to the fact that the § is a pure S-wave. We have

Evp — Z/wl wm < n 1.’B0 . %(1 + Q;L'O)P ) wl(ri)@bm(rj)dridrjdm

t 1 to, 1
S (14 g0 ptrsriotrsrd = 20 -+ awdotrs v s s

:/d?’r{t;(l-i-;xo)P() %éwoqu }

where P, reduces to a dq,4, since we assume no isospin mixing. For SNM we have (leave as
exercise)

E

A

3ty t
="2p+ Spott (4.85)

svm 8 16

From the simple HF calculation of the infinite medium we can extract extra informations on
the nuclear interaction

20E/p

P = p o [pressure] (4.86)
K = 9%1; [incompressibility] (4.87)
E/A(p,Y) = E/A(p,0)+S(p)Y?+... [symmetry energy] (4.88)
L = 3pgi [slope of symmetry energy] (4.89)

These quantities can be related to properties of finite nuclei as neutron skin-thickness (L) or
the centroid of giant monopole resonances. See Figs.4.8-4.9

4.3.3 Neutron Stars

To calculate the mass and the radius of a NS we have to solve the Tolman-Oppenheimer-
Volkoff (TOV) equations for the total pressure P and the enclosed mass m

dP(r) _Gm(r)e(r) [<1+P(7")5(’”)> <1+ M)] [1— QGm(T)]_l ,

2 2

dr r c e(r)c? re
dﬂ;ir) = dnrie(r), (4.90)

where G is the gravitational constant and e(r) is the total energy density of the system [We
need to include mass contribution!!].
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Figure 4.8: Evolution of pressure in SNM for different interaction (Gogny). The shaded area
is a constraint extracted from flow data experiment Ref. [11]. Taken from Ref. [12]

4.4 Exercise

Exercise 11

Given the simple equation of state

3t0 4 tj a+1

(4.91)
SNM 8 16

£
A

Find a set of values tg, t3 that gives you a reasonable equation of state:

~ —16MeV
P=Psat
Psat = 016fm73

|

The parameter « is usually take in the region a € [0.1 — 1]. A good EoS should not collapse
at large densities i.e.% >0 for p > 3 X psas
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Figure 4.9: Symmetry energy as a function of density for all Gogny interactions. Taken from
Ref. [12]

Exercise 12

Calculate the HF energy per particle using the following interaction in a spin and isospin
saturated system (Symmetric Nuclear Matter). No Coulomb interaction.

2
V = Y Wi+ BiPy — HiP, — MiP,P;]e” /1" 1 tPP)(1 4 (PP P, ) oo (R)4(x)

=1

Note you do not need to use explicit values for Wy, B;, ... ...
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Figure 4.10: Mass-radius relation for neutron stars obtained with 11 Gogny interaction. The
shaded region enclosed by a full line is obtained from quiescent low-mass X ray binary mass
and radius observations using atmosphere models that include both hydrogen and helium.
The upper limit on NS mass is indicated by a grey line.Taken from Ref. [12]
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Lecture 5

Spontaneous symmetry breaking
[Week 1, day 5]
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5.1 Spontaneous breaking of parity symmetry
in ammonia molecule

The Lennard-Jones potential, which describes the atom-atom interaction in a diatomic mole-

cule, has the form:
vin=<| ()" -2 (7). &

where 7, is the distance between atoms.

The binding energy of the molecule with bond lengths NH and HH ryyg and rgy respectively

is equal to:
d 12 d 6
Exu, (rNH,THH) = 3enH [<NH) ) <NH)
TNH 'NH

d 12 d 6
+3emm [(H) (), 5.9
THH THH
where dyp and dpp are the bond lengths in equilibrium.
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Figure 5.1: HH bond length (solid line, left axis) and NH bond length (dotted line, right axis)
obtained from the energy minimization (5.2) at a predetermined position of the nitrogen atom
d. Filled circles indicate the bond lengths in the actual molecule of ammonia and the empty
circles correspond to a hypothetical flat molecule.
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Figure 5.2: The binding energy of the molecule of ammonia as a function of the position of
the nitrogen atom d. Filled circles represent the energies of bonds in the actual molecule of
ammonia, and the empty circle corresponds to a hypothetical flat molecule.

Let us denote overlaps and Hamiltonian matrix elements in the two-dimensional Hilbert space
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1 = (L|L) = (R|R), (5.3a)
¢ = (LIR) = (R|L), (5.3b)
Eo = (LIH|L) = (RIA|R), (5.30)
A = (L|H|R) = (R|H|L). (5.3d)
In the non-orthogonal basis of states |L) and |R), the Hamiltonian H and overlap N matrices
read,
([ By A (1 €
ne(B2) we(10) ”
and the orthogonal eigenstates can be very easily found:
1
+) = L)+ |R)), 5.5
) = e (10 £1R) (55)
with R
P|£) = £]+), (5.6)

and correspond to eigenenergies

Ey £ A

By = (£ %) = 2=

(5.7)

We thus also see that states |L) and |R) are not eigenstates, but linear combinations thereof,
that is, wave packets:

L) = 3 (\/2+26\+>+\/2—261 ), (5.8a)
|m::%@m+%wyﬂ&_%wn. (5.8b)

It is very useful to understand states |t) as projected or symmetry-restored states. Indeed,
we can define projection operators on both parities as

I, =11+P), I =1, (5.9)

in terms of which,
|[£) = Nxll:|L) = £N=11L[R), (5.10)

where N4 are normalization constants.

As a next step, we will carry out a diagonalization of Hamiltonian (5.4) for all values of the
parameter d, assuming that

Eo(d) = ENHd(d> (511&)
e(d) = exp(—3d*(2d)?), (5.11b)
Ald) = (hg—%hga (2d)?) €(d). (5.11c)

Now, let’s consider a T-even observable D of negative spatial parity,

A A A A A A

Dt=D, TDI*=D, PDPT=-D, (5.12)
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Figure 5.3: Ammonia molecule binding energies as functions of the position of the nitrogen
atom d. The solid line represents the binding energy in states, |L) and |R), that break the
symmetry (as in Fig. 5.2), and the long-dashed and short-dashed lines correspond to the
binding energies F and E_ in the states of the restored symmetry, |+) and |—), respectively.
The inset shows the same curves around the minimum in a larger scale.

and assume that we may calculate its matrix elements for states |L) and |R), and therefore
also for |+) states. An example of such an observable could be the dipole moment of the
ammonia molecule, that is, a vector connecting the center of mass of the molecule with the
center of its charge. In this case, it only has a non-zero z component, and illustrates the
position of the nitrogen atom in relation to the Hs plane. The matrix of its matrix elements
in a non-orthogonal basis of states |L) and |R) has the form of:

D= ( 130 _%O ) , (5.13)

and in an orthogonal basis of states |£) it has the form of:

1 0 Do
r_
e (0B, -
where Dy = (L|DI|L), see problem 12.

The squared module of the matrix element (—|D|+) defines the probability of an E1 transition
between the excited negative-parity state |—) and the ground state |+), and so we know its
experimental value:

] D?
B (E1l;|—) — |4)) ~ |(—=|D| ) > = 1_7062 = (30.6) ¢® pm?. (5.15)
R 0.836 ¢)%d? (0.836¢)?
—ID|+)]2 = ( = (10.0)?¢? pm?. 1
D = e raay or e~ (1007 m (5.16)

So, had the ammonia molecule been flat (d=0), the probability of the E1 transition |—) — [+)
would have been ten times smaller than experimentally observed.
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Figure 5.4: The binding energies in the ammonia molecule in the symmetry breaking states
|L) and |R) plotted as a function of the position of the nitrogen atom d. The following curves
represent the solutions for different lengths of dxyg bonds.

5.2 Self-consistent symmetries

According to the nature of nuclear interactions, the nuclear Hamiltonian has six basic sym-
metries:

1
.
5
4o
-

60

translational symmetry,
rotational symmetry,
isospin symmetry,
particle-number symmetry,
space-parity symmetry,

time-reversal symmetry.

Discrete symmetries, Signature:

By:=e e R2 = (—1)4, (5.17)

where I}, is the operator of the projection of the total angular momentum on the kth axis.

Simplex:

Sy = PRy, 5% = (-1 (5.18)
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The simplexes are nothing but mirror reflections with respect to planes y-z, z-z, and z-y, for
k = z,y, z, respectively.

Continuous symmetries:

U = exp (iaé’) or U =exp (z’a : S’) : (5.19)

Hermitian operators S (or S’) are called generators of symmetry operators U , and, for the
above mentioned symmetries, they are:

1° total momentum operator: P:Z;A:l D; ;s

2° total angular-momentum operator: I :Zle Ji s
3° total isospin operator: T:Zfﬂ t;,

4° particle number operator N ,

8° total position operator: R:Zle i,

where p;, 7;, t; and r; are, respectively, operators of momentum, angular momentum, isospin
and coordinates of the i-th particle.

The parameters of the above continuous symmetries are, respectively,

1° a,=—rg/h, where r( is the vector of translation,

2° a,=—mnyg/h, where |ng| is the angle of rotation around axis ng/|ng|,

3° ay,=—myg/h, where |my| is the angle of rotation in isospace around axis mg/|my,
4° ay = —¢o/h, where ¢ is the so-called gauge angle,

8° ay,=—mwy/h, where vg is the change of the system velocity.

All continuous symmetries discussed here are one-body symmetries, that is, their generators
are one-body operators,

S=> Suatay. (5.20)
nv
Ua, Ut => Utay, (5.21)

where matrix U is directly connected with matrix S:

U = exp (iaS) . (5.22)

5-1: Theorem about self-consistent symmetries
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If operator U is a one-body symmetry of Hamiltonian H, that is,
UHUT =H, (5.23)

then one-body Hamiltonian h[p], induced by density matrix p, has the

property:
UhlplUT = h[UpU™]. (5.24)

If the density matrix is invariant with respect to the given symmetry, thus UpU T=p, theorem
(5.24) says that also the induced Hamiltonian is invariant with respect to this symmetry,

UpUt=p = URU" =h. (5.25)

This implication, written for the symmetry generator and self-consistent density matrix, has

the form:
[S, po] =0 = [S, ho} =0. (5.26)

The theorem about self-consistent symmetries 5-1 does not say if the self-consistent solution
is, or is not invariant with respect to the given symmetry. In general, depending on the
interaction, we may obtain solutions that do, or do not have symmetries of the many-body
Hamiltonian:

5-2: Broken symmetries

Solutions of the Hartree-Fock equations do not have to have all symmetries
of the Hamiltonian of the system. We will call a self-consistent solution
that is not invariant with respect to the given symmetry, broken-symmetry
solution or symmetry-breaking solution.

5-3: Interpretation of broken symmetries

Symmetry-breaking solutions of the Hartree-Fock equations should be in-
terpreted as approximations of wave packets, and not as approximations of
exact eigenstates of the Hamiltonian.

5.3 Spontaneous breaking of other symmetries

In the case of rotational symmetry the order operator is the quadrupole-moment tensor,

ZT Y2u Za¢z (5'27)
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where 1, 0;, ¢; are the coordinates of the ith nucleon in a spherical coordinate system and
Y5, are standard spherical harmonics (spherical functions) [13, 14]. This operator defines the
probabilities of electromagnetic quadrupole transitions E2 and is the order operator for the
rotational-symmetry breaking.

Particle-number-symmetry breaking aims at describing the deviations of the exact density
matrix from a projective density matrix without going outside the class of product states.
For this symmetry breaking, the order operator could be the operator of the collective-pair
transfer.

pP= Z sl,u,,v,,c’z;rdj, (5.28)

but an equally good one could be the operator of the dispersion of the particle number squared,

6% = N? — (| N|®)? (5.29)

In nuclei having a particular shell structure [15], with large orbitals of opposite parity on two
sides of the Fermi energy, the symmetry of spatial parity will be spontaneously broken. For
such a symmetry breaking, a proper order operator is the isovector-dipole-moment operator,

A
Qb = #7riYi,(0:, 1), (5.30)
=1

cf. Eq. (5.27), where 7% is a doubled third component of the isospin (equals +1 for neutrons
and —1 for protons). An equally good order operator is also the isoscalar octupole moment
operator

A
Q5 = er’}%u(%@)a (5.31)
i=1

which measures the “pear-shape” of the nucleus.

5.4 The Goldstone theorem

Each self-consistent solution that breaks a given symmetry allows us to give a whole class of
self-consistent solutions. For if

po # po = UpoUT, (5.32)

then for hy=h[p(], from the theorem about self-consistent symmetries, we have

[ po] = [UhoU ™, UpoU™] = Ulhg, po]U™ = 0. (5.33)

5-4: The Goldstone Theorem
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If the self-consistent solution py breaks a continuous one-body symmetry
with the generator given by matrix S, formula (5.20), then matrix

pr =[S, pol (5.34)

is the eigenvector of stability operator My of this self-consistent solution
with an eigenvalue of zero, thus

Mop? = 0. (5.35)

5.5 Take-away messages

Don’t let yourself confuse by
the confusing traditional terminology

When you hear about: Think about:

‘ State in the intrinsic » ‘ State before the
reference frame symmetry restoration

State in the laboratory » ‘ State after the
reference frame symmetry restoration

5.6 Exercises

Exercise 12.

Prove that the matrix elements D of the order operator D (5.12) in the symmetry-breaking
states |L) and |R) have the form (5.13), and those D’ in the symmetry-restored states |+) have
the form (5.14).

Exercise 13.

62



Consider two exact eigenstates of the Hamiltonian, |+)exact and |—)exact, which have opposite
parities, small excitation energy, AE®®t = Eexact — pexact “and Jarge E1 transition matrix

element, DXt = exact<—|ﬁ|+>exact. Use them to construct two exact wave packets,

|L)exact = cos(a)|+)exact
+  sin(a)[—=)exacts

(5.36a)
|R)exact = cos(a)|+)exact
—  sin(@)|—)exact-

(5.36b)

In function of the mixing angle « determine the exact matrix elements defined in Egs. (5.3)
and show for which mixing angles: 1° average energies of these two wave packets are equal. 2°
average dipole moments of these two wave packets have opposite signs. 3° overlaps between
these two wave packets are small. 4° Hamiltonian matrix elements between these two wave
packets are small. Also determine the Hamiltonian kernel, A(«)/e(a), and discuss the question
of how one can reconcile this result with the Gaussian overlap approximation (5.11c).

Exercise 14.

Prove that average energies of all symmetry-breaking Hartree-Fock states that are transformed
by the symmetry operator are all equal.

Exercise 15.

Prove the Goldstone theorem 5-4, see Ref. [16].
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Spontaneous Symmetry Breaking
II: Pairing Correlations

[Week 2 day 1]
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6.1 Wick theorem for General Product States
Assume generic fermionic operators {3, 8}. Usual anticommutation relations are
{637/81t} = 07 {ﬁ;mﬁl/} = 07 {5;17BZ} = 6MV (61)
Define product state from said operators as
(6.2)

) =[] Bul0)
o
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where |0) is the particle vacuum (here we do not have 3,[0) = 0)

To use Wick theorem for (®|AB|®)/(®|®) with A, B expressed in terms of the fermionic
operator ag, we need
ap = apo + a4+ + ap— (6.3)

How can we express operators ayg, ag+ and ag_ in terms of the {a, aT}?

Generic form for the annihilation operator
ar— =Y _T(m,n) (6.4)
mn

where

T(m,n) = Z C’aai ceal ay-an (6.5)

6-1: Wick Theorem for Product States

. M I E3] E3 .
The contractions aka}t and axa; (and aLa;r and azal) are numbers if and

only if ax— and ag4 (and a,t_ and aL +) are linear combinations of creation

and annihilation operators. For aj_,

ap— = Z Xra; + Z Yklazr
! 1

aL = Z Xja1 + Z Y,;lazr
1 1

(6.6)

By convention (and to anticipate future results), choose the following notations
X =(1- Y =—
ko= (1= Pk, ki = —FKkl (6.7)

! Ik ! T
Xy = K Yi = Pi

Use ap, = axo + ai+ + ai— and the new notations to obtain

ak- =Y (1= plmax — Y_ kra)
z z

al_ =" pial +> Kha
z .

(6.8)

and '
At = Z Pkl + KkiQ) — Tk
]

GZJF = Z(l — o af — Z Kmar — Yi
l l
where z;, = ('l_llC and y; = (ll—i
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Figure 6.1: Left: Gian Carlo Wick (1909-1992). Right: Wick and Fermi brainstorming on Ostia
beach

Wick contractions are then defined as

azll = {alt_7 al} = p;crlljv

aga; = {ap—, a1} = —kKp,

g ! (6.10)
Wty = {ag—,a;} = (1= pu,

aLazr = {aL_, azr} = Ky

Anticommutation rules for operators 3 and BT lead to the relations z = y = 0 and

I: T: 2— * =
p P o +p  pT— KK 0

Kt = —k k' = —k pk—kp = 0 (6.11)

andx=y=0

6.2 The HFB Theory

6.2.1 The Bogoliubov transformation

Bogoliubov transformation

B urovi a U v
( g )=\vr vr J\at ) W=y o (6.12)
Unitarity of the Bogoliubov transformation

WWH=Wiw = 1. (6.13)
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Figure 6.2: Left: Nikolay Bogolyubov (1909-1992). Right: Pierre-Gilles de Gennes (1932-2007)

From particles to quasiparticles (and back)

W {8,681} = {a,d} = (a]B),

WH o a0} = (8,61} = (Bla). (014
Quasiparticle (Bogoliubov, HFB) vacuum
NP
) = [ 8ul0). ¥, Bul®) =0 (6.15)
pn=1

with N, < M

Quasiparticles represent excitations of the system: the vacuum is the state with no excitation
(ground-state). Contrary to HF, HFB gives a recipe for both the g.s. and the excited states.

Quasiparticle operators {3, 81} are fermionic operators and the HFB vacuum is a product
state: general conditions for the Wick theorem apply.

6.2.2 Densities

Given an arbitrary reference state |®), the one-body density matrix is given by

_ (@lajar]®) _
Pkl = @T = a; G- (616)

The last equality is only true if |®) is a product state

Similarly, the pairing tensor (abnormal density) is defined as

(@lajag|®) ™

Rl = <Q)|(I)> = aag (617)
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6-2: Densities associated with the HFB vacuum

operators), then
p=VV"

If the reference state |®) is a HFB vacuum (product state of quasiparticle

k=V*UT.

Therefore, there is a one-to-one mapping between the set of densities, the
reference state and the matrices of the Bogoliubov transformation

@) = (U, V) & (p, %)

6-3: Degrees of freedom in the HFB theory

Ky for k> 1.

In the HFB theory, the one-body density matrix p and the pairing tensor k
encapsulate all the physics degrees of freedom. Since p and k have specific
symmetry properties, the actual degrees of freedom are py;, pi;, Kii, and

Densities in terms of Wick contractions

P ala
Kl = k>
° (6.20)
(I=py = alaL,
Generalized density
R:( /0* /43*)’ 7?12:7%7 RT:R (621)
—-k" 1—0p
Alternative forms .
a;a
R = (D ( alTa’; (6.22)
17k
and
B
R=(@it-w ()@l sowiie) =ween - () @ sommt. o)
L
6.2.3 Energies and fields
Hamiltonian version - Traditional mean-field approach based on choosing a (possibly

effective) Hamiltonian H , an ansatz for the reference state |¢) and computing the energy as
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(®|H|®)/(®|®). For the HFB ansatz and a two-body Hamiltonian,

1 _ 1 _ N
E=> tipji+ 5 > Vijripiipri + 1 > Vijrikn- (6.24)
iJ ijkl ijkl

Energy density functional version - Simply assume that the energy is now some func-
tional E[p, p*, k, k*] = E[R] with no necessary connection to a Hamiltonian.

Variational principle for E as a functional of R (or equivalently of p, p*, k, k*) is expressed
as

SE=0= zkl: a‘szl(mkl =0 (6.25)
Notations
;}Ekl = %hlk, and ;}EZ; = %hfk (6.26)
and
({iEkl = %Azl, and aiEzl = %Akl- (6.27)
HFB matrix
H = ( N ) (6.28)

where the HFB matrix

o is defined by 3Hy = OE/ORy
e obeys the HFB equation [H,R] =0
e is such that 0E = JTr(H6R)

Energy as a functional of R

o %tr (H+T)S], (6.29)

(38) s 5)m(3h) e

Generalized eigenvalue problem (non-linear): build the generalized density from the eigenvec-
tors of H ensures that the commutator equals 0.

with

Solving the HFB equations determine the generalized density R, hence p and x and any
observable by virtue of the Wick theorem.

6-4: Quasiparticle basis
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The basis that diagonalizes R (hence ) determines the Bogoliubov trans-
formation matrix W. Alternatively, the vectors

(9) wa (%), -

are the eigenvectors of both R and H.

In the case of some two-body potential, the mean field (or Hartree-Fock field) reads
hi; =t + T, (6.32)

with the Hartree-Fock potential (role of a one-body potential)

Tht = > Vkminfom = Y _ VmkniPrim- (6.33)
mn mn
and the pairing field
1 _
Ar =5 > Bktmntimn, (6.34)
mn

6-5: Thouless Theorem Revisited

For a quasiparticle vacuum |®g) associated with quasiparticles S, g, any
other product wave function |®1) not orthogonal to |®y) can be written

1. |®1) = T|®p),
2. T = Z ZLV/BL/Bl + Z TJV/BM/BV'

pu<v u<v

(6.35)

In other words, the matrix of the transformation T in the q.p. basis asso-
ciated with the state |®g) takes the generic form

T = < :(; 7; > (6.36)

Application: Collective momentum. Suppose |®g) = [®(a)) and [®1) = |®(a + da)). Since we
must have limga o |P1) = |Pp), choose the transformation 7" in the form 7' = da - P,/h. We

have
i, (122 2RO - Paga) = Lpajo). (6.37)

and therefore 15a = —ih%
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Application: Multi-reference EDF and symmetry restoration.

01 _ (@1|C}Ci|q)0>

P @ [@o) (639

where |®g) correspond to a HFB vacuum for some collective variable q or gauge angle o and
|®1) correspond to a different HFB vacuum with ¢’ or o’

6.3 The BCS Approximation

Figure 6.3: Left to right: John Bardeen (1908-1991), Leon Cooper (1930-), Robert Schrieffer
(1931-).

6.3.1 General Case

6-6: Bloch-Messiah Theorem
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A unitary matrix W of the form (6.12) can always be decomposed as follows

(2 8)ED)(E L) o

where U and V are in the canonical form

0 0 1 0

Uk,

i
Il
e
e
<
Il
(e}

Interpretation of the Bloch-Messiah theorem

W {8} = {a} = 18} S {a} D {c} B {a).

e Transforms quasi-particle operators into themselves: transformation C;
e Goes from the quasi-particle basis to a particle-basis: transformation (U, V);

e Transforms the particle operators into themselves: transformation D.

6-7: Canonical Basis

The transformation D diagonalizes the density matrix p and puts the pair-

ing tensor  into the canonical form analogous of V. This transformation
defines the canonical basis.

In the canonical basis, the HFB vacuum reads

@) =[] ewl0) = [T ewezlo)
k

k>0

Special Bogoliubov transformation (U, V)

Additionally:

_ T
ozL = ukcL + vger, Q= upcE + v};cl—f,
ol = uzcl + vie , ap = utep + vieh

k kS, T VkChs k= UpCp T UkCy-
2
(ug,vp) € RY, up =ug, v =—ug

6-8: BCS wave function
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Given an arbitrary single-particle basis characterized by operators cg, the
ansatz for the many-body wave function for an even-even system is

0 =] <uk + vkcgc@ 10) (6.44)
k>0
with
e |0) is the particle-vacuum, ¢x|0) = 0, Vk

e |k) = T|k) time-reversed partner of state |k) and the product runs
only over states k

o Jupl? + |vel* =1

Energy (with constraint on particle number) assuming ansatz (6.44),
L1 1
Elp,k, k"] = 5 zk:v,%(hkk + b — A) + 5 kz>o AR Uk (6.45)

Variational principle implemented using derivatives with respect to u; and vg keeping in mind
that uz + v,% =1, hence duy/dvi, = —vi/uy yields

1 *
Q(hkk + tpr — )\)ukvk + 5 [Akl_c + AkE

—0—42827Eu v +42827Eu U | (uf —v2) =0 (6.46)
Ok mem et Okmm KT mem ATk Tk '

* _
mma’%kk

Special case: pairing force such that

O’E
4———— =07 - 6.47
aﬁ;%maﬁkl_c Vkkmm ( )
yields the gap equation
A = Ummtimm = — g (k> 0) (6.48)

m>0

6.3.2 Seniority pairing: constant pairing strength
Assume a pairing force characterized by
1 . .
VaBys = _ZGéaB‘Sﬁ sign(a)sign(7y) (6.49)

Pairing gap is constant and reads

A = —sign()dwd,  A=G> k=G> wu, (6.50)

n>0 ©w>0
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Gap equation

Z N (6.51)
,u>0 \/ B +
Pairing energy
A? 4
Bpair = = +G )_v, (6.52)
n>0
Quasiparticle energy
Er = (ek - /\)2 + A2 (653)
Occupations
1 er — A 1 e — A
2 _ 1 %k : 2_— (1 2k 6.54

6.3.3 0Odd Nuclei

Suppose one state k is not paired with k. If v = 1, then uy; = 0, but also v = 0 and ug = 1.
Then araf = clgck = apaz)|0) =0

HFB theory as presented above always produces fully paired vacua, which involve only super-
position of eigenstates of N with even particle number

®) =) can|2N) (6.55)
N
Modification: describe odd nucleus as a 1 qp excitation of an even-even (fully-paired) system
|®)odd = Bl 1®)eve- (6.56)
Odd-nucleus HFB vacuum

D)odd = HBMO% {8} ={B1 =81, Bug = By --- Bar = Bar}, (6.57)
o

In practice, at each iteration of the HFB equation, substitute

Uio — V2, Vi,

ipio”
Vino = Upyy Vi (6.58)
6.4 Projection on Good Particle Number
6.4.1 U(1) Symmetry Breaking
Back to Slater determinant |®), by definition
N|®) = N|®) = ') = eV |d) = ¢V |P) (6.59)
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and all densities py o (®’|a’a|®’) are identical, hence all energies E[ps] are degenerate.

Transformation )
Uy - |D) = |9) = e N | D) (6.60)

is an example of a U(1) symmetry group.

HFB (and BCS) states are not invariant under transformation Uy: symmetry is broken

e There is an order parameter g that characterizes the degree to which symmetry is broken
(g9 = 0 for symmetry-conserved states)

e The order parameter is a complex number of the form g = |g|e’®, with |g| measures the
“deformation” and o the “orientation”.

For particle number symmetry, |g| could be anything related to, e.g., k, A, (AN?); ¢ as in
(6.59) is a good choice for the phase « as it is the angle that defines a particle-number rotation
in Fock space.

6.4.2 Symmetry Restoration

Particle number projection operator

. 1 [ P
PN = — dpe’® N =N, (6.61)
27T 0
Projected density
®|cle; PN|® 1 2m d cTc~ei¢(N_N) (0] 1 2m
o = Blae PR L[ ) (2lac 2 L o y(@)oi(e) (6.62)

(®|PN|1®) 27 Jg (@[eie(V-N)|p) 27 Jo

with |®) a symmetry-breaking state (Bogoliubov vacuum)

Two alternatives here
e Express the energy functionals E[p", x"], calculate the corresponding HFB matrix by

taking partial (functional) derivatives with respect to p?¥ and x: Variation After Pro-
jection (VAP)

e Solve HFB equations as usual and at convergence, calculate E[p", k"V]: Projection After

Variation (PAV)

Key is the possibility to compute transition densities p(¢), etc. from only the knowledge of
the Bogoliubov transformation. Define the matrices

N =UtU - V1Y,
N2 = Uty —viu*, (6.63)
N2 =yTy —yTv.
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and, for a given gauge angle ¢,

U(p) = cos ¢I + isin p N,

V(¢) = +isin N2 (6.64)
Then the transition densities are
p(¢) = +etOVHU(9)] VT,
RO(@) = +etRV[UT ()] U7, (6.65)
W g) = —e U U (@) VT

Bottom line: the total energy E|p, k] can be expressed as a functional of the transition densities
alone, which can be expressed functions of the U and the V matrices.

Caveats

e PAV: if pairing has disappeared during HFB iterations, PAV won’t change a thing
e VAP: very costly to implemented

e PAV/VAP: not viable if EDF not strictly derived from the expectation value of a density-
independent pseudopotential on the HFB vacuum.

6.5 Exercise

Exercise 16.

Starting from a two-body Hamiltonian, calculate the energy on the Bogoliubov vacuum as a
functional of p, k and k*.

Exercise 17.

Derive the HFB equation by applying the variational principle: the energy should be a minimum
with respect to variations of the generalized density, under the condition that said generalized
density is a projector.

Exercise 18.

Using the canonical basis, show that a fully paired vacuum always correspond to a superposition
of eigenstates of N with even number of particles, and that the prescription (6.56) gives a
superposition of odd-particle eigenstates.

Exercise 19.
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Show that the BCS ansatz for the wavefunction derives from the form of the HFB vacuum and
the Bloch-Messiah theorem

Exercise 20.

Prove that the BCS wave function is not an eigenstate of the particle number operator
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7.1 Nuclear vibrations
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Figure 7.1: today’s lecture
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Exploring nuclear excitations.

e 1947 Baldwin-Klaiber observe a giant dipole resonance (GDR) in photo-nuclear reactions
e 1972 giant quadrupole resonance

e 1977 giant dipole resonance

*
600 v+ A0 ® Au" ® "Au+n

500

Cross-section /mb

oLt

I 1 L

| — | A A 1 O [ L
7 8 910 112134151617 1819202 22234

—L el

Photon energy/ MeV

Figure 7.2: Giant resonance of photo disintegration in *”Au. The yield of neutrons is shown
as a function of the energy of the monochromatic photons used to produce the reaction.

Let’s consider an electromagnetic process. The electric multipole moment associated with an
electromagnetic transition F) can be expressed as [9]

@x+ 1! 3 d . q. :
M(EX u) = m d>r pY)\HamA(qr) + ZEJ -rY)\,.jx(qr) (7.1)

where ¢ is the momentum transfer, jy(gr) is the spherical Bessel function, p is the charge
density and j is the current density.

For a photon of 10 MeV the exchange momentum is ¢ — 0.25 fm ~! thus ¢r << 1. We can
make an expansion of the Bessel function as

. (gr)* 1 (qr)”
N ———1— = .. 7.2
)~ i P aags T (7.2)

we replace in previous equation and we stop at first order. We get
2x+ 1! / 3 d (qr)?

M(E\; = ——— [d Yi,— | —V—— 7.3
(BX:p) A0+ ) T Mar @+ o (7.3)
= /pr’\Y,\ud‘?r (7.4)
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Figure 7.3: Giant resonance dipole resonance with mono energetic photons in Sn isotopes
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Figure 7.4: Schematic representation of collective natural parity modes.

by assuming that the charge density is written as
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it Xrin Yriei Yriom
ISGMR IVGMR ISSMR IVSMR
L=1 Z’I“iYnllTl' ZT‘iYT}LO'i Z"“iynllo'ﬂ'i
IVGDR ISSDR IVSDR
>,

ISGDR

L=2 ZT?Y% ZT‘?Y,%TZ' ZT?Y%O’Z‘ ZT?Y;%UZ'TZ'
ISGQR  IVGQR ISSQR IVSQR
L=3 | > rdY2 Y Y2 Y.riY2e, S riYiom
ISGOR IVGOR ISSOR IVSOR

Table 7.1: Summary of probes used to excited collective states

)= e (5 - ta) ot =m0 (75)

k

where we neglect relativistic effects and assuming point like particles. We can substitute and
we get

MEN) = Fe (g ta) i) (7.

k
the first term does not depend on isospin and thus it probes isoscalar modes, the second
probes isovector modes. In this expansion a word of caution for monopole modes. In this

case A = 0 our approximation does not work and so we have to go up to a second order in the
expansion so

1 1
M(Ey) = ZT‘Z’F% - iethkr,% (7.7)
k k

In Tab.7.1 we summarise the possible probes used to excited various collective states. We
distinguish between isospin flip or not (AT = 0, 1) and non spin-flip or spin-flip (AS =0, 1).

Since most of the time the residual interaction is diagonal in isospin, we can separate out the
calculation for charge exchange process and charge conserving ones.

7.1.1 Linear response theory
We assume that an external time dependent field perturbs our HF ground state.

81



F(t) = Fe ™! 4 Fieiwt (7.8)

we assume that F' is one body operator F(t) = ", fklazal. the field is weak so that we can
assume only small variations around the ground state.

The density matrix is now time-dependent and reads

p(t)ij = (®(t)|a]ar|®(t)) (7.9)

We assume that at any time p(t) corresponds to a Slater determinant p? = p/ So the density
obeys the equation of motion

% = fg] + 7(0), (7.10)

this is the Time Dependent Hartree Fock (TDHF) equation obtained by time derivative of
the density matrix.

Working in the small amplitude limit we can expand the density around the g.s. value p(© as
pt) = pO +dp(t) (7.11)
= O 4 it g D gt (7.12)

We work for convenience in the HF basis of the ground state density p(®). In this case the
density is diagonal and we have 1 and 0 occupation number.

% [hlp] + (2) (7.13)
= [Blp© + 3p(0)] + £(2), 0 + bp(1)] (7.14)
= [T+ S0+ 01,6 + 6ot (7.15)

we expand up to linear order. We observe that in HF basis

0 _ o) | 0 particle
hgzz = h[po]ul/ = 5uu<€u (717)
p*=p— p"p+pp” = dp (7.18)

We observe that the only non vanishing matrix elements of p! are the ph hp excitations. We
get

oh

= [ho,dp] + £, PV] + [5105/)%(0)} (7.19)

dp

ih
M
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5pmi +
p=p(®)

oh
5pim

im

oh oh
%&0 B Z <5pmz

o 5,01m> (7.20)
pP=p

in this equation all particle-particle and hole-hole matrix elements vanish and we have as
possible excitations only particle-hole or hole-particle.

Microscopic picture:

HF ground state 1p-1h excitations

Figure 7.5: Schematic representation of excited states in nuclei.

These equations can be expressed in a more elegant matrix form

{<§* i)—m(é —01>}<Z§;;>=<§f;> (7.21)

we have defined

Ohmi
Amin' = m — &i 6z 5mn o 7.22
j (e €i)0ij Dpns ( )
Ol
Boini = 7.23
J 8pjn ( )

This is called linear response since there is a linear relation between p' and the external field

I
Remember that

= _ Ohpg _ 9*E|p]
Upsqr = Dprs = apqpaprs (7.24)
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Figure 7.6: Giant monopole excitation in 2°*Pb.

The RPA approximation is the small amplitude limit of the TDHEF.

Within the RPA approximation one can calculate the excited states as

QT = Z mi ma”l ZYTZ’LGZ

We have to impose orthogonalisation relations

W) = 8,0 = (RPA|[Q,, Q) ]|RPA) ~

51/1/’ = Z (X;/r:;XV

me
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This operator creates the excited states so that Q,|RPA) =0

(HF|[Q,, Q! |HF)

- Yv)

(7.25)

(7.26)

(7.27)

|HF) we use the quasi-boson approximation the X,Y are intrpeted as the
probability of finding the state al,a;|0) and ajam\0> in the exctied state |v).



A possible extension of RPA is second-RPA; e can consider not only 1p-1h excitations but
also 2p-2h

QL = D Xjhalan —Yiala (7.28)
ph
+ Z Xll;hplh/a;;aha;r;’ah' - val;lp’h/al];apa;rl/ap/ (729)
p<p’;h<h’

6 T T T T | 1
< 5 T=0 (@) 1
S r —--- RPA 1
b 5 — SRPA ]
N B -
gl B
=3 i
Q2 ]
M 1 =]
0 i ; - _.‘”'\_ I 5 -

0 40 50
3 | T | T | T I T T i 7
<2 25F 1= ,‘1' (b) ]
’-E 2 | :: N
Ncu B | \ |
‘:: 15 __ ]] \ __
S 1 T 5 a
A 0.5 ; _
0 i I = hid .f"’\\.:
0 10 20 30 40 50

Energy (MeV)

FIG. 3. (Color online) RPA [dashed (black) lines] and SRPA [full
(red) lines] for the isoscalar (upper panel) and isovector (lower panel)
monopole strength distributions.

Figure 7.7: (ct. Gamabcurta et al. PRC81 (2010)

7.2 Sum rules

The sum rule is an important property of the calculation since it can be related to important
properties of the response function.

The sum rule of an operator F' = qua;r,aq is defined as

S =S (B, — Eo)*|(v] F|0) (7.30)

v
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The |v) represents the complete set of the eigenstates of the exact hamiltonian H with energies
E,. The most important sum rule is the S; also called Energy Weighted Sum Rule (EWSR).
In this case one can show that

S1= ) (B, — Eo)|(v|F|0)’ (731)
v
To prove this we consider an operator C' = [H, '] which is hermitian

We now calculate

(OI[F,CJI0) = (0|FC0) — (0]CF|0) (7.32)
= > (0IF[w) (v|C|0) — (0[Cv) (V] F|0) (7.33)

v

= Y O|F){v|FI0)(E, — Eo) — (Eo — E,)(0|F|v)(v|F|0)  (7.34)

v

= 23 (B, - Eo){v|F|0)’ (7.35)

In the RPA case the ground state |0) is approximated by the |HF') ground state. We assume
that our excitation operator gives

(0|F)0) =0 (7.36)

We consider a simple Hamiltonian H = T'+V and an operator of the form F' = Zf‘: 1 eriLYL M (£2)

We get for isoscalar probes (A >2)

_» M@mﬂ

1S
A)=— .
S17(N) 2m  4rA (7.37)
For isovector probes we define
Z N
eN I e’ I
Frum = A ZT Yinm — IZT Yo (7.38)
=1 =1
this effective charge factor comes to correct the center of mass correction.
2 AA+1)2 (N2Z NZ?
v _ 222 222
SIY(N) = =S o P+ P, (7.39)
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Notice that for J=0 and J=1 there are some differences in the operators. See references.

Very often the properties of the nucleus relevant to experiment can be related to weighted
integrals of the strength function

Iy = / f(E)S(E)dE (7.40)

the expression of f is supposed to be know. This function depends on the physical properties
and not on the nuclear structure properties. We assume it continuos, but it could not be the
case. We can expand the weighted function

f(B) =3 A B)(E - B)F (7.41)
k
Iy = f(B)ymo+ f'(E)my— Emo) + ... (7.42)
1=k . .
= Zk'fk(E)Z< ) >(—)’mk_ZE’ (7.43)
ko i=0

knowing all positive moment we get complete information on the strength function!!

7.2.1 Practical example: separable interaction

We take a simple separable 2-body interaction that we can write as

N
V=-x> QHQy) (7.44)
]

so that the matrix elements can be written as' and we take only ph excitations (Tam Dancoff
approximations)

(V)mgin = —x(m| Qi) {n|Q|7) (7.45)

So replacing in the TD equation (we stay in 1 D system for simplicity)

(emi — B)Yimi = XQmi Z Yo (7.46)
nj

1o exchange!
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We define N = xQn; Z;kw Y,,; and we replace in Eq.7.46. We get

Yoi = ——— A4
p— (7.47)
N = XQmiY Yu (7.48)
nj
Qi
n] mt
or more simplify
1 Q2
— = —m 7.50
X nZ] Emi — E ( )

this can be solved graphically. In Fig.7.8 we show a schematic representation of a possible
solution for Eq..7.50.

From this figure we observe that according to the sign of x ,i.e. the residual interaction we
have a low-lying state or not.

See for example the position of lowest 27 in nuclei!! Also for small residual interactions we
obtain a collective excitations which is obtained by superpositions of other ph states.

|Qnj|? . 1
g End w0 : :
E i : 1
] 1 : ->0
i i d X
// E /i /
Eai/[ €bi/ gci hw
: : : 1
: : — <0
; : X

Figure 7.8: Graphical solution of Eq.7.50.

7.2.2 QRPA

The derivation follows exactly the same steps, but instead of p we use the R = ( —iz - _ﬁp* >

in this case the operator that creates the excitation is
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K<K'

The equations look formally the same, the novelty is that now we have both ph excitations
and pp and hh.

Let’s write down the QRPA equation (just to give you a flavour!) in canonical basis

Arr' . Brkor Xk, Xk,
> ( | | ) = B GEE (7.52)
L

* *
L<L' _BKK’,LL’ _AKK’,LL’ YKK’

You can find explict expressions of the A, B matrix in Ref [9], the residual interaction now is

82E[p, k, k*]
VP oy = —— 7.53
KERLE = Sprrrcdprir (7-33)

82Elp, k, k*]
V27— U | 7.54
K'KL'L 5”;(/K5’{L/L ( )

If your functional contains mixed terms as xp then you need to take into account mixed
derivatives!

valh §%Elp, K, K*|

3plhx*
K'KL'L — = VL%K’K (7.55)

KK KOPLL

7.2.3 Spurious states

We assume that the hamiltonian H is invariant under a continuos symmetry operation gen-
erated by a one-body operator P i.e. translation, particle number, angular momentum... We
assume that the HF(B) solution violates such a symmetry

~

[po, P} # 0 (7.56)

since pg is diagonal in HF basis, this means that the non-zero matrix elements of P are the
ph. Since the exact hamiltonian commutes with P

[H,P] =0 (7.57)

the P is an exact solution of the RPA equation. This means

2The basis in which the density p is diagonal!

89



( éﬁ f* ) ( _];* ) _0 (7.58)

where P is the vector P,,; in particle-hole space
P =3 (sza a; + P*.a] am) IRPA) (7.59)
mi

If the calculations are performed exactly, the spurious solution separates out and it is or-
thonormal to the other phonons.

7.3 Exercise: matrix element in spherical symmetry

7.3.1 Couplings [, s and jj

When coupling two wave functions we can use two schemes: jj or LS. This means® In jj
scheme we couple spin x and angular momentum Yj,,,

172l l2 T M) = Z OJJl%lmmz Z Z Cljfni?vlmlcljjm? 1m2Yllmz (DxXm1 (1) Y52 (2)Xmz2 (2)

mima2 miml mZm?2
(7.60)
here C'jsms;, ) jom, 18 the Clebsh-Gordan. If you prefer working in 3] notation?
, _ii—jetmsi [ J1 0 J2 3
C]3m3j1m1j2m2( JITIRTIS g ( my My —ms > (7.61)

in the LS coupling we make

7.3.2 Particle-particle and particle-hole matrix element

It is important to separate out the couplings involving particle-particle and particle-hole ma-
trix elements in jj-coupling.

e ;{ab~1|V]c~1d); particle-hole

o ;(ad|V|cb) particle-particle

3We neglect radial part since it not essential for the discussion

4Remember j = /25 + 1
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To go from one to the other we use the so-called Pandya transformation.

sab=HV]e™ld),

S I ladVibe)y Y- D7 (st
Jl

MM all m

ja jb J ja jc J jd jb J jc
mg, mp —M mg —me. —M' —mg my M’ Me

5,2 Ja b J
= J p(aclV0bd) o § =7 7
> eV T )

X

we use the shorthand notation j = \/2j + 1. This is know as Pandya transformation and
allow us to go from one coupling scheme to the other in a simple way.

Calculate the matrix element of A§(r—r’) on a spherical nucleus characterized by the w.f. ¢p;.
For simplicity we consider only 1 species, so that we can neglect isospin quantum number.
The wave function of the single particle state reads

unl'(r) im
Ontgm(1, Q) = =522y O 4 Vi (DX, (7.63)
mpms
calculate
slac Vb ld), = (7.64)
slacVipd); = (7.65)

for simplicity you can consider only J = 0, optionally you can consider the general case

(J #0)

you have to consider just the direct term (no exchange: if we suppose the residual interaction
comes from functional derivative, this is already taken into account at functional level) Use
the formula

ey —12) = S (M Ty s (7.66)
Ap
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Lecture 8

Nuclear collective motion:
Configuration mixing

[Week 2, day 3]
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8.1 Configuration mixing

8-1: Correlations

Fermion states that are not equal to product states are called correlated
states.

Remember that product states form a basis of the many-fermion Hilbert space, so an arbitrary
many-fermion wave function W(x1,...,z4) can always be represented as a linear combination
of product states:

\I’(mh e ,xA) = Z Ava”vﬂA@p‘lv'"v“A (Ilv s ’xA) (8'1)
M1 A

or as a multi-dimensional integral over the product states:
w) = [ 4z 1(2)/0(2) (2)
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were |®(Z)) are the Thouless product states [generalized coherent states| paramatrized by
complex Thouless matrices Z:

®(2Z)) = |Z) = exp (Z Z;;ha;ah> al ...a}|0), (8.3)
ph
for which the unity resolution holds:
I= /w(Z)dZ|Z><Z, (8.4)
w(Z) = WI(Z|Z)™M* = Wdet(1 + Z2T) M+, (8.5a)
M—-A
A)!

e || (”J;) (8.5b)

v=1 ’
dzZ = [[dR(Zpn)dS(Zpn). (8.5¢)

ph

Representations (8.1) and (8.2) motivate introducing the following approzimate models:

e The shell model (SM) or no-core shell model (NCSM):

U(z1,...,x4) Z Ao Pt oo (x1,...,24) ® |core) (8.6)
Hsees b g7

for A’ valence particles occupying M single-particle states ¢, for p=1,..., M.

e The configuration interaction (CI) models:

\If(xl,...,(]}A)ZZAk(I)k(xl,...,xA) (8.7)
k

for ®y(z1,...,24) belonging to an appropriately selected discrete set of product
states of A particles.

e The generator coordinate method (GCM) models:
Warooa) = [ daf@(on. .. 2, (3.8)

for |®(q)) = |®(Z(q))) constituting an appropriately selected continuous family of
product states of A particles.

8-2: Generator coordinate method

Postulates an approximation of the many-fermion state by the integral:

) = / dg F()|®(q)), (8.9)

where |®(¢))=|®(Z[q])) denotes a family of product states (generator
states) parametrized by the generator coordinate(s) g.
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8.2 The Hill-Wheeler equation

(W|H|Y) = /dqdq’f*(q)H(q,q’)f(q’), (8.10a)
@) = [ dadd 5 @Tta.) () = 1. (8.10D)
where
Hg.qd) = (®(q)|H|D(¢)), (8.11a)
I(g,d) = (®(9)I®(d)), (8.11b)
and,
Hig,d) = H'(d,q), (8.12a)
I(q.d) = I°(d,q) (8.12D)
for
(®(q)|®(q)) =1, (8.13)
The average energy: < |A| >
U|H |V
E = 7(\14% (8.14)

is a functional of the weight function f(q), E=FE][f]. By varying the average energy with
respect to the weight function we obtain [17]:

8-3: The Hill-Wheeler equation

[ ad[tad) - EZ(0.0)]110) =0 (5.15)

A discretization corresponds to a CI model:
Y Hiifi=E> Tf;, (8.16)
J J

where H;; = H(qi, q5), Lij = Z(qi, qj), and f; = f(q;).

The square-root kernel Z1/2(q, ¢):
Z(q,q') = /dq”Il/Q(cLq”)Il/Q(Q”,q’)- (8.17)
allows us to define for each kernel O(q, ¢') its reduced kernel O(q, ¢):
O(q,q') = / dq"dq" T'*(q,q") O(d",d") T'*(d",4), (8.18)
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which gives:

8-4: Integral GCM Schrodinger equation

[ ad #a.a)9ta) = Egta)

(8.19)

where
mwz/@iwwvax

and

/dq l9(a)1* =1,
The inverse square-root kernel:
[T P T ) = 8la - o).
does not exist! Let us check the spectrum of the norm kernel:
[0 2ad)ina) = niinta)

which gives orthogonal natural states

/Hmﬂ@mmnz@w

The cut-off expansion:

T(q,q) ~ Y irlg)mein(d),

Nk >Ncut

gives

I%(q.d)~ Y il n*i(d),

Nk >Ncut

and the reduced kernels

O(q,q)~ Y. iklq) Oww i (q),

gt S
where
O =y, Pn'? / dqdq’ i3(q) O(g, ¢) in (¢')-
and

Z Hiw g = Egr.
k,/
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(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26a)

(8.26b)

(8.27)

(8.28)

(8.29)



9(q) = > grir(q). (8-30)

k

(¥[O[w) = ZQZ Ok G- (8.31)
k!

8-5: Differential GCM Schrodinger equation

H(q)g(a) = Eg(q) (8.32)

for
0(q,¢) = /dQ”Il/Q(qvq") O IT'*(d",q), (8.33)

where O(q) is a differential operator in ¢.

8.3 Gaussian overlap approximation (GOA)

8-6: (zaussian overlap approximation

Gaussian overlap approximation postulates the approximation of the norm
and Hamiltonian kernels by the Gauss functions:

Hale,d) = Za(e:q) [ho(Q) — 5h2(Q)(q — q/)ﬂ, (8.34a)
Za(q,d) = exp{-3a*(Q)(q— )}, (8.34b)

where functions a(Q), ho(Q) i h2(Q) depend on Q=3(q + ¢').

In the GOA we have:
H(q,q")

T0q) — h(a:d) =~ ho(Q) — 5ha(@)(a —d)* + ..., (8.354)
logZ(q,q) =i(q,q) = - 3 (Q)g—¢)+..., (8.35b)
which gives

holg) = h(q,q), (8.36a)

_ [ 9°h(g,d) 1 [8*h(g,q)  9*h(g,q)
ha(q) = [—8((1_ q,)QL/:q =3 [ 2000 0g? L/:q, (8.36h)

B 0%i(q,q) 1 [&%(q,q)  0%(q.q)
a2(Q) = [_ d(q — q/)Q]q/:q ~ 9 [ dq0q’ - dq? ]q/_q' (8.36¢)
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or

_ 1[0i(q,q") 9i(q.d)
a(Q)—Q{ o og |, (8.37)
for
i(q,¢') = /—21log Z(q.q'). (8.38)
Canonical variable: .
2(q) = / aq' ald). (3.39)
q0

gives

8-7: Gaussian overlap approximation in the canonical variable

He(z,2)) = Ig(z,2) [hO(X) — Ihy(X)(z — x')ﬂ, (8.40a)
Io(z,2') = exp{—3(z— x')Q} , (8.40b)

where functions a(X), ho(X) i ho(X) depend on X=1(z + /).

We can now determine the square-root norm kernel IGI/ 2(;U, x') (8.17),

IGl/Q(x,x/) = (2/m)*exp {—(z - x/)Z} , (8.41)

and its spectrum (8.23),
ne = (2m)Y%exp {-1K%}, (8.42a)
ir(x) = exp{ikz}, (8.42b)

see exercise 2.

We can now prove (exercise 3) that
H=—-—B(x)—+ V() (8.43)

exactly fulfils (8.33) provided the collective mass function B(x) and collective potential V (x)
fulfill Fredholm integral equations of the first kind:

ho(z) = (2/m)Y/? / da’ [2(95 — 2)2B(2') + V(x')} exp {—2(z — 2')2} (8.44a)

ho(z) = (2/m)Y/? / dz’ B(2') exp {—2(z — 2')?} . (8.44b)
which can be formally solved through the Fourier transforms:

Vi) = (1/27) / k [ho(k) — 44— K2 hotk)] exp {k?/8 — ik} (8.452)

B(z) = (1/2n) / dk ho(k) exp {k*/8 — ikz}, (8.45Db)
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where

h;(k) = /d:c hj(x)exp {ikx} . (8.46)
If we expand V(2) and B(2') around z,
V() = V()+ @ —2)V'(2)+ 3@ —2)*V'(z)+..., (8.47a)
B(z') = B(z)+ (2’ —2)B'(z) + 3(2' —2)*B"(2) + ..., (8.47Db)
than
V(z) = ho(z)— tha(z) — V" (z) — 1 B"(2), (8.48a)
B(z) = hy(z)— iB"(z). (8.48b)
V(z) = ho(x)— %hg(%) - %hg’(az) - 1—16h’2’(:1:), (8.49a)
B(z) = hy(z)— thy(z). (8.49b)
In case when the scale a is constant we have:

A= 53 B+ V), (8.50)
hola) = (2a/m)'/? / dq' [2(a — ¢2a*B(d) + V(d)] exp {~20*(a~ ¢)?},  (8:51a)
ma(a) = (20/m"? [ dg Blaat exp {-20%(0 - ¢}, (8.51b)

and thus in the lowest order:
V() = holq) — 3ha(q)/a’, (8.52a)
B(q) = ha(q)/a. (8.52b)

8.4 Symmetry restoration
8.5 Take-away messages

8.6 Exercises

1. Estimate the dependence of the norm kernel (8.11b) on a difference between the product
states.

2. For the Gaussian kernel (8.40b) calculate the its square-root kernel (8.17) and its spec-
trum and eigen functions (8.23).

3. Prove that the second-order differential operator (8.43) fulfills (8.33) for B(z) and V (z)
defined in (8.44).

@ — 2+ (" — )2 = 2 (a:” _ % %(x —2)?, (8.53)
2 - ) ) = 2 Yt - he-d P (e
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Figure 8.1: Left: Potential energy of the ammonia molecule Ey (dashed line), the collective
potential Fy— hg (solid line), and the eigenenergies of the lowest three states (horizontal lines).
Right: wave functions of the lowest three states.
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Figure 8.5: Left: Potential energy of the ammonia molecule Ej (dashed line), the collective
potential Ep—hg (solid line), and the eigenenergies of the lowest three states (horizontal lines).
Right: Hill-Wheeler eigenenergies of the lowest three states.
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Lecture 9

Large Amplitude Collective Motion
[Week 2 day 4]
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9.4.2 ATDHFB . .. . . . .. e 114
9.4.3 GCM+GOA . . . . . e 115

9.1 Adiabatic Time-Dependent Hartree-Fock Theory

9.1.1 The TDHF Equation

Define a time-dependent one-body density matrix as

pji(t) = (T(t)|cle; | (1),

where |¥(t)) is solution to the time-dependent, many-body Schrodinger equation

o)
ih=t = H|W(0)).
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Take time-derivative of density matrix and use Schrédinger equation to find

L Opji _ 5
ih=stt = (U(0)|[eles, H] (1)) (9.3)

Use the Wick theorem to derive the time-dependent Hartree-Fock (TDHF) equation
ifp = [hlol, o, (9.4)

where

e the wavefunction remains a Slater determinant at all times;
e the total energy is conserved, E(t) = E;

e the density is neither time-even nor time-odd: cannot be interpreted as a generalized
coordinate (or a generalized momentum).

9.1.2 The ATDHF Equations

9-1: Expansion of the density matrix

The TDHF density matrix can be expanded around a reference density p(©)
pt) = X 0 (1) e=X®), (9.5)

where x = x(t) is a one-body, hermitian, time-even, time-dependent oper-
ator and

e in the context of large-amplitude collective motion, the p(¥) (t) is a
time-even, time-dependent density;

e in the derivations of the RPA equations, it is the static HF density;

e in the derivations of the stability matrix of the HF equation, the
density is also the static HF density and x is time-independent.

Adiabatic approximation: the operator x is “small” with respect to unity.

Use transformation (9.5) and expand up to second order in x

p(t) = p0(t) + pM (1) + pP (1) + ... (9.6)

First and second order terms



Both the density 5(°)() and the operator x(t) are hermitian and time-even

TpOMOT = pOr),  pO() = PO ),

. (9.8)
TxM)TT = x(1), XH(t) = x(t).

Time-dependent mean-field (general case of an energy functional not derived from a genuine
two-body or more potential)

O*E
hij(t) = tij + Lij(t), Ty(t) = Z Qﬁﬂkl(t)- (9.9)

9-2: ATDHF equations

Introducing expansion (9.6) into the TDHF equation (9.4), we classify the
terms by their properties with respect to time-reversal and obtain the fol-
lowing to sets of equations

PO = [0, 0] 4 [P0, 500, (time-odd)
im0 = [0, 5O 4 1@, 5] 4+ PO, 50] 1 [P, 50, (time-even)
(9.10)
with
. 0’E . 0’FE
o A (=1 550 P _o 92 @ (911
" 8pjiapmnpmn ( s )’ " ap]lapmn m ( )

Remarks

e ATDHF equations are self-consistent and determine simultaneously p(9)(t) and x(t)
o If ¢ — 0, then pO(¢) = p© and second ATDHF equation becomes [, 5] = 0.

o If R(t) # 0, [RO(t), pO(t)] is second order in x(t), see the second ATDHF equation. By
assumption, it should be small at all times ¢: p(o) (t) is close to a HF solution.

ATDHF basis is the basis that simultaneously diagonalizes p(0)(t), izgloh) (t), and fz](gg) (t). The

eigenvalues of iL;SL) (t) are called hole energies, those of iL](J(;,) (t) are called particle energies. The

density p(9)(t) being a projector, its eigenvalues are 0 or 1 as usual.

9-3: Collective momentum and velocity
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By analogy with classical mechanics (p = mv), the time-dependent, time-
even odd density p(9) plays the role of a collective velocity, while y is the
associated collective momentum. They are related by a matrix which plays
the role of a collective inertia (=inverse of a mass)

-(0)
o ) ( Ao =By ) ( i ) (0.12)
.(0 - P . . )
pl(’h) ' Bphvp'h’ Aph,h’p’ Xp'n!
with 2
0‘FE
Aph i = (ep — €h)5hh/5pp/ 42—
aphpapp/h/
(9.13)
B 5 0’E
h.o'h! — -
ph,p Dpdony

This matrix is the QRPA matrix.

Second order expansion of the energy with respect to x

E{t) =EO®#) + ED () + E@(1).

Concatenation of the ph and hp elements of operators into vectors

. Xph> T *
X = e s X' = (XGon Xph)-
(Xph ph>y Ap

Collective kinetic energy (K = E(®))

with

K= %Tr (XTMx)

e (Hpe )
- * *
-B ph,p'h! +Aph7p’h’

9.1.3 The Inertia Tensor

Cranking approximation: neglect the "residual” interaction

9-4: Inglis formula
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The general expression (9.16) for the collective inertia becomes

which is known as the Inglis formula.
Reduction of number of freedom
PO =9 a) = 9O (@), .-, 4 (1)), (9-20)
where ¢ = (q1,-..,qn) is a set of n collective variables that carry all the time-dependence

Derivative of the density

PO = 21
Z du aqﬂ (9.21)

Classical form of the kinetic energy (at cranking approximation)

1 ..
K= 3 ; M, dyuds (9.22)

Inertia tensor

22 Y (b 222 | )
W — 9p2 Z 8% Aqy

(9.23)
.

9-5: Collective path

The ATDHF equations provide a closed set of self-consistent equations. At
convergence, they determine both the entire sequence of density matrices
{p(o) (t) }i=t1,....tn » known as the collective path, and the inertia tensor along
that path. Often, one sets the collective path beforehand using HF solutions

[ —2g, 9] = 0,= p® = p©(q) (9.24)

9.1.4 Perturbative Cranking Inertia

Additional approximation (perturbative): obtain an expression for the collective inertia which
is local in the coordinate space, i.e., only depends on the point q.

Taylor expansion of the density at point g + dq

~

) 0
p(q +0q) = p9(q) + g

2
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leads to a perturbation of the HF Hamiltonian, hO — p=pO 4 5?1, and correspondingly of
the vector of Lagrange parameters A — X + .

Use RPA theory to relate the variations dq and 0p (which defines the first-order term of the
Taylor expansion) to dA and express the derivative dp/dq as a function of the RPA matrix
(see exercises)

9-6: Perturbative cranking inertia tensor

The perturbative expression is built on top of the cranking approximation,
i.e., it is still assumed that the RPA matrix is diagonal. We find

M = 2r2 M) IME M)~ (9.26)

At the cranking approximation, the inertia tensor for the system protons 4+ neutrons is the
sum of the two,

(n) 1 M) (9.27)

M =My, it

At the perturbative cranking approximation, the total tensor of inertia is given by the same

formula (9.26),
M = 22 M)~ IME MM~ (9.28)

only each moment is the sum of the proton and neutron contribution.

9.2 The ATDHFB Approximation: Extension to Superfluid
Systems

TDHFB equation .
ihR = [H,R), (9.29)

HFB matrix and generalized density

( h=2A A - p K
H_<—A* —h*—i-)\)’ R_<—KJ* 1_p*>7 (930)
Perturbation of the generalized density
R(t) = eXORO) (4)e=XO) (9.31)
Second order expansion of the generalized density
R(t) = RO®) + RO(t) + RP (1) + O(?), (9.32)
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with the analog of Eqs.(9.8),

RO(E) =i [%(1), RO (1))

) 1 R (9.33)
RA() = 2 | [0, RO x(0)]
Second order expansion of the HFB matrix
H(t) =HO@) +HY @) + HP (1) + O, (9.34)
ATDHFB equations
RO = O, RO 4 D, RO, (time-odd)
(9.35)

R = 7O, RO + [HO, R + [HD, RO] 4 [H®, RO (time-even)
Notations
©_y A0 r A0 r@  A@
o _(h (1) _ @ _

with 1
1 B 1 1 _ 1)x*
ng) = E vz'kjlpl(k)a Az('j) = 9 E :Uijkl/igcl) J
kl kl

9.37)
2 _ 2 2 1 _ 2)% (
Fz(j) = sz‘k;jzpl(k), A,(j) =3 Zvijklﬂlil) .
kl kl
ATDHEFB basis: basis that diagonalizes the generalized density RO
Structure of H(©
(0)
~ E H
HO = ( o B ) . (9.38)
H,, -E
Notation
S X111 X12
= , 9.39
X < X21  X22 > ( )

First ATDHFB equation in the ATDHFB basis
h RPN (A B X (9.40)
Riz« |\ B* A* e '
i

Next step: express the energy E[R] up to second order

1 . A B 12
BR) = Bun+ 300 (g ) () (9.41)
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Collective kinetic energy
1 h? . .
B t - AL
K= Tr (X MX) T (R M R) (9.42)

As before, introduce collective variables and assume that
. OR
R = ] — 9.43
Sa 0

Then, use again QRPA theory to express OR/Jq, as function of matrix elements of the oper-
ators associated with g,

12 —1 12
M < 77512* ) - Z [M(I)Lb M < ggb% > (9.44)

b

Collective inertia tensor at the ATDHFB approximation in full glory

e 3 ]

ab

-1 -1

o (S ) [ar)] (9.5

pa Qg2* bv

9-7: ATDHFB Inertia

The full, exact calculation of the collective inertia at the ATDHFB approx-
imation requires inverting the full QRPA matrix for a deformed nucleus.

9.3 (Gaussian overlap approximation of the generator coordi-
nate method

Recall the general GCM ansatz for the wave function

v = / daf(a)lda), (9.46)

where a = (a1, ...,ayn) is a vector of collective variables, and |¢4) a set of many-body wave
functions that are known (for example, HFB solutions under the constraints given by a).

Recall the norm and Hamiltonian overlaps

H(av a,) = <¢a‘f{‘¢a'>7 I(av a/) - <¢a|¢a’> (9'47)

9.3.1 The GOA approximation

9-8: Gaussian overlap approximation (GOA)
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In the Gaussian overlap approximation, we assume that the norm overlap

reads

I(a,a’) = exp —%(a —a')G(a)(a—a’)|. (9.48)

with a = (a+a’)/2 and v(a) = det (G(a))

Reduced Hamiltonian

H(a,a') = Z(a,a’)h(a,a’), (9.49)
Derivatives at point a=a’ = q
0?h(a,a’) 0?h(a,a’)
haa = hapq) = ——= y haa=hg o = ———r" 9.50
aa ) aakaal a:a/:q aa kQ aakﬁag a:a/:q ( )

Procedure: expand the reduced Hamiltonian up to second order in a and a’ around point
a = a’' = q by using the fact that

(W) = / da / da! / daf* ()T (a, @)h(a, a) f@)T?(qa),  (951)

introduce

g(q) = / daT"/2(q, a)(a) (9.52)

and express terms such as (a — a’) as functions of the derivatives of Z'/2 with respect to q

9-9: Collective Hamiltonian and Inertia

In the GOA approximation, we can extract a collective Schrédinger equa-
tion that involves the collective Hamiltonian

Heon(a) = —**B*q + Veon(a) (9.53)

with the collective potential and collective inertia tensor given by

0?haa
0q>2

1 __ 1 __
V;:oll(q) = V(Q) - §G 1haa’ + gG 1 ( )
9.54

1
B= §G_1(haaf — haa)G ™!

Local collective Hamiltonian for coordinate-dependent metric

. h? 0 0
Heon(a) = = VeI % far V1 (@Bu(@) -+ V(). (9.55)
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Collective inertia tensor B for coordinate-dependent metric

n ., Oh(a,a’) 1
Byj(a) = %22% [ = haa + Ta@) =5 ] G, (@) (9.56)
Reminder: Christoffel symbol
0Gy; 8Gz‘l oGy,
G — . :
=3 26w (T e 057

All derivatives in the previous equation are evaluated at a =a’ = q.

9.3.2 Local approximation

Using the Thouless theorem, the action of collective momentum on HFB state is

Bil@a) = 3 [P, 8160 + PR, Bubs]| 19a) (9.58)
p<v
with P,?LV PIJ??/Z

Reminder: HFB equations at point a

— Y " XaQa,R(a)] =0, (9.59)

where O, is the matrix of the constraint operator Qa in the double sp basis and A, is the
Lagrange parameter for the collective variable a (a = a for k=1,..., N).

Small variations
H(a+ 0a) = H(a) + Hi,
R(a+da) = R(a) + Ri, (9.60)
Ao(a+da) = Ag(a) + dA,.

HFB equation to first order in da

Ri,H Z 2aQal + [R(a), Hi] = > )a[R(a), Qal. (9.61)

QRPA

R12 QL2
M < RIQ* > = ZéAa < 12 % > ) (962)
Collective momentum as function of collective variable at point q

Pal2 ~ 12
( _pio ) =D MU M ( gfg* ) (9.63)

b
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where M is just so slightly different from the QRPA matrix M
~ A -B 1 0 10
= (A B =(1 0 )m(t %), 000

Definition of the overlap kernel Gg,

1 . a
Ga(a) = 7 (®al PePIP), (965)

In the cranking approximation of the GCM, the inertia tensor is expressed entirely as function
of the moments
B = MO M@ IMO M)~ MO, (9.66)

Same moments as in ATDHFB

(v Qq]0) (0] Q| v

(Ey+ E)E

9-10: Collective inertia at the perturbative cranking

In the perturbative (=local) cranking approximation of the GCM, the in-
ertia tensor is expressed entirely as function of the moments

B = MO M@~ IMO M) ~IMD), (9.68)

with the metric tensor given by

G = =MW IMO MO, (9.69)

Alternative expression

B= iG‘l[M(l)]‘lG_l. (9.70)

9.4 Exercises

94.1 ATDHF

Exercise 21.

Show that in the basis that diagonalizes p(©)(¢) at time ¢, any operator A can be written

i = Ahp + Aph (971)
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where Ap, = p(©(t) A6 () (and similarly with A,y,), with
PO = Ih(nl,
h
) = Ip)pl =1-p0).
P

(9.72)

and |h) an eigenvector of 5(°)(t) with eigenvalue 1 and |p) an eigenvector with eigenvalue 0.

Exercise 22.

Show hat we can find at all times ¢ a basis that simultaneously diagonalizes p(*)(t), iLE&) (t), and

hig) (t).

Exercise 23.

Show that, in the ATDHF basis, the matrix of p!) reads

p(l) _ < 0 +iXph ) .
_ith 0

Exercise 24.

Show that the first ATDHF equation can be written

1oy = (ep — en)xpn — LSy,

ﬁbﬁ?,? = (ep — en)xnp + lrlep)

Exercise 25.

Show that the first term of E® reads
S 1 . 1 N
tr b0 52 = 5 Z(ep — en)XphXpn + 3 Z(ep — €R)XphXph-
ph ph

and that the second one reads

~(1 1 ~ — — _
tr pITD) = By X Xnp — Do Xn/p? Xhip — Onpp? X/ b Xph + Ot ph? Xh'p? Xph
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94.2 ATDHFB

Exercise 26.

Show that the perturbed static HF equation can be written

(29 — Xg,5p) = oX[g, p).

at first order in §p and neglecting variations of the mean field dh

Exercise 27.

Evaluate these commutators in the HF basis of 5(°). Recall that in that basis,

(h(?) = Xq)ij = eidi;, PZ('?) =i, Quij = (i|Qul7)-

Exercise 28.

(9.77)

(9.78)

Use the definition of the expectation value of Q to obtain a elation between dg,, and 6\, that

involves the moments

MO =3 (plQuul ) (h]QuIp)

j24 o (ep _ eh)K

Exercise 29.

Show that the matrices R and R(© have the following form

R — < 0 iX12 )
—ix21 O '

5(0) 0 RY
RE=1 po0
21

and

Exercise 30.

Show that, in the s.p. basis, we have

pY = —iVix Ut +iUx12V7
KD = —iV*x VT +iUx12UT

Exercise 31.
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Show that, in the s.p. basis, we have

HYY =VITOU — UTAW+y + VTAOY - gTT0+y (9:83)

Exercise 32.

By using the special form of all these matrices in the qp basis, show that the ATDHF equation
can be expressed as

: L 9.84

94.3 GCM-+GOA

Exercise 33.

Starting with the expression of the square of the norm overlap Z'/2 (a,a’) and using the property
GikG,;jl = §;; (Einstein summation conventions used), show that

811/2
',17 — _2 _a/ iIl/2 .
' (a—a) T2, (9.85)
oT'/?
—-19L£ " _ ol 71/2
i ~ 2(a—a) T2 (9.86)
! Oa
and
flﬁgfl = —2G'T'? 4 4(a—a’);(a—a’);T"/? (9:87)
ik Bakaal by v ! 7
—1@(.;—1 = +2G;;'TY/? 4 4(a — a');(a — a’);T'/? (9-88)
ik 8ak8af lj - 17 1 J . .

Exercise 34.

By using a Taylor expansion of the reduced Hamiltonian h(a,a’) at point a = a’ = q, express
the expectation value (V| H|¥) of the Hamiltonian on the GCM state up to second order in a —gq
and g — a’.

Exercise 35.

By using the property
|®a) = el(a_q)Pq/h|¢)q>~
show that
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e Time-reversal properties impose that

0
8—%1(21 a )|a:a/:q =0. (989)

e The metric tensor can be expressed as

1 A
ﬁ<<1>q|PkPl|<I>q> = Ggy. (9.90)
e The second derivatives of the Hamiltonian overlap kernels are
9*h(a,a’)  9*H(a,a’) B )821'(51 a)‘
6ak8al a 8ak8al a=a’'=q N 8ak8al a=a'=q
9.91
9*h(a,a’)  9*H(a,a’) B )82I(a a)‘ (6.91)
darda; — 0add] |y Y Oardaj *THT
Exercise 36.
Show that the inverse of the QRPA matrix as a similar block structure, namely,
cC D
-1 _ _ o n_nT
M _<D* C*)’ C=C"D=D". (9.92)

Exercise 37.

Using the symmetry properties of G, and the results (9.90) and (9.58), show that we can write

P12
G,p = 1(P12* _p2 ) ( by ) (9.93)
a a;pur) a;puv « ) .
4 Pbl,/zﬂ/
where indices p, v run over the entire basis set.
Exercise 38.
Show that
haar = Z Plcmszl Aijuu- (9.94)
1<j,u<v
and
- Y PP, Biju. (9.95)
1<J,u<v
Exercise 39.
Using the properties that A;j,.., = A%, (same for B), Bjj,w = —Bijuu, and Pszj = P,fll’;7 and
after removing the restrictions on the summation indices, show that
A B pP}?
, — 12x% 1
haa’ — Paa (P , P!?) ( B A ) ( piz ) . (9.96)
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Exercise 40.

Introduce the matrix
~ A —-B 1 0 1 0
(A Y =(1 0wt o). o)

haa — haa = = [MP]IMO[MD]L, (9.98)

Show that we have
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Lecture 10

Phenomenological nuclear
functionals 1

[Week 2, day 5]
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10.1 The Nuclear Hamiltonian

The QCD Lagrangian is the current description of the Strong force

1 _ _
L=—FL R — > Uy [0 — igASta] U — mp T, T, (10.1)
n

with « the index for the 8 colors, n the 6 quark flavour (u,d,s,t,b,c) index, v, u the quadri-
coordinates. A represents the gluon vector field, ¥ the quarks wavefunctions. F' is the field
tensor, that is made of appropriately coupled vector fields,

Ff, = 0,AS — 0,A% + Cg, Ab A} (10.2)

the last term is the self-interaction between gluons, that is the main difference with QED
and is the whole reason QCD is non perturbative (at low energies) making nuclear physics so
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complicated (cf. Fig. 10.1, Cool animations at
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/) The

2-Quarks Flux Tube 3-Quarks Flux Tube

Figure 10.1: Courtesy of Derek B. Leinweber, for GlueX collaboration [18].
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Figure 10.3: Two examples of the Phase Shifts of Argonne v1g compared with experimental
result.

are several ways to build a low energy representation of the nuclear strong force: both phe-
nomenological (e.g. Argonne vig + Urbana IX, cf.
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https://www.phy.anl.gov/theory/research/avi8/) and exploiting the symmetries of the
QCD-Lagrangian (the Chiral Effective Field Theory, xEFT, being one of the most promis-
ing). The nature of this bare force is inherently many—body. Moreover they are often very
difficult to treat due to the presence of an hard—core (the two—body part of the interaction
goes to infinity at » < 0.4 fm), and the interaction has to be regularized with renormalization
techniques (SRG) before being used introducing non—physical cutoffs. After the regulariza-
tion, and even in case of naturally soft—core potentials (e.g. NNLOgq ), this is a representation
of the bare force between two (or more) nucleons in the vacuum, thus is not suited to de-
scribe the effective interactions between nucleons in the nucleus and then be used for Density
Functionals calculations as it is.

Then we are back at the starting point of an 'unknown’, effective A-body hamiltonian for the
nuclear system,

H =T+ Va(x1,x2) + Va(x1,%2,x3) + - - - + Va(x1,- - ,x4) (10.3)

with x representing r, o, 7.

10.2 Effective pseudopotentials

10.2.1 General Two—Bodies

Let’s consider the radial dependence of a general two—body interaction,
(rirh|[Virirs) = V(r), rh, r1,r0) (10.4)
we can write |rjr}) as expansion,

i

0 0 / /
[r1rh) = [r1wa) + (11 = 1}) 5 [raws) + (r2 = rh) 5 ryry) 4o = b (T PIHETRIP I ),
Iy

(91‘2
(10.5)

and considering,

Vriry) = /V(I’/hT’271“17r2)|1"/11‘/2>d37“/1d37‘§ = V(r1,p1,r2, p2)|rirs). (10.6)

Using the expansion over perturbations in positions, and the Fourier transform, we have
transformed a general interaction depending on 4 coordinates, to depending on two coordinates
with a non—locality represented by a momentum dependence.

This is a pseudopotential: is not strictly an interaction (being partially Fourier transformed
and having a momentum dependence, and eventually other terms mimicking the many—body);
is not related to the original two—body force, but is something that effectively reproduces
nuclear properties (e.g. Lennard-Jones).

10.2.2 Invariance properties

To cut down the generality, we can define general symmetry properties a two—body interaction
needs to have in order to have physical meaning [9, 20, 21]
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e Hermiticity, V+ =V, to have real eigenvalues.

e Invariance under the exchange of coordinates, V' (1,2) = V(2, 1), so that the interaction
does not change the exchange symmetry of the wavefunction.

e Translational invariance and Rotational invariance, the system behaves equally if you
change coordinates.

e Galilean invariance, in the case of non-relativistic systems the potential is not change if
the system moves at constant velocity.

e Space reflection, there is no parity violation in the strong interaction.

e Time reversal, equation of motion must not depend on the time direction.

These properties can be used to bind the shape of a general interaction. For example transla-
tional and Galilean invariance means that a general two—body pseudopotential must depend
only on relative coordinate r, k. Rotational invariance implies that the potential must be a
scalar, the only three independent scalar we can construct with r, k are 72 (or more in general
v(r), with r scalar), p?, and r - k. However k changes sign under time reversal, this implies
that the latter term can only appear quadratically; however (r -k + k- r)? can be rewritten
as function of r2, p?, L?.

To be exchange invariant, the spin operator has to be

1
Szi(dl—i—dg), (10.7)

but since S has to be multiplied by a vector, also invariant under space reflection, to be a
scalar. The only other operator which satisfy the requirement is L, giving the operator part
(which can be multiplied by functions of r and p) of the well known spin—orbit interaction,
L-S.

We have than defined a crucial structure for the central two—body interaction part of a func-
tional generator

V(T) = Uo(’l") + ’UU(T)O'l - 09 + UT(’I“)Tl < To + ’L)U’T(T)O'l <0971+ TY, (10.8)
that is more commonly written considering the spin and isospin exchange operators
1 1
P7 = (140102),  PT=g(l+m-m), (10.9)
as
V(r) = v(r) + vz (r)P? — vy(r)PT — v, (r)P° P7, (10.10)

From this we can define the well known families of functional generators,

10.3 Skyrme and Gogny functional generators

10.3.1 Skyrme

Skyrme interaction was proposed already in the ’50 [22] as an effective contact pseudopotential,
momentum dependent, with three-body contact term. After that it has evolved and taken
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several different forms and parametrizations, but the most accepted being,

ﬁSkyrme(Tm) = to(l =+ xOPU)5(r1 — I‘Q)
+3t1 (14 21 P7) [6(ry — rg)k:’2 k?6(r1 —r2)] Momentum Dependent

—|—t2(1 + 29 P7)k"*§(r1 —1r2) - k Momentum Dependent

+2t3(1 4 23P7)p*(R)d(ry — 12) Density Dependent

+ZWO(O’1 + 0‘2)1{ 5(1‘1 — I‘Q) x k Spin—Orbit
(10.11)

with k the relative momentum operator
1
k= (Vi —Va). (10.12)
i
p*(R) is the density dependent term, usually with 1/6 < o < 2/3 and 2R =11 +1r2. In
72 Brink and Vautherin shown the equivalence of the three-body contact term with a two
body, density dependent term [23] (v = 1) in the case of time—even symmetric systems,
effectively departing from the concept of interaction and introducing functional generators.

Let’s consider the usual definition of fields, using the distinction between isoscalar (¢ = 0,
po = pn + pp) and isovector (t =1, p; = p, — pp) densities,

Time even fields

pi(r, 1) Z¢ r,o, 7)Y (v, o, T), particle density, (10.13)
7 e

7(r) =V - Vp(r,r')|p=r, kinetic energy density, (10.14)
ji(r) = kp(r, v') | prr, current density, (10.15)
Time odd fields

r) = Z pi(ro,ra’){o'|o|0), spin density, (10.16)
Ti(r) =V - V'si(r,r')|p=p, spin kinetic energy density, (10.17)
Ji(r) =k @s(r, ) |p=p, spin current density, (10.18)

where 1; are the Kohn-Sham wavefunctions that determine the Kohn-Sham densities.

It determines the following energy densities for the odd and even fields,
E(x) = CPpt + CPPpup + CT pyre + CJj + CF iV - i, (10.19)
EP(r) = Cfs? + CP%sy - As + Cl's, - Ty + C/ 12 + CY 78,V x I, (10.20)
giving the total energy density as

=> & +E. (10.21)
t

Where C' are constants combinations of the coupling constants of the functional generator
(t;, x; and Wy; cf. [24] for a complete and definitive list) which depends on the symmetries
assumed, in particular the density depenedent term is reabsorbed in

Cf = Cf + CPPP pf. (10.22)
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10.3.2 Coulomb

As usual, the Coulomb interaction is

(r1z) = - (10.23)
v(irg) = ——— )
12 47T60 ‘I‘l — I‘Q’
so its densities are given by
. 2 (rpp(r'y,  pa(r,)
En = 5dzr gemc N — € /dS 1 P\TpP\T p _ Fp\%s 10.24
C C (I')+ C (r,r) 47T€0 r |I'*I‘/| |I'*I'/| ( )

where the direct energy density considers the charge density as the proton one, while the ex-
change term would require the employment of the non-local density p(r,r’) = >, ¢ (roq)y;(r'oq),
to be solved exactly.

An approximation to reduce this non—local exchange term to a local functional is the Slater
approximation [25]

e pi(r,r) 32 (3\3 A
- Ay /3 10.2
Admeg |r —1/| 8e€p <7r> Py () (10.25)

10.3.3 Gogny

Gogny and Dechargé, [26] have introduced in 1980 a finite-range functional based on a sum
of two gaussians, with the usual zero range density dependence and spin—orbit, Gogny D1,
that has proven to be very successful (especially the new readjustments D1S and D1M),

9008 (ry9) = 3220 =1 e (W, 4 B P7 — HiPT — M;jP°PT)  sum of Gaussians,

+t3(1 + z3P?)p*(R)d(r; — ra) Density Dependent,
+iWQ(01 + O'Q)k*é(rl — I'z) x k Spin—Orbit.
(10.26)

10.4 BCP functional

The Barcellona—Catania—Paris [27] is a good example of a pure Kohn-Sham scheme functional
in nuclear physics. Defines the energy from the following ansatz

E=Ty+E*>+E'R+ B + E¢ (10.27)

int int

with Ty the kinetic term, £ the spin orbit (uncorrelated), E;y,; the proper nuclear interaction
part, split in a Finite-Range (F'R) and a bulk (c0) term, and E¢ the Coulomb contribution
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respectively. More precisely,

h? 3
— m;/d 7«7-(1(1-,0'7 q) (10.28)
1 / 3/3 3
Ec(pp] = B /d37“d3r/pp(rr)_pi€r) 1 <7T> /dgrp;‘;/g( ) (10.29)
1
Ef;f [on, Pp) = Z/d?’ a3 py(r (r)vgq(r —1')py (r) — 2Z/d?’rpq(r)pq/(r)v%qz/d3rlvq7q/(r/)
a4
(10.30)
Eiilpon, pp) = /d3 [Ps(p) (1= B%) + Pu(p)B?] p (10.31)

where v, o (r') is a central Gaussian, p = pp + pn, Bp = pp — pn, Ps and P, are polynomials
(to the fifth power) of p. The resulting functional is now non-local.
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10.5 Exercise

Exercise 41.

Calculate the energy density corresponding to a free (non interacting v(ri2) = 0) fermion gas in
spherical symmetry, remembering that wavefunction for the free system are plane waves

Y(r) = War'k (10.32)

Exercise 42.

Calculate the energy density corresponding to the central term of Gogny functional generator

2(3)
,UGogny(ru) — Z =1 e—(rl—l‘z)z/uﬁ (Wj + BjPU _ HjPT — MjPUPT) (10.33)

J

Exercise 43.

Considering that the Galilean invariance implies on the functional that
p(x,x') = enP ) (x X', (10.34)

Demonstrate that the term pr — j2 is Galilean invariant.
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Lecture 11

Lecture 11: Phenomenological
nuclear functionals 11

[Week 3, day 1]
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11.1 SelfInteraction

If we consider Coulomb functional in the Slater approximation

e? r’ 3
£o(r) ( 2l 22 p;)/?’(r))pp(r#o, (1L1)

- 4deg us
for one particle p(r) = |1o(r)|?, and this should be zero but it is not! However the original
non—local functiontal exactly derived from the interaction it is,

2 ! 2(r, !
€ /d3,,,_/pp(r)pp(r ) o pp( ? ) — 0, (112)
4me |r — 1| lr —r/|

that for one particle is p(r,r") = g (r')o(r)
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So, first of all, beware on the conditions that have to be satisfied by your functional. Second
of all consider that the functional form, that is not derived exactly from an interaction form,
contains implicitly self-interaction terms. This self-interaction terms make going beyond the
mean field level very difficult, e.g. generating instabilities when projecting.

11.2 Nuclear Matter properties

For a time—even system, I can write the Hamiltonian density as

n? 7 j .
H(r) = ot CLp} + CEPpubp + CF prry + CLi2 + CY pyV - i, (11.3)
and the relation between densitis and Fermi momentum in the free Fermi gas is
3 302\ ..
pP= 3T sza =% <2> P A (11.4)

Because of translational invariance in infinite matter Vp = V - j = 0, and if the matter is
spin-saturated I don’t have the spin orbit density j; = 0.

Binding Energy per particle is given by,

Ey H  3n

=== kL4 C k%, 11.5

A o 10m il O = T Oy ( )
binding energy per particle in function of p is called Equation of State and contains the
information regarding the static and dynamic properties of infinite nuclear matter.

and I can try to look for a minimum in the binding energy per particle that my functional
gives, which is an equilibrium density pg called saturation density

§Ey/A h?
50/ STy Ct k2 =0. (11.6)
p P=po 10 P=P0

Incompressiblity K is the curvature of the equation of state around the saturation density
respect to the Fermi momentum,

_ B/ 4)
k2

_ 6R?

- 60 .
= mmk% +6Cfp + O pk%, (11.7)

pP=po
11.2.0.1 Effective mass

It is convenient to collect C]p;7: with the kinetic term, defining an effective mass which
includes some non-local (velocity dependent) terms of the functional

om . \ b B2 oM\ !

11.3 Experimental and other constraints
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Figure 11.1: Chiral-EFT contraints on pure neutron
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Figure 11.3: Summary of constraints on symmetry energy parameters. The filled ellipsoid
indicates joint S,L, with 5, symmetry energy and L the density independent part of the
symmetry energy, are constrained by nuclear masses [29]. The finite-range droplet model
fit [30] is indicated with a diamond. The filled bands show constraints from neutron skin
thickness of tin (Sn) isotopes [31], isotope diffusion in heavy-ion collisions (HIC), the dipole
polarizability of 208Pb [32], and giant dipole resonances (GDR) [33]. The hatched rectangle
shows constraints from astrophysical modeling of Masses—Radii observations. The two closed
curves show neutron matter constraints (H is from [34], and G is from [35].) The white area
is the experimentally allowed overlap region. cf. [36].
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BCP1 DIS SLy4
rmsp [MeV]  1.775 2414 1.711
rmsp [fm]  0.031  0.020 0.024

Table 11.1: RMS deviations of energies and radii given in [27].

11.4 Performance of common functionals
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Figure 11.4: Comparison between BCP (dots) and D1S (crosses) functionals [27].

UNEDFO

Figure 11.5: Comparison between two different fits of the same Skyrme functional form, one
is fitted in a way more sophisticated way [29].
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0 20 40 60 50, 100 120 140 160

Figure 11.6: A very rich functional, constantly updated and further corrected for beyond—
mean—field correlations, still not that much better [37].

131



11.5 Pairing forces
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Figure 11.7: Excitated states spectrum of even an odd Sn isotopes [9] (left) and example
of odd—even mass staggering represented in the neutron separation energy for neutron rich
isotopes of Sn, Sb and Te [38] (right).
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Figure 11.8: Textbook example of backbanding due to pair breaking Dy [39] (right).

There are several ways to introduce pairing into a functional, again phenomenological guidance
is paramount. Ideally one would like consistency within the functional in the particle-hole
and particle—particle channel, but only Gogny and very few of the Skyrme functionals are able
to deliver sensible pairing properties.

For this reason pairing is often “attached” in various forms that not necessarly have the same
form of the functional in the particle-hole channel.

Phenomenologically even in the ’50 Maria Goppelt—-Mayer realized that a short range inter-
action between nucleons in J = 0 states could explain odd-even staggering [40].
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11.5.1 Seniority Pairing

The seniority scheme is the quintessential pairing interaction

Ven = —GES P = —G Y ahataman, (11.9)

m,m/>0

where ]57;1F , B, are pair creation and annihilation operators and create or destroy pair of
particles in time reversal. The interaction can be rewritten to be V7" ~ —A(P* +P) +A2/G,
by omitting (PT— < P >)(P— < P >) considering small variations around the ground states,
where A := G(BCS|P|BCS).

I recall that the BCS ansatz vacuum is defined as |[BC'S) = [],,-(Un Vmama},)|0), however
here I haven’t used the notion and I could define the BCS vacuum starting from the seniority
pairing operator. Since the average value of the (BCS|N|BCS) = 2> ms0 V2 = N in the
BCS ground state is not fixed, I have to constrain my single-particle Hamiltonian with a

Lagrange multiplier A that imposes the number of particles V.
This gives a total mean field + pairing hamiltonian
H=Hy, - AN +V, = Z (em — N (atamat am) — Alatal + amam) + A%2/G,  (11.10)
m>0

which is bilinear in creation operator. To solve it make use of the usual techniques I need to
rotate the a™, a space, making use of the Bogoliubov—Valatin transformation (cf. Lecture 6,
Sect. 6.2.1),

aly = Upal, + Vinem, = Uyam + Vial o
alﬁ = maih + Vinem, om = Uk am + v;‘na;rn,
that enable to rewrite the hamiltonian in the quasiparticle basts,
H= Z En(ah o + ot aup,) + const. (11.12)

m>0

By equating Eq. (11.10) and (11.12), and representing the bilinear forms as off-diagonal
matrix elements ones get

Em<g:>:<5mA—)\ EmA_A><‘(i:> (11.13)

which eigenvalue and eigenvector solution define the properties of the BC'S quasiparticles

U2 1 Em — A
m = m 2, 5 =3 mE 5 .
E \/ (8 )\) + A? Vn% 5 1+ — (11 14)

together with the fact that we want the Bogoliubov transformation to be unitary, so

{omy Qmr } 7= Oy = UL + V2 = 1. (11.15)

To be noted that Eq. 11.13 and following are still valid for a more general interaction v,,mm/m’
once adopting a state-dependent pairing gap A,,.
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A and A deserve a talk in their own right: A defines the Hamiltonian H' above setting the
number of particles of the system we want to describe as a Lagrange multiplier, this is solved
consistently within the definition of V,,, in what is called number equation,

N=2) Va2 (11.16)

m>0

A is the pairing gap, which is related to the average value of P operator, ag = (BCS|PT|BCS) =
> m>0 Um Vi, that substituting with Eq. (11.14) and eventually for a general BC'S-type pair-
ing interaction,

1 A,
DAy = — mmm/m'Um/Vm/ = — 3 L 11.1
2 UVt =75 2 e AP, (1117

is known as Gap Fquation. Solving iteratively Number, Gap Equations and making use
of eigenvalue Eqgs. (11.13) we get BCS solutions of the system, used to describe fermion
superfluidity.

This which has extremely interesting physical properties concerning nuclear superfluidity,
being studied and reflected in virtually every nuclear observable such as odd-even mass dif-
ferences, particle-hole occupation factors, excitation energy of single particle and collective
states, 2—particle transfer reactions, rotation inertia ...etc...

BCS theory

A

Quantum states are now defined as V2 : U2
quasiparticles considering they are 08 |
0.6 I

bounded pairs as having both

particle and hole content. a I
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o |
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1
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b

:Ea

(U a
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2
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Figure 11.9:
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11.5.2 Pairing Functional

A simple delta pairing interaction v(ri2) = t((1 4+ 2(P?)d(r; — r2), generates a similar (but
not equal) functional in the pairing channel, as it does in the particle-hole,

air t,
erir = (1~ ab) (0 + p}) (11.18)

To derivate it we have to consider the nature of densities in the pairing channel. If in the
particle-hole channel, densities can be written as

plrisity, rasats) = (Ulal, ., ap o0, | T) (11.19)

which eventually gives, in the general case with isospin mixing,

. 1 (3
p(risity, rosats) = Z(M)(I“l, 12)0s; 850115 + Pl(r17r2)551527't(1t)2
R . .3
+ SO(rly r2) : Uslsg(stltg + 51 (r17 1‘2) : a'slsth(lt)Q)- (11-20)

However, in the particle—particle channel densities arise from the application of two creation
or destruction operator from the fact that the ground state is not anymore annihilated by
bilinear operators,

~

p(rlsltl, r232t2) = —282<\I/’ar2 _32t2ar151t1 ’\I/> y (11.21)
bringing a different relation and different symmetries,

ﬁ(rlsltl, r252t2) = ,E}*(r252t2, I'181t1) , (11.22)

ﬁ(rlsltl, r252t2) = 48182 5(1’2 —SQtQ, r —Sltl) s (1123)

and while the densities are subdivided in the same way (scalar, spin, eventually, but not in
this case, isospin)

2 1, . - .
pr(ris1,ra82) = i(pt(rl,m)ésm +8¢(r1,12) - G5y5) (11.24)

the decomposition of the spin exchange operators in the particle-particle are not the same as
in the particle-hole, since the bilinear operators recouple all the indexes,

1

’ o _ A
40202P0’1—0’20§—02 - 5 <_5a§aiaza1 + Oghoy 00201) : (11'25)

Tackling directly this form of the exchange operator can be tricky, thus one of the most
practical way to derive the pairing functional is by considering the aforementioned symmetry
properties of the densities in the particle-particle channel and considering that the action of
the spin exchange operator on the density is

~ ~ 1 ~ ~x ~% ~%
> B (ris1,r282)p(x1,281) = 5 [=PA(r151,1282) 7" (r1, 12)p" (11, 12) — 87 (r1,12) - 8(r1, 12
51,52

(11.26)
that is -1/2 on scalar density and 4+1/2 on spin density. Giving the final energy density as

£ = 7“1)(1 — x})p?(r) + ti)(l + 2)8%(r) (11.27)
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11.5.3 Surface—Volume

In practical calculations the standard is often considered to be the above calculated local and
zero-range [43], however there is a further sophistication that can be employed that is the
introduction of a form factor that with the density dependence emulates a surface surface or
volume predominance of the pairing interaction:

Voair(r1,12) = >V, <1 - a’ﬁ?) §(r1 —ra), (11.28)

t=n,p

with R = (r; +r2)/2, po = 0.16 fm~3 is the saturation density. If a = 1, we have a surface
pairing force, if & = 0 we have a volume pairing force; often, « = 1/2.

11.6 Exercise

Read a lot of the provided literature.
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12.1 Nilsson orbitals

A very valid alternative to describe properties of nuclei is represented by phenomenological
potentials. In Fig.12.3 some simple phenomenological potentials for a schematic 1D case.

The potential that resembles the most the result of an HF calculation is the Wood-Saxon.

VW) =1 [1 + exp <r _aRO)] h (12.1)

the problem of this potential (see computational class) is that it is very difficult to find
analytical solutions and one need to solve it numerically. An alternative is to use the HO
potential. For the case of no spin-orbit the solutions are known analytically. We follow here
the derivation of Nilsson.

We consider the phenomenological Hamiltonian to describe nuclear properties
h2

1 2,2 . 2 2
H=—50 A+ s Muwgr® = CL's = D (17 = ()w) (12.2)
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Figure 12.1: Phenomenological potentials.

the ;1 "s spin orbit term has been added to reproduce magic numbers. The term [? has been
added to reproduce the mode accurate Wood-Saxon potential. While (I?)y = N(N + 3)/2
has been added to avoid too much compression of the shells due to 2.

We can easily apply it to the deformed case (assume axial symmetry along z)

h? [ 62 9? 0? Mo, o0 9 2.2 . 2 2
H——m (81:2+03,/2+322>+2[ML($ —i—y)—i—wzz]—Cl S_D(l _<l >N)(12'3)

where

W, = wy (1 - gg) (12.4)

Wi = wp <1 + 1€> (12.5)

the distorsion parameter € is defined as € = (w; — w,)/wp. For € > 0 (< 0) we have prolate
(oblate) shapes. The problem can be solved in the two extreme cases: very small and very
large deformation

12.1.1 small ¢

We consider very small deformation so that we can write the hamiltonian as ng " + ek’ that
reads

M ,4
eh! = e—Zwd(x? +9° — 22%) = —?wggsr2Pg(cos 0) (12.6)



the eigenfunction of a pure spherical case would read

$(N1sjQ) = Rui(r Z NRINGIE (12.7)

here j = I+ s and 2 is the z-axis projection of j. In the spherical case each state is (2j+1)-fold
degenerate. This degeneracy is removed by the small perturbation that we can calculate at
first order as

302 —j(j+1)

3G +1) 12

1
(N1sjQleh'|N1sjf) = ceMud(r?)

(See exercise). We see that the states with < j move down in energy and thus they are
favoured compared to states with € ~ j that get a much smaller contribution. For oblate
deformation the opposite is true.

12.1.2 very large ¢
We now consider very large deformations we can consider the corrective terms % and [ - s as
perturbations.
We thus split H into H,s. + h’ where
h? M

_ e 2 2 2.2
H,e = 2MA+ 5 [wi (2 + %) + w22?] (12.9)

Where A’ contain terms that play a minor role as I? or [ - s We introduce stretched coordinates
as

1/2 1/2 1/2
X:x<M};uJ') 7n:y<M;jl> ,fzz(M:Z) (12.10)

so we can rewrite H as

1 2 2 ., 1 8
Hosc—2hLUL|:—<82+82+(X +77)>:|+2th( 852—’_5) (1211)

We no go to cylindrical coordinates (p, ¢, &) where

X = pcos¢ (12.12)
n = psin ¢ (12.13)
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We can write the Schroedinger equation as

1 19 o0 10 L\ 1 0?2
3 (e~ g )t (€)oo

We now separate the ¢ part by assuming our solution to be ¢ = U(p)Z(§)®(¢). We have

82
—87)2<1> =A¢ (12.15)

with solution ® = e**?. This is the consequence of [L,, H] = 0 and L, = A is a constant of
motion. For the £ part we get

2
o, (—552 ; 52) 2(¢) = B.2(¢) (12.16)

this is 1-D HO equation E, = fw,(n, +1/2). And E=F, + E..

1 19 a0 A
L 2 , - E 12.1
inwL( pappap+p2 +p>U(p) 1LU(p) (12.17)

We assume a solution form U = p‘A|e_p2/ 2W (p), so replacing in previous equation we get for
W

1 E
W (Al + 1= )W - 2 <|A\+1—7mi>W=0 (12.18)

where z = p?. The solution of this equation is called hypergeometric function

1 E
W:F<2(]A|+1—

L .

with ELIth(QTLp—}—‘A|+1):th(TLL—Fl).

We can now summarise the results as

1 3
FE = hw, (nz + 2) + ﬁwj_(nl + 1) = hwyg <N+ 5 + %(TLJ_ — QTLZ)) (12.20)
_IA .
U =Ce €2H,_(&)pMe 2R <m2|’ IA] + 1; p2) e (12.21)
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We notice that we have a shell structure at € = 0;0.6; 1, —0.75. On top of this we need now to
calculate the correction induced by the other term we have left apart. We can calculate them
as a perturbation

(Nn,AX|l - s|Nn,AY) = AX (12.22)
(anAE]llenzAE) =A’ 420, +n,4+2n,+n, (12.23)

The effect of the inclusion of these terms is to remove the 2 x (n; + 1)-fold degeneracy and
only a two fold (Kramer) degeneracy is left (time reversal conserving).

In the intermediate region these approximations do not hold anymore and we have to solve the
problem numerically. We can expand the problem over the basis |[NIAY, but now [j,, H] = 0.
So we have Q = A+ 3

A SN
& ,_Qa,';"..;\\ _‘.“\\‘\\\\\ﬁ.{\‘\» ; ..
- — .- WY
' ol S - \“‘.\\ Y :'
2N \\‘..,\s\\.‘“\\\.\\ N
= o

~~” “.
>
X\ NN

S
o=

= ow 2 : = C izl Lawmanie agcillator po-

Figure 12.2: Nilsson orbitals in the limit of very large deformations. Taken from [44].
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Figure 12.3: Nilsson orbitals. Complete calculation. Taken from [44].
12.2 Particle rotor-model

Rotation is a typical example of collective motion.By looking at occurrence of rotational bands

one could determine if the nucleus is deformed or not. In practice pure rotational bands are
never realised. )

h
Er= oI +1) (12.24)

If exact the ratio E(I = 4) : E(I = 2) = 3.33, only in few nuclear system this is almost the
case: rare earth region. We assume that the Hamiltonian can be written as H = H;p: + Heop-
The intrinsic part is

1
Hiy = Z eka,tak + 1 Z ﬁklmnaLa;anam (12.25)
k klmn

this is a microscopic description of valence particles around Fermi energy (HF maybe). Here
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ey, are the single particles energies in deformed Nilsson potential (for example). The collective
part reads

3 2
R;

Hcoll = ﬁ
1 )

(12.26)

1=

R; are the body-fixed collective angular momenta of the core. Given the angular momentum
of the valence particle j they form I = R+ j is the total angular momentum. Eliminating R
we can rewrite the Hamiltonian as

72 i2 I i:
Hou=Y ot + 2 - 22 (12.27)

The first term acts only on the degrees of freedom of the rotor; the second on the coordinates
of the valence particle and the last term is the ’Coriolis’ term.

Let’s assume axial symmetry so that Z; = Zo = Z. No rotation in q.m. along the symmetry
axis (3-axis). It follows that the 3-component of of the total angular momentum I has to be
equal to the 3-component of j

K=Q (12.28)

‘We thus obtain

12_12 ‘2+-2
3_|_Jl J32

H =
coll 9T 9T

1, .
- f(hh + I2j2) (12.29)

The recoil term acts only in the intrinsic coordinates. We can neglect if we adjust the intrinsic
degrees of freedom to experiment!

To solve such a system we can consider 3 limiting cases:

1. strong coupling limit: the odd particle adiabatically follows the rotation of the even core.
It is realised if the coupling to the deformation is much stronger than the perturbation
induced by Coriolis.

2. weak coupling limit: very small deformations, the odd particle moves on spherical shell
model levels only slightly disturbed by other effects (quadrupole vibrations for example)

3. decoupling limit: the Coriolis is so strong that the coupling to the deformation of the
core can be neglected
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pling; (b) rolational alignment. Y

Figure 12.4: Schematic representation of the particle-rotor coupling. Taken from [45]

12.2.1 Strong coupling

The strong limit is realized when the Coriolis term is small compared to the level splitting of
single particle energies. This is the case

e large deformations, because of the splitting in Nilsson Hamiltonian is proportional to
deformation.

e Coriolis is small. Small values of j or low spins [.

This limit is called strong coupling or deformation aligned because in the case K is a good
quantum number. The angular momentum j os the valence particle is strongly coupled to
the motion of the core. In a semiclassic picture j precesses around the 3-axis (left panel of
Fig.12.4) Since Coriolis is the only term that couples the rotor degrees of freedom with the
intrinsic one, we can factorise the w.f. in terms of inner degrees of freedom ¢% and rotor w.f.

IIMK)

We assume that (adiabatic approximation) that the rotational motion has no influence on the
inner structure. The projection of the total angular momentum K along the symmetry axis
is a good quantum number. The term j? + j2 depend only on single particle w.f. ¢, and they
are thus constant along the rotational band. We ignore them also at first order.

The total energy reads

2

E]K = |6V )\’ + —= 2T

[I(I+1)— K?] (12.30)
Usually we should have quasi-particle — pairing. The lowest possible spin is Iy = K. The
band-head E(Ij) is not precisely ex but slightly shifted especially if we take into account the
terms we have neglected. The spectrum has a spacing of Al = 1 and its moment of inertia is
that of the rotor
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MeV ! (12.31)

The energy of the band should be corrected by the Coriolis term I - j.

If we take into account Coriolis we get a contribution in first order perturbation theory only
for K =1/2 as

E --:h—QiI LY oy 12.32
Coriolis 2Ia + ) ( ) ( : )

where a' is the decoupling factor. This introduces a small distortion to the rotational spectrum.
This term is used to explain the distortion observed in K=1/2 band. The Coriolis term can
also explain the coupling between K=1/2 and K=-1/2 bands.

12.2.2 Weak coupling

As said before the strong coupling breaks down if Coriolis is not negligible compared to single
particle energies belonging to different K values. (11, is the total w.f. of the system )

(Whtre sl Hoor Whiic) = ~ 2T+ 1) = K(E + Dldaliili) (12.33)

if [p4) =3, j C*njQ) is decomposed on eigenstates of j2; we can calculate the matrix element
as

Whiiea ool = — 2 3 1Cud PVIT+ 1) — KK VGG + 1) — 9@+ 1)(12:34)
nj

so the matrix elements are large for large values of I/K and j/Q. That is for example the
case of levels with large values of j and small 2 are involved.

In the current weak limit, we neglect the K-splitting of the intrinsic degrees of freedom (small
deformation). In this case [j2, R?]' commute with H;,;. The corresponding spectrum will
look like

1

with [j — R| < I < j+ R. and R = 0,2,4,... Why only even number? Because it turns out
that the Hamiltonian of a rotor has an extra symmetry R = e/"™/1. See Bohr-Mottelson book

'Remember that R =1 — j
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for details. This symmetry is equivalent to a reflection with respect to the plane 2,3-plane
together with a parity transformation.

This means that for each rotational quantum number R, j can have 2j+1 orientations without
changing the energy of the system. The splitting of these levels can be taken into account by
first order perturbation theory. Bhwo(il|r2Yao|it ).

E(I) = Eipt + %R(R + 1) — Bhwo (W2 Yoo i F) (12.36)

For each orientation of j there is a whole rotational band of the core with AR = 2. The levels
with the highest values of [I=R+j for a given energy correspond to the yras levels. These
levels are connected by strong E2 transitions They are called favoured states and their energy
is given by

E(I) = By + %u I —j+1) (12.37)

The states lie on a parabola with minimum I ~ j.

12.2.3 Decoupling limit

In this case we can not neglect the splitting of levels in the intrinsic part. We write the
Hamiltonian as

h2
H:Hsp—i_ﬁ

(I? + % —2I - 5) (12.38)
We want to minimise the total energy so for given I and more or less fixed j. The I - j
of the rotor tries to align the intrinsic spin j with the total spin I. The latter is in most
cases perpendicular to the symmetry axis (3-axis) There will be a tendency toward a large
perpendicular component of j contrary to the aligned case where j is quantised along the
symmetry axis. See right panel of Fig.12.4 We get

2

=104 1) 45+ 1) — 20K + ()72 (1 n ;)} (12.30)

where we consider for example j=13/2 and Q = K = 1/2. Why i;3/5, since this is intruder
state and it is 'uncoupled’ to surrounding orbitals of different parity.

We thus observe that if we take the band with I = 5,7 + 2,5 + 4, ... in the aligned case. the
spin projection on the rotation axis equal j and the total rotational energy can be written as
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2

E = %[I(I+1)+j(j+1)—2[a]
2

h
h2
— 27 [R(R+ 1)] + const

with R = I — « describes the collective motion.

12.3 Exercise

Prove the relation

1 302 -5 +1)
NisjQleh/|NlsjQ) = —eMwd (r?) —— > ~2
(N1sjQUeH |N1sj€) = GeMu(r?) =2 05
where
M2 2
eh! = eggwg(mj +y? —22%) = —nggerPg(cos 0)

1
52

O(NIsj)(r,0) = R(r) Y Ol Yia(0)x
AY

(r2> = /drr4R%W(r)
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13.1 General Considerations on HFB Solvers
13.1.1 Strategies for Solving the HFB Equation
Reminder
[H,R] =0 (13.1)

Two main methods to solve the HFB equation

e Non-linear eigenvalue problem in configuration space (=basis)
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Initialize density R = R(©) (that is, p©) and /i(o));
Use these densities to compute the HFB matrix at O-iteration H(©);

U©
— Diagonalize H(® to obtain eigenvectors ( v >

— Calculate new densities

oD Z YOy OT (1) Z @07

— Use the new densities to recalculate HFB matrix at 1-iteration H ()

— Repeat until densities (or other relevant quantities) do not change.
e Gradient method based on the Thouless theorem in configuration space

— Initialize Bogoliubov transformation W( (hence the U(©® and V()

— Calculate generalized density R(® from W and from there the HFB matrix at
0-iteration # (¥

— Compute Z = in[R©, H )] with n < 1 (until convergence, the commutator is not
Z€ero)

— Construct new iteration of Bogoliubov matrix by
R =RO 44z RO

and recalculate the HFB matrix at 1-iteration H(%)

Repeat until nothing changes

Note: for the HF+BCS equation, the imaginary time method can also be used.

e Basis expansion of HFB wave functions

( Y —h*A+A > ( % ) = Eu( % ) (13.2)
with
( ‘ZZ((:Q ) = ]:b1< Vo )S%("“U) (13.3)

e Direct r-space discretization of HFB equation

d3 /Z T‘O' ’I"O' )\500-/ A("'O’, TUI)(SO'O’/ ,U« TU)
TU ro )500’ —h(ra, TOJ) + )‘50'0/ H TU)

()= e

e Lattice representation of coordinate space (Lagrange meshes, spline meshes, etc.)
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Figure 13.1: Convergence of a HFB calculation for **Pb, both as a function of the number of
shells in the HO basis (black circles, lower x-axis) and as a function of the mesh size in coordinate
space (red squares, upper x-axis).

13.1.2 Types of Energy Functionals

Popular EDF in nuclear physics: Skyrme and Gogny

e Skyrme potential is local, zero-range
Valyrme (71, 72) o 8(1r1 — 72)8 (11 — 71)8 (19 — 75) (13.6)

which leads to a functional of the local density p(r) and derivatives 7(7), etc.,
Elp) = /d3fr H(r), H(r)=CPPp>+CFpr+... (13.7)

e Gogny potential is local, finite range
Veogny (11, 72) oc e~ T2 /12 50y — p8)6 (g — 1) (13.8)

which leads to a functional of the non-local density p(r,r’),
Elp] = /d3r/d3r’ H(r,r'), H(r,r') = C"pr(r,r')e—(T_rl)Q/“2 +... (139
Next generation of EDF

e Three- and Four-body potentials V (ry,ra,73), V(r1,12,73,,74)

e Momentum-dependent potential
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Possible computational bottlenecks

e In configuration space, one needs to compute tensor contractions of the type

> Baveapas (NN) or >~ Bavedefpevpse (NNN)
abed abcde f

with a = (n,4,j,m) or a = (ng, ny,nz,0),...

e In coordinate space, one must perform multi-dimensional integrals and differentiation
such as

/dgr/d3r’V(r—r’)p(r,r’)p(r’,r) and V-Vp(r', r)

13.1.3 Symmetries (and lack thereof)

13-1: Conserved symmetries and block structure

For any self-consistent symmetry S, the density matrix and pairing tensor,
and the Hartree-Fock potential and pairing field, can be put into a block
diagonal form in the basis of the eigenstates of the symmetry operators.

Usual example: if rotational invariance is a self-consistent symmetry, then
[, 3% = [, 1] = 0 (13.10)

Define a basis of states nejm(r) that are eigenstates of 72 and /2. In that basis,

hag = h{? (13.11)

Therefore, diagonalization of the HF (and HFB) matrix can be performed by block, which
is advantageous since the time of diagonalization scales like O(N?3) with N the size of the
matrix.

Estimates of runtime for full HFB solution on current architectures

Additional advantage: each s.p. or q.p. states gets a label corresponding to the conserved
quantum numbers associated with the symmetry.
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1D (spherical) 2D (axial) 3D (triaxial)
<10s < 10 min < 10 hours

Table 13.1: Time to solution for HFB equation in a large HO basis (Ny = 20) for the ground-state
of an even-even nucleus with a Skyrme force.

13.1.4 Configuration Space

Choice of basis functions sometimes matter

e Physical wavefunctions of the nucleus should fall like e=*" for large r but eigenfunctions
of the HO behave like Gaussians (no matter which coordinate system) and do not have
the proper asymptotic behavior

e On the other hand, eigenfunctions of a finite potential (square well, Woods-Saxon, Nils-
son) are mostly non-localized (=continuum states) and may not be adapted to describing
a well-bound nucleus with good precision

e Basis functions centered at the origin (HO, WS, square well, etc.) are not well adapted
at describing very deformed shapes (fission, reaction)

Neutron density in Mg

1075
T T T T T T
3 -1800+ .
3 —@— B=0.5,N=16 —@ p=1.0,N=16
10°4 -O- B=0.5,N=20 ~J- B=1.0,N=20
i — -@ Pp=05,N=24 -H- P=1.0,N=24
£ Box T -1802
£ 105 radius Z
—=—HO basis - I [T
T 1071 e HObasis-N=16 | S 1804
o —A— HO basis - N=20 | o
4 —v— HO basis - N=24 I [T
o —<—HO basis - N=28 ",I T 1806 .
1074 —»— WS basis "I - ﬂ-_fi;:i;:. a8
T T T T T T i »':::l":'.-'-":""\' L Al 1
L | L | L | L |
0 10 20 2.0 2.2 2.4 2.6
Radius [fm] Oscillator Length b, [fm]

Figure 13.2: Left: Radial density in *°Mg as a function of » computed by expanding the HFB
solution either on the HO basis or on the WS basis. Right: convergence of the HFB energy as a
function of the HO basis characteristics for a very deformed configuration in 20Pu ((Qa0) = 200
b, (Q20) = 50 b?)

Asymptotic behavior of wavefunctions especially relevant for reaction theory, not so much for
structure.
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TECHNOLOGICAL TRENDS -
SCALAR PROCESSORS

1000 ? . .
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Figure 13.3: Evolution of Flops/socket as a function of time. The traditional Moore’s law has

been broken already 10 years ago...

13.2 Algorithms, Optimization and Parallelism

13.2.1 Reminder on Parallel Computing

CPU speed has not improved significantly over the past decade: gains in computational power

have come almost exclusively from an increase in parallelism.

Two different types of parallelism (to simplify)

e Shared memory parallelism (OpenMP, Pthreads) — Different CPU (typically between 4

and 24) share the same block of physical memory.

— Advantages: usually implemented via pragmas — commented lines in the source

code that are interpreted only if the code is compiled in a certain way.

— Drawbacks: scalability is very limited. API not always consistent

e Distributed memory parallelism (MPI) — CPU are located on different chips that do not
have access to the same memory. Explicit communication to exchange data is needed.

— Advantages: scalable and programmer is in control of what (s)he is doing

— Drawbacks: requires an implementation (=library) and adding in the source file all

instructions needed to do the communication
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‘— m—.
Figure 13.4: Left: Distributed memory parallelism. Right: shared memory parallelism.

13.2.2 OpenMP

Program test_OpenMP
Implicit none
Integer :: i ,N
Integer, allocatable :: A(:)

N = 10000000
Allocate (A(1:N))
Write (x, ’ (” Hello.World_.in_serial .region”) )

!$SOMP PARALLEL SHARED(A,N) PRIVATE(I)
1$OMP DO
Do i=1,N
A(i) =1
End Do
1$OMP END DO
1$OMP END PARALLEL

Open (55, file="toto.dat’ ,form=’"formatted )
Write (55 ,%) A
Close (55)

End Program test_OpenMP

How it works:

e OpenMP capabilities are inserted in the form of comments that are only interpreted
when the code is compiled with specific flags

e Until the !'$0MP PARALLEL, the code is executed serially as usual

e Between !$0OMP PARALLEL and !$0MP END PARALLEL, the code creates several threads
(controlled by the environment variable OMP_NUM_THREADS) that have all access to the
same variables. In our example, work to set A; = i for a vector of size N is divided
between available threads. Both the vector and its size are shared by all threads (public
variables), while the running index is specific to each thread (private variable).
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13.2.3 MPI

Program test_MPI
Include ’mpif.h’
Integer :: mpi_err, mpi_size, mpi_rank

Call mpi_init (mpi_err)
Call mpi_comm size ( MPLCOMM WORLD, mpi_size, mpi_err)
Call mpi_comm_rank (MPLCOMM WORLD, mpi-rank, mpi_err)

If (mpi-rank.Eq.0) Then

Write (6, (” The_master_says_Hello”) ")
Else

Write (6, (" The_slave” ,i4,” _is_sulking”)’) mpi_rank
End if

Call mpi_finalize (mpi_err)
End Program test_ MPI

How it works:

e The code must be compiled with calls to proper libraries. Typically, MPI installation
provides a wrapper such as mpif90 or mpif77 which can be used instead of your favorite
compiler.

e Run the code by specifying the number of MPI tasks with something like
mpirun —np 4 test_ MPI

e At execution, everything happens as if the executable were cloned in np copies

— Each clone is independent of the others to start with

— Use calls to basic MPI routines to access process number in source code and enable
communication among processes

— Beware of naive statements such as write(6,*): all processes will try to write to
the same standard output...

e When coding, always imagine what the code would/should do if it is run by the process
number [something]

e More advanced routines allow the partitioning of all available processes into specific
groups (=communicators). A given process may belong to different communicators.

13.2.4 Optimization

Loop nesting - Memory storage of arrays depends on programming language: accessing
large multidimensional arrays in nested loops must be coded differently in Fortran and C
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Fortran C

sum_ A = 0.0 sum_ A = 0.0;
do k=1N for (i=1; i<=N; i++)
do j=1N {
do i=1N for (j=1; j<=N; j++)
sum_ A = sum_A + A(i,j, k) {
end do for (k=1; k<=N; k++)
end do { sum_A = sum A + A[i,],k];
end do }

—

Impact of loop reordering on runtime

7.10%{ "
Original
1 104
5.10*
103
|
0 4 Re-ordered
g 10 o
E 3.10% 8o /
/ :
/.
] ]
1.10* e
. /./ o
- om—B [ e
T T T T T
8 10 12 14 16 18

Number of shells

Figure 13.5: Impact of loop reordering on the calculation of the mean-field I'y,,, for a Gogny
potential.

Memory and algorithms - The number of matrix elements (ab|v|cd) for a two-body
interaction in a basis with Ny = 20 shells depends dramatically on the conserved symmetries

1D (spherical) 2D (axial) 3D (triaxial)
scaling ~ N§ ~ N§ ~ N}?
size ~ 1 MB ~ 1 GB ~1TB

Table 13.2: Characteristics of matrix elements needed to solve the HFB equations for different
symmetries

Consequence: for 2D and 3D geometries, it is not efficient to precalculate the matrix elements
and access them when computing I';; and/or A;;.

o Alternative 1: calculate fields on-the-fly (CPU-dependent)

e Alternative 2: use large-scale parallelism (communication-dependent)
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Algorithms - Consider the mean-field potential for a generic (but separable) two-body force
in Cartesian coordinates
Lij =Tnm, m=ngny,n, (13.12)

A naive calculation could involve the (utterly horrible) code below

do nx=1,N
do ny=1,N
do nz=1,N
do mx=1,N
do my=1,N
do mz=1,N
do npx=1,N
do npy=1,N
do npz=1,N
do mpx=1,N
do mpy=1,N
do mpz=1,N
gamma (nx,ny,nz,mx,my,mz) = gamma(nx,ny,nz,mx,my,mz) &
+ twobody (nx,ny,nz,npx,npy,npz,mx,my,mz, mpx,mpy,mpz) &
* rho (mpx, mpy, mpz,npx,npy , npz)
end do
end do
end do
end do
end do
end do
end do
end do
end do
end do
end do
end do

What is wrong here:

e 12-nested loop will be extremely slow
e 12-dimensional arrays will require prohibitive storage, see table 13.2
e no advantage taken of separability of interaction

e no advantage taken of parallelism

Use the fact that the potential is separable. Example: the Gogny force

, _(r=r'y? _@=dh? @) (=2)?
Vir,r)=e »w =e #¥ e #¥ e u (13.13)
therefore
Fpm = Z anngcmxm;: Z Vnyngmymg Z Vnzn’zmzm’zpmn (1314)
nh,m/ nymy, n,m/

158



Separate contributions from each direction as follows (red indices imply summations, but not

(13.15)

(13.16)

(13.17)

contractions)
Kgizxfmyny = Z Z Vienmaml, Prgmymanon,ns
n,m/, nzmz
Z;:)ZITZjnymy = Z Z Vnyr%mym@yﬂg;:?zzmyny
'nglm’u NyMy
I—m’zmlzn;m;”;m; = Z Z Vnmn/ mgm! Z;%:Zin;wz;!
G(:,:) = 0.0
do nx=1\N
do mx=1,N
do ny=1,N
do my=1,N
do npz=1,N
do mpz=1,N
D=0.0
do nz=1,N
do mz=1,N
i = indexv (mx,my,mz)
j = indexv(nx,ny,nz)
D =D + V(mz,nz,mpz,npz) * rho(j,i)
end do
end do
Y (my, ny ,mpz, npz)=D
end do
end do
end do
end do
do IlpZ:]-7N
do mpz=1,N
do npy=1,N
do mpy=1,N
D=0.0
do ny=1,N
do my=1,N
D =D + V(my,ny,mpy,npy) * Y(my,ny,mpz,npz)
end do
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end do
Z(mpy ,npy ,mpz, npz)=D

end do
end do
end do
end do
do npz=1,N
do mpz=1,N
do npy=1,N
do mpy=1,N
do npx=1,N
do mpx=1,N
i = indexv (mpx,mpy,mpz)
j = indexv (npx,npy,npz)
G(i,j) =G(i,j) + V(mx,nx,mpx,npx) &
*Z (mpy, npy ,mpz, npz )
end do
end do
end do
end do
end do
end do
end do
end do

Scales like O(N?®)

Parallelism - Continue on the example above, but take advantage of the fact that several

loops can be parallelized.
G(:,:) = 0.0

! rank of the current CPU in the group dedicated to the mean—field
! calculation

Call mpi_comm_rank(group_.comm, group.rank, mpi_err)

! Size of said group

Call mpi_comm _size (group.comm, group.size, mpi_err)

do nx=1,N
! Conditional execution: only for those wvalues of Nz that match
! this pattern do we do the calculation
If (group_rank .Eq. Mod(Nx, group._size)) Then
do mx=1,N
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end do

! Size of the matriz G
buffer_size = NmaxxNmax

! New matriz containing the full matriz G
Allocate (full_G (Nmax,Nmax)

! Combine matrices of each rank into a single one
Call mpi_allreduce (G, full.G, buffer_size , MPI.DOUBLE_PRECISION, &
MPISUM, group_comm, mpi_err)

3500 r r r ;

3000

2500

Time [sec]

2000

! ! \ !
1500 2 4 6 8

Number of MPI ranks

o

Figure 13.6: Acceleration of triaxial Gogny calculations in a large HO basis as a function of
MPI tasks and OpenMP threads.

13.3 Beyond HFB

13.3.1 RPA and QRPA

Recall that the RPA equations for channel v are

(5 S ) () -=(3) e

Aphpri = (€p = )0y Onn + Uiy

with

) (13.19)
Byphp'n' = Opprhie-
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Diagonalizing the RPA matrix in the general case

e h runs over all occupied HF states — possibly including both neutrons and protons states,
say h=1,...,100

e p runs over a set of “relevant” empty states. For sake of simplicity, assume again
p=1,...,100

e Total number of ph states is 100 x 100 = 10*: diagonalize dense (=lots of non-zero
matrix elements) matrices of size 10* x 10%.
Still doable, but RPA misses important correlations for open shell nuclei

QRPA equations for channel v take a very similar form as RPA

(5 ) ()= (50) e

with, this time (Einstein’s summation conventions apply)

AijMV - (E +E)5W5.7V
+ U V,B]UakﬂlUl,uVyk V Vﬁjf)gﬁklvkl,vl};

+ ULUS TapnaUnaUst = Vi Us D ViU (13.21)
BinV: U Vﬂ]vakﬁlWVUyk+V ngizﬁklUl:uUjl

* ok Pl
U Uﬁjvaﬂklvkﬂ/vﬂl +V Uﬁ] Olk’,BlUll,LVVk’
New estimates of the size in the general case

e every index i, j, u, v runs over the size of the s.p. basis — unless the number of
quasiparticles (=eigenvectors) is truncated. Suppose a basis of N = 1,000 states.

e Total number of ij or pv states is now 1,000 x 1,000 = 10°: diagonalize dense matrices
of size 105 x 106,

Simplifications: use self-consistent symmetries (but lose some physics).

13.3.2 GCM and Projection

Particle number projection - Project on both protons and neutrons

1
Bosv = 5 [ den [ doy uens o) Elon.00) (13.22)

with
E(¢n, ¢p) ZE” (orsor)y T =m,p (13.23)
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and

1 1
ET (g, ) = tijpli(p) + f?f(@p}-i(@) - QAZJ(@)@(@)
(13.24)

T’T/ 1 T’T/ T
E™ (o, 80/) = §Fij (‘P/)sz'(SO)
Bottom line: when discretizing the integrals over gauge angle with N quadrature points, you
need to recalculate N? HFB-like energies. Typically, N = 7 is sufficient.

Angular momentum projection - Take a triaxial deformed HFB state |®) and project
on good angular momentum

2I+1
T2

IMK) = / dODL: (Q)R(Q)|®) (13.25)
with Q = (a, 8,7) the Euler angles, D%, () Wigner matrices and R(Q) a rotation operator
defined as R X )

R(Q) — e—ialze—iﬂfye—iylz
For I = 10, you need at least 20 points for each Euler angle (roughly: the number of gauge
angle points is twice the maximum spin), hence a total of 8,000 points, each of them with the
same computational cost as a regular HFB iteration.

Generator coordinate method - Assume simply two collective coordinates ¢; and g¢o.

Example: (q1,¢2) = (Q20, @Q22) (7y-soft nuclei), (Q20,RQ30) (pear-shapes in actinides), etc. If
we have 10 points/collective variable, we get a 10V scaling with the number N of collective
variables.

13.4 Exercises

Exercise 44.

Starting from the HFB equation in configuration space, Eq.(13.2), express the HFB equation in
coordinate-spin space, Eq.(13.4).

Exercise 45.

Assume a heavy nucleus with axial and triaxial quadrupole, as well as axial octupole degrees of
freedom. Suppose you want to calculate the collective excitation spectrum up to spin I = 20.

e Based on the estimates above, how many HFB calculations will be needed?

e How many “rotations in gauge space” (including both particle number and Euler angles)
are needed?

e Assume we want to use a separable interaction (Gogny-like) and a large basis (why?) so
that we use 8 MPI tasks/HFB calculation, and 4 OpenMP threads/MPI task: how many
CPU do you need?

If we want to repeat this exercise for all even-even nucleus that are bound (= 1,000), how many
cores do we need?
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Lecture 14

Open questions in nuclear DFT
[Week 3, day 4]
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Comrinhoed Maiorial

“AN ACCESSIBLE PORTRAIT
OF & ERILLIANT MAN."

—STEPHER HAWEING,
AUTHOR OF A BRIEF HISTORY OF TIME

FEYNMAN'S
RAINBOW

LEONARD
MLODINOW

BESTSELLING AUTHOR OF
THE ORUNKARD'S WALK

A SEARCH FOR BEAUTY
IN PHYSICS AND LIFE

N

Copnrighbed Waierial

Figure 14.1: Feynman’s Rainbow: A Search for Beauty in Physics and in Life, by Leonard
Mlodinow [46].
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14.1

Precision frontier

Nuclear binding energies (masses)
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1) “Remember that all models are wrong;
the practical question is how wrong do
they have to be to not be useful”

G.E.P. Box and N.R. Draper

Empirical Model Building and Response
Surfaces

(John Wiley & Sons, New York, 1987)

> Error Estimates of Theoretical Models: a Guide:
J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard,
J. Phys. G: Nucl. Part. Phys. 41 (2014) 074001
» Enhancing the interaction between nuclear experiment
and theory through information and statistics
D.G. Ireland and W. Nazarewicz
J. Phys. G: Nucl. Part. Phys. 42 (2015) 030301

Jacek Dobaczewski //( l )
. < . ik 19/28
UNIVERSITY \%’k JYVASKYLAN YLIOPISTO & = i ' A, j s Hﬂl
UNTVERSITY OF [YVASKYLA o=
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14.2 Density functionals for matrix elements

Collectivity

beyond mean field, ground-state correlations, shape
coexistence, symmetry restoration, projection on good
quantum numbers, configuration interaction, generator
coordinate method, multi-reference DFT, etc....

l

E = (T|H|¥) ~ f drd7’ H(p(7, 7))

True for T o) = (Tlat(7)a(r)|P)
interaction (¥|®)

(U, | F|Wy) f A7d7! H(pia(7, 7))
(T1lat(7)a(F')|Py)

l

for po(7,77) =

(U1 W)
Jacek Dobaczewski //( l J
d g s P 1 89/95
U NIVERSITY W 'J\’\/ASKYLJ'\N YLIOPISTO Ey: G e e : T s W
UNIVERSLLY OF JYVASKYLA & ; =

In order to bring forward the origin of singularities in energy kernels [47, 48, 49], it is instructive
to recall principal properties of the standard GWT approach. Let us start with a one-body
density-independent operator P = Z FwaTa] Its off-diagonal kernel (the matrix element
divided by the overlap), can be calculated with the aid of GWT, and reads [50]:

(V| F|W)
QD -3 Fale= 3 R (14.1)

where L
L (Yaga4(V)
pji = @ @j = =

(W]w)
denotes transition density matrix. Therefore, its matrix element between the unprojected
state |¥) and AMP state [IMK) = Pi,;-|¥) can be calculated from

: (14.2)

Fiug = (U|FPL|®)
21 +1 x .
- B;/dQD{WK(Q)me), (14.3)
where ol 11
Pl == [ Dhix(@R() a0 (14.4)

is the AMP operator, D}, -(Q) is the Wigner function, and R(2) = e~iodz g=iBlye=iv: gtands
for the active rotation operator in space, parametrized in terms of Euler angles = (o, 3,7),
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and M and K denote the angular-momentum components along the laboratory and intrinsic
z-axis, respectively [51, 52].

The immediate conclusion stemming from Eqs. (14.1)—(14.2) is that the overlaps, which appear
in the denominators of the matrix element and transition density matrix, cancel out, and the
matrix element (\IJ|F|\11) of an arbitrary one-body density-independent operator F is free from
singularities and can be safely integrated, as in Eq. (14.3).

Let us now turn our attention to two-body operators. The most popular two-body effective
interactions used in nuclear structure calculations are the zero-range Skyrme [53, 54] and
finite-range Gogny [55] effective forces. Because of their explicit density dependence, they
should be regarded, for consistency reasons, as generators of two-body part of the nuclear
EDF. The transition matrix element of the two-body generator reads:

(U|Vap|T) = Z Vit (9] (¥aj af ayay | ), (14.5)
'ijl

where ‘_/z-jkl [p] denotes the antisymmetrized transition-density-dependent matrix element. Gogny
and Skyrme effective interactions both contain local terms proportional to p” which, in the
MR DFT formulation, are usually replaced with the transition (mixed) density p” — p" [56].
Such a procedure, although somewhat arbitrary, is very common, because it fulfills a set of
internal consistency criteria formulated in Refs. [57, 58]. These include hermiticity, indepen-
dence of scalar observables on the orientation of the intrinsic system, and consistency with the
underlying mean field. The alternative way of proceeding is to substitute density-dependent
terms with projected density [59] or average density [60]. These scenarios do not fulfill all the
consistency criteria and will not be discussed here.

Evaluating the transition matrix element, Eq. (14.5), with the aid of GWT, one obtains,

L R T
——=— = =) Viulp | a]aj way
w12
+ Ia;Lakl Ia;rall — Iajall Iajakl> ) (14.6)

1
Furthermore, for particle-number-conserving theory, contractions (:L;ra;-F and a;aj, vanish, whereas
the remaining two contractions give products of two transition density matrices,

U|Vop|P) .
H\I“I/’ - Z Vit 18] (Pribij — PiiPrj) (14.7)
< | Ukl
or
(UVaal¥) _ L§~p o ((Wlafar] ) (F]afalP)
Ty 4 Z ikl [P] U2
(V[ ) s (V] ¥)
(Ulafay| ) (Vo] ag| D)
- W) ! : (14.8)
that is, the transition matrix element reads
.- 1 _ (Ulaf ap| ) (¥|ata|P)
UVopl¥) = =Y Viulp ! — ) 14.9
(U[Vop| W) 22 ikt (7] () ( )

ijkl
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This defines the matrix element between the unprojected and AMP states,

21 +1 N N
Vi = g [ 40Dk @)@ nlD) (14.10)
We note here that, because of the density dependence of the two-body interaction, the analogue
the first member of Eq. (14.3), that is, VA3 = (¥|Vap Pl ;|¥) is not valid. Nevertheless,

expression (14.10) constitutes a consistent definition of the matrix element.

At variance with the one-body case discussed above, the integrand in Eq. (14.10) is inversely
proportional to the overlap, thus containing potentially dangerous (singular) terms. The
singularity disappears only if the sums in the numerator, evaluated at angles 2 where the
overlap (¥|W) equals zero, give a vanishing result; such a cancellation requires evaluating the
numerator without any approximations or omitted terms. An additional singularity is created
by the density dependence of the interaction.
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14.3 Effective theory of the DFT and gradient expansions

Degrees of Freedom Energy (MeV) Q An eff ective thEOI'y (ET) isa
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e captures what is physically
relevant in a given domain.
N0 U The most appropriate description
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language of quantum field theory

Physics of Hadrons

[N
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studied.
U Objective reductionism
8 .
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Protons, Neutrons arrows of scientific explanation.

O Emergence (Anderson): “at each
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Physics of Nuclei
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Mo Eamens understanding of the new
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We regularize the zero-range delta interaction using the Gaussian function,

‘%
Tl o

d(r) = lim g4(r) = lim

a—0 a%O(a\f)

Then, the resulting central two-body regularized pseudopotential reads,
4
V(rirg;rirh) = Z PO (k' k)5(ry — r1)d(ry — 75)ga(r1 — 72),
i=1

where k = (V1 —V3) and k' = 5-(V} — V) are the standard relative-momentum operators,
and the Wigner, Bartlett, Helsenberg, and Majorana terms are given by the standard spin
and isospin exchange operators, P1 =1, P2 Pg, P3 = PT, P4 = P P

To give a specific example, up to the second-order, that is, up to the next-to-leading-order
(NLO) expansion, operators O;(k’, k) read

A ] 1 ] * ] *
Oi(k’, k) = Ty + 17" (k2 + B2) + TR -k,
where T; ,gi) are the channel-dependent coupling constants.

V(riryrirh) = §(ry —r))d(ry — r5)ga(r1 — 7o),

gl
’"U>

OAZUC/,IC) _ E (’”)0( )(k/,k)
nj

Differential operators OJ(-n)(k/ , k) are scalar polynomial functions of two vectors, so owing to
the Generalized Cayley-Hamilton theorem, they must be polynomials of three elementary
scalars: k2, k2, and k' - k, or

A~

I = %(k/*Q + k2)> T2 = k"™ k, T?) - (k/*z o kQ)a

1
2

with the condition that only even powers of Ts can appear. In terms of Tl, TQ, and Tg, we
now can define the following differential operators:

Lo: O\ (k' k) = 1,
NLO: 0P (k' k) = T, O (K. k)=,
N2LO: O (K k) = T2+7T2, OW(K. k) =2TT,
Ok k) = T2—12, OV (K. k)=T2

We performed derivations of average energies separately for all terms of the regularized finite-
range pseudopotential. The final result of this derivation is given by linear combinations of
terms of the EDF appearing on the rhs of the following expression,

AL T TL a’ o/ t,.L acvfﬁ
<CnL ’U12 L, an a,Q aa,Q :
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In this expression, Cg;&%f’ﬁ and Tj;aétﬁ denote, respectively, the coupling constants and
terms of the EDF according to the compact notation, where the Greek indices o« = {n,S,v0Jo }
and Roman indices a = {m,I,} combine all the quantum numbers of the local densities p, ()
and derivative operators D, in the spherical-tensor formalism, that is,

T;’(féét,ll _ / dridrs go(r) H[Da,pg, (7‘1)]@ [Dapta(r2)]Q:|0:|0

o 0
TN /drldrg Ga(r) H[Da,pg,(m,rg)} Q[Dapg(rg,m)]Q} ] :
0

They have been obtained using the integration by parts to transfer all derivatives onto the
density matrices, and then employing the locality deltas to perform integrations over two out
of four space coordinates.
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Regularized pseudopotentials vs. Gogny
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14.4 Large-scale Calculations

14.4.1 Fission

Qy (62)

Qy (%)

Figure 14.2: N. Schunck, D. Duke,
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Qy (b)

H. Carr, and A. Knoll, [61].



14.4.2 Multi-reference EDF
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Figure 14.3: Excitation energies of states in the ground-state band of 2?Mg, and B(E2) and
B(M1) values for transitions between them. B. Bally, B. Avez, M. Bender, and P.-H. Heenen,

[62)].
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Figure 14.4: 27 and 47 excitation energies for the Mg isotopic chain calculated with the GCM
method including axial states (red squares), axial+triaxial with J. = 0 states (blue diamonds)

and axial+triaxial with J. = 0,2 states (magenta open dots). M. Borrajo, T.R. Rodriguez,
and J.L. Egido, [63].
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14.5 Take-away messages

e Read current publications. Follow the arXiv. Participate in (or request) a journal club.
e Talk to experimentalists.

e Avoid traps.

Seben Deadly Sins of a
Puclear Theorist

I. My model is better than your model.

II. My model describes data precisely.

ITI. My model has high predictive power.

IV. My model is a final word in nuclear theory.
V. My code is better than your code.

VI. I can extrapolate my model to wherever.
VII. I have no time to evaluate uncertainties.

Jacek Dobaczews EO ?{ |
Shdi 4 R o =, i v\\:l 44/30
UNIVERSITY W %‘"VF JYVASKYLAN YLIOPISTO e : :
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Lecture 15

Students’ questions
[Week 3, day 5]

1. (a) "Why does DFT work "better" (model more accurately phenomena) in
some fields of research than in others? " For example, modelling
electrons seems to be far simpler and more is known about it than
applying DFT to nucleons when they are all fermions. I guess it has
to do with the strong force and (QCD more generally but it would be
nice to get a little more detail on what the specific challenges are
and why these challenges don’t apply to every case of DFT.

and closely connected to this,

(b) "What, if any, are the applications of the theory currently and
what potential applications do you believe it could have in the
future, both in theoretical and experimental physics (and possibly
wider society/industry)? "

2. What would be necessary for DFT to achieve the same level of
accuracy/precision as experiment? Is it bigger computers, more
sophisticated functionals, a more general theory? Or is it a fool’s
errand?

3. my question regards the separation of the energy functional (for
example in Skyrme theory) in isospin, isovector, time-even and
time-odd part:

I would like to have a remarks about the properties of the nucleus
(symmetries and experimental observables) that can be related to the

different parts.

The idea is to clarify me in which sector of the functional is
necessary to work in order to improve its predictive power.
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. I know Nicolas mentioned that HFB could be used for excited states as

well as ground states (by acting on the HFB ground state with some
quasiparticle operator, I think). In practice, what information does
that give us? Can we extract single particle excitations, or
collective nuclear excitations, or just quasiparticle excitations?

. "How can I verify that given multipole moment operators make sense?
What physical properties can I find by applying these operators on a
state describing a nucleus?"

. 1) How exactly the case of even-odd and odd-odd nuclei is handled in
DFT framework (blocking method...)

2) As we know density dependence of the coupling constant is needed
to reproduce saturation density. This lead to spuriousity while
restoring symmetry. Is there any systematic way to construct a
spuriosity-free functional ? (Inclusion of a3-body terms etc...)

. During the course we have discussed phenomenological functionals and
the fact that for each different parametrisation of a such
functionals an adjustment on experimental data is needed. Hence, to
what extend can new experimental measurements of exotic systems
actually help in improving or constrain such functionals? I also have
another question closely related to the first one. Providing that new
experimental values can actually help in further constraining the
different functionals, at present do you have any idea on what
observables would bring the most stringent constraints?

. I don’t know if this question is fully inside of the DFT theory we
have seen, but I am curious about the topic. It is about the fitting
of the phenomenological nuclear functionals.

I was wondering how the values of the constants of the
phenomenological potentials (tO, t1, t2, t3, x0, x1, x2, x3, WO for
Skyrme, Hi, Wi, Bi, Mi, t3,x3, WO for Gogny, etc.) are fitted. That
is to say, usually to which parameters are these interactions fitted?
Are mostly experimental values or can the parameters be fixed by hand
in order to reproduce a certain behaviour? How to choose which
parameters use? And in general, how is the process of the fitting? Do
you have to take into account anything special?

I am currently working with symmetry energies when studying neutron
stars, and it is seen that they tend to have similar values at low
densities, meanwhile at larger densities the behabiour between the
different fittings is different, I supose because at larger densities
one does not have parameters to fit and then one has to extrapolate.
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10.

But could it be some kind of constraint/parametrization in order to
have better behaviours at larger densities? How is this behaviour at
larger densities treated in the process of fitting (if it is
considered)?

I want to know more details about BCS model and Bogoliubov
transformation. Both BCS and HFB include the concept of
quansipaticle. BCS ground state is HFB vacuum. I want to know the
essential difference of these two methods and something about
quasipaticle.

The question is about the interpretation of broken symmetries,
restored symmetries and what does a nucleus "really" look like. The
symmetry-breaking solution of mean-field equations, according to
notes, should be interpreted as an approximation of the wave packet
and not of a true nuclear eigenstate. As I understand, this should be
just the consequence of the fact that this state - not having the
good quantum number of the broken symmetry - actually corresponds to
a linear combination (wave packet) of states with different good
quantum numbers. For example, my pear-shaped Bal44 nucleus on a
mean-field level corresponds to a mixture of states with positive and
negative parity and does not correspond to a nuclear state which can
be directly measured in experiment. By restoring symmetries ("going
back to a laboratory frame") we obtain states with either positive or
negative parity which can actually be directly measured, alongside
with transitional properties between them. Therefore, when we say
that we have measured a nucleus to be pear-shaped, this is truly an
imagination: nucleus as we measure it can never be pear-shaped since
all of its eigenstates have good parity. What we have actually
discovered is that the eigenstates of the nucleus can be used to
build a wave packet which will, for example, have non-vanishing
expectation value of octupole moment operator (this value will come
precisely from the large off-diagonal elements that we have measured;
all diagonal elements should give zero). However, outside of our
apparatus nothing prevents nucleus to be in precisely this wave
packet state - therefore, the nucleus can indeed and for real be
pear-shaped.

After long discussion, my questions would be:

1. Is my reasoning correct? If yes, is this kind of wave packets
somehow treated theoretically? What is their connection with
interpreted wave packets from a MF level?

2. How can this kind of reasoning be extended to the case of

spherical symmetry-breaking quadrupole-deformed nuclei? Are "pancake"
and "cigar" shapes any more or less real than pears? (0f course, I
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11.

12.

13.

14.

15.

16.

know they are way more common.)

1. How EDFs are fit, what are the quantities people care (most) about
when fitting, and why (what are the importance of these quantities)?

2. Are there quantities that work against each other (for e.g. if I
want to get a better overall radius fit I1l have to sacrifice mass)?

3. When doing a mass table calculation, why cant we choose different
EDFs for the region that they are good at and mix the result
together, and usually (what I know of) use a single EDF?

4. A few comments (or point a direction, references) about how to
productively analyze uncertainty when using EDFs

With recent advances in the development of accelerator cards (Intel
phi or GPUs), do you see any benefit to be had in (TD)DFT codes from
using them? The newest generations have more and more local memory on
the board, requiring less data transfer, but I suppose the problem
may not scale well. Thoughts?

"What is the uncertainty of the DFT method? What gives the largest
contribution to it: the unknown form of the true functional, the fit
of the parameters, the numerical errors of computing methods or
something else?"

What are the main observed phenomena in experiments that the nuclear
theory can’t or has difficulties to reproduce?

How is the performance and validity of using a DME-treated density
functional compared to using an ’exact’ one in HF calculations?

Two questions come to mind, and I don’t know which one of them, if
any, would be more applicable. So, you can choose which one will be
discussed.

First, can something like the Bogoliubov transformation be used to
treat phenomena like alpha clustering? If so, is there something
analogous to the BCS approximation in that case?

Second, what happens with pairing when nuclei have nonzero
temperature? Naively we would expect BCS to not work at one point
because it’s like superfluidity and that gets destroyed at
sufficiently large temperatures. Does the same happen in the full
H(F)B treatment? Are there any kinds of pairing that BCS can not
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17.

18.

19.

20.

21.

22.

23.

qualitatively describe?

The question I want to ask the most is if there is any way to extend
mean-field theories so that mesons are treated as real constituents
of nuclei instead of just appearing as classical fields, but I
suspect answering that would take three more weeks at least.

One question I ask myself is about hfb+gcm. If we considere a state
|hfbgem> = £f_i \prod_j \gamma_{ij} |0> and we minimize directly the
energy of |hfbgcm> with constraints on each \prod_j\gamma_{ij}|0>, so
we calculate hfb states at the same time than the gcm state, we can
think that the result will be better than with calculations of hfb
states and then gcm. There is any work on this ? Which kind of
correlation can we obtain?

In your famous paper published in 1984, you introduced
abnormal density \quad \rho to replace pairing tensor which appears
in standard HFB theory. Can you explain their relationship in details
and why you introduced them? Just for convenience in computation or
other deep reasons?

And T am not sure whether such specific question is suited
for discussion class. If not, I would like to discuss something
about Goldstein theorem in spontaneous symmetry broken because even I
read the lecture, I know nothing about what the theorem express.

Can we predict beta decay and alpha decay based on DFT?
If we can, is it only to create excited states, and calculate the
transition matrix element? Or need something correction?

We spoke a bit about asymmetric kernels/matrix elements in the case
of MR-EDF and on a broader picture for symmetry breaking and
restoration, but are there other cases in which those have been shown
to be useful/necessary?

Given that there are hundreds (thousands?) of functionals to choose
from, how do we make the decision of which one to use for a given
physical problem? Are there some functionals which are definitely
better than others? Are there some which should never be used?

Just today, you said something about the impossibility of doing
calculations beyond mean field with two-body potentials that include
density dependence. First of all, I didn’t understand the reason of
that. Moreover, this should means that we are not able to expand the
terms that correspond to the three body interaction after the first
order of perturbation: is it an important limitation of the model?

In fig 14.4 in lecture notes, between N=12 and N=14, it seem that all
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three theoretical lines have higher slope compared to the
experimental result. Can this difference be explained with some
physics argument?
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