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Using a biased qubit to probe complex systems
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Complex mesoscopic systems play increasingly important roles in modern science, from understanding
biological functions at the molecular level to designing solid-state information processing devices. The operation
of these systems typically depends on their energetic structure, yet probing their energy landscape can be extremely
challenging; they have many degrees of freedom, which may be hard to isolate and measure independently. Here,
we show that a qubit (a two-level quantum system) with a biased energy splitting can directly probe the spectral
properties of a complex system, without knowledge of how they couple. Our work is based on the completely
positive and trace-preserving map formalism, which treats any unknown dynamics as a “black-box” process. This
black box contains information about the system with which the probe interacts, which we access by measuring
the survival probability of the initial state of the probe as function of the energy splitting and the process time.
Fourier transforming the results yields the energy spectrum of the complex system. Without making assumptions
about the strength or form of its coupling, our probe could determine aspects of a complex molecule’s energy
landscape as well as, in many cases, test for coherent superposition of its energy eigenstates.
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I. INTRODUCTION

Measuring the properties of complex systems at the meso-
scopic level is extremely difficult and of great importance. By
definition, these systems are too small to admit an effective
statistical description, but too large for their dynamically
relevant degrees of freedom to be straightforwardly isolated.
This is especially true at the classical-quantum boundary,
where quantum effects are still important, but understanding
their dynamical and energetic consequences can become
highly nontrivial due to the size of the system [1]. Such systems
play a vital role in the function of living organisms [2–8], and
increasingly form the basis for quantum technologies [9]. Over
the last few decades, much effort has gone into developing
experimental techniques to characterize and quantify the
salient features of complex systems in a variety of contexts.
For example, pump-probe and multidimensional spectroscopy
are used to isolate electronic contributions to the energetic
structure of complex molecules [10,11] and solid-state sys-
tems [12], while techniques utilizing Raman scattering are
used to determine vibrational spectra [13,14]. In the same
spirit, there have been several recent attempts to quantify
quantum coherence in complex systems [15–19].

To learn anything about a system, it must first interact
with a probe, which induces open dynamics for both the
probe and the system. From the perspective of the probe, the
complex system acts as a black box, which evolves the probe’s
quantum state in a generally nonunitary way. Information
about the complex system must then be determined by
studying this black-box dynamics. The mathematical tools
that describe open quantum dynamics operationally have a
rich history [20]. Foremost among them is the completely
positive trace-preserving (CPTP) dynamical map [21,22],
which describes any transformation between two temporal
points in full generality: the map �τ :0 relates the probe’s
density operator at the end of the evolution, ρτ , to that at the

beginning, ρ0. The map contains all the dynamical information
that is experimentally accessible by making measurements on
the probe only, and we can ask what one can infer from it about
the Hamiltonian of the complex system HS and its interaction
with the probe V . Stinespring’s dilation theorem tells us that
any CPTP map stems from unitary evolution of the probe and
system together [20]:

ρτ = �τ :0[ρ0] = trS [e−iHtot τ ρ0 ⊗ ρS eiHtot τ ], (1)

where Htot = HP + HS + V , HP can be identified as the
Hamiltonian of the probe, ρS is the initial state of the system
(which we will always assume to be uncorrelated from the
probe initially), τ is the evolution time, and we have set
� = 1. However, this relationship is not unique; in fact, without
additional assumptions about the nature of the system, there is
little that can be directly deduced from �τ :0, the dynamics of
the probe alone, about ρS and VPS ≡ HS + V .

Here, we develop a method for probing, in principle, any
uncharacterized complex system, be it a large organic molecule
or some exotic metamaterial, using the simplest quantum
probe: a qubit or two-level quantum system. Several schemes
already exist which use qubits to probe larger systems: impu-
rities in Bose-Einstein condensates can be used to determine
phase [23], phonon spectra [24], and temperature [25]; in
cavity and circuit quantum electrodynamics, effective two-
level systems have been proposed as probes for environmental
noise spectra [26,27] and witnesses for strong coupling [28];
the use of single spins to precisely map complex electric and
magnetic fields [29] and environmental coherence [30] has also
been proposed. However, in each of these cases, the analysis
relies on a particular form for the probe-system Hamiltonian
VPS . Our result differs, and is more generally applicable, in
that it applies even when VPS is completely unknown, though
in many situations it may be limited by an inability to control
the probe sufficiently.
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FIG. 1. The controlled two-level probe scenario: the properties
of an uncharacterized complex system S can be inferred from the
way in which it influences dynamics of a two-level probe P , with
which it interacts. By varying a controllable bias of magnitude λ,
more information about the system becomes accessible, including
aspects of its state and spectrum.

It should be noted that VPS necessarily includes those
degrees of freedom which would usually be considered as
an environment to the system of interest. As long as these
do not strongly couple directly to the probe, their effect will
generally be to smear out the energy levels of S.

The scenario we consider in this article is illustrated
in Fig. 1. We allow a classical control field with variable
magnitude (denoted by λ) to modulate the probe’s energy
splitting in a basis of our choosing, parametrized by the angles
θ and φ, leading to a Hamiltonian for the probe

HP = 1
2λ σ(θ,φ), (2)

where σ(θ,φ) = sin θ cos φ σx + sin θ sin φ σy + cos θ σz is the
Pauli operator that determines the basis in which the bias is
applied . Moreover, we are free to choose the input state of the
probe and, after a time τ , to make a measurement of the probe
state.

Our setup is inspired by [18], where Markovian master
equations are studied with an added control field. Within
this minimal scenario we show that it is possible to infer
information about the unknown system, including properties of
its state and spectrum, directly from the statistics of the final
measurement of the probe. We find three universal regimes
ordered in powers of λ, each of which witnesses different
properties of the system. In particular, we show how to
measure time-correlation functions for the system operators,
which indicate the time scales over which the system behaves
quantum mechanically. The simple probe that we describe here
could be deployed to investigate a large variety of systems, and
the more that can be assumed about a particular system, the
more specific the information than can be obtained through our
method, as we demonstrate with two examples: one involving

spin systems, the other concerning vibrational degrees of
freedom.

II. PERTURBATIVE EXPANSION IN THE PROBE
ENERGY SPLITTING

Let us denote the prepared state of the probe as |α〉 (our
results can be straightforwardly extended to mixed states by
linearity) and define the basis in which we measure by the
state |β〉. The experimentally accessible quantity (from which
the dynamical map �τ :0 can be recovered) is the transition
probability

pβ:α = 〈β|�τ :0(|α〉〈α|)|β〉. (3)

By determining this quantity for different preparations and
measurements as the control parameters are varied, as depicted
in Fig. 2, information about the system can be recovered.
Furthermore, as we will show, much of this information can be
recovered using preparations, measurements, and the control
field in a single basis, meaning that our scheme could be used
even with probes that have a preferred measurement basis.

The method presented here is general; however, its practi-
cality will be determined by our ability to increase the energy
splitting of the probe, as well as to make preparations and
measurements. In practice, this may require that the probe is
prepared independently (away from the system) and brought
into and out of contact with the system in a repeatable manner,
such that the two are not interacting when preparations and
measurements are made. Alternatively, the probe can be placed
next to the system and prepared via control operations on the
probe alone, which must act on a time scale faster than that set
by the interaction with the system.

Combining Eqs. (1) and (3), the probability of finding the
probe in the state |β〉, after the open dynamics takes place, can
be written as the expectation value of the projector |β〉〈β| ⊗ 1
with respect to the time-evolved density operator:

pβ:α = tr[(|β〉〈β| ⊗ 1)U (|α〉〈α| ⊗ ρS )U †], (4)

where U = exp {−iHtotτ } is the time-evolution operator for
the joint probe system. In general, due to the unknown nature
of VPS , it is not possible to directly calculate U . How-
ever, by rewriting it as U = exp{−i( 1

2λ σ(θ,φ) ⊗ 1 + VPS )τ } =
exp{−i( 1

2 σ(θ,φ) ⊗ 1 + VPS/λ)λτ }, one can see that, in the
limit of large λ, VPS acts as a perturbation to the measurement
Hamiltonian, albeit evolved to an effective time λ τ . We can

FIG. 2. Probe evolution as a black box: (a) a two-level probe
is prepared in state |α〉; (b) the probe is acted on by CPTP map
�τ :0(λ,θ,φ), which has a set of controllable parameters corresponding
to the magnitude and basis of an imposed splitting of the probe’s
energy levels HP = 1

2 λ σ(θ,φ); (c) the probe is measured in the basis
defined by state |β〉.
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then move into the interaction picture and and write the
transition probabilities as an expansion in 1/λ. This relative
scaling of the probe and interaction Hamiltonians is related to
that proposed by Davies in order to derive a weak-coupling
master equation [31].

To simplify the subsequent calculation, we can always
decompose VPS in the basis defined by the eigenstates of the
control Hamiltonian {|π0〉,|π1〉},

VPS = |π0〉〈π0| ⊗ Ac
0 + |π0〉〈π1| ⊗ Bc

+ |π1〉〈π0| ⊗ Bc† + |π1〉〈π1| ⊗ Ac
1, (5)

with Ac
0 = Ac

0
† and Ac

1 = Ac
1
†. This has the advantage of

further specifying how different system operators couple to
the probe. By varying the angles θ and φ, and hence the basis
in which the bias is applied, different system operators can be
selected to couple to different probe states (see Appendix A
for details). From this point on, we drop the explicit basis
dependence for the system operators (e.g., Ac

0 = A0).
If we move into the interaction picture with respect to

H0 = 1
2σ(θ,φ) ⊗ 1 + (1/λ)|π0〉〈π0| ⊗ A0 + (1/λ)|π1〉〈π1| ⊗

A1, then the corresponding time-evolution operator has a
perturbative expansion. The resulting Hamiltonian is H̃t =
exp{it}|π0〉〈π1| ⊗ B̃t + exp{−it}|π1〉〈π0| ⊗ B̃

†
t , where B̃t =

exp{iA0t/λ} B exp{−iA1t/λ}.
In the interaction picture, the time-evolution operator can

be expanded in a Dyson series as Ũt = 1 + (1/iλ)
∫ λt

0 ds H̃s −
(1/λ2)

∫ λt

0 ds
∫ s

0 ds ′ H̃sH̃s ′ + O(1/λ3), which in turn leads to

an evolution equation for the density operator ρ̃t = Ũt ρ0 Ũ
†
t ,

where

ρ̃t = ρ0 + 1

iλ

∫ λt

0
ds[H̃s,ρ0] − 1

λ2

∫ λt

0
ds

×
∫ s

0
ds ′ (H̃sH̃s ′ρ0 + ρ0H̃s ′H̃s) + 1

λ2

∫ λt

0
ds

×
∫ λt

0
ds ′ H̃sρ0H̃s ′ + . . . . (6)

The Schrödinger picture density operator is given by ρt =
exp{−iλH0t} ρ̃t exp{iλH0t}, and the transition probability
after evolving for time τ can be expressed, up to second
order in 1/λ, in terms of interaction picture quantities as (see
Appendixes B and C for details and for the the conditions of
validity of the perturbative series)

pβ:α = tr[|β〉〈β| ⊗ 1 e−iH0λτ Ũτ |α〉〈α| ⊗ ρSŨ †
τ e

iH0λτ ]

� qβ:α

2
+ a∗

0a1b0b
∗
1ζ

(0)(λ) + 1

λ

{
a0a

∗
1〈σ(θ,φ)〉βζ (1)(λ)

+ b∗
0b1

[|a0|2ξ (1)
0 (λ) − |a1|2ξ (1)

1 (λ)
]}

− 1

λ2

{ 〈σ(θ,φ)〉β
2

[|a0|2ξ (2)
0 (λ) − |a1|2ξ (2)

1 (λ)
]

+ a∗
0a1b0b

∗
1ζ

(2)(λ)

}
+ c.c. + O

(
1

λ3

)
, (7)

where qβ:α = |b0a
∗
0 |2 + |b1a

∗
1 |2, ak = 〈α|πk〉, bk = 〈β|πk〉,

and

ζ (0)(λ) = eiλτ 〈e−iA0τ eiA1τ 〉S ,
(8)

ζ (1)(λ) = 〈B〉S − eiλτ 〈eiA0τB e−iA1τ 〉S ,

ξ
(1)
0 (λ) = 〈eiA0τB†e−iA0τ 〉S − eiλτ 〈eiA0τ e−iA1τB†〉S ,

(9)
ξ

(1)
1 (λ) = 〈eiA1τB†e−iA1τ 〉S − eiλτ 〈B†eiA0τ e−iA1τ 〉S ,

ξ
(2)
0 (λ) = 〈BB†〉S + 〈eiA0τBB†e−iA0τ 〉S

− eiλτ 〈eiA0τB e−iA1τB†〉S , (10)

ξ
(2)
1 (λ) = 〈B†B〉S + 〈eiA1τB†B e−iA1τ 〉S

− eiλτ 〈B†eiA0τBe−iA1τ 〉S . (11)

Above, 〈. . .〉S = tr[. . . ρS ] and the functions {ζ (i)(λ),ξ (i)
k (λ)}

all depend on τ , VPS , and ρS ; their magnitudes remain constant
with λ. ζ (2)(λ) is not written out explicitly here, as it never
appears at leading order in λ. It should be noted that Eq. (7)
is linear in the choice of preparation and measurement state,
and can thus be straightforwardly generalized to mixed initial
states ρα and general measurement, positive-operator-valued
measure, elements �β by making the replacements ak =
tr[ρα|πk〉〈πk|] and bk = tr[�β |πk〉〈πk|], respectively. These
more general choices would introduce uncertainties to the
procedure outlined below.

In Appendix B, we discuss in detail the conditions required
of λ for Eqs. (7)–(11) to accurately describe the transition
probabilities. In short, we require that λ 	 |〈j1|B|k0〉|, where
|j1〉 and |k0〉 are eigenstates of A0 and A1, respectively, that
have support in, or are easily reached from, the initial state
ρS . It is also necessary that the probe is not resonant with
any energy splittings in the system that can be reached within
three applications of the perturbation Hamiltonian H̃s [or at
least that such resonances satisfy |〈j1|B|k0〉| � 1/(λ2τ )].

There is an important further restriction that depends on
the leading-order λ dependence in Eq. (7) and which generally
relates the value of λ to the evolution time τ . For zeroth- and
second-order dependence, the constraints are

λ 	
∑
jk

κ0
jk|〈j0|B†B|k0〉〈k0|ρS |j0〉| (12)

and

λ 	
∑
jk

κ0
jk

|〈j0|B†B|k0〉〈k0|B†ρSB|j0〉|
|tr{B†ρSB}| , (13)

respectively, where

κl
jk =

{
1
/∣∣El

j − El
k

∣∣, El
j 
= El

k

τ, El
j = El

k.
(14)

Here, E0
j and E1

j are the eigenenergies of A0 and A1, respec-
tively, i.e., A0 = ∑

j E0
j |j0〉〈j0| and A1 = ∑

j E1
j |j1〉〈j1|. The

same expressions should also hold for 0 → 1 and B ↔ B†.
When the transition probability is proportional to 1/λ to
leading order, there is a similar constraint that is independent
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TABLE I. Leading-order λ dependence of pβ:α . The functional
dependence is always oscillatory, with amplitude and phase that
depend on the quantity X given in Eq. (16), and an envelope function
which depends on the order. The choice of preparation (|α〉) and
measurement (|β〉) determines X, and hence the dependence of pβ:α

on VPS and ρS .

X |β〉 /∈ {|π0〉,|π1〉} |β〉 ∈ {|π0〉,|π1〉}
|α〉 /∈ {|π0〉,|π1〉} a∗

0a1b0b
∗
1 ζ (0)(λ) ±a0a

∗
1 ζ (1)(λ)/λ

|α〉 = |πk〉 (−1)kb∗
0b1 ξ

(1)
k (λ)/λε (−1)k+1ξ

(2)
k (λ)/λ2

of λ:

tr{BρS} 	
∑
jk

κ0
jk|〈j0|B†B|k0〉〈k0|ρS |j0〉|, (15)

and the same with 0 → 1 and B ↔ B†.
With the exception of the latter, first-order case, and

practical limitations notwithstanding, sufficiently increasing
the value of λ will always lead to probabilities consistent with
Eq. (7). Even though the signature oscillations of pβ:α with λ

arise for energy splittings inconsistent with the constraints
in Eqs. (12) and (13), their validity could in principle be
checked by further increasing λ and again measuring the
transition probabilities. Once the amplitudes of oscillation
have converged, one can be sure that Eq. (7) correctly describes
the dynamics.

III. INFERRING PROPERTIES OF THE SYSTEM

We can see from Eq. (7) that the dominant term at
large λ depends on the choice of |α〉 and |β〉: in general,
zeroth-order terms dominate, but when either the preparation
or measurement is made in the {|π0〉,|π1〉} basis, the leading-
order contribution is proportional to 1/λ. When both |α〉 and
|β〉 are eigenstates of HP , then only terms that are second order
in 1/λ survive. In each case, however, the probability for large
λ, subject to the conditions discussed in the previous section,
can always be written in the form pβ:α � qβ:α + 2 Re{X},
where the dependence of X on the choice of preparation and
measurement is summarized in Table I. The real part of X is
an oscillatory function of λ:

2 Re{X} � η + D cos(λτ + ϕ), (16)

with frequency τ , an amplitude D, phase ϕ, and a shift
η. All of D, ϕ, and η depend on the system state and
Hamiltonian.

This method for inferring properties of the system bears
analogies with scattering theory. In both cases, a known
wave function is used to probe the structure of an unknown
object, resulting in phase shifts and amplitude and probability
changes. By contrast, in the case investigated here, the
probe is always coupled to its environment, so one has to
find a way to switch off the interaction or, alternatively, to
uncouple the two systems. Also, rather than looking at typical
scattering quantities, such as the cross section, we focus on
other structural properties of the system and the interaction,
such as its survival probability in the initially prepared
state.

FIG. 3. Transition probability. Typical behavior of pβ:α as λ is
varied from small to large (for reference the matrix elements of
VPS are sampled such that |〈j0(1)|B|k0(1)〉| �

√
2). The results shown

are for a system comprising two qubits; VPS and ρS were sampled
randomly, such that they were effectively unknown prior to the
simulations. Different panels show effects at different orders for large
λ, corresponding to different choices of preparation and measurement.
Panels (b) and (c) both correspond to first-order effects, but with
different choices of preparation. Solid red represents the values of
pβ:α , and bounding envelopes are shown with dashed blue lines.

In Fig. 3, we plot pβ:α as a function of λ for several different
choices of preparation and measurement (with a randomly
chosen VPS and ρS for a four-dimensional system). The proba-
bility can be seen to converge on a single oscillatory component
with an appropriate envelope function. By characterizing these
oscillations, the values of the expectation values appearing in
each of the terms of Eqs. (8)–(11) can be determined. If we
further allow to vary the length of time for which the probe
interacts with the system, then we can determine quantities
such as 〈e−iA0τ eiA1τ 〉S and 〈eiAkτB†e−iAkτ 〉S , as a function of
τ . We now discuss which elements of the system’s energy
spectrum and state can be recovered from these measurements
(for more detail, see Appendix D).

When neither the preparation nor the measurement is in the
basis of HP , the terms of Eq. (16) become η = 0 and Deiϕ ∝
〈e−iA0τ eiA1τ 〉S , with a coefficient that depends on |α〉 and |β〉.
Thus, the zeroth-order term measures how differently the two
eigenstates of the probe couple to the system. Oscillations that
depend on system operators A0 and A1 can be attributed to
“Lamb-shift” terms in the probe’s Hamiltonian: an effective
level splitting arising from its interaction with the system. The
zeroth order becomes trivial, i.e., the oscillations no longer
depend on the system when A0 = A1, i.e., when there is no
interaction term proportional to HP (in this case A0 = HS , the
Hamiltonian of the system).

When either |α〉 or |β〉 (but not both) are eigenstates of
HP and Eq. (15) is satisfied, all zeroth-order λ dependencies
vanish and terms proportional to 1/λ dominate the large-λ
behavior. From Table I, it can be seen that there are three
distinct cases in which first-order effects dominate, each
measuring a different property of the system. In particular, the
Fourier components of the quantities 〈eiAkτB†e−iAkτ 〉S have
frequencies equal to energy differences between eigenstates of
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Ak which are initially in coherent superposition. Furthermore,
when the central value η of λ oscillations dictated by ξ

(1)
0 or

ξ
(1)
1 is independent of τ for some choice of θ and φ, then the

system state ρS is diagonal in the basis of the corresponding
operator A0 or A1, respectively. Remarkably, when A0 = A1,
oscillations at this order can therefore be used to test whether
a system is in equilibrium.

Finally, when both preparations and measurements are
made in the basis of HP , only second-order and higher terms
survive in Eq. (7). In this case, the system quantities that
can be inferred are all two-time correlation functions for
the operators B̃t . These two-time correlation functions (also
known as bath or reservoir correlation functions) dictate how
the system influences the probe’s dynamics in the absence of
the control bias, quantifying memory effects and dynamical
coherence [1,20]. The second-order effect can be related to the
quantum Zeno effect [32,33] as shown in [18]. The Fourier
components of the correlation functions correspond to energy
differences between all eigenstates of A0 and A1 that have
support in ρS and those to which they couple through B. In
other words, we get insight into the spectrum of VPS ; for a
closed system this will be a series of discrete levels, whereas a
system which is in turn coupled to a large reservoir will have
a continuous distribution. Lastly, the decay of λ-dependent
oscillations at the second order (and hence the correlation
function) above a certain evolution time τ signify a point
beyond which system memory effects do not persist. Thus,
we can quantitatively measure the forgetfulness of a system,
which is a generic property for large numbers of degrees of
freedom.

Qualitatively, this behavior is generic for quantum systems,
even when the system is further coupled to some environment.
In this case, the B operators will couple subspaces of the larger
closed system composed ofS and its environment and, in many
cases, there will be a continuum of energy spacings in the A0

and A1 operators. However, there are several exceptional cases
that it are worth mentioning in more detail.

If the systemS is classical and time independent, B ∝ A0 ∝
A1 and the probe undergoes Hamiltonian dynamics; it must be
considered as an isolated quantum system under the action of
some potential. Since the potential is “classical,” it will exhibit
no recoil effects, and as a consequence, the quantum dynamics
of P will not be able to unveil any interesting quantumlike
feature of (classical) S.

The same considerations would apply for a “slowly”
changing classical system S. In such a case, the Hamiltonian
of the probe P becomes time dependent, and our results would
still hold with all the A’s and B’s replaced by scalar functions
of time.

On the other hand, a classical stochastic system S would
induce (unital) CPTP dynamics for the probe, by virtue
of the Stinespring dilation theorem: the dynamics would
be governed by a Gorini-Kossakowski-Sudarshan-Lindblad
(self-dual) master equation, with potentially time-dependent
rates. Our method would then yield the two-time correlation
functions for B, which is now a stochastic variable. For more
general semi-group dynamics, there is always a consistent
time-independent Hamiltonian for a larger system that would
produce the same behavior.

IV. EXAMPLE SYSTEMS

Of course, it is rare that a system is completely uncharacter-
ized. More often than not, there is an assumed Hamiltonian for
the system, which may include unknown parameters. It is also
common to assume that the system is in thermal equilibrium
with its environment. In such cases, assumptions about the
system can be used to extract more specific information from
the correlation functions discussed above. We now briefly
present two generic and commonly used models for complex
systems as examples, namely, those comprising collections of
spins and collections of harmonic oscillators (representing the
vibrational modes of a molecule). The former tend to be used
when the relevant degrees of freedom are highly localized [34],
whereas the latter are a good approximation to systems with
delocalized degrees of freedom close to equilibrium [35].

A. Spin systems

As our first example, we will consider a system comprising
a small collection of spins, for example, molecular nuclear
spins or isotopic impurities in otherwise spinless solids (for
example, silicon [36]). The energetic structure of such systems
is routinely studied using nuclear magnetic resonance (NMR)
spectroscopy, and characteristic spectra are used to identify
different molecular species [37]. However, obtaining NMR
spectra usually requires a large ensemble of sample systems
and strong magnetic field gradients. We will now demonstrate
that our method could in principle be used to obtain spectra for
single molecules using, for example, a tunable magnetic dipole
as a probe, without precise knowledge of the relative location
of the sample with respect to the probe. It should be noted that
our approach is not unique in this respect; other proposals have
been put forward for single-molecule NMR spectroscopy [38].
A typical example of such a tunable magnetic dipole would be
a superconducting qubit, such as a flux qubit, although such
probes are often fairly strongly coupled to wider environments.
In practice, this coupling leads to rather short coherence times
for flux qubits, state-of-the-art T1 and T2 times are ∼40 μs
and ∼80 μs, respectively [39], limiting the energy resolution
of reconstructed spectra. What follows should be viewed, in
the context of current technology, as a proof of principle for
our scheme, rather than a concrete experimental simulation.

Spin systems in an external magnetic field B0 have a
Hamiltonian comprising a Zeeman splitting term and a
magnetic dipole-dipole interaction:

Hspin = −
∑

k

μkB0 · Sk +
∑
kk′

μ0μkμk′

4π |rkk′ |3

×
[

Sk · Sk′ − (Sk · rkk′)(Sk′ · rkk′)

|rkk′ |2
]
, (17)

where rkk′ = rk − rk′ and Sk , rk , and μk are the spin operator,
position, and magnetic moment of the kth spin (μ0 is the
permeability of free space). It is the differences between the
eigenvalues of Eq. (17), usually broadened by the surrounding
environment, that determine the positions of peaks in NMR
spectra. For nuclear spins in small molecules, the magnetic
moment is on the order of the nuclear magneton μN and the
nuclei are often only a few angstroms apart [37]. In the absence
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of an external field, this leads to typical energy splittings of
around 10 peV.

The qubit probe itself is a magnetic dipole with magnitude
μP , which is a function of the persistent current running
through it; the orientation of this dipole moment depends on the
quantum state of the qubit. If we use the two states of definite
magnetic moment to define the eigenstates of the probe’s σx

operator, then we can write its interaction with the spins as

HPspin =
∑

k

μ0μPμk

4π |rPk|3 σx

×
[
n̂P · Sk − (n̂P · rPk)(Sk · rPk)

|rPk|2
]
, (18)

where n̂P is a unit vector along the probe’s magnetic moment
when it is in the +1 σx eigenstate and rPk is the vector joining
the probe and the kth spin. It is also possible to tune the energy
splitting of the flux qubit in Ref. [40] between the eigenstates
of σz such that the persistent current (and hence magnetic
moment) does not change appreciably, that is, it satisfies the
conditions required of a probe for our scheme.

Since only transitions between orthogonal probe states are
of interest in this scenario, preparation of the probe can be
performed using the same kind of projective measurement
used to determine which of the two eigenstates of σz the probe
is in. For flux qubits, such measurements can be performed on
time scales of a few ns, much shorter than the interaction time
scale between probe and system, by biasing the energy of the
definite current states (eigenstates of σx) and coupling it to,
e.g., a Josephson bifurcation amplifier [41,42].

In Fig. 4, we show a simulated reconstruction of the
spectrum of a randomly positioned collection of spins in
an external magnetic field, described by the Hamiltonian in
Eq. (17). The plots in the figure are the Fourier transform of
the two-time correlation functions in Eq. (10), inferred using
our scheme from measurements of the transition probability
between orthogonal states of the probe; the different curves
correspond to different total evolution times. Despite the fact
that the probe is placed at different distances from the system,
the same spectra are reconstructed, with greater or lesser
accuracy. Only in those cases where the coupling is very
strong, and the value of λ necessarily very large, does the
reconstruction fail; this is due to the difficulty of measuring
small probabilities in a finite number of experiments. As can be
seen from the figure, the energy resolution of the reconstruction
is limited by the evolution time of the joint probe system; this
is due to the comparatively long time scales associated with
the spin system. In performing these simulations, we have
assumed that other environments do not play a significant
role in the dynamics on these time scales. While this is
a poor assumption for flux qubits with current technology,
where 1/f noise limits coherence times as discussed above,
it is not unlikely that such experiments could be realistically
performed in the not too distant future, given the rapid rate of
improvement of isolation from their environment [39].

In general, other properties of the system can also be
inferred by making preparations and measurements in dif-
ferent bases. We list the full set of obtainable quantities in
Appendix D, where we show that when the system is highly
disordered, the whole spectrum of the operators A0 and A1 can

FIG. 4. Simulated spin spectra: (a) a superconducting flux qubit
probe P (with magnetic moment 0.3 meV T−1) is placed at four
different randomly chosen positions (i)–(iv) within a radius of 100 nm
around a spin system S, which consists of four spins (with magnetic
moments ∼μN ) randomly arranged within a 0.01-nm sphere; a
|B| = 1 mT magnetic field is applied perpendicular to the magnetic
moment of P . Probe positions are shown in the plane defined by B
and the vector joining P and S. (b) Reconstructed spectra for the
different probe positions. Red peaks indicate the spectrum that would
be obtained with perfect measurement of the transition probabilities
p1:0 for all values of λ and τ . The other curves are simulated
reconstructions, where the experiment was performed only a finite
number (∼106) of times for each choice of parameters. τ was sampled
evenly in 100 ns steps for different total evolution times: 80 μs (dotted
green); 160 μs (dashed purple); 2 ms (solid blue). 100 different values
of λ were tested in each case.

be identified. When there are no degenerate energy splittings,
all diagonal elements of ρS in the basis of both A0 and A1 can
also be determined.

B. Vibrational modes

Another possible application of the formalism presented
here can be found in the context of molecular junctions, where
electrons tunneling between two nanoscale electronic binding
sites (which could be small molecules or quantum dots) couple
to the vibrational degrees of freedom of a molecule placed
between them [43]. The binding sites can be modeled as an
electron donor and acceptor (da) pair, a two-level quantum
system whose energy splitting can be tuned by varying the
potential of leads to which they are connected; the intervening
molecule then plays the role of the unknown system S.
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Following Ref. [5], we use a spin-boson model to describe
the da pair interacting with a molecule that has, along with
its wider environment, a (continuous frequency) collection of
vibrational modes:

H = 1

2
λ(|d〉〈d| − |a〉〈a|) + V (|d〉〈a| + |a〉〈d|)

+
∑

k

(γdk|d〉〈d| + γak|a〉〈a|) ⊗ (bk + b
†
k)

+
∑

k

ωkb
†
kbk, (19)

where the typical energy gap λ (∼100–200 meV) is much
larger than the tunneling energy V (∼1 meV) between donor
and acceptor. To diagonalize the spin part of the Hamiltonian,
we use a polaron transformation [44] generated by the
operator S = ∑

k(udk|d〉〈d| − uak|a〉〈a|) ⊗ (b†k − bk), where
uXk = γXk/ωk .

After performing the transformation, the energy gap is
decreased by an amount Er = ∑

k ωk(u2
dk − u2

ak), known as
the reorganization energy, and the probe couples to the system
through a σx operator. If we additionally assume that the
system and reservoir are both in a thermal state, we can then use
Eq. (7) to write a simple formula for the transition probability
from donor to acceptor (see Appendix E):

pa:d = V 2

λ2
[2 − cos(λτ − Erτ ) exp{f (τ )}], (20)

where

f (τ ) = −
∑

j

(udj − uaj )2 coth

(
ωj

2kBT

)
(1 − cos ωjτ ),

in which T is the temperature.
By measuring pa:d at different times and for different values

of λ, we can both recover the reorganization energy Er , a
measure of the overall coupling strength betweenP and S, and
reconstruct the function f (τ ) in Eq. (20). Fourier transforming
this function reveals information about the couplings (γkd −
γka)2, which for realistic systems can be written as a continuous
distribution J (ω) = ∑

k(γkd − γka)2δ(ω − ωk), known as the
spectral density. Explicitly,

f̃ (ω) = J (ω)

ω2
coth

(
ω

2kBT

)
, (21)

for positive ω. Not only can prominent vibrational modes of an
unknown system S be identified by reconstructing J (ω), but
for a system with known spectral density, f̃ (ω) can be used to
determine the temperature T . That is, in this case, our scheme
can be used to do thermometry.

In practice, the range of times for which one could
reconstruct f (τ ) is limited by the constraint in Eq. (13). For
the parameters mentioned above, the maximum evolution time
is ∼300 ps, much longer than the vibrational coherence time
for some typical spectral densities in large biomolecules [45].
If necessary, this time could be extended by increasing λ

since τmax ∼ λ/V 2; however, this would reduce the transition
probability pa:d , which would then require more experiments
to accurately measure. It should also be noted that other
environments may contribute to the probe signal even in the

absence of a sample system. For example, the leads which
control the bias across the da pair can be considered as a
fermionic bath [46].

V. DISCUSSION

We have presented a general scheme for using a two-level
system to probe an unknown system to which it is coupled: the
application of a precisely controlled external bias to the probe,
in conjunction with measuring transition probabilities, allows
for the reconstruction of many properties of the system, in-
cluding information about its state and spectrum. Importantly,
much of this information can be obtained with the probe being
prepared and measured in a single preferred basis {|π0〉,|π1〉}.

Since our scheme rests on only a few assumptions (notably
we do not require the coupling strength to be in any particular
regime, so long as the probe splitting can be made sufficiently
large), we expect it to find application in many physical
scenarios. Our method can be seen as a kind of generalized
spectroscopy, in that it gives us access to the spectrum
of an unknown system. In particular, it could be used to
determine the electronic and vibrational spectra of large
molecular complexes, an important step in understanding
many biological processes, such as photosynthesis [47].

Unlike traditional spectroscopic techniques, however, the
probe coupling in our approach is strictly off resonant. In
addition to satisfying the conditions in Eqs. (12) and (13),
which ensure the probe-system interaction acts perturbatively,
the probe’s splitting must be larger than energy gaps between
system states which it directly couples.

Although the degree of control required to observe the
oscillations in probability, and hence probe the system, is high,
it is certainly within the realms of experimental possibility for
some systems. In particular, ultrafast spectroscopy routinely
investigates evolution on time scales of order ∼ns with a
resolution of ∼fs or even ∼as [48]. A comparatively long
evolution time of 1 ns requires control over the applied bias on
the order of ∼μeV, although, depending on the probe-system
coupling, the magnitude of the bias may need to be much
larger (see Appendix B). For a magnetic field splitting a
hyperfine level of an alkali-metal atom, this corresponds to
a field strength of order ∼100 mT. Longer evolution times
require an even greater degree of control, and larger values
of λ, the maximum value of which may be fundamentally or
technically limited in some systems, to observe oscillations,
but for many interesting physical processes, coherent quantum
dynamics occurs on sufficiently short time scales.

An interesting potential extension of our results would be
to use the qubit probe to control a more complex system S.
For example, by regularly removing excitations from the probe
(using some external time-dependent control), the latter could
act as an energy sink for the system. While the interaction
with the probe would allow it to escape “dark” subspaces
(from which it cannot be directly cooled), the small effective
coupling in the large-λ regime would prevent it from being
directly affected by the external control on the probe. The net
effect would be to cool the degrees of freedom belonging to S.

Finally, there are analogies but also important differences
between the ideas outlined in this article and quantum state
and process tomography. In quantum state tomography [49],

032112-7
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one endeavors to make statements about the state of a given
quantum system by performing (generalized) measurements
on the latter. These measurements are done by a classical
apparatus or a field. On the other hand, in quantum process
tomography [9,50,51] known quantum states are used to probe
a quantum process and describe the quantum dynamics. In the
approach outlined in this article, we are not varying the input
and the output states, as one would do in a tomographic setting.
The initial and final states are fixed, as is the probe Hamilto-
nian. We use the quantum system P to probe its environment
S and then infer some features of the latter from the induced
dynamics of the former. Interestingly, different features are un-
earthed at different orders in the (inverse) energy splitting ofP .

Clearly, one cannot expect a finite quantum probe to be
able to unveil the full complexity of a much larger system
with which it interacts. Nevertheless, memory effects, energy
structure, and coherent features do come to light, being
associated with different couplings and different choices of
initial states. It would be interesting to understand whether
an exact solution of the problem (say, at all orders in the
bias λ, if perturbation theory is consistent) would be able to
probe different (deeper) characteristics of a complex system,
including its most elusive quantum aspects.
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APPENDIX A: CHANGE OF BASIS OF CONTROL

The system operators for different choices of the control
parameters can be related with reference to their counterparts
in the z direction (which defines θ and φ) as

Ac
0 = cos2 θAz

0 + sin2 θAz
1 + cos θ sin θ (Bz + Bz†), (A1)

Ac
1 = sin2 θAz

0 + cos2 θAz
1 − cos θ sin θ (Bz + Bz†), (A2)

Bc = e−iφ
[

sin2 θBz† − cos2 θBz + cos θ sin θ
(
Az

0 − Az
1

)]
.

(A3)

APPENDIX B: CONDITIONS FOR PERTURBATION SERIES TO EXIST

In order to only consider contributions at first and second order in 1/λ, we require all higher-order terms in Eq. (7) to be
strictly smaller in magnitude. Here, we specify in detail the conditions on λ for this to be the case.

Each term in Eq. (6) can be written in the form

1

(iλ)r
U (x)

τ ρ0U
(y)
τ

†
, where U (x)

τ =
∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−1

0
dsx H̃s1H̃s2 · · · H̃sx

(B1)

and r = x + y. Taking the trace over these terms, with the relevant projection operators for preparation and measurement states,
leads to the following contributions to pβ:α:

1

(iλ)r
tr
[|β〉〈β| ⊗ 1 e−iH0λτU (x)

τ |α〉〈α| ⊗ ρSU (y)
τ

†
eiH0λτ

]
= 1

(iλ)r
∑
nmpq

jkll′

a∗
namb∗

pbq〈jn|ρS |km〉〈l′p|lq〉e(−1)piλτ (1−δp,q )eiτ (Ep

l′ −E
q

l )〈πq lq |U (x)
τ |πn jn〉〈πm km|U (y)

τ

†|πp l′p〉, (B2)

where we have expanded the system operators in their eigenbases as A0 = ∑
j E0

j |j0〉〈j0| and A1 = ∑
j E1

j |j1〉〈j1|. Therefore, a

valid perturbation expansion requires λ 	 |〈πq lq |U (x)
τ |πn jn〉〈πm km|U (y)

τ

†|πp l′p〉|1/(x+y). We can now use the definition of U (x)
τ

in Eq. (B1), as well as the interaction Hamiltonian given in the main text to write these amplitudes explicitly. First, note that

〈πq lq |U (x)
τ |πn jn〉 ∝

{
δn,q , x even

1 − δn,q , x odd.
(B3)

We will therefore treat these two cases separately. For the even case, we have

〈π0 l0|U (x)
τ |π0 j0〉 =

∑
k(1)k(2)···k(x−1)

〈l0|B
∣∣k(1)

1

〉〈
k

(1)
1

∣∣B†∣∣k(2)
0

〉〈
k

(2)
0

∣∣ . . . ∣∣k(x−1)
1

〉〈
k

(x−1)
1

∣∣B†|j0〉

×
∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−1

0
dsx e

is1[1+(E0
l −E1

k(1) )/λ]
e
−is2[1+(E0

k(2) −E1
k(1) )/λ]

. . .

e
isx−1[1+(E0

k(x−2) −E1
k(x−1) )/λ]

e
−isx [1+(E0

j −E1
k(x−1) )/λ] (B4)
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and

〈π1 l1|U (x)
τ |π1 j1〉 =

∑
k(1)k(2)...k(x−1)

〈l1|B
∣∣k(1)

0

〉〈
k

(1)
0

∣∣B†∣∣k(2)
1

〉〈
k

(2)
1

∣∣ . . . ∣∣k(x−1)
0

〉〈
k

(x−1)
0

∣∣B†|j1〉

×
∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−1

0
dsx e

−is1[1+(E0
k(1) −E1

l )/λ]
e
is2[1+(E0

k(1) −E1
k(2) )/λ]

. . .

e
−isx−1[1+(E0

k(x−1) −E1
k(x−2) )/λ]

e
isx [1+(E0

k(x−1) −E1
j )/λ]

. (B5)

For the odd case,

〈π1 l1|U (x)
τ |π0 j0〉 =

∑
k(1)k(2)...k(x−1)

〈l1|B
∣∣k(1)

0

〉〈
k

(1)
0

∣∣B†∣∣k(2)
1

〉〈
k

(2)
1

∣∣ · · · ∣∣k(x−1)
1

〉〈
k

(x−1)
1

∣∣B|j0〉

×
∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−1

0
dsx e

−is1[1+(E0
k(1) −E1

l )/λ]
e
is2[1+(E0

k(1) −E1
k(2) )/λ]

. . .

e
isx−1[1+(E0

k(x−2) −E1
k(x−1) )/λ]

e
−isx [1+(E0

j −E1
k(x−1) )/λ]

. (B6)

We can use these expressions to relate the magnitude of lambda required for a good perturbation series to the operators Ak and
B. In order for the contribution from the term proportional to 1/λr to be smaller in magnitude than that proportional to 1/λw, if
we ignore the time-dependent part it is sufficient that

λ 	 |〈j1|B|k0〉|, (B7)

for all |j1〉 and |k0〉 reachable from ρS within w + 1 applications of the interaction Hamiltonian [i.e., 〈j1(k0)|H̃w+1
0

ρSH̃w+1
0 |j1(k0)〉 
= 0], and

λ ∼> |〈j1|B|k0〉|, (B8)

for all |j1〉 and |k0〉 reachable from ρS within r interactions.
When λ does not equal any of the energy splittings in the system (we will consider the effect of resonances below), iteratively

performing the first few nested integrals leads to∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−1

0
dsx e

−is1[1+(E0
l −E1

k(1) )/λ]
e
is2[1+(E0

k(2) −E1
k(1) )/λ] · · · e−isx [1+(E0

j −E1
k(x−1) )/λ]

= i

∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−2

0
dsx−1 e

−is1[1+(E0
l −E1

k(1) )/λ] · · · e−isx−2[1+(E0
k(x−2) −E1

k(x−3) )/λ]

× e
isx−1[(E0

k(x−2) −E1
k(x−1) )−(E0

j −E1
k(x−1) )]/λ − e

isx−1[1+(E0
k(x−2) −E1

k(x−1) )/λ]

1 + (E0
j − E1

k(x−1) )/λ

= −(i)2
∫ λτ

0
ds1

∫ s1

0
ds2 · · ·

∫ sx−3

0
dsx−2 e

−is1[1+(E0
l −E1

k(1) )/λ] · · · eisx−3[1+(E0
k(x−4) −E1

k(x−3) )/λ]

×
{

λ
e
−isx−2[1+(E0

k(x−2) −E1
k(x−3) )/λ−(E0

k(x−2) −E1
k(x−1) )/λ+(E0

j −E1
k(x−1) )/λ] − e

−isx−2[1+(E0
k(x−2) −E1

k(x−3) )/λ]

[(E0
k(x−2) − E1

k(x−1) ) − (E0
j − E1

k(x−1) )][1 + (E0
j − E1

k(x−1) )/λ]

− e
−ism−2[(E0

k(x−2) −E1
k(x−3) )−(E0

k(x−2) −E1
k(x−1) )]/λ − e

−ism−2[1+(E0
k(x−2) −E1

k(x−3) )/λ]

[1 + (E0
j − E1

k(x−1) )/λ][1 + (E0
k(x−2) − E1

k(x−1) )/λ]

}
. (B9)

As can be seen in the second to last line of Eq. (B9), factors of λ appear in the numerator whenever the 1’s cancel in the exponent
(one can see that factors of 1/λ in the denominator contribute to higher-order terms in the expansion). For a given term, this will
happen at most every other integration (e.g., when integrating over sx−1, sx−3, sx−5, etc.), hence, the leading-order term of the
whole integral will be explicitly proportional to λ

x
2 in the even case and λ

x−1
2 in the odd case. If we were to require the magnitude

of such terms to still be strictly smaller than those at lower orders, we would need that the ratio of subsequent terms goes as 1/λ.
Ignoring the complex exponential factors resulting from the integration, this constraint can be written as

|tr{(BB†)x |l0〉〈l0|BB†|l′0〉〈l′0|(BB†)r/2−xBρS}|/∣∣E0
l − E0

l′
∣∣

|tr{(BB†)r/2ρS}| �1

λ
∀ E0

l 
= E0
l′ and ∀ x � r/2 (r even),

|tr{(BB†)x |l0〉〈l0|BB†|l′0〉〈l′0|(BB†)(r+1)/2−xρS}|/∣∣E0
l − E0

l′
∣∣

|tr{(BB†)(r−1)/2BρS}| �1

λ
∀ E0

l 
= E0
l′ and ∀ x � r/2 (r odd), (B10)
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and similar expressions with additional pairs of projectors
sandwiched between B operators and corresponding factors
of 1/|E0

k − E0
k′ |. The same should also hold with 0 → 1 and

B†B → BB†.
There will also be terms appearing in Eq. (B9) where

the pairs of energy levels in the exponent cancel, i.e.,
(E0

l − E1
k ) − (E0

l′ − E1
k ) = E0

l − E0
l′ = 0. Even when there

are no degeneracies, this can occur when l = l′. These terms
introduce extra factors of λτ , leading to a restriction on the time
for which the perturbation series remains valid. Interacting for
a time τ places constraints on λ identical to those in Eq. (B10),
but with 1/|E0

l − E0
l′ | replaced by τ (and energies required to

be equal, E0
l = E0

l′).
However, for the results in the main text to hold, we do

not need each subsequent term in Eq. (6) to be strictly smaller
than the last, only that later contributions are much smaller
than the zeroth-, first-, or second-order terms we present
in Eqs. (8)–(11) (depending on the choice of preparation
and measurement). For the zeroth-order case, in addition to
Eqs. (B7) and (B8), we must also worry about contributions
from second-order terms of the sort discussed below Eq. (B9).
Although they are nominally proportional to 1/λ after taking
into account the integration, the coefficients could in principle
be large; considering expressions similar to those in Eq. (B10),
where the second-order terms are required to be much smaller
than those at zeroth order, it is straightforward to show that
sufficient constraints on λ are

λ 	
∑
ll′

κ0
ll′ |〈l0|B†B|l′0〉〈l′0|ρS |l0〉| where

κ
j

ll′ =
{

1
/∣∣Ej

l − E
j

l′
∣∣, E

j

l 
= E
j

l′

τ, E
j

l = E
j

l′
(B11)

and the same with 0 → 1 and B†B → BB†.
For the first-order terms in the main text to accurately de-

scribe the transition probabilities, we require that the second-
order terms are much smaller. This leads to λ-independent
limits on ρS and the Ak and B operators:

tr{BρS} 	
∑
ll′

κ0
ll′ |〈l0|B†B|l′0〉〈l′0|ρS |l0〉|, (B12)

and the same with 0 → 1 and B†B → BB†, where κ
j

ll′ is
defined as in Eq. (B11).

When both preparation and measurement are in the control
basis, the corresponding constraints are again dependent on λ

since for the case 〈β|α〉 = 0 (trivially related to the case with
〈β|α〉 = 1), the next highest terms are at fourth order in the
perturbation series [r = 4 in Eq. (B2)]. Strictly, they are

λ 	
∑
ll′

κ0
ll′

|〈l0|B†B|l′0〉〈l′0|B†ρSB|l0〉|
|tr{B†ρSB}| , (B13)

and the same with 0 → 1 and B ↔ B†.
In the case where there are energy differences E0

j − E1
k =

λ, then, in general, extra powers of λτ appear from the
nested integrals, and the perturbation expansion is no longer
valid. However, if we restrict such energy differences to
transitions which require at least w interactions to reach

from the initial system state, i.e., |〈j0|(H̃s)zρS (H̃s)z|j0〉| �
|〈k1|(H̃s)zρS (H̃s)z|k1〉| � 0 for z < w, then terms in Eq. (B2)
with explicit 1/λr dependence will include at most r − 2w

additional powers of λ. Formally, we require λ 
= |E0
j − E1

k |
for all |k1〉, |j0〉, such that tr[|j0〉〈j0|H̃s |k1〉〈k1|H̃ x

s ρSH̃
y
s ] 
= 0,

where x + y � w − 1.
For continuous frequency systems (often the case when

a system of interest cannot be isolated from its wider
environment), such resonances are unavoidable; λ = E0

j − E1
k

always, for some E0
j and E1

k . The couplings for such a system
can be rewritten in terms of continuous functions G(ω) =∑

j,k 〈k1|B|j0〉δ(ω − |E0
j − E1

k |). Our perturbation expansion
still holds when G(λ) ∼< 1/(λ2τ ), effectively removing the
offending terms to leading order.

With general |α〉 and |β〉, all terms of the form given in
Eq. (B2) contribute to pβ:α , so the leading-order contribution
from the 1/λr term is actually λx/2λy/2/λr = 1/λr/2 (x and
y both even), λ(x−1)/2λy/2/λr = 1/λ(r+1)/2 (one even, one
odd), or λ(x−1)/2λ(y−1)/2/λr = 1/λr/2+1 (x and y both odd),
depending on the value of r (and neglecting the resonance
conditions described above). After those terms treated explic-
itly in the main text, terms with r = 1 and 2 have the largest
contributions, but neither has contributions at leading (zeroth)
order, thus, they can be neglected. This remains the case as
long as there are no energy gaps resonant with λ within w = 1
interaction of ρS .

In the case where |α〉 or |β〉 is in the control basis, we must
consider whether terms with r = 2 or greater contribute at first
order in 1/λ. Using Eq. (B9), we find that r = 2 and 3 terms
are both proportional to 1/λ2 at leading order, as long as there
are no w = 1 resonances.

Finally, when |α〉 and |β〉 are both in the control basis,
we need to make sure r � 3 terms do not contribute at
second order. Although r = 3 terms go to zero in this case,
we might worry that for r = 4, terms with x = 2, y = 2 in
Eq. (B2) do have second-order contributions. However, when
〈α|β〉 = 0 (which is trivially related to the case where they
are identical), Eq. (B3) implies that such terms disappear;
therefore, without resonances, r = 4 contributes at third order
at most (with x = 1 and y = 3) and r = 6 at fourth order. In
order for there to be no contributing resonances, we require
that λ is greater than all energy differences within w = 3
interactions.

To summarize: For the results in the main text to hold,
we first require that λ 	 〈j0|B|k1〉, at least for those energy
levels |j0〉 and |k1〉 which are within three interactions of the
initial state ρS (〈j0|BB†BρSBB†B|k1〉 
= 0). We also require
that all other matrix elements 〈j0|B|k1〉 are not significantly
greater than λ. Furthermore, we need all energy differences
that involve aforementioned energy levels, reachable within
three interactions, to be different from the probe splitting: λ 
=
|E0

j − E1
k |. There is a final requirement given by Eqs. (B11)–

(B13), depending on the leading-order term of pβ:α (and hence
choice of preparation and measurement) that relates λ to the
interaction time τ and the properties of the system for zeroth- or
second-order leading 1/λ dependence. For first-order depen-
dence, there is a fundamental constraint on the properties of the
system.
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APPENDIX C: λ DEPENDENCE OF pβ:α

Order one. By expanding the system operators in their eigenbases as A0 = ∑
n E0

n|n0〉〈n0| and A1 = ∑
n E1

n|n1〉〈n1|, we can
perform the integrals in Eq. (6). For the first-order term, we have

1

iλ

∫ λτ

0
ds {tr[a0a

∗
1〈σ(θ,φ)〉βeisB̃sρS − b∗

0b1e
−i(s−λτ )tr[(|a1|2ρS B̃†

s − |a0|2B̃†
s ρS )eiA0τ e−iA1τ ]} + c.c.

= −1

λ

∑
nm

1 − e−i[λ+(E0
n−E1

m)]τ

1 + (
E0

n − E1
m

)/
λ

(
b∗

0b1

∑
l

|a1|2〈m1|B†|n0〉〈n0| l1〉〈l1|ρS |m1〉ei[λ+(E0
n−E1

l )]τ

− b∗
0b1

∑
l

|a0|2〈n0|ρS |l0〉〈l0|m1〉〈m1|B†|n0〉ei[λ+(E0
p−E1

m)]τ − a0a
∗
1〈σ(θ,φ)〉β〈n0|B|m1〉〈m1|ρS |n0〉

)
+ c.c.

= 1

λ
{a0a

∗
1〈σ(θ,φ)〉β(〈B〉S − 〈eiA0τBe−iA1τ 〉S eiλτ ) + b∗

0b1|a0|2(〈eiA0τB†e−iA0τ 〉S − 〈eiA0τ e−iA1τB†〉Seiλτ )

− b∗
0b1|a1|2(〈eiA1τB†e−iA1τ 〉S − 〈B†eiA0τ e−iA1τ 〉Seiλτ )} + c.c. + O

(
1

λ2

)
, (C1)

where in the final line we see ζ (1)(λ), ξ
(1)
0 (λ), and ξ

(1)
1 (λ) as defined in Eqs. (8) and (9) appearing. The second-order (and higher)

terms that result from expanding the denominator in the second line are absorbed into the definition of ζ (2) in Eq. (7).
Order two. Similarly, we can perform the integrals in the second-order terms in Eq. (6). We ignore those terms which never

appear at leading order in 1/λ, which are included in the definition of ζ (2)(λ). For the remaining terms we find

− 1

2λ2

∫ λτ

0
ds

∫ λτ

0
ds ′ tr[〈σ(θ,φ)〉β(|a0|2ei(s−s ′)B̃sB̃

†
s ′ − |a1|2e−i(s−s ′)B̃†

s B̃s ′ )ρS ]

= − 1

λ2

〈σ(θ,φ)〉β
2

∑
nmpq

(
|a0|2〈n0|B|p1〉〈p1|B†|m0〉〈m0|ρS |n0〉

∫ λτ

0
ds ei[1+(E0

n−E1
p]/λ)s

∫ λτ

0
ds ′ e−i[1+(E0

m−E1
p)/λ]s ′

− |a1|2〈n1|ρS |m1〉〈m1|B†|p0〉〈p0|B|n1〉
∫ λτ

0
ds ei[1−(E1

n−E0
p)/λ]s

∫ λτ

0
ds ′ e−i[1−(E1

m−E0
p)/λ]s ′

)

= − 1

λ2

〈σ(θ,φ)〉β
2

[|a0|2(〈BB†〉S + 〈eiA0τBB†e−iA0τ 〉S − eiλτ 〈eiA0τBe−iA1τB†〉S )

− |a1|2(〈B†B〉S + 〈eiA1τB†Be−iA1τ 〉S − eiλτ 〈B†eiA0τBe−iA1τ 〉S )] + O

(
1

λ3

)
, (C2)

where, again, the denominator has been expanded in powers of 1/λ after integrating. In the last line, we see the terms corresponding
to ξ

(2)
0 (λ) and ξ

(2)
1 (λ) defined in Eqs. (10) and (11), respectively.

APPENDIX D: SUMMARY OF OBTAINABLE
PROPERTIES OF THE SYSTEM

Table II shows a summary of all the information one can
obtain about the environment by measuring the amplitude,
phase, and displacement of probability oscillations in λ as a
function of τ . The functions have been Fourier transformed
to give a distribution in energy; for a system with a discrete
spectrum, each peak in the distribution will correspond to pairs
of eigenstates of A0 or A1. In general, there will be multiple
such pairs contributing to each peak, but for highly disordered
environments (randomly distributed energy levels), each pair
of levels will have its own peak.

When no two energy differences in the system are the
same, one effectively has access to each of the terms in the
energy distributions listed in Table II. Furthermore, the whole
spectrum of the operators A0 and A1 can be identified by
comparing the different frequencies present in the distributions
in row 5; triplets of energy levels can be identified from pairs

of frequencies which sum to a third [e.g., (En − Em) + (Em −
Ep) = En − Ep]. By finding all such triplets which include the
lowest- and highest-energy states (corresponding to the highest
frequency present in the distribution), the entire spectrum can
be reconstructed.

With information of the spectrum, one can pick out all the
terms in, for example, the first row which come from the same
energy level E1

n. The sum of these terms gives the diagonal
elements of ρE in the basis of A0, 〈n0|ρS |n0〉. Similarly,
the diagonal elements in the basis of A1 can also be found.
Weighting the diagonal matrix elements by the corresponding
energy eigenvalues allows the expectation values 〈A0〉 and
〈A1〉 to be calculated. Importantly, the sum of these gives
the mean energy of the environment 〈HE〉 = 〈A0〉 + 〈A1〉.
However, it should be noted that this is only possible when
there is coherence in the initial system state, something that it
is always possible to achieve by rotating the control basis, i.e.,
choosing different values of θ and φ.
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TABLE II. Properties of the system deducible from probability oscillations in λ. Fourier distributions also presented. Here, we have written
the environment operators in their eigenbases as Ak = ∑

n Ek
n|nk〉〈nk|.

System quantity Fourier transform Significance

1 〈e−iA0τ eiA1τ 〉S
∑

nm 〈n1|ρS |m0〉〈m0|n1〉δ(ω − (E1
n − E0

m)) Equal to 1 when A0 = A1 = HS

2 〈eiA0τB e−iA1τ 〉S
∑

nm 〈n0|B|m1〉〈m1|ρS |n0〉δ(ω − (E0
n − E1

m))

3 〈eiA0τ e−iA1τB†〉S
∑

nm 〈m1|n0〉〈n0|B†ρS |m1〉δ(ω − (E0
n − E1

m))

4 〈B†eiA0τ e−iA1τ 〉S
∑

nm 〈n0|m1〉〈m1|ρSB†|n0〉δ(ω − (E0
n − E1

m))

5 〈eiAkτB†e−iAkτ 〉S
∑

nm 〈nk|B|mk〉〈mk|ρS |nk〉δ(ω − (Ek
n − Ek

m)) Witness for initial system coherence

6 〈eiA0τB e−iA1τB†〉S
∑

nm 〈n0|B|m1〉〈m1|B†ρS |n0〉δ(ω − (E0
n − E1

m)) Two-time correlation functions

7 〈B†eiA0τBe−iA1τ 〉S
∑

nm 〈n0|B|m1〉〈m1|ρSB†|n0〉δ(ω − (E0
n − E1

m))

8 〈eiA0τBB†e−iA0τ 〉S
∑

nm 〈n0|BB†|m0〉〈m0|ρE |n0〉δ(ω − (E0
n − E0

m))

9 〈eiA1τB†B e−iA1τ 〉S
∑

nm 〈n1|B†B|m1〉〈m1|ρE |n1〉δ(ω − (E1
n − E1

m))

APPENDIX E: VIBRATIONAL MODES:
DERIVATION OF PROBABILITIES

Here, we outline the details of the derivation of the proba-
bilities in Sec. IV B. We start with repeating the Hamiltonian
of the molecular junction spin-boson model:

H = 1

2
λ(|d〉〈d| − |a〉〈a|) + V (|d〉〈a| + |a〉〈d|)

+
∑

k

(γdk|d〉〈d| + γak|a〉〈a|) ⊗ (bk + b
†
k) +

∑
k

ωkb
†
kbk,

(E1)

with the relevant parameters explained in the core text; note
that, for convenience, we have set the zero of energy to be
halfway between the donor and acceptor states of the probe.
Next, we apply the polaron transformation H → eSHe−S ,
generated by

S =
∑

k

(udk|d〉〈d| − uak|a〉〈a|) ⊗ (b†k − bk). (E2)

This transformation leaves operators |X〉〈X|X=d,a unchanged
but modifies the Hamiltonian (up to a constant energy shift) to

H = 1

2
(λ − Er )(|d〉〈d| − |a〉〈a|) + HPS , with (E3)

HPS = |d〉〈a| ⊗ B + |a〉〈d| ⊗ B† + |d〉〈d|
⊗ A0 + |a〉〈a| ⊗ A1, (E4)

where Er = ∑
k ωk(u2

dk − u2
ak) and, written explicitly, the

operators A0,1 and B relevant for our formalism are

A0 = A1 =
∑

k

ωkb
†
kbk, (E5)

B = V �kD(udk − uak). (E6)

In the above, the displacement operator is defined as D(ξ ) =
exp{ξb† − ξ ∗b}. A natural basis for preparations and mea-
surements is the basis |X〉〈X|X=d,a . As a consequence, only
the second-order terms play a role in the analysis of the
probabilities pβ:α . Since we have B†B = 1, the probabilities

simplify to

pβ:α = qβ:α − 〈σz〉β
λ2

(|a0|2 − |a1|2)Re

×{2V 2 − ei(λ−Er )τ 〈B†eiA0τBe−iA0τ 〉}, (E7)

where qβ:α ∈ {0,1}, (|a0|2 − |a1|2) = ±1, and 〈σz〉β = ±1,
depending on the values of α and β. Restricting ourselves
to transitions from d to a and substituting in the definition of
B, we can further write

pa:d = V 2

2λ2
× {2 − ei(λ−Er )τ+2

∑
j (udj −uaj )2 sin(ωj τ )

×〈�jD((udj − uaj )(eiωj τ − 1))〉}. (E8)

To analyze the constraints on the applicability of the
method in this scenario, we first consider a transition element
|〈m1m2 . . . mk . . . |B|n1n2 . . . nk . . . 〉|, where the kth mode ini-
tially has occupation number nk and ends up with occupation
number mk . This quantity must be much smaller than λ for
states with non-negligible initial probability (and not too large
for other states). Using the well-known expression for the
matrix elements of displacement operators [52], we can write
the constraint on λ as

λ 	 V e− 1
2

∑
k (udk−uak)2

�k

(
nk!

mk!

) 1
2

|udk − uak|m−n

×Lm−n
n (|udk − uak|2), (E9)

where L
p
q (x) is a Laguerre polynomial. Unless there are partic-

ularly strongly coupled low-frequency modes (corresponding
to a sub-Ohmic spectral density, for which the polaron
transformation is known to have problems), the satisfaction
of this inequality principally depends on the value of V , which
we have chosen to be small. The second condition related to
the validity of our expansion is given in Eq. (B13). Taking
advantage of the fact that in this example B† = B−1 we can
easily show that the relation between λ and τ simplifies to
λ 	 τV 2.

With the additional assumption on the form of system and
the reservoir states being both thermal, we can evaluate the
expectation value of the displacement operators to get the
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suppressing factor:

〈�jD((udj − uaj )(eiωj τ − 1))〉 = exp

⎧⎨
⎩−

∑
j

(udj − uaj )2(1 − cos ωjτ ) coth

(
ωj

2kBT

)⎫⎬
⎭, (E10)

with βB being the inverse temperature Boltzmann factor. This allows us to rewrite the probabilities pβ:α in a much simpler form
presented in the main text in Eq. (20).
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