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Effect of relativistic motion on witnessing nonclassicality of quantum states
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We show that the operational definition of nonclassicality of a quantum state depends on the motion of the
observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state.
It turns out that the witness based on the properties of the P representation of the quantum state depends on the
trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the

performance of the witness.
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I. INTRODUCTION

The behavior of quantum-mechanical systems within rel-
ativistic settings is a subject of ongoing research, with the
Unruh effect being a prime aspect of these explorations [1-4].
Questions raised by relativistic quantum information go
beyond the problem of relative particle content and hold a
promise of unveiling general properties of quantum mechanics
when exposed to noninertial motions and strong gravitational
fields. This includes analysis of detection of entanglement by
noninertial observers [5], extraction of entanglement from the
vacuum [6,7], generation of entanglement due to motion [8],
and improvement of relativistic metrological protocols [9].
It also involves discussion of universal decoherence due to
the gravitation dilation [10], fundamental limits to build-
ing ideal clocks [11], experimental simulation closed time-
like curves [12] and entangling power of the expanding
universe [13], proposals for verification of the space-time
topology [14], and relativistic protocols within circuit quantum
electrodynamics architecture [15].

Here we discuss one of the quantum features, namely,
the nonclassicality of quantum states, and ask how its op-
erationally defined measure is influenced by general motions.
Nonclassicality of quantum states can be linked to a variety of
phenomena observed experimentally [16—19], such as photon
antibunching [20], sub-Poissonian photon statistics [21], and
squeezing [22], and can be considered a resource [23]. There
is a number of different approaches to this concept [24-28].
However, no unique definition exists. We are motivated by the
approach taken in the field of quantum optics where the crite-
rion for nonclassicality is frequently based on the properties
of the P representation. What we are interested in is verifying
whether such a criterion, defined operationally, is sensitive to
the motion of the probe detecting nonclassicality. We show
that indeed such sensitivity occurs and the universality of
the operational criterion is further limited by a presence of
relative motions. Even the Minkowski vacuum state, which
is considered classical from the perspective of an inertial
frame, can yield nonclassical properties when viewed by an
accelerated observer, associated with a different basis [6].
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The purpose of this work is to show explicitly that
operational measures of nonclassicality, such as the one
studied in this paper, are actually observer dependent. To study
such effects let us first review the necessary formalism behind
the P representation. Any state of a harmonic oscillator can
be represented in the basis of coherent states, the so-called
diagonal basis:

Pho = /dzaP(a)|a)(a|, (1)

where P (o) is the Glauber-Sudarshan diagonal P representa-
tion, which is a probability quasi-distribution function [29,30].
The coherent state represents the closest approximation of
a classical oscillator, with the minimum uncertainty and
oscillating expectation value of the position and the mo-
mentum [31]. Therefore a quantum state pp,, which can be
represented as a statistical mixture of coherent states, can be
considered classical [24]. This occurs when the corresponding
P representation P(«) satisfies the properties of a probability
distribution function and is a positive definite function.
However, when P(«) takes on negative values or is highly
singular, this statement does not hold anymore.

It is possible to derive the P representation from the full
quantum state tomography [32]. However, in general this
procedure is highly sensitive to experimental errors and thus
not practical. For that reason, the solution is to search for
measures that can tune in to the properties of P representation
without the necessity of using state tomography. In this work
we are interested in the quantum-optical approach that leads to
an operationally defined witness of nonclassicality. We follow
the proposal presented in [33] where the authors introduced a
witness based on a two-level probe interacting with a harmonic
oscillator. Similar to that we probe a state of a quantum
field with a two-level detector and infer the presence of the
aforementioned nonclassicality of this state from the detector’s
readings. Our analysis reveals how different motions of the
detector affect the performance of the witness based on the P
representation.

The paper is structured as follows: In Sec. II we recall the
formalism of the witness of nonclassicality, in Sec. III we
discuss the impact of relative motion of the detector and the
measured system on the performance of the witness, and in
Sec. IV we give a summary and an outlook. Throughout the
paper we use natural units withc = h = 1.
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II. WITNESS OF NONCLASSICALITY

Let us start by briefly reviewing the operational witness of
nonclassicality based on the approach presented in [33]. We
are interested in the operational evaluation of nonclassicality
of an unknown initial state of a quantum system. We consider
a qubit detector which interacts with a harmonic oscillator.
After the interaction, by analyzing the state of the detector we
are able to verify the presence of nonclassicality in the initial
state of the harmonic oscillator.

The system is assumed to start in a product state p(0) =
Pqp(0) ® pno(0), corresponding to the qubit and the harmonic
oscillator, and evolve according to a unitary transformation
U = exp{—it H} generated by a Hamiltonian:

H = w6, + wnod'a + 16,(a + a'). )

In the above equation 4, 4t denote the usual bosonic annihila-
tion and creation operators, &; are the Pauli operators, wqp, who
are the frequencies of the respective subsystems, and A is the
coupling constant between them. We choose to parametrize
the initial state in the following manner:

p(0) = (155?3) llf(g()o)> ® / d*a P(a)|a) («]

= ,qu(O) ® Pno(0), 3)

where we have used the diagonal representation for the har-
monic oscillator’s density operator pp,(0) and the eigenbasis
of o for the qubit’s operator pq,(0). The full density operator
evolves according to the equation p(1) = e *#/ p(0)e'" and
the state of the detector at any time ¢ is given by the reduced
density operator pg, = Tryo0(2). Since [6Z,ﬁ ] =0, the only
nontrivially evolving elements of the qubit density matrix,
Pqv(t), are the off-diagonal ones:

w(t) = Tr{|0) (1] p(1)}, “4)

where | 1), |0) denote 6, eigenstates with corresponding eigen-
values {£1}. An explicit calculation of the evolution of w(¢)
yields the following result:

wn)] = [wO)e S SeDIw ), ()

where the function

. —i i . t
2 (e @ho!/2 4 g ho!/2) sin “hot

W) = / daP(a)e . (6)
is the witness function.' If the underlying P representation

is positive, then one can write the witness inequality (or the
classicality bound)

w(t)
w(0)
which does not depend on the choice of wg,, and without

loss of generality we can consider gapless detectors® with
wg, = 0. The upper bound on the measurable quantity |W (?)

2 in2
[W(@)| = 68(k/who) sin“(whot /2) <1, (7)

'For brevity, we may also refer to |W(¢)| as the witness function.

2The choice of a gapless detector has the advantage of simplifying
calculations; introducing a small energy gap would require applying
a perturbative approach to solve the evolution of the system.
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is therefore related to the characteristics of the P representation
that describes the initial state of the harmonic oscillator.
Observed violation of the witness inequality indicates that the
P representation of the initial state pp,(0) has been negative,
thus nonclassical. However, a lack of this violation does not
guarantee that pn,(0) can be considered classical, as shown in
particular examples in [33].

For a better understanding of the witness function let us look
at quantum states that reveal their nonclassicality when tested
within this formalism. This category includes Fock states and
Schrodinger cat states. The P representation corresponding to
a Fock state |N) is given by

elalz 32N
Py(e) = N\ daN daN

62(a>), (8)

and becomes singular for N > 0, meaning that out of all Fock
states, only the vacuum has a classical P representation. The
witness function W (t) evaluated for the Fock state |N) can be
neatly expressed via Laguerre polynomials Ly (x) as

A2 t
WN(t) = LN<16—2 SiIl2 Cl)}210 ) (9)

The second example is provided by the Schrodinger cat states,
which are nonclassical despite being an equal superposition
of two coherent states which individually are considered
classical:

lao) + | — o)

[¥sclao)) = ————- (10)
V2(1 4 e=20)
The corresponding P representation is given by
Psc(ar) = N2[8%(@ — ag) + 82(@ + ) + el IoF
% (eaoaa*e—aoaa 4 g~ e“UB“)SZ(a)], (11)

with 1/N? = 2(1 4 ¢~2%),

The witness functions for both a Fock state and a
Schrodinger cat state are plotted as a function of time in Fig. 1.
The upper bound dictated by the classicality of the P repre-
sentation is violated periodically. Moreover, this violation, if

Fock SC

FIG. 1. Witness function |W(z)| for the Fock state |1) and the
Schrodinger cat state |¥sc(o)), and the following set of parameter
values: A = 1.7, wpo = 4//m,m=1,L =2, and oy = 1.
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present, occurs only after a certain minimum time and for A
above a certain threshold value [33].

III. NONCLASSICALITY AND RELATIVE MOTION

In this section we analyze how the witness of nonclassicality,
as introduced in the previous section, is affected if the detector
and the quantum system of interest are in an inertial or
accelerated motion. To probe the properties of the state of
a quantum field we employ a model of a detector used in
quantum field theory on a curved space-time, the so-called
Unruh-DeWitt detector [1,34]. This model involves a point-
like, semiclassical detector with two internal energy levels
(qubit), following a classical trajectory x(tr), where t is
the detector’s proper time [35]. In our scenario we probe
a real, one-dimensional, scalar quantum field ¢3 (massive or
massless), satisfying the Klein-Gordon equation and confined
in a resting cavity of length L. We set the left wall of the
cavity at x =0 and the initial position of the detector at
x(t=0)=xy = ﬁ, which is at the leftmost antinode of the
field. This choice will be explained later. The Hamiltonian of
the Unruh-DeWitt detector interacting with the field is given
by

Hi(7) = 1e(D)P[x(T)](64€' 0T + 6_e 7 ®wT), (12)

where 61 denote the detector’s rising and lowering operators,
A is the coupling strength, and e(r) is a smooth switching
function that we assume to be €(t) ~ 1 during the interaction
and decreasing to zero when t — 400. Furthermore, Alx(1)]
is the field operator of the quantum field probed by the
detector along the classical trajectory x(t), parametrized by
the detector’s proper time t. We are interested in the scenario
wherein the cavity is resting while the detector is in motion,
and we expand the field operator in terms of the solutions of the
Klein-Gordon equation written in the inertial reference frame
of the cavity [36,37] (and in the interaction picture):

~

(D] =Y F(x(@)(@e " +aje' ™), (13)
k
where the mode functions are given by

Fi(x(v)) = L sin (lﬂx(r)), (14)
Vi L

and the frequencies are defined as w; = /(kmr/L)? + m?, with
m being the mass of the field. In the above, we have chosen a

standard basis for the decomposition of the field operator, i.e.,
plane waves. However, this is not the only basis allowed.

For the gapless Unruh-DeWitt detector model, wg, = 0, the
Hamiltonian takes a much simpler form. In the Schrodinger
picture the total Hamiltonian of the system can be written as a
sum H(t) = Dk H,(7) with

A (1) = ogd) g + AF(x (D)@ + a)é,.  (15)

This allows us to write the evolution operator in the following
way:

O() = @Uux),  Ui(r)=Te b 4"h  (16)
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We assume that the system starts in a separable state that can
be written in the form

P(0) = pen(0) @ pg(0) = (ff?o’) 1 3}(320)) ® Py (0),

A7)

where the qubit’s density operator pqp(0) is given in the
eigenbasis of &, |£), with its corresponding eigenvalues equal
to £1, and p4(0) denotes the density operator of the field. The
full state of the system evolves according to

p(r) = U(0)p(0)U (7). (18)

The time evolution generated by our Hamiltonian is the
well-known evolution of a forced harmonic oscillator [38].
Based on this we can obtain the explicit form of the
transformation Uy (7) (see Appendix A for further details):

O(r) = MO D(e(rye™ @ Ne i, (19)

where

yi(@) = 22 /0 /0 d7'd" F(e(z ) Fe(x(x")

x sin(t’ — t”), (20)

xi(T) = —iA / rdr’Fk(x(r))e"wkf’, (21)
0

and D(«) is the displacement operator D(«a) = exp{eaal —
a*a}.

We follow the same steps as in the previous section and
examine the evolution of the detector’s density operator:
Pqp(t) = Trg p(7). Our goal is to study how nontrivial trajecto-
ries of the detector affect the performance of the nonclassicality
witness introduced in the previous section. Note that for the
special case of the detector at rest the Unruh-DeWitt detector
model reduces to the previously studied Hamiltonian (2).

Again, the only nontrivially evolving elements of pq,(7) are

the off-diagonal elements w(t) [since [6x,ﬁ (t)] =0]
w(t) = Tr{|=){(+| ® I p(7)}
= Tr{U (D) =) {+U (1) pgr(0) ® py(0)}
= Trgn{|=) (+1 046 (O} Trs (U1 (D)ps UL (1)), (22)

where Ui is the time evolution operator U (7), in which the
operator G, is replaced with the corresponding eigenvalues
6x — =x1. Since Trgp{|—){+]pgp(0)} = w(0), we can write
Eq. (22) as

w(t) = wO)Trs (T4 (0)pp(O U (1)), (23)
and
WOy 104 (1)po ()0 (1)) (24)
w(O) p1U+ (o} — .

This gives us the ratio appearing in Eq. (7).

To see how the witness performs when relative motion is
introduced, we initially prepare the field in certain test states.
We choose those states such that they are regarded nonclassical
by a resting detector. In particular, we analyze Fock states and
Schrodinger cat states occupying the kth mode of the cavity
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and assume that all the remaining modes are in the vacuum
state. Therefore we write

0o = &1 [ dari(ela)al, 5)
where Py () = §(a) and Py () is the P representation of

either the Fock state or the Schrodinger cat state. With such a
choice of the initial state we write

11

-l

— 2P

w(T)
w(0)

/ dzaPk<a>Trk{0k,+<r>|a><a|0,i_<r>}‘

/ 22 Py M@ 1) -2

/ d*a Py, (a)e* M@ x| - (26)

This equation explicitly shows the relation between the qubit
readings and the P representation of the initial test state. Next,
we introduce the witness function characterizing our test state:

Wi, (7) = / d*a Pko(a)e4ilm(a*an(f))

= 2@ o5 ixor, 27)
w(0)

Since for classical states we have | Py, ()| = Py, (cr), we can
evaluate an upper bound for the absolute value of the witness
function:

a0l = ‘./dzaPko(a)e“”m(a*Xko(f))
< f d*a| Py, (a)]|e* M 7™

= /d2a|Pk0(oz)| =1 (28)

A violation of this inequality indicates that the initial state of
the field has been nonclassical due to | Py, (a)| # Py, (). Using
this, we analyze how the trajectory of the detector influences
the witness function.

We start with examining two examples of states which are
considered classical by a resting detector, i.e., a coherent and
a thermal state. A simple calculation shows that these are
also identified as classical from the perspective of a moving
detector, inertial or noninertial (see Appendix B for the details).
Thus for these states the performance of the witness stays
unaffected by the motion of the detector.

1. Fock states

Let us now investigate a Fock state with a single excitation,
|0)kk, ® |1),- This state of the field is described by the P
representation given in Eq. (8). We look at two scenarios: (I) the
detector moves with a constant velocity v until it hits the right

vT

wall of the cavity; its trajectory is given by x,(7) = Wi

ﬁ; (IT) the detector moves with a constant acceleration a until
it stops at the right wall; its trajectory is described by x,(7) =
%[cosh(at) — 1]+ 2LTO In both cases the detector starts at the

leftmost antinode of the field, xy = i This choice is made
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since we wish to maximize the coupling between the detector
and the field and the duration of their interaction.

For both types of trajectories we obtain the witness function
of the form similar to Eq. (9), which for one-particle states
simplifies to

WD) =1—4]x,(DI, (29)

with x,(7) defined in Eq. (21). A closer inspection of y,(7)
shows that its dependence on parameters ko, L,A enters only

through ]% and \/L]g Due to this property, increasing ko while

keeping A ~ kg and L ~ ko leaves the witness function
unchanged but allows for an increased time of interaction. With
no loss of generality we choose to work in the regime of large L
and k(. Moreover, we take a value of A that guarantees violation
of the classicality bound for a corresponding nonmoving
detector, unless stated otherwise.

Let us look at scenario (I). It is possible to derive an
analytical formula for Wy, (7) revealing the periodicity of the
witness function due to a fairly simply form of xy,(7):

(1) = i frdr/sin[k n<1+xo>+ komv T :|
Xiolt) = Vkot Jo 2L LV1 =12
x el (30)

The resulting expression is fully discussed in Appendix C. In
Fig. 2 we plot W, (t) evaluated for an initial one-particle
Fock state for a detector moving with different velocities
v. The behavior of the witness function remains oscillatory
throughout the entire dynamics, thus allowing for a periodic
violation of the classicality bound. In the formula above we
see two typical frequencies: wy, and the frequency with which
the detector passes through the consecutive maxima of the

: _ komv
mode function, wy, =i When these two match, a
resonance occurs. This is shown in the plot of the time-

. L T .
averaged witness function W, = ﬁ le dt|Wy,(7)| against

the velocity of the detector, in Fig. 3. Equating the two
frequencies yields a critical velocity for a given wave number

v = 0.50 v=0.65 ©v=0.89 bound
20+
=
£
= lop /)
/ \ /,’\\ /,\‘ \
i \ A i\ A
\ -~/ >
— ‘\ 7 “/ '\ '/ \ // \\
MY -A=7 Ve kI ) Y 7 VAl S T e
0 10 T 20

FIG. 2. Witness function |W;,(t)| corresponding to the initial
Fock state |W)y, = [0)xzk, @ |1)g, for the detector moving with a
constant velocity v and the following set of parameters: ko = 5000,
L = 10000, xo = L/2ky, > = 2/ky, and m = 1.
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A = Vko A =2Vko bound
4 L
=
S2F
o0
<
0 L o e e eeeecccccccassascsasssscassstonnmnnnnnnmnnnalnsyns
0.2 04 0.6 0.8 1

FIG. 3. Time-averaged | Wy, (7)| as a function of velocity v, with
averaging time window t € {0,500} for the following parameter
values: kg = 5000, L = 10000, xo = L/2ko, > = 2</ko, and m = 1.
The plot is shown in a logarithmic scale.

[ 1+ (kow/mL)?
"= T2ty o

This resonant behavior persists also for small couplings A
for which a resting detector does not violate the classicality
bound. When the critical velocity is approached we observe
a simultaneous increase in the period of oscillations of the
witness function. We suspect that the occurrence of this
resonance is due to the specific method used to investigate
a nonclassicality measure and might not emerge in other
scenarios. Furthermore, we note that the performance of this
witness is enhanced, meaning that even when nonclassicality
is not detected with a stationary detector, it might be seen by
a moving one. Relativistic velocities are needed, however, for
this effect to be observable.

Next, we proceed with the second scenario in which the
detector accelerates. In Fig. 4 we plot the absolute value of
the witness function |W;, (7)| for various accelerations. The

ko!

FIG. 4. Witness function |W;,(t)| corresponding to the initial
Fock state |W), = [0)xzk, @ |1)g, for the detector moving with a
constant acceleration, and the following set of parameter values: k) =
5000, L = 10000, xo = 1, A = 24/ko, and m = 1.
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A=V A=V A=2/k

(Wi, (T)]

FIG. 5. Witness function |W;,(T)| corresponding to the initial
Fock state |W)i, = [0)kzx, ® [1)x,> as a function of acceleration,
evaluated at 7 = 500 and for the following parameter values: k) =
5000, L = 10000, and m = 1.

behavior is now qualitatively different, as the curves initially
oscillate, but after a certain time they start asymptotically
approaching constant values. For the regime of parameters
investigated, we see that the higher the acceleration of the
detector, the earlier the asymptote emerges. Figure 5 shows
the dependence of this asymptotic value on the acceleration
a for a number of coupling strengths. The violation of the
classicality bound is observed only for small accelerations, for
which the value of the asymptote initially oscillates with a.
For higher accelerations the value of the asymptote tends to
unity from below. Thus small accelerations will enhance the
performance of the witness, but higher ones will inevitably
lead to a situation in which we cannot see the nonclassicality.
Finally, it should be noted that discussing small vs large
accelerations requires specifying the relative scale. This is,
however, impossible without a broader analytical study of
the mathematical properties of the witness function W(a),
which we have investigated only numerically. This critical
acceleration is related to the point of intersection of the
witness function W (a), with the classicality bound. We suspect
that this value is connected to the interplay of the expected
thermalization (due to the Unruh effect) and the degree to
which the state of the detector is affected by the coupling. The
witness function approaches the asymptotic behavior after a
certain time, and the higher the temperature of the surrounding
thermal bath is, the more the detector gets affected. This
eventually leads to a classical signature in the witness function.
The full understanding of this phenomenon goes beyond the
abilities of this simplified model and requires further study.

2. Schrodinger cat states

In this section we analyze the second family of quantum
states and initiate the field in a Schrodinger cat state, namely,
[0)kky ® |Wsc(oto)),- The corresponding P representation
is given in Eq. (11) and leads to the following form of the
witness function:

SCo\ _
Wes(z) = = {cos[4apIm i, (7)]

+ 724 cosh[4agRe i, (7)1} (32)
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ag = 0.8 ag =3 bound

0 2 4 6 8 10

FIG. 6. Witness function |Wy,(t)| corresponding to the initial
Schrodinger cat state |W)y, = |0)i2, ® [Wsc(@o))y, for the detector
moving with a constant acceleration, and the following set of param-
eter values: a = 0.8, k = 5000, L = 10000, xo = 1, A = 2./ko, and
m=1.

The numerical analysis has been repeated for the same two
trajectories x,(t) and x,(t) to reveal qualitatively the same
results. For the inertial motion we observe a resonant behavior
similar to the previous case, also characterized by the critical
velocity given in Eq. (31), since the same y,(t) appears in
the formula. For the accelerated motion we see the emergence
of the asymptotic behavior for long interaction times, and the
behavior is qualitatively the same as for the Fock case. This
can be seen in Fig. 6, which shows the absolute value of the
witness function for two values of the parameter «. Figures 7
and 8 show in detail the value of the asymptote against
parameter o and the acceleration a, respectively. Similar
to what we have seen before, the value of the asymptote
oscillates with a for low accelerations. These oscillations
have a high amplitude and are more rapid than in the Fock
case, as we observe in Fig. 8 for a approaching zero. For large
a the asymptote tends to unity from below. One can see that
nonclassicality can be detected only if the acceleration a and
the parameter o are small. It should be noted that again, the

witness

Wik, (T)]

FIG. 7. Witness function |W (T)| corresponding to the initial
Schrodinger cat state W), = [0) 2k, ® |Wsc(e))k, as a function of
o, evaluated at 7 = 100 and for the following parameter values:
a=0.8,k=5000,L =10000, xo = 1, A = 2/ko, and m = 1.
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ag = 0.5 ag =1 bound

3p
=
§? I

1 - e

N
0 2 4 6 8 10
a

FIG. 8. Witness function |W,,(T)| corresponding to the initial
Schrodinger cat state |W)g, = |0)k21, ® [Wsc(@o))k, as a function of
acceleration, evaluated at 7 = 1000 and for the following parameter
values: k = 5000, L = 10000, xo = 1, A = 2/ko, and m = 1.

higher the acceleration, the earlier these asymptotes appear.
Yet, we have confirmed that the rapid oscillations that we
see in the Fig. 8 as the curves approach zero are the actual
values of the asymptote, i.e., the time 7 at which the value of
the asymptote is evaluated has been chosen to be sufficiently
high.

IV. SUMMARY

In this work we have discussed the influence of inertial
and noninertial motions on the performance of the oper-
ationally defined witness of nonclassicality, based on the
P representation. Using the model of the Unruh-DeWitt
detector we analyzed the performance of the witness for
the following test states: Fock and Schrodinger cat states.
We have observed a qualitative difference between the in-
ertial and noninertial case, leading to the conclusion that
large accelerations inevitably deteriorate the detection of
nonclassicality, whereas inertial motion does not exhibit this
property. Our observations also show that applying small
accelerations may enhance the detection of nonclassicality,
provided that we work with states with high wave numbers,
or equivalently with long cavities. Otherwise our detector hits
the cavity wall before it can positively verify the presence
of nonclassicality. The performance of the witness can be
enhanced also by inertial motions, even for small coupling
strength between the detector and the measured field, due
to the resonance effect. This is, however, expected only for
velocities comparable to c. Thus we have seen that relative
motions can either improve or worsen the detection of non-
classicality. Observation of nonclassicality becomes therefore
dependent on the motional state of the device that performs the
measurement.

A number of interesting open questions remain for further
studies. One challenge is to better understand how the P
representation transforms under a change of the frame of
reference. This would allow considering the problem in the
frame comoving with the detector. It would also involve
decomposing the field in a different basis of modes. Such
an analysis is, in principle, very much desirable but also
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much more challenging technically. On the other hand such an
approach would make possible the investigation of nonclassi-
cality beyond its operational formulation. This could help to
address more general issues, one of them being the robustness
of the classicality of a state with respect to the change of the
mode decomposition.

Other open questions emerging from our analysis refer
to the presence of the critical velocity and the resonance
effect, and the appearance of the asymptote for a noninertial
detector. We suspect that the former phenomenon is due to the
specific method used, and the latter one could originate from
the detector being affected by the Unruh particles. Further
studies on this topic are required to better understand these
phenomena. Also, to obtain more insight, different scenarios
could be studied, such as considering the detector in free space.
Furthermore, different approaches to nonclassicality could be
investigated [28,39].
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APPENDIX A: TIME EVOLUTION OPERATOR

Here we show the steps allowing us to obtain the time
evolution operator describing the forced harmonic oscil-
lator [38]. Consider a harmonic oscillator undergoing the
evolution described by the time-dependent Hamiltonian of the
form H = Hy + V(t). We choose to work in the interaction
picture with respect to the Hamiltonian H, and therefore
introduce

VI(T) — eil:lol' V(T)e—iﬁof,
WD) =7 |y(r)),

and i%hﬁ(‘[))[ = VI(I)W(I))[. The time evolution operator
is transformed according to the equation

(AL)

01(t,70) = 70 (x,79)e " 0° (A2)

and satisfies the following relation: i j—rU 1(t,79) =
V(1)U (t,10), a formal solution to which gives us

U(t,7) = T{exp |:—i /T V,(r/)dt’} } (A3)

In the above formula 7 stands for the time-ordering op-
erator. If we assume that the operator V(tr) satisfies the
relation

Vi), [Vi(Z), Vi(z")]} = 0, (A4)

then the time evolution operator can be simplified to

U(t,70) = exp [ —i f Vi (z)dt'

_%/Tdr’/r dr//[Vl(r'),Vl(r”)]]. (A3)

The explicit form of the Hamiltonian Hy and the operator
V (7) taken from the model of the harmonic oscillator is Hy =
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wata and V() = f(r)(@ + a'). Therefore we can calculate
the commutator

Vi), Vi(x")] = =2if (x)) f(z") sin[w(r’ — T")],  (A6)

and confirm that \71(1) satisfies the relation (A4). Based on
this observation we can calculate the time evolution operator
to obtain

Ui(z,7) = "™ D(¢ (7, 10)). (A7)

In the above, D(x) = exp{xa’ — x*a} denotes the displace-
ment operator and we have introduced

o(t,m) = —i / ' f(rhe " dr’, (A8)
B(t,19) = /T dr’/dt”f(r/)f(r”) sinfw(t’ — t7)]. (A9)

The above formulas can be used for evaluating the time
evolution operator Ui 1(t) discussed in the body of the
manuscript.

APPENDIX B: COHERENT AND THERMAL STATES

Recall that the P representation for coherent and thermal
states take the following form (here we consider one mode
only and omit the label k):

Peon(@) = (. — ap), B1)
1 9 -
Pi(a) = — exp(—|a|”/n), (B2)
b147

where 71 is the average number of excitations. One can
insert these formulas into the first line of Eq. (27) and
evaluate the absolute value of the witness function. For the
coherent state the corresponding absolute value of the witness

function is equal to unity, whereas for the thermal state we
obtain

|Wan(7)| = ‘ / d*o Py (at) exp{4ilm(a*x(r>)}‘

1
= ‘/ d*a exp {—f|o¢|2 — 4iIm(a*x(t))”
n
= exp{—4ai|x (DI} < 1. (B3)
In both cases we obtain a function which does not exceed unity.

APPENDIX C: RESONANT BEHAVIOR

Here we evaluate the expression for xy,(t) that appears in
Eq. (30). Let us repeat the underlying integral:

() —iA /Td/ . [k <1+XQ>+ k()fl,’v‘f/ i|
T)= T Sin Tl -+ — —_— |,
Xko kot Jo 2L LV1 =2
(C1)
and the notation w; = Li‘/‘)%. For further convenience we

introduce ¢ = kon(% + %) and continue the calculation to
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obtain

M™% [ay, sin(twr, + @) + iwp cos(tor 4 ¢)] — wy, sin(p) — iwy cos(p)}

PHYSICAL REVIEW A 95, 013817 (2017)

(C2)

Xio(T) =

This expression reveals a resonant behavior with a peak at
wy, = wr; namely, if we take the limit wy, — @, we obtain

V(0] = o)

(

a finite |xg,(7)| whose envelope increases linearly with 7. It
allows us to identify the critical velocity given in Eq. (31).

[1] W. G. Unruh, Phys. Rev. D 14, 870 (1976).

[2] W. G. Unruh, in Proceedings of the Ist Marcel Grossmann
Meeting on General Relativity, edited by R. Ruffini (North-
Holland, Amsterdam, 1977), pp. 527-536.

[3] S. A. Fulling, Phys. Rev. D 7, 2850 (1973).

[4] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev. Mod.
Phys. 80, 787 (2008).

[5] I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95, 120404
(2005); T. G. Downes, T. C. Ralph, and N. Walk, Phys. Rev. A
87, 012327 (2013); A. Dragan, J. Doukas, E. Martin-Martinez,
and D. E. Bruschi, Class. Quantum Grav. 30, 235006 (2013); A.
Dragan, J. Doukas, and E. Martin-Martinez, Phys. Rev. A 87,
052326 (2013); M. Ahmadi, K. Lorek, A. Checinska, A. R. H.
Smith, R. B. Mann, and A. Dragan, Phys. Rev. D 93, 124031
(2016).

[6] B. Reznik, Found. Phys. 33, 167 (2003).

[71 S. J. Olson and T. C. Ralph, Phys. Rev. Lett. 106, 110404
(2011); E. G. Brown, E. Martin-Martinez, N. C. Menicucci,
and R. B. Mann, Phys. Rev. D 87, 084062 (2013); K. Lorek, D.
Pecak, E. G. Brown, and A. Dragan, Phys. Rev. A 90, 032316
(2014).

[8] D. E. Bruschi, A. Dragan, A. R. Lee, 1. Fuentes, and J. Louko,
Phys. Rev. Lett. 111, 090504 (2013).

[9] M. Ahmadi, D. E. Bruschi, C. Sabin, G. Adesso, and 1. Fuentes,
Sci. Rep. 4, 4996 (2014).

[10] I. Pikovski, M. Zych, F. Costa, and C. Brukner, Nat. Phys. 11,
668 (2015).

[11] K. Lorek, J. Louko, and A. Dragan, Class. Quantum Grav. 32,
175003 (2015).

[12] M. Ringbauer, M. A. Broome, C. R. Myers, A. G. White, and
T. C. Ralph, Nat. Commun. §, 4145 (2014).

[13] G. Ver Steeg and N. C. Menicucci, Phys. Rev. D 79, 044027
(2009).

[14] E. Martin-Martinez, A. R. H. Smith, and D. R. Terno, Phys. Rev.
D 93, 044001 (2016).

[15] S. Felicetti, C. Sabin, 1. Fuentes, L. Lamata, G. Romero, and
E. Solano, Phys. Rev. B 92, 064501 (2015).

[16] M. W. Noel and C. R. Stroud, Jr., Phys. Rev. Lett. 77, 1913
(1996).

[17] T.J. Dunn, J. N. Sweetser, I. A. Walmsley, and C. Radzewicz,
Phys. Rev. Lett. 70, 3388 (1993).

[18] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 76, 1796 (1996); C. Monroe, D. M.
Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131
(1996).

[19] K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz,
Phys. Rev. Lett. 92, 257901 (2004).

[20] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39,
691 (1977).

[21] R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983); M. C.
Teich and B. E. A. Saleh, J. Opt. Soc. Am. B 2, 275 (1985).

[22] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and
J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985); L.-A. Wu,
H. J. Kimble, J. L. Hall, and H. Wu, ibid. 57, 2520 (1986).

[23] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity, Cambridge, UK, 2013).

[24] U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965);
L. Mandel, Phys. Scr. T12, 34 (1986).

[25] L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965); L.
Mandel, Opt. Lett. 4, 205 (1979); D. F. Walls, Nature 324,
210 (1986); M. Hillery, Phys. Rev. A 35, 725 (1987); C. T.
Lee, ibid. 44, R2775 (1991); W. Vogel and D.-G. Welsch,
Lectures on Quantum Optics (Akademie-Verlag, Berlin, 1994);
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University, Cambridge, UK, 1995); J. Janszky,
M. G. Kim, and M. S. Kim, Phys. Rev. A 53, 502 (1996); G. M.
D’ Ariano, M. F. Sacchi, and P. Kumar, ibid. 59, 826 (1999).

[26] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000).

[27] L. Di6si, Phys. Rev. Lett. 85, 2841 (2000).

[28] T. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002).

[29] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

[30] R.J. Glauber, Phys. Rev. 131, 2766 (1963).

[31] D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed.
(Springer-Verlag, Berlin, 2008).

[32] M. Lobino et al., Science 322, 563 (2008); A. I. Lvovsky and
M. G. Raymer, Rev. Mod. Phys. 81, 299 (2009); E. Agudelo, J.
Sperling, W. Vogel, S. Kohnke, M. Mraz, and B. Hage, Phys.
Rev. A 92, 033837 (2015); T. Kiesel, W. Vogel, B. Hage, and
R. Schnabel, Phys. Rev. Lett. 107, 113604 (2011); J. Sperling,
Phys. Rev. A 94, 013814 (2016).

[33] S. Agarwal and J. H. Eberly, Phys. Rev. A 86, 022341 (2012).

[34] B. S. DeWitt, General Relativity: an Einstein Centenary Survey,
edited by S. W. Hawking and W. Israel (Cambridge University,
Cambridge, UK, 1979), p. 680.

[35] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space (Cambridge University, Cambridge, UK, 1984).

[36] A. Dragan, 1. Fuentes, and J. Louko, Phys. Rev. D 83, 085020
2011).

[37] B. Regula, A. R. Lee, A. Dragan, and 1. Fuentes, Phys. Rev. D
93, 025034 (2016).

[38] E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York,
1998).

[39] O. Gittsovich, T. Moroder, A. Asadian, O. Guhne, and P. Rabl,
Phys. Rev. A 91, 022114 (2015).

013817-8


https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevA.87.012327
https://doi.org/10.1103/PhysRevA.87.012327
https://doi.org/10.1103/PhysRevA.87.012327
https://doi.org/10.1103/PhysRevA.87.012327
https://doi.org/10.1088/0264-9381/30/23/235006
https://doi.org/10.1088/0264-9381/30/23/235006
https://doi.org/10.1088/0264-9381/30/23/235006
https://doi.org/10.1088/0264-9381/30/23/235006
https://doi.org/10.1103/PhysRevA.87.052326
https://doi.org/10.1103/PhysRevA.87.052326
https://doi.org/10.1103/PhysRevA.87.052326
https://doi.org/10.1103/PhysRevA.87.052326
https://doi.org/10.1103/PhysRevD.93.124031
https://doi.org/10.1103/PhysRevD.93.124031
https://doi.org/10.1103/PhysRevD.93.124031
https://doi.org/10.1103/PhysRevD.93.124031
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1103/PhysRevA.90.032316
https://doi.org/10.1103/PhysRevA.90.032316
https://doi.org/10.1103/PhysRevA.90.032316
https://doi.org/10.1103/PhysRevA.90.032316
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1088/0264-9381/32/17/175003
https://doi.org/10.1088/0264-9381/32/17/175003
https://doi.org/10.1088/0264-9381/32/17/175003
https://doi.org/10.1088/0264-9381/32/17/175003
https://doi.org/10.1038/ncomms5145
https://doi.org/10.1038/ncomms5145
https://doi.org/10.1038/ncomms5145
https://doi.org/10.1038/ncomms5145
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevLett.77.1913
https://doi.org/10.1103/PhysRevLett.77.1913
https://doi.org/10.1103/PhysRevLett.77.1913
https://doi.org/10.1103/PhysRevLett.77.1913
https://doi.org/10.1103/PhysRevLett.70.3388
https://doi.org/10.1103/PhysRevLett.70.3388
https://doi.org/10.1103/PhysRevLett.70.3388
https://doi.org/10.1103/PhysRevLett.70.3388
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1103/PhysRevLett.92.257901
https://doi.org/10.1103/PhysRevLett.92.257901
https://doi.org/10.1103/PhysRevLett.92.257901
https://doi.org/10.1103/PhysRevLett.92.257901
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.51.384
https://doi.org/10.1103/PhysRevLett.51.384
https://doi.org/10.1103/PhysRevLett.51.384
https://doi.org/10.1103/PhysRevLett.51.384
https://doi.org/10.1364/JOSAB.2.000275
https://doi.org/10.1364/JOSAB.2.000275
https://doi.org/10.1364/JOSAB.2.000275
https://doi.org/10.1364/JOSAB.2.000275
https://doi.org/10.1103/PhysRevLett.55.2409
https://doi.org/10.1103/PhysRevLett.55.2409
https://doi.org/10.1103/PhysRevLett.55.2409
https://doi.org/10.1103/PhysRevLett.55.2409
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1103/PhysRev.140.B676
https://doi.org/10.1103/PhysRev.140.B676
https://doi.org/10.1103/PhysRev.140.B676
https://doi.org/10.1103/PhysRev.140.B676
https://doi.org/10.1088/0031-8949/1986/T12/005
https://doi.org/10.1088/0031-8949/1986/T12/005
https://doi.org/10.1088/0031-8949/1986/T12/005
https://doi.org/10.1088/0031-8949/1986/T12/005
https://doi.org/10.1103/RevModPhys.37.231
https://doi.org/10.1103/RevModPhys.37.231
https://doi.org/10.1103/RevModPhys.37.231
https://doi.org/10.1103/RevModPhys.37.231
https://doi.org/10.1364/OL.4.000205
https://doi.org/10.1364/OL.4.000205
https://doi.org/10.1364/OL.4.000205
https://doi.org/10.1364/OL.4.000205
https://doi.org/10.1038/324210a0
https://doi.org/10.1038/324210a0
https://doi.org/10.1038/324210a0
https://doi.org/10.1038/324210a0
https://doi.org/10.1103/PhysRevA.35.725
https://doi.org/10.1103/PhysRevA.35.725
https://doi.org/10.1103/PhysRevA.35.725
https://doi.org/10.1103/PhysRevA.35.725
https://doi.org/10.1103/PhysRevA.44.R2775
https://doi.org/10.1103/PhysRevA.44.R2775
https://doi.org/10.1103/PhysRevA.44.R2775
https://doi.org/10.1103/PhysRevA.44.R2775
https://doi.org/10.1103/PhysRevA.53.502
https://doi.org/10.1103/PhysRevA.53.502
https://doi.org/10.1103/PhysRevA.53.502
https://doi.org/10.1103/PhysRevA.53.502
https://doi.org/10.1103/PhysRevA.59.826
https://doi.org/10.1103/PhysRevA.59.826
https://doi.org/10.1103/PhysRevA.59.826
https://doi.org/10.1103/PhysRevA.59.826
https://doi.org/10.1103/PhysRevLett.84.1849
https://doi.org/10.1103/PhysRevLett.84.1849
https://doi.org/10.1103/PhysRevLett.84.1849
https://doi.org/10.1103/PhysRevLett.84.1849
https://doi.org/10.1103/PhysRevLett.85.2841
https://doi.org/10.1103/PhysRevLett.85.2841
https://doi.org/10.1103/PhysRevLett.85.2841
https://doi.org/10.1103/PhysRevLett.85.2841
https://doi.org/10.1103/PhysRevLett.89.283601
https://doi.org/10.1103/PhysRevLett.89.283601
https://doi.org/10.1103/PhysRevLett.89.283601
https://doi.org/10.1103/PhysRevLett.89.283601
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1126/science.1162086
https://doi.org/10.1126/science.1162086
https://doi.org/10.1126/science.1162086
https://doi.org/10.1126/science.1162086
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/PhysRevA.92.033837
https://doi.org/10.1103/PhysRevA.92.033837
https://doi.org/10.1103/PhysRevA.92.033837
https://doi.org/10.1103/PhysRevA.92.033837
https://doi.org/10.1103/PhysRevLett.107.113604
https://doi.org/10.1103/PhysRevLett.107.113604
https://doi.org/10.1103/PhysRevLett.107.113604
https://doi.org/10.1103/PhysRevLett.107.113604
https://doi.org/10.1103/PhysRevA.94.013814
https://doi.org/10.1103/PhysRevA.94.013814
https://doi.org/10.1103/PhysRevA.94.013814
https://doi.org/10.1103/PhysRevA.94.013814
https://doi.org/10.1103/PhysRevA.86.022341
https://doi.org/10.1103/PhysRevA.86.022341
https://doi.org/10.1103/PhysRevA.86.022341
https://doi.org/10.1103/PhysRevA.86.022341
https://doi.org/10.1103/PhysRevD.83.085020
https://doi.org/10.1103/PhysRevD.83.085020
https://doi.org/10.1103/PhysRevD.83.085020
https://doi.org/10.1103/PhysRevD.83.085020
https://doi.org/10.1103/PhysRevD.93.025034
https://doi.org/10.1103/PhysRevD.93.025034
https://doi.org/10.1103/PhysRevD.93.025034
https://doi.org/10.1103/PhysRevD.93.025034
https://doi.org/10.1103/PhysRevA.91.022114
https://doi.org/10.1103/PhysRevA.91.022114
https://doi.org/10.1103/PhysRevA.91.022114
https://doi.org/10.1103/PhysRevA.91.022114



