
Spatial entanglement of nonvacuum Gaussian states

Filip Kiałka,* Mehdi Ahmadi,† and Andrzej Dragan‡

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,
Pasteura 5, 02-093 Warsaw, Poland

(Received 23 March 2016; published 2 June 2016)

The vacuum state of a relativistic quantum field contains entanglement between regions separated
by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced
in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014),
E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this
approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror.
Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field,
which can be quantified by measuring particles generated in the process. We use this method to study
spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance
the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the
cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial
entanglement which is revealed by dividing the cavity in half.
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I. INTRODUCTION

The vacuum fluctuations of a relativistic quantum field in
spacelike separated regions are quantum correlated. This is
referred to as vacuum entanglement. It has been predicted
in the context of accelerating frames of reference [1,2], as
well as in algebraic quantum field theory [3–6]. In [7,8], it
has been shown how entanglement can be extracted from
the vacuum state of a quantum field using a pair of initially
unentangled two-level atoms, known as Unruh-DeWitt
detectors, which interact only locally with the field. A
more detailed analysis of this scenario was later performed
in [9]. Moreover, a feasible method for detecting vacuum
entanglement was proposed in a chain of trapped ions [10].
Such entanglement is believed to persist between arbitrarily
far away regions of bosonic and fermionic fields [11–14],
and it manifests in the Unruh effect for accelerating
observers [8,9,15–17]. Recently, however, a thorough ana-
lysis of vacuum entanglement was performed for massive
fields [18], where sudden death of vacuum entanglement as
a function of the distance between the modes was observed.
It has also been shown that vacuum entanglement can be
used to violate Bell’s inequalities [3–6,13], can be multi-
partite [19,20], and that for massless fields, it persists
between timelike separated regions [21]. It can also be
resonantly enhanced with the use of a moving cavity [22].
Furthermore, the phenomenon is expected to be sensitive to
spacetime curvature [23,24] and to have a relevant effect on
the possibility of building ideal relativistic clocks [25,26].

In this paper, we generalize one of the recent operational
methods for investigating vacuum entanglement [27,28] to
nonvacuum Gaussian states. In algebraic quantum field
theory, it has been stressed that essentially all field states
possess the aforementioned spatial entanglement properties
[6,29]. However, to the best of our knowledge, states
other than the vacuum state and the thermal state [30,31]
have not yet been explored in the operational approach. In
particular, it is not known whether nonclassical states, such
as squeezed states, offer any experimental advantage. Also,
it is not clear how the entanglement between spatial areas
and the entanglement in the global basis of plane waves or
standing waves are related to each other.
In this paper, we address the above questions.

Specifically, we consider coherent states, single-mode
squeezed thermal states, and two-mode squeezed vacuum
states. We show that spatial entanglement is indeed not
unique to vacuum. Moreover, we provide examples of
states for which the effect is stronger and hence easier to
detect. We also observe that the amount of entanglement
in the usual standing wave basis can contribute to the
amount of spatial entanglement.
In our operational approach, an optical cavity is split into

two smaller cavities via rapid introduction of a mirror in
between the two mirrors of the cavity. We show that particle
production due to such a change of boundary conditions
can be made stronger by using a nonvacuum initial state of
the field inside the cavity. Particle creation due to rapidly
varying boundary conditions is of independent interest,
and our work adds to the body of theoretical predictions
concerning this phenomenon [27,32–35].
This paper is organized in the following way. In Sec. II,

we briefly review the operational model for studying
vacuum entanglement. In Sec. III A, we focus on the

*fk322204@okwf.fuw.edu.pl
†mehdi.ahmadi@ucalgary.ca

Present address: University of Calgary, Calgary, Alberta, Canada.
‡dragan@fuw.edu.pl

PHYSICAL REVIEW D 93, 125003 (2016)

2470-0010=2016=93(12)=125003(10) 125003-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.125003
http://dx.doi.org/10.1103/PhysRevD.93.125003
http://dx.doi.org/10.1103/PhysRevD.93.125003
http://dx.doi.org/10.1103/PhysRevD.93.125003


particle creation effect for initial coherent states. Then, we
study spatial entanglement and particle production for a
single-mode squeezed thermal state in Sec. III B. We
devote Sec. III C to investigating whether the final amount
of spatial entanglement between the localized modes is
affected by the presence of entanglement between the initial
modes of the cavity. Finally, in Sec. IV, we present our
conclusions, open questions and possible future lines of
research.

II. MODEL

In this section, we briefly review the operational
approach of [27,28]. Consider a one-dimensional
Dirichlet cavity, in the middle of which an additional
mirror is instantaneously introduced (see Fig. 1). The
cavity contains a massless scalar field in an initial
Gaussian state. First, we calculate the state of the field
after the mirror was introduced. This way we are able to
investigate the mean number of particles produced due to
introduction of the mirror. Moreover, we analyze the
amount of entanglement between different modes of the
two smaller cavities as a function of the initial state of
the field.
To show the correspondence between entanglement of

particles created in this model and vacuum entanglement,
we recall an extended scheme due to Brown et al. [28]. In
this scheme two mirrors are simultaneously introduced a
finite distance apart, and it is found that particles created by
one mirror are entangled with those created by the other.
Since the particle creation events are spacelike separated,
one argues that the obtained amount of entanglement must
have been present in the initial state of the field. In this
paper, we use this scheme, but in a limit where distance
between the two mirrors approaches zero. Nevertheless, we

can retain the interpretation of extracting entanglement
from the initial state rather than creating it.

A. Classical solutions and the Bogoliubov
transformation

Consider a one-dimensional cavity with a massless
scalar field, described by the Klein-Gordon equation,

ð∂2
t − ∂2

xÞϕðt; xÞ ¼ 0; ð1Þ

and Dirichlet boundary conditions ϕðt; 0Þ ¼ ϕðt; RÞ ¼ 0
for all t. At t ¼ 0, an additional mirror is introduced at
x ¼ r, which corresponds to the condition ϕðt; rÞ ¼ 0 for
t > 0. In Sec. III, we will assume r ¼ R=2, in this section;
however, we review the transformation procedure for
arbitrary r ∈ ½0; R� as given in [27,28].
We introduce two families of solutions of the Klein-

Gordon equation (1). The first family, ðUlÞl∈N, physically
corresponds to the standing waves before the mirror is
inserted. The second family of solutions are ðunÞn∈N,
ðūnÞn∈N. These are the standing waves contained within
the left cavity and within the right cavity after the division,
respectively. They read as

Ulðt; xÞ ¼t<0 1ffiffiffiffiffiffiffiffiffi
RΩl

p sin

�
πlx
R

�
e−iΩlt; ð2aÞ

Ωl ¼
πl
R
; ð2bÞ

and

unðt; xÞ ¼t>0 θðr − xÞffiffiffiffiffiffiffiffi
rωn

p sin

�
πnx
r

�
e−iωnt; ð3aÞ

ωn ¼
πn
r
; ð3bÞ

ūnðt; xÞ ¼t>0 θðx − rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR − rÞω̄n

p sin

�
πnðx − rÞ
R − r

�
e−iω̄nt; ð3cÞ

ω̄n ¼
πn

R − r
; ð3dÞ

where θðxÞ is the Heaviside step function. Having intro-
duced the two families of solutions, we can relate them by a
Bogoliubov transformation:

unðx; tÞ ¼
X∞
n¼1

ðαnlUlðx; tÞ þ βnlU�
l ðx; tÞÞ; ð4aÞ

ūnðx; tÞ ¼
X∞
n¼1

ðᾱnlUlðx; tÞ þ β̄nlU�
l ðx; tÞÞ: ð4bÞ

The coefficients αnl, βnl, ᾱnl, β̄nl are given by Klein-Gordon
scalar products [36] of solutions Ul with un, ūn, i.e., the

FIG. 1. We investigate how the state of a quantum field in a
cavity changes when the cavity is instantaneously divided in half
with an additional mirror. After such a rapid division quantum
correlated particles are produced [27,28]. The input and output
states are Gaussian, characterized by the vectors of first moments
xin, xout and the covariance matrices σin, σout.
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overlaps of the mode functions corresponding to input
states with the mode functions associated with the output
states. To calculate these overlaps, we need to extend Ul
past the t ¼ 0 point so that there is a Cauchy surface on
which both families of solutions are defined. This would
normally require solving equation (1) with a time-
dependent boundary condition at the point where the
mirror is introduced. However, for infinitely fast introduc-
tion of the mirror the dynamics can be neglected. Therefore,
we simply extend Ul using free evolution of the field and
then we calculate the scalar products, which leads to these
Bogoliubov coefficients:

αnl ¼ ðUljunÞ ¼ ðΩl þ ωnÞVnl; ð5aÞ

βnl ¼ −ðU�
l junÞ ¼ ðΩl − ωnÞVnl; ð5bÞ

ᾱnl ¼ ðUljūnÞ ¼ ðΩl þ ωnÞV̄nl; ð5cÞ

β̄nl ¼ −ðU�
l jūnÞ ¼ ðΩl − ωnÞV̄nl; ð5dÞ

where

Vnl ¼
8<
:

ð−1Þnnπ
r
ffiffiffiffiffiffiffiffiffiffiffi
RrΩlωn

p
ðΩ2

l−ω2
nÞ
sin
�
lπr
R

�
Ωl ≠ ωn;

r
2
ffiffiffiffiffiffiffiffiffiffiffi
RrΩlωn

p Ωl ¼ ωn;
ð6aÞ

V̄nl ¼

8>><
>>:

−nπ
r̄
ffiffiffiffiffiffiffiffiffiffiffi
Rr̄Ωlω̄n

p
ðΩ2

l−ω̄2
nÞ
sin
�
lπr
R

�
Ωl ≠ ω̄n;

ð−1Þnþl r̄

2
ffiffiffiffiffiffiffiffiffiffiffi
Rr̄Ωlω̄n

p Ωl ¼ ω̄n:
ð6bÞ

At this point it is worth mentioning that a more careful
calculation of these Bogoliubov coefficients has been
performed in [35], which involves solving Eq. (1) with a
time-dependent boundary condition. There, ϕðt; rÞ ¼ 0 is
enforced with a boundary condition (for spatially even
solutions),

lim
x→r�

∂xϕðt; xÞ
ϕðt; xÞ ¼ BðtÞ; ð7Þ

where BðtÞ smoothly changes from 0 to infinity as the
mirror is introduced. The obtained Bogoliubov coefficients
for an evolution satisfying condition (7) can be seen to
reduce to the coefficients (5) in the instantaneous mirror
introduction limit. Thus, our approximation that neglects
the dynamics is well founded.

B. Quantum model

Let us proceed by briefly reviewing the quantized
version of the model introduced in the previous section.
In the canonical quantization procedure with each solution
ðUlÞl¼1;…;2Λ (where 2Λ is a UV cutoff) we associate a pair

of time-independent hermitian quadrature operators Q̂l; P̂l.
The quadrature operators obey canonical bosonic commu-
tation relations:

½Q̂iP̂j� ¼ iδij: ð8Þ

Similarly, we associate quadrature operators q̂n, p̂n and ˆ̄qm,
ˆ̄pm with the solutions ðunÞn¼1;…;Λ and ðūmÞm¼1;…;Λ. We
conveniently arrange these operators into two vectors:

x̂in ¼ ðQ̂1; P̂1;…; Q̂2Λ; P̂2ΛÞ; ð9Þ

x̂out ¼ ðq̂1; p̂1;…; q̂Λ; p̂Λ; ˆ̄q1; ˆ̄p1;…; ˆ̄qΛ; ˆ̄pΛÞ: ð10Þ

Then, the Bogoliubov transformation (4) can be written as

x̂out ¼ Sx̂in; ð11Þ

where S is a square matrix:

S ¼

0
BBBBBBBBBBBB@

S1;1 � � � S1;2Λ

..

. . .
. ..

.

SΛ;1 � � � SΛ;2Λ

S̄1;1 � � � S̄1;2Λ

..

. . .
. ..

.

S̄Λ;1 � � � S̄Λ;2Λ

1
CCCCCCCCCCCCA
; ð12Þ

where the elements listed above are 2 × 2matrices given by

Snl ¼ 2Vnl

�
ωn 0

Ωl 0;

�
; ð13aÞ

S̄nl ¼ 2V̄nl

�
ω̄n 0

Ωl 0;

�
: ð13bÞ

In this paper, we limit ourselves to Gaussian initial states
[37]. Since the Bogoliubov transformation (11) is linear in
quadrature operators, the transformed state will also be
Gaussian. Therefore, the first and second statistical
moments are sufficient to characterize both the initial
and final states, i.e., the state of the field before and after
the introduction of the mirror. The first moments are given
by a vector of expectation values,

x ¼ hx̂i; ð14Þ

while the second moments are given by a covariance
matrix, which consists of 2 × 2 blocks defined in the
following way:
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σij ¼
� hfΔq̂i;Δq̂jgi hfΔq̂i; Δp̂jgi
hfΔp̂i;Δq̂jgi hfΔp̂i; Δp̂jgi

�
; ð15Þ

where ΔÂ ¼ Â − hÂi and f; g is the anticommutator. The
Bogoliubov transformation (11) implies the following
transformation laws for the vector of first moments and
the covariance matrix hold:

xout ¼ Sxin; ð16aÞ

σout ¼ SσinST: ð16bÞ

Finally, we are interested in two properties of the state
after transformation, namely entanglement and the aver-
age number of particles. To calculate these, we divide the
4Λ × 4Λ covariance matrix σout into 2Λ × 2Λ blocks:

σout ¼
�

σ γ

γT σ̄

�
: ð17Þ

Then, we divide the blocks σ, γ, and σ̄ further into 2 × 2
blocks σij, γij, and σ̄ij, describing the states of individual
modes and correlations between them. In this block
notation, we can easily give the expectation value of the
particle number operator, for example for mode un, as

hn̂ni ¼
1

4
ðTrσnn − 2Þ þ 1

2
ðhq̂2ni þ hp̂2

niÞ: ð18Þ

While for mode ūn the formula contains the barred
counterparts σ̄nn, ˆ̄qn, and ˆ̄pn.
To calculate the entanglement between a pair of modes

un and ūm we need to find the corresponding covariance
matrix, which we will denote by σoutjnm. It is obtained by
deleting all the entries of the matrix σout except for the 16
entries which lie on the intersection of the four rows and
four columns corresponding to modes un and ūm:

σoutjnm ¼
�
σnn γnm

γTnm σ̄mm

�
: ð19Þ

We use logarithmic negativity [38] as an operational
measure of entanglement between the modes, as it is an
entanglement monotone and provides an upper bound to
distillable entanglement. The logarithmic negativity of the
reduced state of modes un and ūm is easy to compute and is
given by

EN ðn;mÞ ¼ max

8>><
>>:0;− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ2 − 4 det σoutjnm

q
2

vuut
9>>=
>>;;

ð20Þ

where

~Δ ¼ det σnn þ det σ̄mm − 2 det γnm: ð21Þ

C. Transformation of the covariance matrices
of nonvacuum states

The covariance matrix of the vacuum is unity, hence
the result of the transformation (16b) for the vacuum as the
initial state is simply σout ¼ SST. Let us now assume the
input state is the vacuum in all modes except Uk, in which
we have a single-mode Gaussian state described by a
covariance matrix σinkk. Under such circumstances, the 2 × 2

blocks of σ, γ, and σ̄ [see Eq. (19)] are equal to

σij ¼ SikσinkkSjk þ
X2Λ
l≠k

SilSjl; ð22aÞ

γij ¼ SikσinkkS̄jk þ
X2Λ
l≠k

SilS̄jl; ð22bÞ

σ̄ij ¼ S̄ikσinkkS̄jk þ
X2Λ
l≠k

S̄ilS̄jl: ð22cÞ

The above result uses the fact that Snl are symmetric and
reduces to SST when σinkk ¼ 1.
The second type of input state that is of interest in this

paper is the one that has all modes in the vacuum state
except for the two modes Uk, Uk0 (k < k0). The reduced
state of these two modes is a two-mode Gaussian state
described by a 4 × 4 covariance matrix:

σinjkk0 ¼
 

σinkk σinkk0

σink0k σink0k0

!
: ð23Þ

In this case, using Eqs. (13) and (16b), the blocks of σ, γ,
and σ̄, as defined in Eq. (19), can be written as

σij ¼ SikσinkkSjk þ Sik0σink0k0Sjk0 þ Sikσinkk0Sjk0 þ � � �

þ Sik0σink0kSjk þ
X2Λ
l≠k;k0

SilSjl; ð24aÞ

γij ¼ SikσinkkS̄jk þ Sik0σink0k0 S̄jk0 þ Sikσinkk0 S̄jk0 þ � � �

þ Sik0σink0kS̄jk þ
X2Λ
l≠k;k0

SilS̄jl; ð24bÞ

σ̄ij ¼ S̄ikσinkkS̄jk þ S̄ik0σink0k0 S̄jk0 þ S̄ikσinkk0 S̄jk0 þ � � �

þ S̄ik0σink0kS̄jk þ
X2Λ
l≠k;k0

S̄ilS̄jl: ð24cÞ
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III. SPATIAL ENTANGLEMENT
AND PARTICLE PRODUCTION

In this section, we first study particle production and
entanglement extraction for coherent states and general
single-mode Gaussian states as initial states of the large
cavity before division. Then, we compare the spatial
entanglement of a two-mode squeezed state and a state
consisting only of its thermal marginals. This way, we are
able to demonstrate that the result of introducing the mirror
is sensitive to correlations present in the initial state of the
cavity. Throughout this section, we assume that the addi-
tional mirror is introduced precisely in the middle of the
cavity, i.e., r ¼ R=2.

A. Coherent states

For the first input state, we assume that all the modes are
in the vacuum state, except for the mode Uk which is
prepared in a coherent state with the amplitude ρ > 0 and
phase φ. Using Eqs. (14) and (15), the vector of first
moments and the covariance matrix of this state can be
written, respectively, as

xinn ¼
8<
:

ρ cosφ n ¼ k;

ρ sinφ n ¼ kþ 1;

0 otherwise;

ð25aÞ

σin ¼ 1: ð25bÞ

At this point we note that changing the first moments of
the initial state does not change the covariance matrix, and
hence the entanglement, of the state after the introduction
of the mirror [see Eqs. (16) and (20)]. Since coherent states
differ from the vacuum only in their first moments, their
spatial entanglement is the same as that of the vacuum,
which was already discussed elsewhere [27,28]. Therefore,
in this subsection, we focus only on the average number of
particles produced due to division of the cavity.
The average number of particles after the introduction of

the mirror is a sum of contributions from the first and from
the second moments, as given in Eq. (18). For a coherent
state, the term corresponding to second moments is equal to
the number of particles produced by inserting the mirror
when the cavity is in the vacuum state. This is, however, a
negligible number [27,28]. Since we are interested in the
possible advantage of a coherent state over the vacuum state
in the context of particle production, we need to discuss the
contribution of the nonzero first moments. Using Eqs. (16a)
and (25a), it is straightforward to calculate the expectation
values appearing in Eq. (18) for the state of the mode un:

hq̂ni2 þ hp̂ni2 ¼ 4ρ2V2
nkðω2

n cos2 φþ Ω2
k sin

2 φÞ: ð26Þ

Since we introduce the mirror precisely in the middle of
the cavity, an identical result holds for the mode ūn on the

right side of the mirror. As expected from the linearity of
the transformation (11), we observe that the final and initial
average number of particles are proportional to each other.
The proportionality constant is plotted in Fig. 2 for k ¼ 1.
The dependence of particle production on the phase φ

can be understood in terms of the expectation value of the
field at the event where the mirror is inserted. We can see
from Eqs. (25a) and (2) that φ equal to 0 or π corresponds to
states with the maximum value of hϕ̂ð0; rÞi, for which the
amount of particles produced and the increase of energy are
also maximal. The only choice of phase for which the
energy of the state remains unchanged is φ ¼ π=2. This
corresponds to an initial state for which hϕ̂ð0; rÞi ¼ 0. In
this case, since the modes un and ūn have higher frequen-
cies thanUl modes, energy conservation implies a decrease
in the number of particles. This explains the absorption,
rather than production, of particles we observe
around φ ¼ π=2.
From a quantum-optical perspective the dependence on

phase, which is visible in Fig. 2, resembles a degenerate
parametric amplifier [39]. For the amplifier, however, the
strength of particle production depends on the phase
difference between the pumping and the amplified beam,
whereas in our case no system providing the reference
phase seems to be present. It turns out, however, that the
phase reference is in fact provided in our setting by the
choice of the boundary conditions on the mirror. Dirichlet
boundary conditions, requiring that the field modes vanish
at the mirror, do violate the phase symmetry of the field.
Alternatively, forcing ∂tϕ to be zero at the mirror location

FIG. 2. Expected number of particles after a rapid division of
the cavity containing a coherent state (25) is equal to a constant
plus the term (26) which is proportional to the initial number of
particles. Here, the proportionality constant is shown as a
function of phase for a coherent state initially in the first mode
of the cavity. Solid, dashed and dot-dashed lines stand for the sum
of the average numbers of particles in modes un and ūn, where
n ¼ 1, 2, 3, respectively. Notice that the number of particles can
either increase or decrease depending on phase φ of the initial
coherent state.
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would amplify coherent states with φ ¼ π=2 rather than
those with φ ¼ 0 as it is in our case.
Finally, if the phase of the initial coherent state is

undetermined, then we need to consider a phase-averaged
coherent state, which is non-Gaussian. Luckily, the particle
number is a linear function of the densitymatrix, and thus the
phase averaging of the initial state is equivalent to the phase
averaging of the result (26). Figure 3 shows the mean

numbers of particles after introduction of a mirror into a
cavity containing a phase-averaged coherent state. We
observe that the average number of particles decays with
frequency, and that the detection of particles in the few
lowest modes is enough to witness significant particle
production. We point out that the average particle number
in modes un or ūn decays slower than 1=n, which causes the
total number of particles to diverge. We postpone, however,
the discussion of this divergence until the end of this section.

B. Single-mode squeezed thermal states

As another input state we consider the first mode of the
cavity to be in a squeezed thermal state, while the
remaining modes are in their ground states. The vector
of first moments and the covariance matrix for this state
read as follows:

xin ¼ 0; ð27aÞ

σinij ¼
�
σinkk i ¼ j ¼ 1;

δij1 otherwise;
ð27bÞ

where δij is the Kronecker delta and σinkk is the covariance
matrix of a squeezed thermal state. The latter is charac-
terized by the mean particle number n̄, the squeezing
coefficient s, the squeezing angle θ, and is given by

σinkk ¼ ð2n̄þ 1Þ
�
cosh 2s − cos 2θ sinh 2s sin 2θ sinh 2s

sin 2θ sinh 2s cosh 2sþ cos 2θ sinh 2s

�
: ð28Þ

We note that σinkk, as given above, is the most general single-
mode Gaussian state with vanishing first moments [37]. As
previously mentioned, the first moments do not contribute
to the amount of spatial entanglement and therefore this
state is the most general single-mode Gaussian state for the
studies of spatial entanglement harvesting.

After inserting the above into Eq. (22) and expanding
the Snl blocks, we compute the covariance matrix of the
reduced state of the lowest mode on the left and on the
right side of the mirror. It has the form σoutj11 of
Eq. (19) with

σ11 ¼ σ̄11 ¼ 4V2
11ð2n̄þ 1Þ

�
ω2
1ðcosh2s− cos2θ sinh2sÞ ω1Ω1 sin2θ sinh2s

ω1Ω1 sin2θ sinh2s Ω2
1ðcosh2sþ cos2θ sinh2sÞ

�
þ 4

X2Λ
l¼2

V2
1l

�
ω2
1 0

0 Ω2
l

�
: ð29Þ

In this case, the expression for γ11 is the same as σ11 with a
sign flip at the l ¼ 2 term. The reason is that for r ¼ R=2
we have V12 ¼ −V̄12 and V1l ¼ V̄1l for l ≠ 2 [see Eq. (6)].
Using the reduced state of the modes u1 and ū1 together

with Eq. (20), we are able to study the spatial entanglement
between these two modes. In Fig. 4, we have plotted the
logarithmic negativity for a number of specific initial states.
From this figure, we immediately conclude that the spatial

entanglement of nonsqueezed thermal states vanishes
rapidly as the temperature of the thermal state increases.
As can be observed in the figure, the spatial entanglement is
no longer detectable when the expected number of initial
thermal particles n̄ is greater than approximately 0.2 [40].
Another conclusion we draw from the results depicted in
Fig. 4 is that squeezing generally enhances the amount of
extracted spatial entanglement. In particular, as the

FIG. 3. Results from Fig. 2 averaged over phase φ of the initial
coherent state (25). The expected number of particles after
inserting the mirror is expressed here as a percentage of the
number of particles initially in the cavity. We see that the random
phase of the initial coherent state implies at least two lowest
modes need to be considered to witness the overall increase in the
total number of particles.
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squeezing parameter of the initial state increases we are
able to detect spatial entanglement at higher temperatures
(see Fig. 5). We observe that extraction of entanglement
from the squeezed thermal state is possible, for any nonzero
initial temperature, when the squeezing parameter s
exceeds certain threshold. The presence of such threshold
has been observed in a general thermodynamical context
in [42,43].
We now turn to the analysis of the average number of

particles produced due to introduction of the extra mirror
in the cavity with the initial state given in Eqs. (27) and
(28). Using Eqs. (18) and (29), we obtain the expectation

value of the particle number operator for modes un
or ūn:

hn̂ni ¼ V2
n1ð2n̄þ 1Þ½ðcosh 2s − cos 2θ sinh 2sÞω2

n þ � � �
þ ðcosh 2sþ cos 2θ sinh 2sÞΩ2

1� þ � � �

þ
X2Λ
l¼2

V2
nlðω2

n þΩ2
l Þ − 1

2
: ð30Þ

In Fig. 6, we have plotted the average number of particles
produced in the mode u1, i.e., hn̂1i, for thermal and
squeezed states, together with the number of particles
(26) that we had previously calculated for initial coherent
states. The plot suggests that thermal states yield the same
expectation value of the number of particles in the output
state as phase-averaged coherent or phase-averaged
squeezed states. This is indeed the case, as can be verified
by comparing Eqs. (26) and (30). This implies that the
values in Fig. 3 apply also to thermal and to squeezed
vacuum states if the squeezing angle can not be controlled.

C. Two-mode squeezed vacuum

In this section, we investigate whether the presence of
entanglement between global modes Ul can contribute to
the spatial entanglement, i.e., the amount of entanglement
in the basis of localized modes un and ūm. To this aim, we
compare the spatial entanglement of two states which differ
only in the presence of correlations in the initial basis. The
first state is a two-mode squeezed vacuum [39] of the
modes U1 and U2, which is an entangled state. With s as
the squeezing parameter and θ as the squeezing angle
the vector of first moments and the covariance matrix are
given by

FIG. 4. Spatial entanglement of single-mode Gaussian states as
a function of their average particle number. Solid, dotted, dashed
and dot-dashed lines correspond to thermal (27), coherent (25),
and squeezed vacuum (27) states for θ ¼ 0 and θ ¼ π=2,
respectively. Plotted is the logarithmic negativity of the reduced
state of modes u1 and ū1, that is the lowest energy modes on the
opposite sides of the mirror.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

FIG. 5. Spatial entanglement of the squeezed thermal
states (27) as a function of squeezing coefficient for various
temperatures. Dotted, dot-dashed, dashed and solid lines corre-
spond to expectation values of the number of thermal particles
n̄ ¼ 0, 5, 10, 15. The n̄ value of 15 approximately corresponds to
what could be achieved with a superconducting cavity-on-a-chip
setup in dilution refrigerator temperatures [40].

FIG. 6. Expected number of particles after rapid division of a
cavity containing a single-mode Gaussian state as a function of
the initial number of particles. Dashed, dotted, and solid lines
correspond to the squeezed vacuum (27), coherent (25), and
thermal (27) states, respectively. Only particles produced in the
lowest modes energy u1 and ū1 are shown. The two curves for
coherent and squeezed states correspond to the phase and the
squeezing angle values of 0 and π=2.
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xin ¼ 0; ð31aÞ

σinij ¼
�
σinj12 i; j ≤ 2

δij1 otherwise;
ð31bÞ

where the blocks of σinj12, as denoted in Eq. (23), are
given by

σin11 ¼ σin22 ¼ coshð2sÞ1; ð32aÞ

σin12 ¼ ðσin21ÞT ¼ −jsinh 2sj
�
cos θ sin θ

sin θ − cos θ

�
: ð32bÞ

The second state, on the other hand, is a product state built
up from the partial traces of the two-mode squeezed state.
Therefore, it has the same covariance matrix as the two-
mode squeezed state, given by Eqs. (31) and (32), except
that its off-diagonal blocks are zero, i.e., σin12 ¼ 0.
We first calculate the reduced states of pairs of modes un,

ūm for the two initial states introduced above. These
reduced states have the form σoutjnm of Eq. (19) with the
σnn, γnm, and σ̄mm blocks given by Eqs. (24). Then, to
analyze the amount of spatial entanglement, we compute
the logarithmic negativity for each mode pair using Eq. (20)
and plot it as a function of n and m in Fig. 7. In this figure,
we also include for comparison the known spatial entan-
glement distribution for the vacuum as the initial state [28].
First of all, Fig. 7 clearly shows that the entanglement in

the basis of un, ūm is very sensitive to the presence of
correlations in the initial basis. Second, by comparing the
corresponding plots for the vacuum and the two-mode
squeezed state, we observe that the presence of correlations
in the initial state increases the amount of entanglement
between the lowest modes in the final state. Furthermore,
the comparison between the two-mode squeezed state and
its marginals shows that removing correlations from the
initial state, while keeping its partial traces unchanged,
causes the entanglement between the lowest modes to
vanish.

Finally, fromFig. 7 one can observe that the distribution of
spatial entanglement for a two-mode squeezed state can be
asymmetric. That is, themode 2 in the right half of the cavity
may be entangled with the mode 1 one the left, while the
mode 2 on the left and the mode 1 on the right are separable.
However, this does not violate the symmetry between the
cavities on left and the right side, as the imbalance can be
removed or mirrored to the other side by picking a different
value for the two-mode squeezing phase θ.
We would like to conclude this section with a general

remark on the dependence of our results on the number of
modes taken into account, that is the cutoff number Λ. We
have verified that the state of any single output mode has a
well defined Λ → ∞ limit [see for example Eqs. (26), (29)].
In particular, the number of particles in any mode, or
entanglement between any mode pair, converges quickly
with Λ. What diverges is the total number of particles
summed over all modes of the small cavities. These
divergences, however, do not occur if we take into account
a finite time of introduction of the mirror. This is because,
under such conditions, for modes of sufficiently high
frequencies the change in boundary condition is adiabatic,
and therefore they remain in their ground states. As a
consequence, they do not contribute to the total number of
particles. Because of that, the cutoff Λ is related to the time
scale of the introduction of the additional mirror.

IV. CONCLUSIONS

In this paper, we have revisited the operational approach
to study vacuum entanglement given by Brown et al. [28],
and applied it to nonvacuum Gaussian states. In this
approach a reflecting cavity is divided into two smaller
cavities by a rapid introduction of a new mirror. The
entanglement between the small cavities is then studied. We
have observed that certain nonvacuum states are more
effective in revealing spatial entanglement than the vacuum.
In particular, we have shown that single-mode and two-
mode squeezing typically enhance the amount of spatial
entanglement, as can be seen in Figs. 4 and 7. In fact, our
results suggest that a degree of squeezing may be

FIG. 7. Distribution of entanglement between pairs of localized modes un and ūm [see Eqs. (3)] for vacuum (a), a two-mode squeezed
state (b), and a two-mode squeezed state with the correlations traced out (c). The squeezing parameters are s ¼ 0.75 and θ ¼ π
[see Eq. (32)].
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indispensable for observation of vacuum entanglement.
That is because introduction of squeezing counteracts the
increase of temperature (see Fig. 5), which otherwise is
detrimental for the spatial entanglement [40].
We have also demonstrated a link between spatial

entanglement of a state and its entanglement between
the degrees of freedom that are not spatially localized
(see Fig. 7). This provokes interesting and open questions
from a resource-theoretic perspective: does adding entan-
glement between nonlocalized degrees of freedom increase
the amount of entanglement between localized observables
by the same amount? Can such nonspatial entanglement be
extracted using localized observables? Finally, is the
reverse process possible, that is the transfer of spatial
entanglement to entanglement between, for example, cavity
modes of different frequencies?
Last but not least, we have obtained promising results for

particle production by sudden introduction of a boundary
condition. Figure 2 illustrates that the particle production
process is similar to the action of a quantum-optical

phase-sensitive amplifier. For in-phase coherent states it
suffices to count particles in the two lowest modes of the
small cavities to witness an almost twofold increase in the
total number of particles. For random-phase coherent states
or thermal states, as can be seen from Fig. 3, a 14% increase
in the number of particles is still achievable in a similar
situation. These results are in strong contrast to what is
obtained with the vacuum as the initial state [27], where the
number of particles produced is much smaller than any
conceivable thermal background. Finally, we would like to
point out that similar benefits of nonvacuum initial states
have been shown for the shaking-cavity dynamical Casimir
effect [44].
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