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We investigate how relativistic acceleration of the observers can affect the performance of the quantum
teleportation and dense coding for continuous variable states of localized wave packets. Such protocols are
typically optimized for symmetric resources prepared in an inertial frame of reference. A mismatch of the
sender’s and the receiver’s accelerations can introduce asymmetry to the shared entanglement, which has
an effect on the efficiency of the protocol that goes beyond entanglement degradation due to acceleration.
We show how these asymmetry losses can be reduced by an extra local operations and classical
communication (LOCC) step in the protocols.
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I. INTRODUCTION

The discovery of the Unruh effect [1–3] revealed that the
vacuum state of any quantum field defined by an inertial
observer appears to be thermal according to a uniformly
accelerated observer. This has led to a surprising conclu-
sion that all quantum states are in general observer
dependent. This intriguing property of relativistic quantum
fields has a striking impact on the theory of quantum
information in which the notion of quantum states plays a
crucial role. The conclusion that the effect of motion on
quantum states can in principle affect all types of quantum-
information protocols between moving parties has led to
growing interest in a new field of research: relativistic
quantum information. Since at the heart of many of
these protocols lies a crucial ingredient—quantum
entanglement—many efforts have been undertaken to study
how it is affected by relativistic acceleration or gravity
treated as a classical background for the quantum fields.
The first works on the topic [4,5] studied how uniformly
accelerated motion can lead to the reduction of entangle-
ment between two field modes shared by a pair of observers
in relative motion. Oversimplifications of the approach
used by these authors were soon pointed out and resulted in
a more refined approach going beyond the so-called single-
mode approximation [6]. Unfortunately, also, this approach
followed by many authors [7] failed to provide a physically
satisfactory interpretation of the results of the calculations
due to the unclear character of the global modes used in the
setup [8]. Two possible routes overcoming these difficulties
have been proposed as a way out. Both of them rely on a

replacement of global Unruh modes used in the description
of quantum states by localized quantum states. In the first
approach, one introduces an ideal cavity that can store
and transport quantum states along an arbitrary path [9,10];
the other approach involves using approximately localized
wave packets that are stationary either in an inertial or in a
uniformly accelerated frame of reference [8,11–13].
One has to keep in mind that entanglement is eventually

only a resource for communication protocols such as
quantum teleportation [14] or dense coding [15], and
therefore it is important to take into account the effect of
acceleration on the whole protocol and not only on one of
its ingredients. In particular, a teleportation protocol is
typically optimized for symmetric settings, but a noninertial
motion of the observers can introduce asymmetry into the
shared entanglement that can also have an impact going
beyond entanglement degradation of the resource alone.
In this work, we fill in the gap in the existing literature
by considering the two aforementioned protocols: quantum
teleportation and dense coding of continuous variables
taking into account the effect of an arbitrary accelerated
motion of two independent parties, the sender and the
receiver. We will consider the most general scenario using
the localized framework for Gaussian states introduced in
Ref. [13], in which both parties can move with independent
arbitrary relativistic accelerations and be separated by an
arbitrary distance. Finally, we will show how the efficiency
losses due to observers’ unequal accelerations can be
reduced by performing a motion-dependent, noisy LOCC
operation before the measurements.
The work is organized in the following way. In Sec. II,

we analyze the effect of the uniform acceleration on a two-
mode Gaussian state which is utilized later as the resource
for the quantum-information protocols. We introduce the
measures of efficiency for given protocols and calculate
them for the accelerated parties in the following sections.
Sections III and IV are devoted to quantum teleportation
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and dense coding, consecutively. In Sec. V, we present the
LOCC optimization strategies for both protocols. Finally,
Sec. VI provides conclusions and outlook.

II. EFFECT OF RELATIVISTIC ACCELERATION
ON GAUSSIAN STATES

We consider two uniformly accelerating observers which
perform a certain quantum-information protocol using a
two-mode state prepared in an inertial frame (see Fig. 1). To
transform this state from the inertial frame to the rest frame
of the observers, we employ a Bogolyubov transformation
between suitably chosen bases of mode functions [5]. The
initial basis includes, in particular, the spatially localized
mode functions in which the resource state is prepared.
Reference [13] presents a method that allows us to perform
such a Bogolyubov transformation for an arbitrary two-
mode Gaussian state. Moreover, the approach of Ref. [13]
is not constrained by the standard geometry of the Rindler
chart. That is, it allows us to independently tune the proper
accelerations of the observers and the minimal distance
between them. In this section, we review the basic elements
of this approach, apply it to a two-mode squeezed vacuum
state, and simplify by using certain approximations.

A. Effect of acceleration as the action
of a quantum channel

From now on, we specialize to 1þ 1-dimensional flat
spacetime and adopt units in which c ¼ ℏ ¼ 1. Let us

consider a real, scalar, massive quantum field, which
satisfies the Klein-Gordon equation

ð□þm2ÞΦ̂ ¼ 0: ð1Þ

The field operator Φ̂ can be decomposed using an ortho-
normal basis of solutions of Eq. (1). We will consider
two such decompositions: one corresponding to an inertial
Minkowski observer and one corresponding to the uni-
formly accelerating Rindler observers. The first decom-
position consists of mode functions ϕk that contain only
positive frequencies with respect to the Minkowski timelike
Killing vector. Analogously, the second decomposition
consists of mode functions ψk that contain only positive
frequencies with respect to the Rindler timelike Killing
vector. We will denote the annihilation operators associated
with the two decompositions by f̂k and d̂k, respectively.
The field operator can therefore be written as

Φ̂ ¼
X
k

ϕkf̂k þ H:c: ¼
X
k

ψkd̂k þ H:c: ð2Þ

We now assume that only two of the ϕk modes are
occupied in the initial state. We will denote them by ϕI, ϕII

and the corresponding annihilation operators by f̂I, f̂II.
Moreover, we will restrict ourselves to only two of the ψk:
ψ I and ψ II, with the annihilation operators d̂I and d̂II.
The remaining ψk are not empty, but we assume that the
accelerating observers only have access to one mode each.
It was shown in Ref. [16] that the transformation of the

state from one frame of reference to another is a noisy
Gaussian channel. This means that for a Gaussian input
state the output state is also Gaussian. To write down the
action of this channel, we first introduce the quadrature
operators associated with ϕΛ, Λ ∈ fI; IIg:

q̂ðfÞΛ ¼ f̂Λ þ f̂†Λffiffiffi
2

p ; p̂ðfÞ
Λ ¼ i

f̂†Λ − f̂Λffiffiffi
2

p : ð3Þ

The quadratures associated with ψΛ, which we denote by

q̂ðdÞΛ and p̂ðdÞ
Λ , are defined analogously. We then gather the

relevant quadratures into a vector,

X̂ðiÞ ¼ ðq̂ðiÞI ; p̂ðiÞ
I ; q̂ðiÞII ; p̂

ðiÞ
II ÞT; ð4Þ

where i ∈ ff; dg. With these, the first statistical moments
of the state are written as the expectation values

XðiÞ ¼ hX̂ðiÞi; ð5Þ

and the second moments are given by a covariance matrix,

σðiÞkl ¼ 1

2
hfX̂ðiÞ

k ; X̂ðiÞ
l gi − hX̂ðiÞ

l ihX̂ðiÞ
k i: ð6Þ

FIG. 1. The trajectories of accelerating parties Alice (right) and
Bob (left) who perform a quantum-information protocol using the
state of inertial wave packets ϕI and ϕII as a resource. The two
Rindler wedges intersect to allow for classical communication.
The wave packets are drawn outside the intersection region for
clarity.
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Finally, the Bogolyubov transformation we are interested in
can then be written as [16]

XðdÞ ¼ MXðfÞ; ð7aÞ

σðdÞ ¼ MσðfÞMT þ N; ð7bÞ

where N is the noise matrix [13] andM is given in terms of
overlaps of ϕΛ with ψΛ.
If we define

αΛ ¼ ðψΛ;ϕΛÞ; ð8aÞ

βΛ ¼ −ðψΛ;ϕ⋆
ΛÞ; ð8bÞ

where ð·; ·Þ denotes the Klein-Gordon scalar product, then
the M matrix is [13]

M¼

0
BBB@
ℜðαI−βIÞ −ℑðαIþβIÞ 0 0

ℑðαI−βIÞ ℜðαIþβIÞ 0 0

0 0 ℜðαII−βIIÞ −ℑðαIIþβIIÞ
0 0 ℑðαII−βIIÞ ℜðαIIþβIIÞ

1
CCCA:

ð9Þ

We have found, however, that in the cases we study in
this paper the βΛ coefficients are negligibly small compared
to αΛ.

1 If we omit them, the M matrix simplifies to

M ¼ αI1 ⊕ αII1; ð10aÞ

where 1 is a 2 × 2 identity matrix. The N matrix, on the
other hand, is then given by

N ¼ ð1 − α2I Þ1 ⊕ ð1 − α2IIÞ1: ð10bÞ

B. Choice of the mode functions

We choose the mode functions ϕΛ and ψΛ, such that their
state could be prepared and measured using a finite-size
apparatus. This means that the wave packets have to be
approximately localized and have to be positive frequency
in their respective rest frames.2 Furthermore, the accelerat-
ing mode functions ψΛ have to be far from the event
horizon compared to their size L. If we denote the proper
acceleration of the center of ψΛ by AΛ, then this condition

reads 1=AΛ ≫ L. If this requirement is satisfied, the proper
acceleration (which is a function of position in the Rindler
chart) is approximately constant across ψΛ. This means that
we can attributeAΛ to ψΛ as the latter’s proper acceleration
values.
Similarly to Ref. [13], our choice of the mode functions

satisfying the above conditions is inspired by Refs. [8,11,12].
The ϕΛ are taken to satisfy the initial conditions

ϕΛðx; 0Þ ¼ �Ce−2ð
x0
L log x

x0
Þ2 sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 −m2

q
ðx − x0Þ

�
;

ð11aÞ

∂tϕΛðx; 0Þ ¼ −iΩ0ϕΛðx; 0Þ; ð11bÞ

wherex0 is the position aroundwhich the function is centered,
L is thewave packet’s width,C is the normalization constant,
and the upper (lower) sign corresponds to Λ ¼ I (II). Ω0,
around which the spectrum of the mode function is centered,
has to satisfy Ω0 ≫ 1=L so that the contribution of negative
frequencies is as small as possible. We remove the remaining
negative-frequency contribution in the numerical calculations
by applying a cutoff at zero frequency. It can be seen that
doing so leaves the spatial profile of ϕΛ mostly intact [13].
The choice of output mode functions ψΛ is independent

of the choice of input mode functions ϕΛ. However, it is
natural to obtain ψΛ from ϕΛ in the same way as one
obtains the modes of an accelerating cavity from the modes
of a cavity at rest. That is, we keep the envelope but replace
the trigonometric functions with modified Bessel functions
and substitute the Rindler coordinates in place of inertial
ones [13]. The Rindler chart will be given by

t ¼ χ sinhðaηÞ; x ¼ χ coshðaηÞ; ð12Þ

where a is a positive parameter, ðx; tÞ are Minkowski
coordinates, and ðχ; ηÞ are Rindler coordinates.3 The output
mode functions are then given by the initial conditions

ψΛðχ; 0Þ ¼ C0e−2ð
x0
L log χ

x0
Þ2 × ℑ½I−iΩ0A ðmjx0jÞIiΩ0A ðmjχjÞ�;

ð13aÞ

∂τψΛðχ; 0Þ ¼∓ iΩ0ψΛðχ; 0Þ; ð13bÞ

where C0 is a normalization constant and IiνðxÞ is the
modified Bessel function of the first kind.
We will assume that jx0j ¼ 1=A, m ¼ 0.1, L ¼ 2, and

Ω0 ≈ 5. In Fig. 2, we illustrate the shape of the wave
packets for the above parameters and A ¼ 0.1.

1The calculated values of βΛ were at least 8 orders of
magnitude smaller than the values of αΛ. We note that
neglecting βΛ implies that the channel does not depend on the
minimal distance between the observers. Provided the choice
of mode functions is fixed, the only free parameters are the
observers’ proper accelerations.

2Wave packets consisting of only positive-frequency plane
waves cannot have compact support. Therefore, we allow our
modes to possess infinite but quickly vanishing tails.

3We use the simple form of Rindler transformation with zero
separation between the wedges because our results do not depend
on the minimal distance between observers (see footnote 1).
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Now that we have specified all the mode functions, we
can calculate the overlaps given in Eq. (8). We do this
numerically and plot the result as a function of the proper
acceleration A in Fig. 3. We finally note that αIIðAÞ ¼
αIðAÞ, since the mode functions ϕΛ are the same as ϕΛ up
to the reflection with respect to x ¼ 0.

C. Entanglement of the resource state
under acceleration

Knowing αðAÞ, we can calculate the effect of accel-
eration on a state prepared in an inertial frame. The state we
consider is a two-mode squeezed vacuum state, as this is
the state we will later use as a resource for the quantum
teleportation and dense coding protocols. Without the loss
of generality, we assume that the two-mode squeezed
vacuum is characterized only by the squeezing parameter
r. The covariance matrix of the state is then

σðfÞ ¼

0
BBB@

cosh2r 0 −sinh2r 0

0 cosh2r 0 sinh2r

−sinh2r 0 cosh2r 0

0 sinh2r 0 cosh2r

1
CCCA: ð14Þ

To obtain the covariance matrix σðdÞ of the above state as
seen by two accelerating observers, we use Eqs. (7)
and (10). The result is

σðdÞ ¼

0
BBB@

a 0 −c 0

0 a 0 c

−c 0 b 0

0 c 0 b

1
CCCA; ð15aÞ

where

a ¼ 1 − α2I þ α2I cosh 2r; ð15bÞ

b ¼ 1 − α2II þ α2II cosh 2r; ð15cÞ

c ¼ αIαII sinh 2r: ð15dÞ

The αΛ are functions of the proper accelerations AΛ of the
wave packets ψΛ, as illustrated in Fig. 3.
To understand the performance of quantum-information

protocols under acceleration, it is helpful to see how the
acceleration affects the entanglement of the resource
state. We will illustrate this by comparing the logarithmic
negativities of the σðfÞ and σðdÞ states. Logarithmic neg-
ativity is an entanglement monotone [17] which is espe-
cially easy to compute for Gaussian states. For a state
characterized by the covariance matrix of the form (15), it is
given by

E ¼ max

8<
:0;− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − det σðdÞ

p

2

s 9=
;; ð16Þ

where Δ ¼ a2 þ b2 þ 2c2.
We will calculate the negativity in two different scenar-

ios. The first one is a squeezed vacuum state as seen by
observers moving with equal accelerations, AI ¼ AII ¼ A.
The logarithmic negativity of σðdÞ in this case is plotted in
Fig. 4. We can see that E monotonically decreases with
increasing acceleration and increases for larger squeezing
coefficients.
In the second scenario, we allow for asymmetric accel-

erations, i.e. AI ≠ AII. In Fig. 5, we now plot E as a
function of AI, AII. We can observe a monotonic decrease
of E as a function of observers’ accelerations. Moreover,

FIG. 2. The initial condition for the inertial wave packet ϕI and
the accelerating wave packet ψ I. We obtain ψ I by deforming ϕI in
the same way in which the modes of a Dirichlet cavity deform
under acceleration. The initial conditions for ϕII and ψ II are the
same as shown here but mirrored with respect to spacetime origin.

FIG. 3. The dependence of the overlap αΛ ¼ ðψΛ;ϕΛÞ,
Λ ∈ fI; IIg, on the proper acceleration of the wave packet ψΛ.
Since we put x0 ¼ 1=A in Eqs. (11) and (13), for A → 0, the
initial conditions escape to infinity. We remedy this by inter-
polating between A ¼ 0 and A ¼ 0.03.
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the amount of entanglement increases with the increasing
value of the squeezing parameter.

III. CONTINUOUS VARIABLE
QUANTUM TELEPORTATION

Continuous variable quantum teleportation (CVQT) is a
major example of a quantum protocol that can utilize two-
mode Gaussian states. Its purpose is to transfer quantum
information between two spatially separated observers,
Alice and Bob. The two parties use classical communica-
tion and the entanglement of a shared two-mode state to
destroy the input state at Alice’s location and reproduce it
at Bob’s.
We consider the quantum teleportation protocol intro-

duced in Ref. [18] and generalized in Ref. [19] to use
resource states with nonperfect correlations. The protocol
assumes Alice and Bob each have access to one bosonic
field mode, ψ I and ψ II, respectively. These two modes are
prepared in a Gaussian state with vanishing first moments.
Its covariance matrix σ can be represented in a block form,

σ ¼
�

σI γI;II

γTI;II σII

�
; ð17Þ

where σI, σII, and γI;II are 2 × 2 real matrices. Moreover,
Alice has access to one additional mode, which we call the
inputmode. This mode is prepared in an arbitrary Gaussian
state characterized by a covariance matrix σin and (possibly

nonzero) mean which Alice does not know. Then, she
performs double homodyne detection, effectively measur-
ing two quadratures q̂þ ¼ q̂I þ q̂in and p̂− ¼ −p̂I þ p̂in.
As a result, she obtains a complex number, x ¼ q̄þ þ ip̄−,
which is sent to Bob with the help of the classical channel.
Bob applies a displacement DðxÞ on mode ψ II that yields
a Gaussian state similar to the one originally in the
input mode.
The performance of the protocol is described by the

teleportation fidelity F, which is the overlap of the input
and the output states averaged over all the possible out-
comes of Alice’s measurement. If the input state is
Gaussian and pure, we have [20]

F ¼ 1ffiffiffiffiffiffiffiffiffiffi
detΓ

p ; ð18Þ

where

Γ ¼ 2σin þ ζσIζ þ σII þ ζγI;II þ γTI;IIζ
T;

ζ ¼ diagð1;−1Þ: ð19Þ

This formula still holds if Alice and Bob share a state
characterized by arbitrary first moments. However, in this
case, the protocol slightly changes as Bob has to perform an
additional displacement [21].
Let us consider a scenario in which Alice and Bob,

initially at rest, start accelerating uniformly and try to
perform the CVQT protocol. They share a two-mode
squeezed vacuum state and want to teleport an unknown

FIG. 4. The logarithmic negativity EðAÞ of a resource state as
detected by observers Alice and Bob (corresponding to wave
packets ψ I and ψ II) moving with equal-magnitude accelerations
AI ¼ AII ¼ A. The original state is a two-mode squeezed
vacuum state characterized by a squeezing coefficient r of the
inertial wave packets ϕI and ϕII.

FIG. 5. The logarithmic negativity EðAÞ of a two-mode
squeezed vacuum resource state as detected by asymmetrically
accelerating Alice and Bob. The original state is characterized by
a squeezing coefficient r ¼ 3.0.
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coherent state that Alice has access to. Within the frame-
work discussed in Sec. II, we can study geometries in
which Alice and Bob move with arbitrary accelerations,
independent from each other. The only requirement is for
Bob to be in Alice’s future light cone as it is necessary for
the classical information to be sent.
Alice’s and Bob’s motion is accounted for by applying

the two-mode channel (7) to the resource state. The result,
given by Eq. (15), is characterized by two independent
parameters, αI and αII. Inserting it into Eq. (18) gives the
teleportation fidelity:

F ðαI;αII; rÞ ¼
1

2þ 1
2
ðα2I þ α2IIÞðcosh2r− 1Þ− αIαII sinh2r

:

ð20Þ

Firstly, we analyze the scenario in which Alice and Bob
move with equal accelerations, AI ¼ AII ¼ A. The tele-
portation fidelity F ðAÞ of the protocol they perform is
plotted in Fig. 6. It decreases monotonically with the
acceleration A and increases for a larger value of the
squeezing parameter r.
In the next scenario, we consider Alice and Bob moving

with different accelerations, AI ≠ AII. In Fig. 7, we plot
the teleportation fidelity as a function of AI and AII for
different values of the squeezing parameter of the resource.
Fixing one of the accelerations, e.g. AI, we see that the
teleportation fidelity as a function of the other acceleration
peaks at AI ¼ AII. This peak gets more pronounced for
larger values of the squeezing parameter.
We note that the drop of teleportation fidelity for

asymmetric accelerations cannot be explained by degrada-
tion of entanglement of the resource state. This can be seen
by looking at Fig. 5, which shows that the logarithmic
negativity of the resource state is essentially insensitive to
asymmetry of accelerations. We conclude therefore that the
poor performance of quantum teleportation for AI ≠ AII is
a sign that the protocol we use is not optimal in this regime.
We confirm this by calculating the lower bound for optimal
teleportation fidelity [22],

F opt ≥
1þ ν

1þ 3ν
; ð21Þ

where ν is the smallest symplectic eigenvalue of the
resource state. Comparing this bound to the fidelity of
our protocol (see Fig. 8), we see that the latter is strictly

FIG. 6. The fidelity F of quantum teleportation performed
by Alice and Bob moving with equal-magnitude accelerations
AI ¼ AII ¼ A. The entangled state used as a resource is a two-
mode squeezed vacuum state of ϕI and ϕII. r is the squeezing
coefficient characterizing the resource.

FIG. 7. The teleportation fidelity F in the case when the magnitudes of Alice’s and Bob’s accelerations are independent. Fidelity
values below 0.5 are clipped as F ¼ 0.5 is achievable with a classical strategy. r is the squeezing coefficient of the two-mode squeezed
vacuum resource.
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suboptimal for highly asymmetric accelerations. The
asymmetry-related fidelity loss is therefore not fundamen-
tal and can be remedied, as shown in Sec. V, with an
additional LOCC performed by Alice and Bob before the
measurements.
However, degradation of fidelity also occurs in the

symmetric case (see Fig. 6), for which our protocol can
be shown to be optimal [23]. This happens because in the
accelerating frame the off-diagonal terms of the resource
state [see Eq. (15)] are proportional to the overlaps of inertial
and accelerating wave packets. The values of these overlaps,
on the other hand, are strictly smaller than 1. That is because
each wave packet consists of only those solutions which are
positive frequency in its respective rest frame. Losses
stemming from this mode mismatch are fundamental and
cannot be removed by any amendments to the protocol.

IV. CONTINUOUS VARIABLE DENSE CODING

Another quantum-information protocol which can
utilize two-mode Gaussian states is the continuous variable
dense coding. Its purpose is to efficiently communicate
classical information over a quantum channel between two
observers, Alice and Bob. The two parties again share an
entangled two-mode state, which allows them to commu-
nicate two real numbers while sending only one field mode.
We consider the protocol introduced in Ref. [24]. The

message that Alice attempts to communicate to Bob is a
complex number xin. The protocol assumes the message is
drawn from a distribution,

PðxinÞ ¼
1

πn
exp

�
−
jxinj2
n

�
; ð22Þ

where n is a normalization constant. The protocol starts
with Alice encoding the information she wants to send by
performing a displacement DðxinÞ on the state of mode ψ I,
which she has access to. Alice then sends mode ψ I to
Bob, who combines it with his mode ψ II on a 50=50 beam
splitter. Finally, Bob performs a homodyne detection of the
resulting modes to obtain xout which is his estimate of the
message that Alice has sent.
We will use mutual information to quantify how well

Bob’s estimate approximates the original message. Mutual
information is a measure of the statistical dependence
between two random variables. It ranges from zero, when
the variables are independent, to the entropy of one of them,
when they are well-defined functions of each other. The
mutual information H between random variables xin and
xout is defined as

Hðxin; xoutÞ ¼
Z

dxindxoutpðxin; xoutÞ log
pðxin; xoutÞ
pðxinÞpðxoutÞ

;

ð23Þ

where pðxinÞ and pðxoutÞ are probability densities of xin and
xout and pðxin; xoutÞ is a joint probability distribution.
In Ref. [25], the mutual information for the considered

protocol was calculated given an arbitrary two-mode
resource,

H ¼ 1

2
log

��
1þ n

2Vqþ

��
1þ n

2Vp−

��
; ð24Þ

where Vq− and Vpþ are the variances of the quadratures
q̂þ ¼ q̂I þ q̂II and p̂− ¼ −p̂I þ p̂II, respectively.
The scenario we consider now to assess the performance

of dense coding is the same as for quantum teleportation.
Alice and Bob again have access to a two-mode squeezed
vacuum state as the resource and perform the protocol
under uniform acceleration. The influence of their motion is
once again described by applying the two-mode channel (7)
to the resource state. By inserting (15) into (24), we arrive
at the expression for mutual information between Alice’s
message and Bob’s estimate:

H¼ log

�
1þ n

2þðα2I þα2IIÞðcosh2r− 1Þ− 2αIαII sinh2r

�
:

ð25Þ

First, we analyze the case when Alice and Bob accelerate
with the equal magnitudes AI ¼ AII ¼ A. The mutual
informationHðAÞ of the protocol in this situation is plotted
in Fig. 9. It decreases for larger values of the acceleration
and increases with the squeezing parameter in a similar way
as the teleportation fidelity in Fig. 6.

FIG. 8. The teleportation fidelity of the protocol we consider
(yellow, checked) and the lower bound on optimal teleportation
fidelity (blue) as a function of Alice’s and Bob’s accelerations,AI
and AII. The resource state is characterized by the squeezing
parameter r ¼ 3.5.

EFFECT OF RELATIVISTIC ACCELERATION ON … PHYSICAL REVIEW D 95, 105005 (2017)

105005-7



The next scenario is the asymmetric case, AI ≠ AII. In
Fig. 10, we plot the mutual information as a function of AI
and AII for different values of the squeezing parameter r.
Again, the mutual information behaves similarly to the
teleportation fidelity (see Fig. 7), achieving a distinctive
peak at AI ¼ AII.
The similarity of the results for dense coding and

quantum teleportation suggests that the causes of the
efficiency loss are the same in both cases. Entanglement
degradation due to the acceleration again plays a funda-
mental role and leads to the reduction of the mutual
information between the observers in every scenario.
Moreover, as the drop of the efficiency in the asymmetric
setup cannot be explained by entanglement degradation

alone, we conclude that the protocol is not well suited
for the resource in this case. However, as shown in the
following section, the protocol can be improved by adding
an extra, motion-dependent LOCC operation.

V. REDUCING THE EFFECT OF
ASYMMETRY WITH LOCC

We now proceed to characterize a local Gaussian map
which improves the performance of quantum teleportation
and dense coding for asymmetric resource states. At the
level of the covariance matrix, a general TGCP (trace-
preserving, Gaussian, and completely positive) map acts as

σ → σ0 ¼ SσST þG; ð26Þ

where S corresponds to the unitary operation and G
corresponds to the added noise. Since we consider a
local channel, S ¼ SI ⊕ SII, and G ¼ GI ⊕ GII. We will
take [22]

SI ¼
	
tan θ1 0 < θ ≤ π=4

1 π=4 ≤ θ < π=2;
ð27aÞ

SII ¼
	
1 0 < θ ≤ π=4

cot θ1 π=4 ≤ θ < π=2;
ð27bÞ

GI ¼
	 ð1 − tan2 θÞ1 0 < θ ≤ π=4

0 π=4 ≤ θ < π=2;
ð27cÞ

GII ¼
	
0 0 < θ ≤ π=4

ð1 − cot2 θÞ1 π=4 ≤ θ < π=2;
ð27dÞ

where

FIG. 9. The mutual information H of a dense coding protocol
performed by Alice and Bob moving with equal-magnitude
accelerations AI ¼ AII ¼ A. r is the squeezing coefficient of
the resource state.

FIG. 10. The mutual information H for independent magnitudes of Alice’s and Bob’s accelerations. r is the squeezing coefficient of
the resource state.
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θ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

1þ ϵ

r
; ð28aÞ

ϵ ¼
ffiffiffi
2

p ðα2I − α2IIÞ sinh rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2I þ α2IIÞ2ðcosh 2r − 1Þ þ 8α2I α

2
II

p : ð28bÞ

Once again, r is the squeezing parameter of the resource
state, and αI and αII are the overlaps introduced in Eq. (8).
In the quantum teleportation protocol, the channel (27)

should be applied to the resource state just before the
measurements. The resulting fidelity can be calculated from
Eq. (18), becoming

F opt ¼
1þ jϵj

1þ νþ 2jϵj ; ð29Þ

where ν is the smallest symplectic eigenvalue of the
partially transposed resource state before the channel
(27) is applied. It may happen that the above fidelity is
lower than the initial one, especially when the resource
state is symmetric enough from the beginning. For asym-
metric states, however, the improvement is significant
[see Fig. 11(a)]. In fact, Ref. [22] proves that (29) always
exceeds the lower bound (21). This implies that the fidelity
cannot be further improved by more than 0.086, which is
the maximum difference between (21) and the upper bound
for fidelity.
We show now that the channel (27) also improves the

performance of dense coding. This time, it is applied to
the resource state before Bob sends his mode to Alice. The
mutual information (24) then becomes

Hopt ¼ log

�
1þ n

2

F opt

1 − F opt

�
; ð30Þ

where F opt is given by Eq. (29). To see how well the effect
of asymmetry is removed, for each asymmetrically accel-
erated resource state, we will use the asymmetric resource
with equal entanglement as a reference. We find that the
difference of mutual information values for those two cases
is always smaller than 15%, for n ¼ 10, and decreases with
n. The comparison is shown in Fig. 11(b).
Finally, we note that the channel (27) can be decomposed

into a (Gaussian) local unitary, followed by an attenuation
performed locally either by Alice or Bob. This provides
a clear operational interpretation of the asymmetry-
compensation step. First, Alice and Bob both have to
perform exact combination of phase space rotations and
squeezings of their respective modes, and then one of them
has to use a beam splitter with one unused port and a given
transmissivity.

VI. CONCLUSIONS

In this article, we have studied the effect of relativistic
acceleration on continuous variable quantum-information
protocols, applying the results of Ref. [13]. Within the
framework introduced there, we have been able to compute
how two uniformly accelerating observers detect the state
of two inertial, bosonic, approximately localized wave
packets. Such a description can be represented as the
action of a Gaussian quantum channel, which allowed us
to efficiently calculate covariance matrix of the resource
state in the Rindler frame of reference.
We have assumed that a pair of observers, Alice and

Bob, have access to the two-mode squeezed vacuum state
prepared in the inertial frame. They accelerate and perform
a quantum-information protocol. We have considered
different scenarios. Observers can counter- or coaccelerate

FIG. 11. (a) The teleportation fidelity without (yellow, checked)
and with (red) the asymmetry-compensating LOCC. (b) Mutual
information of the dense coding protocol without (yellow,
checked) and with (red) asymmetry compensation. In both cases,
the losses due to unequal accelerations of the observers are almost
completely removed. The resource state is characterized by the
squeezing parameter r ¼ 3.5.
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with different magnitudes and have an adjustable spatial
separation. To quantify the effectiveness of the protocol,
we have used the teleportation fidelity in the case of the
quantum teleportation and the mutual information for the
dense coding.
We have identified two types of efficiency losses that are

present under the acceleration. First, the decompositions of
the free field in Minkowski and Rindler spacetimes into
positive and negative components are different. It makes
the construction of the positive-frequency wave packets
that take the same form in both frames impossible. As a
result, the efficiency of the protocols drops as it explicitly
depends on the overlaps of inertial and noninertial mode
functions. Second, if Alice’s and Bob’s accelerations are
different, the resource state becomes asymmetric and thus
ill suited for the standard protocols we consider. We have
shown, however, that the asymmetry losses can be reduced
if Alice and Bob perform additional local adjustments prior
to measurements. In particular, we demonstrated that two
Gaussian unitary operations followed by the attenuation of

one of the modes can recover at least 89% of maximal
teleportation fidelity and 85% of the maximal mutual
information. For quantum teleportation, a small further
improvement with Gaussian operations is still possible
[22]. For dense coding, however, full optimization of the
resource state remains an open problem.
Regarding the outlook, we have managed to calculate the

effect of relativistic acceleration on quantum-information
protocol in a realistic setup. It further proves that frame-
work we have applied can be readily used to study an effect
of acceleration on any type of quantum-information pro-
cedure involving Gaussian states. Further work might
include the analysis of other relevant quantum-information
protocols, such as quantum key distribution or quantum bit
commitment.
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