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Communication between general-relativistic observers without a shared reference frame
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We show how to reliably encode quantum information and send it between two arbitrary general-relativistic
observers without a shared reference frame. Information stored in a quantum field will inevitably be destroyed by
an unknown Bogoliubov transformation relating the observers. However, certain quantum correlations between
different, independent fields will be preserved, no matter what transformation is applied. We show how to
efficiently use these correlations in communication between arbitrary observers.
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I. INTRODUCTION

The central question of quantum-information theory,
namely how to reliably encode, send, and decode information
[1,2], becomes much more difficult to answer when relativistic
effects are taken into account. In the nonrelativistic case, it
is usually implicitly assumed that the sender and receiver
share a common reference frame, i.e., they are not moving
relative to each other, and their common frame is inertial.
As soon as one departs from this assumption, one encounters
serious conceptual difficulties. It is known that changing an
observer’s reference frame results in a certain Bogoliubov
transformation of the observed state. The most well-known
consequence of that is the Unruh effect [3], in which a
vacuum state of a quantum field, as observed by an inertial
observer, ceases to be vacuum from the perspective of
a uniformly accelerated observer. The latter will detect a
thermal state with the temperature proportional to his proper
acceleration. Such relativity of the vacuum state is just one
example. In general, any state will undergo a certain unitary
transformation due to the motion of the observer. The number
of particles, entanglement, and other characteristic quantities
are affected in general. Furthermore, entering the regime of
curved space-times adds more sophistication to the picture,
as even the concept of a particle is not well defined, and, as
a consequence, the notion of a quantum state has no clear
interpretation [4].

In this work, we propose a general method of overcoming
the problems of mutual communication with quantum states
between two observers without a shared reference frame.
When one party wishes to send a quantum state to the other,
the state becomes distorted due to relative motion. However,
following the idea of Ref. [5], we note that any type of motion
affects states of all quantum fields in an analogous way.
Consider a number of independent, noninteracting quantum
fields, such as two polarization components of the free
electromagnetic field. Although the states of both polarization
components will be affected by the relative motion in a
certain way, some correlations between the two will remain
unaffected. Therefore, if the sender and the receiver have
access to two or more independent quantum fields, they can se-
curely encode information into correlations between the fields,
and such information will not be affected by their relative
motion. We show how the ability to create and measure these
correlations allows the observers to reliably communicate even
without sharing a common reference frame. The same method

finds application also in more general schemes. For example,
this approach can be applied to dynamical space-times that
are asymptotically flat, such as the scenario of a collapsing
star forming a black hole or an expanding universe modeled
by Robertson-Walker space-time [4,6]. We prove how two
observers occupying two asymptotically flat regions of space-
time (for example, the asymptotic past and the asymptotic
future of the expanding universe) can effectively communicate
without any knowledge about the details of the intermediate
evolution of space-time. This is possible because according
to the principle of equivalence, gravity affects all quantum
fields in the same way. Therefore, certain field correlations will
be preserved in the dynamical evolution of the gravitational
background.

The idea presented in this work is closely related to
the common concept of decoherence-free subspaces used
in nonrelativistic quantum information to avoid or at least
minimize the effect of correlated noise on communication
[7–12]; it is also related to the discussion found in [13]. We
base our scheme on the observation of [5], where correlations
between two components of light polarization were used
for communication between two inertial observers without
a common reference frame. We generalize this idea to the
case of relativistic quantum fields and arbitrary relative types
of motion (inertial or not) of the observers related by an
unspecified Bogoliubov transformation. Our results can also
be applied to other schemes that involve generic Bogoliubov
transformations between input and output states of at least two
independent quantum fields.

II. THE MODEL

In quantum field theory, any change of the coordinate
system, for example due to the motion of the observer, leads
to a certain transformation of all quantum states [4]. In the
Heisenberg picture, such a transformation acting on the field
operator under question is linear, since it corresponds to the
change of basis of modes between the two coordinate systems.
Such a unitary Bogoliubov transformation Û can always be
characterized using a quadratic Hermitian operator Ĥ via the
relation Û = exp{iĤ }.

Let us consider the simplest example of two bosonic
quantum fields of the same type, e.g., real scalar and massive
fields, φ̂ and ˆ̃φ, that are not interacting with each other. An
algebra describing arbitrary quadratic Hermitian operators has
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the following set of generators for φ̂ [14,15]:

Ĝ1
ij = â

†
i âj + â

†
j âi , Ĝ2

ij = i(â†
i âj − â

†
j âi),

(1)
Ĝ3

ij = âi âj + â
†
i â

†
j , Ĝ4

ij = i(âi âj − â
†
i â

†
j ),

where âi are the annihilation operators corresponding to the
decomposition of the field operator φ̂ in the first basis of modes.
We have an analogous set of generators ˆ̃Gξ

ij for the other field
ˆ̃φ. Consequently, the generator of an arbitrary Bogoliubov
transformation of two noninteracting fields φ̂ and ˆ̃φ of the
same type takes the form

Ĥ = D
ξ

ij Ĝ
ξ

ij ⊗ 1 + D̃
ξ

ij1 ⊗ ˆ̃Gξ

ij , (2)

where ξ ∈ {1,2,3,4}, Dξ

ij and D̃
ξ

ij are arbitrary real coefficients
characterizing the Bogoliubov transformation under question,
and we use the standard summation convention. Indices {i,j}
can take either discrete or continuous values depending on
the character of the field or chosen boundary conditions. To
introduce the full symmetry between both fields, we take both
fields to have equal masses: m = m̃. One physical example of
two such fields (when m = 0) is two polarization components
of the electromagnetic field. In the considered case, the
generator Ĥ becomes fully symmetric with respect to the
interchange φ̂ ↔ ˆ̃φ and (2) can be written in a simplified form
with D

ξ

ij = D̃
ξ

ij :

Ĥ = D
ξ

ij

(
Ĝ

ξ

ij ⊗ 1 + 1 ⊗ ˆ̃Gξ

ij

)
. (3)

The transformation Û = exp{iĤ } with Ĥ given by (3) is a
general operation acting symmetrically on fields φ̂ and ˆ̃φ. The
unknown coefficients D

ξ

ij in (3) are related to the unknown
relative motion between the sender and the receiver. Let us
try to use the fields’ interchange symmetry to allow the two
partners to communicate.

Suppose that the sender and the receiver choose an
observable L̂ with a discrete spectrum λi and the sender
chooses to encode and send one of the values λi belonging
to that spectrum. She does it by sending to the receiver
the eigenstate corresponding to the chosen eigenvalue. To
retrieve the transmitted information, the receiver measures
the acquired state using L̂. Since the sender and the re-
ceiver are in the unknown relative motion, the transmitted
eigenstate undergoes some unknown operation Û = exp{iĤ }.
In the Heisenberg picture, this transformation corresponds to
the transformation of the considered observable L̂ → Û †L̂Û .
We ask the following: under what circumstances will the
receiver be able to retrieve the encoded classical number λi

with his measurement of the observable L̂?
Let us notice that if L̂ is such that it commutes with the

Hermitian operator Ĥ for an arbitrary choice of the parameters
appearing in Eq. (3), it will also commute with Û = exp{iĤ }.
Consequently, the result of the measurement performed by the
receiver will inevitably yield the desired eigenvalue λi . It turns
out that due to the field interchange symmetry present in (3)
there always exists such an operator.

Consider the following observable:

L̂ = x̂k ⊗ ˆ̃pk − p̂k ⊗ ˆ̃xk, (4)

where x̂k = (âk + â
†
k)/

√
2 and p̂k = (âk − â

†
k)/

√
2i are

quadratures corresponding to the kth mode of the field φ̂ and
analogously for the tiled operators. Again, we have used the
standard summation convention. To show the invariance of the
operator L̂, let us write it down in the form

L̂ = −i(â†
k ⊗ ˆ̃ak − âk ⊗ ˆ̃a†

k). (5)

Then it is straightforward to verify explicitly that for all ξ we
have [L̂,Ĝ

ξ

ij ⊗ I + I ⊗ ˆ̃Gξ

ij ] = 0. Using Eqs. (1) and (5), we
can write down explicitly one of the commutators involved
in this calculation. Choosing ξ = 1 (again, the summation
convention holds), we have

[
L̂,D1

ij

(
Ĝ1

ij ⊗ 1 + 1 ⊗ ˆ̃G1
ij

)]
= −iD1

ij {−δkj â
†
i

ˆ̃ak − δki â
†
j

ˆ̃ak + δki â
†
k

ˆ̃aj + δkj â
†
k

ˆ̃ai

− δki âj
ˆ̃a†
k − δkj âi

ˆ̃a†
k + δkj âk

ˆ̃a†
i + δki âk

ˆ̃a†
j }

= −iD1
ij {0} = 0. (6)

The rest of the commutators can be evaluated in the same
manner. As a consequence, we obtain

[L̂,Ĥ ] = 0. (7)

The above equation shows that the operator L̂ commutes with
the considered Bogoliubov transformation, and therefore it
is an appropriate observable for encoding information into a
pair of quantum fields. The transmitted information remains
robust against the influence of the relative motion of the
observers. Let us also notice that the eigenstates of the operator
L̂ used to encode information involve entanglement of the two
considered fields, therefore both the sender and receiver must
be capable of preparing and measuring such entangled states.
The eigenstates of the operator L̂ may change in general, but
the eigenspectrum of the operator will remain the same when
measured in different reference frames.

III. EIGENSTATES

Let us determine the eigenstates of the L̂ operator in the
position (quadrature) representation. We first define

fλ,k(xk,x̃k) = eiλ arctan(xk/x̃k ), λ ∈ N, (8)

which is an eigenstate of the operator x̂k
ˆ̃pk − p̂k

ˆ̃xk for fixed
k. This can be seen by noting that the generalized angular
momentum operator x̂k

ˆ̃pk − p̂k
ˆ̃xk has eigenstates given by

phase factors eiλϕ , where λ ∈ N and ϕ is a generalized
angle, in this case ϕ = arctan(xk/x̃k). The function fλ,k(xk,x̃k)
is unnormalized. We note, however, that it still remains
an eigenfunction of x̂k

ˆ̃pk − p̂k
ˆ̃xk after multiplication by an

arbitrary (normalized) function of (x2
k + x̃2

k ). Therefore, an
arbitrary eigenfunction of the operator L̂ has the following
form:

Fλ({x,x̃}) = �kfλ,k(xk,x̃k)gk

(
x2

k + x̃2
k

)
, (9)

where gk are arbitrary, normalizable functions, for example
Gaussians: gk(x) ∼ exp(−x2). As noted above, the eigenvalue
λ belongs to the discrete set of natural numbersN: L̂Fλ = λFλ.
Similar states were discussed in [5] alongside the scenario
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involving a less general case of Lorentz transformations
between inertial reference frames. Due to Eq. (7), the spectrum
of eigenvalues λ is invariant under operation Û and can be
retrieved after the transformation by measuring the observable
L̂. One has to note, however, that for the operator L̂ involving
all the modes k, one needs to introduce additional normal-
ization. Note that one has L̂Fλ = ∫

dk L̂kFλ = λ[
∫

dk 1]Fλ.
Therefore, the definition of L̂ needs to be equipped with a
normalization function ρ(k),

∫
dk ρ(k) = 1, so that we obtain

L̂Fλ =
∫

dk ρ(k)L̂kFλ = λ

∫
dk ρ(k)Fλ = λFλ. (10)

Our construction is very general as it can be applied to
various systems in which Bogoliubov transformations play a
role. Here we work in the (1 + 1)-dimensional case, however
our formalism can be immediately applied to the (3 + 1)-
dimensional one. In the following, we consider two examples
in which one can see explicitly how the invariant operator can
be used for communication purposes.

IV. EXAMPLE A: EXPANDING UNIVERSE

Consider the case of the expanding universe described by a
two-dimensional Robertson-Walker model characterized by a
metric:

ds2 = C(τ )(dτ 2 − dx2), C(τ ) = 1 + ε(1 + tanh στ ),

(11)

with {ε,σ } ∈ R+. Suppose that an observer in the distant past
wishes to encode an integer number into the quantum state of
the field and send it over to the observer that will receive it in the
asymptotic future. We assume that they lack detailed knowl-
edge about the space-time expansion. To be strict, let us assume
that the sender and the receiver do not know the expansion
rate σ and its magnitude ε. The asymptotic past and the future
of the metric (11) are conformally equivalent to Minkowski
space-time, therefore the definition of quantum states in these
regions exists and our problem is well-defined. Let us take two
identical scalar real and massive fields φ̂ and ˜̂φ existing in the
expanding universe and study the solutions of the correspond-
ing Klein-Gordon equation in the asymptotic regions:

(� + m2)φ̂(x) = 0, (12)

and similarly for ˜̂φ. The full analysis of the solutions to this
equation can be found in [4]. The asymptotic solutions in the
past and in the future, respectively, take the following form:

ūk(τ,x) −→τ→−∞ (4πω̄k)−1/2ei(kx−ω̄kτ ),

(13)
uk(τ,x) −→τ→+∞ (4πωk)−1/2ei(kx−ωkτ ),

where ω̄k = [k2 + m2]1/2 and ωk = [k2 + m2(1 + 2ε)]1/2. Let
us denote the corresponding annihilation operators in the past
with âk and in the future with b̂k . Then the Bogoliubov trans-
formation between the two has a very simple block-diagonal
form [4] (from now on we suppress the summation over k):

b̂k = α∗
k âk − βkâ

†
−k,

(14)
b̂−k = α∗

−kâ−k − β−kâ
†
k,

with an analogous transformation for modes of the field φ̃

(the explicit form of coefficients αk and βk can be found in
[4]; they can always be made real by absorbing their complex
phases into redefined annihilation operators). Here, and from
now on, we suppress the summation convention. Without a
loss of generality, we can limit ourselves to analyzing the
Hilbert subspace spanned by the wave vectors {k,−k}, and we
work effectively with four-dimensional Hilbert space of two
fields. Consequently, we can consider the following operator
that generates the Bogoliubov transformation:

Ĥk = i(ξ ∗
k âkâ−k − ξkâ

†
kâ

†
−k + ξ ∗

k
ˆ̃ak

ˆ̃a−k − ξk
ˆ̃a†
k

ˆ̃a†
−k), (15)

where ξk characterizes the details of expansion. We
introduce the corresponding invariant operator L̂k , such that
[L̂k,Ĥk] = 0,

L̂k = x̂k
ˆ̃pk − p̂k

ˆ̃xk + x̂−k
ˆ̃p−k − p̂−k

ˆ̃x−k. (16)

Its eigenstates can be easily written down based on the
discussion presented in the previous paragraphs. For the kth
sector, we have

Fλ,k(xk,x−k,x̃k,x̃−k) = fλ,k(xk,x̃k)gk

(
x2

k + x̃2
k

)
× fλ,−k(x−k,x̃−k)g−k

(
x2

−k + x̃2
−k

)
.

(17)

The above four-mode eigenstates can be used by the observer
in the distant past to reliably encode and send a natural number
λ to the future without any knowledge of the parameters of the
intermediate expansion of the universe. Thus, in order to com-
municate, the sender has to prepare the two fields in a state Fλ,k .

V. EXAMPLE B: ACCELERATED OBSERVER

Consider a communication protocol between an inertial and
uniformly accelerated observers in flat space-time. Suppose
that an inertial observer wishes to send a classical number
λ to a uniformly accelerated recipient moving with unknown
proper acceleration. To do that, the sender has to prepare the
eigenstate (9) and the accelerated receiver has to measure the
operator L̂ leading to the retrieval of the encoded number
λ. The corresponding Bogoliubov transformation between
the modes and operators in the Minkowski (inertial) and
Rindler (noninertial) frame of reference involves mixing all
the frequencies [16]. The relation between the operators in
Minkowski space (âl) and Rindler space (b̂k,I, b̂k,II) is given
by

b̂k,I =
∫

dl α∗
kl

(
âl + e−πc2|k|/aâ†

l

)
, (18)

b̂k,II =
∫

dp αkp

(
âp + e−πc2|k|/aâ†

p

)
, (19)

where I,II refer to the Rindler wedges, a is the (uniform)
acceleration of the noninertial observer, and

αkl = k

4πa
√|kl|

(
a

il

)ik/a(
k

|k| + l

|l|
)

�(ik/a), (20)

with the analogous relation for φ̃. One needs to ask whether
it is enough to be localized in only one region to successfully
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encrypt the information. Using the properties of the Bogoli-
ubov coefficients αkl and corresponding canonical constraints,
it can be shown that one can represent operator L̂ as sum of
operators L̂I and L̂II acting in regions I and II exclusively:

L̂ =
∫

dkL̂k = L̂I + L̂II =
∫

dp L̂p,I +
∫

ds L̂s,II

= − i

∫
dp(b̂†p,I

ˆ̃bp,I − b̂p,I
ˆ̃b†p,I)

− i

∫
ds(b̂†s,II

ˆ̃bs,II − b̂s,II
ˆ̃b†s,II). (21)

Therefore, in the following we show that previously discussed
states,

Fλ({x,x̃}) = �kfλ,k(xk,x̃k)gk

(
x2

k + x̃2
k

)
, (22)

are also eigenstates of L̂I and L̂II alone. Without loss of gen-
erality, we choose a specific function gk(x2

k + x̃2
k ) = e−x2

k −x̃2
k

and evaluate L̂IFλ({x,x̃}), which produces

L̂IFλ({x,x̃})

= − i

2

∫
dk dp dl

[
wklpxlx̃p

+ 2zklpxl x̃p

( ∑
s

(δps − δls)

)
Fλ({x,x̃})

+ iλzklp

( ∑
s

δls

x̃l x̃p

x2
l + x̃2

p

+ δps

xlxp

x2
p + x̃2

l

)
Fλ({x,x̃})

]
,

(23)

where

wklp = 2e−πc2|k|/a(1 + cosh[πc2|k|/a])(αklα
∗
kp − α∗

klαkp),

zklp = (
1 − e−2πc2|k|/a)(αklα

∗
kp + α∗

klαkp). (24)

By means of the canonical properties of the inverse
Bogoliubov transformation, which give

∫
dk(α∗

klαkp −
αklα

∗
kpe−2πc2|k|/a) = δpl and

∫
dk e−πc2|k|/a(α∗

klαkp −
αklα

∗
kp) = 0, one can arrive at the eigenequation of the

form

L̂IFλ({x,x̃}) = λ

∫
dp 1Fλ({x,x̃}). (25)

To avoid any divergences, and in analogy to what was done
previously, one would like to introduce in the definition of L̂

and L̂I a normalization function ρ(k). This would lead to mod-
ifications of canonical constraints [of the form

∫
dk ρ(k)αlkα

∗
pk

and
∫

dk ρ(k)(α∗
klαkp − αklα

∗
kpe−2πc2|k|/a)] and Eqs. (21) and

(25). From a physical point of view, this would correspond
to measurements of a limited window of frequencies, thus
yielding a finite result. Any measurement of such form will
inevitably induce error in evaluating λ. The latter scenario will
be the subject of further study as it must involve a broader
analysis of the suggested communication protocol and spatial
localization of the detectors, as in [17,18].

VI. CONCLUSIONS

We have shown how two observers without a shared
reference frame can communicate using quantum fields in rel-
ativistic settings. The unspecified Bogoliubov transformation
between the respective frames changes the fields, however
certain correlations between different fields are preserved. We
encode the information in the correlated states to protect it
from the influence of the unknown transformation.

The reason why reliable communication protocol can be
introduced is the symmetry of the transformation applied to
the transmitted states. In our case, it is the fields’ interchange
symmetry of the Hamiltonian (3). However, it should be
expected that any other type of transformation symmetry
can be used to send information across. For example, if
the transformation is symmetric under time translation, one
can use temporal correlations as carriers of information, as
described in [11]. An analogous protocol would also apply
in the case of spatial translation symmetries. In general, any
type of symmetry leads to preservation of certain correlations.
Therefore, one can expect an interesting relation between
Noether’s theorem linking symmetries of the dynamics and
preserved currents, with a fundamental ability to communicate
in the presence of the dynamics. This is currently a subject of
our further investigation.

The results are applicable not only to the case of relative
motions of the observers but also any other physical settings,
where quadratic Hamiltonians or Bogoliubov transformations
play a role.
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