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We show that a two-level atom resonantly
coupled to one of the modes of a cavity field
can be used as a sensitive tool to measure the
proper acceleration of a combined atom-cavity
system. To achieve it we investigate the re-
lation between the transition probability of a
two-level atom placed within an ideal cavity
and study how it is affected by the accelera-
tion of the whole. We indicate how to choose
the position of the atom as well as its char-
acteristic frequency in order to maximize the
sensitivity to acceleration.

The spontaneous emission of a photon from an
atom is a property of the atom-vacuum system, rather
than of the atom itself. The irreversibility of such sys-
tems arises from the fact that an infinite number of
vacuum states is typically available to the radiated
photon. Modifications to the vacuum states can thus
be used to either inhibit or enhance the spontaneous
emission. One such modification involves placing an
excited atom between mirrors in an optical cavity.
In the weak coupling limit between a two-level atom
and a single-mode cavity, the resulting change to the
transition rate of the atom is known as the Purcell
effect [13, 17].

Additional modifications to the vacuum states oc-
cur as a result of acceleration. The Unruh effect, for
instance, implies that an observer in an accelerated
reference frame should detect the presence of a back-
ground thermal bath of photons where an inertial ob-
server would detect none [6, 11, 18]. Thus, for an
accelerated atom, there are no longer an infinite num-
ber of vacuum states available to a radiated photon
which makes the atom theoretically capable of detect-
ing the non-inertial background bath. Unfortunately,
this effect is very weak and has not yet been detected,
despite continuing efforts.

In this work we investigate another effect of accel-
eration on the mode structure of the vacuum state
that can significantly modify the atom-field interac-
tion. We consider an ideal optical cavity in uniformly
accelerated motion with an atom placed inside that
is co-accelerating with the cavity. We show how to
position the atom and tune its interaction with the
cavity field in order to maximize the sensitivity of the
transition rate of such a system to the acceleration.
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Specifically we consider an Unruh-DeWitt detec-
tor which is a simplified model of an atom moving
along an arbitrary classical trajectory [8, 18]. Accel-
erated Unruh-DeWitt detectors in stationary cavities
have been analyzed, but the observed effects can be
attributed to the relative acceleration that exists be-
tween the detectors and the cavity [1, 3, 9]. Solutions
have also been found for scalar fields in cavities with a
time-varying size, though these results only apply to
the scalar field modes of the cavities themselves and
lack any coupling to detectors [4, 5, 14, 15].

It is worth asking, then, what the effect of the ac-
celerated motion of the combined atom-cavity system
is on the dynamics of the quantum state of this sys-
tem. In the weak coupling limit, the atomic transition
is irreversible. In this limit the presence of the cavity
necessarily modifies the vacuum states (via the Pur-
cell effect), and thus any changes to the dynamics of
the system will manifest as changes to the Purcell ef-
fect if the entire system, consisting of detector and
cavity, is accelerated as one. In the strong coupling
limit, the atomic transition is reversible meaning an
emitted photon can be reabsorbed by the atom be-
fore escaping the cavity. In this article we confine
ourselves to discussion of the weak coupling limit.

We begin by considering the probability for a de-
tector to transition between an excited state |e〉 and
a ground state |g〉. Such a transition necessarily in-
volves the emission of a photon whose probability am-
plitude is modeled by the Klein-Gordon equation. We
consider both massive and massless 1+1 dimensional
real scalar field models (~ = c = 1):

(� +m2)φ̂(x, t) = 0 (1)

with the canonical scalar product(
ψ̂1, ψ̂2

)
= −i

∫
dx
(
ψ̂∗1
←→
∂ τ ψ̂2

)
. (2)

When considered in the interior of a stationary cav-
ity of proper-length L, the walls of the cavity intro-
duce Dirichlet boundary conditions and the solution
becomes

φ̂(t, x) =
∞∑
k=1

Fk(x)
(
e−iωktâk + eiωktâ†k

)
, (3)

where the Fk(x) describe eigenmodes of the cavity
with the corresponding quantized frequencies ωk. For
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a cavity at rest, the spatial part of the solution is
given by: 

Fk(x) = 1√
ωkL

sin
(
kπ

x+ L
2

L

)
ωk =

√(
kπ
L

)2 +m2.

(4)

Let us now consider a single Unruh-DeWitt detec-
tor governed by the interaction Hamiltonian:

ĤI(τ) ∝ ε(τ)φ̂(x(τ))
(
e−iωτ d̂+ eiωτ d̂†

)
, (5)

with τ being the proper time along the detector’s tra-
jectory x(τ) and with ε(τ) representing the coupling
strength. The annihilation operator and characteris-
tic frequency of the detector are d̂ and ω respectively.
We can then position the detector in the center of the
cavity such that it always lies on the cavity’s reference
trajectory and is thus always at rest with respect to
it. Initially, the detector is in its excited state |e〉
and we calculate the amplitude of a transition to its
ground state |g〉 in the lowest order in ε. We will as-
sume that the cavity is initially in the vacuum state of
all the modes in its co-moving reference frame. Due
to the interaction between the detector and the cav-
ity field, the transition from |e〉 to |g〉 has a non-zero
probability, which we will minimize by tuning the de-
tector frequency to match the frequency of the second
eigenmode of the cavity. In this case, the atom cou-
ples most strongly to the second cavity mode which

vanishes at the position of the detector when the cav-
ity is at rest. In such a situation, only the off-resonant
interaction with the remaining modes contributes to
the transition probability and even then it will be-
come negligible for sufficiently long interaction times.
As a result, such an atom in the middle of the cav-
ity will remain in its excited state provided the cavity
remains at rest.

To show this we compute the first-order probabil-
ity amplitude for the atom to make a transition to
the ground state with the field going from the initial
vacuum state to some arbitrary final state |ψ〉:

Aψ = −i
∞∫
−∞

dτ 〈g| 〈ψ| ĤI(τ) |e〉 |0〉 . (6)

The total probability for the detector ending up in the
ground state is given by:

P =
∑
ψ

|Aψ|2 . (7)

Using the decomposition (3) one finds that the prob-
ability of the decay is given by the following sum of
integral expressions:

P =
∞∑
k=1

∣∣∣∣∫ dτε(τ)Fk (x(τ)) e−i(ωτ−ωkt(τ))
∣∣∣∣2 . (8)

For a resting detector switched on for a time τ this
yields:

Prest =

∣∣∣∣∣τ ε√
ω2L

sin
(

2π
x0 + L

2
L

)∣∣∣∣∣
2

+
∑
k 6=2

∣∣∣∣∣ ε

ωk − ω2

1√
ωkL

sin
(
kπ
x0 + L

2
L

)(
e−i(ω2−ωk)τ − 1

)∣∣∣∣∣
2

, (9)

where x0 = 0 corresponds to the position of the de-
tector inside the cavity. As we can see, the first (res-
onant) term vanishes and, for finite interaction times,
the remaining off-resonant, oscillating terms fall off
quickly as |ωk − ω2| increases, making the total tran-
sition probability approximately zero.

Let us now consider the situation in which the de-
tector and the cavity comove with a uniform proper
acceleration along the cavity’s length. In this case the
cavity will relativistically contract [2, 7] in which case
the cavity’s second eigenmode will not vanish at the
position of the detector thus making the transition to
the ground state possible. As a consequence, a tran-
sition from the excited state to the ground state can
serve as an indication that the system is accelerating.
As such, the system consisting of the detector and
cavity together functions as an accelerometer.

In order to find stationary solutions for a uniformly
accelerated cavity, we introduce Rindler coordinates

(τ, χ) for the accelerated frame,
τ = 1

a atanh
(
t
x

)
χ =
√
x2 − t2,

(10)

where a is a parameter corresponding to the proper
acceleration of an arbitrarily chosen accelerated refer-
ence trajectory. As mentioned above, we will choose
to have this reference trajectory lie in the very center
of the cavity, so that when the length L of the cav-
ity is much shorter than a−1, the parameter a can be
treated as the proper-acceleration of the entire cav-
ity. In this case τ , being the proper time along the
reference trajectory, then becomes the proper time of
the entire cavity. The eigenmodes of the accelerated
cavity are then the solutions of(

1
a2χ2 ∂

2
τ − ∂2

χ −
1
χ
∂χ +m2

)
φ̂ = 0 (11)

which is the massive Klein-Gordon equation (1) in
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Rindler coordinates. General solutions to this equa-
tion are of the form given in (3) where the eigenmodes
can now be expressed in terms of modified Bessel func-
tions of the first kind with purely imaginary order
I±iν (mχ) [9, 10]:

FΩk
(χ) = Nk

(
I
i

Ωk
a

(mχ) I−iΩk
a

(mχ2)

−I−iΩk
a

(mχ) I
i

Ωk
a

(mχ2)
)
, (12)

where Ωk is the corresponding eigenfrequency and Nk
is a normalization constant. We of course choose the
boundary conditions such that the eigenmodes vanish
at the positions of the cavity mirrors, χ1 = 1

a −
L
2 ,

χ2 = 1
a + L

2 , which necessarily quantizes Ωk.

When the cavity and detector are subjected to the
same uniform acceleration, (8) becomes:

Pacc =
∑
k

∣∣∣∣ ε

Ωk − ω2
Nk

(
I
i

Ωk
a

(
m

1
a

)
I−iΩk

a

(mχ2)− I−iΩk
a

(
m

1
a

)
I
i

Ωk
a

(mχ2)
)(

ei(Ωk−ω2)τ − 1
)∣∣∣∣2 . (13)
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Figure 1: Decay probability as a function of the proper ac-
celeration a of the cavity for arbitrary m and ε.

We note that, due to the semi-arbitariness of the cou-
pling constant ε (we are only restricting ourselves to
the weak coupling regime), the normalization con-
stant is also arbitrary. As such we are working in
arbitrary units. For an equally arbitrary, non-zero
mass, we have plotted (13) as a function of the proper
acceleration of the cavity for the second field mode in
Fig. 1. We see that the probability rises rapidly for
small accelerations before beginning to oscillate. At
the same time, the local maxima decrease with a.

If we were to choose to couple the detector to a
higher field mode, we would have multiple nodes at
which we could choose to place the detector. For the
resonant detector’s frequency ωn this corresponds to
placing the detector at positions 1

a −
L
2 + kL

n , k =
1 . . . n−1 at which there would be no decay in a resting
cavity. We find that the effect is not uniform across
the nodes as shown in Figs. 2-4. The effect is greatest
in the node in the middle of the cavity, and if there
is no node in the middle, then the node closest to
the middle in the direction of acceleration (see inset,
Fig. 2).

The situation is quite different for massless fields.
In that case, the spatial part of the solution to the
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Figure 2: The inset shows the probability amplitude for the
third field mode as a function of location in a simple 1D
cavity at rest. It also shows the direction that this initially
resting cavity is accelerated. The plot shows the probability
amplitude as a function of a for the accelerated cavity. The
green line corresponds to a detector positioned at the green
node in the inset while the red line corresponds to a detector
positioned at the red node in the inset.
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Figure 3: Dependence of the decay probability on accelera-
tion for the detector coupled to the fourth field mode. The
probability for each node is given from the rearmost node
forward by the red, green, and blue lines respectively.
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Figure 4: Dependence of the decay probability on acceler-
ation for the detector coupled to the fifth field mode. The
probability for each node is given from the rearmost node for-
ward by the red, green, blue, and orange lines respectively.
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Figure 5: Decay probability as a function of the proper ac-
celeration a of the cavity for a massless scalar field.

Klein-Gordon equation takes the form:

FΩk, m=0(χ) = 1√
kπ

sin (Ωk (ξ − ξl))

Ωk = kπ
ξ2−ξ1

ξ = 1
a log(aχ)

ξi = 1
a log(aχi), i = 1, 2

(14)

which is just (4) with x → ξ(a) and ωk → Ωk. The
decay rate is then

Pacc(a) Ωk 6=ω2=
∑
k

1
kπ

sin2

(
kπ
− log(1− aL

2 )
L′a

)

× 1
(ω2 − Ωk)2

(
e−i(ω2−Ωk)τ − 1

)2

L′ = 1
a log( 1+ aL

2
1− aL

2
).

(15)
a plot of which is shown in Fig. 5. Notice that there is
no oscillatory behavior for the massless scalar field in

the considered range, even though we observe such a
behavior in massive case. In addition, the decay prob-
ability increases steadily with increasing a whereas
for the massive field, the local maxima for the decay
probability decrease with increasing a, eventually dy-
ing out entirely.

In our simplified detector model we have ignored
the relativistic effects of acceleration on the atom it-
self. Such effects are described in [16]. In other words,
in our model we are only considering changes to the
cavity itself whereas accelerated atoms will experience
changes to their energy levels independent of the pres-
ence of the cavity. In addition, realistic models would
be three-dimensional. For a single-mode cavity, the
transition rate can be computed from the density of
states and Fermi’s Golden rule and is a function of
several factors that can be affected by relativistic ac-
celeration. Thus additional work would need to be
done to fully understand the relativistic effects on a
more realistic model.

That said, experimental realization of such a model
might be difficult. A condensed matter analog does
potentially exist, though. Work has been done on
frustrated spontaneous emission in metamaterial pho-
tonic band gaps. For example, work by Ginzberg, et.
al. has demonstrated an analog Purcell effect in a
nonlocal metamaterial that is based on a plasmonic
nanorod assembly [12]. Observing the changes to such
a metamaterial under relativistic acceleration would
potentially serve as an experimental test bed for our
model, though additional work would need to be done
to ensure that the analogy holds.
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