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Communication between inertial observers with partially correlated reference frames
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In quantum communication protocols the existence of a shared reference frame between two spatially
separated parties is normally presumed. However, in many practical situations we are faced with the problem of
misaligned reference frames. In this paper, we study communication between two inertial observers who have
partial knowledge about the Lorentz transformation that relates their frames of reference. Since every Lorentz
transformation can be decomposed into a pure boost followed by a rotation, we begin by analyzing the effects
on communication when the parties have partial knowledge about the transformation relating their frames, when
the transformation is either a rotation or a pure boost. This then enables us to investigate how the efficiency of
communication is affected due to partially correlated inertial reference frames related by an arbitrary Lorentz
transformation. Furthermore, we show how the results of previous studies where reference frames are completely
uncorrelated are recovered from our results in appropriate limits.
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I. INTRODUCTION

In most quantum communication schemes it is assumed
that two spatially separated parties share a common reference
frame (RF), which is necessary for encoding and decoding the
desired message. As an example, suppose that Alice wishes to
communicate an angle λ ∈ [0,2π ) to Bob. She can encode her
message λ by preparing a quantum harmonic oscillator in a
coherent state with phase λ. Then Bob will be able to decode
λ only if he has access to the phase RF with respect to which
the coherent state has been prepared.

After relaxing the assumption of having access to a shared
RF, we can proceed in two ways. On one hand, available
resources can be devoted to align local RFs of the involved
parties. However, despite the considerable amount of progress
in the development of protocols, such as clock synchronization
and Cartesian frame alignment [1], maintaining aligned RFs
is still a major caveat of these schemes. On the other hand,
the problem of quantum communication when local RFs are
not aligned is known to be equal to the problem of quantum
communication through a noisy channel [1]. One of the main
goals of the recently developed resource theory of quantum
RFs [2–4], also known as the quantum resource theory of
asymmetry [5–7], has been to develop strategies to circumvent
the noise due to the misalignment of RFs without the need to
establish a shared RF [8]. However, the literature is mostly
concerned with the special case wherein the local RFs of
involved parties are completely uncorrelated. In this paper
we consider the scenario in which Alice encodes λ in the
spin degree of freedom of a massive particle. We analyze
the effect of partially correlated RFs when Bob has partial
knowledge about the Lorentz transformation between his
frame and Alice’s.

Suppose Bob’s RF is related to Alice’s RF via a Lorentz
transformation. It is known that even if Bob has perfect
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information about the relation between his and Alice’s RF, the
information encoded in the spin degree of freedom of a massive
particle is degraded due to the generation of entanglement
between spin and momentum degrees of freedom in Bob’s
frame [9–11]. In this paper we analyze the total decoherence
caused by both Bob’s lack of knowledge about the relation
between RFs and the decoherence due to the entangling nature
of quantum Lorentz transformations [12].

This problem has been studied previously; however, the
analysis in Ref. [13] is limited to the worst-case scenario in
which Bob has no information whatsoever about the relative
orientation of his local RF with respect to Alice’s, which makes
communication using a single spin- 1

2 particle infeasible. This
is simply due to the fact that the noisy channel is a depolarizing
channel that completely decoheres the state. In this paper we
extend the analysis to the case wherein Alice and Bob have
partial information about their local RFs. In the presence of
such partially correlated RFs Bob can access the coherence in
the state that has been prepared by Alice in order to decode
the information encoded by Alice in a single spin- 1

2 particle.
This paper is structured as follows. In Sec. II A we explain

how Bob’s lack of knowledge can be interpreted as an extra
noise over the quantum channel between Alice and Bob. Then
we briefly summarize quantum Lorentz transformations for a
massive particle in Sec. II B. We begin Sec. III by analyzing
how the state of a quantum system is perceived by Bob, who has
partial knowledge about the Lorentz transformation between
his and Alice’s RF. In Sec. III A we restrict ourselves to the case
when the transformation between Bob’s and Alice’s RFs is a
rotation and quantify how well Bob is able to decode a classical
message sent by Alice in terms of his knowledge about the rota-
tion. We carry out a similar analysis in Sec. III B, when instead
the transformation between Alice’s and Bob’s RFs is a pure
boost, taking into account the finite size of the momentum wave
packet of the particle sent by Alice. These analyses enable us
to study the effects of partial knowledge about an arbitrary
Lorentz transformation on the efficiency of communication
between Alice and Bob. In Sec. IV we discuss our results and
outline possible future directions for our research.
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Throughout this paper we choose natural units, i.e., c =
� = 1.

II. PRELIMINARIES

A. Noisy quantum channel due to misalignment
of reference frames

In this section, we summarize how lack of knowledge
about the transformation between local RFs of two spatially
separated parties can be treated as an additional noise on the
channel between them [1].

Consider that Alice’s and Bob’s local RFs are related via
a unitary transformation U (g), where g is an element of the
group G formed by all possible orientations of their RFs.
Suppose Alice prepares a state ρ with respect to her local RF,
which she then sends to Bob via a perfect quantum channel.
If Bob knows the relation between his RF and Alice’s, i.e.,
if he knows g, he can exactly recover the state by passively
transforming it as U (g)ρU †(g). However, if he has partial
knowledge about the transformation, then the state that he
perceives is a weighted averaging over the group elements g,

G[ρ] =
∫

dg p(g)U (g)ρU †(g), (1)

where p(g) is a probability distribution characterizing Bob’s
knowledge about the relative orientation of his RF with respect
to Alice’s. We refer to Eq. (1) as a weighted G twirl.

The quantum channel G induces noise on a perfect quantum
channel between Alice and Bob. The amount of induced noise
depends on how peaked the probability distribution p(g) is or,
in other words, how ignorant Bob is about the relation between
his RF and Alice’s.

Various operational measures have been introduced in
order to quantify Bob’s ability to decode a message when
RFs are misaligned. In this paper we use the quantum
Fisher information (QFI) as a measure of how well Bob
can distinguish between the classical messages λ and λ + ε,
which Alice has encoded in a quantum system via the unitary
encoding |ψλ〉 = e−iKλ|ψ〉, where K is the generator of
Alice’s encoding. QFI provides the upper limit on the amount
information that can be extracted by Bob about the encoded
parameter λ for any given measurement, which is known as the
quantum Cramér-Rao bound [14]. To compute Bob’s QFI, we
use the relation between QFI and the Uhlmann fidelityF of the
two generally mixed states G[ρλ] and G[ρλ+ε], given by [15]

F (λ,G[ρλ]) = 8{1 − √
F(G[ρλ],G[ρλ+ε])}

ε2
, (2)

where F(ρ1,ρ2) = [Tr(
√√

ρ1ρ2
√

ρ1)]
2

.
To quantify the amount of information lost due to Bob’s lack

of knowledge about the transformation between his frame and
Alice’s, we compare F (λ,G[ρλ]) to Bob’s QFI when he has
complete information about the relation between the local RFs.
Under such ideal conditions Alice’s unitary encoding remains
intact. In this situation, for a pure initial state |ψ〉 and unitary
encoding Uλ = e−iK̂λ, Eq. (2) reduces to [14]

F (λ,|ψ〉) = 4(〈K̂2〉 − 〈K̂〉2), (3)

where 〈X̂〉 = 〈ψ |X̂|ψ〉.

B. Quantum Lorentz transformations

In this section we briefly review how the state of a
massive quantum particle is transformed under a Lorentz
transformation. We refer the readers to [12] for further details.

Consider the momentum eigenstates |p,m〉 of a particle
in Alice’s RF with four-momentum p = (p0,p) and the z

component of spin m. If Bob’s frame is related to Alice’s via
a Lorentz transformation �, then the momentum eigenstates
transform via the so-called quantum Lorentz transformation
as

U (�)|p,m〉 =
∑
m′

D
(j )
m′m[�W (�,p)]|�p,m〉, (4)

where �W (�,p) = L−1(�p)�L(p) is the Wigner angle asso-
ciated with a Lorentz transformation � acting on eigenstate of
momentum p,L(p) is a pure boost, and v is the boost velocity
associated with the Lorentz transformation �. Note that the
Wigner rotation is on the spin level and does not affect the
momentum degree of freedom of the particle. In other words,
we have D

j

m′m(θ ) = 〈m′|Un̂(θ )|m〉, where Un̂(θ ) = e−iθ n̂·J is
a spin-j unitary representation of the Wigner rotation around
the axis n̂ parallel to v × p.

Since the momentum eigenstates |p,m〉 form an orthonor-
mal basis for the Hilbert space of a massive particle, we can
expand any state in Alice’s frame as

|
A〉 =
∑
m

∫
dμ(p) ψm(p)|p,m〉, (5)

where dμ(p) = (2π )−3(2Ep)−1d3p and Ep =
√

m2 + p2.
Then using Eq. (4), the transformed state of the particle in
Bob’s frame is given by

U (�)|
A〉 =
∑
m,m′

∫
dμ(p) ψm(p)D(j )

m′m[�W ]|�p,m〉, (6)

where we have dropped the dependence of the Wigner angle
on � and p; that is, �W = �W (�,p).

In what follows, we assume that Alice prepares a state with
respect to her RF in which the spin and momentum degrees of
freedom are unentangled, that is, ψm(p) = αmψ(p), where αm

are the probability amplitudes of the spin degree of freedom,
ψ(p) represents the momentum wave function of the particle,
and both spin and momentum parts of the wave function
are normalized, i.e.,

∑
m |αm|2 = 1 and

∫
dμ(p)|ψm(p)|2 = 1.

Since the amount and direction of the Wigner rotation depends
on the momentum of the particle, these two degrees of
freedom get entangled in Bob’s frame. As a consequence, even
when Bob is completely aware of the Lorentz transformation
between his RF and Alice’s, the reduced spin state with respect
to Bob’s frame will be decohered [10].

III. COMMUNICATION IN THE PRESENCE OF PARTIAL
KNOWLEDGE ABOUT THE LORENTZ

TRANSFORMATION

In the previous section, we reviewed how lack of knowledge
about the relation between local RFs can be treated as a noisy
channel and how a state of a massive particle is transformed
with respect to different Lorentz frames of reference. In this
section we show how the total amount of noise, resulting
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FIG. 1. Communication between two inertial observers in the
absence of shared RFs: Alice prepares a massive particle in the
product state ρ

(spin)
A ⊗ ρ

(mom)
A , which she sends to Bob, who perceives

the spin part of the state as ρ
(spin)
B . The noisy quantum channels GB

and GR represent Bob’s lack of information about the relative boost
and relative rotation between his local frame and Alice’s.

from the involved parties having partial information about
the Lorentz transformation between their local frames, affects
Bob’s optimal performance in decoding a message sent by
Alice; see Fig. 1.

Suppose Alice prepares a massive spin- 1
2 particle in the

state

|
A〉 =
∑
m

∫
dμ(p) αmψ(p)|p,m〉, (7)

with m ∈ {−1/2,1/2}, which contains no entanglement be-
tween the spin and momentum degrees of freedom. Bob will
describe the state prepared by Alice ρA = |
A〉〈
A|, with
respect to his RF, as

ρB =
∫

d�p(�)U (�)ρAU †(�), (8)

where p(�) is a probability distribution satisfying∫
d�p(�) = 1, characterizing his knowledge about the

Lorentz transformation relating his frame to Alice’s.
Let us introduce ρ

(spin)
A = ∑

m,m′ αmα∗
m′ |m〉〈m′| to denote

the state of the spin degrees of freedom and ρ
(mom)
A =∫

dμ(p)dμ(p′)ψ(p)ψ(p′)∗|p〉〈p′| to denote the state of the
momentum degrees of freedom, with respect to Alice’s RF.

The state of the spin degree’s of freedom with respect to
Bob’s RF ρ

(spin)
B is given by a trace over the momentum degree

of freedom of the state ρB in Eq. (8),

ρ
(spin)
B =

∫
dμ(p)〈p|ρB |p〉

=
∫

d�p(�)
∫

dμ(p) |ψ(p)|2U (θW )ρ(spin)
A U †(θW ),

(9)

where U (θW ) = eiθW (�,p)·J and J = 1
2σ = 1

2 (σx,σy,σz), where
σi’s are the Pauli matrices.

Any Lorentz transformation can be decomposed into a
pure boost followed by a rotation: � = R(ψ)L(v), where ψ̂

and ψ = ‖ψ‖ ∈ [0,π ) describe the direction and amount of
rotation respectively, and v is the boost velocity associated
with the pure boost L(v). This allows us to express the Wigner
rotation as

eiθW (�,p)·J = eiψ ·Jeiφ(v,p)·J, (10)

where φ(v,p) is a vector characterizing the Wigner rotation
associated with L(v) acting on a particle of momentum p.

We may express the measure appearing in Eq. (9) as
p(�)d� = p(ψ,v)dψdv. This decomposition suggests we
should factor Bob’s knowledge about the Lorentz transfor-
mation as p(ψ,v) = g(ψ)h(v), where g(ψ) and h(v) are
distributions that characterize Bob’s knowledge about the
rotation ψ and the boost velocity v, respectively. With this,
Eq. (9) can be written as

ρ
(spin)
B =

∫
dψg(ψ)eiψ ·Jρ̃e−iψ ·J, (11)

where

ρ̃ =
∫

dvh(v)
∫

dμ(p)|ψ(p)|2eiφ(v,p)·Jρ(spin)
A e−iφ(v,p)·J,

(12)

is the weighted G-twirled state when the Lorentz transforma-
tion is a pure boost � = L(v); see Fig. 1.

In what follows, we compute the weighted G twirl over
pure rotations and pure boosts separately. In both cases we
compute the QFI to quantify Bob’s ability in decoding λ.

A. Weighted G twirling over rotations

In this section, we analyze the weighted G twirl of the
state ρ

(spin)
A over the group of rotations SO(3). We label each

element of SO(3) by the axis-angle pair (n̂,ψ), where n̂ is a
unit vector indicating the direction of the axis of rotation and
ψ ∈ [0,π ) is an angle describing the amount of rotation. With
such a parametrization, the unitary representation of a group
element is

eiψ n̂·J = cos

(
ψ

2

)
I + 2i sin

(
ψ

2

)
n̂ · J. (13)

As the group SO(3) is diffeomorphic to the real projective
space RP3, we may alternatively identify elements of SO(3)
with points on a 3-sphere with antipodal points identified.1

The advantage of this will be that we can characterize Bob’s
knowledge about the relation of his RF to Alice’s as a von
Mises-Fisher distribution, which is a natural generalization of
a Gaussian distribution to a sphere; see Appendix A for details.
The 3-sphere can be defined as S3 = {x ∈ R4 | x · x = 1}. To
connect points on S3 with elements of SO(3), we introduce a
hyperspherical coordinate system (ψ,θ,φ) with ψ,θ ∈ [0,π )
and φ ∈ [0,2π ), related to the usual Cartesian coordinates by

x =

⎛
⎜⎝

cos ψ

sin ψ cos θ

sin ψ sin θ cos φ

sin ψ sin θ sin φ

⎞
⎟⎠. (14)

The point ψ = (ψ,θ,φ) represents a rotation around the axis
r̂ = (sin θ cos φ, sin θ sin φ, cos θ )T through an angle ψ .

We choose to characterize Bob’s knowledge about the
rotation that takes his frame to Alice’s, by the von Mises-Fisher

1Consider a solid ball in R3 of radius π . Each point in the ball
corresponds to a rotation around the axis defined by the point and
the origin, by a rotation angle equal to the distance between the point
and the origin. Rotations on opposite sides of the surface of the ball
represent the same rotation. Thus, we identify antipodal points of the
ball, which results in the real projective space RP3.
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distribution on S3. Without loss of generality, we choose the
distribution to be centered around the identity rotation labeled
by the point ψ0 = (0,0,0) as if it was centered around any
other point Bob would be able to rotate his RF such that this
was the case. With this choice, the probability density function
in hyperspherical coordinates takes the form

g(ψ,θ,φ) = κ

4π2I1(κ)
exp[κ cos ψ], (15)

where I1(κ) denotes the first-order modified Bessel function
of the first kind and κ > 0 is known as the concentration of
the distribution; as κ increases the distribution becomes more
peaked around the rotation ψ0, and in the limit κ → 0 the
distribution limits to the uniform distribution on SO(3).

Using the von Mises-Fisher distribution to define a
weighted G twirl over the group of rotations, we find

GR

[
ρ

(spin)
A

] =
∫

dψg(ψ,θ,φ)eiψ n̂·Jρ(spin)
A e−iψ n̂·J

=
[

1 − 3G(κ)

κ

]
ρ

(spin)
A + G(κ)

κ

∑
i

σjρ
(spin)
A σj ,

(16)

where dψ = sin2 ψ sin θdψdθdφ and G(κ) = I2(κ)/I1(κ) is
the population mean resultant length of the von Mises-Fisher
distribution on S3. We note that the quantum channel GR in
Eq. (16) is a depolarizing channel. In such a channel, with
probability 1 − p, either the qubit remains intact or one of the
three types of errors, i.e., bit flip error, phase flip error or both,
with equal probability p = 3G(κ)/κ , occurs.

We suppose Alice encodes the real number λ via the
unitary encoding |ψλ〉 = e−iλÊ·J|0〉, where Jz|0〉 = 1

2 |0〉 and
Ê = (sin θE cos φE, sin θE sin φE, cos θE)T is a unit vector
representing Alice’s choice of encoding, so that ρ

(spin)
A =

|ψλ〉〈ψλ|. Note that θE is the angle between Alice’s encoding
direction and the direction along which Bob’s knowledge is
concentrated. We compute the QFI of the state GR[ρ(spin)

A ],
using Eqs. (2) and (16), as a measure of how well Bob is able
to determine λ, with the result

F (λ,GR[ρλ]) = sin2 θE

[
1 − 4G(κ)

κ

]2

. (17)

From Eq. (17), we find that QFI is maximized when θE = π
2 ,

which means that the optimal encoding direction is orthogonal
to the direction in which the distribution characterizing Bob’s
knowledge is peaked (see Fig. 2). In addition we observe, as
expected, in the limit when Bob has no knowledge about the
rotation between his frame and Alice’s κ → 0, that the QFI
vanishes F (λ,GR[ρλ]) → 0; in the limit where he knows the
rotation exactly κ → ∞, the QFI limits to F (λ,GR[ρλ]) →
sin2 θE .

Our results in the latter limit completely agree with the
results obtained in Ref. [16]. We also note that, in the context of
noisy quantum metrology, similar results have been observed.
Specifically, the authors of [17] showed that the precision of
quantum parameter estimation can be improved significantly
when the noise is concentrated along a direction perpendicular
to the plane in which the system is evolving.

FIG. 2. (Color online) Bob’s QFI determined in Eq. (17) as a
function of his lack of information κ about the rotation relating his
RF to Alice’s and Alice’s choice of encoding direction θE quantifying
how well he can measure the parameter λ. We observe that the QFI is
peaked around π/2 and vanishes as κ goes to zero, which corresponds
to the limit when Bob’s has no knowledge of the relation of his RF to
Alice’s.

B. Weighted G twirling over pure boosts

Our aim in this section is to compute a weighted G

twirling over pure boosts, that is, to evaluate the integration
in Eq. (12) in which ρ̃ is defined. Making use of the identity
eia(n̂·σ ) = I cos a + i(n̂ · σ ) sin a, we may express the Wigner
rotation corresponding to a pure boost L(v) on a particle of
momentum p as

eiφ·J = I cos
φ

2
+ 2i(φ̂ · J) sin

φ

2
, (18)

where we have suppressed the dependence of φ(v,p) on v
and p, so that φ = φ(v,p); the amount of rotation φ and the
axis of rotation φ̂ are given in Appendix B. Substitution of
Eq. (18) into Eq. (12) yields

ρ̃ =
∫

dvh(v)
∫

dμ(p)|ψ(p)|2
[

cos2 φ

2
ρ

(spin)
A

+ i sin φ
[
φ̂ · J,ρ

(spin)
A

] + 4 sin2 φ

2
(φ̂ · J)ρ(spin)

A (φ̂ · J)

]
.

(19)

We assume that the particle Alice is using to communicate
with Bob is approximately at rest in her RF, which amounts
to assuming p/m � 1. This enables us to expand cos2 φ and
sin2 φ appearing in Eq. (19) to second order in p/m as

cos φ ≈ 1 − 1

2
F (v)2

(
p

m

)2

[1 − (v̂ · p̂)2], (20)

sin φ φ̂ ≈
[
F (v)

(
p

m

)
− 1

2
F (v)2

(
p

m

)2

v̂ · p̂
]

v̂ × p̂, (21)

where we have defined F (v) := v/(1 + √
1 + v2).
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We choose h(v), the probability distribution characterizing
Bob’s knowledge about the boost velocity relating his RF to Al-
ice’s, to be of the form h(v) = h1(θv,φv)h2(v), where h1(θv,φv)
is a distribution over azimuthal and polar angles θv and φv

indicating the direction of the boost with respect to Bob’s RF
and h2(v) is a distribution over the magnitude of the boost
velocity v = ‖v‖. We choose h1(θv,φv) to be a von Mises-
Fisher distribution on S2 centered around Bob’s z axis v̂0 =
(0,0,1)T and h2(v) to be a bump function on the interval [0,1),

h1(θv,φv) = 1

(2π )
3
2

(
κv

2

) 1
2

eκv v̂0·v̂, (22)

h2(v) = 1

N (�)
exp

[
− 1

�2(1 − v2)

]
, (23)

where v̂ = (sin θv cos φv, sin θv sin φv, cos θv)T and N (�) :=∫ 1
0 dv exp{−1/[�2(1 − v2)]}. The parameters κν and �

determine how well Bob knows the direction and magnitude
of the boost velocity relating his RF to Alice’s.

Similarly, we suppose Alice prepares the momentum wave
packet ψ(p) such that the probability distribution charac-
terizing the particle’s momentum is of the form |ψ(p)|2 =
f1(θp,φp)f2(p), where θp and φp are again azimuthal and
polar angular, respectively, indicating the direction of particle’s
momentum as prepared by Alice and p = ‖p‖ is the magnitude
of momentum. We choose f1(θp,φp) to be a von Mises-Fisher
distribution on S2 centered around p̂0 = (1,0,0)T and f2(p) to
be sufficiently peaked around momentum p0 that we may take
it to be an appropriately normalized δ function,

f1(θp,φp) = 1

(2π )
3
2

(
κp

2

) 1
2

eκp p̂0·p̂, (24)

f2(p) = (2π )3(2Ep)δ(p − p0), (25)

where p̂ = (sin θp cos φp, sin θp sin φp, cos θp)T and the pa-
rameter κp determines how concentrated the distribution is
around the direction p̂.

We begin by integrating Eq. (19) over θp, φp, θv , and φp,
using the expansions in Eqs. (20) and (21), and our choice of
h(v) and |ψ(p)|2 above; the integration in Eq. (19) results in

ρ̃ = c1ρ
(spin)
A + ic2

[
σy,ρ

(spin)
A

] +
3∑

j=1

Cjσjρ
(spin)
A σj . (26)

The coefficients c1, c2, and Cj are given in Appendix C
in terms of κv, κp, and Tn := T

(p)
n T (v)

n , where T (v)
n :=∫ 1

0 dvv2[F (v)]nh2(v) and T
(p)
n := (p0

m
)n for n = 1,2.

Let us now analyze the G-twirled state (12) in different
limits of κp and κv . First, when the direction of momentum
distribution and Bob’s knowledge about the direction of boost
are highly peaked, i.e., in the limit of (κp,κv) → ∞, the state
ρ̃ can be written as

ρ̃0 = ρ
(spin)
A + i

T1

2

[
σ2,ρ

(spin)
A

]
, (27)

which is simply a rotation through an angle of T1 around the
y axis.2 This means that there are no decoherence effects in

2Using the formula eABe−A = B + [A,B] + · · · , one can easily
check that ei θ

2 σ2ρ e−i θ
2 σ2 = ρ + i θ

2 [σ2,ρ] + O(θ2).

this limit. This is a result of the limit κp → ∞ corresponding
to the case in which Alice prepares the momentum degree of
freedom in a momentum eigenstate; it is known that under such
circumstances a Lorentz boost does not entangle the spin and
momentum degrees of freedom, and consequently the noise
due to this effect is not present [13].

Second, let us suppose that that Bob is completely unaware
of the direction of the boost between his RF and Alice’s, i.e.,
κv → 0. Under such circumstances, the state ρ̃ can be written
as

ρ̃1 =
(

1 + T2

6

)
ρ

(spin)
A −

(
T2

12

){
2

κp

H (κp)σ1ρ
(spin)
A σ1

+
[

1 − 1

κp

H (κp)

](
σ2ρ

(spin)
A σ2 + σ3ρ

(spin)
A σ3

)}
, (28)

where H (κp) := coth κp − 1/κp.
If we further assume that Alice prepares the momentum

wave packet in such a way that the momentum distribution is
uniform in all directions, i.e., κp → 0, we find

ρ̃2 =
(

1 − T2

6

)
ρ

(spin)
A +

(
T2

18

) 3∑
j=1

σjρ
(spin)
A σj , (29)

which we identify as a depolarizing channel with probability
p = T2

6 .
We are finally in position to compute Bob’s QFI when he

has partial information about the boost transformation between
his frame and Alice’s. Similar to the previous section, we
suppose Alice encodes the real number λ via a unitary encoding
|ψλ〉 = e−iλÊ·J|0〉, where Jz|0〉 = 1

2 |0〉 and Ê = (1,0,0), so

that ρ
(spin)
A = |ψλ〉〈ψλ|. Then Bob’s QFI for states ρ̃0, ρ̃1, and

ρ̃2, defined above, read as

F (λ,ρ̃0) = 1,

F (λ,ρ̃1) =
{

1 − T2

6

[
1 + 1

κp

H (κp)

]}2

, (30)

F (λ,ρ̃2) =
(

1 − 2

9
T2

)2

.

The QFI depends on the parameter T2, which by inspection
of Eqs. (28) and (29) quantifies the noise in the communication
channel between Alice and Bob resulting from Bob’s lack of
knowledge about the orientation of his RF with respect to
Alice’s. Note that in Fig. 3 we have plotted T2 in terms of Bob’s
knowledge about the relative boost velocity �. As can be seen
in Fig. 3, the reduction of QFI due to Bob’s lack of knowledge
about the boost is negligible. This can be understood by noting
that the G-twirled states in Eqs. (28) and (29) up to second
order in p0/m can be written as

ρ̃1 = ρ
(spin)
A + O

(
p0

m

)2

,

(31)

ρ̃2 = ρ
(spin)
A + O

(
p0

m

)2

.

This simply means that the G-twirling operation with respect
to the relative boost between the two RFs, as given in Eq. (12),
does not decohere the state prepared by Alice up to second
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FIG. 3. (Color online) T2, which quantifies the noise in the
channel between Alice and Bob, is plotted as a function of Bob’s
knowledge � about the relative boost velocity between his RF and
Alice’s for different values of p0/m. As expected, as � increases,
corresponding to Bob becoming more uncertain about the boost
velocity, T2 increases. We also observe that the smaller p0/m is,
the less noisy the channel is.

order in p0/m. Therefore, the only noise due to Bob’s lack
of information about the relative Lorentz transformation is
due to the G twirling with respect to rotations. In Sec. III A we
carefully analyzed how Bob’s ability to decode λ decreases due
to his lack of knowledge about the relative rotation between
RFs, where we also showed how Alice can optimally encode
λ in the state of a spin- 1

2 particle.
As an example, let us suppose that Alice uses an electron

as her spin- 1
2 particle with mass me ≈ 9.1 × 10−31 kg, and

suppose the velocity of the electron is approximately 0.1 m/s,
so that p0/m � 0.01 � 1 and thus the approximations in
Eq. (21) are still valid.

Finally, it is worth mentioning that rather than expanding
cos2 φ and sin2 φ appearing in Eq. (19) in p/m, we could
have instead assumed that Bob has sufficient knowledge about
the boost velocity v � 1, i.e., assuming that his knowledge
is sharply peaked around v0 = 0, which would have allowed
us to expand cos2 φ and sin2 φ in v. After repeating all the
calculations in this section, we reach the same conclusion
that Bob’s lack of knowledge about the relative boost can be
safely ignored.

IV. DISCUSSIONS AND OUTLOOK

In this paper, we analyzed a communication scenario in
which the involved parties have partial information about the
Lorentz transformation that relates their RFs. Motivated by
the fact that any Lorentz transformation can be written as
a boost followed by a rotation, we investigated the effect
of partial knowledge about pure rotations and pure boosts
separately, while carefully taking into account the uncertainty
in direction and magnitude of the momentum of the initial
state. We used the QFI as an operational measure for the quality
of communication between the two parties and showed how
the results of previous studies [16] are recovered from our
results when a suitable limit is approached. In particular, for

the situation in which the two local RFs are related via a
pure rotation, we find that the optimal encoding direction is
orthogonal to the direction along which Bob’s knowledge is
peaked. For RFs related via a pure boost, we conclude that the
effect of decoherence can be safely ignored up to second order
in p0/m. Here m is the mass of the transmitted particle and p0

corresponds to value where the distribution of its momentum
magnitude is peaked.

We emphasize that, although we have chosen specific
distributions to characterize Bob’s knowledge of how his
RF relates to Alice’s, all the results presented can be easily
generalized to arbitrary distribution and expressions evaluated
numerically. Our reason for choosing the distribution we did
was to obtain an analytic expression for the state prepared by
Alice with respect to Bob’s RF. More general distributions are
not expected to exhibit qualitative features that are not present
in the distributions considered.

In a forthcoming work we will investigate the possibility
of Alice using the momentum degree of freedom to encode
information about her RF, which Bob can use to improve his
estimation of ρ

(spin)
A . As entanglement is produced between the

momentum and spin degrees of freedom in transforming the
state of a qubit from Alice’s RF to Bob’s RF, Alice should
be able to use both degrees of freedom as the environment to
encode her desired message more efficiently.

In this paper, we studied the effects of partially correlated
RFs on the efficiency of communication when information
is encoded in the spin degree of freedom of a massive
particle. First, it would be of practical interest to repeat our
analysis for the case wherein Alice uses a photonic system
to encode information. Such an analysis will generalize the
previous studies of alignment-free communication [18] to
the case of inertial observers with partially correlated RFs.
Second, it would be of interest to analyze the effect of
partially correlated RFs in the context of the violation of Bell
inequalities [19–21].

Recently, the amount of coherence in generally mixed
quantum states has been operationally quantified [22,23]. Also
it has been shown that the coherence of a noisy quantum
channel is related to the average change in purity averaged
over input pure states [24]. As a future line of research,
we are interested in exploiting these operational measures
in order to devise optimal communication scenarios for the
case of partially correlated RFs. The noisy channel caused
by Bob’s lack of information in such a scenario is not a
completely incoherent channel, as opposed to the case wherein
Bob is completely ignorant about the relation between the
local RFs. In the latter case, it is known that the most
coherent state is the most resourceful state for alignment-free
communication [2,4]. One of the questions we would like
to answer is to find the optimal state for partially correlated
RFs.

Last but not least, our analysis has interesting connections
with disparate areas in foundations of quantum mechanics
and quantum information theory. To name a few: the role of
RFs in quantum optical interferometry [25], the decoherence
caused due to the quantum nature of RFs such as quantum
phase RFs [26] or directional quantum RFs [27,28], and
conditional probability interpretation of time in quantum
mechanics [29].
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APPENDIX A: THE VON MISES-FISHER DISTRIBUTION

We summarize here the basic properties of the von Mises-
Fisher distribution used in Eq. (15) to characterize Bob’s
knowledge of his relation to Alice’s RF and in Eq. (25) to
define the momentum distribution of the state prepared by
Alice and Bob’s knowledge of the boost direction relating
his RF to Alice’s. The von Mises-Fisher distribution, in some
sense, can be thought of as the natural generalization of a
normal distribution to a (p − 1) sphere, with the concentration
κ playing the role of the inverse of the standard deviation of
the normal distribution.

A random unit vector x has the (p − 1) von Mises-Fisher
distribution if its probability density function, with respect to
the uniform distribution, has the form

f (x) =
(

κ

2

)p/2−1 1

�(p/2)Ip/2−1(κ)
exp(κμ · x), (A1)

where κ � 0, ‖μ‖ = 1, and Iν denotes the modified Bessel
function of the first kind and order ν. As the probability density

function in Eq. (A1) is symmetric around μ, the mean direction
of x is μ. κ is the concentration of the distribution; the
greater κ the more peaked the distribution is around the mean
direction μ.

The mean resultant length of a random unit vector x
distributed according to Eq. (A1) is

ρ̄ :=
(

p∑
n=1

〈xi〉2

)1/2

= Ip/2(κ)

Ip/2−1(κ)
. (A2)

When p = 3, as was the case in Eq. (25), the mean resultant
length has the simple form H (κ) = coth κ − 1/κ , which
appears throughout the paper; specifically in Appendix C,
where we explicitly state the coefficients appearing in Eq. (26).
When p = 4 the mean resultant length is G(κ) = I2(κ)/I1(κ),
which was introduced just below Eq. (16).

More details on the von Mises-Fisher distribution can be
found in Ref. [30].

APPENDIX B: WIGNER ROTATION FOR PURE BOOSTS

The Wigner rotation for a spin- 1
2 particle with momentum

p and mass m, resulting from a pure boost L(v) is a rotation
by an amount φ around the axis φ̂, both of which are given
by [31,32]

cos φ =
√

v2 + 1 +
√

p̃2 + 1 + vp̃(v̂ · p̂) + (
√

v2 + 1 − 1)(
√

p̃2 + 1 − 1)(v̂ · p̂)2

1 + √
v2 + 1

√
p̃2 + 1 + vp̃(v̂ · p̂)

, (B1)

sin φ φ̂ = vp̃ + (
√

v2 + 1 − 1)(
√

p̃2 + 1 − 1)(v̂ · p̂)

1 + √
v2 + 1

√
p̃2 + 1 + vp̃(v̂ · p̂)

(v̂ × p̂), (B2)

where p̃ = ‖p‖/m and v = ‖v‖. Expanding Eqs. (B1) and (B2) in v to second order around p/m = 0 yields Eqs. (20) and (21).

APPENDIX C: COEFFICIENTS IN THE STATE ρ̃ OF Eq. (26)

The coefficients appearing in the channel in Eq. (26) are given by

c1 = 1 + T2

4

[
1

κv

H (κv) + 1

κp

H (κp) − 3

κvκp

H (κv)H (κp) − 1

]
, (C1)

c2 = T1

2
H (κv)H (κp), (C2)

C1 = T2

4

H (κp)

κp

[
1 − 1

κv

H (κv)

]
, (C3)

C2 = T2

4

[
5

κvκp

H (κv)H (κp) − 2

κv

H (κv) − 2

κp

H (κp) + 1

]
, (C4)

C3 = T2

4

H (κv)

κv

[
1 − 1

κp

H (κp)

]
, (C5)

where Tn := T
(p)
n T (v)

n and

T (v)
n :=

∫ 1

0
dvv2[F (v)]nh2(v), (C6)

T (p)
n :=

∫ ∞

0
dp(2π )−3(2p0)p2

(
p

m

)n

f2(p). (C7)
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