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Chapter 1

Numerical methods

1.1 Mesh choice

The choice of the mesh depends on the problem we need to treat. Given a function f(x) defined on a given

domain D, the optimal choice of the mesh is related to the knowledge of the function f(x) (irregularities?

strong oscillations?) and on the domain (finite, infinite?).

For example we could adopt a uniform mesh for a finite domain as D = [0, R] so that h = R
Npoints

.1.

On the contrary if we want to use an infinite domain D = [−∞,+∞], we could use as a mesh the

zero of the Hermite polynomial of order N. This can be very well adapted to treat finite nuclei which are

localised in space although the wavefunctions extend to infinity (exponential decay).

1.2 Numerical derivation methods

The derivative, if it exist, is defined as the limit of the Newton’s difference quotient

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (1.1)

thus the algorithms for numerical derivation are based on the calculation of finite differences coefficients

for the approximation of this quotient.

Forward (or backward) differences

First order of convergence is just the definition of the Newton’s quotient

f ′(x) ≈ f(x+ h)− f(x)

h
, (1.2)

where h is the mesh spacing. Precision is given by f ′′(x)
2 h

Given a uniform mesh, the difference can be calculated with second order accuracy as

f ′(x) ≈ 2f(x+ h)− 3f(x)/2− f(x+ 2h)/2

2h
. (1.3)

Symmetric differences

Symmetric differences are more precise for computational cost, however cannot be always applied (in

proximity of the extremes or singularities). Second order is given by

f ′(x) ≈ f(x+ h)− f(x− h)

2h
, (1.4)

1In some cases to avoid knowing the function at 0 one could shift the mesh of h
2
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and precision is given by f ′′′(x)
6 h2.

Fourth order

f ′(x) ≈ f(x+ 2h)/12− 2f(x+ h)/3 + 2f(x− h)/3− f(x− 2h)/12

4h
. (1.5)

1.3 Numerical integration methods

There are several integration methods with different grades of efficiency and resiliency.

1.3.1 Newton–Cotes based algorithms

Newton–Cotes formulae are a class of numerical integration methods on the mesh that rely on the

approximation of the function to be integrated with progressively higher degree of interpolation. Higher

degree guarantee a faster convergence respect to the mesh size, however are potentially unstable for wildly

oscillating functions.

Midpoint rule

Midpoint rule approximates the function’s integral with a sum of rectangles calculated at midpoint within

the mesh points. ∫ xn

x0

f(x)dx ≈
n∑
i=1

(xi − xi−1)f

(
xi + xi−1

2

)
(1.6)

Trapezoidal rule

The trapezoidal rule approximates the solution of a definite integral as the sum of trapezoid areas over the

mesh points. Is usually the one of the most useful integration routines since it can be used with numerical

functions on the defined mesh (n.b. that does not need to be made of equal step sizes!) without using

the analytic representation.∫ xn

x0

f(x)dx ≈
n∑
i=1

(xi − xi−1)

(
f(xi) + f(xi−1)

2

)
(1.7)

Simpsons’ (or Kepler or Cavalieri) rule

Is based on the third degree of Newton–Cotes formulae, making use of both midpoint and trapezoidal

interpolations. ∫ xn

x0

f(x)dx ≈
n∑
i=1

xi − xi−1
6

(
f(xi) + 4f

(
xi + xi−1

2

)
+ f(xi−1)

)
(1.8)

1.4 Zero Finding

Most of the times we need to find the roots of an equation/ function.

1.4.1 Bisection

The bisection method although relatively slow in convergence is the one of the most robust since we make

very few assumption on the zeros and the shape of the function.

Let’s suppose we want to find the solution of f(x) = 0 within an interval [xmin, xmax]. The basic

assumption of the method is that we have 1 zero within the interval (things can be saved for an odd
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number of zeros). If ymin = f(xmin) and ymax = f(xmax) have a different sign than the zero must be

in between. We take then the middle point x1 = (xmin + xmax)/2. If the function in the middle point

y1 = f(x1) has the same sign as ymin we take x1 as the new xmin. If y1 is already smaller than the cutoff

value of precision ε, than we can stop the algorithm having found the zero. If it has the same sign as

ymax we take it has the new xmax, and we iterate the procedure to the desired precision.

1.4.2 Newton Method

The Newton method could be very efficient if the derivative of the function can be calculated in advance,

either analytically or numerically. The method assumes that the derivative is smoothly varying and can

have problems in the proximity of flex points (where the second derivative cancels).

It is simply the iteration of the following equation,

xn+1 = xn −
f(xn)

f ′(xn)
(1.9)

starting from a reasonable x0 and then iterating to find the root until the desired precision.

1.5 Differential Equations

1.5.1 Numerov

Numerov algorithm is a numerical solution of second order differential equations of the form

f ′′(x) + v(x)f(x) = 0, (1.10)

with a precision of order 6, thus it is particularly suited to solve one dimensional Schrödinger equations.

The above differential equation is soluble step by step considering a equidistant mesh, f at a particular

point x+ h is related to the previous two mesh points in the following way,(
1 +

h2

12
v(x+ h)

)
f(x+ h) = 2

(
1− 5h2

12
v(x)

)
f(x)−

(
1 +

h2

12
v(x− h)

)
f(x− h). (1.11)

Note that f ′′(x) + v(x)f(x) = 0 can admit more than one solution, thus f(x) depends on boundary

conditions. E.g. f ′′(x)+f(x) = 0 could notably be both sin(x) and cos(x). Moreover this equation might

easily give as solution exponential–type functions if not properly constrained.

1.6 Schroedinger Equation

We consider here simple example of Schroedinger equation and how the previous method apply
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1.6.1 Infinite Square Well

We consider as a starting point a simple 1D Schroedinger equation

V (x) =

{
0 0 ≤ x ≤ a
∞ elsewhere

(1.12)

The Schroedinger equation (time independent) reads

− ~2

2m

d2ψ(x)

dx2
= Eψ(x) (1.13)

the solution of this equation is known ψn =
√

2
asin

(
nπ
a x
)
n = 1, 2, 3, . . . and energy

En =
n2π2~2

2ma2
(1.14)

We can use such a simple example to start learning the numerical procedure used to solve more complex

problems.

The Eq.1.13 is discretised on a uniform mesh h using the Numerov method. To start this method we

need to know the behaviour of the solution at the edges. In this case we know

ψn(0) = ψn(a) = 0 (1.15)

You have at least two ways to solve such an equation:

• You propagate a solution from the left and one from the right and you impose matching conditions

on a given point inside the box

ψleft(b) = ψright(b) (1.16)

ψ′left(b) = ψ′right(b) (1.17)

This system of equation is satisfied only for a discretised set of energy values (the eigenvalues).

• We propagate only from the left and we count the number of nodes in the wave-function. We thus

assume that the low eigenvalues correspond to low number of nodes and high energy one to high

number of nodes.

In the present exercise we focus on the second method also known as shooting, but you are free to

explore also the first one (see Ref. [2] for a more detailed explanation of the first method).

Let’s solve the example numerically. We consider

~2

2m
= 20.75 (1.18)

a = 6 fm (1.19)

h = 0.1 fm (1.20)

These are simple value that are compatible with the nuclear case. The choice of the mesh is arbitrary!

You need to check that your solution does not change dramatically when you change it. For h → 0 you

should get the exact solution, but in the realistic case for small values of h the Eqs presented in Sec.1.2

will be contaminated by numerical noise of your machine. The number of digits able to be stored in a
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real mantissa is referred to as precision. High precision refers to the ability to store more information

than low precision. In Fortran 90, this precision is referred to using the symbol p, which indicates the

minimum number of decimal digits which can be stored. The exponent is also stored for a real number.

In Fortran 90, the decimal size of a real number is referred to with the symbol, r, for the range of the

number.

A single precision real number on most computers has a precision, p, of between 6 and 7 decimal

digits, and a range, r, of 37. Thus, numbers as small as 10**(-37), and as large as 10**37 can be stored,

with between 6 and 7 significant decimal digits.

We usually make use of double precision real numbers p ≈ 14, but you can use higher precision as

well. More precision you require more space on disk you will need and the execution time to perform

numerical operation will also be affected.

Warning 1: each language has its own definition of precision so please figure out this element from

the very beginning to avoid surprises!

Warning 2: attention to the conversion from one type of variable to another! Example: a = 1.99

defined as a real number. Let’s assume that I define b as integer and I do the following operation

b = a. The result will be b = 1! this is one of the most common mistakes in computer coding. This

is quite common when using implicit definition of variables so please if you use Fortran start every

code/subroutine with implicit none statement.

The main algorithm, in pseudocode, is the following

set Eup, Edown as extremes eigenvalues.

set epsilon convergence as desired precision.

set Node as the number of nodes you want in the wavefunction you’re looking for

!(finds energy as zero with bisection rule)!

loop over tries until convergence

Etrial=(Eup+Edown)/2

trialwf(0)= 0.

trialwf(1)= 1. !(arbitrarily initialize trial wavefunction)!

!(Numerov Algorithm)!

loop over meshmpoints ix

vx=Etrial/(hbar^2/2m) !(setup Numerov Potential)!

a1=2.*(1. - 5./12. * vx * mesh^2)

a2= (1. + 1./12. * vx * mesh^2)

a3= (1. + 1./12. * vx * mesh^2)

trialwf(ix+1)= ( a1*trialwf(ix)- a2*trialwf(ix-1) ) / a3

end loop over meshmpoints ix

Nodecount=0 !(counting nodes)!

loop over meshmpoints

if(trialwf changes sign)Nodecount=Nodecount+1

end loop over meshmpoints

if(Nodecount > Node)then !(this determines if the wavefuction overshoots or undershoots)!
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Eup=Etrial

else if(Nodecount <= Node)then

Edown=Etrial

end if

if( |Eup-Edown| < epsilon convergence ) exit loop

end loop over tries until convergence

!(renormalize the wavefuction)!

In Fig.1.1 we compare show the energy difference between the eigenvalues obtained numerically by

employing the shooting method and the exact value extracted from Eq.1.14

We observe that till h = 0.01 fm we have a systematic gain in accuracy, then the trend gets more

complicated and we observe that reducing the mesh h does not always increase the accuracy of the

solution. It is finally worth reminding that here we deal only with numerical errors and not with other

errors related to other approximations in the problem that lead to the differential equation we want to

solve!

1 2 3 4
n

1e-12

1e-09

1e-06

0.001
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h=0.0001

Figure 1.1: Accuracy of the first 4 eigenvalues of the 1D square well problem. The mesh h is expressed

in fm..

In Fig.1.2 we show the eigenfunctions of the box for the first 4 eigenvalues.
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Figure 1.2: Wavefunctions in arbitrary units as a function of the number of mesh points (h=0.01) for the

first 4 eigenvalues.



Chapter 2

Skyrme-Hartree-Fock equations in

r-space

In this section we want to analyse in detail how to solve Hartree-Fock equations calculated with a Skyrme

interaction in the case of spherical symmetry. Following the notation adopted in ref. [13], we define the

single particle wavefunction as

ψν(~r, σ, q) =
uqν(r)

r
Yljm(r̂, σ)χq(τ),

Yljm(r̂, σ) =
∑
mlms

〈l1
2
mlms|jm〉Ylml

χms(σ),
(2.1)

where χq(τ) is the isospin component. We used the following quantum numbers: the charge q (this is

a label that is p for protons and n for neutrons), the principal quantum number n, the orbital angular

momentum l, the total angular momentum j and the magnetic quantum number m, while we introduced

a shorthand notation ν ≡ {nlj}. Solving the Skyrme-Hartree-Fock equations in the case of spherical

symmetry means to solve the following equation [13] for the radial part of the single particle wavefunction

(cf. Eq.2.1). We omit for simplicity the isospin label for the wavefunction.

~2

2m∗q

[
−u′′ν(r) +

l(l + 1)

r2
uν(r)

]
− d

dr

(
~2

2m∗q

)
u′ν(r)+{

Uq(r) +
1

r

d

dr

(
~2

2m∗q

)
+

[
j(j + 1)− l(l + 1)− 3

4

]
1

r
Wq(r)

}
uν(r) = eνuν(r), (2.2)

where Wq(r) is the spin-orbit potential and Uq(r) is the central potential. This equation has to be solved

in a spherical box with the appropriated boundary conditions,

uν(0) = uν(Rbox) = 0. (2.3)

This differential equation can be reduced to a general class of linear differential equations of the kind

y′′(r) + g(r)y′(r) + f(r)y(r) = 0, (2.4)

where we can define
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g(r) =

[
d

dr

(
~2

2m∗q

)]
/

[
~2

2m∗q

]
,

g(r)′ =

{
d2

dr2

(
~2

2m∗q

)
~2

2m∗q
−
[
d

dr

(
~2

2m∗q

)]2}
/

[
~2

2m∗q

]2
,

h(r) =

{
Uq(r) +

1

r

d

dr

(
~2

2m∗q

)
+

[
j(j + 1)− l(l + 1)− 3

4

]
1

r
Wq(r)

}
,

f(r) = −
[
h(r) +

~2

2m∗q

l(l + 1)

r2
− eν

]
/

[
~2

2m∗q

]
. (2.5)

An usual algorithm used to solve this type of equation is the Runge-Kutta, but in self-consistent solutions

it is better to use different method to approximate the second derivative. This was proposed by B.V.

Numerov in 1923 [7], and works only for differential equations of the kind

w′′(r) + k(r)2w(r) = S(r), (2.6)

the great advantage is the improved numerical accuracy using the same discrete mesh. Employing the

following transformation we can recast Eq.2.4 in the more appropriate form of Eq.2.6. We define

y(r) = w(r) exp

(
−1

2

∫
g(r)dr

)
, (2.7)

where g(r) is defined in Eq.2.4-2.5, y(r) is the solution of Eq.2.4, while w(r) is a new function that will

be the solution of a differential equation of the form Eq.2.6. To demonstrate the validity of the method

let’s now calculate the first and the second derivative of this function (cf .Eq. 2.7),

y(r)′ = w(r)′ exp

(
−1

2

∫
g(r)dr

)
+ w(r) exp

(
−1

2

∫
g(r)dr

)(
−1

2
g(r)

)
,

y(r)′′ =

[
w(r)′′ − 1

2
g(r)′w(r)− 1

2
g(r)w(r)′

]
exp

(
−1

2

∫
g(r)dr

)
+

[
w(r)′ − 1

2
g(r)w(r)

](
−1

2
g(r)

)
exp

(
−1

2

∫
g(r)dr

)
,

(2.8)

and inserting in Eq.2.4, simplifying the common term
[
exp

(
− 1

2

∫
g(r)dr

)]
, we finally obtain,

w(r)′′ − 1

2
g(r)′w(r) − g(r)w(r)′ +

1

4
g(r)2w(r) + g(r)w(r)′ − 1

2
g(r)2w(r) + f(r)w(r) = 0. (2.9)

We see immediately that the terms containing the first derivative cancel, so we finally have

w(r)′′ + w(r)

(
−1

4
g(r)2 + f(r)− 1

2
g(r)′

)
= 0, (2.10)

to which we can apply the Numerov algorithm. We can now see in more detail the specific case of the

Skyrme-Hartree-Fock equations. The transformation reads

uν(r) = uν(r) exp

(
−1

2

∫
g(r)dr

)
,

g(r) =

[
d

dr

(
~2

2m∗q

)]
/

[
~2

2m∗q

]
,

(2.11)
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we can calculate the integral obtaining

uν(r) = uν(r) exp

(
−1

2

∫
g(r)dr

)
=

= uν(r) exp

[
−1

2
ln

(
~2

2m∗q

)]
=

= uν(r) exp

[
ln

(
~2

2m∗q

)−1/2]
=

=

√
2m∗q
~2

uν(r).

(2.12)

Our new Schröedinger equation will be

u′′ν(r) + uν(r)

[
−1

4
g(r)2 + f(r)− 1

2
g(r)′

]
= 0,

with the definitions of g(r), g(r)′ given in Eq.2.5. We will solve Eq.2.13 using the Numerov method and,

automatically, we will find the solution of Eq.2.2, that is related to uν(r) by the following relation

uν(r) =

√
2m∗q
~2

uν(r).

2.1 Densities in spherical symmetry

In this section we write the three local densities used in the code. The scalar hartree-fock density

ρ(r)q =
1

4πr2

∑
(nlj)occ

(2j + 1)u2q(nlj, r) (2.13)

where the sum is restricted to the occupied states. The kinetic density is

τ(r)q =
∑

(nlj)occ

2j + 1

4πr2

[(
u′q(nlj, r)−

uq(nlj, r)

r

)2

+
l(l + 1)

r2
u2q(nlj, r)

]
(2.14)

Finally the spin current vector density

J(r) =
1

4πr3

∑
(nlj)occ

(2j + 1)

[
j(j + 1)− l(l + 1)− 3

4

]
u2q(nlj, r) (2.15)

For the case of HFB the previous equation have to be modified, the sum extend to all the quasiparticles

and instead of using uq(nlj, r) we use the quasiparticle wavefunction vq(nlj, r).

2.2 Fields

In this section we discuss in detail the fields that appear in Eq.2.2, the solution of this set of equations

we’ll define the basis on which we will solve our HF problem.

2.2.1 Wood Saxon

We can use a not self consistent solution (i.e. Wood Saxon potential) so they have the shape [8]
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Uq(r) = −
(

51− 33
N − Z
N + Z

)
f(r) (2.16)

Wq = 0.44
1

r

dUq(r)

dr
· r20 (2.17)

~2

2mq
= 20.73553 (2.18)

where N,Z are the neutron and proton number, f(r) is the Fermi function

f(r) =
1

1 + exp
(
r−Rq

a0

) (2.19)

and a0 = 0.67 fm is the diffusivity and r0 = 1.27 fm is a constant, and Rq = r0 · (N +Z)1/3. For protons

we have to add to the central potential the Coulomb potential that is approximated as

VCoul(r) =


Ze2

2Rp

(
3−

(
r
Rp

)2)
r ≤ Rp

Ze2

r r > Rp

(2.20)

2.2.2 Skyrme

The Skyrme interaction has the shape [4]

V (r1, r2) = t0(1 + x0Pσ)δ(r)

+
1

2
t1(1 + x1Pσ)

[
k′2δ(r) + δ(r)k2

]
+ t2(1 + x2Pσ)k′δ(r)k

+
1

6
t3(1 + x3Pσ) [ρ(R)]

α
δ(r)

+ iW0σ [k′ × δ(r)k] (2.21)

with

r = r1 − r2 , R =
1

2
(r1 + r2)

k =
1

2i
(∇1 −∇2) , k′ c.c. of P

σ = σ1 + σ2 , Pσ =
1

2
(1 + σ1σ2)

Following closely the derivation in ref.[2] we obtain the potentials
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Uq(r) = ρ

[
1

2
t0(2 + x0) + (2 + α)

t3
24

(2 + x3)ρα
]

+ ρq

[
− t0

2
(2x0 + 1)− t3

12
(2x3 + 1)ρα

]
+ αρα−1

[
− t3

24
(2x3 + 1)

]
(ρ2p + ρ2n)

+ τ
1

8
[t1(2 + x1) + t2(2 + x2)]

− 1

16
[3t1(2 + x1)− t2(2 + x2)]

(
ρ′′ + 2

ρ′

r

)
− 1

8
[t1(2x1 + 1)− t2(2x2 + 1)] τq

− 1

8
[t1x1 + t2x2]

(
ρ′′q + 2

ρ′q
r

)
(2.22)

where the densities are given by Eq.2.13,2.14 and 2.15 the field mass read

Mq(r) =
~2

2m
+
t1
4

[(
1 +

x1
2

)
ρ−

(
x1 +

1

2

)
ρq

]
+

t2
4

[(
1 +

x2
2

)
ρ−

(
x2 +

1

2

)
ρq

]
. (2.23)

At the central potential because of the structure of Eq.2.2 (as it’s implemented in the code) we have to

had to the central potential the part

Uq(r) = Uq(r) +
1

r

d

dr
Mq(r). (2.24)

The spin-orbit potential reads

Wq(r) = −1

8
(t1x1 + t2x2)J(r) +

1

8
(t1 − t2)Jq(r) +W0∇(ρ+ ρq). (2.25)

2.2.3 Coulomb

For the protons we have to add the Coulomb potential

Vc(r) =
e2

2

∫ Rbox

0

d3r′
ρq(r

′)

|r − r′|
− e2

(
3

π

)1/3

ρ1/3q (r) (2.26)

where we treat the exchange with the Slater approximation, while the direct term is expanded in spherical

harmonics following ref.[10]. This can not be treated directly due to the singularity for r = r′ Following

Ref. [12], we can make a multipolar expansion of the term 1/r as

1

|r1 − r2|
=

4π

r2

∑
l=0

1

2l + 1

(
r1
r2

)l∑
m

Ylm(Ω1)Y ∗lm(Ω2) (2.27)

if r1 < r2, wheras r2 < r1 one has to exchange r1 ↔ r2. By performing the analytical integration over

the angular part we get

Vc(r) = 4πe2
[

1

r

∫ r

0

dr′ρq(r
′)r′2 −

∫ r

0

dr′ρq(r
′)r′ +

∫ ∞
0

dr′ρq(r
′)r′
]

(2.28)

The density apperaing in these formulas is the point-like proton density. It is also possible to include

the charge-density in these expressions. See Ref. [1] for details.
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2.3 Using different boundary conditions

In previous lectures we have seen that it is possible to select different boundary conditions at the edge of

the box. In the following we give some highliths on these different boundary conditions

2.3.1 Dirichlet-Neumann mixed condition

Instead of imposing the condition unlj(Rbox) = 0 we can use the Dirichlet-Neumann (DN) boundary

conditions.

For example in Fig.2.1 we show the density profile ρ(r) of several Wigner-Seitz cells in the inner crust

calculated using Hartree-Fock-Bogoliubov equations into a box with DN boundary conditions. These

condition read

• BCE even-parity wave function vanish at the edge of the box and the first derivative of odd-parity

wave functions vanishes at the edge of the box

• BCO odd-parity wave function vanish at the edge of the box and the first derivative of even-parity

wave functions vanishes at the edge of the box

Figure 2.1: Density profile ρ(r) of different Wigner-Seitz cells in the inner crust of a neutron star obtained

with DN boundary conditions

Clearly a change in the boundary condition changes the way we discretize our continuum, but this

simple trick allows us to get a flat behaviour of the density at the edge instead of a sharp drop. This is not

relevant to describe well bound nuclei, but it can be important for more exotic systems as Wigner-Seitz

cells where nuclei are in phase coexistance with a neutron gas.

2.3.2 Asymptotic boundary conditions

Instead imposing vanishing boundary conditions, we can consider the asymptotic behavior of the wave

function at the edge.
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Let’s considder the Skyrme case for neutrons. We know that the nuclear potential as well as spin-orbit

go to zero as r → Rbox assuming that Rbox >> rnucleus. So the Schroedinger equation reads (very far

way from the nucleus)

− ~2

2m
u′′ν(r) = eνuν(r) (2.29)

where the effective mass m∗ goes back to its bare value in this limit (see Skyrme-HF equations and

fields). According to the value of the energy (positive/negative) the wave function behaves either as an

exponential or as an oscillating function. This is particular relevant to describe loosely bound states or

to improve the description of the continuum and take into account resonant states in a proper way.

How to treat a real continuum? This requires the use of more sophisticated methods. See Refs. [6, 11]

for more details.

Figure 2.2: Neutron densities for even-even Cr isotpes from 54Cr to 80Cr. Taken from [9]



Chapter 3

Exercise

This section is devoted to the explanation of the computational project you need to deliver at the end of

the TALENT school.

The project is organised in small steps you need to follow week by week.

In the last section, we give

3.1 Week 1

For the first exercise you will need to solve a 1D Schroedinger equation.

− ~2

2m

d2ψn(x)

dx2
+ V (x)ψn(x) = enψn(x) (3.1)

You need to solve this equation in a box Rbox discretizing the second derivative on a unifrom grid.

You need to use the Numerov alghoritm.

3.1.1 Infinite square well

As a starting point you can consider the infinite square well. The potential is thus defined

V (x) =

{
0 [0, Rbox]

∞ elsewhere
(3.2)

• Calculate the first eigenvalues in an interval [0-100] MeV

• Calculate the corresponding eigenfunctions

Important: Remember that the solution to this problem can be found analytically and it can be

used as a test for your numerical code!

3.1.2 Finite square well

We considet a new potential

V (x) =

{
−V0 [−a, a]

0 elsewhere
(3.3)

into a box of radius Rbox larger than a.
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• Calculate the first eigenvalues in an interval [−V0 − 100] MeV

• Calculate the corresponding eigenfunctions

3.1.3 Optional

Compare numerically the position of the eigenstates of a Wood-Saxon (WS) potential and a finite square

well with size equal to the radius R of the WS potential

3.2 Week 2

We now considet the other dimensions, by working in a 3-dimensional shperically symmetric problem.

We work in spherical coordinates and the angular part can be treated analytically.

You can now treat a realistic nuclear case: consider a WS potential for 208Pb.

V (r) = V0f(r) (3.4)

f(r) =
1

1 + exp
[
r−R
a

] (3.5)

with parameters

R = r0A
1/3 [fm] (3.6)

r0 = 1.27 [fm] (3.7)

a = 0.67 [fm] (3.8)

V =

(
−51 + 33

N − Z
A

)
[MeV] (3.9)

(3.10)

Since this is a non self-consistent calculation you can start considering only neutrons. You have to

consider the spin-orbit potential as

Vso(r) = Vls(l · s)r20
1

r

df(r)

dr
(3.11)

Calculate the eigenvalues and eigenfunction of the occupied neutron states.

In Fig.3.1 we show the evolution of neutron single particle states as a function of the mass number [3].

To include protons you have to consider a Coulomb potential. since you are dealing with a simple

phenomenological potential you can use

VCoul(r) =


Ze2

2Rp

(
3−

(
r
Rp

)2)
r ≤ Rp

Ze2

r r > Rp

(3.12)

• Make a plot of central potential for neutrons and protons. What do you notice?

• Calculate eigenvalues and eigenfunctions in 208Pb

• Calculate the total matter density ρ(r) = ρn(r) + ρp(r) for 208Pb



3.3 Week 3 18

Figure 3.1: Neutron orbits as function of the mass number A.

Remeber that

ρq=n,p(r) =
∑

nlj∈occupied

2j + 1

4πr2
[uqnlj(r)]

2 (3.13)

as a check for your calculations

∫
d3rρ(r) = A (3.14)

3.3 Week 3

We now include a realistic potential derived from an effective Skyrme interaction. The definitions of the

fields in spherical symmetry can be found in Ref. [2] as well for the densities.

You can decide to implement a full Skyrme interaction. In this case we suggest you to use the

interaction SLY5

t0 = -2483.4500

x0 = 0.77600

t1 = 484.2300
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x1 = -0.31700

t2 = -556.6900

x2 = -1

t3 = 13757

x3 = 1.2630

W0 = 125

alpha = 1 / 6

hb2m0 = 20.735530

notice that the parameter hb2m0 corresponds to ~2

2m the bare mass value. We use the same value for

both protons and neutrons as prescribed by the authors of the interaction [4]. This value is not fixed

and it changes interaction by interaction!

3.3.1 A simple t0, t3 system

If you think the previous step is too complicated you can use a much simpler Skyrme interaction. In this

case the interaction has been tuned to work in the test case 16O [14].

t0 = -1132.400

x0 = x3=0

t1 = x1 = 0

t2 = x2 = 0

t3 = 23610.40

w = 0.0

alpha = 1

hb2m0 = 20.735530

In this way the non-zero fields are strongly reduced (essentially all derivative terms are zero) and you

do not need to consider the current J(r).

3.3.2 Center of mass correction

Due to the breaking of translational invariance we have to correct the binding energy. We need to subtract

from the total kinetic energy K the contribution coming from center of mass motion [1]. This means

K − P2

2mA
= K −

(
∑
i pi)

2

2mA
= K − 1

2mA

∑
i

p2
i +

∑
i6=j

pipj

 (3.15)

traditionally only the one-body correction term is taken into accout. this yields to adding a term

−1/A to the kinetic energy term.

It is also include the second term (2-body center or mass correction), but this makes the calculations

much longer. See Ref. [1].

3.4 Extra: pairing correlations

Solving Hartree-Fock-Bogoliubox equations in coordinate space.

For open shell nuclei we need to consider the following equations
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[
− d

dr
M d

dr
+ U +M l(l + 1)

r2
+
M′

r
+ Uso

](
u1

u2

)
= E

(
u1

u2

)
(3.16)

where the defintions of the matricesM,U , . . . can be found in Ref. [2]. In this case you need to solve

a system of 2 coupled differential equations.

In this case a simple shooting method does not work anymore due to the particular structure of the

two spinors u1, u2. See discussion in Ref. [5].

A possible method is expained in Ref. [2] and it is based on the propagation from the left side of the

box and right side of the box

3.4.1 BCS

A possible simpler extension include the use of the BCS approximation.

In this case the main alghorithm is left unchanged and by using a simple pairing interaction of the

form vpair = G we do not need to introduce major changes in the code. The allow the convergence we

also restrict the appearence of pairing correlations within 1 major shell. The strength G is tuned in such

a way that the resulting average pairing gap ∆̄ is equal to ∆̄ = 12√
A

Few key points

• Once the HF equations are quite well converged we can start adding pairing correlations. The BCS

method is acceptable only for bound nuclei so that these correlations can be added on top of the

man field in a perturbative way

• At BCS level the occupations number are changed and given by

v2k =
1

2

(
1− ea − eF

Ea

)
v2k + u2k = 1 (3.17)

where eF is the Fermi energy and Ea =
√

(e− eF )+∆2

• the ∆a is obtained by solving at each iteration the corresponding gap equation. See Ref. [8] for

details

• at each step the average number of neutrons N and protons Z should be constrained ([Hpair, N̂ ] 6= 0).

The corresponding Lagrange multiplier we get is the Fermi energy eF .
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