
 

Can a charged decaying particle serve as an ideal clock in the presence
of a magnetic field?
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We investigate a model of a supposedly ideal clock based on the decay rate of a charged particle in
circular motion in a constant magnetic field. We show that the time measured by an ideal clock depends on
the acceleration. However, the effect becomes visible at an order of magnitude of 1028 g, therefore
confirming the validity of the ideal clock hypothesis for realistic accelerations.
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I. INTRODUCTION

Proper time is defined as the time measured by an ideal
clock along its own path. In general, the proper time
measured by such a clock moving with instantaneous
velocity vðtÞ along any path is given by the equation

τ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
v2ðtÞ
c2

s
dt; ð1Þ

where dt is the ticking rate of ideal clocks at rest. For
constant speed, (1) reduces to the more familiar time
dilation expression, τ ¼ t=γ. So-called good clocks, or
ideal clocks, are devices that measure time according to the
relation (1) along any path, independently on the accel-
eration they are undergoing.
Whether a clock is good or not depends on the circum-

stances of its realization, and any conceivable device has to
be reconducted to some fundamental physical process. An
often invoked textbook model of an ideal clock consists in
an ensemble of decaying unstable particles. Much effort has
been invested in verifying this model. In 1977, the lifetime
of a relativistic muon undergoing a circular motion was
measured [1]. No evidence of deviation from (1) for the
high transverse acceleration has been found: “the predic-
tions of special relativity obtain even under accelerations as
large as 1018 g and down to distances less than 10−15 cm”
[1]. This experiment is cited in standard textbooks, see, for
example [2], as the evidence for the ideal clock hypothesis.
Even if clocks can be considered ideal under the regime in
which particle accelerators normally operate, more gen-
erally, it has been proven by several authors that this is not
the case [3–6]. They have studied the decay law of different

particles, in rectilinear and circular motion, as a function of
the proper acceleration a, and they have shown that the rate
depends on the particle trajectory. In the work [7], an
analogous result was interpreted as the evidence that a
timing rate is not independent on the acceleration and that
ideal clocks are only a convenient fiction. All of those
studies are similar in one respect: the agent forcing the
particle to accelerate was not specified. Here, we extend
those results to a more realistic physical model, where a
charged particle is forced by a constant magnetic field to
move along a circular trajectory.1 Some of the most
important experiments measuring time dilation were car-
ried out through a muon’s decay, see, for example [9]
regarding detection of cosmic muons, besides the already
cited [1]. Therefore, we would like to investigate the
validity of special relativistic time dilation at large accel-
erations by studying the lifetime of a muon in circular
motion through a constant magnetic field. Since the
calculations turn out to be cumbersome for the three-body
fermion’s decays relevant for real muons, we simplify the
model restricting ourself to two-body decays involving
only scalar particles. The paper is organized as follows: in
Sec. II, we describe the physical model simply listing
standard results regarding the motion of a scalar particle in
a constant magnetic field. In Sec. III, we explicitly calculate
the decay rate and show that it deviates from the inertial
decay rate at high accelerations. We discuss our findings in
Sec. IV. Finally, we conclude with some remarks in Sec. V.
We work in natural units, ℏ ¼ c ¼ 1.

II. PHYSICAL MODEL

In this section, we briefly recapitulate some basic facts
about the classical and the quantum theory of charged

*rpierini@fuw.edu.pl
†Krzysztof.Turzynski@fuw.edu.pl
‡dragan@fuw.edu.pl

1After completion of this work, the following paper was
brought to our attention, in which the author nonquantitatively
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particles moving in a constant magnetic field. Details can
be found in standard textbooks, see, for example [10].
Consider a particle of an electric charge e ¼ −jej and mass
M in motion under the influence of a constant magnetic
field B⃗ ¼ ð0; 0; BÞ. A possible choice for the four-vector
potential is

Aμ ¼ ð0; 0; xB; 0Þ: ð2Þ

In this setting, a classical particle of energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðeBRÞ2 þ k2z

q
; ð3Þ

can move on the xy plane along a circle of radius

R ¼ p⊥
eB

; ð4Þ

where p⊥ ¼ γMv⊥ is the value of the transverse momen-

tum and v⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
is the value of the transverse

velocity of the particle.
The classical radial energy is defined as

p⊥ ¼ eBR: ð5Þ

The value of the centripetal acceleration is proportional to
the magnetic field and to the transverse momentum of the
particle

a⊥ ¼ jejB
γ2M2

p⊥; ð6Þ

where γ ¼ E=M is the Lorentz factor.
The quantum theory of a charged particle in a constant

magnetic field resembles that of the quantum harmonic
oscillator, even though the dynamics of relativistic scalar
particles is governed by the Klein-Gordon equation

ðp̂μp̂μ −M2Þϕ ¼ 0; ð7Þ

with the so-called kinetic momentum operator given by

p̂μ ¼ i∂μ − eAμ; ð8Þ

and ϕ is the canonically normalized wave function of the
particle. With the gauge choice (2), solutions of the Eq. (7)
can be written as

ϕk;nðx⃗; tÞ ¼ InðρÞe−iωnteiðkyyþkzzÞ; ð9Þ

where the index k stands for ky and kz and n are the so-
called Landau levels. The function InðρÞ satisfies the
differential equation

∂2

∂ρ2 InðρÞ þ ðλ − ρ2ÞInðρÞ ¼ 0; ð10Þ

which is equivalent to the Schrödinger equation for the
harmonic oscillator. Here, we have that

ρ ¼
ffiffiffiffiffiffiffiffiffi
jejB

p �
xþ ky

jejB
�
; ð11Þ

and

λ ¼ ω2 −M2 − k2z � jejB
jejB : ð12Þ

Bounded solutions to (10) exist only when λ ¼ 2nþ 1 and
n is an integer. This has an effect on the energy eigenvalues:
in the quantum theory, they are discrete and depending
on n as

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ð2nþ 1ÞjejBþ k2z

q
: ð13Þ

Finally, properly normalized solutions are

InðρÞ ¼
� ffiffiffiffiffiffiffiffiffijejBp

ffiffiffi
π

p
2nn!

�1=2

e−ρ
2=2HnðρÞ; ð14Þ

with HnðρÞ being Hermite polynomials.
Knowing the wave function (9), we can compute the

average value of the particle position squared along the x̂
axes

hx2i ¼ 2nþ 1

jejB þ ky
jejB : ð15Þ

This result can be interpreted as

R2 ¼ 2nþ 1

jejB and x20 ¼
ky
jejB ð16Þ

being the radius and the center of the circular trajectory
squared, respectively. Note that this interpretation can also
be deduced from the Eq. (11).

III. DECAY RATE

The decaying muon is often offered as an example of an
ideal clock. Here, we are actually studying a simplified
model of muon decay—with only two daughter particles
and involving scalar fields only

Φμ → ΦeΦν: ð17Þ

The free field Φν is quantized in terms of a complete set of
the solutions of the Klein-Gordon equation
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ΦðxÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2Vωk

p ðake−ikλxλ þ a†ke
ikλxλÞ; ð18Þ

with

ων
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ν þ νk2x þ νk2y þ νk2z
q

:

Here, the sum over kmeans the sum over kx, ky, and kz. The
mode decomposition for the two charged particle fields Φμ

and Φe reads

ΦðxÞ ¼
X
n

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2LyLzωn

s
ðakϕþ

n;k þ b†kϕ
−
n;kÞ; ð19Þ

where k stands for ky and kz, n are the Landau levels, and
ωn is given in (13). The quantization is carried out in a box
of dimensions Lx, Ly, Lz and with volume V ¼ LxLyLz.
The momentum in the x̂ direction is not a good quantum
number since it is not conserved and, therefore, does not
label the frequency modes of the charged particles. The
interaction Lagrangian leading to the decay process (17) is

LI ¼ −GΦνΦ
†
eΦμ; ð20Þ

which, in the first order of perturbation theory, results in the
following differential transition probability per unit time:

dΓ ¼ LyLzdkeydkez
ð2πÞ2

Vd3kν

ð2πÞ3 ×
jhkekνjSIjkμij2

T

¼ G2jejB
8ð2πÞ2

d2ked3kν
ωe
nω

μ
mων

δðkμy − key − kνyÞδðkμz − kez − kνzÞ

× δðωμ
m − ωe

n − ωνÞjAn;mj2; ð21Þ

where

An;m ¼
Z

∞

−∞
dxe−ik

ν
xxImðρμÞInðρeÞ: ð22Þ

The integersm and n label the Landau levels of the ingoing
and of the outgoing charged particles, respectively. Note
that the Dirac delta functions appearing in the second row
of (21) express the conservation of energy and momentum
in the y and z directions. We should mention also that the
following formulas have been used, which hold when the
dimensions of the box V and the measuring time T are sent
to infinity:

lim
Ly→∞

jδðkyÞj2 ¼ lim
Ly→∞

Ly

2π
δðkyÞ; ð23Þ

lim
Lz→∞

jδðkzÞj2 ¼ lim
Lz→∞

Lz

2π
δðkzÞ; ð24Þ

lim
T→∞

jδðωÞj2 ¼ lim
T→∞

T
2π

δðωÞ: ð25Þ

The integration over x in (22) can be done in the
following way [11]:Z

∞

−∞
dxe�ik1xe−ðeρ2=2Þe−ðμρ2=2ÞHnðeρÞHmðμρÞ

¼ e−c=4jejBffiffiffiffiffiffiffiffiffijejBp Z
∞

−∞
dρe−ρ

2

HnðρþaÞHmðρþbÞ

¼
( e−c=4jejBffiffiffiffiffiffi

jejB
p 2m

ffiffiffi
π

p
n!bðm−nÞLm−n

n ð−2abÞ; n≤m;

e−c=4jejBffiffiffiffiffiffi
jejB

p 2n
ffiffiffi
π

p
m!aðn−mÞLn−m

m ð−2abÞ; m≤ n;
ð26Þ

where Lj
iðzÞ are associated Laguerre polynomials,

and

a ¼ −
1

2
ffiffiffiffiffiffiffiffiffijejBp ðkey − kμy ∓ ikνÞ ð27Þ

b ¼ 1

2
ffiffiffiffiffiffiffiffiffijejBp ðkey − kμy � ikνÞ ¼ −a� ð28Þ

c ¼ ðky − kμyÞ2 � 2ikνðkey þ kμyÞ þ k2ν: ð29Þ

Therefore, using the formula (26) together with the wave
functions (14), the modulus square of (22) can be written in
a compact form as

jA�
n;mj2 ¼

e−
ðkey−k

μ
y Þ2þk2ν

2jejB

jejB
�
m!

n!

�
signðn−mÞ�ðkey − kμyÞ2 þ k2ν

2jejB
�jn−mj

×

�
Ljn−mj
minðn;mÞ

�ðkey − kμyÞ2 þ k2ν
2jejB

��
2

; ð30Þ

where minðn;mÞ gives the smallest between the two
indexes and signðn −mÞ is equal to one when n > m
and equal to minus one when n < m. Inserting the
expression (30) into the Eq. (21) and carrying out the
integration over d3kν and dkey, gives the following expres-
sion for the decay rate:

Γ ¼ G2

16π

X
n

�
m!

n!

�
signðn−mÞ 1

ωμ
m

×
Z

dkez
e−

ðωμm−ωenÞ2−ek2z
2jejB

ωe
n

�ðωμ
m − ωe

nÞ2 − ek2z
2jejB

�jn−mj

×

�
Ljn−mj
minðn;mÞ

�ðωμ
m − ωe

nÞ2 − ek2z
2jejB

��
2

: ð31Þ

Now, the fact that the number of final states accessible to
the emitted charged particle are limited implies
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jkez j ≤
ω2
μ −M2

e − ð2nþ 1ÞjejB
2ωμ

; ð32Þ

and

n ≤
ω2
μ − jejB −M2

e

2jejB : ð33Þ

The expression (31) together with (32) and (33) is the decay
rate of a scalar particle decaying into two scalars in a
constant magnetic field. We evaluate it numerically.
In the absence of a magnetic field, the interaction

Hamiltonian (20) leads to the following decay rate:

Γ0
0 ¼

G2

16πMμ

�
1 −

M2
e

M2
μ

�
; ð34Þ

where 0 denotes the particle rest frame. The lifetime τ0 of a
moving particle is equal to the lifetime at rest τ00 multiplied
by the γ factor

τ0 ¼ γτ00; ð35Þ

where γ ¼ ω=M. The inverse of (35) corresponds to the
decay rate

Γ0 ¼
1

γ
Γ0
0: ð36Þ

The decay law (31) of a particle moving with energy ωl

under the influence of a magnetic field B⃗ has to converge to
the value (36) when B goes to zero. In the following
section, we show that this is indeed the case and that
deviation from the value (36) becomes significant at very
high accelerations.

IV. RESULTS

We consider the mass of the emitted particles to be much
smaller than the mass of the decaying one, Me ≈Mν ≈ 0,
and the initial momentum transverse to the magnetic field,
kμz ¼ 0. In general, as can be seen from Eq. (4) and Eq. (6),
when the radial energy p⊥ of the incoming particle is fixed,
a larger magnetic field force it to move on a trajectory with
a shorter radius and with a larger transverse acceleration.
The quantum expression for the square of the radial
energy is

p2⊥ ¼ ð2mþ 1ÞjejB: ð37Þ

Now, assuming p⊥ constant, the magnetic field can assume
only discrete values given by the equation

jejB ¼ p2⊥
2mþ 1

; ð38Þ

and therefore, higher values of m are linked to larger radii
and smaller accelerations. In Fig. 1, we show the behavior
of the ratio Γ=Γ0 between the decay rates (31) and (36) as a
function of the Landau levelsm for different energies of the
decaying particle, with the magnetic field given by the
relation (38). The plot clearly shows that significant devia-
tions from the inertial value start only at small Landau levels
m, associated with larger accelerations. When the available
energy is higher, the particle’s decay rate in the absence of
magnetic field is approached later, as can be seen also in
Fig. 2. As a matter of fact, for the same level m, a larger
energy requires a stronger magnetic field to keep the particle
along the same trajectory, and the effect of the acceleration
on the decay law is more important. From the first of the
expressions (16), the magnetic field can be directly related
to the Landau level and to the classical radius

jejB ¼ 2mþ 1

R2
: ð39Þ

Note that this equation can be obtained also equating the
classical (3) with the quantum (13) expression for the
energy. The Fig. 3 shows the decay rate on the vertical axis
and the magnetic field on the horizontal one. The magnetic
field is given by the expression (39) as a function of m and
with the radius kept constant. In this case, as the Landau
level increases, the magnetic field also increases, and we
can observe a major effect on the decay rate. The energy
also changes according to the equation

p⊥ ¼ ð2mþ 1Þ
R

; ð40Þ

as can be seen inserting Eq. (39) into (37).

FIG. 1. Decay rate γΓðmÞ=Γ0
0 vs Landau levels m for

different radial energy values of the initial particle. Here,
Mμ ¼ 105.7 MeV, Me ¼ Mν ¼ 0.
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It is not difficult to study the quantum limit for m ¼
n ¼ 0 of the expression (31). The incoming particle
occupies the zeroth Landau level when the radial energy
squared equals the magnetic field, as can be easily seen
from (37). In this case, the Laguerre polynomials are equal
to one, Lα

0ðxÞ ¼ 1 [11]. The number of available Landau
levels for the outgoing charged particle is limited by

n ≤
M2

μ

2jejB : ð41Þ

For a magnetic field such that jejB > M2
μ=2, the emitted

particle would occupy the lowest Landau level n ¼ 0, and
the decay rate ratio will reduce simply to

γΓ
Γ0
0

¼ 2
e−ð1þ

M2
μ

2jejBÞe
−

ffiffiffiffiffiffiffiffiffi
1þM2

μ
jejB

q
ffiffiffiffiffiffiffiffiffijejBp Z

xmax

0

dx
e

ffiffiffiffiffiffiffiffiffi
1þ x2

jejB

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

jejB
q ; ð42Þ

where x ¼ kez and xmax ¼ M2
μ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

μþjejB
p . From here, it can be

seen that as jejB → ∞ the integration range shrinks and the
decay rate goes to zero. In Fig. 4, we show the rate for
m ¼ 0 as a function of the magnetic field. Note that in this
case, the radial energy squared equals jejB.
So far we have been using natural units, where ℏ ¼ 1 and

c ¼ 1, now we want to associate specific values of the
decay rate ratio to the relative radius and to the transverse
acceleration in physical units, to make quantitative pre-
dictions. We have the expressions

R ¼ 2mþ 1

p⊥
× ℏc; ð43Þ

a⊥ ¼ p3⊥
ð2mþ 1Þω2

m
×
c
ℏ
; ð44Þ

where ℏ and c are the Planck constant and the speed of
light. Also, we might want to know the de Broglie wave-
length λdB associated to the particle, which is given by

λdB ¼ 2πℏc
p⊥

: ð45Þ

FIG. 2. Decay rate γΓðmÞ=Γ0
0 vs Landau levels m for

an initial radial energy squared p2⊥ ¼ 5 × 104 MeV2. Here,
Mμ ¼ 105.7 MeV, Me ¼ Mν ¼ 0.

FIG. 3. Decay rate γΓðmÞ=Γ0
0 vs the magnetic field BðmÞ

for a fixed radius R ¼ 0.1 MeV−1 ¼ 2 × 10−14 m. Here,
Mμ ¼ 105.7 MeV, Me ¼ Mν ¼ 0.

FIG. 4. Decay rate γΓðmÞ=Γ0
0 vs radial energy p⊥ for a fixed

radius R ¼ 0.1 MeV−1 ¼ 2 × 10−14 m and m ¼ 0. Here, Mμ ¼
105.7 MeV, Me ¼ Mν ¼ 0.
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In the following table, we show a few representative values of these observables:

γΓ=Γ0
0 p2⊥ [MeV2] Landau level m Radius [m] Acceleration [m=s2] λdB [m]

1.00094 3 × 104 65 1.49 × 10−13 4.39 × 1029 8.80 × 10−15

1.0002 104 30 1.20 × 10−13 3.53 × 1029 12.38 × 10−15

1.00008 5 × 103 20 1.14 × 10−13 2.43 × 1029 17.53 × 10−15

1.00003 103 5 6.86 × 10−14 1.08 × 1029 39.21 × 10−15

Note that a quantity of jejB ≈ 10−2M2
μ corresponds to a

magnetic field B ≈ 1015 G.
The lifetime of the muon can be measured with an

accuracy of 10−5. For detection of the induced modification
of the decay rate, the effect has to be larger. In the paper [3],
the authors studied the three body muon decay with scalar
fields in the case of rectilinear acceleration, and it is
interesting to observe that the acceleration predicted to
have a potentially visible effect, a ¼ 7 × 1027 g, where g ∼
10 m

s2 and a is the proper acceleration of the decaying
particle, is not far from the value we have found and
reported in the last row of the table. We should note
however, that the results are not directly comparable
because in their scenario only the unstable initial particle
is accelerating, while in ours also the final charged particle
is under acceleration.

V. CONCLUDING REMARKS

The aim of this work was to investigate how realistic is
the ideal clock hypothesis. We have considered the most
fundamental possible clock, given by the lifetime of an
unstable charged particle, and investigated how the decay
rate is affected by a constant magnetic field, which imparts
a centripetal acceleration to the charge. We have observed
that significative deviations from the time dilation formula
arise at huge accelerations, orders of magnitude further
than the ones experienced by the particles in high energy
physics experiments. As far as practical purposes are
concerned, the ideal clock hypothesis is confirmed to be

valid at the regimes where particle physicists normally
operate or they plan to operate in the nearby future. On the
other hand, our results confirm and extend the conclusions
of [7], which investigates a simpler and more straightfor-
ward scenario.
Some remarks regarding the limits of our model are in

order. We have considered a toy model which does not
describe the physical process of muon decay, where all
the involved particles are fermions. This fact would imply
a great complication due to the presence of the spin
degrees of freedom. Furthermore, the interaction
Lagrangian should be the weak force interaction which
is not as elementary as the simple product of the fields we
have considered. Still, those do not represent the main
problem. The biggest difficulty with the real muon decay
is that it involves three final particles, leading to three
more integrals to be performed and more variables to deal
with in the expression for the decay rate. We should note
also that a strong magnetic field, as the one we need to
have an observable effect in our model, can lead to pairs
creation.
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