next up previous
Next: Densities in the spherical Up: The NLO potentials, fields, Previous: The NLO potentials, fields,


Spherical HO basis

The standard spherical HO wave functions, are given by

$\displaystyle \phi_{Nljm}(r,\theta,\phi,\sigma) \!\!$ $\textstyle =$ $\displaystyle b^{3/2} F_{Nl}(br)e^{-{\textstyle{\frac{1}{2}}}(br)^2}
\sum_{m_lm...
...c{1}{2}}}m_s}Y_{lm_l}(\theta,\phi)\chi_{{\textstyle{\frac{1}{2}}}m_s}(\sigma) ,$ (78)

where $b$ is the oscillator constant,
$\displaystyle b=\sqrt{\frac{m\omega}{\hbar}},$     (79)

and $F_{Nl}(br)=$ are proportional to the standard Laguerre polynomials [7].

To calculate the secondary densities (76), one has to act on the space part of the wave function (79) with the derivative operators $D_{nLM_L}$. This leads to defining the polynomials $F^{km_k}_{nLM_LNlm_l}(br)$ such that

    $\displaystyle D_{nLM_L} b^{3/2} F_{Nl}(br)e^{-{\textstyle{\frac{1}{2}}}(br)^2}Y_{lm_l}(\theta,\phi)$  
    $\displaystyle =b^{n+3/2} \sum_{km_k} F^{km_k}_{nLM_LNlm_l}(br)
e^{-{\textstyle{\frac{1}{2}}}(br)^2}
Y_{km_k}(\theta,\phi) ,$ (80)

where $m_k=M_L+m_l$. From the Wigner-Eckart theorem, these polynomials must have the form:
$\displaystyle F^{km_k}_{nLM_LNlm_l}(br)$ $\textstyle =$ $\displaystyle {\textstyle{\frac{1}{\sqrt{2k+1}}}}
C^{km_k}_{lm_lLM_L} F^{k}_{nLNl}(br),$ (81)

and our goal is to determine the set of reduced polynomials $F^{k}_{nLNl}(br)$, in terms of which the derivatives of the spherical HO wave functions read
$\displaystyle D_{nLM_L}\phi_{Nljm}(r,\theta,\phi,\sigma) \!\!$ $\textstyle =$ $\displaystyle b^{n+3/2}\sum_{km_k}\sum_{m_lm_s} {\textstyle{\frac{1}{\sqrt{2k+1}}}}
C^{km_k}_{lm_lLM_L}C^{jm}_{lm_l{\textstyle{\frac{1}{2}}}m_s}$  
  $\textstyle \times$ $\displaystyle F^{k}_{nLNl}(br)e^{-{\textstyle{\frac{1}{2}}}(br)^2}Y_{km_k}(\theta,\phi)\chi_{{\textstyle{\frac{1}{2}}}m_s}(\sigma) ,$  
  $\textstyle =$ $\displaystyle -b^{n+3/2}\sqrt{2j+1}\sum_{km_k}\sum_{m_s} \sum_{im_i}
C^{im_i}_{LM_Ljm}C^{im_i}_{{\textstyle{\frac{1}{2}}}m_skm_k}$  
  $\textstyle \times$ $\displaystyle \left\{\begin{array}{rrr} l & L & k \\
i & {\textstyle{\frac{1...
...}{2}}}(br)^2}Y_{km_k}(\theta,\phi)\chi_{{\textstyle{\frac{1}{2}}}m_s}(\sigma) .$  

Explicit form of $F^{k}_{nLNl}(br)$ can be calculated by using the Wigner-Eckart theorem again, namely, Eq. (81) must have the form

$\displaystyle D_{nLM_L} \phi_{Nlm_l}$ $\textstyle =$ $\displaystyle \sum_{N'km_k} {\textstyle{\frac{1}{\sqrt{2k+1}}}}C^{km_k}_{lm_lLM_L}
\langle\phi_{N'k}\vert\vert D_{nL}\vert\vert\phi_{Nl}\rangle
\phi_{N'km_k},$ (82)

where $\phi_{Nlm_l}$ is the space part of the wave function (79). Then we have polynomials $F^{k}_{nLNl}(br)$ expressed through the Laguerre polynomials as:
$\displaystyle b^n F^{k}_{nLNl}(br)$ $\textstyle =$ $\displaystyle \sum_{N'} \langle\phi_{N'k}\vert\vert D_{nL}\vert\vert\phi_{Nl}\rangle F_{N'k}(br),$ (83)

where the reduced matrix element can be calculated by considering only one matrix element, namely,
$\displaystyle \langle\phi_{N'k,m_k=0}\vert D_{nL,M_L=0}\vert\phi_{Nl,m_l=0}\rangle$ $\textstyle =$ $\displaystyle {\textstyle{\frac{1}{\sqrt{2k+1}}}}C^{k0}_{l0L0}\langle\phi_{N'k}\vert\vert D_{nL}\vert\vert\phi_{Nl}\rangle .$ (84)

Note that the Clebsh-Gordan coefficient $C^{k0}_{l0L0}$ is not zero for angular momenta restricted by the parity conservation, $(-1)^{L+l-k}=1$.

The parity conservation induces specific conditions on the polynomials $F^{k}_{nLNl}(br)$. Indeed, by comparing parities of both sides of Eq. (81) we see that

$\displaystyle F^{k}_{nLNl}(br)$ $\textstyle =$ $\displaystyle 0
,\quad\mbox{for}\quad
(-1)^{n+l+k}=-1.$ (85)

Equivalently, since for all derivative operators we have $(-1)^{n+L}=1$, we see that
$\displaystyle F^{k}_{nLNl}(br)$ $\textstyle =$ $\displaystyle 0
,\quad\mbox{for}\quad
(-1)^{L+l+k}=-1.$ (86)

Since polynomials $F_{Nl}(br)$ are real, phases of polynomials $F^{k}_{nLNl}(br)$ are fixed by those of the derivative operators (31) and spherical harmonics [6],

$\displaystyle Y_{JM}^*(\theta,\phi)$ $\textstyle =$ $\displaystyle (-1)^{-M}Y_{J,-M}(\theta,\phi) ,$ (87)

that is,
$\displaystyle F^{k*}_{nLNl}(br)$ $\textstyle =$ $\displaystyle (-1)^{l-k}F^{k}_{nLNl}(br) = (-1)^{n}F^{k}_{nLNl}(br) = (-1)^{L}F^{k}_{nLNl}(br),$  

where the last two equivalent forms result from Eqs (87) and (88).

The $F_{nLNl}^k$ polynomials are calculated using formulas for spherical derivatives (see [6] ) combined with recursion relations for derivatives of Laguerre polynomials. In this way spherical derivatives of one of the basis functions $\phi_{Nljm}\left(\vec{r},\sigma\right) = g_{nl}\left(r\right) C_{lm_l,\frac{1}{2}\sigma}^{jm} Y_{lm}\left( \theta,\phi \right)$ can be expressed as a sum of functions

\begin{eqnarray*}
\nabla_{1\mu_{1}}..\nabla_{1\mu_{N}}g_{nl}\left(r\right)Y_{lm}...
...}\left(r\right)\right]Y_{l+i_{1}+..+i_{n},m+\mu_{1}+..+\mu_{N}},
\end{eqnarray*}

where the $a$ and $b$ coefficients needed for the different orders were derived using symbolic programming. In this way we obtain analytical expressions for all derivatives which can then be calculated with good accuracy.


next up previous
Next: Densities in the spherical Up: The NLO potentials, fields, Previous: The NLO potentials, fields,
Jacek Dobaczewski 2010-01-30