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We study the effects of acceleration on fermionic Gaussian states of localized modes of a Dirac field.
We consider two wave packets in a Gaussian state and transform these to an accelerated frame of reference.
In particular, we formulate the action of this transformation as a fermionic quantum channel. Having
developed the general framework for fermions, we then investigate the entanglement of the vacuum, as well
as the entanglement in Bell states. We find that with increasing acceleration vacuum entanglement
increases, while the entanglement of Bell states decreases. Notably, our results have an immediate
operational meaning given the localization of the modes.
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I. INTRODUCTION

In general spacetimes the notion of particles loses its
invariant meaning. One consequence of this observation
is the detection of thermal particles in the Minkowski
vacuum by a uniformly accelerated observer. This phe-
nomenon is known as the Unruh effect [1]. It has immediate
consequences for quantum states observed by accelerated
observers. Their description becomes observer dependent.
In particular, the entanglement present in quantum states
cannot be assumed to be independent of the observer [2,3].
In the past, several investigations of entanglement in

uniformly accelerating systems used nonlocalized Fock
states; see, e.g., [3–5] and references therein. Therefore, it
was not clear how to obtain an operational meaning of
entanglement in these states. Furthermore, as pointed out
in [6,7], it is questionable that these simplified models
capture the consequences of acceleration correctly. Another
approach that is commonly used to study entanglement in
the Minkowski vacuum is employing accelerated Unruh–de
Witt detectors [8]. In these models, a two-level system is
linearly coupled to a scalar field and the effect of finite time
interactions is studied [9]. In particular, it was shown that
entanglement can be extracted from vacuum correlations
[10,11]. The process of extracting entanglement from the
vacuum sometimes is referred to as “entanglement harvest-
ing” [12]. Since these effects are typically small, a direct
observation is a challenging task. However, analog systems
to study these and related phenomena were proposed
[13–15]. Another approach to localize quantum states
was taken in [6,7,16,17]. Instead of making use of
Unruh–de Witt detectors, the modes constituting the state
itself were constructed to be localized. That is also the
approach we are following in this work.

The goal of this work is to give a fully analytic treatment
of the effect of acceleration on general localized fermionic
Gaussian states. These states are of great relevance, as the
class of fermionic Gaussian states contains a broad variety
of states such as vacuum states of quadratic Hamiltonians,
thermal states, and Bell states. Our approach is based on a
method that was developed to study bosonic two-mode
Gaussian states of localized wave packets [7]. Similarly to
the bosonic case, we are able to formulate the trans-
formation connecting inertial and accelerated observers
as the action of a Gaussian quantum channel.
The framework developed in this work is then used to

study the entanglement of the vacuum. In particular, we
quantify the amount of entanglement that could possibly be
harvested from the vacuum by local detectors and show that
it increases with increasing acceleration. Furthermore, we
are able to obtain the entanglement in Bell states, a problem
that attracted a lot of attention [3–5], and show that this
effect is due to an inevitable mismatch of the wave
functions in Minkowski and Rindler spacetime.
The structure of this work is the following. In Sec. II we

introduce the setting that we study in this work. In Sec. III
we calculate the transformation of general fermionic
Gaussian states for the case of two uniformly accelerated
observers with arbitrary accelerations. With these results in
hand, we study the vacuum entanglement in Sec. IV. In
particular, we compare our findings to the case of bosonic
Gaussian states. In Sec. V, we study the entanglement in
Bell states. Finally, we give the conclusions in Sec. VI.

II. FRAMEWORK

A. Outline

As anticipated above, we study the effect of acceleration
on spatially localized fermionic modes. These modes are

PHYSICAL REVIEW D 95, 076004 (2017)

2470-0010=2017=95(7)=076004(12) 076004-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.076004
https://doi.org/10.1103/PhysRevD.95.076004
https://doi.org/10.1103/PhysRevD.95.076004
https://doi.org/10.1103/PhysRevD.95.076004


solutions of the equation of motion for the Dirac field Ψ̂.
The Dirac equation is obtained by varying the action

SD ¼
Z

d2x
ffiffiffiffiffiffi
−g

p ði ¯̂Ψgμνγμ∂νΨ̂ −m ¯̂Ψ Ψ̂Þ; ð1Þ

where g denotes the determinant of the metric gμν, γμ are the

gamma matrices, m is the mass of the field, and ¯̂Ψ ¼ Ψ̂†γ0.
The field can be expanded in a complete set of solutions of
the Dirac equation. Since we are interested in modes that
are sufficiently localized, we choose to expand Ψ̂ in terms
of localized wave packets ϕ�

k . This gives the expansion

Ψ̂ ¼
X
k

ðϕþ
k f̂k þ ϕ−

k ĝ
†
kÞ ð2Þ

in Minkowski space, where the f̂†k=ĝ
†
k are the creation

operators for the wave packets ϕ�
k of particles/antiparticles.

The Dirac equation dictates the anticommutativity of
the creation and annihilation operators; ff̂k; f̂lg ¼ 0,
ff̂†k; f̂†l g ¼ 0 and ff̂k; f̂†l g ¼ δkl, where the same holds
for ĝk and ĝ†k with vanishing mixed anticommutators.
Alternatively, we can carry out an equivalent expansion
in Rindler space and obtain in terms of the respective
creation and annihilation operators d̂†k=ê

†
k and d̂k=êk,

Ψ̂ ¼
X
k

ðψþ
k d̂k þ ψ−

k ê
†
kÞ: ð3Þ

Here the ψ�
k denote the respective wave packets and the d̂k

and êk satisfy the same algebra as the f̂k and ĝk.
Let Alice and Bob be two observers that are each in

possession of a (localized) mode of the fermion field Ψ̂.
These modes have negligible overlap and we denote these
by ϕþ

I and ϕþ
II , respectively. It follows that the correspond-

ing operators commute; ½f̂I; f̂†II� ¼ 0. Initially, these modes
are prepared in a fermionic Gaussian state ρ that is
completely characterized by its first and second moments
(covariance matrix). Then to describe the state of the shared
pair of modes from an accelerated perspective, Rindler
space offers a convenient reference frame. The modes in
both spacetimes are related to each other by a Bogolyubov
transformation. Hence, the Gaussianity of state ρ is
preserved under such a transformation. The resulting state
of Alice’s and Bob’s modes is thus again a Gaussian of the
transformed modes ψ�

I and ψ�
II . As for bosons [7,18], the

map transforming the covariance matrix of the inertial
modes, into the state of the accelerated modes, is a trace
preserving Gaussian map σðfÞ → σðdÞ, which takes the form

σðdÞ ¼ MσðfÞMT þ N; ð4Þ

where M and N are 8 × 8 matrices [19] and we use the
superscripts (f) and (d) to indicate the modes that are used

to calculate the covariance matrix. One of the main results
of the present work is the exact analytic calculation of the
matrices M and N for the generic case of two uniformly
accelerated observers.

B. Fermionic Gaussian states

While bosonic Gaussian states are intensively studied in
the context of quantum information and extensive literature
exists [20,21], fermionic Gaussian states are much less
investigated. Therefore, we insert a brief discussion of these
states. The most prominent members of the family of
fermionic Gaussian states are vacuum states of quadratic
Hamiltonians, thermal states, and Bell states. Even so
fermionic Gaussian states share some similarities with their
bosonic counterparts; there are crucial differences due to
the anticommutativity of fermions. Starting from the
creation and annihilation operators f̂k and f̂†k that satisfy
the canonical anticommutation relation (CAR) algebra, i.e,
ff̂k; f̂lg ¼ 0 and ff̂k; f̂†l g ¼ δkl, we define the Majorana
fermion operators ĉk as

ĉ2j−1 ¼
1ffiffiffi
2

p ðf̂†j þ f̂jÞ; ĉ2j ¼
1

i
ffiffiffi
2

p ðf̂†j − f̂jÞ: ð5Þ

These form a Clifford algebra

fĉk; ĉlg ¼ δkl: ð6Þ

By definition, the density matrix of an even fermionic
Gaussian state can be written as

ρ ¼ Ce−
i
2
ĉTAĉ; ð7Þ

where A is a real, antisymmetric matrix and C is the
normalization [19]. That is, these states are thermal states of
a quadratic Hamiltonian H ¼ i

2
ĉTAĉ. Upon an SOð2nÞ

transformation O with n being the number of Majorana
fermions ĉi, we can write the density matrix in the form

ρ ¼ 1

2n

Yn
k¼1

ð1þ iλkĉ02k−1ĉ
0
2kÞ; ð8Þ

where the λi live in ½−1; 1� and ĉ0 ¼ OTĉ. Further, using the
Bloch-Messiah reduction [22], we can find a basis of
modes ĥk such that every pure fermionic Gaussian state can
be written in the form

ρ ¼
Yn
k¼1

ðuk þ vkĥ
†
kĥ

†
−kÞ; ð9Þ

where jukj2 þ jvkj2 ¼ 1. Even Gaussian states are com-
pletely characterized by the corresponding covariance
matrix σkl [19]. The real antisymmetric covariance matrix
σkl for a Gaussian state ρ is given by
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σkl ¼ iTrðρ½ĉk; ĉl�Þ ¼ ihĉkĉl − ĉlĉki: ð10Þ

The diagonal elements in (10) are vanishing due to the
commutator and the covariance matrix is completely
characterized by the elements

σkl ¼ 2ihĉkĉli; with k > l: ð11Þ

All higher moments of ρ can be obtained by Wick’s
theorem [19]. So far we concentrated on even states.
While these are completely characterized by σkl, the
description of odd Gaussian states requires, in general,
also the knowledge of the first moments

TrðρĉkÞ ¼ hĉki: ð12Þ

These are naturally vanishing for even states due to the
vanishing commutator with the parity operator P, ½P; ρ� ¼ 0
[19]. More information regarding fermionic Gaussian states
and Gaussian linear maps can, for example, be found in
[23–27].

C. Dirac field in Rindler spacetime

We briefly introduce solutions of the Dirac equation that

are obtained by varying action (1) with respect to ¯̂Ψ.
For simplicity, we restrict our attention to the 1þ 1-
dimensional case. However, the generalization to 3þ 1
dimensions is straightforward. Furthermore, we use units
such that c ¼ ℏ ¼ 1 throughout the entire work. We start by
deriving the solutions of the Dirac equation in Minkowski
coordinates ðt; xÞ. The Dirac equation takes the form

i∂tΨ̂ ¼ ð−iα3∂x þmβÞΨ̂; ð13Þ
wherem denotes the mass of the field and the matrices β and
α3 are given by

β ¼
�
1 0

0 −1

�
; α3 ¼

�
0 1

1 0

�
: ð14Þ

We find the solutions in Minkowski coordinates to be
given by

uk;� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πωk

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωk �m
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk ∓ m

p
�
e∓iωktþikx; ð15Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. These are normalized as given in

(21). For further details, see [8]. Next, to describe the physics
of an accelerated observer [28,29], we work in Rindler
coordinates

t ¼ χ sinhðaηÞ; ð16aÞ

x ¼ χ coshðaηÞ; ð16bÞ

where a is a parameter that does not have an immediate
physical meaning. However, if we consider the worldline of
a particle with a proper acceleration A, namely, χ ¼ 1

A, its
proper time τ can be related to the coordinate time η as
Aτ ¼ aη. In Rindler coordinates, the equation of motion
obtained from (1) is given by

i
1

a
∂ηΨ̂ ¼

�
mχβ −

i
2
α3 − iχα3∂χ

�
Ψ̂; ð17Þ

wherem denotes the mass of the field and the matrices β and
α3 are given by (14). Solving the Dirac equation using the
ansatz w�

IΩðη; χÞ ¼ e∓iΩηw�ðχÞ for particles and antipar-
ticles, respectively, one finds the normalized solutions to be
given by

w�
IΩ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m coshðπΩa Þ

2π2a

s  
K�iΩaþ1

2
ðmχÞ þ iK�iΩa−

1
2
ðmχÞ

−K�iΩaþ1
2
ðmχÞ þ iK�iΩa−

1
2
ðmχÞ

!
e∓iΩη; in Rindler wedge I; ð18Þ

w�
IIΩ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m coshðπΩa Þ

2π2a

s  
K�iΩaþ1

2
ð−mχÞ þ iK�iΩa−

1
2
ð−mχÞ

−K�iΩaþ1
2
ð−mχÞ þ iK�iΩa−

1
2
ð−mχÞ

!
e�iΩη; in Rindler wedge II; ð19Þ

where KyðxÞ is the modified Bessel function of the second
kind of order y. The Dirac inner product of the mode
functions ω1 and ω2 is defined as ðω1ðxÞ;ω2ðxÞÞΣ ¼R
dΣμω†

1ðxÞγ0γμω2ðxÞ, where dΣμ ¼ nμds is spacelike
with normal vector nμ and volume element ds. It has the
properties ðω1ðxÞ;ω2ðxÞÞ�Σ ¼ ðω�

1ðxÞ;ω�
2ðxÞÞΣ ¼ ðω2ðxÞ;

ω1ðxÞÞΣ. Here, in Rindler coordinates, we make the
particular choice

ðω1;ω2Þ ¼
Z

dχω†
1ω2; ð20Þ

where we suppressed the coordinate dependence of the
mode functions. The positive and negative energy solutions
satisfy the relations

ðw�
IΩ; w

�
IΩ0 Þ ¼ δðΩ −Ω0Þ; ðw�

IΩ; w
∓
IΩ0 Þ ¼ 0: ð21Þ
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The decomposition of Ψ̂ in terms of localized modes is
given by

Ψ̂ ¼
X
k

ðϕþ
k f̂k þ ϕ−

k ĝ
†
kÞ ¼

X
k

ðψþ
k d̂k þ ψ−

k ê
†
kÞ; ð22Þ

where f̂k=ĝk are the annihilation operators of particles/
antiparticles in the Minkowski case and d̂k=êk are the
annihilation operators of particles/antiparticles in the
Rindler case. These are related to the Rindler particle
and antiparticle operators, b̂Ω and âΩ, by

d̂I ¼
Z

dΩðψþ
I ; w

þ
IΩÞb̂IΩ; ð23aÞ

d̂II ¼
Z

dΩðψþ
II ; w

þ
IIΩÞb̂IIΩ; ð23bÞ

ê†I ¼
Z

dΩðψ−
I ; w

−
IΩÞâ†IΩ; ð23cÞ

ê†II ¼
Z

dΩðψ−
II; w

−
IIΩÞâ†IIΩ: ð23dÞ

The Minkowski vacuum j0iM is related to the Rindler
vacuum j0iR by a squeezing operator S as

j0iM ¼ Sj0iR; ð24Þ

where S acts on b̂IΩ and âIIΩ as

S†b̂IΩS ¼ cosðrΩÞb̂IΩ − sinðrΩÞâ†IIΩ; ð25aÞ

S†âIIΩS ¼ cosðrΩÞâIIΩ þ sinðrΩÞb̂†IΩ; ð25bÞ

with tanðrΩÞ ¼ e−
πjΩj
a . To obtain the transformations of

the operators b̂IIΩ and âIΩ, one simply has to interchange
â ↔ b̂ in (25).

D. Modes

Most of our calculations are general and do not depend
on the particular choice of modes. However, when con-
sidering concrete examples, namely, in Secs. IV and V, we
have to make a specific choice. Physically, cavity modes
are suitable candidates for localized solutions. In particular,
motivated by the solutions obtained in [30], for Λ ∈ fI; IIg,
we consider the Minkowski modes

ϕþ
Λðx; 0Þ ¼ CϕξϕðkÞe−2ð

x0
L logð x

x0
ÞÞ2þikx; ð26Þ

where L is the width of the wave packet that is centred at x0
and ξϕðkÞ is

ξϕðkÞ ¼
�
cosðκ

2
Þ þ sinðκ

2
Þ

cosðκ
2
Þ − sinðκ

2
Þ
�
e−

i
2
κe−ikx0 ð27Þ

with κ ¼ arctanðmkÞ and Cϕ being a constant of normaliza-
tion. As in [7], we use a Gaussian profile to sufficiently
localize the mode.
For the accelerated case, we choose wave packets of

particle solutions of the Dirac equation in Rindler space,
(17). Specifically, the localized modes we work with are

ψþ
Λðχ; 0Þ ¼ Cψξψ ðχÞe−2ð

χ0
L logð χ

χ0
ÞÞ2 ; ð28Þ

where ξψðχÞ is given by the spinor

ξψðχÞ ¼
 
IiΩa−1

2
ðmχÞ þ iIiΩaþ1

2
ðmχÞ

IiΩa−1
2
ðmχÞ − iIiΩaþ1

2
ðmχÞ

!
ð29Þ

and Cψ is

Cψ ¼ ~Cψ ðI−iΩa−1
2
ðmχ0Þ − I−iΩaþ1

2
ðmχ0ÞÞ ð30Þ

with the constant of normalization, ~Cψ and IiμðxÞ being the
modified Bessel functions of the first kind. The modes are
plotted in Fig. 1.
The physical motivation for choosing localized cavity

modes is that these modes can possibly be detected by a
local detector (in our case a cavity). Therefore, the choice of
localized modes enables us to assign an operational mean-
ing to quantities like entanglement. Furthermore, the modes
(26) and (28) are purely positive frequency solutions. This
guarantees that the average particle and antiparticle num-
bers are 0 in the Rindler vacuum, as expected. In conse-
quence, the modes do necessarily have noncompact

FIG. 1. Comparison between the real parts of the spatial modes
ϕþ and ψþ for the following choice of parameters:
x−10 ¼ A ¼ 0.1, L ¼ 2, Ω0 ¼ 4.71, m ¼ 0.1. These modes are
localized and, therefore, a single proper acceleration A can be
assigned.
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support. However, due to the Gaussian profile they are still
sufficiently localized.

III. ACCELERATED FERMIONIC
GAUSSIAN STATES

In this section,we study theBogolyubov transformation of
fermionic Gaussian states relating modes in Minkowski
space to those of Rindler space. We give the analytical
solution for the general case of two uniformly accelerated
observers.

A. Transformation of the Minkowski vacuum

To study the effect of acceleration on the Minkowski
vacuum, we restrict our attention to two localized fermion
modes with respective creation operators f̂†1 and f̂†2. Then,
using (5), we can write the corresponding Majorana
operators ĉi as

0
BBB@

ĉ1
ĉ2
ĉ3
ĉ4

1
CCCA ¼ 1ffiffiffi

2
p

0
BBBBB@

f̂†I þ f̂I
1
i ðf̂†I − f̂IÞ
f̂†II þ f̂II

1
i ðf̂†II − f̂IIÞ

1
CCCCCA: ð31Þ

From(10) it is clear that in the case of twomodes, there are six
independent entries in the fermionic covariance matrix. The
same is true for the corresponding antiparticles. Therefore,
we find the covariance matrix of the Minkowski vacuum

σðfÞM ¼

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA
; ð32Þ

where this expression describes two particle modes and two
antiparticle modes. However, it generalizes trivially to an
arbitrary number of particles and antiparticle modes; see
Appendix B 1 for details. As it is known for pure states [19],

σðfÞ
T

M σðfÞM ¼ 1 and the first moments vanish, as the vacuum is

an even state. To obtain the covariance matrix σðdÞM of the
Minkowski vacuum in the Rindler frame, we need to trans-
form the operators f̂ and ĝ (for details seeAppendixB 3).We
find the covariance matrix of the Minkowski vacuum in the
Rindler basis to be of the form

σðdÞ ¼
�
σðdÞþ σðdÞc

~σðdÞc σðdÞ−

�
; ð33Þ

where the block σðdÞþ captures the effect of acceleration on the
respective mode and displays the thermal character of the

Unruh effect [σðdÞ− is the analog for antiparticles]. σðdÞc and ~σðdÞc

describe the correlations between particles and antiparticles
that arise due to the acceleration. Explicitly, (33) reads

σðdÞ ¼

0
BBBBBBBBBBBBBBB@

0 Nþ
I 0 0 0 0 Im½Nþ

I;II� Re½Nþ
I;II�

−Nþ
I 0 0 0 0 0 Re½Nþ

I;II� −Im½Nþ
I;II�

0 0 0 Nþ
II −Im½N−

I;II� −Re½N−
I;II� 0 0

0 0 −Nþ
II 0 −Re½N−

I;II� Im½N−
I;II� 0 0

0 0 Im½N−
I;II� Re½N−

I;II� 0 N−
I 0 0

0 0 Re½N−
I;II� −Im½N−

I;II� −N−
I 0 0 0

−Im½Nþ
I;II� −Re½Nþ

I;II� 0 0 0 0 0 N−
II

−Re½Nþ
I;II� Im½Nþ

I;II� 0 0 0 0 −N−
II 0

1
CCCCCCCCCCCCCCCA

; ð34Þ

where the entries of the matrix are given by

N�
I ¼ 1 − 2

Z
dΩ

jðψ�
I ; w

�
IΩÞj2

1þ e
2πΩ
a

; ð35aÞ

N�
II ¼ 1 − 2

Z
dΩ

jðψ�
II ; w

�
IIΩÞj2

1þ e
2πΩ
a

; ð35bÞ

N�
I;II ¼ −2

Z
dΩ

ðψ�
I ; w

�
IΩÞðψ∓

II ; w
∓
IIΩÞ

1þ e
2πΩ
a

e
πΩ
a ð35cÞ

and we used ðψ�
I ; w

�
IΩÞ� ¼ ðψ∓

I ; w
∓
IΩÞ. We note that (33)

reduces to (32) in the limit of vanishing accelerations,
a → 0. That is, the correlated noise is absent in this
limit.
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B. Transformation of general fermionic Gaussian states

Using the results of the previous section, we derive the
transformation for general fermionic Gaussian states. We
recall that the transformed covariance matrix σðdÞ can be
obtained using (4). Therefore, we can completely describe
the transformation of general Gaussian states by the two
matrices M and N that we calculate in the following. To
obtain M, we consider the transformation of the first
moments (12). The Bogolyubov transformations can be
obtained from (22) and read

d̂l ¼
X
k

ðψþ
l ;ϕ

þ
k Þf̂k þ ðψþ

l ;ϕ
−
k Þĝ†k; ð36aÞ

ê†l ¼
X
k

ðψ−
l ;ϕ

þ
k Þf̂k þ ðψ−

l ;ϕ
−
k Þĝ†k; ð36bÞ

where, in the following, we denote the overlaps by
αþI ¼ ðψþ

I ;ϕ
þ
I Þ, βþI ¼ −ðψþ

I ;ϕ
−
I Þ, α−I ¼ ðψ−

I ;ϕ
−
I Þ�,

β−I ¼ −ðψ−
I ;ϕ

þ
I Þ, and accordingly for modes II. We note

that both the Minkowski wave packets ϕ�
I=II as well as the

Rindler wave packets ψ�
I=II are composed of either only

particles or only antiparticles. Therefore, the overlaps β�I=II
are vanishing and we can write (36) as

d̂l ¼ αþI f̂l; êl ¼ α−I ĝl: ð37Þ

The transformation of the first moments can be written as

hĉðdÞi ¼ MhĉðfÞi ð38Þ

with the block-diagonal 8 × 8-matrix

M ¼

0
BBB@

MðαþI Þ 0 0 0

0 MðαþII Þ 0 0

0 0 Mðα−I Þ 0

0 0 0 Mðα−IIÞ

1
CCCA; ð39Þ

where we defined Mð·Þ as the matrix given by

Mð·Þ ¼
�

Re½·� Im½·�
−Im½·� Re½·�

�
: ð40Þ

We now gather all the quantities that we need to specify the
transformation of a general Gaussian state characterized
by hĉðfÞi and σðfÞ. First, we explicitly calculate the noise
matrix N. The matrix describing the noise arising due to
acceleration is given by

N ¼ σðdÞ −MσðfÞM MT; ð41Þ

where σðdÞ is given in (33). Therefore, in total we obtain

N ¼
�

Nþ Nvac

~Nvac N−

�
; ð42Þ

whereNvac and ~Nvac are given by the off-diagonal blocks of
(33) and

N� ¼

0
BBB@

0 N�
I − jα�I j2 0 0

−N�
I þ jα�I j2 0 0 0

0 0 0 N�
II − jα�II j2

0 0 −N�
II þ jα�II j2 0

1
CCCA: ð43Þ

With the matricesM and N we now have all the data that
is necessary to completely characterize the effect of
acceleration to fermionic Gaussian states. In the following,
we use the developed formalism to quantify vacuum
entanglement and, as an example of a nonvacuum state,
we study a maximally entangled state, the Bell state
jBi ¼ 1ffiffi

2
p ðj00i þ j11iÞ.

IV. VACUUM ENTANGLEMENT

A. Vacuum entanglement for fermions

In this section, we study the entanglement in the
vacuum as seen by an accelerated observer. As a measure
of entanglement we employ the logarithmic negativity.
In [31], it was shown that the partial transpose of a

fermionic Gaussian state is, in general, not Gaussian and
therefore it is difficult to calculate the negativity exactly.
However, it was shown that a lower bound can be
obtained [31,32]. Building on this construction, we derive
the respective bound ~EN for our case in Appendix C. It is
given by

~EN ¼ ln

�
1

2

�
1þ Nþ

I N
−
II þ jNþ

I;IIj2

þ Re
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNþ
I − N−

IIÞ2 − 4jNþ
I;IIj2

q i
þ Im

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

I − N−
IIÞ2 − 4jNþ

I;IIj2
q i��

; ð44Þ
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where Nþ
I , N

−
II, and Nþ

I;II are the elements of the covari-
ance matrix (33) that are given by (35a)–(35c).
To obtain the entanglement of the vacuum, we choose the

modes as described in Sec. II D and solve (44) numerically.
We show the results for the entanglement between two
modes of different accelerations in Fig. 2.
First, it is important to emphasize that ~EN is a lower

bound for the negativity and therefore it is difficult to make
strong quantitative statements. However, it is reasonable to
assume that the actual value of the negativity is close to the
lower bound ~EN . Therefore, in the following, we refer to
~EN as negativity, keeping this subtlety in mind.
The entanglement between the state of a mode in Rindler

wedge I and its respective counterpart in wedge II increases
with increasing acceleration; see Fig. 2. For the parameter
regime we are interested in, the entanglement is of the order
10−12, as measured by the logarithmic negativity. That is,
the particles that are produced due to the Unruh effect are
correlated across the acceleration horizon. Interestingly, the
vacuum entanglement has an operational meaning, as it
can, in principle, be extracted by suitable detectors [10,11].

B. Comparison to bosons

The aim of this section is to compare our results for
fermionic states to the results in the case of localized modes
of a massive scalar field studied in [7]. For bosonic

Gaussian states the covariance matrix σðdÞbos of the vacuum
takes the form

σðdÞbos ¼

0
BBBBB@

Nb
I 0 Re½Nb

I;II� Im½Nb
I;II�

0 Nb
I Im½Nb

I;II� −Re½Nb
I;II�

Re½Nb
I;II� Im½Nb

I;II� Nb
II

Im½Nb
I;II� Re½Nb

I;II� 0 Nb
II

1
CCCCCA;

ð45Þ

where the matrix elements are given by

Nb
I=II ¼ 1þ 2

Z
dΩ

jðψ I=II; wI=IIΩÞj2
e
2πΩ
a − 1

; ð46aÞ

Nb
I;II ¼ 2

Z
dΩ

ðψ I; wIΩÞðψ II; wIIΩÞ
e
2πΩ
a − 1

e
πΩ
a ; ð46bÞ

where ψ I, ψ II are localized modes and the wI=IIΩ are
solutions of the Klein-Gordon equation spanning the
Hilbert space for regions I and II, respectively. The effect
of acceleration on bosons is manifest in the covariance
matrix (45). While the Minkowski vacuum is described by

the covariance matrix σðbosÞM ¼ I, for nonvanishing accel-
eration, correlations build up and the off-diagonal elements
increase. As expected, the occupations are governed by the
Bose-Einstein distribution that are explicit in the matrix
elements (46). This contrasts with the case of fermions
where the occupation is characterized by the Fermi-Dirac
distribution, (35). Furthermore, due to the presence of
antiparticles for fermions, the correlations that are built up
in fermionic Gaussian states are between particles and
antiparticles, while for bosons particles and antiparticles are
identical.
Besides the differences outlined above, the results for

fermions qualitatively agree with the findings for bosons.
Quantitatively, the entanglement we observed for fermions
is less than in the bosonic case. In the parameter regime we
studied, bosons develop ten times more entanglement [7].
However, one should keep in mind that we were calculating
a lower bound for the negativity and that the amount of
entanglement also depends on the explicit choice of modes.
In the next section, we go beyond vacuum entanglement

and study the degradation of entanglement for Bell states.

V. ENTANGLEMENT IN BELL STATES

Interestingly, Bell states of fermions are fermionic
Gaussian states, while maximally entangled states of two
bosons are non-Gaussian. This fact enables us to apply
our formalism to Bell states. Therefore, as an example for a
nonvacuum state, we consider a maximally entangled state
jBi of two particles in the following. We choose

FIG. 2. Negativity ~EN of the Minkowski vacuum as a function
of the proper accelerations. The parameters are m ¼ 0.1, L ¼ 2,
and Ω0 ¼ 4.71. The vacuum entanglement increases with in-
creasing acceleration.
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jBi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ ¼ 1ffiffiffi
2

p ð1þ f̂†1f̂
†
2Þj0i: ð47Þ

This state is an even Gaussian state and it is described by
the following covariance matrix (cf., Appendix B 2):

σðfÞBell ¼

0
BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA
: ð48Þ

The transformed state is obtained according to Eq. (4) with
the matrix M given in (39) and N given in (42). Then the
transformed covariance matrix, neglecting some terms
much smaller than 1, is given by

σðdÞBell ¼

0
BBBBBB@

0 Nþ
I − jαþI j2 ðσðdÞBellÞ13 ðσðdÞBellÞ14

−Nþ
I þ jαþI j2 0 ðσðdÞBellÞ23 ðσðdÞBellÞ24

−ðσðdÞBellÞ13 −ðσðdÞBellÞ23 0 Nþ
II − jαþII j2

−ðσðdÞBellÞ14 −ðσðdÞBellÞ24 −Nþ
II þ jαþII j2 0

1
CCCCCCA
; ð49Þ

where

ðσðdÞBellÞ13 ¼ Im½αþII �Re½αþI � þ Im½αþI �Re½αþII �; ð50aÞ

ðσðdÞBellÞ14 ¼
1

2
ðαþI αþII þ ðαþI αþII Þ�Þ; ð50bÞ

ðσðdÞBellÞ23 ¼
1

2
ðαþI αþII þ ðαþI αþII Þ�Þ; ð50cÞ

ðσðdÞBellÞ24 ¼ −Im½αþII �Re½αþI � − Im½αþI �Re½αþII � ð50dÞ

with αþI=II as defined in (37). In (49), we neglected
contributions from the vacuum noise matrix N, as these

are insignificant corrections to σðdÞBell ¼ MσðfÞBellM
T .

To quantify the entanglement we employ a lower bound
for the negativity given by

~EN ¼ ln

�
1

2
þ Re½νþν− þ νþ − ν−�

2

þ Im½νþν− þ νþ − ν−�
2

�
; ð51Þ

where the ν� can be calculated from (49); cf., (C7) in
Appendix C.
We show the results for the entanglement of state jBi in

Fig. 3. For vanishing acceleration the modes are maximally
entangled, while the entanglement decreases with increas-
ing acceleration. The constraint AL≲ 1 that ensures that a
single acceleration can be associated to a localized mode
prevents us from studying arbitrarily large accelerations.
The physical reason for the degradation of entanglement

is that the overlap between the inertial wave packets ϕþ
k and

the accelerated ones ψþ
Ω decreases with increasing accel-

eration. This is an inevitable effect of the Bogolyubov
transformation connecting Minkowski and Rindler solu-
tions. Therefore, with increasing acceleration the mismatch
between the modes increases and the entanglement in
the initially maximally entangled Bell state decreases.
Interestingly, the effect of Unruh radiation is negligibly
small. That is, the production of thermal particles due to the
Unruh effect has only a very small effect on entanglement
degradation of states of localized modes.

VI. CONCLUSIONS

In this work, we developed a general framework to
describe the effect of acceleration on arbitrary fermionic

FIG. 3. Negativity ~EN of a Bell state as a function of the proper
acceleration A ¼ AI ¼ AII. The parameters are m ¼ 0.1,
Ω0 ¼ 4.71, and L ¼ 2. We normalized ~EN such that for vanish-
ing accelerations ~EN ¼ 1. The blue continuous line gives the
numerical results, while the gray dotted line is an extrapolation to
A ¼ 0. From an inertial perspective Bell states are maximally
entangled. However, for an accelerated observer, entanglement
gets degraded with increasing acceleration.
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Gaussian states of two localized modes. We formulated the
transformation between the quantum state seen by initial
observers and the state seen by uniformly accelerated ones
as the action of a fermionic Gaussian channel, and
completely characterized this channel. This enabled us to
study how the entanglement of the vacuum and the
entanglement in Bell states is affected by acceleration.
We found that vacuum entanglement is enhanced by

acceleration. That is, the correlations in the vacuum that
build up due to the Unruh effect lead to entanglement
between particles and antiparticles. In particular, as our
framework is employing localized modes, entanglement
has an operational meaning and can be extracted by suitable
local detectors, a process that is sometimes referred to as
entanglement harvesting. We also compare these findings
with the case of bosons [7] and find a qualitative agreement.
Furthermore, we quantified the entanglement degrada-

tion in a localized maximally entangled state of fermions.
The degradation is due to an increasing mismatch between
the initial modes and the accelerated modes that causes
their overlap to decrease and, therefore, entanglement
decreases as well. The effect of particle creation on
entanglement degradation is negligible.
We emphasize that due to the localization of the modes,

the framework presented in this work can be applied to
quantum information protocols, in scenarios where local
gravitational effects or effects due to acceleration are not
negligible. In particular, the entanglement can be exploited
as a resource.
For the future, we are interested in extending our studies

to localized modes of fermions with arbitrary mutual
separation, as well as studying localized Gaussian states
in higher dimensional spacetimes.
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APPENDIX A: VACUUM EXPECTATION
VALUES

We calculate the vacuum expectation values of the
Rindler creation and annihilation operators in the

Minkowski vacuum. Using the transformations between
the Minkowski and the Rindler vacuum given in (25), we
obtain for hb̂IΩb̂†IΞiM ¼ hS†b̂IΩSS†b̂†IΞSiR

hb̂IΩb̂†IΞiM ¼ cos2ðrΩÞδðΩ − ΞÞ: ðA1Þ

Similarly, we obtain for hb̂I†Ω b̂IΘiM ¼ hS†b̂I†Ω SS†b̂IΘSiR
hb̂†IΩb̂IΞiM ¼ sin2ðrΩÞδðΩ − ΞÞ: ðA2Þ

Considering operators in different wedges, we find

hb̂IΩb̂IIΞiM ¼ 0: ðA3Þ

Also the remaining expectation values containing only
particle creation and annihilation operators are vanishing.
To summarize

hb̂IΩb̂IIΞiM ¼ −hb̂IIΩb̂IΞiM ¼ 0; ðA4aÞ

hb̂IΩb̂IΞiM ¼hb̂IIΩb̂IIΞiM ¼ hb̂†IΩb̂†IΞiM ¼ 0; ðA4bÞ

hb̂†IΩb̂IIΞiM ¼hb̂†IIΩb̂IΞiM ¼ hb̂IΩb̂†IIΞiM ¼ 0; ðA4cÞ

hb̂†IΩb̂IΞiM ¼hb̂†IIΩb̂IIΞiM ¼ sin2ðrΩÞδðΩ − ΞÞ; ðA4dÞ

hb̂IΩb̂†IΞiM ¼hb̂IIΩb̂†IIΞiM ¼ cos2ðrΩÞδðΩ − ΞÞ: ðA4eÞ

The same relations also hold after replacing particle by
antiparticle operators. Finally, there are nonvanishing
correlations between particles/antiparticles in wedge I
and antiparticles/particles in wedge II. This manifests in
the vacuum expectation values

hâIΩb̂IIΞiM ¼ −hâIIΩb̂IΞiM ¼ cosðrΩÞ sinðrΩÞδðΩ − ΞÞ;
ðA5Þ

hb̂IΩâIIΞiM ¼ −hb̂IIΩâIΞiM ¼ cosðrΩÞ sinðrΩÞδðΩ − ΞÞ:
ðA6Þ

APPENDIX B: CALCULATIONS OF THE
COVARIANCE MATRIX

In this appendix, we give the details of the calculations of
the covariance matrices we used in this work.

1. Calculation of the covariance matrix for the
Minkowski vacuum

The covariance matrix and the first moments of the
Minkowski vacuum are obtained according to (10) and
(12), respectively. Because of the antisymmetry of the
covariance matrix not all matrix elements are independent
and we are left with, in general, 1

2
nðn − 1Þ independent
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entries for n being the dimension of the matrix. A short
calculation shows that, in the case of the Minkowski
vacuum, the only nontrivial elements of the covariance
matrix originate in terms of the kind

σðfÞ12 ¼ hf̂If̂†I i − hf̂†I f̂Ii: ðB1Þ

The covariance matrix of the Minkowski vacuum is
obtained to be

σðfÞM ¼

0
BBB@

iσ2 0 … 0

0 iσ2 … 0

..

. ..
. . .

. ..
.

0 0 0 iσ2

1
CCCA; ðB2Þ

where iσ2 ¼
�

0 1

−1 0

�
and the first moments vanish, as

the vacuum is an even state.

2. Calculation of the covariance matrix
for even Bell states

The covariance matrix of the even Bell state jBi, given in
(47), is derived as

σðfÞkl ¼ 2ihBjĉkĉljBi;
¼ ih0jĉkĉlj0i þ ih0jf̂IIf̂Iĉkĉlf̂†I f̂†IIj0i
þ ih0jĉkĉlf̂†I f̂†IIj0i þ ih0jf̂IIf̂Iĉkĉlj0i: ðB3Þ

We give the calculation term by term. The first one just
gives us 1

2
times the vacuum matrix. Further, we need to

calculate the following vacuum expectation values:

ih0jĉkĉlf̂†I f̂†IIj0i ¼
i
2
; for k ¼ 3; l ¼ 1

ih0jĉkĉlf̂†I f̂†IIj0i ¼ −
1

2
; for k ¼ 3; l ¼ 2

ih0jĉkĉlf̂†I f̂†IIj0i ¼ −
1

2
; for k ¼ 4; l ¼ 1

ih0jĉkĉlf̂†I f̂†IIj0i ¼ −
i
2
; for k ¼ 4; l ¼ 2: ðB4Þ

Similarly, we find

ih0jf̂IIf̂Iĉkĉlj0i ¼ −
i
2
; for k ¼ 3; l ¼ 1

ih0jf̂IIf̂Iĉkĉlj0i ¼ −
1

2
; for k ¼ 3; l ¼ 2

ih0jf̂IIf̂Iĉkĉlj0i ¼ −
1

2
; for k ¼ 4; l ¼ 1

ih0jf̂IIf̂Iĉkĉlj0i ¼
i
2
; for k ¼ 4; l ¼ 2 ðB5Þ

and

ih0jf̂IIf̂Iĉ2ĉ1f̂†I f̂†IIj0i ¼
1

2
; ðB6Þ

where the same holds for ih0jf̂IIf̂Iĉ4ĉ3f̂†I f̂†IIj0i and the
remaining ones are vanishing. Combining the above, we
obtain for the covariance matrix of particles and their
corresponding antiparticles

σðfÞBell ¼

0
BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA
: ðB7Þ

3. Calculation of the covariance matrix for the
transformed Minkowski vacuum

In this subsection, we calculate the transformed covari-
ance matrix σðdÞkl ¼ 2ihĉkĉli. Using results for the vacuum
expectation values from Appendix A, we find

hd̂Id̂†I i ¼
Z

dΩjðψþ
I ; w

þ
IΩÞj2cos2ðrΩÞ: ðB8Þ

Expressing (10) in terms of the operators d̂k, we obtain

σðdÞ12 ¼ 1 − 2

Z
dΩjðψþ

I ; w
þ
IΩÞj2sin2ðrΩÞ: ðB9Þ

Similarly, we obtain the remaining matrix elements to be

σðdÞ71 ¼ 2

Z
dΩIm½ðψ−

I ; w
−
IΩÞðψþ

II ; w
þ
IIΩÞ�FðrΩÞ;

σðdÞ72 ¼ −2
Z

dΩRe½ðψ−
I ; w

−
IΩÞðψþ

II ; w
þ
IIΩÞ�FðrΩÞ;

σðdÞ81 ¼ −2
Z

dΩRe½ðψ−
I ; w

−
IΩÞðψþ

II ; w
þ
IIΩÞ�FðrΩÞ;

σðdÞ82 ¼ −2
Z

dΩIm½ðψ−
I ; w

−
IΩÞðψþ

II ; w
þ
IIΩÞ�FðrΩÞ; ðB10Þ

where we used the definition FðrΩÞ ¼ cosðrΩÞ sinðrΩÞ.
Replacing particles by antiparticles and vice versa in the

above equations, one obtains the elements σðdÞ53 , σ
ðdÞ
54 , σ

ðdÞ
63 , and

σðdÞ64 . Because of the antisymmetry of the covariance matrix
and the symmetry between wedges I and II, these are all
independent nonzero entries. Therefore, we arrive at (33).

APPENDIX C: LOGARITHMIC NEGATIVITY

Given a fermionic Gaussian state ρ with covariance

matrix σ, we define Γ ¼ ðΓ11 Γ12

Γ21 Γ22
Þ ¼ iσ. Then the
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partially transposed state can be written as the sum of two
Gaussian states O�,

ρpT ¼ 1 − i
2

Oþ þ 1þ i
2

O−; ðC1Þ

where the covariance matrices of the O� are Γþ ¼� Γ11 iΓ12

iΓ21 −Γ22

�
and Γ− ¼

� Γ11 −iΓ12

−iΓ21 −Γ22

�
, respectively

[31]. If ½Γþ;Γ−� ¼ 0 holds, the logarithmic negativity E can
be calculated exactly. One example of such states is the
isotropic states for which Γ2 ¼ −λ21 holds [33]. As we see
that does not hold for the transformed vacuum state.
We consider the vacuum covariance matrix (34) that we

rescale by i, i.e., ΓðvacÞ ¼ iσðdÞ. To obtain the logarithmic
negativity we have to partially transpose the density matrix.
It is of the form (C1). Accordingly, we define Γþ and Γ− as
above. Then calculating the commutator ½Γþ;Γ−�, we find
½Γþ;Γ−� ≠ 0 and we cannot calculate the logarithmic
negativity exactly. If Oþ and O− commute they can be
diagonalized simultaneously and we find that the eigen-
values of Oþ and O− are complex conjugate to each other.
What is left to do is to find the eigenvalues ofOþ given Γþ.
We denote the eigenvalues of Γþ by �νs and write Oþ as

Oþ ¼
Y
s¼�

1þ iνsĥs1ĥ
s
2

2
; ðC2Þ

where the ĥ�j are the Majorana operators obtained from the
ĉj via the operation diagonalizing Γþ. Then the eigenvalues
of Oþ are given by

ωss0 ¼ 1

4
ð1þ sνþÞð1þ s0ν−Þ: ðC3Þ

To study the vacuum entanglement, we have to first find the
eigenvalues �νs of Γþ, where we restrict ourselves to the
entanglement between particles I and antiparticles II
(the entanglement between antiparticles I and particles II

is analogous). ΓðvacÞ
þ reads0

BBB@
0 iNþ

I −Im½Nþ
I;II� −Re½Nþ

I;II�
−iNþ

I 0 −Re½Nþ
I;II� Im½Nþ

I;II�
Im½Nþ

I;II� Re½Nþ
I;II� 0 −iN−

II

Re½Nþ
I;II� −Im½Nþ

I;II� iN−
II 0

1
CCCA: ðC4Þ

The eigenvalues of (C4) are given by

�νþ ¼ � 1

2

�
Nþ

I þ N−
II þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

I − N−
IIÞ2 − 4jNþ

I;IIj2
q �

;

ðC5aÞ

�ν− ¼ � 1

2

�
Nþ

I þ N−
II −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

I − N−
IIÞ2 − 4jNþ

I;IIj2
q �

:

ðC5bÞ

From these we can write the eigenvalues of Oþ as

ωþþ ¼ 1

4
ð1þ νþ þ ν− þ νþν−Þ;

ω−− ¼ 1

4
ð1 − νþ − ν− þ νþν−Þ;

ωþ− ¼ 1

4
ð1þ νþ − ν− − νþν−Þ;

ω−þ ¼ 1

4
ð1 − νþ þ ν− − νþν−Þ ðC6Þ

and a lower bound for the entanglement can be obtained
[31]. It is given by

EN ≥ ~EN ¼ ln ð1 − 2TroρpTÞ
¼ ln ðTreρpT − TroρpTÞ
¼ lnðRe½TreOþ − TroOþ�
þ Im½TreOþ − TroOþ�Þ; ðC7Þ

where Tre=o denotes the trace over the even and odd
subspaces, respectively. We next calculate TreOþ −
TroOþ that can be given in terms of the eigenvalues ω as

TreOþ − TroOþ ¼
X
s;s0

Ss;s0ωss0 ðC8Þ

with

Ss;s0 ¼ Re½ls;s0 � þ Im½ls;s0 �; ðC9Þ
where ls;s0 ¼ 1 for s ¼ s0 and ls;s0 ¼ is for s ¼ −s0.
Thus, we find

TreOþ − TroOþ ¼
X
s;s0

Ss;s0ωss0

¼ 1

2
ð1þ νþν− þ νþ − ν−Þ ðC10Þ

and, therefore, we obtain the lower bound

~EN ¼ ln
�
1

2

�
1þ Nþ

I N
−
II þ jNþ

I;IIj2

þ Re
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNþ
I − N−

IIÞ2 − 4jNþ
I;IIj2

q i
þ Im

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

I − N−
IIÞ2 − 4jNþ

I;IIj2
q i��

ðC11Þ

for the entanglement between two modes in the vacuum.
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